WorldWideScience

Sample records for hunsaker creek formation

  1. Evolutionary trends in Triceratops from the Hell Creek Formation, Montana.

    Science.gov (United States)

    Scannella, John B; Fowler, Denver W; Goodwin, Mark B; Horner, John R

    2014-07-15

    The placement of over 50 skulls of the well-known horned dinosaur Triceratops within a stratigraphic framework for the Upper Cretaceous Hell Creek Formation (HCF) of Montana reveals the evolutionary transformation of this genus. Specimens referable to the two recognized morphospecies of Triceratops, T. horridus and T. prorsus, are stratigraphically separated within the HCF with the T. prorsus morphology recovered in the upper third of the formation and T. horridus found lower in the formation. Hypotheses that these morphospecies represent sexual or ontogenetic variation within a single species are thus untenable. Stratigraphic placement of specimens appears to reveal ancestor-descendant relationships. Transitional morphologies are found in the middle unit of the formation, a finding that is consistent with the evolution of Triceratops being characterized by anagenesis, the transformation of a lineage over time. Variation among specimens from this critical stratigraphic zone may indicate a branching event in the Triceratops lineage. Purely cladogenetic interpretations of the HCF dataset imply greater diversity within the formation. These findings underscore the critical role of stratigraphic data in deciphering evolutionary patterns in the Dinosauria.

  2. Diverse tetrapod trackways in the Lower Pennsylvanian Tynemouth Creek Formation, near St. Martins, southern New Brunswick, Canada

    DEFF Research Database (Denmark)

    Falcon-Lang, Howard J; Gibling, Martin R; Benton, Michael J;

    2010-01-01

    Newly discovered tetrapod trackways are reported from eight sites in the Lower Pennsylvanian Tynemouth Creek Formation of southern New Brunswick, Canada. By far the most abundant and well-preserved tracks comprise pentadactyl footprints of medium size (32–53 mm long) with slender digits and a nar......Newly discovered tetrapod trackways are reported from eight sites in the Lower Pennsylvanian Tynemouth Creek Formation of southern New Brunswick, Canada. By far the most abundant and well-preserved tracks comprise pentadactyl footprints of medium size (32–53 mm long) with slender digits...

  3. Dune formation on the Cooper Creek floodplain, Strzelecki Desert, Australia - first results of morphodynamic simulations

    Science.gov (United States)

    Kryger, Mateusz; Bubenzer, Olaf; Parteli, Eric

    2017-04-01

    Linear Dunes, which align longitudinally to the resultant wind vector, are the prevailing type of the south-north trending and partially vegetated dunes in the Strzelecki Desert, Australia. However, particularly on the Cooper Creek floodplain near Innamincka, striking complex dune features consisting of transversely oriented east-west trending dunes occur. These transverse dunes extend over several kilometers and are superimposed by linear dunes that elongate northwards and are separated by sandy swales. The aeolian features in the Strzelecki Desert are the result of interrelated late quaternary aeolian and fluvial activity and serve, thus, as archives providing information about variations in palaeoclimate and potential changes in fluvial sediment supply and wind strength and directionality. However, since the dunes are currently mostly stabilized by vegetation, it is uncertain whether their formation can be explained by the contemporary wind systems. To understand the dynamic processes underlying the genesis of the dune field in the Strzelecki Desert, the role of vegetation and the wind regimes leading to the observed dune patterns must be elucidated. Here we investigate the formative processes of the dune features occurring on the Cooper Creek floodplain by means of morphodynamic modeling of aeolian sand transport and dune formation in presence of vegetation growth. Our simulations show that a source-bordering dune can be formed out of the sediments of seasonally exposed sandbars of the palaeo-Cooper system by a unidirectional wind, which explains the emergence of the transverse dunes in the field. Moreover, a shift in the wind regime to obtuse bidirectional wind flows combined with a rapid decrease in the vegetation cover leads to the formation of linear dunes on the surface and in the lee of the transverse dunes. These linear dunes elongate over several kilometers downwind as a result of the seasonal wind changes. The dune shapes obtained in our simulations

  4. Assessing the Biological Contribution to Mineralized Cap Formation in the Little Hot Creek Hot Spring System

    Science.gov (United States)

    Floyd, J. G.; Beeler, S. R.; Mors, R. A.; Kraus, E. A.; 2016, G.; Piazza, O.; Frantz, C. M.; Loyd, S. J.; Berelson, W.; Stevenson, B. S.; Marenco, P. J.; Spear, J. R.; Corsetti, F. A.

    2016-12-01

    Hot spring environments exhibit unique redox/physical gradients that may create favorable conditions for the presence of life and commonly contain mineral precipitates that could provide a geologic archive of such ecosystems on Earth and potentially other planets. However, it is critical to discern biologic from abiotic formation mechanisms if hot spring-associated minerals are to be used as biosignatures. The study of modern hot spring environments where mineral formation can be directly observed is necessary to better interpret the biogenicity of ancient/extraterrestrial examples. Little Hot Creek (LHC), a hot spring located in the Long Valley Caldera, California, contains mineral precipitates composed of a carbonate base covered with amorphous silica and minor carbonate in close association with microbial mats/biofilms. Geological, geochemical, and microbiological techniques were integrated to investigate the role of biology in mineral formation at LHC. Geochemical measurements indicate that the waters of the spring are near equilibrium with respect to carbonate and undersaturated with respect to silica, implying additional processes are necessary to initiate cap formation. Geochemical modeling, integrating elemental and isotopic data from hot spring water and mineral precipitates, indicate that the abiotic processes of degassing and evaporation drive mineral formation at LHC, without microbial involvement. However, petrographic analysis of LHC caps revealed microbial microfabrics within silica mineral phases, despite the fact that microbial metabolism was not required for mineral precipitation. Our results show that microorganisms in hot spring environments can shape mineral precipitates even in the absence of a control on authigenesis, highlighting the need for structural as well as geochemical investigation in similar systems.

  5. The first reported ceratopsid dinosaur from eastern North America (Owl Creek Formation, Upper Cretaceous, Mississippi, USA

    Directory of Open Access Journals (Sweden)

    Andrew A. Farke

    2017-05-01

    Full Text Available Ceratopsids (“horned dinosaurs” are known from western North America and Asia, a distribution reflecting an inferred subaerial link between the two landmasses during the Late Cretaceous. However, this clade was previously unknown from eastern North America, presumably due to limited outcrop of the appropriate age and depositional environment as well as the separation of eastern and western North America by the Western Interior Seaway during much of the Late Cretaceous. A dentary tooth from the Owl Creek Formation (late Maastrichtian of Union County, Mississippi, represents the first reported occurrence of Ceratopsidae from eastern North America. This tooth shows a combination of features typical of Ceratopsidae, including a double root and a prominent, blade-like carina. Based on the age of the fossil, we hypothesize that it is consistent with a dispersal of ceratopsids into eastern North America during the very latest Cretaceous, presumably after the two halves of North America were reunited following the retreat of the Western Interior Seaway.

  6. A New Specimen of the Controversial Chasmosaurine Torosaurus latus (Dinosauria: Ceratopsidae) from the Upper Cretaceous Hell Creek Formation of Montana.

    Science.gov (United States)

    McDonald, Andrew T; Campbell, Carl E; Thomas, Brian

    2016-01-01

    Torosaurus latus is an uncommon and contentious taxon of chasmosaurine ceratopsid known from several upper Maastrichtian units in western North America. We describe a partial parietal of To. latus from the Hell Creek Formation of Montana. Although the specimen's ontogenetic maturity means that it cannot inform the ongoing debate over whether To. latus is the old adult form of the contemporary Triceratops, the specimen is one of the best-preserved To. latus parietals and supplements previous descriptions.

  7. A New Specimen of the Controversial Chasmosaurine Torosaurus latus (Dinosauria: Ceratopsidae from the Upper Cretaceous Hell Creek Formation of Montana.

    Directory of Open Access Journals (Sweden)

    Andrew T McDonald

    Full Text Available Torosaurus latus is an uncommon and contentious taxon of chasmosaurine ceratopsid known from several upper Maastrichtian units in western North America. We describe a partial parietal of To. latus from the Hell Creek Formation of Montana. Although the specimen's ontogenetic maturity means that it cannot inform the ongoing debate over whether To. latus is the old adult form of the contemporary Triceratops, the specimen is one of the best-preserved To. latus parietals and supplements previous descriptions.

  8. A new Arctic hadrosaurid from the Prince Creek Formation (lower Maastrichtian of northern Alaska

    Directory of Open Access Journals (Sweden)

    Hirotsugu Mori

    2016-02-01

    Full Text Available The Liscomb bonebed in the Price Creek Formation of northern Alaska has produced thousands of individual bones of a saurolophine hadrosaurid similar to Edmontosaurus; however, the specific identity of this taxon has been unclear, in part because the vast majority of the remains represent immature individuals. In this study, we address the taxonomic status of the Alaskan material through a comparative and quantitative morphological analysis of juvenile as well several near adult-sized specimens with particular reference to the two known species of Edmontosaurus, as well as a cladistic analysis using two different matrices for Hadrosauroidea. In the comparative morphological analysis, we introduce a quantitative method using bivariate plots to address ontogenetic variation. Our comparative anatomical analysis reveals that the Alaskan saurolophine possesses a unique suite of characters that distinguishes it from Edmontosaurus, including a premaxillary circumnarial ridge that projects posterolaterally without a premaxillary vestibular promontory, a shallow groove lateral to the posterodorsal premaxillary foramen, a relatively narrow jugal process of the postorbital lacking a postorbital pocket, a relatively tall maxilla, a relatively gracile jugal, a more strongly angled posterior margin of the anterior process of the jugal, wide lateral exposure of the quadratojugal, and a short symphyseal process of the dentary. The cladistic analyses consistently recover the Alaskan saurolophine as the sister taxon to Edmontosaurus annectens + Edmontosaurus regalis. This phylogenetic assessment is robust even when accounting for ontogenetically variable characters. Based on these results, we erect a new taxon, Ugrunaaluk kuukpikensis gen. et sp. nov. that contributes to growing evidence for a distinct, early Maastrichtian Arctic dinosaur community that existed at the northernmost extent of Laramidia during the Late Cretaceous.

  9. Mineralized soft-tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA).

    Science.gov (United States)

    Manning, Phillip L; Morris, Peter M; McMahon, Adam; Jones, Emrys; Gize, Andy; Macquaker, Joe H S; Wolff, George; Thompson, Anu; Marshall, Jim; Taylor, Kevin G; Lyson, Tyler; Gaskell, Simon; Reamtong, Onrapak; Sellers, William I; van Dongen, Bart E; Buckley, Mike; Wogelius, Roy A

    2009-10-01

    An extremely well-preserved dinosaur (Cf. Edmontosaurus sp.) found in the Hell Creek Formation (Upper Cretaceous, North Dakota) retains soft-tissue replacement structures and associated organic compounds. Mineral cements precipitated in the skin apparently follow original cell boundaries, partially preserving epidermis microstructure. Infrared and electron microprobe images of ossified tendon clearly show preserved mineral zonation, with silica and trapped carbon dioxide forming thin linings on Haversian canals within apatite. Furthermore, Fourier transform infrared spectroscopy (FTIR) of materials recovered from the skin and terminal ungual phalanx suggests the presence of compounds containing amide groups. Amino acid composition analyses of the mineralized skin envelope clearly differ from the surrounding matrix; however, intact proteins could not be obtained using protein mass spectrometry. The presence of endogenously derived organics from the skin was further demonstrated by pyrolysis gas chromatography mass spectrometry (Py-GCMS), indicating survival and presence of macromolecules that were in part aliphatic (see the electronic supplementary material).

  10. Ordovician and Silurian Phi Kappa and Trail Creek formations, Pioneer Mountains, central Idaho; stratigraphic and structural revisions, and new data on graptolite faunas

    Science.gov (United States)

    Dover, James H.; Berry, William B.N.; Ross, Reuben James

    1980-01-01

    Recent geologic mapping in the northern Pioneer Mountains combined with the identification of graptolites from 116 new collections indicate that the Ordovician and Silurian Phi Kappa and Trail Creek Formations occur in a series of thrust-bounded slices within a broad zone of imbricate thrust faulting. Though confirming a deformational style first reported in a 1963 study by Michael Churkin, our data suggest that the complexity and regional extent of the thrust zone were not previously recognized. Most previously published sections of the Phi Kappa and Trail Creek Formations were measured across unrecognized thrust faults and therefore include not only structural repetitions of graptolitic Ordovician and Silurian rocks but also other tectonically juxtaposed lithostratigraphic units of diverse ages as well. Because of this discovery, the need to reconsider the stratigraphic validity of these formations and their lithology, nomenclature, structural distribution, facies relations, and graptolite faunas has arisen. The Phi Kappa Formation in most thrust slices has internal stratigraphic continuity despite the intensity of deformation to which it was subjected. As revised herein, the Phi Kappa Formation is restricted to a structurally repeated succession of predominantly black, carbonaceous, graptolitic argillite and shale. Some limy, light-gray-weathering shale occurs in the middle part of the section, and fine-grained locally pebbly quartzite is present at the base. The basal quartzite is here named the Basin Gulch Quartzite Member of the Phi Kappa. The Phi Kappa redefined on a lithologic basis represents the span of Ordovician time from W. B. N. Berry's graptolite zones 2-4 through 15 and also includes approximately 17 m of lithologically identical shale of Early and Middle Silurian age at the top. The lower contact of the formation as revised is tectonic. The Phi Kappa is gradationally overlain by the Trail Creek Formation as restricted herein. Most of the coarser

  11. Environmental-stratigraphic cross sections of the Cretaceous Fox Hills Sandstone and Hell Creek Formation and Paleocene Fort Union Formation, Richland and Roosevelt Counties, Montana

    Science.gov (United States)

    Flores, R.M.; Lepp, C.L.

    1983-01-01

    This study was conducted to determine the stratigraphic, lithofacies, and deopsitional relationships of the Cretaceous Fox Hills Sandstone and Hell Creek Formation and The Paleocene Fort Union Formation. These relationships, shown in sections A-A', B-B', C-C', and D-D', we established form nearly continuous exposures in the Missouri River valley in Richland and Roosevelt Counties, Mont. The river valley topography is characterized by badlands, which permitted detailed description and construction of the stratigraphic framework of the formations within a 30-mi-long belt of exposures paralleling the Missouri River. This area of study is on the western flank of the Williston Basin and east of the Poplar Dome. The latter structure imparted a northeasterly regional dip to the rocks, which averages 25 ft per mi and is as much as 100 ft per mi according to Spencer (1980). The regional dip resulted in exposure of older rocks (Cretaceous) in the west to younger rocks (Tertiary) in the east. 

  12. A gigantic shark from the lower cretaceous duck creek formation of Texas.

    Science.gov (United States)

    Frederickson, Joseph A; Schaefer, Scott N; Doucette-Frederickson, Janessa A

    2015-01-01

    Three large lamniform shark vertebrae are described from the Lower Cretaceous of Texas. We interpret these fossils as belonging to a single individual with a calculated total body length of 6.3 m. This large individual compares favorably to another shark specimen from the roughly contemporaneous Kiowa Shale of Kansas. Neither specimen was recovered with associated teeth, making confident identification of the species impossible. However, both formations share a similar shark fauna, with Leptostyrax macrorhiza being the largest of the common lamniform sharks. Regardless of its actual identification, this new specimen provides further evidence that large-bodied lamniform sharks had evolved prior to the Late Cretaceous.

  13. A gigantic shark from the lower cretaceous duck creek formation of Texas.

    Directory of Open Access Journals (Sweden)

    Joseph A Frederickson

    Full Text Available Three large lamniform shark vertebrae are described from the Lower Cretaceous of Texas. We interpret these fossils as belonging to a single individual with a calculated total body length of 6.3 m. This large individual compares favorably to another shark specimen from the roughly contemporaneous Kiowa Shale of Kansas. Neither specimen was recovered with associated teeth, making confident identification of the species impossible. However, both formations share a similar shark fauna, with Leptostyrax macrorhiza being the largest of the common lamniform sharks. Regardless of its actual identification, this new specimen provides further evidence that large-bodied lamniform sharks had evolved prior to the Late Cretaceous.

  14. A new model of the formation of Pennsylvanian iron carbonate concretions hosting exceptional soft-bodied fossils in Mazon Creek, Illinois.

    Science.gov (United States)

    Cotroneo, S; Schiffbauer, J D; McCoy, V E; Wortmann, U G; Darroch, S A F; Peng, Y; Laflamme, M

    2016-11-01

    Preservation of Pennsylvanian-aged (307 Ma) soft-bodied fossils from Mazon Creek, Illinois, USA, is attributed to the formation of siderite concretions, which encapsulate the remains of terrestrial, freshwater, and marine flora and fauna. The narrow range of positive δ(34) S values from pyrite in individual concretions suggests microenvironmentally limited ambient sulfate, which may have been rapidly exhausted by sulfate-reducing bacteria. Tissue of the decaying carcass was rapidly encased by early diagenetic pyrite and siderite produced within the sulfate reduction and methanogenic zones of the sediment, with continuation of the latter resulting in concretion cementation. Cross-sectional isotopic analyses (δ(13) C and δ(18) O) and mineralogical characterization of the concretions point to initiation of preservation in high porosity proto-concretions during the early phases of microbially induced decay. The proto-concretion was cemented prior to compaction of the sediments by siderite as a result of methanogenic production of (13) C-rich bicarbonate-which varies both between Essex and Braidwood concretions and between fossiliferous and unfossiliferous concretions. This work provides the first detailed geochemical study of the Mazon Creek siderite concretions and identifies the range of conditions allowing for exceptional soft-tissue fossil formation as seen at Mazon Creek.

  15. Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution's null hypothesis

    Science.gov (United States)

    Schopf, J. William; Kudryavtsev, Anatoliy B.; Walter, Malcolm R.; Van Kranendonk, Martin J.; Williford, Kenneth H.; Kozdon, Reinhard; Valley, John W.; Gallardo, Victor A.; Espinoza, Carola; Flannery, David T.

    2015-01-01

    The recent discovery of a deep-water sulfur-cycling microbial biota in the ∼2.3-Ga Western Australian Turee Creek Group opened a new window to life's early history. We now report a second such subseafloor-inhabiting community from the Western Australian ∼1.8-Ga Duck Creek Formation. Permineralized in cherts formed during and soon after the 2.4- to 2.2-Ga “Great Oxidation Event,” these two biotas may evidence an opportunistic response to the mid-Precambrian increase of environmental oxygen that resulted in increased production of metabolically useable sulfate and nitrate. The marked similarity of microbial morphology, habitat, and organization of these fossil communities to their modern counterparts documents exceptionally slow (hypobradytelic) change that, if paralleled by their molecular biology, would evidence extreme evolutionary stasis. PMID:25646436

  16. Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution's null hypothesis

    Science.gov (United States)

    Schopf, J. William; Kudryavtsev, Anatoliy B.; Walter, Malcolm R.; Van Kranendonk, Martin J.; Williford, Kenneth H.; Kozdon, Reinhard; Valley, John W.; Gallardo, Victor A.; Espinoza, Carola; Flannery, David T.

    2015-02-01

    The recent discovery of a deep-water sulfur-cycling microbial biota in the ∼2.3-Ga Western Australian Turee Creek Group opened a new window to life's early history. We now report a second such subseafloor-inhabiting community from the Western Australian ∼1.8-Ga Duck Creek Formation. Permineralized in cherts formed during and soon after the 2.4- to 2.2-Ga "Great Oxidation Event," these two biotas may evidence an opportunistic response to the mid-Precambrian increase of environmental oxygen that resulted in increased production of metabolically useable sulfate and nitrate. The marked similarity of microbial morphology, habitat, and organization of these fossil communities to their modern counterparts documents exceptionally slow (hypobradytelic) change that, if paralleled by their molecular biology, would evidence extreme evolutionary stasis.

  17. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation

    Science.gov (United States)

    Brocks, Jochen J.; Schaeffer, Philippe

    2008-03-01

    Carbonates of the 1640 million years (Ma) old Barney Creek Formation (BCF), McArthur Basin, Australia, contain more than 22 different C 40 carotenoid derivatives including lycopane, γ-carotane, β-carotane, chlorobactane, isorenieratane, β-isorenieratane, renieratane, β-renierapurpurane, renierapurpurane and the monoaromatic carotenoid okenane. These biomarkers extend the geological record of carotenoid derivatives by more than 1000 million years. Okenane is potentially derived from the red-colored aromatic carotenoid okenone. Based on a detailed review of the ecology and physiology of all extant species that are known to contain okenone, we interpret fossil okenane as a biomarker for planktonic purple sulfur bacteria of the family Chromatiaceae. Okenane is strictly a biomarker for anoxic and sulfidic conditions in the presence of light (photic zone euxinia) and indicates an anoxic/oxic transition (temporarily) located at less than 25 m depth and, with a high probability, less than 12 m depth. For the BCF, we also interpret renierapurpurane, renieratane and β-renierapurpurane as biomarkers for Chromatiaceae with a possible contribution of cyanobacterial synechoxanthin to the renierapurpurane pool. Although isorenieratane may, in principle, be derived from actinobacteria, in the BCF these biomarkers almost certainly derive from sulfide-oxidizing phototrophic green sulfur bacteria (Chlorobiaceae). Biological precursors of γ-carotane, β-carotane and lycopane are found among numerous autotrophic and almost all phototrophic organisms in the three domains of life. In the BCF, a paucity of diagnostic eukaryotic steroids suggests that algae were rare and, therefore, that cyanobacterial carotenoids such as β-carotene, echinenone, canthaxanthin and zeaxanthin are the most likely source of observed β-carotane. γ-Carotane may be derived from cyanobacteria, Chlorobiaceae and green non-sulfur bacteria (Chloroflexi), while the most likely biological sources for lycopane

  18. Comment on “A new Arctic hadrosaurid from the Prince Creek Formation (lower Maastrichtian of northern Alaska” by Hirotsugu Mori, Patrick S. Druckenmiller, and Gregory M. Erickson

    Directory of Open Access Journals (Sweden)

    Anthony R. Fiorillo

    2016-02-01

    Full Text Available Recently Mori et al. (2016 published a paper describing a new tax- on of hadrosaurid dinosaur from the Upper Cretaceous Prince Creek Formation of the North Slope Alaska, a rock unit that has recently proven to be a productive source of scientific insights into the work- ings of an ancient Arctic terrestrial ecosystem (Fiorillo and Gangloff 2001; Gangloff et al. 2005; Fiorillo et al. 2009, 2010; Gangloff and Fiorillo 2010; Flaig et al. 2011, 2013, 2014; Fiorillo and Tykoski 2012, 2014. Although thorough testing of the systematics of this proposed taxon will occur over the next few years, one statement in the Mori et al. (2016 paper warrants comment now

  19. Late albian kiowa-skull creek marine transgression, lower dakota formation, eastern margin of western interior seaway, U.S.A

    Science.gov (United States)

    Brenner, Richard L.; Ludvigson, Greg A.; Witzke, B.J.; Zawistoski, A.N.; Kvale, E.P.; Ravn, R.L.; Joeckel, R.M.

    2000-01-01

    An integrated geochemical-sedimentological project is studying the paleoclimatic and paleogeographic characteristics of the mid-Cretaceous greenhouse world of western North America. A critical part of this project, required to establish a temporal framework, is a stratigraphie study of depositional relationships between the AlbianCenomanian Dakota and the Upper Albian Kiowa formations of the eastern margin of the Western Interior Seaway (WIS). Palynostratigraphic and sedimentologic analyses provide criteria for the Dakota Formation to be divided into three sedimentary sequences bounded by unconformities (D0, D1, and D2) that are recognized from western Iowa to westernmost Kansas. The lowest of these sequences, defined by unconformities D0 and D1, is entirely Upper Albian, and includes the largely nonmarine basal Dakota (lower part of the Nishnabotna Member) strata in western Iowa and eastern Nebraska and the marine Kiowa Formation to the southwest in Kansas. The gravel-rich fluvial deposits of the basal part of the Nishnabotna Member of the Dakota Formation correlate with transgressive marine shales of the Kiowa Formation. This is a critical relationship to establish because of the need to correlate between marine and nonmarine strata that contain both geochronologic and paleoclimatic proxy data. The basal gravel facies (up to 40 m thick in western Iowa) aggraded in incised valleys during the Late Albian Kiowa-Skull Creek marine transgression. In southeastern Nebraska, basal gravels intertongue with carbonaceous mudrocks that contain diverse assemblages of Late Albian palynomorphs, including marine dinoflagellates and acritarchs. This palynomorph assemblage is characterized by occurrences of palynomorph taxa not known to range above the Albian Kiowa-Skull Creek depositional cycle elsewhere in the Western Interior, and correlates to the lowest of four generalized palynostratographic units that are comparable to other palynological sequences elsewhere in North

  20. K/Ar chronologies of tephra units from the Middle Jurassic Sundance, and Late Early Cretaceous Mowry and Shell Creek Formations, Big Horn Basin, WY

    Science.gov (United States)

    Jiang, H.; Meyer, E. E.; Johnson, G. D.

    2013-12-01

    The Middle Jurassic Sundance and Late Early Cretaceous Shell Creek and Mowry Formations of the Big Horn Basin, Wyoming, contain an extensive record of altered tephra. These tephra are likely related to contemporary volcanic activity in the Sierra Nevada and various Coast Range terranes to the west and provide valuable chronometric control on the sedimentary record within a portion of the Sevier-aged and later Cordilleran foreland basin. In addition, several of these altered tephra (bentonites) provide a valuable economic resource. Despite the prominence of these strata across the basin, few isotopic ages have been reported to date. Here we present new K/Ar ages on biotite phenocrysts from those tephra occurrences as a chronometric check on samples that contained zircons with significant Pb loss, that preclude more precise U/Pb age determinations. A bulk biotite sample extracted from an altered tuff in the Lower Sundance Formation gives an age of 167.5 × 5 Ma. This tuff occurs just above a dinosaur track-bearing peritidal sequence. Bulk biotite ages from the lower Shell Creek Formation give an age of 100.3 × 3 Ma and are statistically indistinguishable from biotite grains dated at 103.1 × 3 Ma extracted from the economically important 'Clay Spur' bentonite found at the top of the Mowry Shale. This work provides important new chronometric constraints on a portion of the Medial Jurassic to Late Early Cretaceous stratigraphy of the Big Horn Basin, Wyoming, and may be useful in understanding the regional tectonics that helped shape the development of the Sevier foreland basin and Western Interior Seaway.

  1. Paleoenvironmental interpretation of an ancient Arctic coastal plain: Integrated paleopedology and palynology from the Late Cretaceous (Maastrichtian) Prince Creek Formation, North Slope, Alaska, USA

    Science.gov (United States)

    McCarthy, P. J.; Flaig, P. P.; Fiorillo, A. R.

    2010-12-01

    The Cretaceous (Early Maastrichtian), dinosaur-bearing Prince Creek Formation, North Slope, Alaska, records high-latitude, alluvial sedimentation and soil formation on a low-lying, coastal plain during a greenhouse phase in Earth history. This study combines outcrop observations, micromorphology, geochemistry, and palynological analyses of paleosols in order to reconstruct local paleoenvironments of weakly developed, high-latitude coastal plain soils. Sediments of the Prince Creek Fm. include quartz- and chert-rich sandstone channels, and floodplains containing organic-rich siltstone and mudstone, carbonaceous shale, coal and ashfall deposits. Vertically stacked horizons of blocky-to-platy, drab-colored mudstone and siltstone with carbonaceous root-traces and mottled aggregates alternating with sandy units indicate that the development of compound and cumulative, weakly-developed soils on floodplains alternated with overbank alluviation and deposition on crevasse splay complexes on floodplains . Soil formation occurred on levees, point bars, crevasse splays and along the margins of floodplain lakes, ponds, and swamps. Soil-forming processes were interrupted by repeated deposition of sediment on top of soil profiles by flooding of nearby channels. Alluviation is evidenced by thin (fern and moss spores, projectates, age-diagnostic Wodehouseia edmontonicola, hinterland bisaccate pollen and pollen from lowland trees, shrubs, and herbs indicate an Early Maastrichtian age for these sediments. Large and small theropods, hadrosaurs, pachycephalosaurs, and ceratopsians, as well as fishes and fossil mammals have been found as well. Paleosols are similar to modern aquic subgroups of Entisols and Inceptisols and, in more distal locations, potential acid sulfate soils. Integration of pedogenic processes and palynology suggests that these high latitude floodplains were influenced by seasonally(?) fluctuating water table levels on a coastal plain governed by a near polar light

  2. Field-trip guide to subaqueous volcaniclastic facies in the Ancestral Cascades arc in southern Washington State—The Ohanapecosh Formation and Wildcat Creek beds

    Science.gov (United States)

    Jutzeler, Martin; McPhie, Jocelyn

    2017-06-27

    Partly situated in the idyllic Mount Rainier National Park, this field trip visits exceptional examples of Oligocene subaqueous volcaniclastic successions in continental basins adjacent to the Ancestral Cascades arc. The >800-m-thick Ohanapecosh Formation (32–26 Ma) and the >300-m-thick Wildcat Creek (27 Ma) beds record similar sedimentation processes from various volcanic sources. Both show evidence of below-wave-base deposition, and voluminous accumulation of volcaniclastic facies from subaqueous density currents and suspension settling. Eruption-fed facies include deposits from pyroclastic flows that crossed the shoreline, from tephra fallout over water, and from probable Surtseyan eruptions, whereas re-sedimented facies comprise subaqueous density currents and debris flow deposits.

  3. Formation of mixed Al-Fe colloidal sorbent and dissolved-colloidal partitioning of Cu and Zn in the Cement Creek - Animas River Confluence, Silverton, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Schemel, Laurence E. [US Geological Survey, Water Resources Division, 345 Middlefield Road, MS 439, Menlo Park, CA 94025 (United States)]. E-mail: lschemel@usgs.gov; Kimball, Briant A. [US Geological Survey, Water Resources Division, 2329 Orton Circle, Salt Lake City, UT 84119-2047 (United States); Runkel, Robert L. [US Geological Survey, Water Resources Division, Denver Federal Center, MS 415, Lakewood, CO 80225 (United States); Cox, Marisa H. [US Geological Survey, Water Resources Division, 345 Middlefield Road, MS 439, Menlo Park, CA 94025 (United States)

    2007-07-15

    Transport and chemical transformations of dissolved and colloidal Al, Fe, Cu and Zn were studied by detailed sampling in the mixing zone downstream from the confluence of Cement Creek (pH 4.1) with the Animas River (pH 7.6). Complete mixing resulted in circumneutral pH in the downstream reach of the 1300 m study area. All four metals were transported through this mixing zone without significant losses to the streambed, and they exhibited transformations from dissolved to colloidal forms to varying degrees during the mixing process. Nearly all of the Al formed colloidal hydrous Al oxides (HAO) as pH increased (4.8-6.5), whereas colloidal hydrous Fe oxides (HFO) were supplied by Cement Creek as well as formed in the mixing zone primarily at higher pH (>6.5). The short travel time through the mixing zone (approx. 40 min) and pH limited the formation of HFO from dissolved Fe{sup 2+} supplied by Cement Creek. Although the proportions of HAO and HFO varied as the streams mixed, the colloidal sorbent typically was enriched in HAO relative to HFO by a factor of 1.5-2.1 (by mole) in the pH range where dissolved-to-colloidal partitioning of Cu and Zn was observed. Model simulations of sorption by HFO (alone) greatly underestimated the dissolved-to-colloidal partitioning of Zn. Previous studies have shown that HAO-HFO mixtures can sorb greater amounts of Zn than HFO alone, but the high Zn-to-sorbent ratio in this mixing zone could also account for greater partitioning. In contrast to Zn, comparisons with model simulations did not show that Cu sorption was greater than that for HFO alone, and also indicated that sorption was possibly less than what would be expected for a non-interactive mixture of these two sorbents. These field results for Cu, however, might be influenced by (organic) complexation or other factors in this natural system. Laboratory mixing experiments using natural source waters (upstream of the confluence) showed that the presence of HFO in the mixed sorbent

  4. Formation of mixed Al-Fe colloidal sorbent and dissolved-colloidal partitioning of Cu and Zn in the Cement Creek - Animas River Confluence, Silverton, Colorado

    Science.gov (United States)

    Schemel, L.E.; Kimball, B.A.; Runkel, R.L.; Cox, M.H.

    2007-01-01

    Transport and chemical transformations of dissolved and colloidal Al, Fe, Cu and Zn were studied by detailed sampling in the mixing zone downstream from the confluence of Cement Creek (pH 4.1) with the Animas River (pH 7.6). Complete mixing resulted in circumneutral pH in the downstream reach of the 1300 m study area. All four metals were transported through this mixing zone without significant losses to the streambed, and they exhibited transformations from dissolved to colloidal forms to varying degrees during the mixing process. Nearly all of the Al formed colloidal hydrous Al oxides (HAO) as pH increased (4.8-6.5), whereas colloidal hydrous Fe oxides (HFO) were supplied by Cement Creek as well as formed in the mixing zone primarily at higher pH (>6.5). The short travel time through the mixing zone (approx. 40 min) and pH limited the formation of HFO from dissolved Fe2+ supplied by Cement Creek. Although the proportions of HAO and HFO varied as the streams mixed, the colloidal sorbent typically was enriched in HAO relative to HFO by a factor of 1.5-2.1 (by mole) in the pH range where dissolved-to-colloidal partitioning of Cu and Zn was observed. Model simulations of sorption by HFO (alone) greatly underestimated the dissolved-to-colloidal partitioning of Zn. Previous studies have shown that HAO-HFO mixtures can sorb greater amounts of Zn than HFO alone, but the high Zn-to-sorbent ratio in this mixing zone could also account for greater partitioning. In contrast to Zn, comparisons with model simulations did not show that Cu sorption was greater than that for HFO alone, and also indicated that sorption was possibly less than what would be expected for a non-interactive mixture of these two sorbents. These field results for Cu, however, might be influenced by (organic) complexation or other factors in this natural system. Laboratory mixing experiments using natural source waters (upstream of the confluence) showed that the presence of HFO in the mixed sorbent

  5. In-place oil shale resources in the saline-mineral and saline-leached intervals, Parachute Creek Member of the Green River Formation, Piceance Basin, Colorado

    Science.gov (United States)

    Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.; Dietrich, John D.

