WorldWideScience

Sample records for hunpu wastewater-irrigated area

  1. Expansion of urban area and wastewater irrigated rice area in Hyderabad, India

    Science.gov (United States)

    Gumma, K.M.; van, Rooijen D.; Nelson, A.; Thenkabail, P.S.; Aakuraju, Radha V.; Amerasinghe, P.

    2011-01-01

    The goal of this study was to investigate land use changes in urban and peri-urban Hyderabad and their influence on wastewater irrigated rice using Landsat ETM + data and spectral matching techniques. The main source of irrigation water is the Musi River, which collects a large volume of wastewater and stormwater while running through the city. From 1989 to 2002, the wastewater irrigated area along the Musi River increased from 5,213 to 8,939 ha with concurrent expansion of the city boundaries from 22,690 to 42,813 ha and also decreased barren lands and range lands from 86,899 to 66,616 ha. Opportunistic shifts in land use, especially related to wastewater irrigated agriculture, were seen as a response to the demand for fresh vegetables and easy access to markets, exploited mainly by migrant populations. While wastewater irrigated agriculture contributes to income security of marginal groups, it also supplements the food basket of many city dwellers. Landsat ETM + data and advanced methods such as spectral matching techniques are ideal for quantifying urban expansion and associated land use changes, and are useful for urban planners and decision makers alike. ?? 2011 Springer Science+Business Media B.V.

  2. Possible Use of Treated Wastewater as Irrigation Water at Urban Green Area

    Directory of Open Access Journals (Sweden)

    Elif Bozdoğan

    2014-08-01

    Full Text Available Ever increasing demands for fresh water resources have brought the reuse of treated wastewater into agendas. Wastewater has year-long potential to be used as an irrigation water source. Therefore, treated wastewater is used as irrigation water over agricultural lands and urban landscapes, as process water in industrial applications, as back-up water in environmental applications in water resources and wetlands of dry regions. The present study was conducted to investigate the possible use of domestic wastewater treated through pilot-scale constructed wetland of Adana-Karaisalı with dominant Mediterranean climate in irrigation of marigold (Tagetes erecta, commonly used over urban landscapes. Experiments were carried out between the dates May-November 2008 for 7 months with fresh water and treated wastewater. Plant growth parameters (plant height, plant diameter, number of branches and flowering parameters (number of flowers, flower diameter, flower pedicle thickness were monitored in monthly basis. Results revealed positive impacts of treated wastewater irrigations on plant growth during the initial 5 months between May-September but negative impacts in October and November. Similarly, treated wastewater irrigations had positive impacts on flowering parameters during the initial 3 months but had negative impacts during the subsequent 4 months. Such a case indicated shortened visual efficiencies of marigold. Therefore, treated wastewater can be used as an alternative water resource in irrigation of annual flowers, but better results can be attained by mixing treated wastewater with fresh water at certain ratios.

  3. Interaction between Soil Physicochemical Parameters and Earthworm Communities in Irrigated Areas with Natural Water and Wastewaters

    Directory of Open Access Journals (Sweden)

    Kourtel Ghanem Nadra

    2017-01-01

    Full Text Available Our objective is to study interaction between physical and chemical properties of soils and their earthworm community characteristics in different areas irrigated by wastewaters and well waters. The fields have different topography and agricultural practices conditions and are located in two regions of Batna department (Eastern Algeria. Both regions are characterized by a semiarid climate with cold winters and Calcisol soils. Nine fields were subject of this study. Three of these fields are located in Ouled Si Slimane region whose irrigation is effectuated by natural waters of Kochbi effluent. The other six fields are located at edges of Wed El Gourzi, effluent from Batna city, and partially treated through water treatment station. The best rates of water saturation and infiltration as well as abundance of earthworms were recorded at sites characterized by irrigation with wastewaters downstream of El Gourzi effluent. PCA characterizes two major groups: a group of hydrodynamic infiltration parameters and structural index stability of soil, explained by fields irrigated with wastewaters downstream of El Gourzi effluent. This group includes chemical characteristics: pH and electric conductivity. The second group is the characteristics of earthworms and includes organic matter content, active limestone levels, and Shannon Biodiversity Index.

  4. Heavy Metal Residues in Soil and Accumulation in Maize at Long-Term Wastewater Irrigation Area in Tongliao, China

    Directory of Open Access Journals (Sweden)

    Yintao Lu

    2015-01-01

    Full Text Available Soil and plant samples were collected from Tongliao, China, during the maize growth cycle between May and October 2010. Heavy metals, such as Cr, Pb, Ni, and Zn, were analyzed. The concentrations of Cr, Pb, Ni, and Zn in the wastewater-irrigated area were higher than those in the topsoil from the groundwater-irrigated area. The concentrations of metals in the maize increased as follows: Pb < Ni < Zn < Cr. In addition, Cr, Pb, and Ni mainly accumulated in the maize roots, and Zn mainly accumulated in the maize fruit. The results of translocation factors (TF and bioconcentration factors (BCF of maize for heavy metals revealed that maize is an excluder plant and a potential accumulator plant and can serve as an ideal slope remediation plant. In addition, the increasing heavy metal contents in soils that have been polluted by wastewater irrigation must result in the accumulation of Cr, Pb, Ni, and Zn in maize. Thus, the pollution level can be decreased by harvesting and disposing of and recovering the plant material.

  5. Characterization of contamination, source and degradation of petroleum between upland and paddy fields based on geochemical characteristics and phospholipid fatty acids.

    Science.gov (United States)

    Zhang, Juan; Wang, Renqing; Du, Xiaoming; Li, Fasheng; Dai, Jiulan

    2012-01-01

    To evaluate contamination caused by petroleum, surface soil samples were collected from both upland and paddy fields along the irrigation canals in the Hunpu wastewater irrigation region in northeast China. N-alkanes, terpanes, steranes, and phospholipid fatty acids (PLFA) in the surface soil samples were analyzed. The aliphatic hydrocarbon concentration was highest in the samples obtained from the upland field near an operational oil well; it was lowest at I-3P where wastewater irrigation promoted the downward movement of hydrocarbons. The Hunpu region was found contaminated by heavy petroleum from oxic lacustrine fresh water or marine deltaic source rocks. Geochemical parameters also indicated significantly heavier contamination and degradation in the upland fields compared with the paddy fields. Principal component analysis based on PLFA showed various microbial communities between petroleum contaminated upland and paddy fields. Gram-negative bacteria indicated by 15:0, 3OH 12:0, and 16:1(9) were significantly higher in the paddy fields, whereas Gram-positive bacteria indicated by i16:0 and 18:1(9)c were significantly higher in the upland fields (p petroleum contamination. Poly-unsaturated PLFA (18:2omega6, 9; indicative of hydrocarbon-degrading bacteria and fungi) was also significantly elevated in the upland fields. This paper recommends more sensitive indicators of contamination and degradation of petroleum in soil. The results also provide guidelines on soil pollution control and remediation in the Hunpu region and other similar regions.

  6. Microbial indicators of fecal contamination in soils under different wastewater irrigation patterns

    International Nuclear Information System (INIS)

    Contreras-Godinez, C. A.; Palacios-Lopez, O. A.; Munoz-Castellanos, L. N.; Saucedo-Teran, R.; Rubio-Arias, H.; Nevarez-Moorillon, G. V.

    2009-01-01

    The use of wastewater to irrigate produce was a common practice in some suburban areas in Mexico. The continuous use of wastewater can increase the chance of fecal soil contamination, which can percolate in soil and finally cause groundwater contamination. A suburban area in Chihuahua, mexico, has been traditionally irradiated with wastewater for production of agriculture goods, including produce and animal foodstuffs. (Author)

  7. Soil Chemistry after Irrigation with Treated Wastewater in Semiarid Climate

    Directory of Open Access Journals (Sweden)

    Pedro Carlos Pacheco de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Soil irrigation using treated wastewater in the Brazilian semiarid region is a promising practice as this area currently faces water scarcity and pollution of water resources by domestic sewage. The aim of this study was to evaluate the use of treated wastewater in drip irrigation and its effect on the chemistry of soil cultivated with squash (Cucurbita maxima Duch. Coroa IAC and to verify whether there was an increase in soil salinity under a semiarid climate. The experiment was conducted for 123 days on a farm close to the sewage treatment plant, in a randomized block design with five treatments and four replications. The treatments consisted of two irrigation water depths (100 and 150 % of the evapotranspiration, two applications of gypsum to attenuate wastewater sodicity (0 and 5.51 g per plant, and a control treatment with no application of wastewater or gypsum. During the experiment, treated wastewater and soil gravitational water, at a depth of 0.40 m, were collected for measurement of Na+, K+, Ca2+, Mg2+, NO−3, NH4+, Cl− , alkalinity, electrical conductivity, pH and sodium adsorption ratio. At the end of the experiment, soil samples were collected at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m; and pH, total N, organic C, exchangeable cations and electrical conductivity of the saturation extract (CEs were analyzed. Besides an increase in pH and a reduction in total N, the irrigation with wastewater reduces soil salinity of the naturally salt-rich soils of the semiarid climate. It also led to soil sodification, in spite of the added gypsum, which indicates that irrigation with wastewater might require the addition of greater quantities of gypsum to prevent physical degradation of the soil.

  8. Municipal Treated Wastewater Irrigation: Microbiological Risk Evaluation

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2008-06-01

    Full Text Available Municipal wastewater for irrigation, though treated, can contain substances and pathogens toxic for humans and animals. Pathogens, although not harmful from an agronomical aspect, undoubtedly represent a major concern with regards to sanitary and hygienic profile. In fact, vegetable crops irrigated with treated wastewater exalt the risk of infection since these products can also be eaten raw, as well as transformed or cooked. Practically, the evaluation of the microbiological risk is important to verify if the microbial limits imposed by law for treated municipal wastewater for irrigation, are valid, thus justifying the treatments costs, or if they are too low and, therefore, they don’ t justify them. Different probabilistic models have been studied to assess the microbiological risk; among these, the Beta-Poisson model resulted the most reliable. Thus, the Dipartimento di Scienze delle Produzioni Vegetali of the University of Bari, which has been carrying out researches on irrigation with municipal filtered wastewater for several years, considered interesting to verify if the microbial limits imposed by the italian law n.185/03 are too severe, estimating the biological risk by the probabilistic Beta-Poisson model. Results of field trials on vegetable crops irrigated by municipal filtered wastewater, processed by the Beta-Poisson model, show that the probability to get infection and/or illness is extremely low, and that the actual italian microbial limits are excessively restrictive.

  9. Tracking antibiotic resistance genes in soil irrigated with dairy wastewater

    Science.gov (United States)

    In southern Idaho, the application of dairy wastewater to agricultural soils is a widely used practice to irrigate crops and recycle nutrients. In this study, small-scale field plots were irrigated monthly (6 times) with dairy wastewater (100%), wastewater diluted to 50% with irrigation (canal) wate...

  10. Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils

    OpenAIRE

    Muller, K.; Duwig, Céline; Prado, B.; Siebe, C.; Hidalgo, C.; Etchevers, J.

    2012-01-01

    In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years wi...

  11. Parasitological Contamination of Wastewater Irrigated and Raw ...

    African Journals Online (AJOL)

    Tadesse

    Occurrence of infective stages of intestinal parasites on wastewater- irrigated vegetables ..... reported the health hazards of agricultural reuse of untreated wastewater through detection of .... State of knowledge in land treatment of wastewater.

  12. Chemical properties of a Haplustalf soil under irrigation with treated wastewater and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Leda V. B. D. Silva

    2016-04-01

    Full Text Available ABSTRACT The objective of this research was to investigate the effects of irrigation with treated wastewater and nitrogen (N fertilization on the chemical characteristics of a Haplustalf soil cultivated with cotton. An experiment was conducted in a greenhouse in a completely randomized design with four replicates, and arranged in a 5 x 4 factorial. Five doses of N fertilization (0, 45, 90, 135 and 180 kg ha-1 and four sources of irrigation water (freshwater, wastewater treated by an anaerobic reactor, wastewater treated by an anaerobic reactor and post-treated by intermittent sand filter in series, wastewater treated in a septic tank and post-treated by an intermittent sand filter were tested. Irrigation was daily performed from July 2011 to January 2012 according to the water demand of cotton resulting in a water depth of 620 mm. It was found that, compared with the conventional management with freshwater irrigation, treated wastewater provides greater accumulation of micronutrient, potassium and sodium in the soil, increasing the risk of sodification in irrigated areas.

  13. Wastewater Use in Irrigated Agriculture : Confronting the Livelihood ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Wastewater Use in Irrigated Agriculture : Confronting the Livelihood and Environmental Realities. Couverture du livre Wastewater Use in Irrigated Agriculture: Confronting the Livelihood and Environmental Realities. Directeur(s) : Christopher Scott, Naser I. Faruqui et Liqa Raschid. Maison(s) d'édition : CABI, IWMI, CRDI.

  14. An integrated approach to assess the dynamics of a peri-urban watershed influenced by wastewater irrigation

    Science.gov (United States)

    Mahesh, Jampani; Amerasinghe, Priyanie; Pavelic, Paul

    2015-04-01

    In many urban and peri-urban areas of India, wastewater is under-recognized as a major water resource. Wastewater irrigated agriculture provides direct benefits for the livelihoods and food security of many smallholder farmers. A rapidly urbanizing peri-urban micro-watershed (270 ha) in Hyderabad was assessed over a 10-year period from 2000 to 2010 for changes in land use and associated farming practices, farmer perceptions, socio-economic evaluation, land-use suitability for agriculture and challenges in potential irrigated area development towards wastewater use. This integrated approach showed that the change in the total irrigated area was marginal over the decade, whereas the built-up area within the watershed boundaries doubled and there was a distinct shift in cropping patterns from paddy rice to paragrass and leafy vegetables. Local irrigation supplies were sourced mainly from canal supplies, which accounted for three-quarters of the water used and was largely derived from wastewater. The remainder was groundwater from shallow hard-rock aquifers. Farmer perception was that the high nutrient content of the wastewater was of value, although they were also interested to pay modest amounts for additional pre-treatment. The shift in land use towards paragrass and leafy vegetables was attributed to increased profitability due to the high urban demand. The unutilised scrubland within the watershed has the potential for irrigation development, but the major constraints appear to be unavailability of labour and high land values rather than water availability. The study provides evidence to support the view that the opportunistic use of wastewater and irrigation practices, in general, will continue even under highly evolving peri-urban conditions, to meet the livelihood needs of the poor driven by market demands, as urban sprawl expands into cultivable rural hinterlands. Policy support is needed for enhanced recognition of wastewater for agriculture, with flow

  15. Effect of irrigation on heavy metals content of wastewater irrigated ...

    African Journals Online (AJOL)

    There is an urgent need to educate farmers on the dangers of the presence of heavy metals in soils as well as the quality of irrigation water especially if it comes from tanning industries for increased crop production. Accordingly, soil and irrigation wastewater study was conducted to assess the concentrations of heavy ...

  16. Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils.

    Science.gov (United States)

    Müller, K; Duwig, C; Prado, B; Siebe, C; Hidalgo, C; Etchevers, J

    2012-01-01

    In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.

  17. Effect of Treated Wastewater Irrigation on Heavy Metals Distribution in a Tunisian Soil

    Directory of Open Access Journals (Sweden)

    K. Khaskhoussy

    2015-06-01

    Full Text Available Treated wastewater (TWW may contain toxic chemical constituents that pose negative environmental and health impacts. In this study, soil samples under treated wastewater irrigation were studied. For this purpose, six plots were made in an irrigated area in north of Tunisia and treated with two water qualities: fresh water (FW and treated wastewater (TWW. Five soil depths were used: 0-30, 30-60, 60-90, 90-120 and 120-150 cm. The TWW irrigation increased significantly (P≤0.05 the soils’ EC, Na, K, Ca, Mg, Cl, SAR, Cu, Cd and Ni and had no significant (P ≤0.05 effect on the soils’ pH, Zn, Co and Pb contents. EC, Na, Cl, SAR, Zn and Co increased significantly with soil depth. The results for K, Ca, Mg, Cd, Pb and Ni exhibited similar repartition in different layers of soil. It was also shown that the amount of different elements in soil irrigated with fresh water (FW were less compared with the control soil

  18. Wastewater retreatment and reuse system for agricultural irrigation in rural villages.

    Science.gov (United States)

    Kim, Minyoung; Lee, Hyejin; Kim, Minkyeong; Kang, Donghyeon; Kim, Dongeok; Kim, YoungJin; Lee, Sangbong

    2014-01-01

    Climate changes and continuous population growth increase water demands that will not be met by traditional water resources, like surface and ground water. To handle increased water demand, treated municipal wastewater is offered to farmers for agricultural irrigation. This study aimed to enhance the effluent quality from worn-out sewage treatment facilities in rural villages, retreat effluent to meet water quality criteria for irrigation, and assess any health-related and environmental impacts from using retreated wastewater irrigation on crops and in soil. We developed the compact wastewater retreatment and reuse system (WRRS), equipped with filters, ultraviolet light, and bubble elements. A pilot greenhouse experiment was conducted to evaluate lettuce growth patterns and quantify the heavy metal concentration and pathogenic microorganisms on lettuce and in soil after irrigating with tap water, treated wastewater, and WRRS retreated wastewater. The purification performance of each WRRS component was also assessed. The study findings revealed that existing worn-out sewage treatment facilities in rural villages could meet the water quality criteria for treated effluent and also reuse retreated wastewater for crop growth and other miscellaneous agricultural purposes.

  19. Reuse of reclaimed wastewater for golf course irrigation in Tunisia.

    Science.gov (United States)

    Bahri, A; Basset, C; Oueslati, F; Brissaud, F

    2001-01-01

    In Tunisia, golf courses are irrigated with secondary treated effluent stored in landscape impoundments. The impact of the conveyance and storage steps on the physical-chemical and biological quality of irrigation water was evaluated on three golf courses over two years. It was found that the water quality varies all along the water route, from the wastewater treatment plant up to the irrigation site: nutrient and bacteria contents decreased along the route in the three cases. This variation depends on the wastewater quality, the length of the pipes conveying water, the number of regulation reservoirs and ponds, the water residence time in pipes, reservoirs and ponds, and the operation of the ponds. The bacteriological quality of irrigation water deteriorates during the irrigation period in the three golf courses as the ponds are operated as continuous flow reactors. The results obtained in this study indicate the inability of golf water supplies, as currently managed, to properly sanitize reclaimed wastewater and meet target quality criteria recommended by WHO (1989) for water intended for recreational use. For a safe reuse of reclaimed wastewater for golf course irrigation, changes in the design and operation of the ponds should be planned or additional treatment steps provided.

  20. [Concentrations of mercury in ambient air in wastewater irrigated area of Tianjin City and its accumulation in leafy vegetables].

    Science.gov (United States)

    Zheng, Shun-An; Han, Yun-Lei; Zheng, Xiang-Qun

    2014-11-01

    Gaseous Hg can evaporate and enter the plants through the stomata of plat leaves, which will cause a serious threat to local food safety and human health. For the risk assessment, this study aimed to characterize atmospheric mercury (Hg) as well as its accumulation in 5 leafy vegetables (spinach, edible amaranth, rape, lettuce, allium tuberosum) from sewage-irrigated area of Tianjin City. Bio-monitoring sites were located in paddy (wastewater irrigation for 30 a), vegetables (wastewater irrigation for 15 a) and grass (control) fields. Results showed that after long-term wastewater irrigation, the mean values of mercury content in paddy and vegetation fields were significantly higher than the local background value and the national soil environment quality standard value for mercury in grade I, but were still lower than grade II. Soil mercury contents in the studied control grass field were between the local background value and the national soil environment quality standard grade I . Besides, the atmospheric environment of paddy and vegetation fields was subjected to serious mercury pollution. The mean values of mercury content in the atmosphere of paddy and vegetation fields were 71.3 ng x m(-3) and 39.2 ng x m(-3), respectively, which were markedly higher than the reference gaseous mercury value on the north sphere of the earth (1.5-2.0 ng x m(-3)). The mean value of ambient mercury in the control grass fields was 9.4 ng x m(-3). In addition, it was found that the mercury content in leafy vegetables had a good linear correlation with the ambient total gaseous mercury (the data was transformed into logarithms as the dataset did not show a normal distribution). The comparison among 5 vegetables showed that the accumulations of mercury in vegetables followed this order: spinach > edible amaranth > allium tuberosum > rape > lettuce. Median and mean values of mercury contents in spinach and edible amaranth were greater than the hygienic standard for the allowable

  1. Leaching of N-nitrosodimethylamine (NDMA) in turfgrass soils during wastewater irrigation.

    Science.gov (United States)

    Gan, J; Bondarenko, S; Ernst, F; Yang, W; Ries, S B; Sedlak, D L

    2006-01-01

    N-nitrosodimethylamine (NDMA) is a carcinogenic by-product of chlorination that is frequently found in municipal wastewater effluent. NDMA is miscible in water and negligibly adsorbed to soil, and therefore may pose a threat to ground water when treated wastewater is used for landscape irrigation. A field study was performed in the summer months under arid Southern California weather conditions to evaluate the leaching potential of NDMA in turfgrass soils during wastewater irrigation. Wastewater was used to irrigate multiple turfgrass plots at 110 to 160% evapotranspiration rate for about 4 mo, and leachate was continuously collected and analyzed for NDMA. The treated wastewater contained relatively high levels of NDMA (114-1820 ng L(-1); mean 930 ng L(-1)). NDMA was detected infrequently in the leachate regardless of the soil type or irrigation schedule. At a method detection limit of 2 ng L(-1), NDMA was only detected in 9 out of 400 leachate samples and when it was detected, the NDMA concentration was less than 5 ng L(-1). NDMA was relatively persistent in the turfgrass soils during laboratory incubation, indicating that mechanisms other than biotransformation, likely volatilization and/or plant uptake, contributed to the rapid dissipation. Under conditions typical of turfgrass irrigation with wastewater effluent it is unlikely that NDMA will contaminate ground water.

  2. Heavy metal pollution of vegetable crops irrigated with wastewater ...

    African Journals Online (AJOL)

    144) and edible parts of both exotic and traditional vegetables (samples = 240) irrigated with wastewater from some parts of Accra were studied. The concentrations of heavy metals in mg/l were quantified in wastewater from Accra and ...

  3. Treated wastewater and Nitrate transport beneath irrigated fields near Dodge city, Kansas

    Science.gov (United States)

    Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; Ashok, K.C.

    2010-01-01

    Use of secondary-treated municipal wastewater for crop irrigation south of Dodge City, Kansas, where the soils are mainly of silty clay loam texture, has raised a concern that it has resulted in high nitratenitrogen concentrations (10-50 mg/kg) in the soil and deeper vadose zone, and also in the underlying deep (20-45 m) ground water. The goal of this field-monitoring project was to assess how and under what circumstances nitrogen (N) nutrients under cultivated corn that is irrigated with this treated wastewater can reach the deep ground water of the underlying High Plains aquifer, and what can realistically be done to minimize this problem. We collected 15.2-m-deep cores for physical and chemical properties characterization; installed neutron moisture-probe access tubes and suction lysimeters for periodic measurements; sampled area monitoring, irrigation, and domestic wells; performed dye-tracer experiments to examine soil preferential-flow processes through macropores; and obtained climatic, crop, irrigation, and N-application rate records. These data and additional information were used in the comprehensive Root Zone Water Quality Model (RZWQM2) to identify key parameters and processes that influence N losses in the study area. We demonstrated that nitrate-N transport processes result in significant accumulations of N in the thick vadose zone. We also showed that nitrate-N in the underlying ground water is increasing with time and that the source of the nitrate is from the wastewater applications. RZWQM2 simulations indicated that macropore flow is generated particularly during heavy rainfall events, but during our 2005-06 simulations the total macropore flow was only about 3% of precipitation for one of two investigated sites, whereas it was more than 13% for the other site. Our calibrated model for the two wastewater-irrigated study sites indicated that reducing current levels of corn N fertilization by half or more to the level of 170 kg/ha substantially

  4. Effect of Irrigation with Wastewater on Certain Soil Physical and Chemical properties

    Directory of Open Access Journals (Sweden)

    Farzad Rohani Shahraki

    2005-03-01

    Full Text Available Depending on effluent characteristics, irrigation with wastewater plant effluent can be either beneficial or harmful. To investigate the effects of nine years of irrigation with North Isfahan Wastewater Treatment Plant effluent on physical and chemical properties of soil, a study was carried out using a randomized complete block design with three replications. Treatments included: 1 raw wastewater; 2 effluent from primary settling basin; 3 final plant effluent and 4 well water. To investigate soil physical and chemical properties, samples were taken from depths of 0-5 cm and 5-10 cm from each plot. The results showed that raw wastewater COD and SS were higher than the Iranian Standard limits for use in irrigation. So were BOD5 and turbidity of effluent from primary sedimentation tanks. From the results obtained, the raw wastewater may be considered to be of medium quality. However, regarding other parameters such as EC, SAR, Na and Pb, the quality of the raw wastewater was considerably higher than that of well water. All treatments showed medium infiltrability with respect to chloride concentration. The concentration of lead in well water was higher than in treated wastewater. It should be noted that lead concentration in all samples was less than the standard limits. The average soil bulk density and percentage of moisture in FC did not follow any specific trend. The results indicate that the soil irrigated with effluent over the nine years had a lower bulk density, a higher percentage of moisture, and a lower infiltration compared to adjacent soil not irrigated with wastewater. Analysis of variance for all results did not confirm any significant differences among treatments.

  5. Study of soil bacterial and crop quality irrigated with treated municipal wastewater

    DEFF Research Database (Denmark)

    Alinezhadian, A; Karim, A; Mohammadi, J

    2014-01-01

    Background and Objectives: In arid and semi-arid regions, wastewater reuse has become an important element in agriculture. However, irrigation with this resource can be either beneficial or harmful, depending on the wastewater characteristics. The aim of this research was to investigate the soil...... bacterial and crops quality irrigated with treated wastewater. Material and Methods: This research was conducted on a maize field near the wastewater treatment plant in Shahr-e-kord in summer,2011. Plots were arranged in a randomized complete block design in 3 replications and 2 treatments, well water (W1...

  6. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    Science.gov (United States)

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  7. Unsaturated flow dynamics during irrigation with wastewater: field and modelling study

    Science.gov (United States)

    Martinez-Hernandez, V.; de Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; de Bustamante, I.

    2012-04-01

    To deal with water scarcity combined with a growing water demand, the reuse of wastewater effluents of wastewater treatment plants (WWTP) for industrial and agricultural purposes is considered as a technically and economically feasible solution. In agriculture, irrigation with wastewater emerges as a sustainable practice that should be considered in such scenarios. Water infiltration, soil moisture storage and evapotranspiration occurring in the unsaturated zone are fundamental processes that play an important role in soil water balance. An accurate estimation of unsaturated flow dynamics (during and after irrigation) is essential to improve wastewater management (i.e. estimating groundwater recharge or maximizing irrigation efficiency) and to avoid possible soil and groundwater affections (i.e. predicting contaminant transport). The study site is located in the Experimental Plant of Carrión de los Céspedes (Seville, Spain). Here, treated wastewater is irrigated over the soil to enhance plants growth. To obtain physical characteristics of the soil (granulometry, bulk density and water retention curve), soil samples were collected at different depths. A drain gauge passive capillary lysimeter was installed to determine the volume of water draining from the vadose zone. Volumetric water content of the soil was monitored by measuring the dielectric constant using capacitance/frequency domain technology. Three soil moisture probes were located at different depths (20, 50 and 70 cm below the ground surface) to control the variation of the volumetric water content during infiltration. The main aim of this study is to understand water flow dynamics through the unsaturated zone during irrigation by using the finite element model Hydrus-1D. The experimental conditions were simulated by a 90 cm long, one dimensional solution domain. Specific climatic conditions, wastewater irrigation rates and physical properties of the soil were introduced in the model as input parameters

  8. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China

    International Nuclear Information System (INIS)

    Chen Feng; Ying Guangguo; Kong Lingxiao; Wang Li; Zhao Jianliang; Zhou Lijun; Zhang Lijuan

    2011-01-01

    This study investigated the occurrence of 43 emerging contaminants including 9 endocrine-disrupting chemicals and 34 pharmaceuticals in three sites in Hebei Province, north China. Each site has a wastewater irrigated plot and a separate groundwater irrigated plot for comparison purpose. The results showed that the concentrations of the target compounds in the wastewater irrigated soils were in most cases higher than those in the groundwater irrigated soils. Among the 43 target compounds, nine compounds bisphenol-A, triclocarban, triclosan, 4-nonylphenol, salicylic acid, oxytetracycline, tetracycline, trimethoprim and primidone were detected at least once in the soils. Preliminary environmental risk assessment showed that triclocarban might pose high risks to terrestrial organisms while the other detected compounds posed minimal risks. Irrigation with wastewater could lead to presence or accumulation of some emerging contaminants to some extent in irrigated soils. - Highlights: → Some EDCs and PPCPs were detected in the wastewater irrigated soils. → Application of reclaimed water could lead to accumulation of some compounds. → Groundwater has been contaminated by some compounds. → Triclocarban posed high risks to soil organisms. - Application of reclaimed wastewater on agricultural land could lead to the presence or accumulation of wastewater-related contaminants in soils.

  9. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Chen [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.com [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Lingxiao, Kong [Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Science, Baoding 07100 (China); Li, Wang; Jianliang, Zhao; Lijun, Zhou; Lijuan, Zhang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-06-15

    This study investigated the occurrence of 43 emerging contaminants including 9 endocrine-disrupting chemicals and 34 pharmaceuticals in three sites in Hebei Province, north China. Each site has a wastewater irrigated plot and a separate groundwater irrigated plot for comparison purpose. The results showed that the concentrations of the target compounds in the wastewater irrigated soils were in most cases higher than those in the groundwater irrigated soils. Among the 43 target compounds, nine compounds bisphenol-A, triclocarban, triclosan, 4-nonylphenol, salicylic acid, oxytetracycline, tetracycline, trimethoprim and primidone were detected at least once in the soils. Preliminary environmental risk assessment showed that triclocarban might pose high risks to terrestrial organisms while the other detected compounds posed minimal risks. Irrigation with wastewater could lead to presence or accumulation of some emerging contaminants to some extent in irrigated soils. - Highlights: > Some EDCs and PPCPs were detected in the wastewater irrigated soils. > Application of reclaimed water could lead to accumulation of some compounds. > Groundwater has been contaminated by some compounds. > Triclocarban posed high risks to soil organisms. - Application of reclaimed wastewater on agricultural land could lead to the presence or accumulation of wastewater-related contaminants in soils.

  10. Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources.

    Science.gov (United States)

    Tran, Quynh K; Schwabe, Kurt A; Jassby, David

    2016-09-06

    Water scarcity has become a critical problem in many semiarid and arid regions. The single largest water use in such regions is for crop irrigation, which typically relies on groundwater and surface water sources. With increasing stress on these traditional water sources, it is important to consider alternative irrigation sources for areas with limited freshwater resources. One potential irrigation water resource is treated wastewater for agricultural fields located near urban centers. In addition, treated wastewater can contribute an appreciable amount of necessary nutrients for plants. The suitability of reclaimed water for specific applications depends on water quality and usage requirements. The main factors that determine the suitability of recycled water for agricultural irrigation are salinity, heavy metals, and pathogens, which cause adverse effects on human, plants, and soils. In this paper, we develop a regional water reuse decision-support model (RWRM) using the general algebraic modeling system to analyze the cost-effectiveness of alternative treatment trains to generate irrigation water from reclaimed wastewater, with the irrigation water designed to meet crop requirements as well as California's wastewater reuse regulations (Title 22). Using a cost-minimization framework, least-cost solutions consisting of treatment processes and their intensities (blending ratios) are identified to produce alternative irrigation sources for citrus and turfgrass. Our analysis illustrates the benefits of employing an optimization framework and flexible treatment design to identify cost-effective blending opportunities that may produce high-quality irrigation water for a wide range of end uses.

  11. Greenhouse cultivation mitigates metal-ingestion-associated health risks from vegetables in wastewater-irrigated agroecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chun [College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu (China); College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu (China); Chen, Xing-Peng; Ma, Zhen-Bang [College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu (China); Jia, Hui-Hui [State High-Tech Industrial Innovation Center, Shenzhen 518057, Guangdong (China); Wang, Jun-Jian, E-mail: junjian.wang@utoronto.ca [Department of Physical and Environmental Sciences, University of Toronto, Toronto M1C 1A4 (Canada)

    2016-08-01

    Wastewater irrigation can elevate metal concentrations in soils and crops and increase the metal-associated health risks via vegetable ingestion in arid and semiarid northwestern China. Here, we investigated the As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in four vegetable species from Dongdagou and Xidagou farmlands in Baiyin, Gansu, China. We evaluated the effects of irrigation type (Dongdagou: industrial wastewater; Xidagou: domestic wastewater) and cultivation mode (open field and greenhouse) on the vegetable metal concentration, metal partitioning, soil-to-plant bioconcentration factor (BCF), and the health risk index. All stream waters, soils, and vegetables were found most severely polluted by As and Cd, with higher severity in the industrial-wastewater-irrigated Dongdagou than the domestic-wastewater-irrigated Xidagou. All vegetables had higher or, at least, comparable metal mass allocated in the shoot than in the root. Greenhouse cultivation could reduce metal-ingestion-associated health risks from edible vegetable biomass by decreasing the soil to plant bioaccumulation (BCF) and the metal concentration. This effect was always significant for all vegetables within Xidagou, and for carrot within Dongdagou. This mitigation effect of greenhouse cultivation could be attributed to the metal sorption by a higher level of soil organic matter and faster growth rate over metal uptake rate in greenhouses compared to open fields. Such mitigation effect was, however, insignificant for leafy vegetables within Dongdagou, when much more severely polluted water for irrigation was applied in greenhouses compared to open fields within Dongdagou. The present study highlights greenhouse cultivation as a potential mitigating approach to providing less-polluted vegetables for residents in the severely polluted area in addition to the source pollution control. - Highlights: • Vegetable farmlands in Baiyin, Gansu, China were severely polluted by As and Cd. • Greenhouses had

  12. Greenhouse cultivation mitigates metal-ingestion-associated health risks from vegetables in wastewater-irrigated agroecosystems

    International Nuclear Information System (INIS)

    Cao, Chun; Chen, Xing-Peng; Ma, Zhen-Bang; Jia, Hui-Hui; Wang, Jun-Jian

    2016-01-01

    Wastewater irrigation can elevate metal concentrations in soils and crops and increase the metal-associated health risks via vegetable ingestion in arid and semiarid northwestern China. Here, we investigated the As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in four vegetable species from Dongdagou and Xidagou farmlands in Baiyin, Gansu, China. We evaluated the effects of irrigation type (Dongdagou: industrial wastewater; Xidagou: domestic wastewater) and cultivation mode (open field and greenhouse) on the vegetable metal concentration, metal partitioning, soil-to-plant bioconcentration factor (BCF), and the health risk index. All stream waters, soils, and vegetables were found most severely polluted by As and Cd, with higher severity in the industrial-wastewater-irrigated Dongdagou than the domestic-wastewater-irrigated Xidagou. All vegetables had higher or, at least, comparable metal mass allocated in the shoot than in the root. Greenhouse cultivation could reduce metal-ingestion-associated health risks from edible vegetable biomass by decreasing the soil to plant bioaccumulation (BCF) and the metal concentration. This effect was always significant for all vegetables within Xidagou, and for carrot within Dongdagou. This mitigation effect of greenhouse cultivation could be attributed to the metal sorption by a higher level of soil organic matter and faster growth rate over metal uptake rate in greenhouses compared to open fields. Such mitigation effect was, however, insignificant for leafy vegetables within Dongdagou, when much more severely polluted water for irrigation was applied in greenhouses compared to open fields within Dongdagou. The present study highlights greenhouse cultivation as a potential mitigating approach to providing less-polluted vegetables for residents in the severely polluted area in addition to the source pollution control. - Highlights: • Vegetable farmlands in Baiyin, Gansu, China were severely polluted by As and Cd. • Greenhouses had

  13. Long-term Effects of Different Irrigation Methods with Treated Wastewater on Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    P. Najafi

    2016-02-01

    Full Text Available Introduction: Reuse of wastewater for agricultural irrigation is increasing due to an increased demand for water resources in different parts of the world. Almost 70% of deviated water from rivers and pumped groundwater is used for agriculture. If wastewater is used for irrigation in agriculture, then the amount of discharged water from natural sources will be decreased and the flow of wastewater to the environment and its ensuing pollution will be prevented. Using wastewater in applications such as irrigation of agricultural lands has caused an increase of some exchangeable ions, salts and suspended solids (organic and mineral in the soil and has significantly affected physical, chemical and biological features. Therefore, paying attention to the soil health is important during use of wastewater when it is the source of irrigation water. In such cases, there will be some worries about pollution of harvested products, contact of farm workers with pathogenes and environmental issues in the farm. In these conditions, attention to irrigation methods along with consideration of environmental protection standards is important. Materials and Methods: In this study, the effects of treated wastewater (TW irrigation were tested on some chemical properties of soil for three years under five different irrigation treatments. The treatments were as follows: surface furrow irrigation (FI, surface drip irrigation (SDI, subsurface drip irrigation in 30 cm depth (SDI30, subsurface drip irrigation in 60 cm depth (SDI60 and bubbler irrigation (BI. At the end of the experiment, soil samples were collected from a depth of 0-30, 30-60 and 60-90 cm in order to measure the electrical conductivity (EC, pH, sodium adsorption ratio (SAR, organic matter (OM and calcium carbonate equivalent (CaCO3. Results and Discussion: According to the results of soil analysis, the soil became more saline than the beginning by applying the treatments. Generally, in two plots of urban and

  14. Opportunities for woody crop production using treated wastewater in Egypt. II. Irrigation strategies.

    Science.gov (United States)

    Evett, Steven R; Zalesny, Ronald S; Kandil, Nabil F; Stanturf, John A; Soriano, Chris

    2011-01-01

    An Egyptian national program targets annual reuse of 2.4 billion m3 of treated wastewater (TWW) to irrigate 84,000 ha of manmade forests in areas close to treatment plants and in the desert. To evaluate the feasibility of such afforestation efforts, we describe information about TWW irrigation strategies based on (1) water use of different tree species, (2) weather conditions in different climate zones of Egypt, (3) soil types and available irrigation systems, and (4) the requirement to avoid deep percolation losses that could lead to groundwater contamination. We conclude that drip irrigation systems are preferred, that they should in most cases use multiple emitters per tree in order to increase wetted area and decrease depth of water penetration, that deep rooting should be encouraged, and that in most situations irrigation system automation is desirable to achieve several small irrigations per day in order to avoid deep percolation losses. We describe directed research necessary to fill knowledge gaps about depth of rooting of different species in sandy Egyptian soils and environments, tree crop coefficients needed for rational irrigation scheduling, and depth of water penetration under different irrigation system designs. A companion paper addresses recommendations for afforestation strategies (see Zalesny et al. 2011, this issue).

  15. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation.

    Science.gov (United States)

    Zhang, Yuping; Sallach, J Brett; Hodges, Laurie; Snow, Daniel D; Bartelt-Hunt, Shannon L; Eskridge, Kent M; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Salinity effect of irrigation with treated wastewater in basal soil respiration in SE of Spain

    Science.gov (United States)

    Morugan, A.; Garcia-Orenes, F.; Mataix-Solera, J.

    2012-04-01

    The use of treated wastewater for the irrigation of agricultural soils is an alternative to utilizing better-quality water, especially in semiarid regions where water shortage is a very serious problem. Wastewater use in agriculture is not a new practice, all over the world this reuse has been common practice for a long time, but the concept is of greater importance currently because of the global water crisis. Replacement of freshwater by treated wastewater is seen as an important conservation strategy contributing to agricultural production, substantial benefits can derive from using this nutrient-rich waste water but there can also be a negative impact. For this reason it is necessary to know precisely the composition of water before applying it to the soil in order to guarantee minimal impact in terms of contamination and salinization. In this work we have been studying, for more than three years, different parameters in calcareous soils irrigated with treated wastewater in an agricultural Mediterranean area located at Biar (Alicante, SE Spain), with a crop of grape (Vitis labrusca). Three types of waters were used for the irrigation of the soil: fresh water (control) (TC), and treated wastewater from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type during the study period. A soil sampling was carried out every four months. We show the results of the evolution of basal soil respiration (BSR), and its relationship with other parameters. We observed a similar pattern of behavior for BSR between treatments, a decrease at the first eighteen months of irrigation and an increase at the end of study. In our study case, the variations of BSR obtained for all the treatments seem to be closely related to the dose and frequency of irrigation and the related soil wetting and drying cycles. However, the results showed a negative correlation between BSR and

  17. Growth of young Tabebuia aurea seedlings under irrigation with wastewater from fish farming

    Directory of Open Access Journals (Sweden)

    José R. de S. Pinto

    2016-06-01

    Full Text Available ABSTRACT This study aimed to evaluate the growth of young Tabebuia aurea seedlings irrigated with different concentrations of wastewater from fish farming. The experiment was conducted in a seedling nursery, from June to August 2013. The treatments consisted of five concentrations of wastewater from fish farming diluted in freshwater (0, 25, 50, 75 and 100% of wastewater. Plant height, stem diameter and plant height/stem diameter ratio were evaluated every 15 days to verify the effects of treatments on seedlings growth. At the end of the experiment, individual leaf area, leaf area, leaf dry matter, stem dry matter, root dry matter, total dry matter and Dickson quality index were also evaluated. The reuse of wastewater from fish farming diluted at concentrations of 25 and 50% in freshwater is a viable alternative in the production of Tabebuia aurea seedlings. However, higher concentrations hinder the production of seedlings of this species.

  18. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater

    International Nuclear Information System (INIS)

    Grossberger, Amnon; Hadar, Yitzhak; Borch, Thomas; Chefetz, Benny

    2014-01-01

    Pharmaceutical compounds (PCs) are introduced into agricultural soils via irrigation with treated wastewater (TWW). Our data show that carbamazepine, lamotrigine, caffeine, metoprolol, sulfamethoxazole and sildenafil are persistent in soils when introduced via TWW. However, other PCs, namely diclofenac, ibuprofen, bezafibrate, gemfibrozil and naproxen were not detected in soils when introduced via TWW. This is likely due to rapid degradation as confirmed in our microcosm studies where they exhibited half-lives (t 1/2 ) between 0.2–9.5 days when soils were spiked at 50 ng/g soil and between 3 and 68 days when soils were spiked at 5000 ng/g soil. The degradation rate and extent of PCs observed in microcosm studies were similar in soils that had been previously irrigated with TWW or fresh water. This suggests that pre-exposure of the soils to PCs via irrigation with TWW does not enhance their biodegradation. This suggests that PCs are probably degraded in soils via co-metabolism. Highlights: • Some pharmaceuticals are highly persistent in arable soils. • Weak acid pharmaceuticals are readily degradable in agricultural soils. • Irrigation with treated wastewater does not enhance degradation of pharmaceuticals. • Degradation of pharmaceuticals in soil is probably occurred via co-metabolism. -- Some pharmaceutical compounds are persistent in arable soils when introduced via irrigation with treated wastewater

  19. Microbial risk in wastewater irrigated lettuce: comparing Escherichia coli contamination from an experimental site with a laboratory approach.

    Science.gov (United States)

    Makkaew, P; Miller, M; Fallowfield, H J; Cromar, N J

    This study assessed the contamination of Escherichia coli, in lettuce grown with treated domestic wastewater in four different irrigation configurations: open spray, spray under plastic sheet cover, open drip and drip under plastic sheet cover. Samples of lettuce from each irrigation configuration and irrigating wastewater were collected during the growing season. No E. coli was detected in lettuce from drip irrigated beds. All lettuce samples from spray beds were positive for E. coli, however, no statistical difference (p > 0.05) was detected between lettuces grown in open spray or covered spray beds. The results from the field experiment were also compared to a laboratory experiment which used submersion of lettuce in wastewater of known E. coli concentration as a surrogate method to assess contamination following irrigation. The microbial quality of spray bed lettuces was not significantly different from submersed lettuce when irrigated with wastewater containing 1,299.7 E. coli MPN/100 mL (p > 0.05). This study is significant since it is the first to validate that the microbial contamination of lettuce irrigated with wastewater in the field is comparable with a laboratory technique frequently applied in the quantitative microbial risk assessment of the consumption of wastewater irrigated salad crops.

  20. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China

    International Nuclear Information System (INIS)

    Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G.

    2008-01-01

    Consumption of food crops contaminated with heavy metals is a major food chain route for human exposure. We studied the health risks of heavy metals in contaminated food crops irrigated with wastewater. Results indicate that there is a substantial buildup of heavy metals in wastewater-irrigated soils, collected from Beijing, China. Heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher (P ≤ 0.001) than in plants grown in the reference soil, and exceeded the permissible limits set by the State Environmental Protection Administration (SEPA) in China and the World Health Organization (WHO). Furthermore, this study highlights that both adults and children consuming food crops grown in wastewater-irrigated soils ingest significant amount of the metals studied. However, health risk index values of less than 1 indicate a relative absence of health risks associated with the ingestion of contaminated vegetables. - Long-term wastewater irrigation leads to buildup of heavy metals in soils and food crops

  1. Long-term fate of exogenous metals in a sandy Luvisol subjected to intensive irrigation with raw wastewater

    International Nuclear Information System (INIS)

    Dere, C.; Lamy, I.; Jaulin, A.; Cornu, S.

    2007-01-01

    From 1899 to 2002, sandy Luvisol in the Paris region has been intensively irrigated with raw wastewater, resulting in major soil pollution by metallic trace elements (MTE). To identify the soil phases implicated in retaining these metals, sequential extractions were performed on a solum irrigated with untreated wastewater and another reference solum. The endogenous and exogenous fractions of MTE in the contaminated soil were discriminated using correlations between MTE and major elements defined from unpolluted soils of the area. In the contaminated soil no exogenous lead and chromium are present below the surface horizon, whereas exogenous zinc and copper are found down to the base of the solum. The endogenous MTE are mainly found in the residual fraction. Exogenous MTE appear to be associated with organic matter in the surface horizon, and exogenous zinc seems to be readsorbed on iron and manganese oxyhydroxides in the underlying horizons. - After 100 years of intensive irrigation with wastewater, no exogenous Pb and Cr are found in the subsoil, while exogenous Zn and Cu are found down to the base of the solum, mostly readsorbed

  2. Sorption of pathogens during sub-surface drip irrigation with wastewater

    Science.gov (United States)

    Levi, Laillach; Gillerman Gillerman, Leonid; Kalavrouziotis, Ioannis; Oron, Gideon

    2017-04-01

    Water scarcity continues to be one of the major threats to human survival in many regions worldwide, such as Africa, the Mediterranean Basin, the State of California in the US. Due to a mixture of factors such as population growth, reduction in water resources availability and higher demand for high quality waters in these regions these countries face water shortage issues that stem from overuse, extensive extraction of groundwater, and frequent drought events. In addition, there are increases in environmental and health awareness that have led to intensive efforts in the treatment and reuse of nonconventional water sources, mainly wastewater and greywater. One approach to water shortages issues is to use wastewater as means to close the gap between supply and demand. However, the need to treat wastewater and to disinfect it forces additional economic burden on the users, primarily for agricultural irrigation. A possible solution might be to use the soil as a sorbent for the contained pathogens. Under sub-surface drip irrigation, not allowing the wastewater to reach the soil surface, the pathogens will remain in the soil. It was as well shown in field experiments that the opening size of roots will not allow pathogens to penetrate into the plants. Additional advantages such as water saving, protection of the pipe systems and others are also important. Field experiments in commercial fields just emphasize the main advantages of sub-surface drip irrigation.

  3. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    Science.gov (United States)

    Kaboosi, Kami

    2017-09-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  4. Effects of bleaching wastewater irrigation on soil quality of constructed reed wetlands

    Directory of Open Access Journals (Sweden)

    Cheng Ding

    2016-10-01

    Full Text Available Constructed reed wetland microcosms (CRWs in a lab of east China have been irrigated with bleaching wastewater per month for a reed growth season. The soil physicochemical properties, enzyme activities (i.e. urease, invertase, polyphenol oxidase, alkaline phosphatase and cellulase and soil microbial diversity were assayed before and after the exposure experiment. Compared to the river water irrigated controls (CKs, bleaching wastewater application has no marked influence on soil pH, but significantly increased soil Na+, total halogen and absorbable organic halogen (AOX contents, which induced the increasing of soil electrical conductivity. Furthermore, soil enzyme activities displayed significant variation (except for polyphenol oxidase. Bleaching wastewater irrigation decreased Sorenson’s pairwise similarity coefficient (Cs, which indicated the changes of the structure of bacterial and fungal communities. However, only the diversity of bacterial community was inhibited and has no effect on the diversity of fungal community, as evidenced by the calculated Shannon–Wiener index (H.