    2014-01-01

    A recent U.S. Geological Survey analysis of the Green River Formation of the Piceance Basin in western Colorado shows that about 920 and 352 billion barrels of oil are potentially recoverable from oil shale resources using oil-yield cutoffs of 15 and 25 gallons per ton (GPT), respectively. This represents most of the high-grade oil shale in the United States. Much of this rich oil shale is found in the dolomitic Parachute Creek Member of the Green River Formation and is associated with the saline minerals nahcolite and halite, or in the interval where these minerals have been leached by groundwater. The remaining high-grade resource is located primarily in the underlying illitic Garden Gulch Member of the Green River Formation. Of the 352 billion barrels of potentially recoverable oil resources in high-grade (≥25 GPT) oil shale, the relative proportions present in the illitic interval, non-saline R-2 zone, saline-mineral interval, leached interval (excluding leached Mahogany zone), and Mahogany zone were 3.1, 4.5, 36.6, 23.9, and 29.9 percent of the total, respectively. Only 2 percent of high-grade oil shale is present in marginal areas where saline minerals were never deposited.

  6. A new species of Ischyodus (Chondrichthyes: Holocephali: Callorhynchidae) from Upper Maastrichtian Shallow marine facies of the Fox Hills and Hell Creek Formations, Williston basin, North Dakota, USA

    Science.gov (United States)

    Hoganson, J.W.; Erickson, J.M.

    2005-01-01

    A new species of chimaeroid, Ischyodus rayhaasi sp. nov., is described based primarily upon the number and configuration of tritors on palatine and mandibular tooth plates. This new species is named in honour of Mr Raymond Haas. Fossils of I. rayhaasi have been recovered from the Upper Maastrichtian Fox Hills Formation and the Breien Member and an unnamed member of the Hell Creek Formation at sites in south-central North Dakota and north-central South Dakota, USA. Ischyodus rayhaasi inhabited shallow marine waters in the central part of the Western Interior Seaway during the latest Cretaceous. Apparently it was also present in similar habitats at that time in the Volga region of Russia. Ischyodus rayhaasi is the youngest Cretaceous species Ischyodus known to exist before the Cretaceous/Tertiary extinction, and the species apparently did not survive that event. It was replaced by Ischyodus dolloi, which is found in the Paleocene Cannonball Formation of the Williston Basin region of North Dakota and is widely distributed elsewhere. ?? The Palaeontological Association.

  7. The Middle Triassic megafossil flora of the Basin Creek Formation, Nymboida Coal Measures, New South Wales, Australia. Part 3. Fern-like foliage

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, W.B.K. [Noonee Nyrang, Wellington, NSW (Australia)

    2003-01-31

    Two quarries in the Basin Creek Formation of the Middle Triassic Nymboida Coal Measures have yielded numerous examples of fern-like foliage. No affiliated fertile material is available to place the fronds in a natural classification. Twenty three species in twelve genera are described as morpho-taxa in Order and Family Incertae Sedis. Plants described in this paper are: Cladophlebis conferta sp. nov., C octonerva sp. nov., C. paucinerva sp. nov., C. relallachfisp. nov., C. sinuala sp. nov., C. lenuoinnula sp. nov., Diconymba sparnosa gen. et sp. nov., Gouldianum alelhopleroides gen. et sp. nov., Leconama stachyophylla gen. et sp. nov., Micronymbopteris repens gen. et sp. nov., Nymbiella lacerata gen. et sp. nov., Nymboidiantum glossophyllum (Tenison-Woods) gen. et comb. nov., N. multilobatum gen. et sp. nov., N. elegans gen. et sp. nov., N. fractiflexum gen. et sp. nov., N. robustum gen. et sp. nov., Nymbophlebis polymorpha gen. et sp. nov., Nymbopteron dejerseyi (Retallack) gen. et comb. nov.,N. foleyi gen. et sp. nov., N. uncinatum gen. et sp. nov., Nymborhipteris radiata gen. et sp. nov., Ptilotonymba curvinervia gen. et sp. nov. and Sphenopteris speciosa sp. nov. The diversity of this new material demonstrates the remarkable recovery of Gondwana vegetation following the end-Permian extinction event.

  8. Analysis of lithofacies, petrology/petrography, and porosity/permeability of the lower green river formation: Willow Creek

    Energy Technology Data Exchange (ETDEWEB)

    Morris, T.H., Garner, A.

    1994-04-14

    The 849.16 meter stratigraphic section was measured during consecutive spring field seasons. This section represents the ``lower`` Green River Formation which on the southwest flank of the basin rests stratigraphically above the dominant red beds of the Colton Member of the Green River Formation. The transition from Colton rocks to Green River rocks is gradual in the study area. Petrographic classification and textural analysis has been completed on 33 thin sections. These thin sections represent the volummetric majority of rock types in the measured section as well as few less common but very interesting lithofacies. Core plugs were taken from every lithology that was petrologically analyzed. Permeabilities were analyzed using a pressure transducer in a Hassler sleeve. Porosities from the lab were compared to point count porosities. In general there was good agreement and where there is some disagreement an explanation is given in the petrologic description. It appears that the sandstone lithofacies have much greater interparticle porosity. This is important to the study because these sandstones likely have greater hydrocarbon storage capacity than do the carbonate rocks. The data from this report have not been fully interpreted. There are several items relative to deposition facies interpretations and reservoir quality studies that are not as yet accomplished.

  9. [Beaver Creek Project Flumes

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Pictures of installed Parshall flumes and structures for the Beaver Creek Project at Browns Park National Wildlife Refuge for the Beaver Creek, Jarvie, DeJournette...

  10. Stratigraphic and structural data for the Conasauga Group and the Rome Formation on the Copper Creek fault block near Oak Ridge, Tennessee: preliminary results from test borehole ORNL-JOY No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Haase, C.S.; Walls, E.C.; Farmer, C.D.

    1985-06-01

    To resolve long-standing problems with the stratigraphy of the Conasauga Group and the Rome Formation on the Copper Creek fault block near Oak Ridge National Laboratory (ORNL), an 828.5-m-deep test borehole was drilled. Continuous rock core was recovered from the 17.7- to 828.5-m-deep interval; temperature, caliper, neutron, gamma-ray, and acoustic (velocity and televiewer) logs were obtained. The Conasauga Group at the study site is 572.4 m thick and comprises six formations that are - in descending stratigraphic order - Maynardville Limestone (98.8 m), Nolichucky Shale (167.9 m), Maryville Limestone (141.1 m), Rogersville Shale (39.6 m), Rutledge Limestone (30.8 m), and Pumpkin Valley Shale (94.2 m). The formations are lithologically complex, ranging from clastics that consist of shales, mudstones, and siltstones to carbonates that consist of micrites, wackestones, packstones, and conglomerates. The Rome Formation is 188.1 m thick and consists of variably bedded mudstones, siltstones, and sandstones. The Rome Formation thickness represents 88.1 m of relatively undeformed section and 100.0 m of highly deformed, jumbled, and partially repeated section. The bottom of the Rome Formation is marked by a tectonic disconformity that occurs within a 46-m-thick, intensely deformed interval caused by motion along the Copper Creek fault. Results from this study establish the stratigraphy and the lithology of the Conasauga Group and the Rome Formation near ORNL and, for the first time, allow for the unambiguous correlation of cores and geophysical logs from boreholes elsewhere in the ORNL vicinity. 45 refs., 26 figs., 2 tabs.

  11. Dynamic effects of wet-dry cycles and crust formation on the saturated hydraulic conductivity of surface soils in the constructed Hühnerwasser ("Chicken Creek") catchment

    Science.gov (United States)

    Hinz, Christoph; Schümberg, Sabine; Kubitz, Anita; Frank, Franzi; Cheng, Zhang; Nanu Frechen, Tobias; Pohle, Ina

    2016-04-01

    Highly disturbed soils and substrates used in land rehabilitation undergo rapid changes after the first wetting events which in turn can lead to ecosystem degradation. Such changes were detected during the early development of the constructed Hühnerwasser ("Chicken Creek") catchment in Lusatia, Germany. Surface substrates consisting of quaternary sandy sediments formed surface seals during the first rainfall events leading to reduced infiltration and substantially increased surface runoff. Subsequently biological soil crusts formed and stabilised the surface. The aim of this study is to investigate the factors that cause the hydraulic conductivity to decrease using undisturbed and disturbed soil samples. Based on the hypothesis that physical and biological crusts lower the hydraulic conductivity, the first set of experiments with undisturbed soil cores from the Hühnerwasser catchment were carried out to measure the saturated hydraulic conductivity using the constant head method. Measurements were done with intact cores and repeated after the surface crust was removed. As the quaternary glacial sediments tend to display hard setting behaviour, we further hypothesised that the mobilisation of fine particles within the cores lead to pore clogging and that wet-dry cycles will therefore decrease hydraulic conductivity. A second set of experiments using the same methodology consisted of five repeated measurements of hydraulic conductivity after each drying cycle. These measurements were done with undisturbed core samples as well as repacked cores in order to assess how dry packing affects the dynamics of the hydraulic conductivity somewhat similar to the situation during the first wetting after completion of the catchment construction. For all experiments, the temporal evolution of hydraulic conductivity was measured and the turbidity of the effluent was recorded. The results clearly demonstrated that the substrate is highly unstable. The first set of experiments

  12. [Little Dry Creek Drainage

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Map of the drainage boundary, direction of flow, canals and ditches, and streets for the drainage study plan and profile for Little Dry Creek sub area in the North...

  13. Priority List : Beaver Creek

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Priority list of water rights at Beaver Creek owned by the State of Colorado or federal Fish and Wildlife. This document also has designs for Parshall flumes and...

  14. Big Creek Pit Tags

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The BCPITTAGS database is used to store data from an Oncorhynchus mykiss (steelhead/rainbow trout) population dynamics study in Big Creek, a coastal stream along the...

  15. Cache Creek mercury investigation

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Cache Creek watershed is located in the California Coastal range approximately 100 miles north of San Francisco in Lake, Colusa and Yolo Counties. Wildlife...

  16. Vegetation - Pine Creek WA and Fitzhugh Creek WA [ds484

    Data.gov (United States)

    California Department of Resources — This fine-scale vegetation classification and map of the Pine Creek and Fitzhugh Creek Wildlife Areas, Modoc County, California was created following FGDC and...

  17. 18 years of restoration on Codornices Creek

    OpenAIRE

    Fullmer, Chris

    2008-01-01

    Many restoration projects have taken place on Codornices Creek. This paper briefly compares Codornices Creek to Alameda Creek, another creek found in the East Bay area, to demonstrate that Codornices Creek is very well funded, even though it is a considerably smaller and less important creek than Alameda Creek. It then chronologically documents the goals, funding, and monitoring status of the known projects that have taken place on Codornices Creek. Through this study, the author is able to s...

  18. Mtwapa Creek, Kenya

    African Journals Online (AJOL)

    Spratelloides delicatilus was a carnivore feeding only on zooplankton and zoobenthos, and had the lowest diet ... the time of feeding. The composition ... from the shoreline into the waters. It was then. Estuary of. Mtwapa Creek. N o 2 4 km. fizz“.

  19. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Science.gov (United States)

    2010-05-14

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources... Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC.... For the transferee: Mr. Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC,...

  20. Water-Quality Characteristics of Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek, Grand Teton National Park, Wyoming, 2006

    Science.gov (United States)

    Clark, Melanie L.; Wheeler, Jerrod D.; O'Ney, Susan E.

    2007-01-01

    To address water-resource management objectives of the National Park Service in Grand Teton National Park, the U.S. Geological Survey in cooperation with the National Park Service has conducted water-quality sampling on streams in the Snake River headwaters area. A synoptic study of streams in the western part of the headwaters area was conducted during 2006. Sampling sites were located on Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek. Sampling events in June, July, August, and October were selected to characterize different hydrologic conditions and different recreational-use periods. Stream samples were collected and analyzed for field measurements, major-ion chemistry, nutrients, selected trace elements, pesticides, and suspended sediment. Water types of Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek were calcium bicarbonate. Dissolved-solids concentrations were dilute in Cottonwood Creek and Taggart Creek, which drain Precambrian-era rocks and materials derived from these rocks. Dissolved-solids concentrations ranged from 11 to 31 milligrams per liter for samples collected from Cottonwood Creek and Taggart Creek. Dissolved-solids concentrations ranged from 55 to 130 milligrams per liter for samples collected from Lake Creek and Granite Creek, which drain Precambrian-era rocks and Paleozoic-era rocks and materials derived from these rocks. Nutrient concentrations generally were small in samples collected from Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek. Dissolved-nitrate concentrations were the largest in Taggart Creek. The Taggart Creek drainage basin has the largest percentage of barren land cover of the basins, and subsurface waters of talus slopes may contribute to dissolved-nitrate concentrations in Taggart Creek. Pesticide concentrations, trace-element concentrations, and suspended-sediment concentrations generally were less than laboratory reporting levels or were small for all samples. Water

  1. Kiowa Creek Switching Station

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  2. Ship Creek bioassessment investigations

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  3. Kiowa Creek Switching Station

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  4. Bridge Creek IMW database - Bridge Creek Restoration and Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The incised and degraded habitat of Bridge Creek is thought to be limiting a population of ESA-listed steelhead (Oncorhynchus mykiss). A logical restoration approach...

  5. 3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Christopher D. White

    2009-12-21

    rock types (\\Eg sandstones and mudstones) and the variation of transport properties (\\Eg permeability and porosity) within bodies of a particular rock type. Both basin-wide processes such as sea-level change and the autocyclicity of deltaic processes commonly cause deltaic reservoirs to have large variability in rock properties; in particular, alternations between mudstones and sandstones may form baffles and trends in rock body permeability can influence productivity and recovery efficiency. In addition, diagenetic processes such as compaction, dissolution, and cementation can alter the spatial pattern of flow properties. A better understanding of these properties, and improved methods to model the properties and their effects, will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high resolution, low uncertainty view of subsurface variability. Patterns and insights gleaned from these exposures can be used to model analogous reservoirs, for which data is much sparser. This approach is particularly attractive when reservoir formations are exposed at the surface. The Frontier Formation in central Wyoming provides an opportunity for high resolution characterization. The same rocks exposed in the vicinity of the Tisdale anticline are productive in nearby oil fields, including Salt Creek. Many kilometers of good-quality exposure are accessible, and the common bedding-plane exposures allow use of shallow-penetration, high-resolution electromagnetic methods known as ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct high-resolution geostatistical and flow models for the Wall Creek Member of the Frontier Formation. Stratal-conforming grids were use to reproduce the progradational and aggradational geometries observed in outcrop and radar data. A new, Bayesian method

  6. Tidal Creek Sentinel Habitat Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...

  7. Rattlesnake Creek management program proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Partnership has concentrated its efforts on a voluntary approach for lowering the total water use in the Rattlesnake Creek subbasin. This will occur through the...

  8. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Science.gov (United States)

    2012-03-07

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an...) 805-1469. Transferees: Mr. Bernard H. Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek...

  9. Intertonguing of the Lower Part of the Uinta Formation with the Upper Part of the Green River Formation in the Piceance Creek Basin During the Late Stages of Lake Uinta

    Science.gov (United States)

    Donnell, John R.

    2009-01-01

    During most of middle Eocene time, a 1,500-mi2 area between the Colorado and White Rivers in northwestern Colorado was occupied by the Piceance lobe of Lake Uinta. This initially freshwater lake became increasingly saline throughout its history. Sediments accumulating in the lake produced mostly clay shale, limestone, and dolomite containing varying concentrations of organic matter. At the time of the maximum extent of the lake, the organic-rich Mahogany bed of the Green River Formation was deposited throughout the area. Shortly after its deposition, stream deposits began infilling the lake from the north through a series of contractions interspersed with minor expansions. This fluctuation of the shoreline resulted in the intertonguing of the stream sediments of the lower part of the overlying Uinta Formation with the lacustrine sediments of the upper part of the Green River over a distance of about 40 mi; construction of regional stratigraphic cross sections show the pattern of intertonguing in considerable detail. The data utilized in this study, which covered parts of Rio Blanco, Garfield, and Mesa counties, was derived from (1) geologic mapping of thirty-four 7 1/2-minute quadrangles and stratigraphic studies by geologists of the U.S. Geological Survey, and (2) shale-oil assay information from numerous cores. As a result of this previous work and the additional effort involved in the compilation here presented, more than a dozen Green River Formation tongues have been named, some formally, others informally. Middle Eocene strata above the Mahogany bed in the northern part of the study area are dominantly coarse clastics of the Uinta Formation. The sedimentary sequence becomes more calcareous and organic-rich to the south where, in a 400-mi2 area, a 250 ft-thick sequence of oil shale above the Mahogany bed contains an average of 16 gallons of oil per ton of shale and is estimated to contain 73 billion barrels of oil.

  10. Palynologic and petrographic variation in the Otter Creek coal beds (Stephanian, Upper Carboniferous), Western Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Helfrich, C.T.; Hower, J.C. (Eastern Kentucky University, Richmond (USA))

    1989-08-30

    The palynology and petrology of the Lisman (Lower Otter Creek) and Upper Otter Creek coals of the Stephanian portion of the Sturgis Formation of the Western Kentucky coal field was investigated in samples from mine and roadcut exposures. The Lisman coal bed exhibits an upward decrease in palynologic diversity and an upward increase in inertinite macerals. These factors suggest a change in swamp paleoecology in response to a climate which was gradually becoming drier. The Upper Creek coal bed exhibits less lateral continuity in palynomorph assemblages than does the Lisman. The Upper Otter Creek palynomorph assemblages are less diverse than the Lisman assemblages. Overall, the variation in the Upper Otter Creek coal bed cannot be attributed with certainty to any factor other than the local relief within the swamp. 17 refs., 4 figs., 3 tabs.

  11. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  12. Bioassessment of Black Creek, Holmes County, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Physical, chemical and biological components at four stations on Black Creek and one station on Harland Creek (reference site), Holmes County, Mississippi were...

  13. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  14. 27 CFR 9.85 - Willow Creek.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  15. Paleontological evidence of Paleozoic age for the Walden Creek Group, Ocoee Supergroup, Tennessee

    Science.gov (United States)

    Unrug, Raphael; Unrug, Sophia

    1990-11-01

    A newly discovered fossil assemblage including trilobite, ostracod, bryozoan, and microcrinoid fragments and agglutinated foraminifers has been found in the Wilhite Formation, Walden Creek Group, Ocoee Supergroup, in the foothills of the Great Smoky Mountains, Tennessee. These fossils prove a Paleozoic age for the Walden Creek Group, which had been interpreted to be of Late Proterozoic age. The foraminiferal assemblage indicaes the Silurian as the older age limit for the Walden Creek Group. These findings make necessary a redefinition of the Ocoee sedimentary basin and reinterpretation of models of the evolution of the Blue Ridge structural province.

  16. LINCOLN CREEK ROADLESS AREA, NEVADA.

    Science.gov (United States)

    John, David A.; Stebbins, Scott A.

    1984-01-01

    On the basis of a mineral survey, the Lincoln Creek Roadless Area, Nevada was determined to have little likelihood for the occurrence of mineral resources. Geologic terrane favorable for the occurrence of contact-metasomatic tungsten deposits exists, but no evidence for this type of mineralization was identified. The geologic setting precludes the occurrence of fossil fuels and no other energy resources were identified.

  17. 76 FR 4860 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Marks Creek Allotment...

    Science.gov (United States)

    2011-01-27

    ... attachment in plain text (.txt), Microsoft Word (.doc), rich text format (.rtf), or portable document format...,546 acres divided between six pastures-Garden, Grant Meadows, Little Hay Creek, Nature, Pothole, and... thinned and cut materials would be used to protect aspen; two exclosures would be constructed to...

  18. Codornices Creek Corridor: Land Use Regulation, Creek Restoration, and their Impacts on the Residents’ Perceptions

    OpenAIRE

    Stokenberga, Aiga; Sen, Arijit

    2013-01-01

    The Codornices Creek, an ecological corridor located in the northern part of Berkeley, California, is among the most visible, publicly accessible, and socio-economically diverse creeks in the East Bay. The current study examinesthe comparative influence of individual-level socio-economic conditions, involvementin Creek restoration activities, and the existing Creek-related land useregulations on the area residents’ sense of community and perception of areaecology. Based on the data collected ...

  19. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    Science.gov (United States)

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements

  20. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  1. 33 CFR 117.557 - Curtis Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Curtis Creek. 117.557 Section 117.557 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.557 Curtis Creek. The draw of the I695...

  2. 33 CFR 117.841 - Smith Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  3. 33 CFR 117.741 - Raccoon Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Raccoon Creek. 117.741 Section 117.741 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.741 Raccoon Creek. (a) The draw of...

  4. 33 CFR 117.335 - Taylor Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile...

  5. 33 CFR 117.331 - Snake Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  6. Currents and siltation at Dharamtar creek, Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Kolhatkar, V.M.; Fernandes, A.A.

    of suspended sediment load in relation to the tide showed that the rate of siltation in the Creek is not very high owing to the high rate of flushing. The areas south of Dharamtar Creek appeared to be prone to higher siltation...

  7. 33 CFR 117.324 - Rice Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  8. 33 CFR 117.571 - Spa Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0, at...

  9. 33 CFR 117.555 - College Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of...

  10. 33 CFR 117.917 - Battery Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  11. Exploration for uranium deposits in the Spring Creek Mesa area, Montrose County, Colorado

    Science.gov (United States)

    Roach, Carl Houston

    1954-01-01

    The U.S. Geological Survey explored the Spring Creek Mesa area from July 11, 1951, to August 14, 1953. During that period, 280 diamond-drill holes were completed for a total of 180,287 feet. Sedimentary rocks of Mesozoic age are exposed in and adjacent to the Spring Creek Mesa area. These rocks consist of, from oldest to youngest: the Upper Jurassic Morrison formation, the Lower Cretaceous Burro Canyon formation, and the Upper Cretaceous Dakota formation. The Morrison formation consists of two members in the Spring Creek Mesa area: the lower is the Salt Wash member and the upper is the Brusby Basin member. All of the large uranium-bearing deposits discovered by the Geological Survey drilling in the Spring Creek Mesa area are in a series of coalescing sandstone lenses in the uppermost part of the Salt Wash member of the Morrison formation. Most of the ore deposits are believed to be irregular tabular or lens-shaped masses and probably lie parallel to the bedding, although in detail, they may crosscut the bedding. Also, ore deposits that take the form of narrow elongate concretionary-like structures, locally called “rolls”, may be present in the Spring Creek Mesa area. The mineralized material consists mostly of sandstone which has been selectively impregnated and in part replaced by uranium and vanadium minerals. Also, rich concentrations of uranium and vanadium are commonly associated with thin mudstone seams, beds of mudstone pebbles, and carbonaceous material of various types. Two suites of ore minerals are present in the ore deposits - - an oxidized suite of secondary uranium and vanadium minerals and a relatively unoxidized suite of “primary” uranium and vanadium minerals. The following geologic criteria are useful as guides to ore in the Spring Creek Mesa area:

  12. Extent and bioavailability of trace metal contamination due to acid rock drainage in Pennask Creek, British Columbia, Canada

    Science.gov (United States)

    Walls, L. D.; Li, L. Y.; Hall, K. J.

    2010-05-01

    Pennask Creek is one of the most important rainbow trout producing streams in British Columbia (BC). Much of the Pennask Creek watershed is located within a BC Parks Protected Area, which was set aside to protect the spawning and rearing habitat of this wild rainbow trout population. Construction of Highway 97C, which bisects the Pennask Creek watershed, resulted in the exposure of a highly pyritic rock formation, which began releasing acid rock drainage and causing metals to be leached into Highway Creek, a tributary of Pennask Creek. Previous studies commissioned by the BC Ministry of Transportation and Infrastructure indicate that Highway Creek yields fewer invertebrates and elevated levels of some metals in the water when compared with downstream sites in Pennask Creek. This study examines the impacts of this acid rock drainage and metal leaching by determining the extent of trace metal contamination in the water and sediments of the Pennask Creek watershed and determining the bioavailability of these trace metals. Preliminary results indicate concentrations of Al, Cu, and Zn in the water as well as levels of total As, Cu, Fe, Ni, and Zn in the sediments that are above the BC Water and Sediment Quality Guidelines for the Protection of Aquatic Life. The highest level of trace metal contamination is found in Highway Creek, downstream of Highway 97C, with concentrations generally returning to near background levels downstream of the confluence with Pennask Creek. Levels of Cu in the water and Zn in the sediments appear to be of greatest concern in areas furthest from the highway.

  13. 76 FR 13524 - Radio Broadcasting Services; Willow Creek, CA

    Science.gov (United States)

    2011-03-14

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Willow Creek, CA AGENCY: Federal Communications... FM Channel 258A at Willow Creek, California. Channel 258A can be allotted at Willow Creek, consistent... of FM Allotments under California, is amended by adding Channel 258A at Willow Creek....

  14. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  15. 78 FR 20146 - Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming

    Science.gov (United States)

    2013-04-03

    ... COMMISSION Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming... in-situ recovery (ISR) of uranium at the Lost Creek Project in Sweetwater County, Wyoming. ADDRESSES.... Introduction Lost Creek ISR, LLC (LCI) is proposing to install two rotary vacuum dryers in the...

  16. 78 FR 5798 - Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for Enforcement

    Science.gov (United States)

    2013-01-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of... Utility Regulatory Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park...

  17. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  18. WATER QUALITY MODELING OF SUZHOU CREEK

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Water-quality models are important tools for improving river environment. In this paper, the project "Water Quality Modeling of the Suzhou Creek" was briefly described, including the choice and the principle of the model, the model study and methods, the calibration and verification of the stream model. A set of parameters about water environmental characteristic of the Suzhou Creek were put forward in the period of the third water dispatch experiment in 1999. It is necessary to point out that these parameters will change with the rehabilitation and construction of the Suzhou Creek.

  19. LOST CREEK ROADLESS AREA, CALIFORNIA.

    Science.gov (United States)

    Muffler, L.J. Patrick; Campbell, Harry W.

    1984-01-01

    Geologic and mineral-resource investigations identified no mineral-resource potential in the Lost Creek Roadless Area, California. Sand and gravel have been mined from alluvial flood-plain deposits less than 1 mi outside the roadless area; these deposits are likely to extend into the roadless area beneath a Holocene basalt flow that may be as much as 40 ft thick. An oil and gas lease application which includes the eastern portion of the roadless area is pending. Abundant basalt in the area can be crushed and used as aggregate, but similar deposits of volcanic cinders or sand and gravel in more favorable locations are available outside the roadless area closer to major markets. No indication of coal or geothermal energy resources was identified.

  20. CREEK Project's Internal Creek Habitat Survey for Eight Creeks in the North Inlet Estuary, South Carolina: January 1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  1. Tidal Creek Morphology and Sediment Type Influence Spatial Trends in Salt Marsh Vegetation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David M.; Bartholdy, Jesper

    2013-01-01

    Zonal patterns of salt marsh plants and physical conditions have been addressed primarily across the elevation gradient from inland to coastline rather than across tidal creeks in relation to their hydro-geomorphic processes such as bar formation and bank erosion. We found at a Danish marsh...

  2. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, R.E. Jr.; Mealing, H.G. III [Normandeau Associates, Inc., New Ellenton, SC (United States)

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  3. Bioassessment of Hollis Creek, Oktibbeha County, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Physical, chemical and biological components at five stations on Hollis Creek, Oktibbeha County, Mississippi were evaluated using Rapid Bioassessment Protocols (RBP)...

  4. Faults--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is...

  5. Folds--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is...

  6. Folds--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is...

  7. Faults--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is...

  8. Land Cover Classification for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff...

  9. Sign Plan Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Squaw Creek National Wildlife Refuge Sign Plan explains how signs are used on the Refuge to help guide and educate visitors. An inventory of current signs is...

  10. Habitat--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Scott Creek map area, California. The vector data file is included in...

  11. Exit Creek Water Surface Survey, June 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of survey data from a longitudinal profile of water surface surveyed June 23-24, 2013 at Exit Creek, a stream draining Exit Glacier in Kenai...

  12. Exit Creek Transect Survey, June 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of survey data from transects surveyed June 10-12, 2013 along Exit Creek, a stream draining Exit Glacier in Kenai Fjords National Park, Alaska....

  13. Exit and Paradise Creek Fluvial Features, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset presents delineations of the braid plains of Exit and Paradise Creeks in Kenai Fjords National Park, Alaska for 2012 conditions. A braid plain can be...

  14. Exit and Paradise Creek Fluvial Features, 1950

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset presents a delineation of the maximum extent of fluvial occupation detectable from vegetation patterns at Exit and Paradise Creeks in Kenai Fjords...

  15. Exit Creek Particle Size, June 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset presents particle size data collected at the surface of gravel bars along Exit Creek, a stream draining Exit Glacier in Kenai Fjords National Park,...

  16. Bathymetry--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore Scott Creek, California. The raster data file is included in...

  17. Bathymetry Hillshade--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore Scott Creek, California. The raster data file is included in...

  18. Mercury in Thana creek, Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Desai, B.N.

    weight) with marked increased from harbour to the creek region suggests substantial mercury input in the head region. Chemical extraction by hydrogen peroxide indicated that more than 70% of mercury was leachable and probably organically bound...

  19. Featured Partner: Saddle Creek Logistics Services

    Science.gov (United States)

    This EPA fact sheet spotlights Saddle Creek Logistics as a SmartWay partner committed to sustainability in reducing greenhouse gas emissions and air pollution caused by freight transportation, partly by growing its compressed natural gas (CNG) vehicles for

  20. Stream Centerline for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff...

  1. Spring Creek Common Allotment habitat management plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Management plan for the Spring Creek Common Allotment on Charles M. Russell National Wildlife Refuge, in McCone and Garfield Counties, Montana. This plan discusses...

  2. Active Channel for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff...

  3. Water sample locations for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff...

  4. Solid sample locations for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff...

  5. Contours--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Scott Creek map area, California. The vector data file is...

  6. Bathymetry--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore Scott Creek, California. The raster data file is included in...

  7. Fish Creek, South Fork Koyukuk, Koyukuk

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The intent of this study was to gather general information on the wildlife, human use, and terrain in the Fish Creek (east boundary) to Koyukuk (west boundary)...

  8. Habitat--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Scott Creek map area, California. The vector data file is included in...

  9. Contours--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Scott Creek map area, California. The vector data file is...

  10. Bathymetry Hillshade--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore Scott Creek, California. The raster data file is included in...

  11. Rattlesnake Creek Management Program 12-year review

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Rattlesnake Creek Partnership (Partnership) was formed over 18 years ago to cooperatively develop and implement solutions to water resource problems within the...

  12. Erosion Rates Over Millennial and Decadal Timescales: Measurements at Caspar Creek and Redwood Creek, Northern California

    Science.gov (United States)

    Ferrier, K. L.; Kirchner, J. W.; Finkel, R. C.

    2003-12-01

    Erosion rate measurements are essential for modeling landscape evolution and for discerning how sediment loading affects stream ecosystems. Cosmogenic nuclides such as 10Be in stream sediments can be used to measure whole-catchment erosion rates averaged over thousands of years, a timescale that is unobservable by other methods. Comparing long-term erosion rates from cosmogenic nuclides with short-term sediment yields can shed light on erosional processes and on the effects of land use on sediment delivery to streams. Using cosmogenic 10Be, we measured erosion rates averaged over the past several thousand years at Caspar Creek and Redwood Creek in Northern California. Sediment yields have also been measured at Caspar Creek since 1963 using sediment trapping and gauging methods, and sediment yield data have been collected at Redwood Creek since 1974. The cosmogenic 10Be signature of Caspar Creek sediments indicates an average erosion rate of 0.13 mm/yr, which agrees with the short-term sediment yield data within error. The cosmogenic 10Be signature of Redwood Creek sediments implies an average long-term erosion rate of 0.3 mm/yr, which is in rough agreement with traditional measurements of stream sediment flux. These results imply that the rate of sediment delivery to Caspar Creek and Redwood Creek over the past few decades is broadly consistent with the long-term average rate of sediment production in these watersheds.

  13. Baseline Characteristics of Jordan Creek, Juneau, Alaska

    Science.gov (United States)

    Host, Randy H.; Neal, Edward G.

    2004-01-01

    Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.

  14. Potential effects of surface coal mining on the hydrology of the Corral Creek area, Hanging Woman Creek coal field, southeastern Montana

    Science.gov (United States)

    McClymonds, N.E.

    1984-01-01

    The Corral Creek area of the Hanging Woman Creek coal field, 9 miles east of the Decker coal mines near the Tongue River, contains large reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and to study assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected indicate that aquifers are coal and sandstone beds within the Tongue River Member of the Fort Union Formation (Paleocene age) and sand and gravel in valley alluvium (Pleistocene and Holocene age). Surface-water resources are limited to a few spring-fed stock ponds in the higher parts of the area and the intermittent flow of Corral Creek near the mouth. Most of the stock ponds in the area become dry by midsummer. Mining of the Anderson coal bed would remove three stock wells and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Corral Creek and South Fork would be removed. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available that could be developed to replace those lost by mining. (USGS)

  15. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  16. Exit and Paradise Creek Drainage Area Boundaries, Alaska, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains drainage area boundaries for Exit Creek and Paradise Creek in Kenai Fjords National Park, Alaska. A drainage area boundary identifies the land...