  5. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation

    International Nuclear Information System (INIS)

    Zhang, Yuping; Sallach, J. Brett; Hodges, Laurie; Snow, Daniel D.; Bartelt-Hunt, Shannon L.; Eskridge, Kent M.; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. - Highlights: • Higher sand content in soil caused higher internalization of sulfamethoxazole and Salmonella in lettuce. • Drought

  6. Matching agricultural freshwater supply and demand: using industrial and domestic treated wastewater for sub-irrigation purposes

    Science.gov (United States)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Worm, Bas; Cirkel, Gijsbert; van Loon, Arnaut; Raat, Klaasjan

    2017-04-01

    Agricultural crop yields depend largely on soil moisture conditions in the root zone. Climate change leads to more prolonged drought periods that alternate with more intensive rainfall events. With unaltered water management practices, reduced crop yield due to drought stress will increase. Therefore, both farmers and water management authorities search for opportunities to manage risks of decreasing crop yields. Available groundwater sources for irrigation purposes are increasingly under pressure due to the regional coexistence of land use functions that are critical to groundwater levels or compete for available water. At the same time, treated wastewater from industries and domestic wastewater treatment plants are quickly discharged via surface waters towards sea. Exploitation of these freshwater sources may be an effective strategy to balance regional water supply and agricultural water demand. We present results of two pilot studies in drought sensitive regions in the Netherlands, concerning agricultural water supply through reuse of industrial and domestic treated wastewater. In these pilots, excess wastewater is delivered to the plant root zone through sub-irrigation by drainage systems. Sub-irrigation is a subsurface irrigation method that can be more efficient than classical, aboveground irrigation methods using sprinkler installations. Domestic wastewater treatment plants in the Netherlands produce annually 40-50mm freshwater. A pilot project has been setup in the eastern part of the Netherlands, in which treated wastewater is applied to a corn field by sub-irrigation during the growing seasons of 2015 and 2016, using a climate adaptive drainage system. The chemical composition of treated domestic wastewater is different from infiltrating excess rainfall water and natural groundwater. In the pilot project, the bromide-chloride ratio and traces of pharmaceuticals in the treated wastewater are used as a tracer to describe water and solute transport in the

  7. Agroecological Substantiation for the Use of Treated Wastewater for Irrigation of Agricultural Land

    Directory of Open Access Journals (Sweden)

    Yulia Domashenko

    2018-01-01

    Full Text Available The objective of this work is the agroecological substantiation of the use of treated wastewater for irrigation of agricultural land. As the result of the experimental research, it was established that the soil microfloraplays an essential role in strengthening or weakening the biological activity of soil. Therefore, with an irrigation rate of 250 m 3 /ha of wastewater, a 1.5 times increase in the number of microbiota colonies is observed on average both in hog farms and cattle breeding complexes; with a rate of 350 m 3 /ha – a 2-fold increase; with a rate of 450 m 3 /ha – a 3.5–4-fold increase. An increase in nitrifying soil features has also been observed. Thus, if the value on the control in the soil layer from 0 cm to 60 cm is 27.2 mg of nitrate per 1 kg of arid soil, in the version with wastewater irrigation it reaches 46.7 mg. According to the research results, the use of defecate, the waste of sugar production, in the treatment of wastewater of livestock farms does not have a negative agroecological impact on the soil. Therefore, the method of wastewater treatment of pig-breeding complexes and farms can be recommended for use in irrigation reclamation, which includes treatment of wastewater with burnt defecate in the dose of 50–200 mg/dm 3 , with the pH value varying in the range of 7.5–8.5. After settling-out of the obtained mixture in settlers, it is divided into a transparent liquid fraction and the sediment, i.e. an organomineral fertilizer. Afterwards, the fluidbody is fed to irrigation of agricultural land, and its excess is discharged into waterways and reservoirs. The sediment is fed to the vortex layer equipment with mobile ferromagnetic particles or thermolized, where their complete disinfection takes place.

  8. Importance of waste stabilization ponds and wastewater irrigation in the generation of vector mosquitoes in Pakistan

    DEFF Research Database (Denmark)

    Mukhtar, Muhammad; Ensink, Jeroen; Van der Hoek, Wim

    2006-01-01

    The objective of the current study was to investigate the role of waste stabilization ponds (WSP) and wastewater-irrigated sites for the production of mosquitoes of medical importance. Mosquito larvae were collected fortnightly from July 2001 to June 2002 in Faisalabad, Pakistan. In total, 3......,132 water samples from WSP and irrigated areas yielded 606,053 Culex larvae of five species. In addition, 107,113 anophelines, representing eight species were collected. Anopheles subpictus (Grassi) and Culex mosquitoes, especially Culex quinquefasciatus (Say) and Culex tritaeniorhynchus (Giles), showed...... an overwhelming preference for anaerobic ponds, which receive untreated wastewater. Facultative ponds generated lower numbers of both Anopheles and Culex mosquitoes, whereas the last ponds in the series, the maturation ponds, were the least productive for both mosquito genera. An. subpictus and Anopheles...

  9. Contribution of Wastewater Irrigation to Soil Transmitted Helminths Infection among Vegetable Farmers in Kumasi, Ghana.

    Directory of Open Access Journals (Sweden)

    Isaac Dennis Amoah

    2016-12-01

    Full Text Available Wastewater irrigation is associated with several benefits but can also lead to significant health risks. The health risk for contracting infections from Soil Transmitted Helminths (STHs among farmers has mainly been assessed indirectly through measured quantities in the wastewater or on the crops alone and only on a limited scale through epidemiological assessments. In this study we broadened the concept of infection risks in the exposure assessments by measurements of the concentration of STHs both in wastewater used for irrigation and the soil, as well as the actual load of STHs ova in the stool of farmers and their family members (165 and 127 in the wet and dry seasons respectively and a control group of non-farmers (100 and 52 in the wet and dry seasons, respectively. Odds ratios were calculated for exposure and non-exposure to wastewater irrigation. The results obtained indicate positive correlation between STH concentrations in irrigation water/soil and STHs ova as measured in the stool of the exposed farmer population. The correlations are based on reinfection during a 3 months period after prior confirmed deworming. Farmers and family members exposed to irrigation water were three times more likely as compared to the control group of non-farmers to be infected with Ascaris (OR = 3.9, 95% CI, 1.15-13.86 and hookworm (OR = 3.07, 95% CI, 0.87-10.82. This study therefore contributes to the evidence-based conclusion that wastewater irrigation contributes to a higher incidence of STHs infection for farmers exposed annually, with higher odds of infection in the wet season.

  10. Irrigation Water Quality Standards for Indirect Wastewater Reuse in Agriculture: A Contribution toward Sustainable Wastewater Reuse in South Korea

    Directory of Open Access Journals (Sweden)

    Hanseok Jeong

    2016-04-01

    Full Text Available Climate change and the subsequent change in agricultural conditions increase the vulnerability of agricultural water use. Wastewater reuse is a common practice around the globe and is considered as an alternative water resource in a changing agricultural environment. Due to rapid urbanization, indirect wastewater reuse, which is the type of agricultural wastewater reuse that is predominantly practiced, will increase, and this can cause issues of unplanned reuse. Therefore, water quality standards are needed for the safe and sustainable practice of indirect wastewater reuse in agriculture. In this study, irrigation water quality criteria for wastewater reuse were discussed, and the standards and guidelines of various countries and organizations were reviewed to suggest preliminary standards for indirect wastewater reuse in South Korea. The proposed standards adopted a probabilistic consideration of practicality and classified the use of irrigation water into two categories: upland and rice paddy. The standards suggest guidelines for E. coli, electric conductivity (EC, turbidity, suspended solids (SS, biochemical oxygen demand (BOD, pH, odor, and trace elements. Through proposing the standards, this study attempts to combine features of both the conservative and liberal approaches, which in turn could suggest a new and sustainable practice of agricultural wastewater reuse.

  11. Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems.

    Science.gov (United States)

    Pehlivanoglu-Mantas, Elif; Hawley, Elisabeth L; Deeb, Rula A; Sedlak, David L

    2006-01-01

    The probable human carcinogen nitrosodimethylamine (NDMA) is produced when wastewater effluent is disinfected with chlorine. In systems where wastewater effluent is used for landscape or crop irrigation, relatively high chlorine doses (i.e., up to 2,000,mg-min/L) are often used to ensure adequate disinfection and to minimize biofouling in the irrigation system. To assess the formation of NDMA in such systems, samples were collected from several locations in full-scale wastewater treatment systems and their associated irrigation systems. Up to 460 ng/L of NDMA was produced in full-scale systems in which chloramines were formed when wastewater effluent was disinfected with chlorine in the presence of ammonia. Less than 20 ng/L of NDMA was produced in systems that used free chlorine (i.e., HOCl/OCl(-)) for disinfection in the absence of ammonia. The production of NDMA in ammonia-containing systems was correlated with the concentration of NDMA precursors in the wastewater effluent and the overall dose of chlorine applied. Much of the NDMA formation occurred in chlorine contact basins or in storage basins where water that contained chloramines was held after disinfection. When landscape or crop irrigation is practiced with ammonia-containing wastewater effluent, NDMA production can be controlled by use of lower chlorine doses or by application of alternative disinfectants.

  12. Effect of Irrigation with Wastewater and Foliar Application of Complete Fertilizer on Forage Yield and Yield Components of Foxtail Millet (Setaria italica

    Directory of Open Access Journals (Sweden)

    A Ahmadi Aghtape

    2013-08-01

    Full Text Available In order to study effect of irrigation with wastewater and foliar application of complete fertilizer on forage yield and seed yield and yield components of foxtail millet (Setaria italica. A split plot experiment based on randomized complete block design with three replications was conducted at the Agriculture Institute of Zabol University in year 2009. Treatments included three levels of irrigation: Irrigation with well water at all stages of grows (control, Irrigation with wastewater and tap water alternately, Irrigation with wastewater for all growing stages, as the main plot and sprayed with three levels of complete fertilizer (NATBA-LIB: Non spraying (control, sprayed with 600 and 1200 gram of complete fertilizer in each hectare, as were the subplots. Results showed that irrigation with wastewater and complete fertilizer sprayed had significant effect on all traits except leaf to stem ratio. Furthermore, among the irrigation treatments, irrigation with wastewater in total growing period, and wastewater and tap water alternately lead to significant increase in grain yield, forage yield and yield components. Among the sprayed treatments, sprayed with 1200 gram of complete fertilizer had highest forage yield and grain.

  13. Feature soil, growth and chemical composition of grass in tifton fertilization and irrigation of aquaculture with wastewater

    OpenAIRE

    Francisca Mirlanda Vasconcelos Furtado

    2015-01-01

    This work was carried out to evaluate the effects of nitrogen fertilization in areas of irrigated pastures with biofertilizados effluents from fish farming. Four doses of nitrogen fertilizer were used for 3 cycles of Tifton-85 grass cut every 28 days and irrigated with wastewater from fish farming. After each cutting the grass was fertilized with the respective doses of fertilizer. The design was completely randomized in a factorial 2 x 4 with four replicates. Four doses of nitrogen fertilize...

  14. Wastewater use in agriculture: irrigation of sugar cane with effluents from the Cañaveralejo wastewater treatment plant in Cali, Colombia.

    Science.gov (United States)

    Madera, C A; Silva, J; Mara, D D; Torres, P

    2009-09-01

    In Valle del Cauca, south-west Colombia, surface and ground waters are used for sugar cane irrigation at a rate of 100 m3 of water per tonne of sugar produced. In addition large quantities of artificial fertilizers and pesticides are used to grow the crop. Preliminary experiments were undertaken to determine the feasibility of using effluents from the Cañaveralejo primary wastewater treatment plant in Cali. Sugar cane variety CC 8592 was planted in 18 box plots, each 0.5 m2. Six were irrigated with conventional primary effluent, six with chemically enhanced primary effluent and six with groundwater. For each set of six box plots, three contained local soil and three a 50:50 mixture of sand and rice husks. The three irrigation waters were monitored for 12 months, and immediately after harvest the sugar content of the sugar cane juice determined. All physico-chemical quality parameters for the three irrigation waters were lower than the FAO guideline values for irrigation water quality; on the basis of their sodium absorption ratios and electrical conductivity values, both wastewater effluents were in the USDA low-to-medium risk category C2S1. There was no difference in the sugar content of the cane juice irrigated with the three waters. However, the microbiological quality (E. coli and helminth numbers) of the two effluents did not meet the WHO guidelines and therefore additional human exposure control measures are required in order to minimize any resulting adverse health risks to those working in the wastewater-irrigated fields.

  15. Environmental and health risks associated with reuse of wastewater for irrigation

    Directory of Open Access Journals (Sweden)

    Eman Shakir

    2017-03-01

    Full Text Available The present study focuses on the environmental and health risks associated with the use of treated wastewater produced from Al-Rustamia third extension plant for irrigation. The measured data are used to evaluate comprehensive pollution index (CPI and organic pollution index (OPI. The average CPI was found as 0.69 which indicated to be slightly polluted for all seasons and a similar result was also obtained with OPI, which is found to slightly vary in the range 1.29–1.60 which indicates as being to be contaminated. Also to evaluate its suitability for irrigation purposes, Sodium Adsorption Ratio (SAR, Soluble Sodium Percentage (SSP and Residual Sodium Carbonate (RSC were calculated following standard equations and found experimentally as (8.70, (74.76 and (2.68 respectively. Irrigation water classes are used for Salinity hazard (EC and Sodium hazard (SAR to assess water suitability for irrigation, and it is found that samples in summer and autumn in the class of C3-S1, indicate high salinity and low sodium water, while in spring and winter in the class of C4-S1, they indicate very high-salinity. Furthermore, the data indicate a slight to moderate degree of restriction on the use of this treated wastewater in irrigation due to chloride hazard. RSC value is more than 1.25 at all seasons, indicating that samples in summer and autumn are doubtful for irrigation purposes, while the samples in spring and winter are unsuitable for irrigation.

  16. Effects of ten years treated wastewater drip irrigation on soil ...

    African Journals Online (AJOL)

    SWEET

    soil contamination and the cumulative impact of wastewater, we compared two plots, all under orange- ... A slight increase in the concentration of soil enteric bacteria and soil fungal densities was ..... could be used for fruit tree irrigation.

  17. Reducing microbial contamination on wastewater-irrigated lettuce by cessation of irrigation before harvesting

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, Pay

    2007-01-01

    OBJECTIVE: To assess the effectiveness of cessation of irrigation before harvesting in reducing microbial contamination of lettuce irrigated with wastewater in urban vegetable farming in Ghana. METHODS: Assessment was done under actual field conditions with urban vegetable farmers in Ghana. Trials...... were arranged in completely randomized block design and done both in the dry and wet seasons. Seven hundred and twenty-six lettuce samples and 36 water samples were analysed for thermotolerant coliforms and helminth eggs. RESULTS: On average, 0.65 log units for indicator thermotolerant coliforms and 0.......4 helminth eggs per 100 g of lettuce were removed on each non-irrigated day from lettuce in the dry season. This corresponded to a daily loss of 1.4 tonnes/ha of fresh weight of lettuce. As an input for exposure analysis to make risk estimates, the decay coefficient, k, for thermotolerant coliforms was 0...

  18. Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils

    NARCIS (Netherlands)

    Jalali, M.; Merikhpour, H.; Kaledhonkar, M.J.; Zee, van der S.E.A.T.M.

    2008-01-01

    Soil column studies were conducted with two soils to assess the effects of irrigation with wastewater on soil and groundwater quality. Upon the application of wastewater, exchange occurred between solution sodium (Na+) and exchangeable cations (Ca2+, Mg2+, K+), whereby these cations were released

  19. Occurrence of Escherichia coli in Brassica rapa L. chinensis irrigated with low quality water in urban areas of Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mhongole, Ofred J.; Mdegela, Robinson H.; Kusiluka, Lughano J. M.

    2016-01-01

    Low quality water has become valuable resource with restricted or unrestricted use in food production depending on its quality. This study has quantified the occurrence of Escherichia coli in Brassica rapa L. chinensis (Chinese cabbage) vegetables and low quality irrigation water. A total of 106...... samples including Chinese cabbage (69) and water (37) were collected. The E. coli were cultured in petri film selective E. coli plates at 44°C. The Chinese cabbage irrigated with river water at Fungafunga area indicated significantly (P... than those irrigated with treated wastewater at Mazimbu 10% (n=48, 0.00-1.36 log cfu/g). The mean counts of E. coli in untreated wastewater ranged from 4.59 to 5.56 log cfu/mL, while in treated wastewater was from 0.54 to 1.05 log cfu/mL and in river water it was 2.40 log cfu/mL. Treated wastewater...

  20. REUSE OF TREATED WASTEWATER IN AGRICULTURE: SOLVING WATER DEFICIT PROBLEMS IN ARID AREAS (REVIEW

    Directory of Open Access Journals (Sweden)

    Faissal AZIZ

    2014-12-01

    Full Text Available In the arid and semiarid areas, the availability and the management of irrigation water have become priorities of great importance. The successive years of drought, induced by climate change and population growth, increasingly reduced the amount of water reserved for agriculture. Consequently, many countries have included wastewater reuse as an important dimension of water resources planning. In the more arid areas wastewater is used in agriculture, releasing high resource of water supplies. In this context, the present work is a review focusing the reuse of treated wastewater in agriculture as an important strategy for solving water deficit problems in arid areas. Much information concerning the wastewater reuse in different regions of the world and in Morocco, the different wastewater treatment technologies existing in Morocco were discussed. The review focused also the fertilizing potential of wastewater in agriculture, the role of nutrients and their concentrations in wastewater and their advantages effects on plant growth and yield.

  1. Governing the reuse of treated wastewater in irrigation : the case study of Jericho, Palestine

    NARCIS (Netherlands)

    Al-Khatib, Nasser; Shoqeir, Jawad A.H.; Özerol, Gül; Majaj, Linda

    2017-01-01

    Wastewater reuse in irrigation provides additional water supply for agriculture and saves freshwater resources for human consumption. Through these benefits, wastewater reuse can significantly alleviate the water scarcity in Palestine and fit to the complexity of the geopolitical context. However,

  2. Distribution of heavy metals in plants cultivated with wastewater irrigated soils during different periods of time

    International Nuclear Information System (INIS)

    Solis, C.; Andrade, E.; Mireles, A.; Reyes-Solis, I.E.; Garcia-Calderon, N.; Lagunas-Solar, M.C.; Pina, C.U.; Flocchini, R.G.

    2005-01-01

    The Mezquital valley is a vast area near Mexico city that has been irrigated with wastewater from Mexico city for more than 50 years. At present, this water source continues to be used while new irrigation areas are being incorporated according to rural demand. This research study was conducted to evaluate the relationship between the accumulation of metals in soils and plants and the physicochemical properties of soils irrigated in this manner for 50 and 100 years, respectively. Soil properties such as pH and total organic carbon (TOC) were determined by conventional methods. Plant and soil total trace metals Fe, Co, Ni, Cu, Zn and Pb were determined using particle induced X-ray emission (PIXE). Lower pH and TOC contents were obtained for soils irrigated during 100 years, indicating a higher metal bioavailability. This is not reflected in plant content for most of the reported elements, but Zn and Pb show a higher absorption in 100 years old plots (26-79%) than in 50-year-olds plots, indicating a pH dependence

  3. Effect of Phosphate levels on vegetables irrigated with wastewater

    Science.gov (United States)

    Oladeji, S. O.; Saeed, M. D.

    2018-04-01

    This study examined accumulation of phosphate ions in wastewater and vegetables through man-made activities. Phosphate level was determined in wastewater and vegetables collected on seasonal basis along Kubanni stream in Zaria using UV/Visible and Smart Spectro Spectrophotometers for their analyses. Results obtained show that phosphate concentrations ranged from 3.85 – 42.33 mg/L in the first year and 15.60 – 72.80 mg/L in the second year for wastewater whereas the vegetable had levels of 3.80 – 23.65 mg/kg in the year I and 7.48 – 27.15 mg/kg in the year II. Further statistical tests indicated no significant difference in phosphate levels across the locations and seasons for wastewater and vegetables evaluated. Correlation results for these two years indicated negative (r = -0.062) relationship for wastewater while low (r = 0.339) relationship noticed for vegetables planted in year I to that of year II. Phosphate concentrations obtained in this study was higher than Maximum Contaminant Levels set by Standard Organization such as WHO and FAO for wastewater whereas vegetables of the sampling sites were not contaminated with phosphate ions. Irrigating farmland with untreated wastewater has negative consequence on the crops grown with it.

  4. Heavy metal input to agricultural soils from irrigation with treated wastewater: Insight from Pb isotopes

    Science.gov (United States)

    Kloppmann, Wolfram; Cary, Lise; Psarras, Georgios; Surdyk, Nicolas; Chartzoulakis, Kostas; Pettenati, Marie; Maton, Laure

    2010-05-01

    A major objective of the EU FP6 project SAFIR was to overcome certain drawbacks of wastewater reuse through the development of a new irrigation technology combining small-scale modular water treatment plants on farm level and improved irrigation hardware, in the aim to lower the risks related to low quality water and to increase water use efficiency. This innovative technology was tested in several hydro-climatic contexts (Crete, Italy, Serbia, China) on experimental irrigated tomato and potato fields. Here we present the heavy metal variations in soil after medium-term (3 irrigation seasons from 2006-2008) use of treated municipal wastewater with a special focus on lead and lead isotope signatures. The experimental site is located in Chania, Crete. A matrix of plots were irrigated, combining different water qualities (secondary, primary treated wastewater, tap water, partially spiked with heavy metals, going through newly developed tertiary treatment systems) with different irrigation strategies (surface and subsurface drip irrigation combined with full irrigation and partial root drying). In order to assess small scale heavy metal distribution around a drip emitter, Pb isotope tracing was used, combined with selective extraction. The sampling for Pb isotope fingerprinting was performed after the 3rd season of ww-irrigation on a lateral profile from a drip irrigator (half distance between drip lines, i.e. 50cm) and three depth intervals (0-10, 10-20, 20-40 cm). These samples were lixiviated through a 3 step selective extraction procedure giving rise to the bio-accessible, mobile and residual fraction: CaCl2/NaNO3 (bio-accessible fraction), DPTA (mobile fraction), total acid attack (residual fraction). Those samples were analysed for trace elements (including heavy metals) and major inorganic compounds by ICP-MS. The extracted fractions were then analysed by Thermal Ionisation Mass Spectrometry (TIMS) for their lead isotope fingerprints (204Pb, 206Pb, 207Pb, 208Pb

  5. Wastewater irrigation in Jordan: A mismatch in macro nutrient provision

    NARCIS (Netherlands)

    Boom, S.; Huibers, F.P.; Lier, van J.B.

    2008-01-01

    By using sewage nutrients in irrigation, both the costs for nutrient removal and costs for fertilisers at the farm can be distinctly reduced. The present study describes the wastewater use scheme in the Seil Al-Zarqa and Middle Jordan Valley regions, Jordan. Through field studies, information on

  6. A social choice-based methodology for treated wastewater reuse in urban and suburban areas.

    Science.gov (United States)

    Mahjouri, Najmeh; Pourmand, Ehsan

    2017-07-01

    Reusing treated wastewater for supplying water demands such as landscape and agricultural irrigation in urban and suburban areas has become a major water supply approach especially in regions struggling with water shortage. Due to limited available treated wastewater to satisfy all water demands, conflicts may arise in allocating treated wastewater to water users. Since there is usually more than one decision maker and more than one criterion to measure the impact of each water allocation scenario, effective tools are needed to combine individual preferences to reach a collective decision. In this paper, a new social choice (SC) method, which can consider some indifference thresholds for decision makers, is proposed for evaluating and ranking treated wastewater and urban runoff allocation scenarios to water users in urban and suburban areas. Some SC methods, namely plurality voting, Borda count, pairwise comparisons, Hare system, dictatorship, and approval voting, are applied for comparing and evaluating the results. Different scenarios are proposed for allocating treated wastewater and urban runoff to landscape irrigation, agricultural lands as well as artificial recharge of aquifer in the Tehran metropolitan Area, Iran. The main stakeholders rank the proposed scenarios based on their utilities using two different approaches. The proposed method suggests ranking of the scenarios based on the stakeholders' utilities and considering the scores they assigned to each scenario. Comparing the results of the proposed method with those of six different SC methods shows that the obtained ranks are mostly in compliance with the social welfare.

  7. Impact of winery wastewater irrigation on soil, grape nutrition, and grape and wine quality

    Science.gov (United States)

    Winery wastewater (WW) reuse has the potential to provide more sustainable vineyard irrigation. This study investigated the effects of WW irrigation on grape and wine chemical composition and sensory attributes in vineyards in Napa and Sonoma Counties. The life cycle of the grape/wine production was...

  8. Heavy metal accumulation in soils, plants, and hair samples: an assessment of heavy metal exposure risks from the consumption of vegetables grown on soils previously irrigated with wastewater.

    Science.gov (United States)

    Massaquoi, Lamin Daddy; Ma, Hui; Liu, Xue Hui; Han, Peng Yu; Zuo, Shu-Mei; Hua, Zhong-Xian; Liu, Dian-Wu

    2015-12-01

    It is common knowledge that soils irrigated with wastewater accumulate heavy metals more than those irrigated with cleaner water sources. However, little is known on metal concentrations in soils and cultivars after the cessation of wastewater use. This study assessed the accumulation and health risk of heavy metals 3 years post-wastewater irrigation in soils, vegetables, and farmers' hair. Soils, vegetables, and hair samples were collected from villages previously irrigating with wastewater (experimental villages) and villages with no history of wastewater irrigation (control villages). Soil samples were digested in a mixture of HCL/HNO3/HCLO4/HF. Plants and hair samples were digested in HNO3/HCLO4 mixture. Inductive coupled plasma-optical emission spectrometer (ICP-OES) was used to determine metal concentrations of digested extracts. Study results indicate a persistence of heavy metal concentration in soils and plants from farms previously irrigated with wastewater. In addition, soils previously irrigated with wastewater were severely contaminated with cadmium. Hair metal concentrations of farmers previously irrigating with wastewater were significantly higher (P metal concentrations in hair samples of farmers previously irrigating with wastewater were not associated with current soil metal concentrations. The study concludes that there is a persistence of heavy metals in soils and plants previously irrigated with wastewater, but high metal concentrations in hair samples of farmers cannot be associated with current soil metal concentrations.

  9. The removal of microorganisms and organic micropollutants from wastewater during infiltration to aquifers after irrigation of farmland in the Tula Valley, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Alma; Maya, Catalina [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 D.F. (Mexico); Gibson, Richard [Instituto de Geografia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 D.F. (Mexico); Jimenez, Blanca, E-mail: bjimenezc@iingen.unam.mx [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 D.F. (Mexico)

    2011-05-15

    The Tula Valley receives untreated wastewater from Mexico City for agricultural irrigation, half of which infiltrates to aquifers from where drinking water is extracted. Samples of wastewater and infiltrated water from three areas of the valley were analyzed for microorganisms, organic micropollutants, and some basic parameters. Concentrations of microorganisms in the infiltrated water were generally very low but the incidence of fecal coliforms (present in 68% of samples), somatic bacteriophages (36%), Giardia spp. (14%), and helminth eggs (8%) suggested a health risk. Organic micropollutants, often present at high concentrations in the wastewater, were generally absent from the infiltrated water except carbamazepine which was in 55% of samples (up to 193 ng/L). There was no correlation between carbamazepine concentrations and the presence of microorganisms but highest concentrations of carbamazepine and boron coincided. A treatment such as nanofiltration would be necessary for the infiltrated water to be a safe potable supply. - Highlights: > Wastewater from Mexico City used for crop irrigation infiltrates to aquifers. > Infiltration through the soil removes many contaminants. > Occasional contamination of infiltrated water with microorganisms occurs. > Carbamazepine is widely present in the infiltrated water. > Safe use of this water for drinking would need nanofiltration or another treatment. - Water extracted from aquifers fed by wastewater used for irrigation may contain microorganisms and persistent polar organic micropollutants and requires treatment to be a potable supply.

  10. The removal of microorganisms and organic micropollutants from wastewater during infiltration to aquifers after irrigation of farmland in the Tula Valley, Mexico

    International Nuclear Information System (INIS)

    Chavez, Alma; Maya, Catalina; Gibson, Richard; Jimenez, Blanca

    2011-01-01

    The Tula Valley receives untreated wastewater from Mexico City for agricultural irrigation, half of which infiltrates to aquifers from where drinking water is extracted. Samples of wastewater and infiltrated water from three areas of the valley were analyzed for microorganisms, organic micropollutants, and some basic parameters. Concentrations of microorganisms in the infiltrated water were generally very low but the incidence of fecal coliforms (present in 68% of samples), somatic bacteriophages (36%), Giardia spp. (14%), and helminth eggs (8%) suggested a health risk. Organic micropollutants, often present at high concentrations in the wastewater, were generally absent from the infiltrated water except carbamazepine which was in 55% of samples (up to 193 ng/L). There was no correlation between carbamazepine concentrations and the presence of microorganisms but highest concentrations of carbamazepine and boron coincided. A treatment such as nanofiltration would be necessary for the infiltrated water to be a safe potable supply. - Highlights: → Wastewater from Mexico City used for crop irrigation infiltrates to aquifers. → Infiltration through the soil removes many contaminants. → Occasional contamination of infiltrated water with microorganisms occurs. → Carbamazepine is widely present in the infiltrated water. → Safe use of this water for drinking would need nanofiltration or another treatment. - Water extracted from aquifers fed by wastewater used for irrigation may contain microorganisms and persistent polar organic micropollutants and requires treatment to be a potable supply.

  11. Concentrations of Mercury, Lead, Chromium, Cadmium, Arsenic and Aluminum in Irrigation Water Wells and Wastewaters Used for Agriculture in Mashhad, Northeastern Iran

    Directory of Open Access Journals (Sweden)

    SR Mousavi

    2013-04-01

    Full Text Available Background: Contamination of water by toxic chemicals has become commonly recognized as an environmental concern. Based on our clinical observation in Mashhad, northeastern Iran, many people might be at risk of exposure to high concentrations of toxic heavy metals in water. Because wastewater effluents as well as water wells have been commonly used for irrigation over the past decades, there has been some concern on the toxic metal exposure of crops and vegetables irrigated with the contaminated water. Objective: To measure the concentrations of mercury, lead, chromium, cadmium, arsenic and aluminium in irrigation water wells and wastewaters used for agriculture in Mashhad, northeastern Iran. Methods: 36 samples were taken from irrigation water wells and a wastewater refinery in North of Mashhad at four times—May 2008, March 2009, and June and July 2010. Atomic absorption spectrometry was used to measure the concentration of toxic metals. Graphite furnace was used for the measurement of lead, chromium, cadmium and aluminum. Mercury and arsenic concentrations were measured by mercury/hydride system. Results: Chromium, cadmium, lead and arsenic concentrations in the samples were within the standard range. The mean±SD concentration of mercury in irrigation wells (1.02±0.40 μg/L exceeded the FAO maximum permissible levels. The aluminum concentration in irrigation water varied significantly from month to month (p=0.03. All wastewater samples contained high mercury concentrations (6.64±2.53 μg/L. Conclusion: For high mercury and aluminum concentrations, the water sources studied should not be used for agricultural use. Regular monitoring of the level of heavy metals in water and employing the necessary environmental interventions in this area are strongly recommended.

  12. Up and down the sanitation ladder: Harmonizing the treatment and multiple-barrier perspectives on risk reduction in wastewater irrigated agriculture

    DEFF Research Database (Denmark)

    Keraita, Bernard; Drechsel, P.; Konradsen, Flemming

    2010-01-01

    This paper discusses two prominent perspectives in the debate on risk reduction in wastewater irrigation; reliance on conventional wastewater treatment and the multiple-barrier approach. The treatment perspective is based on water-quality standards for wastewater irrigation with treatment...... considered the ultimate risk reductionmeasure. The somewhat broader multiple-barrier perspective supports the use of a combination of pre-farm, on-farm and postfarm barriers, including, where possible, wastewater treatment, to meet required health targets. The discussion in this paper shows that each...

  13. Nutrient content in maize fertilized with tannery sludge vermicompost and irrigated with domestic wastewater

    Directory of Open Access Journals (Sweden)

    Guilherme Malafaia

    2016-11-01

    Full Text Available This study analyzed the macro and micronutrient content of maize leaves (Zea mays L. grown in soil containing tannery sludge vermicomposting and irrigated with wastewater. The arrangement of the treatments consisted of a factorial 2x6 (two types of irrigation and six kinds of fertilizer in a completely randomized design, with five repetitions, totaling sixty experimental units. The following experimental units, irrigated with supply water (A and household wastewater (R, were established: (T1 Control Soil, with no chemical fertilization and no vermicomposting; (T2 Soil + NPK; (T3 Soil + primary sludge vermicompost; (T4 Soil + P + primary sludge vermicompost; (T5 Soil + P + liming sludge vermicompost; and (T6 Soil + liming sludge vermicompost. For the leaf-tissue analysis, the opposite whole leaf below the first (upper ear was collected from each plant, excluding the midrib at the onset of the female inflorescence. The results showed that both wastewater and the tannery sludge vermicomposts can be a good source of nutrients for maize plants, since the macro and micronutrients in the leaves of plants were satisfactory and no signs or symptoms of toxicity were observed. While leaf analysis alone is insufficient to assess the nutritional status of plants, this study innovatively suggests the potential beneficial use of a combination of wastewater and tannery sludge vermicompost in the cultivation of corn, motivating new research.

  14. Treatment and reuse for irrigation of wastewater in Cagliari

    International Nuclear Information System (INIS)

    Bragadin, G.L.; Franco, D.; Mancini, M.L.

    2006-01-01

    D.M. 12 June 2003 n. 185 gives national rules about wastewater recycling and reuse. Increasing in water consumption for new agricultural practise and uncertainty about availability of water resource in summer due to climatic instability make necessary to search new available fonts. In most part of Italian territory surface water volumes are taken into civil water distribution system for domestic use and, in summer, rivers are often in dry condition before arriving in urban tracts and in quality condition typical of domestic wastewater more or less treated in downstream. This work explains an experience in reclamation and irrigation reuse of a large flowrate of domestic wastewater carried out in Cagliari and discuss results in order to test reliability and efficiency with reference to existent Italian laws about discharge (D.Lgs n. 152/99) and reuse (D.M. n. 185/2003). Simbrizzi artificial basin make possible agricultural recycling and reuse realizing adequate retention basins for storage and final finishing of wastewater, at the same time permits to avoid every discharge in seawater during summer [it

  15. Determination of cyanide and nitrate concentrations in drinking, irrigation, and wastewaters

    Directory of Open Access Journals (Sweden)

    Seyed Reza Mousavi

    2013-01-01

    Full Text Available Background: The chemical contamination of water is a major concern for the environmental and health authorities globally. Some anions present in the water are required for human health, but some of them are harmful. Free cyanide and nitrate are amongst the toxic agents in the aquatic environment. Cyanide is highly toxic for human beings. Industrial plants could be attributed to a major source of these toxic agents. Therefore, cyanide and nitrate concentrations in the drinking and irrigation water wells in the high industrial plants were evaluated. Materials and Methods: The samples (57 were taken from drinking and irrigation water wells as well as from a wastewater refinery in north of Mashhad in three stages - March 2009, June 2010, and July 2010. Determination of cyanide and nitrate were performed by a spectrophotometer using commercially available kits according to the manufacturer′s protocols. Results: Cyanide and nitrate concentrations in the drinking water samples of the three stages were 0.0050 ± 0.0007, 0.0070 ± 0.0018, 0.0008 ± 0.0014 mg/L and 6.50 ± 2.80, 7.20 ± 1.80, 7.50 ± 1.90 mg/L, respectively. Cyanide mean concentration during March, June, and July was significant (P = 0.001, whereas nitrate mean concentration was not (P = 0.5. Cyanide and nitrate concentrations in the irrigation water samples of the three stages were 0.0140 ± 0.0130, 0.0077 ± 0.0025, 0.0087 ± 0.0047 mg/L and 12.37 ± 8.12, 8.04 ± 3.99, 8.40 ± 2.60 mg/L, respectively. Cyanide (P = 0.754 and nitrate (P = 0.705 concentrations were not significant during three occasions. Cyanide and nitrate concentrations in the wastewaters of the three stages were 0.1020 ± 0.033, 0.1180 ± 0.033, 0.1200 ± 0.035 mg/L and 1633.80 ± 40.74, 279.00 ± 152.17, 298.40 ± 304.74 mg/L, respectively. Cyanide (P = 0.731 and nitrate (P = 0.187 concentration in wastewaters were not significant during different months. Conclusion: Although nitrate and cyanide concentrations in

  16. Assessing the ecological long-term impact of wastewater irrigation on soil and water based on bioassays and chemical analyses.

    Science.gov (United States)

    Richter, Elisabeth; Hecht, Fabian; Schnellbacher, Nadine; Ternes, Thomas A; Wick, Arne; Wode, Florian; Coors, Anja

    2015-11-01

    The reuse of treated wastewater for irrigation and groundwater recharge can counteract water scarcity and reduce pollution of surface waters, but assessing its environmental risk should likewise consider effects associated to the soil. The present study therefore aimed at determining the impact of wastewater irrigation on the habitat quality of water after soil passage and of soil after percolation by applying bioassays and chemical analysis. Lab-scale columns of four different soils encompassing standard European soil and three field soils of varying characteristics and pre-contamination were continuously percolated with treated wastewater to simulate long-term irrigation. Wastewater and its percolates were tested for immobilization of Daphnia magna and growth inhibition of green algae (Pseudokirchneriella subcapitata) and water lentils (Lemna minor). The observed phytotoxicity of the treated wastewater was mostly reduced by soil passage, but in some percolates also increased for green algae. Chemical analysis covering an extensive set of wastewater-born organic pollutants demonstrated that many of them were considerably reduced by soil passage, particularly through peaty soils. Taken together, these results indicated that wastewater-born phytotoxic substances may be removed by soil passage, while existing soil pollutants (e.g. metals) may leach and impair percolate quality. Soils with and without wastewater irrigation were tested for growth of plants (Avena sativa, Brassica napus) and soil bacteria (Arthrobacter globiformis) and reproduction of collembolans (Folsomia candida) and oligochaetes (Enchytraeus crypticus, Eisenia fetida). The habitat quality of the standard and two field soils appeared to be deteriorated by wastewater percolation for at least one organism (enchytraeids, plants or bacteria), while for two pre-contaminated field soils it also was improved (for plants and/or enchytraeids). Wastewater percolation did not seem to raise soil concentrations

  17. Rice production with minimal irrigation and no nitrogen fertilizer by intensive use of treated municipal wastewater.

    Science.gov (United States)

    Muramatsu, Ayumi; Watanabe, Toru; Sasaki, Atsushi; Ito, Hiroaki; Kajihara, Akihiko

    2014-01-01

    We designed a new cultivation system of rice with circulated irrigation to remove nitrogen from treated municipal wastewater effectively and assessed the possibility of nitrogen removal in the new system without any adverse effects on rice production through bench-scale experiments through two seasons. Overgrowth of the rice plant, which can lead to lodging and tasteless rice, was found in the first season probably because nitrogen supply based on standard practice in normal paddy fields was too much in the closed irrigation system. In the second season, therefore, the amount of treated wastewater initially applied to the system was reduced but this resulted in a considerably decreased yield. On the other hand, the taste of the rice was significantly improved. The two-season experiments revealed that the new system enabled rice production with minimal irrigation (approximately 50% on the yield base compared to normal paddy fields) and no nitrogen fertilizer. The system also achieved >95% removal of nitrogen from the treated wastewater used for circulated irrigation. The accumulation of harmful metals in the rice was not observed after one season of cultivation in the new system. The accumulation after cultivation using the same soil repeatedly for a longer time should be examined by further studies.

  18. Investigation of Irrigation Reuse Potential of Wastewater Treatment Effluent from Hamedan Atieh-Sazan General Hospital

    Directory of Open Access Journals (Sweden)

    Mohammad Binavapour

    2007-12-01

    Full Text Available Hospital wastewater is a type of municipal wastewater which may contain pathogenic agents and different microorganisms. If properly treated, the effluent from hospital wastewater treatment facilities can be used for irrigation purposes. To investigate this, the effluent from Hamedan Atieh-Sazan General Hospital was studied. The existing treatment facility uses an extended aeration system with an average wastewater flow rate of approximately 150 m3/day. In addition to evaluating the performance of the wastewater facility at Atieh-Sazan General Hospital, quality parameters of the raw wastewater and the effluent were measured. The mean values obtained for pH, BOD, COD, MPN for total Coliform/100ml, and Nematode/lit in raw wastewater were about 7.1, 238 mg/l, 352 mg/l, 5.5´106, and 2340, respectively. The mean values obtained for pH, BOD, COD, Na%, MPN for total Coliform/100 ml, and Nematode/lit in the effluent were 7.1, 35 mg/L, 77 mg/L, 61, 1561, and 575, respectively. Based on these results, the efficiency of the existing system in removing BOD, COD, and MPN/100 ml were %85.3, %78.3, and %99.97, respectively. With respect to water quality standards available, the quality of the effluent was considered to be suitable for irrigation except for its Na%, MPN for total Coliform, and Nematodes values.

  19. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.; Ansari, Mohd Ikram; Harb, Moustapha; Hong, Pei-Ying

    2015-01-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation

  20. Short-term effects of irrigation with treated domestic wastewater on microbiological activity of a Vertic xerofluvent soil under Mediterranean conditions.

    Science.gov (United States)

    Kayikcioglu, Huseyin Husnu

    2012-07-15

    Approximately 70% of the world water use, including all the water diverted from rivers and pumped from underground, is used for agricultural irrigation, so the reuse of treated domestic wastewater (TWW) for purposes such as agricultural and landscape irrigation reduces the amount of water that needs to be extracted from natural water sources as well as reducing discharge of wastewater to the environment. Thus, TWW is a valuable water source for recycling and reusing in arid and semi-arid regions which are frequently confronting water shortages. In this regard, this study was planned to reveal the short-term effects of advanced-TWW irrigation on microbial parameters of Vertic xerofluvent soil. For this purpose, certain parameters were measured in the study, including soil total organic carbon (C(org)), N-mineralization (N(min)), microbial biomass carbon (C(mic)), soil microbial quotient (C(mic)/C(org)) and the activities of the enzymes dehydrogenase (DHG), urease (UA), alkaline phosphatase (ALKPA), β-glucosidase (GLU) and aryl sulphatase (ArSA) in soils irrigated with TWW and fresh water (FW). All of the microbial parameters were negatively affected by TWW irrigation. Microbial parameters decreased by 10.1%-54.1% in comparison with the FW plots. This decrease especially in enzymatic activities of soil irrigated with TWW, presumably due to some heavy metals inhibited their activity associated with the soil types and the concentrations of heavy metals in wastewater. In contrast, C(mic)/C(org) was found higher in the plots irrigated with TWW at the end of the experiment. The addition of organic matter to soil by irrigation with TWW is cause for the increase in this ratio. The dose of irrigation should be modified to reduce the quantity and to increase the frequency of application to avoid the loss of aggregation and salt accumulation. TWW irrigation is a strategy with many benefits to agricultural land management; however, long-term studies should be implemented to

  1. Assessment of wastewater effluent quality in Thessaly region, Greece, for determining its irrigation reuse potential.

    Science.gov (United States)

    Bakopoulou, S; Emmanouil, C; Kungolos, A

    2011-02-01

    The objective of the present study is to assess wastewater effluent quality in Thessaly region, Greece, in relation to its physicochemical and microbiological burden as well as its toxic potential on a number of organisms. Wastewater may be used for agricultural as well as for landscape irrigation purposes; therefore, its toxicity potential is quite important. Thessaly region has been chosen since this region suffers from a distinct water shortage in summer period necessitating alternative water resources. During our research, treated effluents from four wastewater treatment plants operating in the region (Larissa, Volos, Karditsa, and Tirnavos) were tested for specific physicochemical and microbiological parameters [biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), total suspended solids (TSS), pH, electrical conductivity, selected metals presence (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As), and fecal coliforms' (FC) number]. The effluents were also tested for their toxicity using two different bioassays (Daphnia magna immobilization test and Phytotoxkit microbiotest). The findings were compared to relative regulations and guidelines regarding wastewater reuse for irrigation. The results overall show that secondary effluents in Thessaly region are generally acceptable for reuse for irrigation purposes according to limits set by legislation, if effective advanced treatment methods are applied prior to reuse. However, their potential toxicity should be closely monitored, since it was found that it may vary significantly in relation to season and location, when indicator plant and zooplankton organisms are used. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in central Mexico.

    Directory of Open Access Journals (Sweden)

    Philipp Dalkmann

    Full Text Available Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin, 4.3 µg/kg (sulfamethoxazole, and 5.4 µg/kg (carbamazepine in soils irrigated for 19-28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15 × 10(-3 ± 0.22 × 10(-3 copies/16S rDNA than in non-irrigated soils (4.35 × 10(-5± 1.00 × 10(-5 copies/16S rDNA, while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61 × 10(-4 ± 0.59 × 10(-4 versus 2.99 × 10(-5 ± 0.26 × 10(-5 copies/16S rDNA. Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a

  3. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  4. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

  5. Physical-chemical effects of irrigation with treated wastewater on Dusky Red Latosol soil

    Directory of Open Access Journals (Sweden)

    Vanessa Ribeiro Urbano

    2015-11-01

    Full Text Available The current water crisis underlines the importance of improving water management. The use of effluent from secondary treatment in agriculture can reduce the discharge of effluent into natural bodies and provide nutrients to crops. This study evaluated the physical and chemical properties of a Dusky Red Latosol soil that had been irrigated with treated wastewater. Conducted at the Center of Agricultural Sciences (CCA of Federal University of São Carlos (UFSCar, in Araras/São Paulo/Brazil, 18 undisturbed soil samples were collected and deposited on a constant-head permeameter in order to simulate the irrigation of five growth cycles of lettuce (Lactuca sativa L., organized in five different treatments and one control group. For each treatment 0.58 L, 1.16 L, 1.74 L, 2.32 L, and 2.90 L of treated wastewater and distilled water were applied . The treated wastewater came from a domestic waste treatment plant. After the water filtered through the soil, samples of treated wastewater were collected for analyses of electrical conductivity (EC, sodium adsorption ratio (SAR, turbidity, pH, Na, K, Mg, P and Ca and, in the soil the granulometry, complete fertility, exchangeable sodium percentage (ESP and saturated hydraulic conductivity (Ksat. The Ksat decreased, but did not alter the infiltration of water and nutrients in the soil. The concentration of nutrients in the soil increased, including Na, which raises the need for monitoring soil’s salinity. In conclusion, the application of wastewater did not cause damage to the physical properties of the soil, but resulted in a tendency towards salinization.

  6. Wastewater Reuse: An Economic Perspective to Identify Suitable Areas for Poplar Vegetation Filter Systems for Energy Production

    Directory of Open Access Journals (Sweden)

    Mauro Viccaro

    2017-11-01

    Full Text Available The increasing interest towards climate change, water and energy saving, and soil protection has led the research community to consider non-conventional water as a sustainable source for irrigation of energy crops. Vegetation filter systems are considered a reliable technique for sustainable biomass cultivation, enabling the use of reclaimed wastewater as water and nutrients sources during irrigation periods. In this study, a geographic information system (GIS-based spatial model was developed to identify areas potentially suitable for creating vegetation filter systems with poplars to size the plants of energy production. An economic assessment allowed us to identify the cost-effectiveness areas for biomass production that can be fertigated by reclaimed wastewater. Considering the Basilicata region as the test region, a surface area of 258,512 ha was investigated, identifying 73,331 ha of SRF soils sited downstream of 45 wastewater treatment plants (WWTPs. However, considering only areas that have positive net present value and are economically attractive, results indicate 1606 ha of SRF falling within the areas of influence of 39 WWTPs. The results show that the sector of dedicated crops, adjacent and linked with WWTPs, expresses a total capacity of 50.56 MW for thermal, 8.25 MW for electricity, and 31 MW for cogeneration (25.07 MWt and 5.94 MWe plants.