  17. Copepod composition, abundance and diversity in Makupa Creek ...

    African Journals Online (AJOL)

    Daisy Ouya

    were analysed from monthly zooplankton samples collected in Makupa creek and ..... genera (30) compared to the present study. Time series of 24 hr surveys within Mombasa Harbour, ..... estuarine creek systems of Mombasa, Kenya.

  18. Preliminary Biotic Survey of Cane Creek, Calhoun County, AL

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A biotic survey of Cane Creek (Calhoun County, AL) was completed in the Fall (1992) and Winter (1993) at six sites within Cane Creek to determine the effects of...

  19. Squaw Creek National Wildlife Refuge contaminant survey results

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — As part of a baseline contaminant survey of all National Wildlife Refuges (NWR) in Missouri, fish were collected at the Squaw Creek NWR from Davis and Squaw creeks...

  20. Distribution and diagenesis of microfossils from the lower Proterozoic Duck Creek Dolomite, Western Australia

    Science.gov (United States)

    Knoll, A. H.; Strother, P. K.; Rossi, S.

    1988-01-01

    Two distinct generations of microfossils occur in silicified carbonates from a previously undescribed locality of the Lower Proterozoic Duck Creek Dolomite, Western Australia. The earlier generation occurs in discrete organic-rich clasts and clots characterized by microquartz anhedra; it contains a variety of filamentous and coccoidal fossils in varying states of preservation. Second generation microfossils consist almost exclusively of well-preserved Gunflintia minuta filaments that drape clasts or appear to float in clear chalcedony. These filaments appear to represent an ecologically distinct assemblage that colonized a substrate containing the partially degraded remains of the first generation community. The two assemblages differ significantly in taxonomic frequency distribution from previously described Duck Creek florules. Taken together, Duck Creek microfossils exhibit a range of assemblage variability comparable to that found in other Lower Proterozoic iron formations and ferruginous carbonates. With increasing severity of post-mortem alteration, Duck Creek microfossils appear to converge morphologically on assemblages of simple microstructures described from early Archean cherts. Two new species are described: Oscillatoriopsis majuscula and O. cuboides; the former is among the largest septate filamentous fossils described from any Proterozoic formation.

  1. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Kretchmer, D.W.; Chimney, M.J. [Normandeau Associates, Inc., New Ellenton, SC (United States)

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  2. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  3. The Boulder Creek Batholith, Front Range, Colorado

    Science.gov (United States)

    Gable, Dolores J.

    1980-01-01

    The Boulder Creek batholith is the best known of several large Precambrian batholiths of similar rock composition that crop out across central Colorado. The rocks in the batholith belong to the calc-alkaline series and range in composition from granodiorite through quartz diorite (tonalite) to gneissic aplite. Two rock types dominate': the Boulder Creek Granodiorite, the major rock unit, and a more leucocratic and slightly younger unit herein named Twin Spruce Quartz Monzonite. Besides mafic inclusions, which occur mainly in hornblende-bearing phases of the Boulder Creek Granodiorite, there are cogenetic older and younger lenses, dikes, and small plutons of hornblende diorite, hornblendite, gabbro, and pyroxenite. Pyroxenite is not found in the batholith. The Boulder Creek Granodiorite in the batholith represents essentially two contemporaneous magmas, a northern body occurring in the Gold Hill and Boulder quadrangles and a larger southern body exposed in the Blackhawk and the greater parts of the Tungsten and Eldorado Springs quadrangles. The two bodies are chemically and mineralogically distinct. The northern body is richer in CaO and poorer in K2O, is more mafic, and has a larger percentage of plagioclase than the southern body. A crude sequence of rock types occurs from west to east in the batholith accompanied by a change in plagioclase composition from calcic plagioclase on the west to sodic on the east. Ore minerals tend to decrease, and the ratio potassium feldspar:plagioclase increases inward from the western contact of the batholith, indicating that the Boulder Creek batholith is similar to granodiorite batholiths the world over. Emplacement of the Boulder Creek batholith was contemporaneous with plastic deformation and high-grade regional metamorphism that folded the country rock and the batholith contact along west-northwest and north-northwest axes. Also, smaller satellitic granodiorite bodies tend to conform to the trends of foliation and fold axes in

  4. Stream geomorphic and habitat data from a baseline study of Underwood Creek, Wisconsin, 2012

    Science.gov (United States)

    Young, Benjamin M.; Fitzpatrick, Faith A.; Blount, James D.

    2015-12-07

    Geomorphic and habitat data were collected along Underwood Creek as part of a larger study of stream water quality conditions in the greater Milwaukee, Wisconsin, area. The data were collected to characterize baseline physical conditions in Underwood Creek prior to a potential discharge of wastewater return flow to the stream from the city of Waukesha, Wis. Geomorphic and habitat assessments were conducted in the summer and fall of 2012 by the U.S. Geological Survey (USGS) in cooperation with the Milwaukee Metropolitan Sewerage District. The assessments used a transect based, reach scale assessment at a total of eight reaches—six reaches along Underwood Creek and two reaches along the Menomonee River upstream and downstream of its confluence with Underwood Creek. The reach scale assessment was an updated version of the USGS National Water Quality Assessment Program habitat assessment integrated with an intensive geomorphic assessment. Channel cross sections and longitudinal profiles were surveyed along each of the eight reaches, and discharge and water temperature were measured. Additionally, a geomorphic river walk-through was completed along a 10 kilometer reach that spanned the individual assessment reaches and the sections of channel between them. The assessments and river walk-through described channel and bank stability, channel shape and size, sediment and riparian conditions along these areas of Underwood Creek and the Menomonee River. Since the time of the data collection, focus has turned to other Lake Michigan tributary watersheds for possible Waukesha return-flow discharges; however, the data collected for this effort remains a valuable asset for the baseline characterization, design, and prioritization of planned stream rehabilitation activities in Underwood Creek. The data files presented in this report include a variety of formats including geographic information system files, spreadsheets, photos, and scans of field forms.

  5. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    Science.gov (United States)

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  6. 78 FR 28897 - Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project; Sweetwater County, Wyoming

    Science.gov (United States)

    2013-05-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project; Sweetwater County, Wyoming AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and finding of no...

  7. CREEK Project's Phytoplankton Pigment Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The CREEK Project began in January of 1996 and was designed to help determine the role of oysters, Crassostrea virginica, in tidal creeks of the North Inlet Estuary,...

  8. 75 FR 63431 - Radio Broadcasting Services; Willow Creek, CA

    Science.gov (United States)

    2010-10-15

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Willow Creek, CA AGENCY: Federal Communications... allotment of FM Channel 258A at Willow Creek, California. Petitioner, the auction winner and permittee of Channel 253A, Willow Creek, has submitted an application to specify operation of the station on...

  9. 75 FR 1705 - Drawbridge Operation Regulations; Curtis Creek, Baltimore, MD

    Science.gov (United States)

    2010-01-13

    ... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulations; Curtis Creek... operation of the I695 Bridge across Curtis Creek, mile 0.9, at Baltimore, MD. The deviation is necessary to... section of Curtis Creek and the bridge will not be able to open in the event of an emergency. Coast...

  10. 75 FR 52463 - Safety Zone; Raccoon Creek, Bridgeport, NJ

    Science.gov (United States)

    2010-08-26

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Raccoon Creek, Bridgeport, NJ AGENCY: Coast... specified waters of Raccoon Creek, Bridgeport, NJ. This action is necessary to provide for the safety of... intended to restrict vessel access in order to protect mariners in a portion of Raccoon Creek. DATES: This...

  11. 78 FR 64189 - Drawbridge Operation Regulation; Raccoon Creek, Bridgeport, NJ

    Science.gov (United States)

    2013-10-28

    ... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Raccoon Creek... proposes to modify the operating schedule that governs the U.S. Route 130 lift Bridge over Raccoon Creek at... marine traffic transits Raccoon Creek during the summer months. To better align the operating schedule to...

  12. 33 CFR 110.72 - Blackhole Creek, Md.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Blackhole Creek, Md. 110.72... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of Blackhole Creek, a tributary of Magothy River, southwest of a line bearing 310°30′ from the most...

  13. Isotopic Investigation of Geologic and Anthropogenic Controls on Nutrient Loading in Malibu Creek Watershed, California

    Science.gov (United States)

    Harrison, M.; Hibbs, B. J.

    2015-12-01

    The upper portion of the Malibu Creek Watershed exposes the Monterey-Modelo Formation, a Miocene marine mudstone. This formation has been thought to contribute high concentrations of orthophosphate and nitrate to streams via groundwater leaching and baseflow. However, our recent studies suggest that high concentrations of orthophosphate and nitrate may be dominated by dry weather runoff of imported water (tap and recycled water) from watering of urban landscapes. Our study investigates El Camino Real Creek, a tributary in the Malibu Creek Watershed that traverses Monterey-Modelo Formation strata and is fed predominantly by dry weather runoff. From an initial input at a storm drain where dry weather runoff flows consistently, hydrochemical parameters range from 1.86 to 4.66 mg/L NO3-N and 1.06 to 2.28 mg/L PO4 that decrease to concentrations ranging from 0.15 to 0.59 mg/L NO3-N and 0.40 to 0.87 mg/L PO4 where El Camino Real Creek converges with Las Virgenes Creek. The decrease in nutrient content downstream is due to the transformational processes denitrification, vegetation uptake, and mixing with groundwater baseflow containing lower nutrient content. The average water isotope values for the imported (tap and recycled) endmembers are -9.1‰ δ18O and -73‰ δD. The average water isotope values for the samples collected at the storm drain range from -6.0‰ to -8.0‰ δ18O and -56‰ to -68‰ δD while isotope values downstream range from -6.0‰ to -6.3‰ δ18O and -47‰ to -48‰ δD. Stable isotopes of hydrogen and oxygen show mixing of imported water with local groundwater downstream, which demonstrates that nutrients in this creek are not strictly dominated by geologic sources. To further understand the nutrient changes and mixing percentages of imported and local water sources, diurnal studies are being conducted with the integration of nitrate isotopes to help understand the nutrient dynamics in El Camino Real Creek.

  14. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. (a...

  15. Oncoides tipo Osagia en la Formación La Manga (Oxfordiano y su significado paleoecológico, arroyo La Vaina, Mendoza Osagids-types oncoids from La Manga Formation and their paleoecological significance, La Vaina Creek, Mendoza

    Directory of Open Access Journals (Sweden)

    R.M. Palma

    2007-11-01

    del mar.Microbial oncoids have been found in the Oxfordian limestones of the La Manga Formation in the La Vaina section at Potimalal River, Mendoza province. The oncoids ocurr either in packstone or floatstone-rudstone or are scattered in the wackestones. They are mostly elliptical, ameboidal and subordinately spherical in shape. Different types of oncoids were recognized, according to their features of envelopes: (1 micritic laminations, (2 grumose laminations, and (3 organism-bearing laminations. Molluscs and echinoid fragments, peloids, and intraclasts acted as oncoid nuclei. Laminae follow the shape of nuclei, especially in the inner zone of the cortices. However, in the outer zones the laminae contain encrusting organisms dominated by nubeculariids and serpulids. Some oncoids, especially the ameboidal or elliptical forms, are characterized by multiple nuclei, represented by small oncoids. The oncoids are associated with bivalves, echinoderms, forams, and serpulids. The fauna is indicative of calm, shallow conditions and the excellent preservation of echinoderms suggests minimal transport prior to burial. Growth histories are in evidence. The oncoids grew in a shallow, low energy, slightly to moderate agitated subtidal normal sea water environment. The limited rolling growth oncoids was probably accompanished by intermittent currents that reoriented the oncoids parallel to stratification. The discontinuous organisms-bearing laminations reflect periods of non-agitation and litification, which facilitated the growth of encrusting organisms on static oncoid particles during a period of low sedimentation rate. Deposition of the oncoidbearing limestones took place during shallowing of the carbonate interval and associated with emersion, subaerial exposition and paleokarst as consequence of sea level fluctuations.

  16. CREEK Project's Oyster Biomass Database for Eight Creeks in the North Inlet Estuary, South Carolina

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated BACI (Before -...

  17. Geology of the Teakettle Creek watersheds

    Science.gov (United States)

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  18. Exit Creek Bank Height Survey, June 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of survey data from bank profiles surveyed June 12 and June 24-26, 2013 at the edge of the active braid plain of Exit Creek, a stream draining...

  19. How Fern Creek Is Beating Goliath

    Science.gov (United States)

    Donovan, Margaret; Galatowitsch, Patrick; Hefferin, Keri; Highland, Shanita

    2013-01-01

    The "David" is Fern Creek Elementary, a small urban school in Orlando, Florida, that serves an overwhelmingly disadvantaged student population. The "Goliaths" are the mountains of problems that many inner-city students face--poverty, homelessness, mobility, instability, limited parent involvement, and violent neighborhood…

  20. Parlin Creek large woody debris placement project

    Science.gov (United States)

    Barry W. Collins

    1999-01-01

    In August 1996 the Jackson Demonstration State Forest (JSDF) completed a fish habitat rehabilitation project in a 2.5 mile reach of Parlin Creek, a tributary to the Noyo River in Mendocino County, California. The purse of the project was to introduce large woody material to the stream channel to determine if higher quality habitat could be produced for anadromous...

  1. Chelsea Sandwich, LLC (MA0003280) | Chelsea Creek ...

    Science.gov (United States)

    2017-04-10

    EPA and the Massachusetts Department of Environmental Protection (MADEP) have developed final National Pollutant Discharge Elimination System (NPDES) permits for seven bulk petroleum storage facilities located along Chelsea River (Creek) in Chelsea and Revere, Massachusetts to meet the requirements of the Clean Water Act.

  2. Tidal mixing in Dahej creek waters

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Sarma, R.V.

    Mixing characteristics of a tidal inlet near Dahej at the mouth of Narmada River, Gujarat, India are examined in terms of tides, currents and bathymetry. The dilution potential of the Dahej Creek waters during a tidal march for a given rate...

  3. Species status of Mill Creek Elliptio

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.M. [Academy of Natural Sciences (United States); Mulvey, M. [Savannah River Ecology Lab., Aiken, SC (United States)

    1993-12-31

    This report discusses environmental effects of the Savannah River Plant on aqautic populations in Mill Creek and surrounding tributaries. Of particular concern was the status of Elliptio. Genetics and phenotypic characteristics have shown that the current classification system is not adequate for these populations. The appendices characterize genetic variability at different loci, electrophoretic data, allele frequencies, sympatric species, and anatomical characters.

  4. 78 FR 64003 - Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor...

    Science.gov (United States)

    2013-10-25

    ... Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal, Owyhee County, ID AGENCY: Bureau... Statement (EIS) for the Owyhee Field Office Jump Creek, Succor Creek and Cow Creek Watersheds grazing permit... Creek Watersheds Grazing Permit Renewal Final EIS are available for public inspection at Owyhee...

  5. Castle Creek known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Castle Creek known geothermal resource area (KGRA) is part of the large Bruneau-Grand View thermal anomaly in southwestern Idaho. The KGRA is located in the driest area of Idaho and annual precipitation averages 230 mm. The potential of subsidence and slope failure is high in sediments of the Glenns Ferry Formation and Idaho Group found in the KGRA. A major concern is the potential impact of geothermal development on the Snake River Birds of Prey Natural Area which overlaps the KGRA. Any significant economic growth in Owyhee County may strain the ability of the limited health facilities in the county. The Idaho Archaeological survey has located 46 archaeological sites within the KGRA.

  6. Temporal Geochemistry Data from Five Springs in the Cement Creek Watershed, San Juan County, Colorado

    Science.gov (United States)

    Johnson, Raymond H.; Wirt, Laurie; Leib, Kenneth J.

    2008-01-01

    Temporal data from five springs in the Cement Creek watershed, San Juan County, Colorado provide seasonal geochemical data for further research in the formation of ferricretes. In addition, these data can be used to help understand the ground-water flow system. The resulting data demonstrate the difficulty in gathering reliable seasonal data from springs, show the unique geochemistry of each spring due to local geology, and provide seasonal trends in geochemistry for Tiger Iron Spring.

  7. Water resources and effects of potential surface coal mining on dissolved solids in Hanging Woman Creek basin, southeastern Montana

    Science.gov (United States)

    Cannon, M.R.

    1989-01-01

    Groundwater resources of the Hanging Woman Creek basin, Montana include Holocene and Pleistocene alluvial aquifers and sandstone , coal, and clinker aquifers in the Paleocene Fort Union Formation. Surface water resources are composed of Hanging Woman Creek, its tributaries, and small stock ponds. Dissolved-solids concentrations in groundwater ranged from 200 to 11,00 mg/L. Generally, concentrations were largest in alluvial aquifers and smallest in clinker aquifers. Near its mouth, Hanging Woman Creek had a median concentration of about 1,800 mg/L. Mining of the 20-foot to 35-foot-thick Anderson coal bed and 3-foot to 16-foot thick Dietz coal bed could increase dissolved-solids concentrations in shallow aquifers and in Hanging Woman Creek because of leaching of soluble minerals from mine spoils. Analysis of saturated-paste extracts from 158 overburden samples indicated that water moving through mine spoils would have a median increase in dissolved-solids concentration of about 3,700 mg/L, resulting in an additional dissolved-solids load to Hanging Woman Creek of about 3.0 tons/day. Hanging Woman Creek near Birney could have an annual post-mining dissolved-solids load of 3,415 tons at median discharge, a 47% increase from pre-mining conditions load. Post-mining concentrations of dissolved solids, at median discharge, could range from 2,380 mg/L in March to 3,940 mg/L in August, compared to mean pre-mining concentrations that ranged from 1,700 mg/L in July, November, and December to 2,060 mg/L in May. Post-mining concentrations and loads in Hanging Woman Creek would be smaller if a smaller area were mined. (USGS)

  8. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  9. Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin, Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06

    Science.gov (United States)

    Fulton, John W.; Risser, Dennis W.; Regan, Robert S.; Walker, John F.; Hunt, Randall J.; Niswonger, Richard G.; Hoffman, Scott A.; Markstrom, Steven

    2015-08-17

    ); storage increased by about the same amount to balance the budget. The rate and distribution of recharge throughout the Spring Creek, Nittany Creek, and Spruce Creek Basins is variable as a result of the high degree of hydrogeologic heterogeneity and karst features. The greatest amount of recharge was simulated in the carbonate-bedrock valley, near the toe slopes of Nittany and Tussey Mountains, in the Scotia Barrens, and along the area coinciding with the Gatesburg Formation. Runoff extremes were observed for water years 2001 (dry year) and 2004 (wet year). Simulated average recharge rates (water reaching the saturated zone as defined in GSFLOW) for 2001 and 2004 were 5.4 in/yr and 22.0 in/yr, respectively. Areas where simulations show large variations in annual recharge between wet and dry years are the same areas where simulated recharge was large. Those areas where rates of groundwater recharge are much higher than average, and are capable of accepting substantially greater quantities of recharge during wet years, might be considered critical for maintaining the flow of springs, stream base flow, or the source of water to supply wells. The slopes of the Bald Eagle, Tussey, and Nittany Mountains are relatively insensitive to variations in recharge, primarily because of reduced infiltration rates and steep slopes.

  10. Phytoplankton Community of Elechi Creek, Niger Delta, Nigeria-A Nutrient-Polluted Tropical Creek

    Directory of Open Access Journals (Sweden)

    O. A. Davies

    2009-01-01

    Full Text Available Problem statement: Elechi Creek of the Upper Bonny Estuary in the Niger Delta contributes to the Rivers State Fish resources. It is a sink receiving organic anthropogenic wastes from Diobu, Eagle Island and waterfront dwellers of Diobu areas. Fishing, car washing, bathing, swimming and other human activities are constantly going on within and around this creek. Based on these activities, there is urgent need to study the phytoplankton community that supports its fisheries. Approach: The study investigated the phytoplankton composition, diversity, abundance and distribution as well as surface water physico-chemical parameters. Phytoplankton and surface water samples were collected bi-monthly from October 2007-March 2008 at high tide from five stations according to APHA methods. These were analyzed for temperature, transparency, dissolved oxygen, salinity, alkalinity, chloride and nutrients. Phytoplankton was identified microscopically. Species diversity was calculated using standard indices. Results: A total of 169 species of phytoplankton, based on cell counts, was dominated by diatoms, 33255 counts mL-1 (36% and blue-green algae, 32909 counts mL-1 (35.7% were identified. The abundance of phytoplankton decreased downstream of this creek (1>2>3>4 except in station 5 with the highest phytoplankton abundance (23938 counts mL-1. There was slight fluctuation in the measured physico-chemical parameters. The results of this study indicated the characteristic species and distribution of phytoplankton in Elechi Creek during the dry months. Conclusion/Recommendation: The high level of phosphate above the permissive limit showed that this creek is hypereutrophic and organic polluted. The high nutrients status favors the high abundance of phytoplankton. The municipal effluents (especially raw human and animal faces discharges must be discontinued. Detergents with low concentration of phosphate are recommended for manufacturing and use. Municipal wastes must

  11. Facies y microfacies de la rampa tithoniana-berriasiana de la cuenca neuquina (Formación Vaca Muerta en la sección del arroyo Loncoche - Malargüe, provincia de Mendoza Facies and microfacies of the Tithonian-Berriasian ramp from the Neuquén basin (Vaca Muerta Formation in the Loncoche creek section - Malargüe, Mendoza

    Directory of Open Access Journals (Sweden)

    Diego A. Kietzmann

    2008-12-01

    Full Text Available La Formación Vaca Muerta (Tithoniano-Berriasiano consiste en una alternancia rítmica de lutitas negras, lutitas grises, margas y limolitas, con mudstones, wackestones, packstones, floatstones y rudstones bioclásticos. La asociación de facies en la sección del arroyo Loncoche, permitió definir 12 litofacies y 8 microfacies, dominadas por moluscos, equinodermos, foraminíferos, braquiópodos, serpúlidos y radiolarios. Se distinguieron cuatro asociaciones de facies correspondientes a los subambientes de cuenca, rampa externa (distal y proximal y rampa media. La utilización de la relación Nassellaria/Spumellaria permitió estimar un rango de profundidades menores a 200 metros. El patrón de apilamiento y la distribución vertical de facies permitió la distinción de tres secuencias depositacionales, y el reconocimiento de un sistema tithoniano de rampa homoclinal y un sistema berriasiano de rampa homoclinal de mayor gradiente. La secuencia depositacional 1 consiste en facies de cuenca y rampa externa distal y se caracteriza por un patrón retrogradacional. Presenta un espesor de 124 m, y se extiende desde la Zona de Virgatosphinctes mendozanus hasta la base de la Zona de Corongoceras alternans. Las secuencias depositacionales 2 y 3 consisten en facies de rampa externa y rampa media. Están caracterizadas por un patrón agradacional y progradacional. El espesor de la secuencia 2 es de 66 m y se asigna a la Zona de Corongoceras alternans, mientras que la secuencia 3 alcanza 78 m y corresponde a las zonas de Substeueroceras koeneni y Spiticeras damesi.Facies association of the Tithonian-Berriasian Vaca Muerta Formation from the Loncoche creek section, Neuquén Basin, west central Argentina, allow the distinction and definition of 12 lithofacies and 8 microfacies, which are dominated by molluscs, echinoderms, foraminifera, brachiopods, serpulids and radiolarians. The Vaca Muerta Formation consists of a rhythmical alternation of black shales

  12. Geologic framework, regional aquifer properties (1940s-2009), and spring, creek, and seep properties (2009-10) of the upper San Mateo Creek Basin near Mount Taylor, New Mexico

    Science.gov (United States)

    Langman, Jeff B.; Sprague, Jesse E.; Durall, Roger A.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Forest Service, examined the geologic framework, regional aquifer properties, and spring, creek, and seep properties of the upper San Mateo Creek Basin near Mount Taylor, which contains areas proposed for exploratory drilling and possible uranium mining on U.S. Forest Service land. The geologic structure of the region was formed from uplift of the Zuni Mountains during the Laramide Orogeny and the Neogene volcanism associated with the Mount Taylor Volcanic Field. Within this structural context, numerous aquifers are present in various Paleozoic and Mesozoic sedimentary formations and the Quaternary alluvium. The distribution of the aquifers is spatially variable because of the dip of the formations and erosion that produced the current landscape configuration where older formations have been exhumed closer to the Zuni Mountains. Many of the alluvial deposits and formations that contain groundwater likely are hydraulically connected because of the solid-matrix properties, such as substantive porosity, but shale layers such as those found in the Mancos Formation and Chinle Group likely restrict vertical flow. Existing water-level data indicate topologically downgradient flow in the Quaternary alluvium and indiscernible general flow patterns in the lower aquifers. According to previously published material and the geologic structure of the aquifers, the flow direction in the lower aquifers likely is in the opposite direction compared to the alluvium aquifer. Groundwater within the Chinle Group is known to be confined, which may allow upward migration of water into the Morrison Formation; however, confining layers within the Chinle Group likely retard upward leakage. Groundwater was sodium-bicarbonate/sulfate dominant or mixed cation-mixed anion with some calcium/bicarbonate water in the study area. The presence of the reduction/oxidation-sensitive elements iron and manganese in groundwater indicates reducing

  13. A Gunflint-type microbiota from the Duck Creek dolomite, Western Australia

    Science.gov (United States)

    Knoll, A. H.; Barghoorn, E. S.

    1976-01-01

    Two-billion-year-old black chert lenses from the Duck Creek formation, northwestern Western Australia, contain abundant organically preserved microorganisms which are morphologically similar to fossils of approximately the same age from the Gunflint formation, Ontario. Entities include a relatively small (5-15 micron) coccoid taxon morphologically comparable to Huroniospora Barghoorn, a larger coccoid form comparable to an apparently planktonic alga from the Gunflint, Gunflintia Barghoorn, and Eoastrion Barghoorn (Metallogenium Perfil'ev). Gunflint-type assemblages had a wide geographic distribution in middle Precambrian times, and these assemblages may eventually prove useful as biostratigraphic indices.

  14. Integration of geology and reservoir engineering to produce reservoir simulation model at Cabin Creek Field, Cedar Creek Anticline, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Pieterson, R.; DiMarco, M.J.; Sodersten, S.S. [Shell Western E& P Inc., Houston, TX (United States)

    1996-12-31

    Because of its mature stage of development, a key aspect of continued economic development of the Cedar Creek Anticline (CCA), Montana (STOOIP > 2 billion barrels with over 360 MMstb produced) is the Identification of remaining pods of high S{sub o} within the original field boundaries. Present economic conditions make it essential to select drillsites with high probabilities of success and high prognoses flow rates in these remaking high S. area. Integration of a well-constrained geologic model and reservoir simulation pinpointed remaining pods of oil in a 3-m thick, subvertically fractured, dolomitic limestone reservoir of the Carboniferous Mission Canyon Formation in the Cabin Creek Field of the CCA This resulted in a successful high-flow-rate horizontal well (initial rate >800 BOPD) whose oil production was accurately predicted by a 3-D reservoir simulation. The model has 53,750 gridblocks each of which Is 60 by 60 m. The effect of the natural-fracture network was constrained with the k{sub v}/k{sub h} (vertical to horizontal permeability ratio). The simulation covered a 40-yr. production period. Gross production was Input as a constraint; oil and water rates were matched. Adjustments to absolute permeability, aquifer volume and relative water permeability were required to obtain a match between observed and simulated production rates. The model was fine tuned by matching the production of individual wells in areas with a high remaining S{sub o}. This project demonstrated that (1) interplay of geology and reservoir engineering provided a better reservoir model than could have been done individually, (2) simulation work identified horizontal drilling and recompletion candidates, with one successful horizontal well completed to date, and (3) use of the reservoir simulator for field-scale modeling In conjunction with a well-refined geologic synthesis can successfully pinpoint undeveloped reserves at CCA.

  15. Integration of geology and reservoir engineering to produce reservoir simulation model at Cabin Creek Field, Cedar Creek Anticline, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Pieterson, R.; DiMarco, M.J.; Sodersten, S.S. (Shell Western E P Inc., Houston, TX (United States))

    1996-01-01

    Because of its mature stage of development, a key aspect of continued economic development of the Cedar Creek Anticline (CCA), Montana (STOOIP > 2 billion barrels with over 360 MMstb produced) is the Identification of remaining pods of high S[sub o] within the original field boundaries. Present economic conditions make it essential to select drillsites with high probabilities of success and high prognoses flow rates in these remaking high S. area. Integration of a well-constrained geologic model and reservoir simulation pinpointed remaining pods of oil in a 3-m thick, subvertically fractured, dolomitic limestone reservoir of the Carboniferous Mission Canyon Formation in the Cabin Creek Field of the CCA This resulted in a successful high-flow-rate horizontal well (initial rate >800 BOPD) whose oil production was accurately predicted by a 3-D reservoir simulation. The model has 53,750 gridblocks each of which Is 60 by 60 m. The effect of the natural-fracture network was constrained with the k[sub v]/k[sub h] (vertical to horizontal permeability ratio). The simulation covered a 40-yr. production period. Gross production was Input as a constraint; oil and water rates were matched. Adjustments to absolute permeability, aquifer volume and relative water permeability were required to obtain a match between observed and simulated production rates. The model was fine tuned by matching the production of individual wells in areas with a high remaining S[sub o]. This project demonstrated that (1) interplay of geology and reservoir engineering provided a better reservoir model than could have been done individually, (2) simulation work identified horizontal drilling and recompletion candidates, with one successful horizontal well completed to date, and (3) use of the reservoir simulator for field-scale modeling In conjunction with a well-refined geologic synthesis can successfully pinpoint undeveloped reserves at CCA.

  16. Marsh Pool and Tidal Creek Morphodynamics: Dynamic Equilibrium of New England Saltmarshes?

    Science.gov (United States)

    Wilson, C.; FitzGerald, D. M.; Hughes, Z. J.

    2012-12-01

    Under natural conditions, high saltmarsh platforms in New England exhibit poor drainage, creating waterlogged pannes (where short-form Spartina alterniflora dominates) and stagnant pools that experience tidal exchange only during spring tides and storm-induced flooding events. It is well accepted that a legacy of ditching practices (either for agriculture or mosquito control purposes) provide "overdrainage" of saltmarshes (after Redfield, 1972) and a shift in biogeochemical conditions: lowering of groundwater tables, aeration of soil, and decrease in preserved belowground biomass. Analysis of historical imagery in the Plum Island Estuary of Massachusetts reveals closure and decrease in length of anthropogenic ditches in recent decades is closely linked to marsh pool evolution. Field analyses including stratigraphic transects and elevation surveys suggest these marshes are reverting to natural drainage conditions. Further, an important dynamic interaction exists between saltmarsh pools and natural tidal creeks: creeks incise into pool areas, causing drainage of the pools, and formation of an unvegetated mudflat which can be rapidly recolonized by halophytic Spartina alterniflora vegetation. It was determined that pool and creek dynamics are cyclic in nature. The marsh platform is in dynamic equilibrium with respect to elevation and sea-level whereby marsh elevation may be lost (due to degradation of organic matter and formation of a pool) however may be regained (by creek incision into pools, restoration of tidal exchange, and rapid vertical accretion with Spartina alterniflora recolonization. Since vertical accretion in saltmarshes is a function of both organic and inorganic contributions to the marsh subsurface, it is hypothesized that cannibalization of existing muds is supplying inorganic material in this sediment starved system.

  17. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

  18. A Creek to Bay Biological Assessment in Oakland, California

    Science.gov (United States)

    Ahumada, E.; Ramirez, N.; Lopez, A.; Avila, M.; Ramirez, J.; Arroyo, D.; Bracho, H.; Casanova, A.; Pierson, E.

    2011-12-01

    In 2007, the Surface Water Ambient Monitoring Program (SWAMP) assessed the impact of trash on water quality in the Peralta Creek which is located in the Fruitvale district of Oakland, CA. This 2011 follow-up study will take further steps in evaluating the physical and biological impacts of pollution and human development on Peralta Creek and in the San Leandro Bay, where the Creek empties into the larger San Francisco Bay estuary. This study will utilize two forms of biological assessment in order to determine the level of water quality and ecosystem health of Peralta Creek and San Leandro Bay in Oakland, California. A Rapid Bioassesment Protocal (RBP) will be used as the method of biological assessment for Peralta Creek. RBP uses a biotic index of benthic macroinvertebrates to provide a measure of a water body's health. Larval trematodes found in two mud snails (Ilynassa obsoleta and Cerithidea californica) will be used to evaluate the health of the San Leandro Bay. Due to the complex life cycle of trematodes, the measure of trematode diversity and richness in host species serves as an indicator of estuarine health (Huspeni 2005). We have completed the assessment of one section of Peralta Creek, located at 2465 34th Avenue, Oakland, CA 94601. Abundance results indicate a moderately healthy creek because there were high levels of pollution tolerant benthic macroinvertebrates. The tolerant group of benthic macroinvertebrates includes such organisms as flatworms, leeches, and scuds. This is possibly due to this section of the creek being pumped up to the surface from culverts impacting the macroinvertebrate's life cycle. Another contributing factor to creek health is the amount of organic debris found in the creek, which inhibits the flow and oxygenation of the water, allowing for more pollution tolerant aquatic insects to persist. Further investigation is being conducted to fully assess the Peralta Creek watershed; from the preliminary results one can surmise that

  19. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  20. Primer registro de megafloras y palinología en estratos de la Formación Tarija (Pennsylvaniano, Arroyo Aguas Blancas, Provincia de Salta, Argentina: Descripción de dos especies nuevas First record of megafloras and palynology in the Tarija Formation (Pennsylvanian, Aguas Blancas creek, Salta Province, Argentina: Description of two new species

    Directory of Open Access Journals (Sweden)

    Mercedes di Pasquo

    2009-01-01

    Full Text Available Se analiza e ilustra, por primera vez, una tafoflora hallada en estratos de la Formación Tarija que aflora en Arroyo Aguas Blancas, Provincia de Salta, Argentina. Se describen, también, dos especies nuevas: Malanzania starckii (licofita y Grumosisporites delpapae (espora trilete. Se reconocieron improntas de semillas platispérmicas (Sama-ropsis nunezii García emend. A. Archangelsky, Cordaicarpus cesariae Gutiérrez, Ganuza, Morel y Arrondo emend. A. Archangelsky, improntas de tallos articulados {Paracalamites australis Rigby emend. Zampirolli y Bernardes de Oliveira y compresiones/improntas de fragmentos foliares (Cordaites riojanus Archangelsky y Leguizamón, Ginkgo-phyllum sp. cf. G. diazii Archangelsky y Arrondo. Esta asociación es atribuida al Pennsylvaniano s.l. sobre la base de la distribución estratigráfica de las especies seminales. La asociación palinológica se compone de 101 especies, 53 de ellas reconocidas como autóctonas y 48 retrabajadas. El primer conjunto comprende 34 especies de esporas trilete, 11 granos de polen monosacado, un grano bisacado y siete especies de algas. El grupo retrabajado se compone de 27 esporas trilete y criptosporas, 20 especies de acritarcas, prasinofitas y otras algas y un quitinozoario. La presencia de especies exclusivas de la BiozonaD. bireticulatus-C. chacoparanensis (BC (e.g., Dictyotriletes bireticulatus (Ibrahim Potonié y Kremp emend. Smith y Butterworth, Crucisaccites latisulcatus Lele y Maithy, Verrucosisporites morulatus (Knox Potonié y Kremp emend. Smith y Butterworth, permite acotar su edad al Bashkiriano tardío-Moscoviano. La vegetación, compuesta principalmente por licofitas, esfenofitas, pteridofitas y gimnospermas, se habría desarrollado en diferentes ambientes continentales como lagos y ríos alimentados por glaciares de montaña.Fossil plant remains found in the Tarija Formation cropping out at the Aguas Blancas creek, Aguaragüe range, Salta Province, Argentina, are analy

  1. Surface waters of North Boggy Creek basin in the Muddy Boggy Creek basin in Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1958-01-01

    Analysis of short-term streamflow data in North Boggy Creek basin indicates that the average runoff in this region is substantial. The streamflow is highly variable from year to year and from month to month. The estimated total yield from the North Boggy Creek watershed of 231 square miles averages 155,000 acre-feet annually, equivalent to an average runoff depth of 12 1/2 inches. Almost a fourth of the annual volume is contributed by Chickasaw Creek basin, where about 35,000 acre-feet runs off from 46 square miles. Two years of records show a variation in runoff for the calendar year 1957 in comparison to 1956 in a ratio of 13 to 1 for the station on North Boggy Creek and a ratio of 18 to 1 for the station on Chickasaw Creek. In a longer-term record downstream on Muddy Boggy Creek near Farris, the corresponding range was 17 to 1, while the calendar years 1945 and 1956 show a 20-fold variation in runoff. Within a year the higher runoff tends to occur in the spring months, April to June, a 3-month period that, on the average, accounts for at least half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is relatively small in the summer. Records for the gaging stations noted indicate that there is little or no base flow in the summer, and thus there will be periods of no flow at times in most years. The variation in runoff during a year is suggested by a frequency analysis of low flows at the reference station on Muddy Boggy Creek near Farris. Although the mean flow at that site is 955 cfs (cubic feet per second), the median daily flow is only 59 cfs and the lowest 30-day flow in a year will average less than 1 cfs in 4 out of 10 years on the average. The estimated mean flow on North Boggy Creek near Stringtown is 124 cfs, but the estimated median daily flow is only 3 1/2 cfs. Because of the high variability in streamflow, development of storage by impoundment will be necessary to attain maximum utilization of the

  2. 77 FR 12476 - Drawbridge Operation Regulation; Curtis Creek, Baltimore, MD

    Science.gov (United States)

    2012-03-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Curtis Creek, Baltimore..., across Curtis Creek, mile 1.0, at Baltimore, MD. This deviation allows the bridge to operate on...

  3. 75 FR 54069 - Drawbridge Operation Regulations; Curtis Creek, Baltimore, MD

    Science.gov (United States)

    2010-09-03

    ... (75 FR 30747-30750). The rulemaking concerned eliminating the need for a bridge tender by allowing the... SECURITY Coast Guard 33 CFR Part 117 RIN 1625--AA09 Drawbridge Operation Regulations; Curtis Creek... Avenue Bridge, at mile 0.9, across Curtis Creek at Baltimore, MD. The requested change would have...

  4. 75 FR 50707 - Drawbridge Operation Regulation; Curtis Creek, Baltimore, MD

    Science.gov (United States)

    2010-08-17

    ... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Curtis Creek, Baltimore... operation of the Pennington Avenue Bridge, across Curtis Creek, mile 0.9, at Baltimore, MD. This deviation... vessels bound for the Coast Guard Yard at Curtis Bay, as well as a significant amount of commercial...

  5. Zooplankton composition in Dharamtar creek adjoining Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V

    Dharamtar creek (Bombay, India) creek maintained rich zooplankton standing stock (av. 30.3 ml 100 m/3) with peak production during August-November. Zooplankton production rate for the entire system amounted to 10.32 mg C.100 m/3 d/1 with an annual...

  6. Pataha Creek Model Watershed : 1998 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    1999-12-01

    The projects outlined in detail on the attached project reports are a few of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. 1998 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek.

  7. 33 CFR 117.153 - Corte Madera Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Corte Madera Creek. 117.153 Section 117.153 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.153 Corte Madera Creek. The draw of...

  8. 33 CFR 117.705 - Beaver Dam Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  9. 33 CFR 117.800 - Mill Neck Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mill Neck Creek. 117.800 Section 117.800 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.800 Mill Neck Creek. The draw of...

  10. Hoe Creek 1990 quarterly sampling cumulative report

    Energy Technology Data Exchange (ETDEWEB)

    Crader, S.E.; Huntington, G.S.

    1991-03-01

    Groundwater samples were collected and analyzed for benzene and for total phenols three times during 1990. This report summarizes the results of these sampling events and compares the results with those obtained in previous years. Possible further options for remediation of the Hoe Creek site was addressed. Three underground coal gasification (UCG) burns were performed by Lawrence Livermore National Laboratory for the US Department of Energy in 1976, 1977, and 1979 at the Hoe Creek site, which is about 20 miles south of Gillette, Wyoming. As a result of these burns, there has been considerable contamination of groundwater by various organic compounds. There have been three efforts at remediating this situation. In 1986 and again in 1987, contaminated water was pumped out, treated, and reinjected. In 1989, the water was pumped, treated, and sprayed into the atmosphere. Benzene and total phenols have been monitored at various monitoring wells as the site during 1990. The highest detected benzene concentration in 1990 was 220 {mu}g/L, and the highest total phenols concentration was 430 {mu}g/L. It is apparent that contamination is still above baseline levels, although the concentration of total phenols is far less than immediately after the burns. The burned coal seams are still releasing organic compounds into the groundwater that passes through them.

  11. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    Science.gov (United States)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss

  12. Identifying sources and processes controlling the sulphur cycle in the Canyon Creek watershed, Alberta, Canada.

    Science.gov (United States)

    Nightingale, Michael; Mayer, Bernhard

    2012-01-01

    Sources and processes affecting the sulphur cycle in the Canyon Creek watershed in Alberta (Canada) were investigated. The catchment is important for water supply and recreational activities and is also a source of oil and natural gas. Water was collected from 10 locations along an 8 km stretch of Canyon Creek including three so-called sulphur pools, followed by the chemical and isotopic analyses on water and its major dissolved species. The δ(2)H and δ(18)O values of the water plotted near the regional meteoric water line, indicating a meteoric origin of the water and no contribution from deeper formation waters. Calcium, magnesium and bicarbonate were the dominant ions in the upstream portion of the watershed, whereas sulphate was the dominant anion in the water from the three sulphur pools. The isotopic composition of sulphate (δ(34)S and δ(18)O) revealed three major sulphate sources with distinct isotopic compositions throughout the catchment: (1) a combination of sulphate from soils and sulphide oxidation in the bedrock in the upper reaches of Canyon Creek; (2) sulphide oxidation in pyrite-rich shales in the lower reaches of Canyon Creek and (3) dissolution of Devonian anhydrite constituting the major sulphate source for the three sulphur pools in the central portion of the watershed. The presence of H(2)S in the sulphur pools with δ(34)S values ∼30 ‰ lower than those of sulphate further indicated the occurrence of bacterial (dissimilatory) sulphate reduction. This case study reveals that δ(34)S values of surface water systems can vary by more than 20 ‰ over short geographic distances and that isotope analyses are an effective tool to identify sources and processes that govern the sulphur cycle in watersheds.

  13. Cultural Resources Investigation: Boscobel Flood Control Project along Sanders Creek, Grant County, Wisconsin.

    Science.gov (United States)

    1987-01-19

    6 4. Stone-Arch Bridge over Sanders Creek at Bluff Street .... 8 5. Oak Street Footbridge over Sanders Creek and Flood Area (Survey...Unit 1)....................................... 8 6. Oak Street Footbridge over Sanders Creek and Flood Area (Survey Unit 2...9 7. Superior Street Footbridge over Sanders Creek and Flood Area (Survey Unit 3) ............................... 9 8. LaBelle Street

  14. 75 FR 3195 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment...

    Science.gov (United States)

    2010-01-20

    ... Forest Service Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment... Mountain Ranger District. These four allotments are: Cox, Craig, Mill Creek, and Old Dry Creek. The... responsible official will decide whether and how to reissue grazing permits in the Cox, Craig, Mill Creek...

  15. +2 Valence Metal Concentrations in Lion Creek, Oakland, California

    Science.gov (United States)

    Vazquez, P.; Zedd, T.; Chagolla, R.; Dutton-Starbuck, M.; Negrete, A.; Jinham, M.; Lapota, M.

    2012-12-01

    Seven major creeks exist within the City of Oakland, California. These creeks all flow in the southwest direction from forested hills down through densely populated streets where they become susceptible to urban runoff. Lion Creek has been diverted to engineered channels and underground culverts and runs directly under our school (Roots International) before flowing into the San Leandro Bay. One branch of the creek begins near an abandoned sulfur mine. Previous studies have shown that extremely high levels of lead, arsenic and iron exist in this portion of the creek due to acid mine drainage. In this study +2 valence heavy metals concentration data was obtained from samples collected from a segment of the creek located approximately 2.8 miles downstream from the mine. Concentrations in samples collected at three different sites along this segment ranged between 50 ppb and 100 ppb. We hypothesize that these levels are related to the high concentration of +2 valence heavy metals at the mining site. To test this hypothesis, we have obtained samples from various locations along the roughly 3.75 miles of Lion Creek that are used to assess changes in heavy metals concentration levels from the mining site to the San Leandro Bay.

  16. Ecological impact of Mahshahr petrochemical activities on abundance and diversity of macrobenthic fauna in Zangi Creek (Persian Gulf)

    OpenAIRE

    Manuchehri, Hamed

    2007-01-01

    The Moosa Creek extends from its opening into the Persian Gulf, with some sub narrow creeks leading to it. Zangi creek is one of the main branches of Moosa creek. The creek contains numerous sources of organic pollution, including sewage outlet flows and boat waste. After establishing the Petrochemical special Economic Zone (PETZONE) in 1997 near to the Zangi Creek, the pipelines, streets and railway made it distinct from eastern and western parts of this creek. Industrial acti...

  17. Geology, geochemistry, and genesis of the Greens Creek massive sulfide deposit, Admiralty Island, southeastern Alaska

    Science.gov (United States)

    Taylor, Cliff D.; Johnson, Craig A.

    2010-01-01

    In 1996, a memorandum of understanding was signed by representatives of the U.S. Geological Survey and Kennecott Greens Creek Mining Company to initiate a cooperative applied research project focused on the Greens Creek massive sulfide deposit in southeastern Alaska. The goals of the project were consistent with the mandate of the U.S. Geological Survey Mineral Resources Program to maintain a leading role in national mineral deposits research and with the need of Kennecott Greens Creek Mining Company to further development of the Greens Creek deposit and similar deposits in Alaska and elsewhere. The memorandum enumerated four main research priorities: (1) characterization of protoliths for the wall rocks, and elucidation of their alteration histories, (2) determination of the ore mineralogy and paragenesis, including metal residences and metal zonation within the deposit, (3) determination of the ages of events important to ore formation using both geochronology and paleontology, and (4) development of computer models that would allow the deposit and its host rocks to be examined in detail in three dimensions. The work was carried out by numerous scientists of diverse expertise over a period of several years. The written results, which are contained in this Professional Paper, are presented by 21 authors: 13 from the U.S. Geological Survey, 4 from Kennecott Greens Creek Mining Company, 2 from academia, and 2 from consultants. The Greens Creek deposit (global resource of 24.2 million tons at an average grade of 13.9 percent zinc, 5.1 percent lead, 0.15 troy ounce per ton gold, and 19.2 troy ounces per ton silver at zero cutoff) formed in latest Triassic time during a brief period of rifting of the Alexander terrane. The deposit exhibits a range of syngenetic, diagenetic, and epigenetic features that are typical of volcanogenic (VMS), sedimentary exhalative (SEDEX), and Mississippi Valley-type (MVT) genetic models. In the earliest stages of rifting, formation of

  18. Geology of the Atkinson Creek quadrangle, Montrose county, Colorado

    Science.gov (United States)

    McKay, E.J.

    1953-01-01

    The Atkinson Creek quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that rangein age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confines to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Bath". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstone of favorable composition.

  19. Geology of the Roc Creek quadrangle, Montrose county, Colorado

    Science.gov (United States)

    Shoemaker, E.M.

    1954-01-01

    The Roc Creek quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the U.S. Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan mineral belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary in sandstones of favorable composition.

  20. Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway

    Science.gov (United States)

    2012-09-01

    ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located

  1. The F. L. Brinkley Midden (22Ts729): Archaeological Investigations in the Yellow Creek Watershed, Tishomingo County, Mississippi.

    Science.gov (United States)

    1982-08-01

    Cultural Resource Management Tennessee-Tombigbee Waterway Structures Prehistoric Archaeology Lithic Analysis Archaic Period Paleoethnobo tany .. COTI...1976 Cedar Creek Archaeological Project, 1976 Season Lithic Analysis . Manuscript on file at University of Alabama, Office of Archae- ological Research...in the Formation of Edge Damage: A New Approach to Lithic Analysis . Journal of Field Archaeology 1(1-2): 171- 196. Watson, Patty Jo 1976 In Pursuit of

  2. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  3. 1966 Narrative report: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments during the 1966 calendar year. The report begins by summarizing...

  4. Habitat Management Plan Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Squaw Creek National Wildlife Refuge Habitat Management Plan provides a long-term vision and specific guidance on managing habitats for the resources of concern...

  5. [Narrative report Squaw Creek Refuge: September - December, 1960

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1960. The report begins by...

  6. St. Catherine Creek NWR Hunting Season Harvest Totals

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Data summaries from hunting that occurs on St. Catherine Creek NWR. Reports include summarized harvest and hunter effort data and basic analysis of these data.

  7. The Trail Inventory of Pendills Creek NFH [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Pendills Creek National Fish Hatchery. Trails in this inventory are...

  8. Recreational Fishing Plan : Cypress Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the Recreational Fishing Plan for Cypress Creek NWR. The Plan provides an introduction to the Refuge, information about conformance with statutory...

  9. Ecology of phytoplankton from Dharmatar Creek, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    Phytoplankton pigment, cell count and species diversity wee studied at five locations in Dharamtar Creek during September 1984 to November 1985. Chemical parameters indicated a healthy system free of any environmental stress. The water...

  10. 1965 Narrative report: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments during the 1965 calendar year. The report begins by summarizing...

  11. 1964 Narrative report: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments during the 1964 calendar year. The report begins by summarizing...

  12. Cypress Creek National Wildlife Refuge: Annual Narrative: Calendar year 1998

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during calendar year 1998. The report begins with an...

  13. 1984 Cropland Management Plan Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Squaw Creek National Wildlife Refuge Cropland Management Plan focuses on the production of supplemental grain and browse foods to maintain wildlife populations...

  14. Narrative report Squaw Creek Refuge: September - December, 1954

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1954. The report begins by...

  15. Hatchery update 2010: Spring Creek National Fish Hatchery

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The document summarizes the location, funding, goals, returning fish, American Recovery and Reinvestment Act (ARRA), and visitor facilities at Spring Creek National...

  16. Fish Creek Federally Endangered Freshwater Mussel Impact Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment toxicity was evaluated for one site upstream and three sites downstream of a diesel fuel spill that occurred in Fish Creek (OH and IN) in September 1993...

  17. Bacteriological water quality of Elechi creek in Port Harcourt, Nigeria ...

    African Journals Online (AJOL)

    Bacteriological water quality of Elechi creek in Port Harcourt, Nigeria. ... the possible influence and sources of contamination around each zone. ... contamination of the water body with pathogenic bacteria; hence the water is of low quality and ...

  18. Walnut Creek National Wildlife Refuge : Fiscal Year 1996/1997

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the 1996-1997 fiscal year annual narrative report for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The report...

  19. BackscatterA [8101]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  20. Cross Creeks National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Cross Creeks NWR for the next 15 years. This plan outlines the Refuge vision and...

  1. Channel centerline for Hunter Creek, Oregon in 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold...

  2. St. Catherine Creek NWR Bird Point Count Data

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Data collected during bird point counts at St. Catherine Creek NWR using the Lower Mississippi Valley Joint Venture protocol for forest dwelling birds.

  3. BackscatterB [7125]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  4. St. Catherine Creek National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on St. Catherine Creek NWR for the next 15 years. This plan outlines the Refuge vision and...

  5. Geology and geomorphology--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is included in...

  6. Snake Creek National Wildlife Refuge [Narrative report: May - August 1957

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from May - August of 1957. The report begins by summarizing the...

  7. Snake Creek National Wildlife Refuge : September - December 1958

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1958. The report begins by...

  8. Snake Creek National Wildlife Refuge : May - August 31, 1960

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1960. The report begins by summarizing the...

  9. Snake Creek National Wildlife Refuge : May - August 31, 1958

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from May - August of 1958. The report begins by summarizing the...

  10. Snake Creek National Wildlife Refuge : May - August 31, 1959

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1959. The report begins by summarizing the...

  11. Snake Creek National Wildlife Refuge [Narrative report: January - April 1957

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1957. The report begins by summarizing...

  12. Snake Creek National Wildlife Refuge [Narrative report: September - December 1956

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1956. The report begins by...

  13. Snake Creek National Wildlife Refuge [Narrative report: January - April 1956

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1956. The report begins by summarizing...

  14. Bitter Creek National Wildlife Refuge Water Infrastructure Assessment Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes a visit to Bitter Creek NWR on October 15th-18th, 2012, to locate and GPS water structures, springs, and other water sources. This report also...

  15. Narrative report Squaw Creek Refuge: September - December, 1957

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1957. The report begins by...

  16. Fishery Management Plan for Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Progress report outlining potential management efforts to improve fishery conditions at Squaw Creek National Wildlife Refuge. The plan discusses multiple methods for...

  17. Fish Creek Watershed Lake Classification; NPRA, Alaska, 2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This study focuses on the development of a 20 attribute lake cover classification scheme for the Fish Creek Watershed (FCW), which is located in the National...

  18. BackscatterB [7125]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  19. Narrative report Squaw Creek Refuge: January - April, 1954

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1954. The report begins by summarizing...

  20. BackscatterC [SWATH]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  1. [Snake Creek National Wildlife Refuge: Narrative report: September - December, 1955

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from September - December of 1955. The report begins by summarizing...

  2. Preliminary Chemical and Biological Assessment of Ogbe Creek ...

    African Journals Online (AJOL)

    USER

    organic pollution and nutrient enrichment of the creek. A high .... rainfall and salinity, as determining the hydro-climate of the coastal lagoons of south-western Nigeria. Rains .... Cumulative impact of effluents on dynamics of Awba Dam.

  3. 1967 Narrative report: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments during the 1967 calendar year. The report begins by summarizing...

  4. Narrative report Squaw Creek Refuge: January through April, 1958

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1958. The report begins by summarizing...

  5. Exit and Paradise Creek Braid Plain Kilometers, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of points designating braid plain kilometers, or distance along the braid plain centerline, for the 2012 active braid plain of Exit Creek and...

  6. Erosion and deposition for Fanno Creek, Oregon 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In 2010, the U.S. Geological Survey (USGS) began investigating the sources and sinks of organic matter in Fanno Creek, a tributary of the Tualatin River, Oregon....

  7. Walnut Creek National Wildlife Refuge : Interim hunting plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This interim hunting plan for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge) outlines hunting guidelines for the Refuge....

  8. Diurnal variation of zooplankton in Malad creek, Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Gajbhiye, S.N.; Nair, V.R.; Desai, B.N.

    Variation in zooplankton biomass and composition in relation to the prevailing hydrographical conditions was studied for 24 h in Malad Creek, Bombay, Maharashtra, India, which was highly polluted by sewage. The adverse effect of pollution was more...

  9. EAARL Topography--Potato Creek Watershed, Georgia, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the Potato Creek watershed in Georgia was produced from remotely sensed, geographically referenced elevation...

  10. Normalized Difference Vegetation Index for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff...

  11. Channel centerline for Hunter Creek, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  12. Narrative report Squaw Creek Refuge: September - December, 1956

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1956. The report begins by...

  13. Narrative report Squaw Creek Refuge: May - August, 1958

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1958. The report begins by summarizing the...

  14. Welcome to the Walnut Creek Nonbreeding Bird Monitoring Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of the bird monitoring project at Walnut Creek National Wildlife Refuge (Neal Smith National Wildlife Refuge). The refuge is divided into 28...

  15. Inventory and Monitoring Plan for Cypress Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Inventory and Monitoring Plan (IMP) documents the inventory and monitoring surveys that will be conducted at Cypress Creek National Wildlife Refuge (CCNWR) from...

  16. Bowdoin NWR : Information on Beaver Creek flow 1936-1986

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document provides a timeline of Beaver Creek flows, near Bowdoin National Wildlife Refuge, from 1936 to 1986. Parts Bowdoin National Wildlife Refuge lie within...

  17. EAARL Topography--Potato Creek Watershed, Georgia, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the Potato Creek watershed in Georgia was produced from remotely sensed, geographically referenced elevation...

  18. Cypress Creek National Wildlife Refuge: Annual Narrative: Calendar year 2000

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during calendar year 2000. The report begins with an...

  19. Cypress Creek National Wildlife Refuge: Annual Narrative: Fiscal year 1997

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during fiscal year 1997. The report begins with an introduction...

  20. Pond Creek National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Pond Creek NWR for the next 15 years. This plan outlines the Refuge vision and purpose...

  1. Plankton biodiversity of Dharamtar creek adjoining Mumbai harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    The phytoplankton and zooplankton diversity of Dharamtar creek, a vital system adjoining the Mumbai harbour were assessed to obtain baseline information. A total of 58 genera of phytoplankton were encountered from the area, which included 46 diatoms...

  2. The Trail Inventory of Spring Creek NFH [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Spring Creek National Fish Hatchery. Trails in this inventory are...

  3. [Squaw Creek National Wildlife Refuge Narrative report: May - August, 1960

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1960. The report begins by summarizing the...

  4. Channel centerline for Hunter Creek, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  5. Water chemistry - Thornton Creek Restoration Project Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA has designed and is currently implementing a hyporheic monitoring plan for the Thornton Creek watershed in North Seattle. This work is being conducted for...

  6. [Narrative report Squaw Creek Refuge: January through April, 1961

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1961. The report begins by summarizing...

  7. Snake Creek Wetlands Narrative report: January - December, 1966

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Snake Creek Wetlands Management District outlines Refuge accomplishments during the 1966 calendar year. The report begins by...

  8. Fishery management assessment Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report provides an assessment for fishery management on Squaw Creek National Wildlife Refuge. The assessment concluded that existing Refuge waters are...

  9. Geology and geomorphology--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is included in...

  10. Cypress Creek National Wildlife Refuge: Annual Narrative: Calendar year 1999

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during calendar year 1999. The report begins with an...

  11. Habitat Management Plan for Pond Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Pond Creek National Wildlife Refuge Habitat Management Plan provides a long-term vision and specific guidance on managing habitats for the resources of concern...

  12. Narrative report Squaw Creek Refuge: May - August, 1956

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1956. The report begins by summarizing the...

  13. Narrative report Squaw Creek National Wildlife Refuge: January - April, 1962

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1962. The report begins by summarizing...

  14. Narrative report Squaw Creek Refuge: January through April, 1959

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1959. The report begins by summarizing...

  15. Biotic health of Walnut Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Walnut Creek National Wildlife Refuge is in the process of converting over 5,000 acres of agricultural land back to native prairie and savanna. The refuge will...

  16. Whittlesey Creek National Wildlife Refuge [Land Status Map

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This map was produced by the Division of Realty to depict landownership at Whittlesey Creek National Wildlife Refuge. It was generated from rectified aerial...

  17. Aquatic Invertebrates - Thornton Creek Restoration Project Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA has designed and is currently implementing a hyporheic monitoring plan for the Thornton Creek watershed in North Seattle. This work is being conducted for...

  18. Channel centerline for Hunter Creek, Oregon in 1965

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  19. Aerial photo mosaic of Hunter Creek, Oregon in 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  20. 1970 Narrative report: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments during the 1970 calendar year. The report begins by summarizing...

  1. Aerial photo mosaic of Hunter Creek, Oregon in 1965

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  2. Survey of breeding birds Walnut Creek National Wildlife Refuge 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a summary of the results of the second annual survey of breeding birds of Walnut Creek National Wildlife Refuge conducted in 1995. This series of...

  3. Survey of breeding birds, Walnut Creek National Wildlife Refuge, 1996

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a summary of the results of the third annual survey of breeding birds of Walnut Creek National Wildlife Refuge conducted in 1996. Information on...

  4. St. Catherine Creek NWR Deer Hunt Harvest Data Summaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Data summaries from deer hunts that occur on St. Catherine Creek NWR. Reports include summarized deer harvest data and basic analysis of these data.

  5. Narrative report Squaw Creek Refuge: May through August, 1955

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1955. The report begins by summarizing the...

  6. Tidal flow characteristics at Kasheli (Kalwa/ Bassein creek), Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Suryanarayana, A.

    Tidal flow characteristics of waters at Kasheli, connected to the sea through Thane and Bassein Creeks in Bombay, Maharashtra, India are investigated based on tide and current observations carried out in 1980-81. The results establish that the tidal...

  7. Land Acquisition Priority Plan for Walnut Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan discusses land acquisition priorities for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The proposed alternatives...

  8. Cypress Creek National Wildlife Refuge: Comprehensive Management Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Management Plan (CMP) for Cypress Creek National Wildlife Refuge (NWR) was prepared to guide management direction of the Refuge over the next 15...

  9. BackscatterA [8101]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  10. BackscatterC [SWATH]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  11. Sediment contaminant assessment for Shoal Creek, Lawrence County, Tennessee

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment samples were collected from ten locations along Shoal Creek and analyzed for l9 metals and 20 organochlorine compounds. For the organic analyses,...

  12. Results of the 2000 Creek Plantation Swamp Survey

    Energy Technology Data Exchange (ETDEWEB)

    Fledderman, P.D.

    2000-10-30

    This report is a survey of the Creek Plantation located along the Savannah River and borders the southeast portion of the Savannah River Site. The land is primarily undeveloped and agricultural; its purpose is to engage in equestrian-related operations. A portion of Creek Plantation along the Savannah River is a low-lying swamp, known as the Savannah River Swamp, which is uninhabited and not easily accessible.

  13. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation...

  14. CREEK Project's Nekton Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  15. CREEK Project's Microzooplankton Seasonal Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  16. Puente Willow Creek en Monterrey, California

    Directory of Open Access Journals (Sweden)

    Editorial, Equipo

    1965-09-01

    Full Text Available Of the 10 awards given every year by the Prestressed Concrete Institute for the most outstanding prestressed concrete projects, two have been awarded in California this year, one of them to the Willow Creek bridge, near Monterrey. The prestressed, double T girders of this bridge were made at a workshop, a great distance from the bridge site. These are 24 m long, 1.35 m high, and are stabilized by transversal diaphragms, 20 cm in thickness. The table deck is of reinforced concrete, being 8.85 m wide and 20 cm thick. The structure is straightforward, slender, and adapts itself pleasantly to the background. It has seven spans and crosses over a secondary road, in addition to bridging the Willow stream. The supporting piles are hollow, of rectangular cross section, and over them a cross beam carries the five girders and the deck itself. The end abutments consist of vertical reinforced concrete walls, and supporting, soil filled, structures. The above information was supplied by the California Road Department.De los diez premios que anualmente concede el Prestressed Concrete Institute para las obras de hormigón pretensado más notables, dos han correspondido a California y uno de ellos al puente de Willow Creek, situado en la región de Monterrey. Las vigas de hormigón pretensado, con sección en forma de doble T, se prefabricaron en un taller situado a gran distancia del puente. Tienen 24 m de longitud y 1,35 m de canto, estando arriostradas con diafragmas transversales de 20 cm de espesor. La losa del tablero, de hormigón armado, tiene 8,85 m de anchura y 20 cm de espesor. La estructura es sencilla, esbelta y armoniza perfectamente con el paisaje que la circunda. Tiene siete tramos y salva un paso inferior secundario y el arroyo Willow. Los soportes, se apoyan sobre pilotes, algunos de gran altura; son huecos, de sección rectangular y terminan en una cruceta que sirve de sostén a las cinco vigas que soportan la losa del tablero. Los estribos

  17. National Dam Inspection Program. Saxe Pond Dam (NDI I.D. Number PA-729, DER ID Number 8-10) Susquehanna River Basin. North Branch Mehoopany Creek, Bradford County, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1981-04-01

    formations and the Catskill Formation between them belong to the Susquehanna Group of Upper Devonian Age. They consist of sandstones, shales , and...1; 1. I)If *~~~~~ C iy GEOLOGIC MAP OF AREA AROUND SAXE POND DAM, ROSCOE BURGESS DAM AND THE BIRCH CREEK DAM SCALE 1:250,000 PENNSvVANIAN DEVONIAN

  18. Ecological effects of contaminants and remedial actions in Bear Creek

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Burris, J.A. (C. E. Environmental, Inc., Tallahassee, FL (United States))

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  19. The geology and tectonic significance of the Big Creek Gneiss, Sierra Madre, southeastern Wyoming

    Science.gov (United States)

    Jones, Daniel S.

    The Big Creek Gneiss, southern Sierra Madre, southeastern Wyoming, is a heterogeneous suite of upper-amphibolite-facies metamorphic rocks intruded by post-metamorphic pegmatitic granite. The metamorphic rocks consist of three individual protolith suites: (1) pre- to syn-1780-Ma supracrustal rocks including clastic metasedimentary rocks, calc-silicate paragneiss, and metavolcanic rocks; (2) a bimodal intrusive suite composed of metagabbro and granodiorite-tonalite gneiss; and (3) a younger bimodal suite composed of garnet-bearing metagabbronorite and coarse-grained granitic gneiss. Zircons U-Pb ages from the Big Creek Gneiss demonstrate that: (1) the average age of detrital zircons in the supracrustal rocks is ~1805 Ma, requiring a significant source of 1805-Ma (or older) detritus during deposition, possibly representing an older phase of arc magmatism; (2) the older bimodal igneous suite crystallized at ~1780 Ma, correlative with arc-derived rocks of the Green Mountain Formation; (3) the younger bimodal igneous suite crystallized at ~1763 Ma, coeval with the extensional(?) Horse Creek anorthosite complex in the Laramie Mountains and Sierra Madre Granite batholith in the southwestern Sierra Madre; (4) Big Creek Gneiss rocks were tectonically buried, metamorphosed, and partially melted at ~1750 Ma, coeval with the accretion of the Green Mountain arc to the Wyoming province along the Cheyenne belt; (5) the posttectonic granite and pegmatite bodies throughout the Big Creek Gneiss crystallized at ~1630 Ma and are correlative with the 'white quartz monzonite' of the south-central Sierra Madre. Geochemical analysis of the ~1780-Ma bimodal plutonic suite demonstrates a clear arc-affinity for the mafic rocks, consistent with a subduction environment origin. The granodioritic rocks of this suite were not derived by fractional crystallization from coeval mafic magmas, but are instead interpreted as melts of lower-crustal mafic material. This combination of mantle

  20. A method for using shoreline morphology to predict suspended sediment concentration in tidal creeks

    Science.gov (United States)

    Ensign, Scott; Currin, Carolyn; Piehler, Michael; Tobias, Craig

    2017-01-01

    Improving mechanistic prediction of shoreline response to sea level rise is currently limited by 1) morphologic complexity of tidal creek shorelines that confounds application of mechanistic models, and 2) availability of suspended sediment measurements to parameterize mechanistic models. To address these challenges we developed a metric to distinguish two morphodynamic classes of tidal creek and tested whether this metric could be used to predict suspended sediment concentration. We studied three small tidal creeks in North Carolina, U.S.A. We collected suspended sediment at one non-tidal and two tidal sites in each creek and measured the wetland and channel width using a geographic information system. In each creek, tidal harmonics were measured for one year, sediment accretion on the salt marsh was measured for three years, and shoreline erosion was measured from aerial photographs spanning 50 years. Additional total suspended solids measurements from seven creeks reported in a national database supplemented our analysis. Among the three intensively studied creeks, shoreline erosion was highest in the most embayed creek (having a wider channel than the width of adjoining wetlands) and lowest in the wetland-dominated creek (having a channel narrower than the width of adjoining wetlands). Wetland sediment accretion rate in the wetland-dominated creek was four times higher than the accretion in the embayed creek. The wetland-dominated tidal creek had over twice the suspended sediment as the most embayed creek. Based on these results, we conclude that our metric of embayed and contrasting wetland-dominated creek morphology provides a guide for choosing between two types of morphodynamic models that are widely used to predict wetland shoreline change. This metric also allowed us to parse the 10 tidal creeks studied into two groups with different suspended sediment concentrations. This relationship between suspended sediment concentration and creek morphology provides

  1. Scotch Creek Wildlife Area 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Jim [Washington Department of Fish and Wildlife

    2008-11-03

    The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 on Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.