  7. Development of a decision support system for precision management of conjunctive use of treated wastewater for irrigation in Oman

    Directory of Open Access Journals (Sweden)

    Hemanatha P. W. Jayasuriya

    2018-01-01

    Full Text Available This research aimed at finding alternative options for conjunctive use of treated wastewater (TW with groundwater (GW minimizing the irrigation water from aquifers in the Al-Batinah region with the assistance of a Decision Support System (DSS. Oman is facing a three-facet problem of lowering of GW table, wastewater over-production and excess TW. Approved guidelines for use of TW with tertiary treatments are of two classes: class-A (for vegetables consumed raw, class-B (after cooking. The developed DSS is comprised of four management subsystems: (1 data management in Excel, (2 model and knowledge management by macro programming in Excel, (3 with linear programming (LP optimization models including transportation algorithms, and (4 user interface with Excel or Visual Basic (VB. The results are based on two extreme scenarios: zero TW excess, and zero GW used for irrigation. The DSS could predict water balance for number of crop rotations, and based on adjustable cost variables farmer profit margins could be created. Crop selections and rotation could be done using LP optimizations while transportation algorithm could organize best locations and capacities for treatment plants and the wastewater collection and transportation to farming areas via treatment plants. The developed DSS will be very useful as a water management, optimization and planning tool.

  8. Obstruction and uniformity in drip irrigation systems by applying treated wastewater

    Directory of Open Access Journals (Sweden)

    Patrícia Ferreira da Silva

    Full Text Available ABSTRACT The use of wastewater in agriculture is an alternative to control surface water pollution, and helps to promote the rational use of water. Therefore, the objective of this study was to evaluate the obstruction and uniformity of application of treated wastewater in drip irrigation systems. The study was conducted in a greenhouse at the Universidade Federal de Campina Grande. The treatments were composed by the factorial combination of two factors: three types of water (supply water-ABAST, effluent of a constructed wetland system -WETLAND and upflow of anaerobic reactor effluent followed by constructed wetland system -UASB + WETLAND, and two drip irrigation systems (surface and subsurface, set in a completely randomized design, with four replications. The results indicated that the pH, suspended solids, total iron and coliforms of the WETLAND and UASB + WETLAND treatments represented a severe risk of clogging of drippers; the flow of the emitters increased as the service pressure was increased; values of CUC and CUD in surface and subsurface drip were classified as excellent in ABAST and WETLAND treatments. The degree of clogging reduced as pressure under surface and subsurface drip was increased.

  9. Impact of the reusing of food manufacturing wastewater for irrigation in a closed system on the microbiological quality of the food crops.

    Science.gov (United States)

    Beneduce, Luciano; Gatta, Giuseppe; Bevilacqua, Antonio; Libutti, Angela; Tarantino, Emanuele; Bellucci, Micol; Troiano, Eleonora; Spano, Giuseppe

    2017-11-02

    In order to evaluate if the reuse of food industry treated wastewater is compatible for irrigation of food crops, without increased health risk, in the present study a cropping system, in which ground water and treated wastewater were used for irrigation of tomato and broccoli, during consecutive crop seasons was monitored. Water, crop environment and final products were monitored for microbial indicators and pathogenic bacteria, by conventional and molecular methods. The microbial quality of the irrigation waters influenced sporadically the presence of microbial indicators in soil. No water sample was found positive for pathogenic bacteria, independently from the source. Salmonella spp. and Listeria monocytogenes were detected in soil samples, independently from the irrigation water source. No pathogen was found to contaminate tomato plants, while Listeria monocytogenes and E. coli O157:H7 were detected on broccoli plant, but when final produce were harvested, no pathogen was detected on edible part. The level of microbial indicators and detection of pathogenic bacteria in field and plant was not dependent upon wastewater used. Our results, suggest that reuse of food industry wastewater for irrigation of agricultural crop can be applied without significant increase of potential health risk related to microbial quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Accumulation of Pharmaceuticals, Enterococcus, and Resistance Genes in Soils Irrigated with Wastewater for Zero to 100 Years in Central Mexico

    Science.gov (United States)

    Siebe, Christina; Willaschek, Elisha; Sakinc, Tuerkan; Huebner, Johannes; Amelung, Wulf; Grohmann, Elisabeth; Siemens, Jan

    2012-01-01

    Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19–28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15×10−3±0.22×10−3 copies/16S rDNA) than in non-irrigated soils (4.35×10−5±1.00×10−5 copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61×10–4±0.59×10−4 versus 2.99×10−5±0.26×10−5 copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in

  11. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries.

    Science.gov (United States)

    Khalid, Sana; Shahid, Muhammad; Bibi, Irshad; Sarwar, Tania; Shah, Ali Haidar; Niazi, Nabeel Khan

    2018-05-01

    Population densities and freshwater resources are not evenly distributed worldwide. This has forced farmers to use wastewater for the irrigation of food crops. This practice presents both positive and negative effects with respect to agricultural use, as well as in the context of environmental contamination and toxicology. Although wastewater is an important source of essential nutrients for plants, many environmental, sanitary, and health risks are also associated with the use of wastewater for crop irrigation due to the presence of toxic contaminants and microbes. This review highlights the harmful and beneficial impacts of wastewater irrigation on the physical, biological, and chemical properties of soil (pH, cations and anions, organic matter, microbial activity). We delineate the potentially toxic element (PTEs) build up in the soil and, as such, their transfer into plants and humans. The possible human health risks associated with the use of untreated wastewater for crop irrigation are also predicted and discussed. We compare the current condition of wastewater reuse in agriculture and the associated environmental and health issues between developing and developed countries. In addition, some integrated sustainable solutions and future perspectives are also proposed, keeping in view the regional and global context, as well as the grounded reality of wastewater use for crop production, sanitary and planning issues, remedial techniques, awareness among civil society, and the role of the government and the relevant stakeholders.

  12. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    DEFF Research Database (Denmark)

    Battilani, Adriano; Steiner, Michele; Andersen, Martin

    2010-01-01

    The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse...... of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies...... which allow using the lowest irrigation water quality without harming food safety or yield and fruit or derivatives quality. This study presents the results of prototype testing of a small-scale compact pressurized membrane bioreactor and of a modular field treatment system including commercial gravel...

  13. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    Science.gov (United States)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  14. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation

    Science.gov (United States)

    Asgari, Kamran; Najafi, Payam; Cornelis, Wim M.

    2014-05-01

    Constant use of treated wastewater for irrigation over long periods may cause buildup of heavy metals up to toxic levels for plants, animals, and entails environmental hazards in different aspects. However, application of treated wastewater on agricultural land might be an effective and sustainable strategy in arid and semi-arid countries where fresh water resources are under great pressure, as long as potential harmful effects on the environment including soil, plants, and fresh water resources, and health risks to humans are minimized. The aim of this study was to assess the effect of using a deep emitter installation on lowering the potential heavy metal accumulation in soils and grains, and health risk under drip irrigation with treated municipal wastewater. A field experiment was conducted according to a split block design with two treatments (fresh and wastewater) and three sub treatments (0, 15 and 30 cm depth of emitters) in four replicates on a sandy loam soil, in Esfahan, Iran. The annual rainfall is about 123 mm, mean annual ETo is 1457 mm, and the elevation is 1590 m a.s.l.. A two-crop rotation of wheat [Triticum spp.] and corn [Zea mays]) was established on each plot with wheat growing from February to June and corn from July to September. Soil samples were collected before planting (initial value) and after harvesting (final value) for each crop in each year. Edible grain samples of corn and wheat were also collected. Elemental concentrations (Cu, Zn, Cd, Pb, Cr, Ni) in soil and grains were determined using an atomic absorption spectrophotometer. The concentrations of heavy metals in the wastewater-irrigated soils were not significantly different (P>0.05) compared with the freshwater-irrigated soils. The results showed no significant difference (P>0.05) of soil heavy metal content between different depths of emitters. A pollution load index PLI showed that there was not substantial buildup of heavy metals in the wastewater-irrigated soils compared to

  15. Institutional aspects of integrating irrigation into urban wastewater management: the case of Hanoi, Vietnam

    NARCIS (Netherlands)

    Evers, J.G.; Huibers, F.P.; Vliet, van B.J.M.

    2010-01-01

    Wastewater flows of metropolitan cities and their downstream use for irrigation are often associated with technical systems. However, an engineering approach on its own will leave questions unanswered at the socio-technical and institutional level. Research was carried out in Hanoi, Vietnam, on the

  16. Institutional aspects of integrating irrigation into urban wastewater management: the case of Hanoi, Vietnam

    NARCIS (Netherlands)

    Evers, J.G.; Huibers, Frans P.; van Vliet, Bas J.M.

    2008-01-01

    Wastewater flows of metropolitan cities and their downstream use for irrigation are often associated with technical systems. However, an engineering approach on its own will leave questions unanswered at the socio-technical and institutional level. Research was carried out in Hanoi, Vietnam, on the

  17. Fate and Distribution of Heavy Metals in Wastewater Irrigated Calcareous Soils

    Science.gov (United States)

    Stietiya, Mohammed Hashem; Duqqah, Mohammad; Udeigwe, Theophilus; Zubi, Ruba; Ammari, Tarek

    2014-01-01

    Accumulation of heavy metals in Jordanian soils irrigated with treated wastewater threatens agricultural sustainability. This study was carried out to investigate the environmental fate of Zn, Ni, and Cd in calcareous soils irrigated with treated wastewater and to elucidate the impact of hydrous ferric oxide (HFO) amendment on metal redistribution among soil fractions. Results showed that sorption capacity for Zarqa River (ZR1) soil was higher than Wadi Dhuleil (WD1) soil for all metals. The order of sorption affinity for WD1 was in the decreasing order of Ni > Zn > Cd, consistent with electrostatic attraction and indication of weak association with soil constituents. Following metal addition, Zn and Ni were distributed among the carbonate and Fe/Mn oxide fractions, while Cd was distributed among the exchangeable and carbonate fractions in both soils. Amending soils with 3% HFO did not increase the concentration of metals associated with the Fe/Mn oxide fraction or impact metal redistribution. The study suggests that carbonates control the mobility and bioavailability of Zn, Ni, and Cd in these calcareous soils, even in presence of a strong adsorbent such as HFO. Thus, it can be inferred that in situ heavy metal remediation of these highly calcareous soils using iron oxide compounds could be ineffective. PMID:24723833

  18. Fate and Distribution of Heavy Metals in Wastewater Irrigated Calcareous Soils

    Directory of Open Access Journals (Sweden)

    Mohammed Hashem Stietiya

    2014-01-01

    Full Text Available Accumulation of heavy metals in Jordanian soils irrigated with treated wastewater threatens agricultural sustainability. This study was carried out to investigate the environmental fate of Zn, Ni, and Cd in calcareous soils irrigated with treated wastewater and to elucidate the impact of hydrous ferric oxide (HFO amendment on metal redistribution among soil fractions. Results showed that sorption capacity for Zarqa River (ZR1 soil was higher than Wadi Dhuleil (WD1 soil for all metals. The order of sorption affinity for WD1 was in the decreasing order of Ni > Zn > Cd, consistent with electrostatic attraction and indication of weak association with soil constituents. Following metal addition, Zn and Ni were distributed among the carbonate and Fe/Mn oxide fractions, while Cd was distributed among the exchangeable and carbonate fractions in both soils. Amending soils with 3% HFO did not increase the concentration of metals associated with the Fe/Mn oxide fraction or impact metal redistribution. The study suggests that carbonates control the mobility and bioavailability of Zn, Ni, and Cd in these calcareous soils, even in presence of a strong adsorbent such as HFO. Thus, it can be inferred that in situ heavy metal remediation of these highly calcareous soils using iron oxide compounds could be ineffective.

  19. Quality of wastewater used for conventional irrigation in the vicinity of lahore and its impact on receiving soils and vegetables

    International Nuclear Information System (INIS)

    Bashir, F.; Tariq, M.; Khan, R.A.; Shafiq, T.

    2014-01-01

    The quality of wastewater was evaluated from Rohi Nullah, Lahore, Pakistan, for one year (2008-2009) from those points where it is used for irrigation of crops on both sides of Nullah. The quality of wastewater was evaluated for pollution load including pH, sulphide, phenol, methylene blue active substances, chemical oxygen demand (COD), biochemical oxygen demand (BOD), irrigation quality (electric conductivity, total dissolved solids, total suspended solids, sodium adsorption ratio, residual sodium carbonate and chlorides) nutritional value (total nitrogen, total phosphorus and total potassium) and for metal concentration. The metals analysed were cadmium, nickel, chromium, zinc, manganese, cobalt and copper. With respect to pollution load BOD, COD and sulphide concentration was above the National Environmental Quality Standard (NEQS) limit. Nitrogen and phosphorus were contained at levels of concern in wastewater but the level of potassium was below crop requirements. The concentration of nickel, chromium, manganese and copper was above the FAO standards, while the concentration of cadmium, zinc and cobalt fell within FAO standards. Considering NEQS standards, the metals concentration was within limits. Temporal variations were prominent in some parameters and mostly higher values were observed in summer and lower in winter season. There was accumulation of heavy metals in soils receiving wastewater for irrigation. The metal contents in soils follow the order Mn> Co> Zn> Cr > Ni > Cu > Cd. It was observed that the concentration of all studied toxic metals in edible part of the vegetables was above the critical level. Finally, it was concluded that the practice of using wastewater in irrigation for growing vegetables and other crops is non-sustainable. (author)

  20. A probabilistic assessment of the contribution of wastewater-irrigated lettuce to Escherichia coli O157:H7 infection risk and disease burden in Kumasi, Ghana.

    Science.gov (United States)

    Seidu, Razak; Abubakari, Amina; Dennis, Isaac Amoah; Heistad, Arve; Stenstrom, Thor Axel; Larbi, John A; Abaidoo, Robert C

    2015-03-01

    Wastewater use for vegetable production is widespread across the cities of many developing countries. Studies on the microbial health risks associated with the practice have largely depended on faecal indicator organisms with potential underestimation or overestimation of the microbial health risks and disease burdens. This study assessed the Escherichia coli O157:H7 infection risk and diarrhoeal disease burden measured in disability-adjusted life years (DALYs) associated with the consumption of wastewater-irrigated lettuce in Kumasi, Ghana using data on E. coli O157:H7 in ready-to-harvest, wastewater-irrigated lettuce. Two exposure scenarios - best case and worst case - associated with a single consumption of wastewater-irrigated lettuce were assessed. The assessment revealed wastewater-irrigated lettuce is contributing to the transmission of E. coli O157:H7 in Kumasi, Ghana. The mean E. coli O157:H7 infection risk and DALYs in the wet and dry seasons, irrespective of the exposure scenario, were above the World Health Organization tolerable daily infection risk of 2.7 × 10⁻⁷ per person per day and 10⁻⁶ DALYs per person per year. It is recommended that legislation with clear monitoring indicators and penalties is implemented to ensure that farmers and food sellers fully implement risk mitigating measures.

  1. Comparison of Desertification Intensity in the Purified Wastewater Irrigated Lands with Normal Lands in Yazd Using of Soil Criterion of the IMDPA Model

    Directory of Open Access Journals (Sweden)

    M. Yektafar

    2016-09-01

    Full Text Available Introduction: Desertification, is a complex phenomenon, which as environmental, socio-economical, and cultural impacts on natural resources. According to the United Nations Convention to Combat Desertification defination, desertification is land degradation in arid, semi-arid, and dry sub-humid regions, resulting from climate change and human activities. Because of limiting access to qualified water resources in arid lands, it is necessary to use, all forms of acceptable water resources such as wastewater. Since irrigation with sewages has most effects on soil, in this research, desertification intensity of lands irrigated with sewages and natural lands of the area, where located near Yazd city, has been analyzed considering soil criterion of the Iranian Model for Desertification Potential Assessment (IMDPA. Several studies have done in Iran and in the world in order to provide national, regional or global desertification assessment models. A significant feature of the IMDPA is easily defining and measuring criteria, indicators, and ability of the model to use geometric means for the criteria and indicators. Materials and Methods: In first step, In first step, in a random method, soil samples were taken in each of the defined land units with considering of the size of area. Next, all indices related to the soil criterion such as soil texture index, soil deep gravel percentage, soil depth, and soil electrical conductivity were evaluated in each land use (both irrigated lands and natural lands and weighted considering the present conditions of the lands. Each index was scored according to the standard table of soil that categorized desertification. Then, geometry average of all indices were calculated and map of the desertification intensity of the study area were prepared. Thus, four maps were prepared according to each index. These maps were used to study both quality and effect of each index on desertification. Finally, these maps were

  2. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    Science.gov (United States)

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  3. Microbial Indicators, Opportunistic Bacteria, and Pathogenic Protozoa for Monitoring Urban Wastewater Reused for Irrigation in the Proximity of a Megacity.

    Science.gov (United States)

    Fonseca-Salazar, María Alejandra; Díaz-Ávalos, Carlos; Castañón-Martínez, María Teresa; Tapia-Palacios, Marco Antonio; Mazari-Hiriart, Marisa

    2016-12-01

    In Latin America and the Caribbean, with a population of approximately 580 million inhabitants, less than 20 % of wastewater is treated. Megacities in this region face common challenges and problems related with water quality and sanitation, which require urgent actions, such as changes in the sustainable use of water resources. The Mexico City Metropolitan Area is one of the most populous urban agglomerations in the world, with over 20 million inhabitants, and is no exception to the challenges of sustainable water management. For more than 100 years, wastewater from Mexico City has been transported north to the Mezquital Valley, which is ranked as the largest wastewater-irrigated area in the world. In this study, bacteria and pathogenic protozoa were analyzed to determine the association between the presence of such microorganisms and water types (WTs) across sampling sites and seasons in Mexico City and the Mezquital Valley. Our results show a difference in microbiological water quality between sampling sites and WTs. There is no significant interaction between sampling sites and seasons in terms of bacterial concentration, demonstrating that water quality remains constant at each site regardless of whether it is the dry or the rainy season. The results illustrate the quantity of these microorganisms in wastewater, provide a current diagnosis of water quality across the area which could affect the health of residents in both Mexico City and the Mezquital Valley, and demonstrate the need to transition in the short term to treat wastewater from a local to a regional scale.

  4. The use of treated wastewater for chemlali olive tree irrigation: effects on soil properties, growth and oil quality

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rouina, B.; Bedbabis, S.; Ben Ahmed, C.; Boukhris, M.

    2009-07-01

    Olive tree (Olea european L.) cultivation, the major tree crops in Mediterranean countries is being extended to irrigated lands. However, the limited water availability, the severe climatic conditions and the increased need for good water quality for urban and industrial sector uses are leading to the urgent use of less water qualities (brackish water and recycled wastewater) for olive tree irrigation. The aim of this work was to asses the effects of long term irrigation with treated waste water (TWW) on the soil chemical properties, on olive tree growth and on oil quality characteristics. (Author)

  5. The use of treated wastewater for chemlali olive tree irrigation: effects on soil properties, growth and oil quality

    International Nuclear Information System (INIS)

    Ben Rouina, B.; Bedbabis, S.; Ben Ahmed, C.; Boukhris, M.

    2009-01-01

    Olive tree (Olea european L.) cultivation, the major tree crops in Mediterranean countries is being extended to irrigated lands. However, the limited water availability, the severe climatic conditions and the increased need for good water quality for urban and industrial sector uses are leading to the urgent use of less water qualities (brackish water and recycled wastewater) for olive tree irrigation. The aim of this work was to asses the effects of long term irrigation with treated waste water (TWW) on the soil chemical properties, on olive tree growth and on oil quality characteristics. (Author)

  6. Contamination of Phthalate Esters (PAEs in Typical Wastewater-Irrigated Agricultural Soils in Hebei, North China.

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    Full Text Available The Wangyang River (WYR basin is a typical wastewater irrigation area in Hebei Province, North China. This study investigated the concentration and distribution of six priority phthalate esters (PAEs in the agricultural soils in this area. Thirty-nine soil samples (0-20 cm were collected along the WYR to assess the PAE residues in soils. Results showed that PAEs are ubiquitous environmental contaminants in the topsoil obtained from the irrigation area. The concentrations of Σ6PAEs range from 0.191 μg g-1 dw to 0.457 μg g-1 dw with an average value of 0.294 μg g-1 dw. Di(2-ethylhexyl phthalate (DEHP and di-n-butyl phthalate (DnBP are the dominant PAE species in the agricultural soils. Among the DEHP concentrations, the highest DEHP concentration was found at the sites close to the villages; this result suggested that dense anthropogenic activities and random garbage disposal in the rural area are possible sources of PAEs. The PAE concentrations were weakly and positively correlated with soil organic carbon and soil enzyme activities; thus, these factors can affect the distribution of PAEs. This study further showed that only dimethyl phthalate (DMP concentrations exceeded the recommended allowable concentrations; no remediation measures are necessary to control the PAEs in the WYR area. However, the PAEs in the topsoil may pose a potential risk to the ecosystem and human health in this area. Therefore, the exacerbating PAE pollution should be addressed.

  7. Statistical Analysis Of Heavy Metals Concentration In Watermelon Plants Irrigated By Wastewater

    Science.gov (United States)

    Khanjani, M. J.; Maghsoudi moud, A. A.; Saffari, V. R.; Hashamipor, S. M.; Soltanizadeh, M.

    2008-01-01

    Concentration of heavy metals in vegetables irrigated by urban wastewater is a cause of serious concern due to the potentials health problems of consuming contaminated produce. In this study it is tried to model the concentration of heavy metals (Cd, Cr, Cu, Fe,…) as a function of their concentration in watermelon roots and stems. Our study shows there is a good relationship between them for most of collected data. By measuring the concentration in root and stem of watermelon plant samples before harvesting, the concentration of heavy metal in watermelon's fruit can be estimated by presented mathematical models. This study shows the concentrations of heavy metals in fruits, roots and stems of watermelon plants are very high and in dangerous level when irrigated by municipal waste water.

  8. The influence of the microbial quality of wastewater, lettuce cultivars and enumeration technique when estimating the microbial contamination of wastewater-irrigated lettuce.

    Science.gov (United States)

    Makkaew, P; Miller, M; Cromar, N J; Fallowfield, H J

    2017-04-01

    This study investigated the volume of wastewater retained on the surface of three different varieties of lettuce, Iceberg, Cos, and Oak leaf, following submersion in wastewater of different microbial qualities (10, 10 2 , 10 3 , and 10 4 E. coli MPN/100 mL) as a surrogate method for estimation of contamination of spray-irrigated lettuce. Uniquely, Escherichia coli was enumerated, after submersion, on both the outer and inner leaves and in a composite sample of lettuce. E. coli were enumerated using two techniques. Firstly, from samples of leaves - the direct method. Secondly, using an indirect method, where the E. coli concentrations were estimated from the volume of wastewater retained by the lettuce and the E. coli concentration of the wastewater. The results showed that different varieties of lettuce retained significantly different volumes of wastewater (p 0.01) were detected between E. coli counts obtained from different parts of lettuce, nor between the direct and indirect enumeration methods. Statistically significant linear relationships were derived relating the E. coli concentration of the wastewater in which the lettuces were submerged to the subsequent E. coli count on each variety the lettuce.

  9. Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel

    Directory of Open Access Journals (Sweden)

    Schacht Karsten

    2015-03-01

    Full Text Available The use of treated wastewater (TWW for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC and soil aggregate stability (SAS. To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm were collected for analyzing SAS and determination of selected soil chemical and physical characteristics.

  10. Safe Re-use Practices in Wastewater-Irrigated Urban Vegetable Farming in Ghana

    DEFF Research Database (Denmark)

    Keraita, Bernard; Abaidoo, R.C; Beernaerts, I.

    2012-01-01

    of stakeholders at different levels along the food chain. This paper presents an overview of safe re-use practices including farm-based water treatment methods, water application techniques, post-harvest handling practices, and washing methods. The overview is based on a comprehensive analysis of the literature......Irrigation using untreated wastewater poses health risks to farmers and consumers of crop products, especially vegetables. With hardly any wastewater treatment in Ghana, a multiple-barrier approach was adopted and safe re-use practices were developed through action research involving a number...... and our own specific studies, which used data from a broad range of research methods and approaches. Identifying, testing, and assessment of safe practices were done with the active participation of key actors using observations, extensive microbiological laboratory assessments, and field...