  2. Investigating the Maya Polity at Lower Barton Creek Cayo, Belize

    Science.gov (United States)

    Kollias, George Van, III

    The objectives of this research are to determine the importance of Lower Barton Creek in both time and space, with relation to other settlements along the Belize River Valley. Material evidence recovered from field excavations and spatial information developed from Lidar data were employed in determining the socio-political nature and importance of this settlement, so as to orient its existence within the context of ancient socio-political dynamics in the Belize River Valley. Before the investigations detailed in this thesis no archaeological research had been conducted in the area, the site of Lower Barton Creek itself was only recently identified via the 2013 West-Central Belize LiDAR Survey (WCBLS 2013). Previously, the southern extent of the Barton Creek area represented a major break in our knowledge not only of the Barton Creek area, but the southern extent of the Belize River Valley. Conducting research at Lower Barton Creek has led to the determination of the polity's temporal existence and allowed for a greater and more complex understanding of the Belize River Valley's interaction with regions abutting the Belize River Valley proper.

  3. 75 FR 16728 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2010-04-02

    ... Forest Service Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest... Creek Landscape Management Project area ecosystem to future wildland fires. Vegetation treatments... Management Project includes treatments previously proposed as the Whitetail Hazardous Fuels Reduction...

  4. Birch Creek, Alaska, a wild and scenic river analysis: Preliminary draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Upper Birch Creek, Alaska possessed values which qualify it for inclusion in the National Wild and Scenic Rivers System. The upper Birch Creek and its immediate...

  5. Water‐Data Report 413723083123801 Crane Creek at Ottawa NWR-2014

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Water levels and water quality parameters recorded on Crane Creek. Water-Data Report 2013 413723083123801 Crane Creek Mouth at Ottawa NWR LOCATION: Lat. 41°37'23"N,...

  6. Water‐Data Report 413723083123801 Crane Creek at Ottawa NWR-2013

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Water levels and water quality parameters recorded on Crane Creek. Water-Data Report 2013 413723083123801 Crane Creek Mouth at Ottawa NWR LOCATION: Lat. 41°37'23"N,...

  7. 77 FR 135 - Exelon Generation Company, LLC, Oyster Creek Nuclear Generating Station; Exemption

    Science.gov (United States)

    2012-01-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC, Oyster Creek Nuclear Generating Station; Exemption 1.0 Background...-16, which authorizes operation of the Oyster Creek Nuclear Generating Station (OCNGS). The...

  8. Fast-growing willow shrub named `Fish Creek`

    Science.gov (United States)

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  9. Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. These projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.

  10. 33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.

    Science.gov (United States)

    2010-07-01

    ... shoreline of the MCAS to a point along the northern shoreline of Mulligan Creek at latitude 32.48993°, longitude 80.69836°, thence southwesterly across Mulligan Creek to the shoreline of the MCAS, latitude 32... portion of Mulligan Creek located on the southern side of the MCAS runway, beginning at a point on...

  11. 75 FR 68780 - Cedar Creek Wind Energy, LLC; Notice of Filing

    Science.gov (United States)

    2010-11-09

    ... Doc No: 2010-28232] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RC11-1-000] Cedar Creek Wind Energy, LLC; Notice of Filing November 2, 2010. Take notice that on October 27, 2010, Cedar Creek Wind Energy, LLC (Cedar Creek) filed an appeal with the Federal Energy Regulatory...

  12. 76 FR 79227 - Exemption Request Submitted by Oyster Creek Nuclear Generating Station; Exelon Generation Company...

    Science.gov (United States)

    2011-12-21

    ... COMMISSION Exemption Request Submitted by Oyster Creek Nuclear Generating Station; Exelon Generation Company... Generation Company, LLC (the licensee), for operation of the Oyster Creek Nuclear Generating Station (Oyster... for Oyster Creek and NUREG-1437, Vol. 1, Supplement 28, ``Generic Environmental Impact Statement...

  13. 75 FR 33656 - Exelon Generation Company, LLC Oyster Creek Nuclear Generating Station Environmental Assessment...

    Science.gov (United States)

    2010-06-14

    ... COMMISSION Exelon Generation Company, LLC Oyster Creek Nuclear Generating Station Environmental Assessment....2, as requested by Exelon Generation Company, LLC (the licensee), for operation of the Oyster Creek Nuclear Generating Station (Oyster Creek), located in Ocean County, New Jersey. Therefore, as required...

  14. 75 FR 33366 - Exelon Generation Company, LLC; Oyster Creek Nuclear Generating Station; Notice of Withdrawal of...

    Science.gov (United States)

    2010-06-11

    ... COMMISSION Exelon Generation Company, LLC; Oyster Creek Nuclear Generating Station; Notice of Withdrawal of..., application for amendment to Facility Operating License No. DPR-16 for the Oyster Creek Nuclear Generating Station (Oyster Creek), located in Ocean County, New Jersey. The proposed amendment would have revised...

  15. 76 FR 27890 - Special Local Regulations for Marine Events; Severn River, Spa Creek and Annapolis Harbor...

    Science.gov (United States)

    2011-05-13

    ... SECURITY Coast Guard 33 CFR Part 100 Special Local Regulations for Marine Events; Severn River, Spa Creek... Annapolis'' triathlon, a marine event to be held on the waters of Spa Creek and Annapolis Harbor on May 14... Spa Creek and Annapolis Harbor during the event. DATES: This rule is effective from 6 a.m. until 9 a.m...

  16. A HEALTH CHECK-UP FOR THE SALMON CREEK Summer Environmental Science 2007

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Introduction: This study is on a creek located 45°42′18″N, 122°39′41″W called Salmon Creek. And after we finished all the experiments and tests which helped us to get some data and samples from the creek, it's time for us to get the result of these samples and data.

  17. 75 FR 31418 - Intermountain Region, Payette National Forest, Council Ranger District; Idaho; Mill Creek-Council...

    Science.gov (United States)

    2010-06-03

    ... Forest Service Intermountain Region, Payette National Forest, Council Ranger District; Idaho; Mill Creek... Forest will prepare an environmental impact statement (EIS) for the Mill Creek--Council Mountain... Council, Idaho. The Mill Creek--Council Mountain Landscape Restoration Project proposes to...

  18. 76 FR 13344 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2011-03-11

    ... Forest Service Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest... Environmental Impact Statement for the Beaver Creek Landscape Management Project in the Federal Register (75 FR... Creek Landscape Management Project was published in the Federal Register on October 15, 2010 (75 FR...

  19. Simulation of effects of wastewater discharges on Sand Creek and lower Caddo Creek near Ardmore, Oklahoma

    Science.gov (United States)

    Wesolowski, Edwin A.

    1999-01-01

    A streamflow and water-quality model was developed for reaches of Sand and Caddo Creeks in south-central Oklahoma to simulate the effects of wastewater discharge from a refinery and a municipal treatment plant. The purpose of the model was to simulate condi tions during low streamflow when the conditions controlling dissolved-oxygen concentrations are most severe. Data collected to calibrate and verify the streamflow and water-quality model include continuously monitored streamflow and water-quality data at two gaging stations and three temporary monitoring stations; wastewater discharge from two wastewater plants; two sets each of five water-quality samples at nine sites during a 24-hour period; dye and propane samples; periphyton samples; and sediment oxygen demand measurements. The water-quality sampling, at a 6-hour frequency, was based on a Lagrangian reference frame in which the same volume of water was sampled at each site. To represent the unsteady streamflows and the dynamic water-quality conditions, a transport modeling system was used that included both a model to route streamflow and a model to transport dissolved conservative constituents with linkage to reaction kinetics similar to the U.S. Environmental Protection Agency QUAL2E model to simulate nonconservative constituents. These model codes are the Diffusion Analogy Streamflow Routing Model (DAFLOW) and the branched Lagrangian transport model (BLTM) and BLTM/QUAL2E that, collectively, as calibrated models, are referred to as the Ardmore Water-Quality Model. The Ardmore DAFLOW model was calibrated with three sets of streamflows that collectively ranged from 16 to 3,456 cubic feet per second. The model uses only one set of calibrated coefficients and exponents to simulate streamflow over this range. The Ardmore BLTM was calibrated for transport by simulating dye concentrations collected during a tracer study when streamflows ranged from 16 to 23 cubic feet per second. Therefore, the model is expected

  20. Identification and characterization of wetlands in the Bear Creek watershed

    Energy Technology Data Exchange (ETDEWEB)

    Rosensteel, B.A. [JAYCOR, Oak Ridge, TN (United States); Trettin, C.C. [Oak Ridge National Lab., TN (United States)

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  1. Identification and characterization of wetlands in the Bear Creek watershed

    Energy Technology Data Exchange (ETDEWEB)

    Rosensteel, B.A. [JAYCOR, Oak Ridge, TN (United States); Trettin, C.C. [Oak Ridge National Lab., TN (United States)

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  2. Wallace Creek Virtual Field Trip: Teaching Geoscience Concepts with LiDAR

    Science.gov (United States)

    Robinson, S. E.; Arrowsmith, R.; Crosby, C. J.

    2009-12-01

    Recently available data such as LiDAR (Light Detection and Ranging) high-resolution topography can assist students to better visualize and understand geosciences concepts. It is important to bring these data into geosciences curricula as teaching aids while ensuring that the visualization tools, virtual environments, etc. do not serve as barriers to student learning. As a Southern California Earthquake Center ACCESS-G intern, I am creating a “virtual field trip” to Wallace Creek along the San Andreas Fault (SAF) using Google Earth as a platform and the B4 project LiDAR data. Wallace Creek is an excellent site for understanding the centennial-to-millennial record of SAF slip because of its dramatic stream offsets. Using the LiDAR data instead of, or alongside, traditional visualizations and teaching methods enhances a student’s ability to understand plate tectonics, the earthquake cycle, strike-slip faults, and geomorphology. Viewing a high-resolution representation of the topography in Google Earth allows students to analyze the landscape and answer questions about the behavior of the San Andreas Fault. The activity guides students along the fault allowing them to measure channel offsets using the Google Earth measuring tool. Knowing the ages of channels, they calculate slip rate. They look for the smallest channel offsets around Wallace Creek in order to determine the slip per event. At both a “LiDAR and Education” workshop and the Cyberinfrastructure Summer Institute for Geoscientists (CSIG), I presented the Wallace Creek activity to high school and college earth science teachers. The teachers were positive in their responses and had numerous important suggestions including the need for a teacher’s manual for instruction and scientific background, and that the student goals and science topics should be specific and well-articulated for the sake of both the teacher and the student. The teachers also noted that the technology in classrooms varies

  3. Mineralogical and geochemical characteristics of the Archaean LCT pegmatite deposit Cattlin Creek, Ravensthorpe, Western Australia

    Science.gov (United States)

    Bauer, Matthias; Dittrich, Thomas; Seifert, Thomas; Schulz, Bernhard

    2014-05-01

    The LCT (lithium-cesium-tantalum) pegmatite Cattlin Creek is located about 550 km ESE of Perth, Western Australia. The complex-type, rare-element pegmatite is hosted in metamorphic rocks of the Archaean Ravensthorpe greenstone belt, which constitutes of the southern edge of the Southern Cross Terranes of the Yilgarn Craton. The deposit is currently mined for both lithium and tantalum by Galaxy Resources Limited since 2010. The pegmatitic melt intruded in a weak structural zone of crossing thrust faults and formed several pegmatite sills, of which the surface nearest mineralized pegmatite body is up to 21 m thick. The Cattlin Creek pegmatite is characterized by an extreme fractionation that resulted in the enrichment of rare elements like Li, Cs, Rb, Sn and Ta, as well as the formation of a vertical zonation expressed by distinct mineral assemblages. The border zone comprises a fine-grained mineral assemblage consisting of albite, quartz, muscovite that merges into a medium-grained wall zone and pegmatitic-textured intermediate zones. Those zones are manifested by the occurrence of megacrystic spodumene crystals with grain sizes ranging from a couple of centimeters up to several metres. The core zone represents the most fractionated part of the pegmatite and consists of lepidolite, cleavelandite, and quartz. It also exhibits the highest concentrations of Cs (0.5 wt.%), Li (0.4 wt.%), Rb (3 wt.%), Ta (0.3 wt.%) and F (4 wt.%). This zone was probably formed in the very last crystallization stage of the pegmatite and its minerals replaced earlier crystallized mineral assemblages. Moreover, the core zone hosts subordinate extremely Cs-enriched (up to 13 wt.% Cs2O) mineral species of beryl. The chemical composition of this beryl resamples that of the extreme rare beryl-variety pezzotaite. Other observed subordinate, minor and accessory minerals comprise tourmaline, garnet, cassiterite, apatite, (mangano-) columbite, tantalite, microlite (Bi-bearing), gahnite, fluorite

  4. Timing and nature of tertiary plutonism and extension in the Grouse Creek Mountains, Utah

    Science.gov (United States)

    Egger, A.E.; Dumitru, T.A.; Miller, E.L.; Savage, C.F.I.; Wooden, J.L.

    2003-01-01

    of the crust that apparently resided as much as 10 km apart (in depth) at times as young as the Miocene. The varied structural, metamorphic, and intrusive relations obsreved in the Grouse Creek Mountains reflect their formation at different levels within the crust. Data from these various levels argue that plutonism has been a key mechanism far transferring heat into the middle and upper crust, and localizing strain during regional extension. Interestingly, events documented here correlate in a broad way with cooling events documented in the Raft River Mountains, although plutons are not exposed there. Major and trace element geochemistry imply a crustal component in all of the studied plutons, indicating significant degrees of crustal melting at depth during extension, and point to mantle heat sources during the timespan of Basin and Range extension as the cause of melting. Basin and Range faulting and final uplift of the range is recorded by apatite fission track ages, averaging 13.4 Ma, and deposition of about 2 km of syn-faulting basin fill deposits along the Grouse Creek fault mapped along the western flank of the range. Similar apatite ages from the Albion Mountains to the north indicate that the western side of the Albion-Raft River-Grouse Creek core complex behaved as a single rigid crustal block at this time.

  5. Ground-water hydrology of the Lower Milliken-Sarco-Tulucay Creeks area, Napa County, California

    Science.gov (United States)

    Johnson, Michael J.

    1977-01-01

    The Sonoma Volcanics are the principal water-bearing materials in the lower Milliken-Sarco-Tulucay Creeks area, which occupies about 15 square miles (39 square kilometers) in and east of Napa, Calif. The distribution and composition of these volcanic units are highly variable and complex. Within the Sonoma Volcanics the tuffs constitute the best ground-water reservoir. They are principally pumicitic ash-flow tuffs, partly welded and moderately permeable. These tuffs extend to a depth exceeding 500 feet (150 meters), and are irregularly interbedded with clay, igneous flows, and other volcanically derived material of very low permeability which locally confine the tuffs. Recharge and movement of ground water within these tuffs are affected by the highly variable character of this rock sequence, by adjacent formations, and by tectonic features such as the Cup and Saucer ridge and the Soda Creek fault. The lithology of the area limits specific yields to about 4 percent (unconfined conditions). Specific capacities of wells average less than 3 gallons per minute per foot of drawdown (0.6 liter per second per meter) except in the most permeable areas.

  6. The Elk Creek Carbonatite Complex, Nebraska (USA)

    Science.gov (United States)

    Kettler, R. M.; Blessington, M.

    2015-12-01

    The Elk Creek carbonatite complex (ECCC) is a large Early Cambrian carbonatite-alkaline syenite complex located in SE Nebraska (USA). The carbonatite and related rocks are buried by more than 200 m of Pennsylvanian marine sedimentary rocks and Quaternary till. The pre-Pennsylvanian sub-crop is crudely circular in plan-view and exceeds 30 km2, making it one of the larger carbonatite complexes in North America. The rocks of the complex were intruded in Precambrian granite and gneiss on the eastern margin of the Mid-Continent rift where it has been offset by one of a series of southeasterly trending structures. The primary rock type in the ECCC is dolomite carbonatite. The dolomite carbonatite ranges from fine-grained flow-banded dolomite to a coarse-grained rock comprising large prismatic dolomite crystals. The central portion of the complex comprises a pipe-like intrusion of magnetite dolomite carbonatite and magnetite dolomite carbonatite breccia. Magnetite dolomite carbonatite is typically fine-grained and contains angular or rounded elongate fragments of dolomite carbonatite. Fragments of magnetite dolomite carbonatite are also included in dolomite carbonatite and other carbonatite rocks in the complex. Emplacement of a discreet pulse of reduced, iron-rich carbonatite magma was, therefore, a likely early event in the evolution of the ECCC. The magnetite is altered locally to hematite and other iron oxides. The oxidation ranges from a dusting of hematite to pervasive alteration to hematite and ferric oxyhydroxides and occurs to depths as much as 630 m below the modern land surface. Other volumetrically important rock types include apatite dolomite carbonatite and barite dolomite carbonatite. Both of these rock types are localized largely along fractures, occur later in the intrusive sequence, and may reflect exsolution of phosphates and sulfates with decreasing temperatures. The magnetite dolomite carbonatite hosts significant pyrochlore mineralization. Microprobe

  7. Is a 'one size fits all' taphonomic model appropriate for the Mazon Creek Lagerstätte?

    Science.gov (United States)

    Clements, Thomas; Purnell, Mark; Gabbott, Sarah

    2017-04-01

    The Late Carboniferous Mazon Creek Lagerstätte (Illinois, USA) is a world renowned fossil deposit with a huge diversity of preserved flora and fauna. It is widely considered to represent the most complete Late Carboniferous river delta ecosystem because researchers have identified that the deposit preserves organisms from multiple habitats including coastal swamps, brackish lagoons and oceanic environments. Often these fossils have exquisite soft tissue preservation yielding far more information that the 'normal' skeletal fossil record, while some soft bodied animals, such as the notorious Tully Monster (Tullimonstrum gregarium), are only known from this locality. However, constraining a 'one-size fits all' taphonomic model for the Mazon Creek is difficult because of our poor understanding of sideritic concretionary formation or preservation (i.e. the presence of large numbers of unfossiliferous concretions), the large geographical area, the influences of fresh, brackish and saline waters during burial and the subsequent complicated diagenetic processes. To determine the preservational pathways of Mazon Creek fossils, we have compiled data of the mode of preservation of morphological characters for all major groups of fossil organisms found in this Lagerstätte. This data can be used to test for variance in mode of preservation between taxa and also between specific tissue types. Furthermore, experimental decay data is used to constrain the impact of decay prior to fossilisation. Our analysis indicates that there are variations in preservation potential of specific characters shared by taxa. Modes of preservation, however, seem to be consistent across the majority of taxa dependant on locality. This quantitative approach is being utilised as part of a larger ongoing investigation which combines taphonomy with geochemical analysis of siderite concretions from across the vast geographical area of the Mazon Creek. Together this approach will allow us to elucidate the

  8. Flood-plain delineation for Occoquan River, Wolf Run, Sandy Run, Elk Horn Run, Giles Run, Kanes Creek, Racoon Creek, and Thompson Creek, Fairfax County, Virginia

    Science.gov (United States)

    Soule, Pat LeRoy

    1978-01-01

    Water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia, having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that portion of Cameron Run above Lake Barcroft. Maps having a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet were used for base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. This report is one of a series and presents a discussion of techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for the Occoquan River and its tributaries within Fairfax County and those streams on Mason Neck within Fairfax County tributary to the Potomac River. (Woodard-USGS)

  9. Geology and ground-water resources of the Big Sandy Creek Valley, Lincoln, Cheyenne, and Kiowa Counties, Colorado; with a section on Chemical quality of the ground water

    Science.gov (United States)

    Coffin, Donald L.; Horr, Clarence Albert

    1967-01-01

    This report describes the geology and ground-water resources of that part of the Big Sandy Creek valley from about 6 miles east of Limon, Colo., downstream to the Kiowa County and Prowers County line, an area of about 1,400 square miles. The valley is drained by Big Sandy Creek and its principal tributary, Rush Creek. The land surface ranges from flat to rolling; the most irregular topography is in the sandhills south and west of Big Sandy Creek. Farming and livestock raising are the principal occupations. Irrigated lands constitute only a sin311 part of the project area, but during the last 15 years irrigation has expanded. Exposed rocks range in age from Late Cretaceous to Recent. They comprise the Carlile Shale, Niobrara Formations, Pierre Shale (all Late Cretaceous), upland deposits (Pleistocene), valley-fill deposits (Pleistocene and Recent), and dune sand (Pleistocene and Recent). Because the Upper Cretaceous formations are relatively impermeable and inhibit water movement, they allow ground water to accumul3te in the overlying unconsolidated Pleistocene and Recent deposits. The valley-fill deposits constitute the major aquifer and yield as much as 800 gpm (gallons per mixture) to wells along Big Sandy and Rush Creeks. Transmissibilities average about 45,000 gallons per day per foot. Maximum well yields in the tributary valleys are about 200 gpm and average 5 to 10 gpm. The dune sand and upland deposits generally are drained and yield water to wells in only a few places. The ground-water reservoir is recharged only from direct infiltration of precipitation, which annually averages about 12 inches for the entire basin, and from infiltration of floodwater. Floods in the ephemeral Big Sandy Creek are a major source of recharge to ground-water reservoirs. Observations of a flood near Kit Carson indicated that about 3 acre-feet of runoff percolated into the ground-water reservoir through each acre of the wetted stream channel The downstream decrease in channel and

  10. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-07-27

    ... purchasing power on the volatile open electric market. The Action Alternative at White Site 1 would be... Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY: Rural Utilities... CFR Part 1794), and the Western Area Power Administration's (Western) NEPA implementing regulations...

  11. Okanogan Focus Watershed Salmon Creek : Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, Hilary

    1999-11-01

    During FY 1999 the Colville Tribes and the Okanogan Irrigation District (OID) agreed to study the feasibility of restoring and enhancing anadromous fish populations in Salmon Creek while maintaining the ability of the district to continue full water service delivery to it members.

  12. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Science.gov (United States)

    2010-02-23

    ... comprises approximately 952,234 acres and is located on the Monitor and Hot Creek Mountain Ranges in Eureka, Nye and Lander Counties, Nevada. DATES: Comments concerning the scope of the analysis must be received... Vernon Keller, Project Coordinator, at 1200 Franklin Way, Sparks, Nevada 89431. The telephone number...

  13. 75 FR 30747 - Drawbridge Operation Regulation; Curtis Creek, Baltimore, MD

    Science.gov (United States)

    2010-06-02

    ... Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Curtis Creek, Baltimore... to change the regulations that govern the operation of the Pennington Avenue Bridge across...

  14. Origin of Hot Creek Canyon, Long Valley caldera, California

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, N.J. (California State Univ., Fullerton, CA (United States). Dept. of Geological Sciences)

    1993-04-01

    Hot Creek has eroded a canyon some thirty meters deep across the Hot Creek rhyolite flows located in the southeastern moat of Long Valley Caldera. Maloney (1987) showed that the canyon formed by headward erosion resulting from spring sapping along hydrothermally altered fractures in the rhyolite, and the capture of Mammoth Creek. This analysis ignored the continuing uplift of the central resurgent dome. Reid (1992) concluded that the downward erosion of the canyon must have kept pace with the uplift. Long Valley Lake occupied the caldera until 100,000 to 50,000 years before present. The elevation of the shoreline, determined by trigonometric leveling, is 2,166 m where the creek enters the canyon and 2,148 m on the downstream side of the rhyolite. The slope of the strand line is about equal to the stream gradient. The hill was lower and the stream gradient less at the time of stream capture. Rotational uplift increased the stream gradient which increased the rate of downward erosion and formed the V-shaped canyon

  15. Petroleum hydrocarbons in surface sediments in Kandla creek (Gujarat)

    Digital Repository Service at National Institute of Oceanography (India)

    Kadam, A.N.

    Petroleum hydrocarbons in the surface sediments were determined gravimetrically and spectroscopically to evaluate petroleum oil pollution in the Kandla creek. They ranged from 9.6 — 140.5 and 6.5 — 23.3 μg g-1 (wet wt.) respectively. Gas...

  16. Short notes and reviews The fossil fauna of Mazon Creek

    NARCIS (Netherlands)

    Schultze, Hans-Peter

    1998-01-01

    Review of: Richardson’s Guide to the Fossil Fauna of Mazon Creek, edited by Charles W. Shabica & Andrew A. Hay. Northeastern Illinois University, Chicago, Illinois, 1997: XVIII + 308 pp., 385 figs., 4 tables, 1 faunal list; $75.00 (hard cover) ISBN 0-925065-21-8. Since the last century, the area aro

  17. Streamflow characteristics and trends along Soldier Creek, Northeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2017-08-16

    Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.

  18. 77 FR 73967 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Science.gov (United States)

    2012-12-12

    ... Regulation; Bear Creek, Dundalk, MD'' in the Federal Register (77 FR 5201). The rulemaking concerned would... proposed rulemaking the bridge owner displayed on the Wise Avenue Bridge signage that stated a 48-hour advance notice was required to open the draw bridge. This signage portrayed improper...

  19. EAARL topography-Potato Creek watershed, Georgia, 2010

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  20. Snake Creek embankment research study subsides for season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Snake Creek Embankment on U.S. Highway 83 between Lake Audubon and Lake Sakakawea was home to a research project on bird strikes with power lines this year. This...

  1. The Induced Self-Purification of Creeks and Rivers

    CERN Document Server

    Mikhailovskii, V

    2000-01-01

    The clean-up of several Creeks and Rivers by induction of a self-purification process was provided. The process took place at all the sites studied with the up to 100% resulted removal of polluting agents depending on the site and nature of the contaminant. The self-purification mechanism could be used for drinking and technical water preparation.

  2. 77 FR 75946 - Radio Broadcasting Services; Dove Creek, CO

    Science.gov (United States)

    2012-12-26

    ... COMMISSION 47 CFR Part 73 . Radio Broadcasting Services; Dove Creek, CO AGENCY: Federal Communications... 47 CFR Part 73 Radio, Radio broadcasting. Federal Communications Commission. Nazifa Sawez, Assistant... Communications Commission proposes to amend 47 CFR Part 73 as follows: PART 73--RADIO BROADCAST SERVICES 1....

  3. 78 FR 37474 - Radio Broadcasting Services; Dove Creek, Colorado

    Science.gov (United States)

    2013-06-21

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Dove Creek, Colorado AGENCY: Federal Communications... CFR Part 73 Radio, Radio broadcasting. Federal Communications Commission. Nazifa Sawez, Chief, Audio... amends 47 CFR part 73 as follows: PART 73--RADIO BROADCAST SERVICES 0 1. The authority citation for...

  4. Tillman Creek Mitigation Site As-Build Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gresham, Doug [Otak, Inc.

    2009-05-29

    This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

  5. A Case Study of Hogtown Creek: Justification for Field Observations.

    Science.gov (United States)

    West, Felicia E.

    A case-study model of a field trip to a small creek was made to facilitate the use of field studies as a technique for involving students and teachers in studying the earth as it undergoes change. Methods and techniques of planning are presented which include familiarization with the area by the teacher, the development of goals and objectives,…

  6. Flora and Fauna of Abiala Creek, Niger Delta, Nigeria | OLALEYE ...

    African Journals Online (AJOL)

    ... these aquatic weeds negatively affected the plankton species diversity in the creek. ... created an adverse environmental condition, which forced fish to migrate to the ... of juvenile fishes was a reflection of the negative influence of the presence of ... The predominating fish families - Polyteridae, Clariidae, Anabantidae and ...

  7. San Antonio Creek Restoration, Vandenberg Air Force Base, California

    Science.gov (United States)

    2008-06-27

    constrictor Racer Potential Masticophis lateralis Chaparral whipsnake Potential Lampropeltis getula California kingsnake Observed Pituophis catenifer...Unpublished master’s thesis, University of California , Santa Barbara. Grant, C. 1978a. Chumash: Introduction . In California , edited by Robert F. Heizer, pp...Final Draft Environmental Assessment San Antonio Creek Restoration Vandenberg Air Force Base California

  8. Short notes and reviews The fossil fauna of Mazon Creek

    NARCIS (Netherlands)

    Schultze, Hans-Peter

    1998-01-01

    Review of: Richardson’s Guide to the Fossil Fauna of Mazon Creek, edited by Charles W. Shabica & Andrew A. Hay. Northeastern Illinois University, Chicago, Illinois, 1997: XVIII + 308 pp., 385 figs., 4 tables, 1 faunal list; $75.00 (hard cover) ISBN 0-925065-21-8. Since the last century, the area

  9. A baseline and watershed assessment in the Lynx Creek, Brenot Creek, and Portage Creek watersheds near Hudson's Hope, BC : summary report

    Energy Technology Data Exchange (ETDEWEB)

    Matscha, G.; Sutherland, D. [British Columbia Ministry of Water, Land and Air Protection, Prince George, BC (Canada)

    2005-06-15

    This report summarized a baseline monitoring program for the Lynx Creek, Brenot Creek, and Portage Creek watersheds located near Hudson's Hope, British Columbia (BC). The monitoring program was designed to more accurately determine the effects of potential coalbed gas developments in the region, as well as to assess levels of agricultural and forest harvesting, and the impacts of current land use activities on water quantity and quality. Water quality was sampled at 18 sites during 5 different flow regimes, including summer and fall low flows; ice cover; spring run-off; and high flows after a heavy summer rain event. Sample sites were located up and downstream of both forest and agricultural activities. The water samples were analyzed for 70 contaminants including ions, nutrients, metals, hydrocarbons, and hydrocarbon fractions. Results showed that while many analyzed parameters met current BC water quality guidelines, total organic carbon, manganese, cadmium, E. coli, fecal coliforms, and fecal streptococci often exceeded recommended guidelines. Aluminum and cobalt values exceeded drinking water guidelines. The samples also had a slightly alkaline pH and showed high conductance. A multiple barrier approach was recommended to reduce potential risks of contamination from the watersheds. It was concluded that a more refined bacteria source tracking method is needed to determine whether fecal pollution has emanated from human, livestock or wildlife sources. 1 tab., 9 figs.

  10. The impact of organic pollution on the macrobenthic fauna of Dubai Creek (UAE).

    Science.gov (United States)

    Saunders, James E; Al Zahed, Khalid Mohammed; Paterson, David M

    2007-11-01

    Dubai Creek is a tidal marine intrusion bisecting Dubai within the United Arab Emirates (UAE). The creek extends 14km inland from its opening into the Arabian Gulf, with a narrow lower creek channel leading to a lagoon section in the upper creek. The creek contains numerous sources of organic pollution including sewage outlet flows and boat waste. A survey of the creek was performed, assessing organic pollution, water properties, and the benthic macrofaunal community. The upper creek was heavily polluted with macrofauna communities commonly associated with organic pollution and eutrophication, while the lower creek contained low pollution and relatively healthy macrofauna communities. There is little net tidal flow of water within the creek and residence time in the lagoon is high, which may account for the high organic pollution levels. However, some evidence of the pollution effect moving into the lower creek was found. The results are considered in light of current and historic organic loading within the creek and future developments in the area.

  11. Geology and ore deposits of the Chicago Creek area, Clear Creek County, Colorado

    Science.gov (United States)

    Harrison, J.E.; Wells, J.D.

    1956-01-01

    The Chicago Creek area, Clear Creek County, Colo., forms part of the Front Range mineral belt, which is a northeast-trending belt of coextensive porphyry intrusive rocks and hydrothermal veins of Tertiary age. More than $4.5 million worth of gold, silver, copper, lead, zinc, and uranium was produced from the mines in the area between 1859 and 1954. This investigation was made by the Geological survey on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission. The bedrock in the area is Precambrian and consists of igneous rocks, some of which have been metamorphosed , and metasedimentary rocks. The metasedimentary rocks include biotite-quartz-plagioclase gneiss that is locally garnetiferous, sillimanitic biotite-quartz gneiss, amphibolite, and lime-silicate gneiss. Rocks that may be metasedimentary or meta-igneous are quartz monzonite gneiss and granite gneiss and pegmatite. The granite gneiss and pegmatite locally form a migmatite with the biotitic metasedimentary rocks. These older rocks have been intruded by granodiorite, quartz, and granite pegmatite. During Tertiary time the Precambrian rocks were invaded by dikes and plugs of quartz monzonite porphyry, alaskite porphyry, granite porphyry, monzonite porphyry, bostonite and garnetiferous bostonite porphyry, quartz bostonite porphyry, trachytic granite porphyry, and biotite-quartz latite-porphyry. Solifluction debris of Wisconsin age forms sheets filling some of the high basins, covering some of the steep slopes, and filling parts of some of the valleys; talus and talus slides of Wisconsin age rest of or are mixed with solifluction debris in some of the high basins. Recent and/or Pleistocene alluvium is present along valley flats of the larger streams and gulches. Two periods of Precambrian folding can be recognized in the area. The older folding crumpled the metasedimentary rocks into a series of upright and overturned north-northeast plunging anticlines and synclines. Quartz monzonite

  12. Summary and Synthesis of Mercury Studies in the Cache Creek Watershed, California, 2000-01

    Science.gov (United States)

    Domagalski, Joseph L.; Slotton, Darell G.; Alpers, Charles N.; Suchanek, Thomas H.; Churchill, Ronald; Bloom, Nicolas; Ayers, Shaun M.; Clinkenbeard, John

    2004-01-01

    This report summarizes the principal findings of the Cache Creek, California, components of a project funded by the CALFED Bay?Delta Program entitled 'An Assessment of Ecological and Human Health Impacts of Mercury in the Bay?Delta Watershed.' A companion report summarizes the key findings of other components of the project based in the San Francisco Bay and the Delta of the Sacramento and San Joaquin Rivers. These summary documents present the more important findings of the various studies in a format intended for a wide audience. For more in-depth, scientific presentation and discussion of the research, a series of detailed technical reports of the integrated mercury studies is available at the following website: .

  13. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    Science.gov (United States)

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  14. Valuing water quality in urban watersheds: A comparative analysis of Johnson Creek, Oregon, and Burnt Bridge Creek, Washington

    Science.gov (United States)

    Netusil, Noelwah R.; Kincaid, Michael; Chang, Heejun

    2014-05-01

    This study uses the hedonic price method to investigate the effect of five water quality parameters on the sale price of single-family residential properties in two urbanized watersheds in the Portland, Oregon-Vancouver, Washington metropolitan area. Water quality parameters include E. coli or fecal coliform, which can affect human health, decrease water clarity and generate foul odors; pH, dissolved oxygen, and stream temperature, which can impact fish and wildlife populations; and total suspended solids, which can affect water clarity, aquatic life, and aesthetics. Properties within ¼ mile, ½, mile, one mile, or more than one mile from Johnson Creek are estimated to experience an increase in sale price of 13.71%, 7.05%, 8.18%, and 3.12%, respectively, from a one mg/L increase in dissolved oxygen levels during the dry season (May-October). Estimates for a 100 count per 100 mL increase in E. coli during the dry season are -2.81% for properties within ¼ mile of Johnson Creek, -0.86% (½ mile), -1.19% (one mile), and -0.71% (greater than one mile). Results for properties in Burnt Bridge Creek include a significantly positive effect for a one mg/L increase in dissolved oxygen levels during the dry season for properties within ½ mile (4.49%), one mile (2.95%), or greater than one mile from the creek (3.17%). Results for other water quality parameters in Burnt Bridge Creek are generally consistent with a priori expectations. Restoration efforts underway in both study areas might be cost justified based on their estimated effect on property sale prices.

  15. Developing flood-inundation maps for Johnson Creek, Portland, Oregon

    Science.gov (United States)

    Stonewall, Adam J.; Beal, Benjamin A.

    2017-04-14

    Digital flood-inundation maps were created for a 12.9‑mile reach of Johnson Creek by the U.S. Geological Survey (USGS). The flood-inundation maps depict estimates of water depth and areal extent of flooding from the mouth of Johnson Creek to just upstream of Southeast 174th Avenue in Portland, Oregon. Each flood-inundation map is based on a specific water level and associated streamflow at the USGS streamgage, Johnson Creek at Sycamore, Oregon (14211500), which is located near the upstream boundary of the maps. The maps produced by the USGS, and the forecasted flood hydrographs produced by National Weather Service River Forecast Center can be accessed through the USGS Flood Inundation Mapper Web site (http://wimcloud.usgs.gov/apps/FIM/FloodInundationMapper.html).Water-surface elevations were computed for Johnson Creek using a combined one-dimensional and two‑dimensional unsteady hydraulic flow model. The model was calibrated using data collected from the flood of December 2015 (including the calculated streamflows at two USGS streamgages on Johnson Creek) and validated with data from the flood of January 2009. Results were typically within 0.6 foot (ft) of recorded or measured water-surface elevations from the December 2015 flood, and within 0.8 ft from the January 2009 flood. Output from the hydraulic model was used to create eight flood inundation maps ranging in stage from 9 to 16 ft. Boundary condition hydrographs were identical in shape to those from the December 2015 flood event, but were scaled up or down to produce the amount of streamflow corresponding to a specific water-surface elevation at the Sycamore streamgage (14211500). Sensitivity analyses using other hydrograph shapes, and a version of the model in which the peak flow is maintained for an extended period of time, showed minimal variation, except for overbank areas near the Foster Floodplain Natural Area.Simulated water-surface profiles were combined with light detection and ranging (lidar

  16. Geophysical Constraints on the Evolution of an Ephemeral Channel at the Sand Creek Massacre National Historic Site, Colorado, USA

    Science.gov (United States)

    Sheth, Nishank Mihir

    A geophysical survey was conducted on an ephemeral channel, Sand Creek, at Sand Creek Massacre National Historic Site to test three hypothesized migration and depositional models of ephemeral streams. A key motivation for the study is to identify the historical location of Sand Creek, which is critical to establishing the location of the 1864 Sand Creek Massacre. Hammer seismic refraction data were collected on 7 valley-wide lines oriented perpendicular to the channel, and ground penetrating radar data (200 MHz antenna) was collected on a grid overlying the channel and the channel banks. An additional GPR line (100 MHz) was collected on a line spanning the valley bottom. The refraction data show 4 layers: an eolian cap that is 1 - 3 m thick with a velocity of 0.3 km/s; a gradational alluvium layer consisting of ephemeral deposits which is 2 - 3 m thick with velocities ranging from 0.5 - 1 km/s; a gradational alluvium layer consisting of perennial fluvial deposits which is 2 - 7 m thick with velocities ranging from 1.2 - 2.9 km/s; and a homogeneous layer with a velocity of 2.4 km/s which is interpreted to be the Pierre Shale Formation. The radar data located buried channel boundaries and revealed a change in bedforms at 3 - 4 m deep. The change in bedforms is interpreted to indicate a flow regime change from an older perennial to a more recent ephemeral flow. The channel bedforms within the ephemeral flow regime deposits suggest that the channel has not migrated across the modern valley since the ephemeral flow regime was established, but punctuated changes in morphology within the channel have occurred in association with major floods. The results iii indicate that the channel has not changed position in historical times. This suggests that the modern stream is the proper geographic context for historical accounts that reference the location of Sand Creek when describing events that occurred during the 1864 massacre.

  17. Ground-water geology and pump irrigation in Frenchman Creek Basin above Palisade, Nebraska

    Science.gov (United States)

    Cardwell, W.D.E.; Jenkins, Edward D.

    1963-01-01

    This report describes the geography, geology, and ground-water resources of that part of the Frenchman Creek basin upstream from Palisade, Nebr., an area of about 4,900 square miles. The basin includes all of Phillips County, Colo., and Chase County, Nebr., and parts of Logan, Sedgwick, Washington, and Yuma Counties, Colo., and Dundy, Hayes, Hitchcock, and Perkins Counties, Nebr. The land surface ranges from nearly flat to rolling; choppy hills and interdune saddles are common in the areas of dune sand, and steep bluffs and gullies cut the edges of the relatively flat loess plateaus. Most of the basin is drained by tributaries of Frenchman Creek, but parts of the sandhills are undrained. Farming and livestock raising are the principal industries. Irrigation with ground water has expanded rapidly since 1934. The rocks exposed in the basin are largely unconsolidated and range in age from Pliocene to Recent. They comprise the Ogallala formation (Pliocene), the Sanborn formation (Pleistocene and Recent?), dune sand (Pleistocene and Recent), and alluvium (Recent). The rocks underlying the Ogallala are the Pierre shale (Late Cretaceous) and the White River group (Oligocene). The Pierre shale is relatively impermeable and yields little or no water to wells. The White River group also is relatively impermeable and yields little or no water to wells; however, small to moderate quantities of water possibly may be obtained from wells that penetrate fractured or 'porous' zones in the upper part of the White River group or permeable channel deposits within the group. The Ogallala formation is the main aquifer in the basin and yields moderate to large quantities of water to wells. The Sanborn formation and the dune sand generally lie above the water table, but in areas of high water table the dune sand yields small quantities of water to wells for domestic and stock supplies. The alluvium, which includes the low terrace deposits bordering the major streams, yields small to large

  18. Bathymetry of Clear Creek Reservoir, Chaffee County, Colorado, 2016

    Science.gov (United States)

    Kohn, Michael S.; Kinzel, Paul J.; Mohrmann, Jacob S.

    2017-03-06

    To better characterize the water supply capacity of Clear Creek Reservoir, Chaffee County, Colorado, the U.S. Geological Survey, in cooperation with the Pueblo Board of Water Works and Colorado Mountain College, carried out a bathymetry survey of Clear Creek Reservoir. A bathymetry map of the reservoir is presented here with the elevation-surface area and the elevation-volume relations. The bathymetry survey was carried out June 6–9, 2016, using a man-operated boat-mounted, multibeam echo sounder integrated with a Global Positioning System and a terrestrial survey using real-time kinematic Global Navigation Satellite Systems. The two collected datasets were merged and imported into geographic information system software. The equipment and methods used in this study allowed water-resource managers to maintain typical reservoir operations, eliminating the need to empty the reservoir to carry out the survey.

  19. Tar Creek study, Sargent oil field, Santa Clara County, California

    Science.gov (United States)

    Wagner, David L.; Fedasko, Bill; Carnahan, J.R.; Brunetti, Ross; Magoon, Leslie B.; Lillis, Paul G.; Lorenson, T.D.; Stanley, Richard G.

    2002-01-01

    Field work in the Tar Creek area of Sargent oil field was performed June 26 to 28, 2000. The Santa Clara County study area is located in Sections, 30, 31, and 32, Township 11 South, Range 4 East, M.D.B&M; and in Sections 25 and 36, Township 11 South, Range 3 East, M.D.B.&M., north and south of Tar Creek, west of Highway 101. The work was a cooperative effort of the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources (DOGGR), California Geological Survey (CGS), and the United States Geological Survey (USGS). The purpose of the project was to map the stratigraphy and geologic structure (David Wagner, CGS); sample oil for age dating (Les Magoon, USGS); and search for undocumented wells plus conduct a GPS survey of the area (Bill Fedasko, J.P. Carnahan, and Ross Brunetti, DOGGR)

  20. The Flotational Mechanism of Etobicoke Creek's Self-Purification

    CERN Document Server

    Fisenko, A I

    2000-01-01

    A flotational mechanism of Etobicoke Creek's self-purification has been investigated. It is shown that the froth contains a high concentration of polluting agents. Chemical analyses of the top layer of surface water in comparison to both before and after froth collector in the course of a year are provided. As a result, the concentrations of pollutants by utilizing the model froth collector are decreased.

  1. Hydraulic and Environmental Effects of Channel Stabilization, Twentymile Creek, Mississippi

    Science.gov (United States)

    1990-12-01

    1981) method with the existing channel geometry and bed material gradation, an aver- age Manning roughness coefficient (n value) of 0.018 was...X Catostomidae Carp-,odes velifer, highfin carpsucker X x Ictiobus niger, black buffalo x Minvtrema mni1nnps, spotted suck-~ x Moxostoma poecilurum...notatus, bluntnose 4 3 2 52 38 36 16 11 22 minnow P. vigilax, bullhead minnow 3 2 8 2 2 27 10 Semotilus atromaculatus, creek 9 chub Catostomidae

  2. An analysis of energy expenditure in Goodwin Creek

    Science.gov (United States)

    Molnár, Peter; Ramírez, Jorge A.

    The local optimality hypothesis that natural river systems adjust their average channel properties toward an optimal state in which the rate of energy dissipation per unit channel area, Pa, is constant throughout the river network is explored on an analysis of Goodwin Creek, Mississippi. River network parameters describing the variation of channel forming and maintaining discharge, channel downstream hydraulic geometry, bed slope, and sediment concentration as a function of cumulative drainage area are estimated from Goodwin Creek data. Optimal channel characteristics that produce constant Pa are determined and superposed onto the digital elevation model-extracted river network with reach averaged bed slopes, and the spatial distribution of the energy dissipation rate Pa throughout the network is analyzed. Channel reaches with average energy dissipation rates different from the constant value of the optimal network are identified. We argue that these reaches are potentially unstable relative to the remainder of the network, and that their average channel properties will adjust in the direction of constant Pa. Qualitative statements are made about the direction of this adjustment through differences between the observed and optimal channel widths, and comparisons are made with recent observations of channel change in Goodwin Creek. This energy expenditure analysis suggests that the hypothesis of local optimality can be a useful tool for studying the relative stability and potential channel adjustment of river networks.

  3. PATHOGENIC MICROORGANISMS ISOLATED FROM PERIWINKLES IN CREEKS SOUTH-SOUTH OF NIGERIA

    Directory of Open Access Journals (Sweden)

    P. NWIYI

    2013-07-01

    Full Text Available One hundred and twenty pieces of periwinkle were obtain each from Yenogoa and Oron Creek. The periwinkle were of two genera namely: Pachymelania aurita obtained from Oronk Creek located in Akwa-Ibom State, while the Tympanotonus fuscatus notably a brackish water habitat was obtained from Yenogoa in Bayelsa state both in south-south Nigeria. Evaluation of possible microbiological isolate was carried out according to Cowan and Steel’s Manuel for medical Bacterial identification. The Creek in Yenogoa presented high level of Coliform count 2.6×105cfug-1 while the Oron Creek had an unacceptable load of Salmonella count 6×106cfug-1. The total bacterial count was highest in Oron Creek 1.46×108cfug-1 from Tympanotonus fuscatus. The microorganisms isolated from both Creeks were Esherichia coli, proteus sp, salmonella sp, pseudomonas sp and Enterobacter sp. Proteus sp was the least isolated while Salmonella sp was the highest.

  4. An Assessment of Stream Health in Urban Creeks with Community Led Improvement Projects

    Science.gov (United States)

    Sanchez, L.; Mercado, M.

    2016-12-01

    Small-scale restoration and improvement projects along urban creeks have become increasingly common and the need to assess their impact on stream health is necessary. Courtland and Peralta Creek have been subject to a variety of community, non-profit and city sponsored improvement projects. Assessment of nutrient contamination in the form of ammonia and nitrate indicate that these urban creeks have been impacted by human activity (Water Quality of Peralta and Courtland Creeks Oakland, CA, A. Ahumada). Continued assessment of the stream health through nitrate, ammonia and phosphate concentrations, benthic invertebrate derived biotic index and E. coli concentrations were used to assess site improvements. Youth and community site improvement project at Courtland Creek has resulted in the decline of nitrate contamination and an overall increase in benthic invertebrates species. Peralta Creek has a group of dedicated community volunteers that participate in clean up events but is just now implementing a planned restoration project increasing native plant diversity at the site.

  5. Sedimentary processes and products in a mesotidal salt marsh environment: insights from Groves Creek, Georgia

    Science.gov (United States)

    Alexander, C. R.; Hodgson, J. Y. S.; Brandes, J. A.

    2017-08-01

    Southeastern salt marshes are important repositories of sediment and carbon, and their formation is heavily dependent on deposition and accumulation of inorganic sediment. This study examined Groves Creek marsh near Savannah, GA, a typical Spartina alterniflora salt marsh of the southeastern US. Analyses were focused on the character, deposition and accumulation of material within the marsh on daily, monthly, decadal and centennial timescales, to determine the dominant factors in material supply and redistribution, and on its stratigraphy to determine the 1,000-year history of Groves Creek salt marsh development. Modern processes create gradients in grain size, which shows little variation from the tidal channel flanks up to mean sea level, and which coarsens with distance into the marsh from mean sea level to mean high water. This unexpected result suggests that, although floc transport is an important mechanism of sediment supply near the channel margins, energetic events must supply coarser materials to the marsh platform, where they are not readily removed by typical energy regimes. Daily deposition can approach 3 g/cm2 year; however, centennial accumulation rates are orders of magnitude lower (0.11±0.05 g/cm2 year) and are similar to those present over the past 300 years (0.05-0.2 g/cm2 year), indicating that much of the daily deposition is remobilized. Stable isotopic δ13C (average -18.7‰) and δ15N (average 5.7‰) values most likely indicate a large contribution from S. alterniflora as a carbon source throughout the marsh, although heavier δ15N on the channel flanks suggest that benthic algae may be locally important. Geologic, geochemical and microfossil evidence suggests that depositional conditions in the Groves Creek marsh have changed significantly over the past 1,000 years, creating a distinct fining-upward sequence. This sequence preserves the signature (from bottom to top) of subtidal flats grading to intertidal sandflats, an erosional lag

  6. Overstep and imbrication along a sidewall ramp and its relationship to a hydrocarbon play in Tournaisian rocks of the Moncton Basin : the Peek Creek section, Albert Mines area, southeastern New Brunswick

    Energy Technology Data Exchange (ETDEWEB)

    Park, A.F.; Kieghley, D.G.; Wilson, P. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Geology; St Peter, C.J. [New Brunswick Dept. of Natural Resources and Energy, Fredericton, NB (Canada). Geological Surveys Branch

    2010-09-15

    This paper characterized the geological stratigraphic and structural relationships of the Peek Creek section of the Albert Mines area in southeastern New Brunswick with reference to the local absence of the nearby petroleum system, which has direct ramifications for petroleum exploration. The lithostratigraphic correlation in the Albert Mines area was discussed along with the structures produced during one episode of inversion along part of the Moncton Basin south margin, which involves Horton and Sussex group rocks included in thrust-bounded panels along the trace of the basement-bounding Caledonia Fault. The Horton Group contains the oil-gas play. Therefore, the explanation of this geometry and the local absence of the petroleum system have significance for exploration efforts. The paper focused on the relationships seen in the Peck Creek section located just west of Albert Mines. The Peek Creek section at the southern margin of the Moncton Basin preserves a well-exposed late Tournaisian Sussex Group succession with the bounding crystalline rocks of the Caledonia Uplift. Of particular interest was the relationship between deformation of the rocks in the Horton and Sussex groups and the unconformably overlying Hillsborough Formation. This section was subjected to a thrust-related deformation after the deposition of the Sussex Group but before the deposition of the Hillsborough Formation. The Sub-Hillsborough Formation unconformity and the Caledonia Fault, which impinge on the Peek Creek area, were also characterized along with the geometry and kinematics of the study area. 35 refs., 9 figs.

  7. A Re-design Proposal: Connecting Whole Foods Market and Codornices Creek

    OpenAIRE

    Crampton, Matthew; Martin, John

    2007-01-01

    Opportunities to design open space around urban creeks are uncommon due to the constraints of urban infrastructure. When space becomes available, new designs have the chance to treat the creek as an amenity for communities. One such opportunity is the new development possibility occasioned by removal of World War II-era housing along Codornices Creek, within the married student housing complex known as 'UC Village' in Albany, California. The site, along San Pablo Avenue adjacent to Codornices...

  8. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    Science.gov (United States)

    Bargar, J.R.; Fuller, C.C.; Marcus, M.A.; Brearley, A.J.; Perez De la Rosa, M.; Webb, S.M.; Caldwell, W.A.

    2009-01-01

    The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick ?? 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-?? basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mn oxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments. ?? 2008 Elsevier Ltd.

  9. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    Energy Technology Data Exchange (ETDEWEB)

    Bargar, John; Fuller, Christopher; Marcus, Matthew A.; Brearley, Adrian J.; Perez De la Rosa, M.; Webb, Samuel M.; Caldwell, Wendel A.

    2008-03-19

    The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick x 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-A basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mnoxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments.

  10. Hydrogeology and tritium transport in Chicken Creek Canyon,Lawrence Berkeley National Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Preston D.; Javandel, Iraj

    2007-10-31

    This study of the hydrogeology of Chicken Creek Canyon wasconducted by the Environmental Restoration Program (ERP) at LawrenceBerkeley National Laboratory (LBNL). This canyon extends downhill fromBuilding 31 at LBNL to Centennial Road below. The leading edge of agroundwater tritium plume at LBNL is located at the top of the canyon.Tritium activities measured in this portion of the plume during thisstudy were approximately 3,000 picocuries/liter (pCi/L), which issignificantly less than the maximum contaminant level (MCL) for drinkingwaterof 20,000 pCi/L established by the Environmental ProtectionAgency.There are three main pathways for tritium migration beyond theLaboratory s boundary: air, surface water and groundwater flow. Thepurpose of this report is to evaluate the groundwater pathway.Hydrogeologic investigation commenced with review of historicalgeotechnical reports including 35 bore logs and 27 test pit/trench logsas well as existing ERP information from 9 bore logs. This was followedby field mapping of bedrock outcrops along Chicken Creek as well asbedrock exposures in road cuts on the north and east walls of the canyon.Water levels and tritium activities from 6 wells were also considered.Electrical-resistivity profiles and cone penetration test (CPT) data werecollected to investigate the extent of an interpreted alluvial sandencountered in one of the wells drilled in this area. Subsequent loggingof 7 additional borings indicated that this sand was actually anunusually well-sorted and typically deeply weathered sandstone of theOrinda Formation. Wells were installed in 6 of the new borings to allowwater level measurement and analysis of groundwater tritium activity. Aslug test and pumping tests were also performed in the wellfield.

  11. The constructed catchment Chicken Creek as Critical Zone Observatory under transition

    Science.gov (United States)

    Gerwin, Werner; Schaaf, Wolfgang; Elmer, Michael; Hinz, Christoph

    2014-05-01

    The constructed catchment Chicken Creek was established in 2005 as an experimental landscape laboratory for ecosystem research. The 6 ha area with clearly defined horizontal as well as vertical boundary conditions was left for an unrestricted primary succession. All Critical Zone elements are represented at this site, which allows the study of most processes occurring at the interface of bio-, pedo-, geo- and hydrosphere. It provides outstanding opportunities for investigating interactions and feedbacks between different evolving compartments during ecosystem development. The catchment is extensively instrumented since 2005 in order to detect transition stages of the ecosystem. Data recorded with a high spatial and temporal resolution include hydrological, geomorphological, pedological, limnological as well as biological parameters. In contrast to other Critical Zone Observatories, this site offers the unique situation of an early stage ecosystem with highly dynamic system properties. The first years of development were characterized by a fast formation of geomorphological structures due to massive erosion processes at the initially non-vegetated surface. Hydrological processes led to the establishment of a local groundwater body within 5 years. In the following years the influence of biological structures like vegetation patterns gained an increasing importance. Feedbacks between developing vegetation and e.g. hydrological features became more and more dominant. As a result, different phases of ecosystem development could be distinguished until now. This observatory offers manifold possibilities to identify and disentangle complex interactions between Critical Zone processes in situ under natural conditions. The originally low complexity of the system is growing with time facilitating the identification of influences of newly developing structures on system functions. Thus, it is possible to study effects of small-scale processes on the whole system at the

  12. Geology of the Carnegie museum dinosaur quarry site of Diplodocus carnegii, Sheep Creek, Wyoming

    Science.gov (United States)

    Brezinski, D.K.; Kollar, A.D.

    2008-01-01

    The holotype of Diplodocus carnegii Hatcher, 1901, consists of a partial skeleton (CM 84) that was recovered, along with a second partial skeleton of the same species (CM 94), from the upper 10 m of the Talking Rock facies of the Brushy Basin Member of the Morrison Formation exposed along Bone Quarry Draw, a tributary of Sheep Creek in Albany County, Wyoming. A composite measured section of the stratigraphic interval exposed adjacent to the quarry indicates that the Brushy Basin Member in this area is a stacked succession of lithofacies consisting of hackly, greenish gray, calcareous mudstone and greenish brown, dense, fine-grained limestone. The more erosion resistant limestone layers can be traced over many hundreds of meters. Thus, these strata do not appear to represent a highly localized deposit such as a stream channel, oxbow lake, or backwater pond. The Sheep Creek succession is interpreted as representing a clastic-dominated lake where high turbidity and sediment influx produced deposition of calcareous mudstone. During drier periods the lake's turbidity decreased and limestone and dolomite precipitation replaced mud deposition. Microkarsting at the top of some limestone/ dolomite layers suggests subaerial deposition may have prevailed during these dry episodes. The quarry of D. carnegii was excavated within the top strata of one of the numerous intervals of hackly, greenish gray, calcareous mudstone that represent an ephemeral freshwater lake. The quarry strata are directly overlain by 0.3 m of dolomite-capped limestone that was deposited shortly after interment of D. carnegii in the lake mudstones. The close vertical proximity of the overlying limestone to the skeleton's stratigraphic: level suggests that the animal's carcass may have been buried beneath the drying lake deposits during a period of decreased rainfall.

  13. Surface-water quality of coal-mine lands in Raccoon Creek Basin, Ohio

    Science.gov (United States)

    Wilson, K.S.

    1985-01-01

    The Ohio Department of Natural Resources, Division of Reclamation, plans to reclaim abandoned surface mines in the Raccoon Creek watershed in southern Ohio. Historic water-quality data collected between 1975 and 1983 were complied and analyzed in terms of eight selected mine-drainage characteristics to develop a data base for individual subbasin reclamation projects. Areas of mine drainage affecting Raccoon Creek basin, the study Sandy Run basin, the Hewett Fork basin, and the Little raccoon Creek basin. Surface-water-quality samples were collected from a 41-site network from November 1 through November 3, 1983, Results of the sampling reaffirmed that the major sources of mine drainage to Raccoon Creek are in the Little Raccoon Creek basin, and the Hewett Fork basin. However, water quality at the mouth of Sandy Run indicated that it is not a source of mine drainage to Raccoon Creek. Buffer Run, Goose Run, an unnamed tributary to Little Raccoon Creek, Mulga Run, and Sugar Run were the main sources of mine drainage sampled in the Little Raccoon Creek basin. All sites sampled in the East Branch Raccoon Creek basin were affected by mine drainage. This information was used to prepare a work plan for additional data collection before, during, and after reclamation. The data will be used to define the effectiveness of reclamation effects in the basin.

  14. 75 FR 77826 - White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements

    Science.gov (United States)

    2010-12-14

    ... Snowmaking), Racecourse Finish Area, Red Tail Camp Restaurant, and Infrastructure. Proposed Action: All... courses). This includes realigning and culverting a segment of Westfall Creek, relocating existing utility...

  15. Post project evaluation, Miller Creek, California : assessment of stream bed morphology, and recommendations for future study

    OpenAIRE

    Yin, Wan-chih; Pope-Daum, Caitilin

    2004-01-01

    Miller creek is located in Marin County, California, and runs east from Big Rock Ridge through the Laws Gallinas Valley and into the San Pablo Bay. The Miller Creek watershed has been grazed continuously since the 1800s, and the creek has experienced sever widening and down cutting as a result. The miller Creek restoration Project, located in the Lucas Valley Estates subdivision and designed and built from 1979 to 1989, employed a multi-stage channel approach to restore and protect a riparian...

  16. Descriptions of the Animas River-Cement Creek confluence and mixing zone near Silverton, Colorado, during the late summers of 1996 and 1997

    Science.gov (United States)

    Schemel, Laurence E.; Cox, Marisa H.

    2005-01-01

    Acidic waters from Cement Creek discharge into the circum-neutral Animas River in a high-elevation region of the San Juan Mountains near Silverton, Colorado. Cement Creek is acidic and enriched in metals and sulfate because it is fed by discharges from abandoned mines and natural mineral deposits. Mixing with the Animas River raises the pH and produces precipitates of iron and aluminum (oxy)hydroxides, which in turn can adsorb other metals. This confluence was studied in 1996 and 1997 to better understand mixing and sorption processes which are common during the neutralization of acidic streams. The photographs in this report show flow braiding and other features that influenced the way the two streams mixed during the late summers of the two years. They also show 'banding' due to incomplete mixing and 'opalescence' due to chemical reactions and the formation of colloidal-size particles in the mixing zone.

  17. Biological and Physical Inventory of Clear Creek, Orofino Creek, and the Potlatch River, Tributary Streams of the Clearwater River, Idaho, 1984 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, David B.

    1985-05-01

    Clear Creek, Orofino Creek, and Potlatch Creek, three of the largest tributaries of the lower Clearwater River Basin, were inventoried during 1984. The purpose of the inventory was to identify where anadromous salmonid production occurs and to recommend enhancement alternatives to increase anadromous salmonid habitat in these streams. Anadromous and fluvial salmonids were found in all three drainages. The lower reach of Clear Creek supported a low population of rainbow-steelhead, while the middle reach supported a much greater population of rainbow-steelhead. Substantial populations of cutthroat trout were also found in the headwaters of Clear Creek. Rainbow-steelhead and brook trout were found throughout Orofino Creek. A predominant population of brook trout was found in the headwaters while a predominant population of rainbow-steelhead was found in the mainstem and lower tributaries of Orofino Creek. Rainbow-steelhead and brook trout were also found in the Potlatch River. Generally, the greatest anadromous salmonid populations in the Potlatch River were found within the middle reach of this system. Several problems were identified which would limit anadromous salmonid production within each drainage. Problems affecting Clear Creek were extreme flows, high summer water temperature, lack of riparian habitat, and high sediment load. Gradient barriers prevented anadromous salmonid passage into Orofino Creek and they are the main deterrent to salmonid production in this system. Potlatch River has extreme flows, high summer water temperature, a lack of riparian habitat and high sediment loads. Providing passage over Orofino Falls is recommended and should be considered a priority for improving salmonid production in the lower Clearwater River Basin. Augmenting flows in the Potlatch River is also recommended as an enhancement measure for increasing salmonid production in the lower Clearwater River Basin. 18 refs., 5 figs., 85 tabs.

  18. Extensive soft sediment deformation and peperite formation at the base of a rhyolite lava: Owyhee Mountains, SW Idaho, USA

    OpenAIRE

    Mclean, Charlotte E.; Brown, David J; Rawcliffe, Heather J.

    2016-01-01

    In the Northern Owyhee Mountains (SW Idaho), a >200 m thick flow of the Miocene Jump Creek Rhyolite was erupted on to a sequence of tuffs, lapilli-tuffs, breccias and lacustrine siltstones of the Sucker Creek Formation. The rhyolite lava flowed over steep palaeotopography, resulting in the forceful emplacement of lava into poorly consolidated sediments. The lava invaded this sequence, liquefying and mobilizing the sediment, propagating sediment sub-vertically in large metre-scale fluidal diap...

  19. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system

    Science.gov (United States)

    Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling

    2017-05-01

    Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap tides, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the tide-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was responsible for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap tides, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring tides, a less well-aerated zone with increased salinity where drainage occurred during the neap tides, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the tide-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.

  20. Deterioration in the biodiversity of copepods in sewage laiden creeks of Mumbai coast, west coast of India: A statistical approach.

    Digital Repository Service at National Institute of Oceanography (India)

    Stephen, R.; Jayalakshmy, K.V.; Nair, V.R.; Gajbhiye, S.N.; Jacob, B.

    The coastal waters of Mumbai is known to receive copious amount of waste from the adjacent creeks and bays. Effluents from various industries including nuclear and thermal power stations are discharged into the Mumbai harbour- Thane creek confluence...

  1. Additional mineral resources assessment of the Battle Creek, Bruneau River, Deep Creek-Owyhee River, Jarbidge River, Juniper Creek, Little Owyhee River, North Fork Owyhee River, Owyhee River Canyon, South Fork Owyhee River, Upper Deep Creek, and Yatahoney Creek Wilderness Study Areas, Owyhee County, Idaho

    Science.gov (United States)

    Diggles, Michael F.; Berger, Byron R.; Vander Meulen, Dean B.; Minor, Scott A.; Ach, Jay A.; Sawlan, Michael G.

    1989-01-01

    From 1984 to 1986, studies were conducted to assess the potential for undiscovered mineral resources in wilderness study areas on the Owyhee Plateau. The results of these studies have been published in a series of U.S. Geological Survey Bulletins. Since that time, low-grade, high-tonnage epithermal hot-spring gold-silver deposits have been recognized in the region north of the wilderness study areas. The recognition that this mineral-deposit model is applicable in the region, coupled with new data that has become available to the U.S. Geological Survey, reinterpretation of existing geochemical data, and known-deposit data suggest that similar deposits may be present elsewhere on the Owyhee Plateau. This report is an additional assessment of the Battle Creek, Bruneau River, Deep Creek-Owyhee River, Jarbidge River, Juniper Creek, Little Owyhee River, North Fork Owyhee River, Owyhee River Canyon, South Fork Owyhee River (ID-016-053), Upper Deep Creek, and Yatahoney Creek Wilderness Study Areas in Idaho Wilderness Study Areas in Idaho in light of those new data.

  2. Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  3. Characterization of an Active Thermal Erosion Site, Caribou Creek, Alaska

    Science.gov (United States)

    Busey, R.; Bolton, W. R.; Cherry, J. E.; Hinzman, L. D.

    2013-12-01

    The goal of this project is to estimate volume loss of soil over time from this site, provide parameterizations on erodibility of ice rich permafrost and serve as a baseline for future landscape evolution simulations. Located in the zone of discontinuous permafrost, the interior region of Alaska (USA) is home to a large quantity of warm, unstable permafrost that is both high in ice content and has soil temperatures near the freezing point. Much of this permafrost maintains a frozen state despite the general warming air temperature trend in the region due to the presence of a thick insulating organic mat and a dense root network in the upper sub-surface of the soil column. At a rapidly evolving thermo-erosion site, located within the Caribou-Poker Creeks Research Watershed (part of the Bonanza Creek LTER) near Chatanika, Alaska (N65.140, W147.570), the protective organic layer and associated plants were disturbed by an adjacent traditional use trail and the shifting of a groundwater spring. These triggers have led to rapid geomorphological change on the landscape as the soil thaws and sediment is transported into the creek at the valley bottom. Since 2006 (approximately the time of initiation), the thermal erosion has grown to 170 meters length, 3 meters max depth, and 15 meters maximum width. This research combines several data sets: DGPS survey, imagery from an extremely low altitude pole-based remote sensing (3 to 5 meters above ground level), and imagery from an Unmanned Aerial System (UAS) at about 60m altitude.