  11. Irrigation of Castor Bean (Ricinus communis L. and Sunflower (Helianthus annus L. Plant Species with Municipal Wastewater Effluent: Impacts on Soil Properties and Seed Yield

    Directory of Open Access Journals (Sweden)

    Vasileios A. Tzanakakis

    2011-11-01

    Full Text Available The effects of plant species (castor bean (Ricinus communis L. versus sunflower (Helianthus annus L. and irrigation regime (freshwater versus secondary treated municipal wastewater on soil properties and on seed and biodiesel yield were studied in a three year pot trial. Plant species were irrigated at rates according to their water requirements with either freshwater or wastewater effluent. Pots irrigated with freshwater received commercial fertilizer, containing N, P, and K, applied at the beginning of each irrigation period. The results obtained in this study showed that irrigation with effluent did not result in significant changes in soil pH, soil organic matter (SOM, total kjeldahl nitrogen (TKN, and dehydrogenase activity, whereas soil available P was found to increase in the upper soil layer. Soil salinity varied slightly throughout the experiment in effluent irrigated pots but no change was detected at the end of the experiment compared to the initial value, suggesting sufficient salt leaching. Pots irrigated with effluent had higher soil salinity, P, and dehydrogenase activity but lower SOM and TKN than freshwater irrigated pots. Sunflower showed greater SOM and TKN values than castor bean suggesting differences between plant species in the microorganisms carrying out C and N mineralization in the soil. Plant species irrigated with freshwater achieved higher seed yield compared to those irrigated with effluent probably reflecting the lower level of soil salinity in freshwater irrigated pots. Castor bean achieved greater seed yield than sunflower. Biodiesel production followed the pattern of seed yield. The findings of this study suggest that wastewater effluent can constitute an important source of irrigation water and nutrients for bioenergy crop cultivations with minor adverse impacts on soil properties and seed yield. Plant species play an important role with regard to the changes in soil properties and to the related factors of

  12. Nutrient management and institutional cooperation as conditions for environmentally safe wastewater irrigation: the case of Hanoi, Vietnam

    NARCIS (Netherlands)

    Evers, J.G.; Huibers, F.P.; van Vliet, Bas J.M.; Dung, N.V.; Van, D.T.H.; Ragab, Ragab; Koo-Oshima, Sasha

    2006-01-01

    Hanoi is rapidly growing in population and in economic activities. Increasing volumes of domestic and industrial wastewater flows are discharged mostly untreated into the drainage system. At downstream level, these polluted, nutrient rich waters are used for irrigation. Nutrient concentrations in

  13. Quality Evaluation of Household Wastewater for Irrigation MUSA, J J ...

    African Journals Online (AJOL)

    Michael Horsfall

    waste-water discharge and disposal practices that may ... impacts from sewage contamination in urban areas are well documented ... tanks, aerated wastewater treatment systems (AWTS) ..... water sources in selected rural communities of the.

  14. Integrating wastewater reuse in water resources management for hotels in arid coastal regions - Case Study of Sharm El Sheikh, Egypt.

    Science.gov (United States)

    Lamei, A; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water (using reverse osmosis) for their domestic water supply, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their potable and non-potable water needs. There is normally a contractual agreement stating a minimum amount of water that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). Hotels have to carefully analyse their water requirements in order to determine which percentage of the hotel's peak water demand should be used in the contract in order to reduce water costs and avoid the risk of water shortage. This paper describes a model to optimise the contracted-for irrigation water supply with the objective function to minimise total water cost to hotels. It analyses what the contracted-for irrigation water supply of a given hotel should be, based on the size of the green irrigated area on one hand and the unit prices of the different types of water on the other hand. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh (Sharm), Egypt. This paper presents costs of wastewater treatment using waste stabilisation ponds, which is the prevailing treatment mechanism in the case study area for centralised plants, as well as aerobic/anaerobic treatment used for decentralised wastewater treatment plants in the case study area. There is only one centralised wastewater treatment plant available in the city exerting monopoly and selling treated wastewater to hotels at a much higher price than the actual cost that a hotel would bear if it treated its own wastewater. Contracting for full peak irrigation demand is the highest total cost option. Contracting for a portion of the peak irrigation demand and complementing the rest from desalination water is a cheaper option. A better option still is to complement the excess irrigation demand

  15. Bacteriological quality of crops irrigated with wastewater in the Xochimilco plots, Mexico City, Mexico.

    Science.gov (United States)

    Rosas, I; Báez, A; Coutiño, M

    1984-05-01

    Xochimilco county plots (Mexico City), one of the most fertile agricultural areas in the Valley of Mexico, produce a large portion of the fresh vegetables consumed in the city. These plots are generally irrigated with domestic wastewater, and for this reason, it was deemed important to examine and evaluate the bacteriological quality of the water, soil, and vegetables from these plots that are harvested and marketed. The soils were also examined for the classical parameters such as nitrates, ammonia, etc., and organic matter and texture. The crops selected for this study were radishes, spinach, lettuce, parsley, and celery because they are usually consumed raw. The highest bacterial counts were encountered in leafy vegetables, i.e., spinach (8,700 for total coliform and 2,400 for fecal coliform) and lettuce (37,000 for total coliform and 3,600 for fecal coliform). Statistically significant differences in bacterial counts between rinsed and unrinsed edible portions of the crops were observed even in rinsed vegetables, and high densities of fecal coliform were detected, indicating that their consumption represents a potential health hazard. The total coliform values found in irrigation water ranged from 4 X 10(4) to 29 X 10(4), and for fecal coliform the values ranged from 5 X 10(2) to 30 X 10(2).

  16. INTEGRATED WATER MANAGEMENT AND DURABILITY OF LANDSCAPE OF PUBLIC IRRIGATED AREAS IN TUNISIA: CASES OF PUBLIC IRRIGATED AREAS OF CHOTT-MARIEM AND MORNAG

    OpenAIRE

    Abdelkarim Hamrita; Amira Boussetta; Rafael Mata Olmo; Mehdi Saqalli; Hichem Rejeb

    2017-01-01

    An important part of the landscape of irrigated areas in Tunisia is the result of morphology, organization and operation of agricultural policies implemented since independence, aimed at optimizing the exploitation of the best soils and natural resources, particularly water and productive crop intensification. The sustainability of the landscape of public irrigated areas has a strong bonding with the resources of irrigation water and their states of management. The scarcity of irrigation wate...

  17. Effect of irrigation with treated wastewater on soil chemical properties and infiltration rate.

    Science.gov (United States)

    Bedbabis, Saida; Ben Rouina, Béchir; Boukhris, Makki; Ferrara, Giuseppe

    2014-01-15

    In Tunisia, water scarcity is one of the major constraints for agricultural activities. The reuse of treated wastewater (TWW) in agriculture can be a sustainable solution to face water scarcity. The research was conducted for a period of four years in an olive orchard planted on a sandy soil and subjected to irrigation treatments: a) rain-fed conditions (RF), as control b) well water (WW) and c) treated wastewater (TWW). In WW and TWW treatments, an annual amount of 5000 m(3) ha(-1) of water was supplied to the orchard. Soil samples were collected at the beginning of the study and after four years for each treatment. The main soil properties such as electrical conductivity (EC), pH, soluble cations, chloride (Cl(-)), sodium adsorption ratio (SAR), organic matter (OM) as well as the infiltration rate were investigated. After four years, either a significant decrease of pH and infiltration rate or a significant increase of OM, SAR and EC were observed in the soil subjected to treated wastewater treatment. Copyright © 2013. Published by Elsevier Ltd.

  18. Effects of different irrigation practices using treated wastewater on tomato yields, quality, water productivity, and soil and fruit mineral contents.

    Science.gov (United States)

    Demir, Azize Dogan; Sahin, Ustun

    2017-11-01

    Wastewater use in agricultural irrigation is becoming a common practice in order to meet the rising water demands in arid and semi-arid regions. The study was conducted to determine the effects of the full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation practices using treated municipal wastewater (TWW) and freshwater (FW) on tomato yield, water use, fruit quality, and soil and fruit heavy metal concentrations. The TWW significantly increased marketable yield compared to the FW, as well as decreased water consumption. Therefore, water use efficiency (WUE) in the TWW was significantly higher than in the FW. Although the DI and the PRD practices caused less yields, these practices significantly increased WUE values due to less irrigation water applied. The water-yield linear relationships were statistically significant. TWW significantly increased titratable acidity and vitamin C contents. Reduced irrigation provided significantly lower titratable acidity, vitamin C, and lycopene contents. TWW increased the surface soil and fruit mineral contents in response to FW. Greater increases were observed under FI, and mineral contents declined with reduction in irrigation water. Heavy metal accumulation in soils was within safe limits. However, Cd and Pb contents in fruits exceeded standard limits given by FAO/WHO. Higher metal pollution index values determined for fruits also indicated that TWW application, especially under FI, might cause health risks in long term.

  19. Use of hydroponics culture to assess nutrient supply by treated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Adrover, M.; Moya, G.; Vadell, J.

    2009-07-01

    The use of treated wastewater for irrigation is increasing, especially in those areas where water resources are limited. Treated wastewaters contain nutrients that are useful for plant growth and help to reduce fertilizers needs. Nutrient content of these waters depends on the treatment system. (Author)

  20. Possibilidade de utilização da irrigação com ossibilidade água residuária em torno das principais estações de tratamento de efluentes da Região Metropolitana de Curitiba, Estado do Paraná, Brasil = Wastewater use potencial for irrigation in the metropolitan area of Curitiba, Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    Clodoveu Valdeni Trentin

    2006-04-01

    Full Text Available O presente trabalho consistiu no levantamento de parâmetros de qualidade dos efluentes e na realização de mapeamento dos solos ao redor das principais Estações de Tratamento de Efluentes (ETEs da Sanepar, na Região Metropolitana de Curitiba, visando analisar a possibilidade de irrigar culturas agrícolas com água residuária. Com base nos dados levantados e analisados, verificou-se que: as ETEs analisadas possuem boa eficiência no tratamento dos efluentes, mas ainda apresentam limites de qualidade fora do recomendado na literatura para uso na irrigação agrícola, principalmente a DBO; os solos Gleissolo, Organossolo e Neossolo existentes na região, por serem mal drenados, são mais adequados para irrigação por inundação, enquanto que os Argissolos, Cambissolos e Latossolos são adequados às práticas da irrigação por aspersão e localizada; grãos e olerícolassão os grupos de culturas mais promissores para serem irrigados com águas residuárias na região das ETEs com potencial para exploração agrícola.The present work goal was to evaluate the wastewater use potential for irrigation in Curitiba metropolitan area, Paraná State, Brazil. In order to evaluate the potential for wastewater use, effluent quality from main Sanepar sewage sludge plants was determined as well as the major soil class near to each station. Wastewater analysis indicated that the sewage sludge plants have good effluent treatment efficiency, but not enough to reach the water standard quality required for agricultural irrigation, mainly due to high BOD. The major soil classes found in the low land area were Histosol andEntisol which are more adapted for flood irrigation, due to poor drainage soil capacity. While, Ultisol, Inceptisol, and Oxisol are found in high land area, and they are more appropriate for sprinkler and localized irrigation. Commercial grain and vegetable production are the more promising crop groups to be irrigated with wastewater in

  1. [Accumulation Characteristics and Evaluation of Heavy Metals in Soil-Crop System Affected by Wastewater Irrigation Around a Chemical Factory in Shenmu County].

    Science.gov (United States)

    Qi, Yan-bing; Chu, Wan-lin; Pu, Jie; Liu, Meng-yun; Chang, Qing-rui

    2015-04-01

    Soil heavy metals Cu, Pb, Zn, and Cd, are regarded as "chemical time bombs" because of their propensity for accumulation in the soil and uptake by crops. This ultimately causes human toxicity in both the short and long-term, making farmland ecosystems dangerous to health. In this paper, accumulation and spatial variability of Cu, Zn, Pb and Cd in soil-crop system affected by wastewater irrigation around a chemical factor in northern Shaanxi province were analyzed. Results showed that wastewater irrigation around the chemical factory induced significant accumulation in soils compared with control areas. The average concentrations of available Cu and total Cu were 4.32 mg x kg(-1) and 38.4 mg x kg(-1), which were twice and 1.35 times higher than those of the control area, respectively. Soil Zn and Pb were slightly accumulated. Whereas soil Cd was significantly accumulated and was higher than the critical level of soil environmental quality (II), the available and total Cd concentrations were 0.248 mg x kg(-1) and 1.21 mg x kg(-1), which were 10 and 6.1 times higher than those of the control areas. No significant correlations were found between available and total heavy metals except between available Cd and total Cd. All the heavy metals were mainly accumulated in the top layer (0-10 cm). Spatially, soils and plants high in heavy metal concentration were distributed within the radius of about 100 m from the waste water outlet for Cu, Zn and Cd and about 200 m for Pb, and decreased exponentially with the distance from the factory. Affected by wastewater irrigation, contents of Cu, Pb and Cd in maize were 4.74, 0.129 and 0.036 mg x kg(-1) which were slightly higher than those in the control area. The content of Zn was similar to that in the control area. Affected by the vehicle exhaust, the over standard rate of Pb was 5.7% in maize. All the heavy metals did not show significant correlation between soil and crop, except Cd. The square correlation coefficients were 0

  2. Stakeholder Views, Financing and Policy Implications for Reuse of Wastewater for Irrigation: A Case from Hyderabad, India

    Directory of Open Access Journals (Sweden)

    Markus Starkl

    2015-01-01

    Full Text Available When flowing through Hyderabad, the capital of Telangana, India, the Musi River picks up (partially treated and untreated sewage from the city. Downstream of the city, farmers use this water for the irrigation of rice and vegetables. Treatment of the river water before it is used for irrigation would address the resulting risks for health and the environment. To keep the costs and operational efforts low for the farmers, the use of constructed wetlands is viewed as a suitable option. Towards this end, the paper investigates the interests and perceptions of government stakeholders and famers on the treatment of wastewater for irrigation and further explores the consumer willingness to pay a higher price for cleaner produced vegetables. Full cost recovery from farmers and consumers cannot be expected, if mass scale treatment of irrigation water is implemented. Instead, both consumers and farmers would expect that the government supports treatment of irrigation water. Most stakeholders associated with the government weigh health and environment so high, that these criteria outweigh cost concerns. They also support the banning of irrigation with polluted water. However, fining farmers for using untreated river water would penalize them for pollution caused by others. Therefore public funding of irrigation water treatment is recommended.

  3. Assessment of the irrigation feasibility of low-cost filtered municipal wastewater for red amaranth (Amaranthus tricolor L cv. Surma

    Directory of Open Access Journals (Sweden)

    Gokul Chandra Biswas

    2015-09-01

    Full Text Available Because of the scarcity of clean water, treated wastewater potentially provides an alternative source for irrigation. In the present experiment, the feasibility of using low-cost filtered municipal wastewater in the irrigation of red amaranth (Amaranthus tricolor L cv. Surma cultivation was assessed. The collected municipal wastewater from fish markets, hospitals, clinics, sewage, and kitchens of households in Sylhet City, Bangladesh were mixed and filtered with nylon mesh. Six filtration methods were applied using the following materials: sand (T1; sand and wood charcoal consecutively (T2; sand, wood charcoal and rice husks consecutively (T3; sand, wood charcoal, rice husks and sawdust consecutively (T4; sand, wood charcoal, rice husks, sawdust and brick chips consecutively (T5; and sand, wood charcoal, rice husks, sawdust, brick chips and gravel consecutively (T6. The water from ponds and rivers was considered as the control treatment (To. The chemical properties and heavy metals content of the water were determined before and after the low cost filtering, and the effects of the wastewater on seed germination, plant growth and the accumulation rate of heavy metals by plants were assessed. After filtration, the pH, EC and TDS ranged from 5.87 to 9.17, 292 to 691 µS cm−1 and 267 to 729 mg L−1, respectively. The EC and TDS were in an acceptable level for use in irrigation, satisfying the recommendations of the FAO. However, select pH values were unsuitable for irrigation. The metal concentrations decreased after applying each treatment. The reduction of Fe, Mn, Pb, Cu, As and Zn were 73.23%, 92.69%, 45.51%, 69.57%, 75.47% and 95.06%, respectively. When we considered the individual filtering material, the maximum amount of As and Pb was absorbed by sawdust; Cu and Zn by wood charcoal; Mn and Cu by sand and Fe by gravel. Among the six filtration treatments, T5 showed the highest seed germination (67.14%, similar to the control T0 (77

  4. Effects of Aquifer Development and Changes in Irrigation Practices on Ground-Water Availability in the Santa Isabel Area, Puerto Rico

    Science.gov (United States)

    Kuniansky, Eve L.; Gómez-Gómez, Fernando; Torres-Gonzalez, Sigfredo

    2003-01-01

    The alluvial aquifer in the area of Santa Isabel is located within the South Coastal Plain aquifer of Puerto Rico. Variations in precipitation, changes in irrigation practices, and increasing public-supply water demand have been the primary factors controlling water-level fluctuations within the aquifer. Until the late 1970s, much of the land in the study area was irrigated using inefficient furrow flooding methods that required large volumes of both surface and ground water. A gradual shift in irrigation practices from furrow systems to more efficient micro-drip irrigation systems occurred between the late 1970s and the late 1980s. Irrigation return flow from the furrow-irrigation systems was a major component of recharge to the aquifer. By the early 1990s, furrow-type systems had been replaced by the micro-drip irrigation systems. Water levels declined about 20 feet in the aquifer from 1985 until present (February 2003). The main effect of the changes in agricultural practices is the reduction in recharge to the aquifer and total irrigation withdrawals. Increases in ground-water withdrawals for public supply offset the reduction in ground-water withdrawals for irrigation such that the total estimated pumping rate in 2003 was only 8 percent less than in 1987. Micro-drip irrigation resulted in the loss of irrigation return flow to the aquifer. These changes resulted in lowering the water table below sea level over most of the Santa Isabel area. By 2002, lowering of the water table reversed the natural discharge along the coast and resulted in the inland movement of seawater, which may result in increased salinity of the aquifer, as had occurred in other parts of the South Coastal Plain. Management alternatives for the South Coastal Plain aquifer in the vicinity of Santa Isabel include limiting groundwater withdrawals or implementing artificial recharge measures. Another alternative for the prevention of saltwater intrusion is to inject freshwater or treated sewage

  5. Using deficit irrigation with treated wastewater to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa

    Directory of Open Access Journals (Sweden)

    Abdelaziz HIRICH

    2014-07-01

    Full Text Available Several experiments were conducted in the south of Morocco (IAV-CHA, Agadir during two seasons 2010 and 2011 in order to evaluate the effect of deficit irrigation with treated wastewater on several crops (quinoa, sweet corn, faba bean and chickpeas. During the first season (2010 three crops were tested, quinoa, chickpeas and sweet corn applying 6 deficit irrigation treatments during all crop stages alternating 100% of full irrigation as non-stress condition and 50% of full irrigation as water deficit condition applied during vegetative growth, flowering and grain filling stage. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season (2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of full irrigation during vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity.

  6. Soil nitrogen balance under wastewater management: Field measurements and simulation results

    Science.gov (United States)

    Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; KC, A.

    2009-01-01

    The use of treated wastewater for irrigation of crops could result in high nitrate-nitrogen (NO3-N) concentrations in the vadose zone and ground water. The goal of this 2-yr field-monitoring study in the deep silty clay loam soils south of Dodge City, Kansas, was to assess how and under what circumstances N from the secondary-treated, wastewater-irrigated corn reached the deep (20-45 m) water table of the underlying High Plains aquifer and what could be done to minimize this problem. We collected 15.2-m-deep soil cores for characterization of physical and chemical properties; installed neutron probe access tubes to measure soil-water content and suction lysimeters to sample soil water periodically; sampled monitoring, irrigation, and domestic wells in the area; and obtained climatic, crop, irrigation, and N application rate records for two wastewater-irrigated study sites. These data and additional information were used to run the Root Zone Water Quality Model to identify key parameters and processes that influence N losses in the study area. We demonstrated that NO3-N transport processes result in significant accumulations of N in the vadose zone and that NO3-N in the underlying ground water is increasing with time. Root Zone Water Quality Model simulations for two wastewater-irrigated study sites indicated that reducing levels of corn N fertilization by more than half to 170 kg ha-1 substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the accumulation and downward movement of NO3-N in the soil profile. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  7. Effect of dissolved organic carbon in recycled wastewaters on boron adsorption by soils

    Science.gov (United States)

    In areas of water scarcity, recycled municipal wastewaters are being used as water resources for non-potable applications, especially for irrigation. Such wastewaters often contain elevated levels of dissolved organic carbon (DOC) and solution boron (B). Boron adsorption was investigated on eight ...

  8. Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI

    Science.gov (United States)

    Pervez, Md Shahriar; Budde, Michael; Rowland, James

    2014-01-01

    Agricultural production capacity contributes to food security in Afghanistan and is largely dependent on irrigated farming, mostly utilizing surface water fed by snowmelt. Because of the high contribution of irrigated crops (> 80%) to total agricultural production, knowing the spatial distribution and year-to-year variability in irrigated areas is imperative to monitoring food security for the country. We used 16-day composites of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to create 23-point time series for each year from 2000 through 2013. Seasonal peak values and time series were used in a threshold-dependent decision tree algorithm to map irrigated areas in Afghanistan for the last 14 years. In the absence of ground reference irrigated area information, we evaluated these maps with the irrigated areas classified from multiple snapshots of the landscape during the growing season from Landsat 5 optical and thermal sensor images. We were able to identify irrigated areas using Landsat imagery by selecting as irrigated those areas with Landsat-derived NDVI greater than 0.30–0.45, depending on the date of the Landsat image and surface temperature less than or equal to 310 Kelvin (36.9 ° C). Due to the availability of Landsat images, we were able to compare with the MODIS-derived maps for four years: 2000, 2009, 2010, and 2011. The irrigated areas derived from Landsat agreed well r2 = 0.91 with the irrigated areas derived from MODIS, providing confidence in the MODIS NDVI threshold approach. The maps portrayed a highly dynamic irrigated agriculture practice in Afghanistan, where the amount of irrigated area was largely determined by the availability of surface water, especially snowmelt, and varied by as much as 30% between water surplus and water deficit years. During the past 14 years, 2001, 2004, and 2008 showed the lowest levels of irrigated area (~ 1.5 million hectares), attesting to

  9. Irrigated Area Maps and Statistics of India Using Remote Sensing and National Statistics

    Directory of Open Access Journals (Sweden)

    Prasad S. Thenkabail

    2009-04-01

    Full Text Available The goal of this research was to compare the remote-sensing derived irrigated areas with census-derived statistics reported in the national system. India, which has nearly 30% of global annualized irrigated areas (AIAs, and is the leading irrigated area country in the World, along with China, was chosen for the study. Irrigated areas were derived for nominal year 2000 using time-series remote sensing at two spatial resolutions: (a 10-km Advanced Very High Resolution Radiometer (AVHRR and (b 500-m Moderate Resolution Imaging Spectroradiometer (MODIS. These areas were compared with the Indian National Statistical Data on irrigated areas reported by the: (a Directorate of Economics and Statistics (DES of the Ministry of Agriculture (MOA, and (b Ministry of Water Resources (MoWR. A state-by-state comparison of remote sensing derived irrigated areas when compared with MoWR derived irrigation potential utilized (IPU, an equivalent of AIA, provided a high degree of correlation with R2 values of: (a 0.79 with 10-km, and (b 0.85 with MODIS 500-m. However, the remote sensing derived irrigated area estimates for India were consistently higher than the irrigated areas reported by the national statistics. The remote sensing derived total area available for irrigation (TAAI, which does not consider intensity of irrigation, was 101 million hectares (Mha using 10-km and 113 Mha using 500-m. The AIAs, which considers intensity of irrigation, was 132 Mha using 10-km and 146 Mha using 500-m. In contrast the IPU, an equivalent of AIAs, as reported by MoWR was 83 Mha. There are “large variations” in irrigated area statistics reported, even between two ministries (e.g., Directorate of Statistics of Ministry of Agriculture and Ministry of Water Resources of the same national system. The causes include: (a reluctance on part of the states to furnish irrigated area data in view of their vested interests in sharing of water, and (b reporting of large volumes of data

  10. The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe

    NARCIS (Netherlands)

    Mapanda, F.; Mangwayana, E.N.; Nyamangara, J.; Giller, K.E.

    2005-01-01

    The magnitude of contamination, regulatory compliance and annual loadings of soils with copper (Cu), zinc (Zn), cadmium (Cd), nickel (Ni), chromium (Cr) and lead (Pb) were determined at three sites in Harare where wastewater was used to irrigate vegetable gardens for at least 10 years. Heavy metal

  11. Accumulation of heavy metals by lettuce (lactuca sativa l.) irrigated with different levels of wastewater of Quetta City

    International Nuclear Information System (INIS)

    Achakzai, A.K.K.

    2011-01-01

    . Whereas, the amount of Pb/sup 2+/ and Cd/sup 2+/ are at par than the international maximum permissible limits. This study highlights the potential health risks associated with the cultivation and consumption of leafy vegetables on wastewater-contaminated soils. Wastewater used for irrigation around the peri-urban area of Quetta is highly polluted especially in term of Pb/sup 2+/ Cd/sup 2+/ metals. Therefore, domestic and industrial waste of the city should be properly disposed and or recycled so as to avoid the present/ future health risks. (author)

  12. Recycled Urban Wastewater for Irrigation of Jatropha curcas L. in Abandoned Agricultural Arid Land

    Directory of Open Access Journals (Sweden)

    María Dorta-Santos

    2014-10-01

    Full Text Available In a global context in which obtaining new energy sources is of paramount importance, the production of biodiesel from plant crops is a potentially viable alternative to the use of fossil fuels. Among the species used to produce the raw material for biodiesel, Jatropha curcas L. (JCL has enjoyed increased popularity in recent years, due partly to its ability to grow in degraded zones and under arid and semi-arid conditions. The present study evaluates the potential for JCL production under irrigation with non-conventional water resources in abandoned agricultural soils of the island of Fuerteventura (Canary Islands, Spain, which is one of the most arid parts of the European Union. JCL growth and productivity are compared during the first 39 months of cultivation in two soil types (clay-loam and sandy-loam and with two irrigation water qualities: recycled urban wastewater (RWW and desalinated brackish water (DBW. The results indicate that JCL growth (in terms of plant height and stem diameter was significantly influenced both by soil type and water quality, with better development observed in the sandy-loam soil under RWW irrigation. Productivity, measured as cumulative seed production, was not affected by soil type but was affected by water quality. Production under RWW irrigation was approximately seven times greater than with DBW (mean ~2142 vs. 322 kg·ha−1. The higher nutrient content, especially P, K and Mg, and lower B content of the RWW were found to be key factors in the greater productivity observed under irrigation with this type of water.

  13. The impacts of a linear wastewater reservoir on groundwater recharge and geochemical evolution in a semi-arid area of the Lake Baiyangdian watershed, North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiqin [Faculty of Horticulture, Chiba University, Matsudo-City 271-8510 (Japan); Tang, Changyuan, E-mail: cytang@faculty.chiba-u.jp [Faculty of Horticulture, Chiba University, Matsudo-City 271-8510 (Japan); Song, Xianfang [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Wang, Qinxue [National Institute for Environmental Studies, Tsukuba 305-8506 (Japan); Zhang, Yinghua [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Yuan, Ruiqiang [College of Environment and Resources, Shanxi University (China)

    2014-06-01

    Sewage leakage has become an important source of groundwater recharge in urban areas. Large linear wastewater ponds that lack anti-seepage measures can act as river channels that cause the deterioration of groundwater quality. This study investigated the groundwater recharge by leakage of the Tanghe Wastewater Reservoir, which is the largest industrial wastewater channel on the North China Plain. Additionally, water quality evolution was investigated using a combination of multivariate statistical methods, multi-tracers and geochemical methods. Stable isotopes of hydrogen and oxygen indicated high levels of wastewater evaporation. Based on the assumption that the wastewater was under an open system and fully mixed, an evaporation model was established to estimate the evaporation of the wastewater based on isotope enrichments of the Rayleigh distillation theory using the average isotope values for dry and rainy seasons. Using an average evaporation loss of 26.5% for the input wastewater, the estimated recharge fraction of wastewater leakage and irrigation was 73.5% of the total input of wastewater. The lateral regional groundwater inflow was considered to be another recharge source. Combing the two end-members mix model and cluster analysis revealed that the mixture percentage of the wastewater decreased from the Highly Affected Zone (76%) to the Transition Zone (5%). Ion exchange and redox reaction were the dominant geochemical processes when wastewater entered the aquifer. Carbonate precipitation was also a major process affecting evolution of groundwater quality along groundwater flow paths. - Highlights: • An unlined wastewater reservoir caused the deterioration of groundwater quality. • An evaporation fraction was estimated by Rayleigh distillation theory of isotopes. • 73.5% of wastewater recharge to groundwater by leakage and irrigation infiltration. • The region influenced by wastewater was divided into four subzones. • Mixing, ion exchange, and

  14. Agricultural use of treated municipal wastewaters preserving environmental sustainability

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2007-07-01

    Full Text Available In this paper the utility of the treated municipal wastewaters in agriculture, analyzing the chemical, physical and microbiological characteristics and their pollution indicators evaluation are being illustrated. Some methods employed for treating wastewaters are examined, as well as instructions and rules actually in force in different countries of the world, for evaluating the legislative hygienic and sanitary and agronomic problems connected with the treated wastewaters use, are being collected and compared. Successively, in order to provide useful indications for the use of treated municipal wastewaters, results of long-term field researches, carried out in Puglia, regarding two types of waters (treated municipal wastewater and conventional water and two irrigation methods (drip and capillary sub-irrigation on vegetable crops grown in succession, are being reported. For each crop cycle, chemical physical and microbiological analyses have been performed on irrigation water, soil and crop samples. The results evidenced that although irrigating with waters having high colimetric values, higher than those indicated by law and with two different irrigation methods, never soil and marketable yield pollutions have been observed. Moreover, the probability to take infection and/or disease for ingestion of fruits coming from crops irrigated with treated wastewaters, calculated by Beta-Poisson method, resulted negligible and equal to 1 person for 100 millions of exposed people. Concentrations of heavy metals in soil and crops were lesser than those admissible by law. The free chlorine, coming from disinfection, found in the wastewaters used for watering, in some cases caused toxicity effects, which determined significant yield decreases. Therefore, municipal wastewaters, if well treated, can be used for irrigation representing a valid alternative to the conventional ones.

  15. Impact of treated wastewater for irrigation on soil microbial communities.

    Science.gov (United States)

    Ibekwe, A M; Gonzalez-Rubio, A; Suarez, D L

    2018-05-01

    The use of treated wastewater (TWW) for irrigation has been suggested as an alternative to use of fresh water because of the increasing scarcity of fresh water in arid and semiarid regions of the world. However, significant barriers exist to widespread adoption due to some potential contaminants that may have adverse effects on soil quality and or public health. In this study, we investigated the abundance and diversity of bacterial communities and the presence of potential pathogenic bacterial sequences in TWW in comparison to synthetic fresh water (SFW) using pyrosequencing. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity and abundance of different bacterial groups in TWW irrigated soils to soils treated with SFW. Shannon diversity index values (H') suggest that microbial diversity was not significantly different (P<0.086) between soils with TWW and SFW. Pyrosequencing detected sequences of 17 bacterial phyla with Proteobacteria (32.1%) followed by Firmicutes (26.5%) and Actinobacteria (14.3%). Most of the sequences associated with nitrifying bacteria, nitrogen-fixing bacteria, carbon degraders, denitrifying bacteria, potential pathogens, and fecal indicator bacteria were more abundant in TWW than in SFW. Therefore, TWW effluent may contain bacterial that may be very active in many soil functions as well as some potential pathogens. Published by Elsevier B.V.

  16. Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation.

    Science.gov (United States)

    Prosser, R S; Sibley, P K

    2015-02-01

    Amending soil with biosolids or livestock manure provides essential nutrients in agriculture. Irrigation with wastewater allows for agriculture in regions where water resources are limited. However, biosolids, manure and wastewater have all been shown to contain pharmaceuticals and personal care products (PPCPs). Studies have shown that PPCPs can accumulate in the tissues of plants but the risk that accumulated residues may pose to humans via consumption of edible portions is not well documented. This study reviewed the literature for studies that reported residues of PPCPs in the edible tissue of plants grown in biosolids- or manure-amended soils or irrigated with wastewater. These residues were used to determine the estimated daily intake of PPCPs for an adult and toddler. Estimated daily intake values were compared to acceptable daily intakes to determine whether PPCPs in plant tissue pose a hazard to human health. For all three amendment practices, the majority of reported residues resulted in hazard quotients plants to concentrations of PPCPs that would not be considered relevant based on concentrations reported in biosolids and manure or unrealistic methods of exposure, which lead to artificially elevated plant residues. Our assessment indicates that the majority of individual PPCPs in the edible tissue of plants due to biosolids or manure amendment or wastewater irrigation represent a de minimis risk to human health. Assuming additivity, the mixture of PPCPs could potentially present a hazard. Further work needs to be done to assess the risk of the mixture of PPCPs that may be present in edible tissue of plants grown under these three amendment practices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Irrigation of an established vineyard with winery cleaning agent solution (simulated winery wastewater): vine growth, berry quality, and soil chemistry

    Science.gov (United States)

    The ability to use winery wastewater (WW) for irrigation purposes could be a beneficial to the wine industry. A major difficulty in studying WW use is its inconsistent availability and composition. As such, we applied four simulated WWs composed of salts from two main industrial cleaning agents, and...

  18. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    Science.gov (United States)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  19. Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation.

    Science.gov (United States)

    Sallach, J Brett; Zhang, Yuping; Hodges, Laurie; Snow, Daniel; Li, Xu; Bartelt-Hunt, Shannon

    2015-02-01

    The use of wastewater for irrigation may introduce antimicrobials and human pathogens into the food supply through vegetative uptake. The objective of this study was to investigate the uptake of three antimicrobials and Salmonella in two lettuce cultivars. After repeated subirrigation with synthetic wastewater, lettuce leaves and soil were collected at three sequential harvests. The internalization frequency of Salmonella in lettuce was low. A soil horizon-influenced Salmonella concentration gradient was determined with concentrations in bottom soil 2 log CFU/g higher than in top soil. Lincomycin and sulfamethoxazole were recovered from lettuce leaves at concentrations as high as 822 ng/g and 125 ng/g fresh weight, respectively. Antimicrobial concentrations in lettuce decreased from the first to the third harvest suggesting that the plant growth rate may exceed antimicrobial uptake rates. Accumulation of antimicrobials was significantly different between cultivars demonstrating a subspecies level variation in uptake of antibiotics in lettuce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia

    Science.gov (United States)

    Fitamo, Daniel; Itana, Fisseha; Olsson, Mats

    2007-02-01

    The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction

  1. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  2. Methodological approach for evaluating the response of soil hydrological behavior to irrigation with treated municipal wastewater

    Science.gov (United States)

    Coppola, A.; Santini, A.; Botti, P.; Vacca, S.; Comegna, V.; Severino, G.

    2004-06-01

    This paper aims mainly to provide experimental evidence of the consequences of urban wastewater reuse in irrigation practices on the hydrological behavior of soils. The effects on both the hydraulic and dispersive properties of representative soils in southern Sardinia are illustrated. Ten undisturbed soil monoliths, 120 cm in height and 40 cm in diameter, were collected from plots previously selected through a soil survey. Soil hydraulic and solute transport properties were determined before and after application of wastewater using transient water infiltration and steady state-solute transport column experiments. Detailed spatial-temporal information on the propagation of water and solute through the soil profiles were obtained by monitoring soil water contents, θ, pressure heads, h, and solute concentrations, C, measured by a network of time domain reflectometry probes, tensiometers and solution samplers horizontally inserted in each column at different depths. A disturbed layer at the soil surface, which expands in depth with time, was observed, characterized by reduced soil porosity, translation of pore size distribution towards narrower pores and consequent decrease in water retention, hydraulic conductivity and hydrodynamic dispersion. It is shown that these changes occurring in the disturbed soil layer, although local by nature, affect the hydrological behavior of the whole soil profile. Due to the disturbed layer formation, the soil beneath never saturates. Such behavior has important consequences on the solute transport in soils, as unsaturated conditions mean higher residence times of solutes, even of those normally characterized by considerable mobility (e.g. boron), which may accumulate along the profile. The results mainly provide experimental evidence that knowledge of the chemical and microbiological composition of the water is not sufficient to evaluate its suitability for irrigation. Other factors, mainly soil physical and hydrological

  3. Development of High Resolution Data for Irrigated Area and Cropping Patterns in India

    Science.gov (United States)

    K a, A.; Mishra, V.

    2015-12-01

    Information of crop phenology and its individual effect on irrigation is essential to improve the simulation of land surface states and fluxes. We use moderate resolution imaging spectroradiometer (MODIS) - Normalized difference vegetation index (NDVI) at 250 m resolution for monitoring temporal changes in irrigation and cropping patterns in India. We used the obtained dataset of cropping pattern for quantifying the effect of irrigation on land surface states and fluxes by using an uncoupled land surface model. The cropping patterns are derived by using the planting, heading, harvesting, and growing dates for each agro-ecological zone separately. Moreover, we developed a high resolution irrigated area maps for the period of 1999-2014 for India. The high resolution irrigated area was compared with relatively coarse resolution (~ 10km) irrigated area from the Food and Agricultural Organization. To identify the seasonal effects we analyzed the spatial and temporal change of irrigation and cropping pattern for different temporal seasons. The new irrigation area information along with cropping pattern was used to study the water budget in India using the Noah Land surface Model (Noah LSM) for the period of 1999-2014.

  4. Quality assessment of treated wastewater to be reused in agriculture

    Directory of Open Access Journals (Sweden)

    M.H. Rahimi

    2018-04-01

    Full Text Available In this study, the quality of a treated wastewater for agricultural and irrigation purposes was investigated. 39 quality parameters were investigated at the entrance of an effluent channel to the destination plain in monthly time intervals during a year. The aim of this study was drawing an analogy between analyses results and the latest standards in the world (nationwide and internationally, the agricultural and irrigation usage indexes and the Wilcox diagram. The results showed that some parameters such as turbidity, total suspended solids, electrical conductivity, sodium, detergents, total coliform and focal coliform, ammonium, residual sodium carbonate, the Kelly’s Ratio and the Wilcox diagram were exceeding the permissible limit and are not suitable for agriculture and irrigation. It was found that the aquifers in the study area were polluted by natural salinity and geogenic source. As a result, application of the treated wastewater from Qom for agriculture and irrigation purposes needs to be revised and monitored. An action plan is also needed to manage a huge source of water and to avoid further environmental and health risks.

  5. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.

    2015-04-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation. The treatment process achieved 3.5 logs removal of heterotrophic bacteria and up to 3.5 logs removal of fecal coliforms. The final chlorinated effluent had 1.8×102 MPN/100mL of fecal coliforms and fulfils the required quality for restricted irrigation. 16S rRNA gene-based high-throughput sequencing showed that several genera associated with opportunistic pathogens (e.g. Acinetobacter, Aeromonas, Arcobacter, Legionella, Mycobacterium, Neisseria, Pseudomonas and Streptococcus) were detected at relative abundance ranging from 0.014 to 21 % of the total microbial community in the influent. Among them, Pseudomonas spp. had the highest approximated cell number in the influent but decreased to less than 30 cells/100mL in both types of effluent. A culture-based approach further revealed that Pseudomonas aeruginosa was mainly found in the influent and non-chlorinated effluent but was replaced by other Pseudomonas spp. in the chlorinated effluent. Aeromonas hydrophila could still be recovered in the chlorinated effluent. Quantitative microbial risk assessment (QMRA) determined that only chlorinated effluent should be permitted for use in agricultural irrigation as it achieved an acceptable annual microbial risk lower than 10-4 arising from both P. aeruginosa and A. hydrophila. However, the proportion of bacterial isolates resistant to 6 types of antibiotics increased from 3.8% in the influent to 6.9% in the chlorinated effluent. Examples of these antibiotic-resistant isolates in the chlorinated effluent include Enterococcus and Enterobacter spp. Besides the presence of antibiotic-resistant bacterial isolates, tetracycline resistance genes tetO, tetQ, tetW, tetH, tetZ were also present at an average 2.5×102, 1.6×102, 4.4×102, 1

  6. A global approach to estimate irrigated areas - a comparison between different data and statistics

    Science.gov (United States)

    Meier, Jonas; Zabel, Florian; Mauser, Wolfram

    2018-02-01

    Agriculture is the largest global consumer of water. Irrigated areas constitute 40 % of the total area used for agricultural production (FAO, 2014a) Information on their spatial distribution is highly relevant for regional water management and food security. Spatial information on irrigation is highly important for policy and decision makers, who are facing the transition towards more efficient sustainable agriculture. However, the mapping of irrigated areas still represents a challenge for land use classifications, and existing global data sets differ strongly in their results. The following study tests an existing irrigation map based on statistics and extends the irrigated area using ancillary data. The approach processes and analyzes multi-temporal normalized difference vegetation index (NDVI) SPOT-VGT data and agricultural suitability data - both at a spatial resolution of 30 arcsec - incrementally in a multiple decision tree. It covers the period from 1999 to 2012. The results globally show a 18 % larger irrigated area than existing approaches based on statistical data. The largest differences compared to the official national statistics are found in Asia and particularly in China and India. The additional areas are mainly identified within already known irrigated regions where irrigation is more dense than previously estimated. The validation with global and regional products shows the large divergence of existing data sets with respect to size and distribution of irrigated areas caused by spatial resolution, the considered time period and the input data and assumption made.

  7. Use of stable isotopes in the investigation of the effects of wastewater reuse on groundwater in Mexico

    International Nuclear Information System (INIS)

    Chilton, P.J.; Stuart, M.E.; Darling, W.G.

    1998-01-01

    Agricultural irrigation with wastewater is widely practised in Mexico, often in areas where the underlying aquifers are used for potable water supply. Studies in two areas of the country have examined the fate and behaviour of contaminants from untreated wastewater. The use of δ 18 O and δ 2 H isotopes was integrated with hydrogeological techniques such as core drilling, geophysics, major ion and trace element analysis of water samples, soil sampling and simple modelling. In both study areas, the isotope data helped to confirm the hydrochemical results. Conventional plots of δ 2 H and δ 18 O provide indications of altitude differences and evaporation processes in looking at sources of recharge. Plotting δ 18 O against chloride provides a convenient way of distinguishing groundwater types. In Leon, isotopic data confirmed that recharge to the deep volcanic-rock aquifer underlying the area of wastewater irrigation came partly from the surrounding mountains where this formation outcrops. In the Mezquital Valley, recharge to groundwaters beneath the valley floor originates from infiltration of wastewater. Comparison with data from 25 years ago indicated that isotopic compositions at some locations have become significantly less depleted in δ 18 O, suggesting that the contribution from irrigation water had increased. The study has demonstrated the importance of establishing good conceptual models at an early stage of such investigations, particularly where multiple and changing sources of groundwater recharge are anticipated. (author)

  8. Predictors of blood lead levels in agricultural villages practicing wastewater irrigation in Central Mexico.

    Science.gov (United States)

    Cifuentes, E; Villanueva, J; Sanin, L H

    2000-01-01

    To investigate whether the agricultural use of untreated wastewater (i.e. crop irrigation) was associated with elevated blood lead levels in a farming population in the Mezquital Valley and which risk factors, other than exposure to untreated wastewater, were associated with elevated blood lead levels, lead levels were measured in venous blood obtained from 735 individuals. Blood samples were analyzed by atomic absorption spectrophotometry. Food habits and dietary intake were gathered by interview, using a semi-quantitative food-frequency questionnaire. The average blood lead level was 7.8 microg/dL (SD 4.66 microg/dL; range 1.2-36.7 microg/dL). 23% of the study population had blood lead levels exceeding 10 microg/dL. The use of lead-glazed ceramics (LGC) was significantly associated with elevated lead levels (p = workers). p = 0.005, 0.08, and 0.001, respectively. When the analysis was stratified by the use of LGC for food preparation, an inverse relationship between higher daily calcium intake and blood lead level was detected (beta = - 0.040, p = associated with the use of LGC. Calcium intake showed a protective effect, maybe by decreasing absorption of lead in the gastrointestinal tract. No association between occupational exposure to untreated wastewater or crop consumption and blood lead levels was detected. Further environmental and health surveillance is recommended.

  9. Effect of low-cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, P.

    2007-01-01

    OBJECTIVE: To assess the effectiveness of simple irrigation methods such as drip irrigation kits, furrow irrigation and use of watering cans in reducing contamination of lettuce irrigated with polluted water in urban farming in Ghana. METHODS: Trials on drip kits, furrow irrigation and watering...... cans were conducted with urban vegetable farmers. Trials were arranged in a completely randomised block design with each plot having all three irrigation methods tested. This was conducted in both dry and wet seasons. Three hundred and ninety-six lettuce, 72 soil, 15 poultry manure and 32 water samples...... were analysed for thermotolerant coliforms and helminth eggs. RESULTS: Lettuce irrigated with drip kits had the lowest levels of contamination, with, on average, 4 log units per 100 g, fewer thermotolerant coliforms than that irrigated with watering cans. However, drip kits often got clogged, required...

  10. Heavy metal accumulation imparts structural differences in fragrant Rosa species irrigated with marginal quality water.

    Science.gov (United States)

    Ahsan, Muhammad; Younis, Adnan; Jaskani, Muhammad Jafar; Tufail, Aasma; Riaz, Atif; Schwinghamer, Timothy; Tariq, Usman; Nawaz, Fahim

    2018-09-15

    Wastewater is an alternative to traditional sources of renewable irrigation water in agriculture, particularly in water-scarce regions. However, the possible risks due to heavy metals accumulation in plant tissues are often overlooked by producers. The present study aimed to identify heavy metals-induced structural modifications to roots of scented Rosa species that were irrigated with water of marginal quality. The chemical and mineral contents from the experimental irrigation canal water (control) and treated wastewater were below the limits recommended by the Pakistan Environmental Protection Agency (Pak-EPA) for medicinal plants. The experimentally untreated wastewater contained electrical conductivity (EC), chemical oxygen demand (COD), biological oxygen demand (BOD), and heavy metals (Co, Cu, Cd, Pb) that were above the recommended limits. The responses by wastewater-treated Rosa species (Rosa damascena, R. bourboniana, R. Gruss-an-Teplitz, and R. centifolia) were evaluated. The experimental data revealed that treated wastewater significantly increased the thickness of collenchyma (cortex and pith) and parenchyma tissues (vascular bundle, xylem, and phloem) of R. Gruss-an-Teplitz. Root dermal tissues (epidermis) of R. bourboniana also responded to treated wastewater. R. damascena and R. centifolia were the least affected species, under the experimental irrigation conditions. Collenchyma and dermal tissues were thicker in R. damascena and R. Gruss-an-Teplitz under untreated wastewater conditions. In parenchyma tissues, vascular bundles were thicker in R. damascena in untreated wastewater conditions, while the xylem and phloem of R. Gruss-an-Teplitz were thicker where treated wastewater was applied. In tissues other than the vascular bundle, the differences in anatomical metrics due to the experimental irrigation treatments were greater during the second year of the experiment than in the first year. The contents of metals other than chromium in the roots and

  11. Water brief-WDM & wastewater reuse

    International Development Research Centre (IDRC) Digital Library (Canada)

    aalfouns

    Wastewater Reuse for Water Demand Management in the Middle East and ... Among the substantial WDM tools in MENA is the use of wastewater to reduce the pressure on scarce freshwater .... recycled water to irrigate crops with associated ...