  4. Reconnaissance Feasibility Study: Hydroelectric Potential on Lowell Creek

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-03-01

    The feasibility of hydroelectric power development on Lowell Creek near Seward has been investigated at.a reconnaissance level. The study was. conducted because .the physical characteristics of the creek and surrounding terrain initially appeared suitable for hydroelectric power. The creek has a steep gradient (about 400 feet per mile), is fed from a large snowfield, and has two significant drops. One drop is formed by the presence of a dam that was constructed to divert the creek through a mountain and around the town. The second drop of about 65 feet is at the termination of-the diversion tunnel. Three alternative sites for hydroelectric plants were considered, one each at the two drops and one farther upstream at the site of an old abandoned intake and valve house. Two of the sites were considered for 250-kW plants and one for a 100-kW plant. All were limited to a low head, less than 66 feet. Use of an existing dam and tunnel and an abandoned diversion dam and valve house was considered as part of the project alternatives. None of the three alternatives approaches feasibility at this time. Major influencing factors are the high cost of energy at over 13 cents per kWh, the winter freezeup resulting in plant shutdown from November to April, and a large amount of rock sediment carried by the stream and requiring expensive intake structures to skim off the rocks. The most promising alternative (alternative C), which would have a capacity of 250 kW and would produce about 800,000 kWh per year, would fill less than 5 percent of the city's present energy needs. The plant would cost nearly $1 million and produce energy at about 137 mills per kwh. This alternative is the best of the three from the standpoint of its.lower cost, best access via existing all-weather road, least exposure to avalanche and rockslides, and proximity to existing powerlines.

  5. Flood-Inundation Maps for Sugar Creek at Crawfordsville, Indiana

    Science.gov (United States)

    Martin, Zachary W.

    2016-06-06

    Digital flood-inundation maps for a 6.5-mile reach of Sugar Creek at Crawfordsville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site CRWI3).Flood profiles were computed for the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., and high-water marks from the flood of April 19, 2013, which reached a stage of 15.3 feet. The hydraulic model was then used to compute 13 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 4.0 ft (the NWS “action stage”) to 16.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability

  6. 60 FR 56561 - Jump Creek Water Quality Planning Project Owyhee County

    Science.gov (United States)

    1995-11-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Jump Creek Water Quality Planning Project Owyhee County AGENCY... impact statement is not being prepared for the Jump Creek Water Quality Planning Project, Owyhee...

  7. 78 FR 23846 - Drawbridge Operation Regulations; Newtown Creek, New York City, NY

    Science.gov (United States)

    2013-04-23

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Newtown Creek, New York City, NY... of the Greenpoint Avenue Bridge across Newtown Creek, mile 1.3, at New York City, New York. The... are found at 33 CFR 117.801(g). The bridge owner, New York City Department of Transportation...

  8. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Science.gov (United States)

    2010-07-01

    ... the Grand Street/Avenue Bridge, mile 3.1, across Newtown Creek (East Branch) between Brooklyn and..., DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117... apply to all bridges across Newtown Creek, Dutch Kills, English Kills, and their tributaries: (1) The...

  9. 76 FR 9273 - Special Local Regulations for Marine Events; Severn River, Spa Creek and Annapolis Harbor...

    Science.gov (United States)

    2011-02-17

    ... River, Spa Creek and Annapolis Harbor, Annapolis, MD AGENCY: Coast Guard, DHS. ACTION: Notice of... swim segment of the ``TriRock Annapolis'' triathlon, a marine event to be held on the waters of Spa... segment of the event will occur from 7 a.m. to 8:30 a.m. and will be located in Spa Creek and Annapolis...

  10. Technology transfer: taking science from the books to the ground at Bent Creek Experimental Forest

    Science.gov (United States)

    Julia Kirschman

    2014-01-01

    Technology transfer has been an important part of the research program at Bent Creek Experimental Forest (Bent Creek) since its establishment in 1925. Our stated mission is to develop and disseminate knowledge and strategies for restoring, managing, sustaining, and enhancing the vegetation and wildlife of upland hardwood-dominated forest ecosystems of the Southern...

  11. 78 FR 38028 - Winding Creek Solar LLC; Notice of Petition for Enforcement

    Science.gov (United States)

    2013-06-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Winding Creek Solar LLC; Notice of Petition for Enforcement Take notice that on June 13, 2013, Winding Creek Solar LLC filed a Petition for Enforcement, pursuant to section...

  12. CREEK Project: RUI: the Role of Oyster Reefs in the Structure and Function of Tidal Creeks. A Project Overview: 1996-2000.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet, South Carolina, USA were studied using a replicated BACI (Before - After...

  13. CREEK Project's Oyster Growth and Survival Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  14. CREEK Project's Water Chemistry, Chlorophyll a, and Suspended Sediment Weekly Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-2000.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated BACI (Before -...

  15. Distribution and abundance of copepods in the pollution gradient zones of Bombay Harbour-Thana Creek-Bassein Creek, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, Neelam

    the monsoon months (June-September). Diversity indices (Shannon-Weaver's H' and Margalefs D) were higher in the outer coastal waters than in creek zone indicating lethal or sublethal effects of industrial and domestic waster on the general faunistic...

  16. Rainfall and Seasonal Movement of the Weeks Creek Landslide, San Mateo County, California

    Science.gov (United States)

    Wieczorek, Gerald F.; Reid, Mark E.; Jodicke, Walter; Pearson, Chris; Wilcox, Grant

    2007-01-01

    Introduction Many different types of landslide occur in the Santa Cruz Mountains of San Mateo County, Calif. (Brabb and Pampeyan, 1972); most slope movement is triggered by strong earthquakes, heavy rainfall, or shoreline erosion. In this area, shallow landslides of loose soil and rock, which may transform into debris flows, commonly occur during individual storms when rainfall exceeds a threshold of intensity and duration (Cannon and Ellen, 1985; Wieczorek and Sarmiento, 1988; Wilson and Wieczorek, 1995). In contrast, deeper rotational and translational slides (Varnes, 1978) typically begin to move only after days to weeks or months of heavy rain. Once started, they can continue to move for months during and after a heavy rainfall season, for example, the Scenic Drive landslide at La Honda, Calif. (Jayko and others, 1998; Wells and others, 2005, 2006). Although the rainfall characteristics triggering rapid, shallow landslides have been documented (Wieczorek, 1987; Cannon and Ellen, 1988), the rainfall conditions leading to repeated deeper-seated slope movements are less well known. The Weeks Creek landslide (Adam, 1975), near the western crest of the Santa Cruz Mountains north of La Honda in San Mateo County (fig. 1), consists of a large prehistoric section containing a historically active section; both sections have earthflow morphologies. The entire landslide mass, which extends about 1,000 m westward from an elevation of 220 m down to an elevation of 120 m, is about 300 to 370 m wide (Cole and others, 1994); The prehistoric section of the landslide is about 30 m deep and approximately 10 million m3 in volume (Cole and others, 1994). The smaller, historically active portion of the Weeks Creek landslide (fig. 1) is only approximately 500 m long, 200 m wide, and 13 m deep (Cole and others, 1994). Near the landslide, the Santa Cruz Mountains consist of tightly folded, Tertiary sedimentary bedrock materials of the Butano sandstone and San Lorenzo Formations (Eocene

  17. Macroinvertebrate community sample collection methods and data collected from Sand Creek and Medano Creek, Great Sand Dunes National Park and Preserve, Colorado, 2005–07

    Science.gov (United States)

    Ford, Morgan A.; Zuellig, Robert E.; Walters, David M.; Bruce, James F.

    2016-08-11

    This report provides a table of site descriptions, sample information, and semiquantitative aquatic macroinvertebrate data from 105 samples collected between 2005 and 2007 from 7 stream sites within the Sand Creek and Medano Creek watersheds in Great Sand Dunes National Park and Preserve, Saguache County, Colorado. Additionally, a short description of sample collection methods and laboratory sample processing procedures is presented. These data were collected in anticipation of assessing the potential effects of fish toxicants on macroinvertebrates.

  18. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Oyster Creek... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean... the Forked River in the vicinity of the Oyster Creek Generation Station, bounded by a line...

  19. Factors affecting the hydrochemistry of a mangrove tidal creek, sepetiba bay, Brazil

    Science.gov (United States)

    Ovalle, A. R. C.; Rezende, C. E.; Lacerda, L. D.; Silva, C. A. R.

    1990-11-01

    We studied the porewater chemistry, and spatial and temporal variation of mangrove creek hydrochemistry. Except for nitrate porewater, the concentrations of nutrients we analysed were higher than for creek water. Groundwater is a source of silica and phosphate, whereas total alkalinity and ammonium are related to mangrove porewater migration to the creek. Open bay waters contribute chlorine, dissolved oxygen and elevated pH. The results also suggest that nitrate is related to nitrification inside the creek. During flood tides, salinity, chlorine, dissolved oxygen and pH increase, whereas total alkalinity decreases. This pattern is reversed at ebb tides. Silica, phosphate, nitrate and ammonium show an erratic behaviour during the tidal cycle. Tidal dynamics, precipitation events and nitrification inside the creek were identified as major control factors and an estimate of tidal exchanges indicate that the system is in an equilibrium state.

  20. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    Science.gov (United States)

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  1. Discharge and water quality of springs in Roan and Parachute Creek basins, northwestern Colorado, 1981-83

    Science.gov (United States)

    Butler, D.L.

    1985-01-01

    This report is a compilation and interpretation of discharge, water-quality, and radiochemical data collected at springs in the oil-shale regions of Roan and Parachute Creek basins, Colorado, from 1981 to 1983. Springs located on upland plateaus and ridges are mixed-cation bicarbonate water types with 216 to 713 milligrams per liter dissolved solids. Calcite and dolomite dissolution are dominant chemical reactions in upland springs. Springs located in the canyons contain greater concentrations of sodium and sulfate and have 388 to 3,970 milligrams per liter dissolved solids. Gypsum dissolution is an important chemical reaction in canyon spring water. The only trace constituents with mean concentration greater than 10 micrograms per liter in the study area were barium, boron, lithium and strontium. None of the canyon springs investigated represent discharge from the lower aquifer in the Green River Formation. Analysis of chemical and discharge data for streams in the Roan Creek drainage showed evidence of lower-aquifer discharge into the canyons. Springs located near an oil-shale mine or processing plant could be used for monitoring groundwater quality and quantity. Bicarbonate, fluoride, arsenic, boron, lithium, mercury, ammonia, and organic carbon may be chemical indicators of mine or process-water contamination of shallow aquifers near an oil-shale plant or mine. (USGS)

  2. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  3. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  4. Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.

    1990-11-01

    A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

  5. Hydrogeology of the Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Oliveros, J.P.; Vroblesky, D.A.

    1989-01-01

    Geologic and borehole geophysical logs made at 77 sites show that the hydrogeologic framework of the study area consists of a sequence of unconsolidated sediments typical of the Coastal Plain of Maryland. Three aquifers and two confining units were delineated within the study area. From the surface down, they are: (1) the surficial aquifer; (2) the upper confining unit; (3) the Canal Creek aquifer; (4) the lower confining unit; and (5) the lower confined aquifer. The aquifer materials range from fine sand to coarse sand and gravel. Clay lenses were commonly found interfingered with the sand, isolating parts of the aquifers. All the units are continuous throughout the study area except for the upper confining unit, which crops out within the study area but is absent in updip outcrops. The unit also is absent within a Pleistocene paleochannel, where it has been eroded. The surficial and Canal Creek aquifers are hydraulically connected where the upper confining unit is absent, and a substantial amount of groundwater may flow between the two aquifers. Currently, no pumping stresses are known to affect the aquifers within the study area. Under current conditions, downward vertical hydraulic gradients prevail at topographic highs, and upward gradients typically prevail near surface-water bodies. Regionally, the direction of groundwater flow in the confined aquifers is to the east and southeast. Significant water level fluctuations correspond with seasonal variations in rainfall, and minor daily fluctuations reflect tidal cycles. (USGS)

  6. The History of SETI at the Hat Creek Radio Observatory

    Science.gov (United States)

    Tarter, J.

    2006-12-01

    Since the first SETI search in 1960, observations have encountered an exponentially growing problem with radio frequency interference (RFI) generated by our own communication, entertainment, and military technologies. The signal processing equipment that is used for SETI has gotten much faster and more capable, yet the fraction of the possible search space that has been explored remains very small. More than 100 searches have been reported in the literature. Tarter (2001) has summarized the various search strategies and the SETI Institute maintains an updated search archive at http://www.seti.org/searcharchive. The Allen Telescope Array (ATA) at Hat Creek Radio Observatory will be the first instrument designed with SETI as a goal, and its speed and flexibility will permit a significant exploration of our local region of the Milky Way Galaxy, targeting ˜1 million stars for weak signals, as well as surveying for stronger signals from ˜40 billion distant stars, located in the direction of the galactic center and the surrounding 20 square degrees. Just as Jack Welch has been responsible for many of the innovations in the ATA and the SETI observations it will soon undertake, he has been the key to enabling SETI at the Hat Creek Radio Observatory for the past three decades.

  7. WATER QUALITY ANALYSIS OF AGRICULTURALLY IMPACTED TIDAL BLACKBIRD CREEK, DELAWARE

    Directory of Open Access Journals (Sweden)

    Matthew Stone

    2016-11-01

    Full Text Available Blackbird Creek, Delaware is a small watershed in northern Delaware that has a significant proportion of land designated for agricultural land use. The Blackbird Creek water monitoring program was initiated in 2012 to assess the condition of the watershed’s habitats using multiple measures of water quality. Habitats were identified based on percent adjacent agricultural land use. Study sites varying from five to fourteen were sampled biweekly during April and November, 2012-2015. Data were analyzed using principal component analysis and generalized linear modeling. Results from these first four years of data documented no significant differences in water quality parameters (dissolved oxygen, pH, temperature, salinity, inorganic nitrate, nitrite, ammonia, orthophosphate, alkalinity, and turbidity between the two habitats, although both orthophosphate and turbidity were elevated beyond EPA-recommended values. There were statistically significant differences for all of the parameters between agriculture seasons. The lack of notable differences between habitats suggests that, while the watershed is generally impacted by agricultural land use practices, there appears to be no impact on the surface water chemistry. Because there were no differences between habitats, it was concluded that seasonal differences were likely due to basic seasonal variation and were not a function of agricultural land use practices.

  8. Stream sediment detailed geochemical survey for Date Creek Basin, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.

    1980-06-30

    Results of the Date Creek Basin detailed geochemical survey are reported. Field and laboratory data are reported for 239 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Based on stream sediment geochemical data, significant concentrations of uranium are restricted to the Anderson Mine area. The 84th percentile concentrations of U-FL, U-NT, and U-FL/U-NT combined with low thorium/U-NT values reflect increased mobility and enrichment of uranium in the carbonate host rocks of that area. Elements characteristically associated with the uranium mineralization include lithium and arsenic. No well defined diffusion halos suggesting outliers of similar uranium mineralization were observed from the stream sediment data in other areas of the Date Creek Basin. Significant concentrations of U-FL or U-NT found outside the mine area are generally coincident with low U-FL/U-NT values and high concentrations of zirconium, titanium, and phosphorus. This suggests that the uranium is related to a resistate mineral assemblage derived from surrounding crystalline igneous and metamorphic rocks.

  9. Water resources of the Sycamore Creek watershed, Maricopa County, Arizona

    Science.gov (United States)

    Thomsen, B.W.; Schumann, Herbert H.

    1969-01-01

    The Sycamore Creek watershed is representative of many small watersheds in the Southwest where much of the streamflow originates in the mountainous areas and disappears rather quickly into the alluvial deposits adjacent to the mountains. Five years of .streamflow records from the Sycamore Creek watershed show that an average annual water yield of 6,110 acre-feet was obtained from the 165 square miles (105,000 acres) of the upper hard-rock mountain area, which receives an average annual precipitation of about 20 inches. Only a small percentage of the ,annual water yield, however, reaches the Verde River as surface flow over the 9-mile reach of the alluvial channel below the mountain front. Flows must be more ,than 200 cubic feet per second to reach the river; flows less than this rate disappear into the 1,ower alluvial area and are stored temporarily in the ground-Water reservoir : most of this water is released as ground-water discharge to the Verde River at a relatively constant rate of about 4,000 acre-feet per year. Evapotranspiration losses in the lower alluvial area are controlled by the depth of the water table and averaged about 1,500 acre-feet per year.

  10. Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Dave

    1995-04-01

    The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

  11. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    Energy Technology Data Exchange (ETDEWEB)

    Watson, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mathews, Teresa J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ketelle, Richard [East Tennessee Technology Park (ETTP), Oak Ridge, TN (United States)

    2016-06-01

    This report summarizes a 3-year research project undertaken to better understand the nature and magnitude of mercury (Hg) fluxes in East Fork Poplar Creek (EFPC). This project addresses the requirements of Action Plan 1 in the 2011 Oak Ridge Reservation-wide Comprehensive Environmental Response, Compensation, and Liability Act Five Year Review (FYR). The Action Plan is designed to address a twofold 2011 FYR issue: (1) new information suggests mobilization of mercury from the upper and lower EFPC streambeds and stream banks is the primary source of mercury export during high-flow conditions, and (2) the current Record of Decision did not address the entire hydrologic system and creek bank or creek bed sediments. To obtain a more robust watershed-scale understanding of mercury sources and processes in lower EFPC (LEFPC), new field and laboratory studies were coupled with existing data from multiple US Department of Energy programs to develop a dynamic watershed and bioaccumulation model. LEFPC field studies for the project focused primarily on quantification of streambank erosion and an evaluation of mercury dynamics in shallow groundwater adjacent to LEFPC and potential connection to the surface water. The approach to the stream bank study was innovative in using imagery from kayak floats’ surveys from the headwaters to the mouth of EFPC to estimate erosion, coupled with detailed bank soil mercury analyses. The goal of new field assessments and modeling was to generate a more holistic and quantitative understanding of the watershed and the sources, flux, concentration, transformation, and bioaccumulation of inorganic mercury (IHg) and methylmercury (MeHg). Model development used a hybrid approach that dynamically linked a spreadsheet-based physical and chemical watershed model to a systems dynamics, mercury bioaccumulation model for key fish species. The watershed model tracks total Hg and MeHg fluxes and concentrations by examining upstream inputs, floodplain

  12. Geochemistry of the Birch Creek Drainage Basin, Idaho

    Science.gov (United States)

    Swanson, Shawn A.; Rosentreter, Jeffrey J.; Bartholomay, Roy C.; Knobel, LeRoy L.

    2003-01-01

    The U.S. Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting studies to describe the chemical character of ground water that moves as underflow from drainage basins into the eastern Snake River Plain aquifer (ESRPA) system at and near the Idaho National Engineering and Environmental Laboratory (INEEL) and the effects of these recharge waters on the geochemistry of the ESRPA system. Each of these recharge waters has a hydrochemical character related to geochemical processes, especially water-rock interactions, that occur during migration to the ESRPA. Results of these studies will benefit ongoing and planned geochemical modeling of the ESRPA at the INEEL by providing model input on the hydrochemical character of water from each drainage basin. During 2000, water samples were collected from five wells and one surface-water site in the Birch Creek drainage basin and analyzed for selected inorganic constituents, nutrients, dissolved organic carbon, tritium, measurements of gross alpha and beta radioactivity, and stable isotopes. Four duplicate samples also were collected for quality assurance. Results, which include analyses of samples previously collected from four other sites, in the basin, show that most water from the Birch Creek drainage basin has a calcium-magnesium bicarbonate character. The Birch Creek Valley can be divided roughly into three hydrologic areas. In the northern part, ground water is forced to the surface by a basalt barrier and the sampling sites were either surface water or shallow wells. Water chemistry in this area was characterized by simple evaporation models, simple calcite-carbon dioxide models, or complex models involving carbonate and silicate minerals. The central part of the valley is filled by sedimentary material and the sampling sites were wells that are deeper than those in the northern part. Water chemistry in this area was characterized by simple calcite-dolomite-carbon dioxide

  13. Water Conservation Study for Manastash Creek Water Users, Kittias County, Washington, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery Watson Harza (Firm)

    2002-12-31

    Manastash Creek is tributary of the Yakima River and is located southwest and across the Yakima River from the City of Ellensburg. The creek drains mountainous terrain that ranges in elevation from 2,000 feet to over 5,500 feet and is primarily snowmelt fed, with largest flows occurring in spring and early summer. The creek flows through a narrow canyon until reaching a large, open plain that slopes gently toward the Yakima River and enters the main stem of the Yakima River at river mile 154.5. This area, formed by the alluvial fan of the Creek as it leaves the canyon, is the subject of this study. The area is presently dominated by irrigated agriculture, but development pressures are evident as Ellensburg grows and develops as an urban center. Since the mid to late nineteenth century when irrigated agriculture was established in a significant manner in the Yakima River Basin, Manastash Creek has been used to supply irrigation water for farming in the area. Adjudicated water rights dating back to 1871 for 4,465 acres adjacent to Manastash Creek allow appropriation of up to 26,273 acre-feet of creek water for agricultural irrigation and stock water. The diversion of water from Manastash Creek for irrigation has created two main problems for fisheries. They are low flows or dewatered reaches of Manastash Creek and fish passage barriers at the irrigation diversion dams. The primary goal of this study, as expressed by Yakama Nation and BPA, is to reestablish safe access in tributaries of the Yakima River by removing physical barriers and unscreened diversions and by adding instream flow where needed for fisheries. The goal expressed by irrigators who would be affected by these projects is to support sustainable and profitable agricultural use of land that currently uses Manastash Creek water for irrigation. This study provides preliminary costs and recommendations for a range of alternative projects that will partially or fully meet the goal of establishing safe access

  14. Permanent colonization of creek sediments, creek water and limnic water plants by four Listeria species in low population densities.

    Science.gov (United States)

    Lang-Halter, Evi; Schober, Steffen; Scherer, Siegfried

    2016-09-01

    During a 1-year longitudinal study, water, sediment and water plants from two creeks and one pond were sampled monthly and analyzed for the presence of Listeria species. A total of 90 % of 30 sediment samples, 84 % of 31 water plant samples and 67 % of 36 water samples were tested positive. Generally, most probable number counts ranged between 1 and 40 g-1, only occasionally >110 cfu g-1 were detected. Species differentiation based on FT-IR spectroscopy and multiplex PCR of a total of 1220 isolates revealed L. innocua (46 %), L. seeligeri (27 %), L. monocytogenes (25 %) and L. ivanovii (2 %). Titers and species compositions were similar during all seasons. While the species distributions in sediments and associated Ranunculus fluitans plants appeared to be similar in both creeks, RAPD typing did not provide conclusive evidence that the populations of these environments were connected. It is concluded that (i) the fresh-water sediments and water plants are year-round populated by Listeria, (ii) no clear preference for growth in habitats as different as sediments and water plants was found and (iii) the RAPD-based intraspecific biodiversity is high compared to the low population density.

  15. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  16. Campbell Creek Research Homes FY 2012 Annual Performance Report

    Energy Technology Data Exchange (ETDEWEB)

    Gehl, Anthony C [ORNL; Munk, Jeffrey D [ORNL; Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Khowailed, Gannate A [ORNL

    2013-01-01

    The Campbell Creek project is funded and managed by the Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery & and Utilization Office. Technical support is provided under contract by the Oak Ridge National Laboratory (ORNL) and the Electric Power Research Institute.The project was designed to determine the relative energy efficiency of typical new home construction, energy efficiency retrofitting of existing homes, and high -performance new homes built from the ground up for energy efficiency. This project will compare three houses that represented the current construction practice as a base case (Builder House CC1); a modified house that could represent a major energy- efficient retrofit (Retrofit House CC2); and a house constructed from the ground up to be a high- performance home (High Performance House CC3). In order tTo enablehave a valid comparison, it was necessary to simulate occupancy in all three houses and heavily monitor the structural components and the energy usage by component. All three houses are two story, slab on grade, framed construction. CC1 and CC2 are approximately 2,400 square feet2. CC3 has a pantry option, that is primarily used as a mechanical equipment room, that adds approximately 100 square feet2. All three houses are all-electric (with the exception of a gas log fireplace that is not used during the testing), and use air-source heat pumps for heating and cooling. The three homes are located in Knoxville in the Campbell Creek Subdivision. CC1 and CC2 are next door to each other and CC3 is across the street and a couple of houses down. The energy data collected will be used to determine the benefits of retrofit packages and high -performance new home packages. There are over 300 channels of continuous energy performance and thermal comfort data collection in the houses (100 for each house). The data will also be used to evaluate the impact of energy -efficient upgrades ton the envelope, mechanical

  17. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the

  18. Evaluation of flood inundation in Crystal Springs Creek, Portland, Oregon

    Science.gov (United States)

    Stonewall, Adam; Hess, Glen

    2016-05-25

    Efforts to improve fish passage have resulted in the replacement of six culverts in Crystal Springs Creek in Portland, Oregon. Two more culverts are scheduled to be replaced at Glenwood Street and Bybee Boulevard (Glenwood/Bybee project) in 2016. Recently acquired data have allowed for a more comprehensive understanding of the hydrology of the creek and the topography of the watershed. To evaluate the impact of the culvert replacements and recent hydrologic data, a Hydrologic Engineering Center-River Analysis System hydraulic model was developed to estimate water-surface elevations during high-flow events. Longitudinal surface-water profiles were modeled to evaluate current conditions and future conditions using the design plans for the culverts to be installed in 2016. Additional profiles were created to compare with the results from the most recent flood model approved by the Federal Emergency Management Agency for Crystal Springs Creek and to evaluate model sensitivity.Model simulation results show that water-surface elevations during high-flow events will be lower than estimates from previous models, primarily due to lower estimates of streamflow associated with the 0.01 and 0.002 annual exceedance probability (AEP) events. Additionally, recent culvert replacements have resulted in less ponding behind crossings. Similarly, model simulation results show that the proposed replacement culverts at Glenwood Street and Bybee Boulevard will result in lower water-surface elevations during high-flow events upstream of the proposed project. Wider culverts will allow more water to pass through crossings, resulting in slightly higher water-surface elevations downstream of the project during high-flows than water-surface elevations that would occur under current conditions. For the 0.01 AEP event, the water-surface elevations downstream of the Glenwood/Bybee project will be an average of 0.05 ft and a maximum of 0.07 ft higher than current conditions. Similarly, for the 0

  19. Organic geochemical study of sequences overlying coal seams: example from the Mansfield Formation (Lower Pennsylvania), Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Mastalerz, M.; Stankiewicz, A.B.; Salmon, G.; Kvale, E.P.; Millard, C.L. [Indiana University, Bloomington, IN (United States). Indiana Geological Survey

    1997-09-01

    Roof successions above two coal seams from the Mansfield Formation (Lower Pennsylvanian) in the Indiana portion of the Illinois basin were studied with regard to sedimentary structures, organic petrology and organic geochemistry. The succession above the Blue Creek Member of the Mansfield Formation is typical of the lithologies covering low-sulphur coals ({lt} 1%) in the area studied, whereas the succession above the unnamed Mansfield coal is typical of high-sulphur coal({gt} 2%). The transgressive-regressive packages above both seams reflect the periodic inundation of coastal mires by tidal flats and creeks. Geochemistry and petrology of organic facies above the Blue Creek coal suggest that tidal flats formed inland in fresh-water environments. Above the unnamed coal, trace fossils and geochemical and petrological characteristics of organic facies suggest more unrestricted seaward depositional. 55 refs., 11 figs., 3 tabs.

  20. Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].

    Energy Technology Data Exchange (ETDEWEB)

    Asotin County Conservation District

    2008-12-10

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

  1. Ground-water reconnaissance of the Sailor Creek area, Owyhee, Elmore, and Twin Falls Counties, Idaho

    Science.gov (United States)

    Crosthwaite, E.G.

    1962-01-01

    This reports evaluates the ground-water resources of about 1,000 square miles in the semiarid uplands south of the Snake River between Bruneau River and Salmon Falls Creek. The outcropping rocks are the Idavada Volcanics of Pliocene age, and the Idaho Group of Pliocene and Plieistocene age, consisting of the Banbury Basalt of middle Pliocene age and overlying predominantly sedimentary deposits of middle Pliocene through middle Pleistocene age. These rocks dip gently northward. The volcanic rocks are the best aquifers, but the yield of water from the sedimentary deposits is adequate for domestic and stock use. About 6,000 acre-feet of water is withdrawn annually from the Idavada Volcanics by 9 irrigation wells to irrigate about 3,000 acres. Only a few tends of acre-feet of water withdrawn from the other formations. The regional dip of the rocks induces weak artesian conditions in the volcanic rocks and somewhat higher artesian head in the sedimentary rocks. Estimated depth to water ranges from less than 250 feet to more than 750 feet, as shown in an accompanying map. The eastern part of the area appears to be more favorable for the development of ground water for irrigation than the western part because of better aquifers at shallower depth.

  2. Residual-oil-saturation-technology test, Bell Creek Field, Montana. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    A field test was conducted of the technology available to measure residual oil saturation following waterflood secondary oil recovery processes. The test was conducted in a new well drilled solely for that purpose, located immediately northwest of the Bell Creek Micellar Polymer Pilot. The area where the test was conducted was originally drilled during 1968, produced by primary until late 1970, and was under line drive waterflood secondary recovery until early 1976, when the area was shut in at waterflood depletion. This report presents the results of tests conducted to determine waterflood residual oil saturation in the Muddy Sandstone reservoir. The engineering techniques used to determine the magnitude and distribution of the remaining oil saturation included both pressure and sidewall cores, conventional well logs (Dual Laterolog - Micro Spherically Focused Log, Dual Induction Log - Spherically Focused Log, Borehole Compensated Sonic Log, Formation Compensated Density-Compensated Neutron Log), Carbon-Oxygen Logs, Dielectric Logs, Nuclear Magnetism Log, Thermal Decay Time Logs, and a Partitioning Tracer Test.

  3. Lateral continuity of the Blarney Creek Thrust, Doonerak Windown, Central Brooks Range, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, C.M.; Julian, F.E.; Phelps, J.C.; Oldow, J.S.; Avellemant, H.G.

    1985-04-01

    The contact between Carboniferous and lower Paleozoic rocks, exposed along the northern margin of the Doonerak window in the central Brooks Range, is a major thrust fault called the Blarney Creek thrust (BCT). The BCT has been traced over a distance of 25 km, from Falsoola Mountain to Wien Mountain. The tectonic nature of this contact is demonstrated by: (1) omission of stratigraphic units above and below the BCT; (2) large angular discordance in orientation of first-generation cleavage at the BCT; (3) numerous thrust imbricates developed in the upper-plate Carboniferous section that sole into the BCT; and (4) truncation of an upper-plate graben structure at the BCT. Lack of evidence for pre-Carboniferous deformation in the lower plate casts doubt on the interpretation of the contact as an angular unconformity. However, the localized presence below the BCT of Mississippian Kekiktuk Conglomerate and Kayak Shale, in apparent depositional contact with lower Paleozoic rocks, suggests that the BCT follows an originally disconformable contact between the Carboniferous and lower Paleozoic rocks. The juxtaposition of younger over older rocks at the BCT is explained by calling upon the BCT to act as the upper detachment surface of a duplex structure. Duplex development involves initial imbrication of the Carboniferous section using the BCT as a basal decollement, followed by formation of deeper thrusts in the lower Paleozoic section, which ramp up and merge into the BCT.

  4. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

    2009-02-19

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation

  5. Hydrologic data for Little Elm Creek, Trinity River basin, Texas, 1976

    Science.gov (United States)

    Slade, R.M.; Hays, T.H.; Schoultz, C.T.

    1976-01-01

    This report contains rainfall, runoff, and storage data collected during the 1976 water year for a 75.5 sq mi area above the stream-gaging station Little Elm Creek near Aubrey, Texas. Floodflows from 35.7 sq mi of the area are regulated by 16 floodwater-retarding structures constructed by the Soil Conservation Service. During the 1976 water year, five storm periods were selected for detailed computations and analyses. Beginning with the 1975 water year, water-quality data is given for Little Elm Creek. Investigations in the Little Elm Creek watershed were terminated on September 30, 1976. (Woodard-USGS)

  6. Correlations among hydrocarbon microseepage, soil chemistry, and uptake of micronutrients by plants, Bell Creek oil field, Montana

    Science.gov (United States)

    Roeming, S.S.; Donovan, T.J.

    1985-01-01

    Chelate-extractable iron and manganese concentrations in soils over and around the Bell Creek oil field suggest that compared to low average background values, there are moderate amounts of these elements directly over the production area and higher concentrations distributed in an aureole pattern around the periphery of the field. Adsorbed and organically bound iron and manganese appear to be readily taken up by plants resulting in anomalously high levels of these elements in leaves and needles over the oil field and suggesting correlation with corresponding low concentrations in soils. Iron and manganese appear to have bypassed the soil formation process where, under normal oxidizing conditions, they would have ultimately precipitated as insoluble oxides and hydroxides. ?? 1985.

  7. New porcellioidean gastropods from early Devonian of Royal Creek area, Yukon Territory, Canada, with notes on their early phylogeny

    Science.gov (United States)

    Fryda, J.; Blodgett, R.B.; Lenz, A.C.; Manda, S.

    2008-01-01

    This paper presents a description of new gastropods belonging to the superfamily Porcellioidea (Vetigastropoda) from the richly diverse Lower Devonian gastropod fauna of the Road River Formation in the Royal Creek area, Yukon Territory. This fauna belongs to Western Canada Province of the Old World Realm. The Pragian species Porcellia (Porcellia) yukonensis n. sp. and Porcellia (Paraporcellia) sp. represent the oldest presently known members of subgenera Porcellia (Porcellia) and Porcellia (Paraporcellia). Their simple shell ornamentation fits well with an earlier described evolutionary trend in shell morphology of the Porcellinae. Late Pragian to early Emsian Perryconcha pulchra n. gen. and n. sp. is the first member of the Porcellioidea bearing a row of tremata on adult teleoconch whorls. The occurrence of this shell feature in the Porcellioidea is additional evidence that the evolution of the apertural slit was much more complicated than has been proposed in classical models of Paleozoic gastropod evolution. Copyright ?? 2008, The Paleontological Society.

  8. Radiocarbon ages of terrestrial gastropods extend duration of ice-free conditions at the Two Creeks forest bed, Wisconsin, USA

    Science.gov (United States)

    Rech, Jason A.; Nekola, Jeffrey C.; Pigati, Jeffrey S.

    2012-01-01

    Analysis of terrestrial gastropods that underlie the late Pleistocene Two Creeks forest bed (~ 13,800–13,500 cal yr BP) in eastern Wisconsin, USA provides evidence for a mixed tundra-taiga environment prior to formation of the taiga forest bed. Ten new AMS 14C analyses on terrestrial gastropod shells indicate the mixed tundra-taiga environment persisted from ~ 14,500 to 13,900 cal yr BP. The Twocreekan climatic substage, representing ice-free conditions on the shore of Lake Michigan, therefore began near the onset of peak warming conditions during the Bølling–Allerød interstadial and lasted ~ 1000 yr, nearly 600 yr longer than previously thought. These results provide important data for understanding the response of continental ice sheets to global climate forcing and demonstrate the potential of using terrestrial gastropod fossils for both environmental reconstruction and age control in late Quaternary sediments.

  9. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Kane, D.L.

    1986-01-01

    In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. During the ablation period, runoff dominates the hydrologic cycle. Some meltwater goes to rewetting the organic soils in the active layer. The remainder is lost primarily because of evaporation, since transpiration is not a very active process at this time. Following the snowmelt period, evapotranspiration becomes the dominate process, with base flow contributing the other watershed losses. It is important to note that the water initally lost by evapotranspiration entered the organic layer during melt. This water from the snowpack ensures that each year the various plant communities will have sufficient water to start a new summer of growth.

  10. Biogeochemical controls on mercury methylation in the Allequash Creek wetland.

    Science.gov (United States)

    Creswell, Joel E; Shafer, Martin M; Babiarz, Christopher L; Tan, Sue-Zanne; Musinsky, Abbey L; Schott, Trevor H; Roden, Eric E; Armstrong, David E

    2017-06-01

    We measured mercury methylation potentials and a suite of related biogeochemical parameters in sediment cores and porewater from two geochemically distinct sites in the Allequash Creek wetland, northern Wisconsin, USA. We found a high degree of spatial variability in the methylation rate potentials but no significant differences between the two sites. We identified the primary geochemical factors controlling net methylmercury production at this site to be acid-volatile sulfide, dissolved organic carbon, total dissolved iron, and porewater iron(II). Season and demethylation rates also appear to regulate net methylmercury production. Our equilibrium speciation modeling demonstrated that sulfide likely regulated methylation rates by controlling the speciation of inorganic mercury and therefore its bioavailability to methylating bacteria. We found that no individual geochemical parameter could explain a significant amount of the observed variability in mercury methylation rates, but we found significant multivariate relationships, supporting the widely held understanding that net methylmercury production is balance of several simultaneously occurring processes.

  11. Crane Creek known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Crane Creek known geothermal resource area (KGRA) is located in Washington County, in southwestern Idaho. Estimated hydrothermal resource temperatures for the region are 166/sup 0/C (Na-K-Ca) and 176/sup 0/C (quartz). The KGRA is situated along the west side of the north-south trending western Idaho Fault Zone. Historic seismicity data for the region identify earthquake activity within 50 km. The hot springs surface along the margin of a siliceous sinter terrace or in adjacent sediments. Approximately 75% of the KGRA is underlain by shallow, stony soils on steep slopes indicating topographic and drainage limitations to geothermal development. Species of concern include sage grouse, antelope, and mule deer. There is a high probability of finding significant prehistoric cultural resources within the proposed area of development.

  12. Reservoir engineering analysis of Pincher Creek gas field performance

    Energy Technology Data Exchange (ETDEWEB)

    Ambastha, A. K.; Chornet, M.; Beliveau, D. A. [Shell Canada Limited, Calgary, AB (Canada)

    1998-12-31

    Shortened producing life of wells in the Pincher Creek Gas Field in Alberta, a low-permeability, naturally-fractured carbonate reservoir, are attributed to water-related problems. Forty years of production data have been analyzed using conventional material balance, decline curve analysis, and communicating reservoir model to verify initial gas-in-place and reserve estimates. Efforts have also been made to understand the water production mechanisms in this field. Results of various analyses show that the water production behaviour is not related to permeability distribution. Water problems are also unrelated to distance from the bottom of perforation to gas-water contact. It is expected that it will be possible to infer water production mechanisms from diagnostic plots of the water-gas ratio and Cartesian derivative of water-gas ratio versus time, using available production data. 15 refs., 4 tabs., 24 figs.

  13. Sherman Creek Hatchery; 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Mitch [Washington Dept. of Fish and Wildlife, Olympia, WA (United States). Hatcheries Program

    1997-01-01

    The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations of the SCH have been modified to better achieve program goals. These strategic changes have been the result of recommendations through the Lake Roosevelt Hatcheries Coordination Team (LRHCT) and were implemented to enhance imprinting, improve survival and operate the two kokanee facilities more effectively. The primary change has been to replace the kokanee fingerling program with a kokanee yearling (post smolt) program. The second significant change has been to rear 120,000 rainbow trout fingerling at SCH from July through October to enable the Spokane Tribal Hatchery (STH) to rear additional kokanee for the yearling program.

  14. Protect and Restore Mill Creek Watershed : Annual Report CY 2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

  15. Characterization of water quality and biological communities, Fish Creek, Teton County, Wyoming, 2007-2011

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Edmiston, C. Scott; Taylor, Michelle L.; Leemon, Daniel J.

    2013-01-01

    Fish Creek, an approximately 25-kilometer-long tributary to Snake River, is located in Teton County in western Wyoming near the town of Wilson. Fish Creek is an important water body because it is used for irrigation, fishing, and recreation and adds scenic value to the Jackson Hole properties it runs through. Public concern about nuisance growths of aquatic plants in Fish Creek has been increasing since the early 2000s. To address these concerns, the U.S. Geological Survey conducted a study in cooperation with the Teton Conservation District to characterize the hydrology, water quality, and biologic communities of Fish Creek during 2007–11. The hydrology of Fish Creek is strongly affected by groundwater contributions from the area known as the Snake River west bank, which lies east of Fish Creek and west of Snake River. Because of this continuous groundwater discharge to the creek, land-use activities in the west bank area can affect the groundwater quality. Evaluation of nitrate isotopes and dissolved-nitrate concentrations in groundwater during the study indicated that nitrate was entering Fish Creek from groundwater, and that the source of nitrate was commonly a septic/sewage effluent or manure source, or multiple sources, potentially including artificial nitrogen fertilizers, natural soil organic matter, and mixtures of sources. Concentrations of dissolved nitrate and orthophosphate, which are key nutrients for growth of aquatic plants, generally were low in Fish Creek and occasionally were less than reporting levels (not detected). One potential reason for the low nutrient concentrations is that nutrients were being consumed by aquatic plant life that increases during the summer growing season, as a result of the seasonal increase in temperature and larger number of daylight hours. Several aspects of Fish Creek’s hydrology contribute to higher productivity and biovolume of aquatic plants in Fish Creek than typically observed in streams of its size in

  16. Post-Miocene Right Separation on the San Gabriel and Vasquez Creek Faults, with Supporting Chronostratigraphy, Western San Gabriel Mountains, California

    Science.gov (United States)

    Beyer, Larry A.; McCulloh, Thane H.; Denison, Rodger E.; Morin, Ronald W.; Enrico, Roy J.; Barron, John A.; Fleck, Robert J.

    2009-01-01

    The right lateral San Gabriel Fault Zone in southern California extends from the northwestern corner of the Ridge Basin southeastward to the eastern end of the San Gabriel Mountains. It bifurcates to the southeast in the northwestern San Gabriel Mountains. The northern and older branch curves eastward in the range interior. The southern younger branch, the Vasquez Creek Fault, curves southeastward to merge with the Sierra Madre Fault Zone, which separates the San Gabriel Mountains from the northern Los Angeles Basin margin. An isolated exposure of partly macrofossiliferous nearshore shallow-marine sandstone, designated the Gold Canyon beds, is part of the southwest wall of the fault zone 5.5 km northwest of the bifurcation. These beds contain multiple subordinate breccia-conglomerate lenses and are overlain unconformably by folded Pliocene-Pleistocene Saugus Formation fanglomerate. The San Gabriel Fault Zone cuts both units. Marine macrofossils from the Gold Canyon beds give an age of 5.2+-0.3 Ma by 87Sr/86Sr analyses. Magnetic polarity stratigraphy dates deposition of the overlying Saugus Formation to between 2.6 Ma and 0.78 Ma. Distinctive metaplutonic rocks of the Mount Lowe intrusive suite in the San Gabriel Range are the source of certain clasts in both the Gold Canyon beds and Saugus Formation. Angular clasts of nondurable Paleocene sandstone also occur in the Gold Canyon beds. The large size and angularity of some of the largest of both clast types in breccia-conglomerate lenses of the beds suggest landslides or debris flows from steep terrain. Sources of Mount Lowe clasts, originally to the north or northeast, are now displaced southeastward by faulting and are located between the San Gabriel and Vasquez Creek faults, indicating as much as 12+-2 km of post-Miocene Vasquez Creek Fault right separation, in accord with some prior estimates. Post-Miocene right slip thus transferred onto the Vasquez Creek Fault southeast of the bifurcation. The right separation

  17. Pristine mangrove creek waters are a sink of nitrous oxide

    Science.gov (United States)

    Maher, Damien T.; Sippo, James Z.; Tait, Douglas R.; Holloway, Ceylena; Santos, Isaac R.

    2016-05-01

    Nitrous oxide (N2O) is an important greenhouse gas, but large uncertainties remain in global budgets. Mangroves are thought to be a source of N2O to the atmosphere in spite of the limited available data. Here we report high resolution time series observations in pristine Australian mangroves along a broad latitudinal gradient to assess the potential role of mangroves in global N2O budgets. Surprisingly, five out of six creeks were under-saturated in dissolved N2O, demonstrating mangrove creek waters were a sink for atmospheric N2O. Air-water flux estimates showed an uptake of 1.52 ± 0.17 μmol m-2 d-1, while an independent mass balance revealed an average sink of 1.05 ± 0.59 μmol m-2 d-1. If these results can be upscaled to the global mangrove area, the N2O sink (~2.0 × 108 mol yr-1) would offset ~6% of the estimated global riverine N2O source. Our observations contrast previous estimates based on soil fluxes or mangrove waters influenced by upstream freshwater inputs. We suggest that the lack of available nitrogen in pristine mangroves favours N2O consumption. Widespread and growing coastal eutrophication may change mangrove waters from a sink to a source of N2O to the atmosphere, representing a positive feedback to climate change.

  18. Geohydrology and water quality of the stratified-drift aquifers in Upper Buttermilk Creek and Danby Creek Valleys, Town of Danby, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2015-11-20

    In 2006, the U.S. Geological Survey, in cooperation with the Town of Danby and the Tompkins County Planning Department, began a study of the stratified-drift aquifers in the upper Buttermilk Creek and Danby Creek valleys in the Town of Danby, Tompkins County, New York. In the northern part of the north-draining upper Buttermilk Creek valley, there is only one sand and gravel aquifer, a confined basal unit that overlies bedrock. In the southern part of upper Buttermilk Creek valley, there are as many as four sand and gravel aquifers, two are unconfined and two are confined. In the south-draining Danby Creek valley, there is an unconfined aquifer consisting of outwash and kame sand and gravel (deposited by glacial meltwaters during the late Pleistocene Epoch) and alluvial silt, sand, and gravel (deposited by streams during the Holocene Epoch). In addition, throughout the study area, there are several small local unconfined aquifers where large tributaries deposited alluvial fans in the valley.

  19. Flood-inundation maps for Big Creek from the McGinnis Ferry Road bridge to the confluence of Hog Wallow Creek, Alpharetta and Roswell, Georgia

    Science.gov (United States)

    Musser, Jonathan W.

    2015-08-20

    Digital flood-inundation maps for a 12.4-mile reach of Big Creek that extends from 260 feet above the McGinnis Ferry Road bridge to the U.S. Geological Survey (USGS) streamgage at Big Creek below Hog Wallow Creek at Roswell, Georgia (02335757), were developed by the USGS in cooperation with the cities of Alpharetta and Roswell, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Big Creek near Alpharetta, Georgia (02335700). Real-time stage information from this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs for many streams where the USGS operates streamgages and provides flow data. The forecasted peak-stage information for the USGS streamgage at Big Creek near Alpharetta (02335700), available through the AHPS Web site, may be used in conjunction with the maps developed for this study to show predicted areas of flood inundation.

  20. Flood-inundation maps for Big Creek from the McGinnis Ferry Road bridge to the confluence of Hog Wallow Creek, Alpharetta and Roswell, Georgia

    Science.gov (United States)

    Musser, Jonathan W.

    2015-08-20

    Digital flood-inundation maps for a 12.4-mile reach of Big Creek that extends from 260 feet above the McGinnis Ferry Road bridge to the U.S. Geological Survey (USGS) streamgage at Big Creek below Hog Wallow Creek at Roswell, Georgia (02335757), were developed by the USGS in cooperation with the cities of Alpharetta and Roswell, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Big Creek near Alpharetta, Georgia (02335700). Real-time stage information from this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs for many streams where the USGS operates streamgages and provides flow data. The forecasted peak-stage information for the USGS streamgage at Big Creek near Alpharetta (02335700), available through the AHPS Web site, may be used in conjunction with the maps developed for this study to show predicted areas of flood inundation.

  1. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    Science.gov (United States)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely

  2. Biomonitoring of fish communities, using the Index of Biotic Integrity (IBI) in Rabbit Creek-Cat Creek Watershed, Summer 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Index of Biotic Integrity (IBI) is a method for evaluating the health of water bodies and watersheds by analyzing sample catches of fishes. Sites are scored on a numerical scale of 12--60 and on that basis assigned to a ``bioclass`` ranging from ``very poor`` to ``excellent.`` Overall, the major causes of depressed IBI scores in the Rabbit Creek watershed would appear to be: Organic pollution, mostly from livestock, but also from agricultural runoff and possible septic tank failures; sedimentation, principally from stream bank damage by cattle, also possibly from agriculture and construction; toxic pollution from agrochemicals applied to Holly Springs Golf course and agricultural fields` and Warming of water and evaporation loss due to elimination of shade on stream banks and construction of ponds.

  3. Correlation, sedimentology, structural setting, chemical composition, and provenance of selected formations in Mesoproterozoic Lemhi Group, central Idaho

    Science.gov (United States)

    Tysdal, Russell G.; Lindsey, David A.; Taggart, Joseph E.

    2003-01-01

    A unit of the Mesoproterozoic Apple Creek Formation of the Lemhi Range previously was correlated with part of the lower subunit of the Mesoproterozoic Yellowjacket Formation in the Salmon River Mountains. Strata currently assigned to the middle subunit of the Yellowjacket Formation lie conformably above the Apple Creek unit in the Salmon River Mountains, and are here renamed the banded siltite unit and reassigned to the Apple Creek Formation. Almost all of the banded siltite unit is preserved within the Salmon River Mountains, where it grades upward into clastic rocks that currently are assigned to the upper subunit of the Yellowjacket Formation and that here are reassigned to the Gunsight Formation. The banded siltite unit of the Apple Creek Formation is composed of a turbidite sequence, as recognized by previous workers. Uppermost strata of the unit were reworked by currents, possibly storm generated, and adjusted to a high water content by developing abundant soft-sediment deformation features. Basal strata of the overlying Gunsight Formation in the Salmon River Mountains display abundant hummocky crossbeds, storm-generated features deposited below fair-weather wave base, that are conformable above the storm-reworked deposits. The hummocky crossbedded strata grade upward into marine shoreface strata deposited above fair-weather wave base, which in turn are succeeded by fluvial strata. Hummocky and shoreface strata are absent from the Gunsight Formation in the Lemhi Range. The major thickness of the Gunsight Formation in both the Salmon River Mountains and the Lemhi Range is composed of fluvial rocks, transitional in the upper part into marine rocks of the Swauger Formation. The fluvial strata are mainly characterized by stacked sheets of metasandstone and coarse siltite; they are interpreted as deposits of braided rivers. The Poison Creek thrust fault of the Lemhi Range extends northwestward through the study area in the east-central part of the Salmon River

  4. Revised nomenclature, definitions, and correlations for the Cretaceous formations in USGS-Clubhouse Crossroads #1, Dorchester County, South Carolina

    Science.gov (United States)

    Gohn, Gregory S.

    1992-01-01

    and definitions of the Cape Fear, Middendorf, Black Creek, and Peedee Formations originally used for the core by Gohn and others and Hazel and others are substantially changed herein. In addition, the Black Creek Formation of the core is raised in rank to become the Black Creek Group, which consists of two newly defined formations (Cane Acre and Coachman) and two newly recognized formations previously described in outcrop (Bladen and Donoho Creek). Four subsurface formations that are not known in outcrop are newly defined in the core (Beech Hill, Clubhouse, Shepherd Grove, and Caddin). The revised stratigraphy of the Cretaceous section in the Clubhouse Crossroads #1 core, from base to top, is as follows: Beech Hill Formation (Cenomanian?), Clubhouse Formation (late Cenomanian? and Turonian), Cape Fear Formation (late Turonian? to early Santonian), Middendorf Formation (middle Santonian), Shepherd Grove Formation (late Santonian and early Campanian), Caddin Formation (early Campanian), Cane Acre Formation (middle Campanian, Black Creek Group), Coachman Formation (middle to late Campanian, Black Creek Group), Bladen Formation (late Campanian, Black Creek Group), Donoho Creek Formation (early Maastrichtian, Black Creek Group), and Peedee Formation (late early Maastrichtian to middle or late Maastrichtian).

  5. Squaw Creek National Wildlife Refuge: Comprehensive Conservation Plan and Environmental Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Squaw Creek NWR for the next 15 years. This plan outlines the Refuge vision and purpose...

  6. Quarterly Narrative Reports : Pishkun, Willow Creek, Benton Lake [National Wildlife Refuge] : February to April 1942

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Willow Creek, Benton Lake, and Pishkun National Wildlife Refuge outlines Refuge accomplishments from February to April of 1942. The report...

  7. Quarterly Narrative Reports : Pishkun, Willow Creek, Benton Lake [National Wildlife Refuge] : August to October 1941

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for WIllow Creek, Benton Lake, and Pishkun National Wildlife Refuge outlines Refuge accomplishments from August to October of 1941. The report...

  8. Quarterly Narrative Reports : Pishkun, Willow Creek, Benton Lake [National Wildlife Refuge] : February to April 1940

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Willow Creek, Benton Lake, and Pishkun National Wildlife Refuge outlines Refuge accomplishments from February to April of 1940. The report...

  9. Determination of petroleum hydrocarbons in sediment samples from Bombay harbour, Dharamtar creek and Amba river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, S.A.; Dhaktode, S.S.; Kadam, A.N.

    The surface sediment samples were collected by van Veen grab sampler during premonsoon, monsoon and postmonsoon seasons from Bombay harbour, Dharamtar creek and Amba river estuary Moisture content of the samples ranges from 36 to 67.5...

  10. Quarterly Grain Report : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : January to April 1945

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This grain report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge discusses all grain received, disposed of during the quarterly period of January to...

  11. Quarterly Grain Report : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : May to August 1944

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This grain report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge discusses all grain received, disposed of during the quarterly period of May to...

  12. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : September to December 1955

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge outlines Refuge accomplishments from September through December of 1955. The...

  13. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : September to December 1950

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge outlines Refuge accomplishments from September through December of 1950. The...

  14. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : May to August 1950

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Willow Creek, Pishkun, Benton Lake National Wildlife Refuge outlines Refuge accomplishments from May to August 1950. The report begins by...

  15. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : May to August 1952

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge outlines Refuge accomplishments from May through August of 1952. The report...

  16. Quarterly Narrative Reports : Pishkun, Willow Creek, Benton Lake [National Wildlife Refuge] : August to October 1940

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for WIllow Creek, Benton Lake, and Pishkun National Wildlife Refuge outlines Refuge accomplishments from August to October of 1940. The report...

  17. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : May to August 1953

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge outlines Refuge accomplishments from May to August of 1953. The report begins...

  18. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : May to August 1947

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Willow Creek, Pishkun, Benton Lake National Wildlife Refuge outlines Refuge accomplishments from May to August 1947. The report begins by...

  19. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : September to December 1947

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge outlines Refuge accomplishments from September through December of 1947. The...

  20. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : September to December 1960

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge outlines Refuge accomplishments from September through December of 1960. The...

  1. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : September to December 1943

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Willow Creek, Pishkun, Benton Lake National Wildlife Refuge outlines Refuge accomplishments from September to December 1943. The report...

  2. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : September to December 1959

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge outlines Refuge accomplishments from September through December of 1959. The...

  3. Benton Lake, Willow Creek, Pishkun National Wildlife Refuges : Narrative Report : January to December 1966

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Benton Lake, Willow Creek, Pishkun outlines Refuge accomplishments during the 1966 calendar year. The report begins by summarizing...

  4. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : January to April 1954

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Pishkun, Willow Creek, and Benton Lake National Wildlife Refuges outlines Refuge accomplishments from January through April of 1954. The...

  5. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : September to December 1956

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge outlines Refuge accomplishments from September through December of 1956. The...

  6. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : May to August 1955

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge outlines Refuge accomplishments from May through August of 1955. The report...

  7. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : May to August 1948

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Willow Creek, Pishkun, Benton Lake National Wildlife Refuge outlines Refuge accomplishments from May to August 1948. The report begins by...

  8. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : January to April 1955

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Pishkun, Willow Creek, and Benton Lake National Wildlife Refuges outlines Refuge accomplishments from January through April of 1955. The...

  9. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : September to December 1957

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge outlines Refuge accomplishments from September through December of 1957. The...

  10. Quarterly Narrative Reports : Pishkun, Willow Creek, Benton Lake [National Wildlife Refuge] : May to July 1941

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Willow Creek, Benton Lake, and Pishkun National Wildlife Refuge outlines Refuge accomplishments from May to July 1941. The report begins by...

  11. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : January to April 1947

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Pishkun, Willow Creek, and Benton Lake National Wildlife Refuges outlines Refuge accomplishments from January through April of 1947. The...

  12. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : January to April 1948

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Pishkun, Willow Creek, and Benton Lake National Wildlife Refuges outlines Refuge accomplishments from January through April of 1948. The...

  13. Wetted channel and bar features for Hunter Creek, Oregon in 1965

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  14. Walnut Creek National Wildlife Refuge- Prairie Learning Center : Annual Narrative Report : Calendar Year 1993

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the 1993 annual narrative report for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The report begins by covering the...

  15. Biochemical indicators of heavy metal contaminants in Big Creek, Iron County, Missouri

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The size and weight of the Northern hogsuckers collected from Big Creek generally decreased with distance upstream; specimens from Site 1 (below Annapolis) were...

  16. GIS based water quality indexing of Malad creek, Mumbai (India): an impact of sewage discharges.

    Science.gov (United States)

    Vijay, Ritesh; Bhattacharyya, Tapas; Joshi, Rucha R; Dhage, S S; Sohony, R A

    2011-04-01

    Malad creek is one of the most heavily polluted water bodies in Mumbai, India. Presently, creek receives wastewater and sewage from open drains and nallahs as well as partially treated wastewater from treatment facilities. The objective of the present study was to assess and classify the water quality zones spatially and temporally based on physico-chemical and bacteriological analysis. For this, GIS based methodology was integrated with water quality indexing, according to National Sanitation Foundation. Nine water quality parameters were considered to generate the indices that represent the overall status of creek water quality. Based on field observations and spatial distribution of water quality, various options were suggested for improvement in water quality of the creek.

  17. Squaw Creek National Wildlife Refuge: Annual narrative report: Calendar year 1977

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek NWR outlines Refuge accomplishments during the 1977 calendar year. The report begins with an introduction to the Refuge...

  18. Squaw Creek National Wildlife Refuge : Annual Narrative Report : Fiscal Year 2005

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge summarizes refuge activities during the 2005 fiscal year. The report begins with and...

  19. Water Resource Inventory and Assessment (WRIA) - Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report for Squaw Creek National Wildlife Refuge describes current hydrologic information, provides an...

  20. Pond Creek Coal Zone Remaining Resources by County in Kentucky, West Virginia, and Virginia

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is a polygon coverage of counties limited to the extent of the Pond Creek coal zone resource areas and attributed with remaining resources (millions of...

  1. Pond Creek Coal Zone Point Data (Geology) in Kentucky, West Virginia, and Virginia

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is a point coverage of attributes on data location, thickness of the Pond Creek coal bed main bench, and its elevation, in feet. The file is also found...

  2. 1983 Migratory Bird Disease Contingency Plan Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Disease Contingency Plan for Squaw Creek National Wildlife Refuge provides background information on disease surveillance; an inventory of Refuge personnel,...

  3. Squaw Creek National Wildlife Refuge: Annual narrative report: Calendar year 1980

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek NWR outlines Refuge accomplishments during the 1980 calendar year. The report begins with an introduction to the Refuge...

  4. Walnut Creek National Wildlife Refuge- Prairie Learning Center : Annual Narrative Report : Calendar Year 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the 1995 annual narrative report for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The report begins by covering the...

  5. Walnut Creek National Wildlife Refuge- Prairie Learning Center : Annual Narrative Report : Calendar Year 1994

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the 1994 annual narrative report for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The report begins by covering the...

  6. Thickness of the Upper Hell Creek hydrogeologic unit in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the Upper Hell Creek hydrogeologic unit in the Powder River basin. The data are presented as ASCII text files that...

  7. Thickness of the Upper Hell Creek hydrogeologic unit in the Williston structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the Upper Hell Creek hydrogeologic unit in the Williston structural basin. The data are presented as ASCII text...

  8. Cypress Creek National Wildlife Refuge: Annual Narrative: Calendar years 2001-2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during calendar years 2001-2002. The report begins with an...

  9. Kinderhook Creek section north of the MAVA study site in Columbia County.

    Data.gov (United States)

    National Park Service, Department of the Interior — This shapefile is part of a project called Biological Surveys at the Martin Van Buren NHS conducted by Hudsonia Ltd. It depicts a part of Kinderhook Creek north of...

  10. Squaw Creek National Wildlife Refuge Annual narrative report: Calendar year 1983

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek NWR outlines Refuge accomplishments during the 1983 calendar year. The report begins with a summary of the year's...

  11. Heavy Equipment Use Areas at Sand Creek Massacre National Historic Site, Colorado

    Data.gov (United States)

    National Park Service, Department of the Interior — This is a vector polygon shapefile showing areas where heavy equipment use is permitted at Sand Creek Massacre NHS. The coordinates for this dataset were heads up...

  12. Bedrock Geology of the turkey Creek Drainage Basin, Jefferson County, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geospatial data set describes bedrock geology of the Turkey Creek drainage basin in Jefferson County, Colorado. It was digitized from maps of fault locations...

  13. Cypress Creek National Wildlife Refuge: Annual Narrative Report: Calendar year 1996

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during the 1996 calendar year. The report begins with a summary...

  14. Cypress Creek National Wildlife Refuge: Annual Narrative Report: Calendar year 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during the 1992 calendar year. The report begins with a summary...

  15. Walnut Creek National Wildlife Refuge : Annual Narrative Report : Calendar Year 1990

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the 1990 annual narrative report for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The refuge was established on...

  16. A proposal to study the insect fauna of Walnut Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — It is the purpose of this proposed study to identify target insect fauna on the Walnut Creek National Wildlife Refuge by completing comprehensive surveys of remnant...

  17. Squaw Creek National Wildlife Refuge : Annual Narrative Report : Fiscal Year 2007

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge summarizes refuge activities during the 2007 fiscal year. The report begins with and...

  18. Benton Lake, Willow Creek, Pishkun National Wildlife Refuges : Narrative Report : January to December 1967

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Benton Lake, Willow Creek, Pishkun outlines Refuge accomplishments during the 1967 calendar year. The report begins by summarizing...

  19. EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Corridor Unit, Texas, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A bare-earth topography Digital Elevation Model (DEM) mosaic for the Big Sandy Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from...

  20. Pond Creek Coal Zone County Statistics (Chemistry) in Kentucky, West Virginia, and Virginia

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is a polygon coverage of counties limited to the extent of the Pond Creek coal zone resource areas and attributed with statistics on these coal quality...

  1. Pipeline crossing across Manori Creek, Bombay; advantages of marine acoustic techniques in route selection

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Moraes, C.

    The National Institute of Oceanography (NIO) had carried out such survey in Bombay for obtaining geological informations in order to plan and design a pipeline route crossing Manori Creek to transport fresh water. The survey comprising...

  2. Annual Report 1937 : Ninepipe, Pablo, Pishkun, Willow Creek and Benton Lake [National Wildlife] Refuges of Montana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for fiscal year 1937 covers Refuge activities on Ninepipe, Pablo, Pishkun, Willow Creek and Benton Lake National Wildlife Refuges....

  3. Annual Report 1938 : Ninepipe, Pablo, Pishkun, Willow Creek and Benton Lake [National Wildlife] Refuges of Montana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for fiscal year 1938 covers Refuge activities on Ninepipe, Pablo, Pishkun, Willow Creek and Benton Lake National Wildlife Refuges....

  4. Annual Report 1939 : Ninepipe, Pablo, Pishkun, Willow Creek and Benton Lake [National Wildlife] Refuges of Montana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for fiscal year 1939 covers Refuge activities on Ninepipe, Pablo, Pishkun, Willow Creek and Benton Lake National Wildlife Refuges....

  5. Squaw Creek National Wildlife Refuge: Annual narrative report: Calendar year 1989

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek NWR outlines Refuge accomplishments during the 1989 calendar year. The report begins with a summary of the year's...

  6. Diel variation in fish assemblages in tidal creeks in southern Brazil

    Directory of Open Access Journals (Sweden)

    JF. Oliveira-Neto

    Full Text Available Tidal creeks are strongly influenced by tides and are therefore exposed to large differences in salinity and depth daily. Here we compare fish assemblages in tidal creeks between day and night in two tidal creeks in southern Brazil. Monthly day and night, simultaneous collections were carried out in both creeks using fyke nets. Clupeiformes tended to be caught more during the day. Cathorops spixii, Genidens genidens and Rypticus randalli tended to be caught at night. Sciaenidae also tended to be caught more during the night. In general, pelagic species were diurnal, while deep water species were nocturnal. These trends are probably due to a variety of causes, such as phylogeny, predation and net avoidance.

  7. Walnut Creek National Wildlife Refuge- Prairie Learning Center : Annual Narrative Report : Calendar Year 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the 1992 annual narrative report for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The report begins by covering the...

  8. An Evaluation of Ecosystem Restoration Options for Cypress Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Evaluation of Ecosystem Restoration and Management Options covers the hydrogeomorphic analysis (HGM) for Cypress Creek National Wildlife Refuge. This three step...

  9. EAARL Topography--Three Mile Creek and Mobile-Tensaw Delta, Alabama, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the Mobile-Tensaw Delta region and Three Mile Creek in Alabama was produced from remotely sensed, geographically...

  10. Reciprocal Fire Protection Agreement between Silver Creek Rangeland Fire Protection Association and Burns Interagency Fire Zone

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the Reciprocal Fire Protection Agreement between the Silver Creek Rangeland Fire Protection Association and the Burns Interagency Fire Zone. The objectives...

  11. The Base of the Parachute Creek Member Digital Line Outcrop of the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The base of the Parachute Creek Member outcrop was needed to limit resource calculations in the Piceance Basin, Colorado as part of a 2009 National Oil Shale...

  12. 2007 Bureau of Land Management (BLM) Lidar: Panther Creek Watershed, Yamhill County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset represents LiDAR elevations acquired during a leaf-off and a leaf-on vegetative condition for the Upper Panther Creek Watershed in the Yamhill County...

  13. Altitude of the top of the Lower Hell Creek aquifer in the Williston structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the Lower Hell Creek aquifer in the Williston structural basin....

  14. Altitude of the top of the Upper Hell Creek hydrogeologic unit in the Williston structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the Upper Hell Creek hydrogeologic unit in the Williston...

  15. Benton Lake, Willow Creek, Pishkun National Wildlife Refuges : Narrative Report : January to December 1965

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Benton Lake, Willow Creek, Pishkun outlines Refuge accomplishments during the 1965 calendar year. The report begins by summarizing...

  16. Estimating pothole wetland connectivity to Pipestem Creek, North Dakota: an isotopic approach

    Science.gov (United States)

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine hydrologic connectivity within Pipestem Creek, Nort...

  17. Snake Creek National Wildlife Refuge Narrative report: January through December, 1966

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments during the 1966 calendar year. The report begins by summarizing...

  18. Snake Creek National Wildlife Refuge : January 1 to April 30, 1960

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1960. The report begins by summarizing...

  19. Snake Creek National Wildlife Refuge Narrative report: September, October, November, and December, 1962

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1962. The report begins by...

  20. Snake Creek National Wildlife Refuge [Narrative report: September 1 - December 31, 1961

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1961. The report begins by...