  12. Wastewater Recycling in Greece: The Case of Thessaloniki

    Directory of Open Access Journals (Sweden)

    Andreas Ilias

    2014-05-01

    Full Text Available In Greece, and particularly in many southeastern and island areas, there is severe pressure on water resources, further exacerbated by the high demand of water for tourism and irrigation in summertime. The integration of treated wastewater into water resources management is of paramount importance to meet future demands. Despite this need, only a few projects of effluent reuse have been implemented, most of them being pilot projects of crop or landscape irrigation. The most important projects which are currently in practice are those of Thessaloniki, Chalkida, Malia, Livadia, Amfisa, Kalikratia, and Chersonissos. In Thessaloniki, at the most important wastewater reuse site, the secondary effluent of the city’s Waste Water Treatment Plant (WWTP (165,000 m3/day is used for agricultural irrigation after mixing with freshwater at a 1:5 ratio. The main crops irrigated are rice, corn, alfalfa and cotton. A few other projects are under planning, such as that at Iraklion, Agios Nikolaos and several island regions. Finally, it should be mentioned that there are several cases of indirect reuse, especially in central Greece. However, the reuse potential in Greece is limited, since effluent from Athens’s WWTP, serving approximately half of the country’s population, is not economically feasible due to the location of the plant.

  13. Wastewater reuse

    Directory of Open Access Journals (Sweden)

    Milan R. Radosavljević

    2013-12-01

    application and technology applied are ​​significantly dependent on socio-economic circumstances, industry structure, climate and politics. Reuse of water for irrigation of agricultural crops Fourty-one percent of the recycled water in Japan, 60% in California (USA, and 15% in Tunisia is used for irrigation of crops. In China, at least 1.33 million hectares of agricultural land is irrigated with untreated or partially treated wastewater (http://www.eolss.net. Agricultural irrigation is essential to improve the quality and quantity of production. By 2025, agriculture is expected to increase its water requirements by 1.2 times (http://www.unep.or.jp. If wastewater originatines from industrial sources, the presence of toxic chemicals, salts and heavy metals may limit its reuse. Such materials can change soil properties and may affect the growth of crops, so that appropriate treatment and supervision should be practiced. Recycled water that is important for agriculture must contain nitrogen, potassium, zinc, boron and sulfur. However, excess nitrogen can lead to overgrowth, delayed crop maturity and poor quality. Boron is an essential element for plant growth, and the excess boron becomes toxic. Tunisia is one of a few countries that have implemented a national policy for the reuse of wastewater. Since 1960., the wastewater in Tunisia has been used for irrigation of orchards. Since 1989, after a secondary treatment, the wastewater has been used for the cultivation of various crops (olives, fodder, cotton, etc., except for growing vegetables. In countries such as Morocco, Jordan, Egypt, Malta, Cyprus and Spain, wastewater is either used or being considered for irrigation, while in Israel, the percentage of the use of wastewater for irrigation is the highest in the region, with 24.4% and should be increased to 36% in the future (http://www.eolss.net. Depending on the country, socio-economic conditions, may be different,  starting from the shortage of money for capital

  14. The effect of reclaimed wastewater on the quality and growth of grapevines.

    Science.gov (United States)

    Mendoza-Espinosa, L G; Cabello-Pasini, A; Macias-Carranza, V; Daessle-Heuser, W; Orozco-Borbón, M V; Quintanilla-Montoya, A L

    2008-01-01

    The effect of the use of treated wastewater on the growth of cabernet sauvignon and merlot grapes from the Guadalupe Valley, Mexico was evaluated. Secondary advanced effluent was used to irrigate the grapevines at a rate of 66 L/vine/week. Wastewater quality results confirmed that all parameters complied with Mexican legislation for crop irrigation as well as reuse in activities in which the public would be in direct or indirect contact with the reclaimed water. Results showed that the number of leaves per shoot and the overall biomass increased in plants irrigated with wastewater and grape production per plant was 20% higher. The concentration of carbohydrates, organic acids and pH were similar in grapes from vines irrigated with wastewater to those irrigated with groundwater. Throughout the experiment, no fecal coliform bacteria were detected in the cultivated grapes. The wastewater caused an increase in the biomass of the grapevines and there was no presence of microbial indicators in the final product so a higher wine production could be achieved without an increase in health risk related problems. If 200 L/s of reclaimed wastewater would be returned to be used for grapevine irrigation in Valle de Guadalupe (the same amount that is currently being sent as drinking water to Ensenada), assuming an irrigation application of 6,000-7.500 m3/ha/year, approximately 837-1046 hectares (ha) of grapevines could be irrigated. Part of ongoing research includes an economical analysis of the best options for Ensenada and the Valle de Guadalupe in order to establish the optimum volume of water to be returned, the cost of its transportation, as well as the cost of irrigation. (c) IWA Publishing 2008.

  15. Growth and nutrient balance of Enterolobium contortsiliquum seedlings with addition of organic substrates and wastewater

    Directory of Open Access Journals (Sweden)

    Emanuel França Araújo

    2016-06-01

    Full Text Available Given the strong generation of solid organic waste and wastewater, the use of these materials as a primary source of nutrients is an important practice in environmental management, especially in the production of seedlings with emphasis on degraded areas. The objective of this study was to evaluate growth and nutrient balance of “tamboril” (Enterolobium contortsiliquum (Vell. Morong seedlings grown on substrates with different formulations proportions of organic matter irrigated with wastewater. It was tested five ratios of organic composts and soil: 0:100; 20:80; 40:60; 60:40 and 80:20 v/v. Two procedences of irrigation water was tested: water supply and wastewater from swine farming, arranged in a completely randomized design in a factorial scheme 5 x 2, with four replications. At 90 days, we evaluate seedlings morphological variables, the integrate diagnosis recommendation index and the nutrient balance index. The organic residue contributes to seedlings growth and nutritional balance. The proportion 80:20 proved to be the most suitable for “tamboril” seedlings production. Seedlings presented lower growth and nutritional balance when irrigate with swine farm wastewater.

  16. Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data

    Science.gov (United States)

    Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A.

    2011-01-01

    Maps of irrigated areas are essential for Ghana's agricultural development. The goal of this research was to map irrigated agricultural areas and explain methods and protocols using remote sensing. Landsat Enhanced Thematic Mapper (ETM+) data and time-series Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to map irrigated agricultural areas as well as other land use/land cover (LULC) classes, for Ghana. Temporal variations in the normalized difference vegetation index (NDVI) pattern obtained in the LULC class were used to identify irrigated and non-irrigated areas. First, the temporal variations in NDVI pattern were found to be more consistent in long-duration irrigated crops than with short-duration rainfed crops due to more assured water supply for irrigated areas. Second, surface water availability for irrigated areas is dependent on shallow dug-wells (on river banks) and dug-outs (in river bottoms) that affect the timing of crop sowing and growth stages, which was in turn reflected in the seasonal NDVI pattern. A decision tree approach using Landsat 30 m one time data fusion with MODIS 250 m time-series data was adopted to classify, group, and label classes. Finally, classes were tested and verified using ground truth data and national statistics. Fuzzy classification accuracy assessment for the irrigated classes varied between 67 and 93%. An irrigated area derived from remote sensing (32,421 ha) was 20-57% higher than irrigated areas reported by Ghana's Irrigation Development Authority (GIDA). This was because of the uncertainties involved in factors such as: (a) absence of shallow irrigated area statistics in GIDA statistics, (b) non-clarity in the irrigated areas in its use, under-development, and potential for development in GIDA statistics, (c) errors of omissions and commissions in the remote sensing approach, and (d) comparison involving widely varying data types, methods, and approaches used in determining irrigated area statistics

  17. Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation

    International Nuclear Information System (INIS)

    Sallach, J. Brett; Zhang, Yuping; Hodges, Laurie; Snow, Daniel; Li, Xu; Bartelt-Hunt, Shannon

    2015-01-01

    The use of wastewater for irrigation may introduce antimicrobials and human pathogens into the food supply through vegetative uptake. The objective of this study was to investigate the uptake of three antimicrobials and Salmonella in two lettuce cultivars. After repeated subirrigation with synthetic wastewater, lettuce leaves and soil were collected at three sequential harvests. The internalization frequency of Salmonella in lettuce was low. A soil horizon-influenced Salmonella concentration gradient was determined with concentrations in bottom soil 2 log CFU/g higher than in top soil. Lincomycin and sulfamethoxazole were recovered from lettuce leaves at concentrations as high as 822 ng/g and 125 ng/g fresh weight, respectively. Antimicrobial concentrations in lettuce decreased from the first to the third harvest suggesting that the plant growth rate may exceed antimicrobial uptake rates. Accumulation of antimicrobials was significantly different between cultivars demonstrating a subspecies level variation in uptake of antibiotics in lettuce. - Highlights: • Antimicrobial uptake in lettuce is cultivar dependent. • Antimicrobial concentrations in lettuce decrease despite repeated exposure. • Lincomycin is better conserved in the soil-plant system than oxytetracycline or sulfamethoxazole. • Subirrigation resulted in more Salmonella in bottom soil than in top soil. • Internalization frequency of Salmonella in lettuce is low despite repeated exposure. - Cultivar-specific differences in lincomycin and sulfamethazine uptake were observed in lettuce, while uptake of Salmonella was low despite repeated exposure from wastewater

  18. Stakeholder analysis in the management of irrigation in Kampili area

    Science.gov (United States)

    Jumiati; Ali, M. S. S.; Fahmid, I. M.; Mahyuddin

    2018-05-01

    Irrigation has appreciable contribution in building food security, particularly rice crops. This study aims to analyze the role of stakeholders involved in distributing of irrigation water. The study was conducted in the Kampili Irrigation Area in South Sulawesi Province Indonesia, the data were obtained through observation and interviews with stakeholders involved, and analysed by stakeholder analysis, based on the interests and power held by the actors. This analysis is intended to provide an optimal picture of the expected role of each stakeholder in the management of irrigation resources. The results show that there were many stakeholders involved in irrigation management. In the arrangement of irrigation distribution there was overlapping authority of the stakeholders to its management, every stakeholder had different interests and power between each other. The existence have given positive and negative values in distributing irrigation water management, then in the stakeholder collaboration there was contestation between them. This contestation took place between the agriculture department, PSDA province, the Jeneberang River Region Hall, the Farmers Group and the P3A.

  19. Effects of winery wastewater on soil, grape nutrition, and wine quality

    Science.gov (United States)

    Many wineries are interested in recycling wastewater for irrigation. This project investigates the effects on winemaking when winery wastewater (WW) is recycledfor irrigation. Water samples and soils samples were collected from one Napa Valley and one Sonoma vineyard. Leaf and berry samples were col...

  20. Optimization of planting pattern plan in Logung irrigation area using linear program

    Science.gov (United States)

    Wardoyo, Wasis; Setyono

    2018-03-01

    Logung irrigation area is located in Kudus Regency, Central Java Province, Indonesia. Irrigation area with 2810 Ha of extent is getting water supply from Logung dam. Yet, the utilization of water at Logung dam is not optimal and the distribution of water is still not evenly distributed. Therefore, this study will discuss about the optimization of irrigation water utilization based on the beginning of plant season. This optimization begins with the analysis of hydrology, climatology and river discharge in order to determine the irrigation water needs. After determining irrigation water needs, six alternatives of planting patterns with the different early planting periods, i.e. 1st November, 2nd November, 3rd November, 1st December, 2nd December, and 3rd December with the planting pattern of rice-secondary crop-sugarcane is introduced. It is continued by the analysis of water distribution conducted using linear program assisted by POM-Quantity method for Windows 3 with the reliable discharge limit and the available land area. Output of this calculation are to determine the land area that can be planted based on the type of plant and growing season, and to obtaine the profits of harvest yields. Based on the optimum area of each plant species with 6 alternatives, the most optimum area was obtained at the early planting periods on 3rd December with the production profit of Rp 113.397.338.854,- with the planting pattern of rice / beans / sugarcane-rice / beans / sugarcane-beans / sugarcane.

  1. Lower leaf gas-exchange and higher photorespiration of treated wastewater irrigated Citrus trees is modulated by soil type and climate.

    Science.gov (United States)

    Paudel, Indira; Shaviv, Avi; Bernstein, Nirit; Heuer, Bruria; Shapira, Or; Lukyanov, Victor; Bar-Tal, Asher; Rotbart, Nativ; Ephrath, Jhonathan; Cohen, Shabtai

    2016-04-01

    Water quality, soil and climate can interact to limit photosynthesis and to increase photooxidative damage in sensitive plants. This research compared diffusive and non-diffusive limitations to photosynthesis as well as photorespiration of leaves of grapefruit trees in heavy clay and sandy soils having a previous history of treated wastewater (TWW) irrigation for >10 years, with different water qualities [fresh water (FW) vs TWW and sodium amended treated wastewater (TWW + Na)] in two arid climates (summer vs winter) and in orchard and lysimeter experiments. TWW irrigation increased salts (Na(+) and Cl(-) ), membrane leakage, proline and soluble sugar content, and decreased osmotic potentials in leaves of all experiments. Reduced leaf growth and higher stomatal and non-stomatal (i.e. mesophyll) limitations were found in summer and on clay soil for TWW and TWW + Na treatments in comparison to winter, sandy soil and FW irrigation, respectively. Stomatal closure, lower chlorophyll content and altered Rubisco activity are probable causes of higher limitations. On the other hand, non-photochemical quenching, an alternative energy dissipation pathway, was only influenced by water quality, independent of soil type and season. Furthermore, light and CO2 response curves were investigated for other possible causes of higher non-stomatal limitation. A higher proportion of non-cyclic electrons were directed to the O2 dependent pathway, and a higher proportion of electrons were diverted to photorespiration in summer than in winter. In conclusion, both diffusive and non-diffusive limitations contribute to the lower photosynthetic performance of leaves following TWW irrigation, and the response depends on soil type and environmental factors. © 2015 Scandinavian Plant Physiology Society.

  2. Accounting for potassium and magnesium in irrigation water quality assessment

    Directory of Open Access Journals (Sweden)

    J.D. Oster

    2016-04-01

    Full Text Available Irrigation with treated wastewater is expected to increase significantly in California during the coming decade as a way to reduce the impact of drought and mitigate water transfer issues. To ensure that such wastewater reuse does not result in unacceptable impacts on soil permeability, water quality guidelines must effectively address sodicity hazard. However, current guidelines are based on the sodium adsorption ratio (SAR and thus assume that potassium (K and magnesium (Mg, which often are at elevated concentrations in recycled wastewaters, pose no hazard, despite many past studies to the contrary. Recent research has established that the negative effects of high K and Mg concentrations on soil permeability are substantial and that they can be accounted for by a new irrigation water quality parameter, the cation ratio of structural stability (CROSS, a generalization of SAR. We show that CROSS, when suitably optimized, correlates strongly with a standard measure of soil permeability reduction for an agricultural soil leached with winery wastewater, and that it can be incorporated directly into existing irrigation water quality guidelines by replacing SAR.

  3. Accumulation of heavy metal in scalp hair of people exposed in Beijing sewage discharge channel sewage irrigation area in Tianjin, China.

    Science.gov (United States)

    Wang, Zuwei; Yu, Xiaoman; Geng, Mingshuo; Wang, Zilu; Wang, Qianqian; Zeng, Xiangfeng

    2017-05-01

    Heavy metal concentrations in soil, wheat, and scalp hair exposed to Beijing sewage discharge channel sewage irrigation area (BSIA) in Tianjin were studied to evaluate the influence of sewage irrigation. Results showed that the continuous application of wastewater has led to an accumulation of heavy metals in the soil, with 55.2 and 8.62% of soil samples accumulating Cd and Zn, respectively, at concentrations exceeding the permissible limits in China. Concentrations of heavy metals in wheat grain from BSIA were higher than these from the clean water irrigation area by 63.2% for Cd, 3.8% for Cu, 100% for Pb, 6.6% for Zn, and 326.7% for Cr. The heavy metal bioaccumulation factor (BAF) of wheat/soil in BSIA showed the following order: Zn > Cd > Cu > Pb > Cr. Interestingly, these accumulation of heavy metals in soil after sewage irrigation could increase the migration ability of heavy metals (particularly Zn and Cd) from soil to wheat. Mean concentrations of heavy metals in the hair of residents followed the decreasing trend of Zn > Cu > Pb > Cr > Cd, which were higher than the control area by 110.0% for Cd, 20.0% for Cu, 55.9% for Zn, 36.6% for Pb, and 64.6% for Cr. Concentrations of heavy metals in male human hair in BSIA were higher than those of females. And the concentrations of heavy metals except for Pb in human hair increased with their increasing ages. The heavy metal BAF values of wheat/soil in BSIA showed the trend of Zn (98.0057) > Pb (7.0162) > Cr (5.5788) > Cu (5.4853) > Cd (3.5584); heavy metals had obvious biological amplification from wheat to human hair. These results indicated that local population health was potentially exposed to the heavy metal risk via wheat consumption.

  4. Industrial wastewater treatment with electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho [Central Research Institute of Samsung Heavy Industries Co., Taejon (Korea)

    2001-03-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m{sup 3}/day of wastewater from 80,000m{sup 3}/day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  5. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m 3 /day of wastewater from 80,000m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  6. Towards a national policy on wastewater reuse in Kenya | Kaluli ...

    African Journals Online (AJOL)

    Potable water for irrigation and industrial use is generally unavailable, and this calls for alternative water sources. Despite use of wastewater being illegal in Kenya, it is used to irrigate over 720 ha in Nairobi. In order to justify the formulation of a national policy to support wastewater reuse, secondary data which included the ...

  7. Root-Zone Redox Dynamics - In Search for the Cause of Damage to Treated-Wastewater Irrigated Orchards in Clay Soils

    Science.gov (United States)

    Yalin, David; Shenker, Moshe; Schwartz, Amnon; Assouline, Shmuel; Tarchitzky, Jorge

    2016-04-01

    Treated wastewater (TW) has become a common source of water for agriculture. However recent findings raise concern regarding its use: a marked decrease (up to 40%) in yield appeared in orchards irrigated with TW compared with fresh water (FW) irrigated orchards. These detrimental effects appeared predominantly in orchards cultivated in clay soils. The association of the damage with clay soils rather than sandy soils led us to hypothesize that the damage is linked to soil aeration problems. We suspected that in clay soils, high sodium adsorption ratio (SAR) and high levels of organic material, both typical of TW, may jointly lead to an extreme decrease in soil oxygen levels, so as to shift soil reduction-oxidation (redox) state down to levels that are known to damage plants. Two-year continuous measurement of redox potential, pH, water tension, and oxygen were conducted in the root-zone (20-35 cm depth) of avocado trees planted in clay soil and irrigated with either TW or FW. Soil solution composition was sampled periodically in-situ and mineral composition was sampled in tree leaves and woody organs biannually. In dry periods the pe+pH values indicated oxic conditions (pe+pH>14), and the fluctuations in redox values were small in both TW and FW plots. Decreases in soil water tension following irrigation or rain were followed by drops in soil oxygen and pe+pH values. TW irrigated plots had significantly lower minimum pe+pH values compared with FW-irrigated plots, the most significant differences occurred during the irrigation season rather than the rain season. A linear correlation appeared between irrigation volume and reduction severity in TW-irrigated plots, but not in the FW plots, indicating a direct link to the irrigation regime in TW-irrigated plots. The minimum pe+pH values measured in the TW plots are indicative of suboxic conditions (9water tension and oxygen concentration levels. The consequences of our findings to plant health will be discussed, and

  8. Quality and Trace Element Profile of Tunisian Olive Oils Obtained from Plants Irrigated with Treated Wastewater

    Directory of Open Access Journals (Sweden)

    Cinzia Benincasa

    2012-01-01

    Full Text Available In the present work the use of treated wastewater (TWW to irrigate olive plants was monitored. This type of water is characterized by high salinity and retains a substantial amount of trace elements, organic and metallic compounds that can be transferred into the soil and into the plants and fruits. In order to evaluate the impact of TWW on the overall quality of the oils, the time of contact of the olives with the soil has been taken into account. Multi-element data were obtained using ICP-MS. Nineteen elements (Li, B, Na, Mg, Al, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ba and La were submitted for statistical analysis. Using analysis of variance, linear discriminant analysis and principal component analysis it was possible to differentiate between oils produced from different batches of olives whose plants received different types of water. Also, the results showed that there was correlation between the elemental and mineral composition of the water used to irrigate the olive plots and the elemental and mineral composition of the oils.

  9. Study of the pollution impact from wastewater reuse for irrigation on the groundwater of the quaternary aquifer, west cairo

    International Nuclear Information System (INIS)

    Abd El Samie, S.G.; Ahmed, M.A.; Hassan, H.B.; Hamza, M.S.

    2005-01-01

    The hazards resulting from the extensive application of using sewage and drainage effluent in its form or mixing with fresh water from two sewerage stations(Zenin and Abu-Rawash) for agriculture irrigation were studied by means of chemical, isotopic and biological techniques. The hydrochemical results of major chemical constituents of surface water samples fall in the acceptable range for using this water for irrigation, while minor groups (NO 3 , PO 4 ) and heavy metals measurements showed higher values of Cd, Fe, Ni, Mn, and Pb in the mixed water more than the maximum permissible limits. The collected groundwater samples from the area of study showed high values of the total dissolved solids, minor groups and heavy metals in most wells around Zenin and abu Rawash sewerage stations. These values increase in the direction of the groundwater flow from south-east to north-west. The isotopic enrichment of delta 18 O, delta D enhanced with tritium values for surface and groundwater samples confirms the direct replenishment from surface and groundwater samples confirms the direct replenishment from surface water bodies by downward infiltration to the underlying aquifer, which permits the migration of wastewater contaminants through the soil layers to reach the groundwater level. The influence of wastewater infiltration was also detected from the high counting numbers of microbes obtained in all samples, which selected from some drains and wells close to the sewerage stations. From the previous results the real hazards for using this water not only depend on the quantitative estimates of total major ions, but the harmful pathogenic attack of micro and macro organisms as well as heavy metals will pose the greatest risk to the human health. On the long run the infiltration of the polluted water will threat the groundwater to different depths of the shallow layer of the quaternary aquifer that is the only source of potable water supply in some locations

  10. Parasitic helminth load in urban waste-water of Kenitra City, Morocco

    African Journals Online (AJOL)

    Waste-waters of Kenitra City are rejected without any preliminary treatment in the receiving medium (Sebou River, Fouarat Lake). A small fraction is used to irrigate crops in the peri-urban area of Kenitra City. The parasitological characterization revealed an average parasitic helminth egg concentration of 25.07 per liter ...

  11. Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-03-01

    Full Text Available Irrigated agriculture has the potential to alter regional to global climate significantly. We investigate how irrigation will affect regional climate in the future in an inland irrigation area of northern China, focusing on its effects on heat fluxes and near-surface temperature. Using the Weather Research and Forecasting (WRF model, we compare simulations among three land cover scenarios: the control scenario (CON, the irrigation scenario (IRR, and the irrigated cropland expansion scenario (ICE. Our results show that the surface energy budgets and temperature are sensitive to changes in the extent and spatial pattern of irrigated land. Conversion to irrigated agriculture at the contemporary scale leads to an increase in annual mean latent heat fluxes of 12.10 W m−2, a decrease in annual mean sensible heat fluxes of 8.85 W m−2, and a decrease in annual mean temperature of 1.3 °C across the study region. Further expansion of irrigated land increases annual mean latent heat fluxes by 18.08 W m−2, decreases annual mean sensible heat fluxes by 12.31 W m−2, and decreases annual mean temperature by 1.7 °C. Our simulated effects of irrigation show that changes in land use management such as irrigation can be an important component of climate change and need to be considered together with greenhouse forcing in climate change assessments.

  12. Design in Domestic Wastewater Irrigation

    NARCIS (Netherlands)

    Huibers, F.P.; Raschid-Sally, L.

    2005-01-01

    When looking at the domestic wastewater streams, from freshwater source to destination in an agricultural field, we are confronted with a complexity of issues that need careful attention. Social and economic realities arise, along with technical, biological and institutional issues. Local realities

  13. Perceptions of farmers on health risks and risk reduction measures in wastewater-irrigated urban vegetable farming in Ghana

    DEFF Research Database (Denmark)

    Keraita, Bernard; Drechsel, Pay; Konradsen, Flemming

    2008-01-01

    , authorities and the general public, especially if they had some incentives. These findings demonstrate the need to involve farmers as early as possible in intervention projects especially in informal farming practices, like urban agriculture, where restrictions are difficult to implement. This will ensure......Most irrigation water used in urban vegetable farming in Ghana is contaminated with untreated wastewater. This poses health risks to farmers and consumers. As part of a study to explore options for health risk reduction, this paper summarizes farmers' perceptions on health risks and possible risk...

  14. Estimation of Economic Value of Use of Wastewater at Agricultural Sector in South of Tehran Province

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Sasouli

    2015-11-01

    Full Text Available Appropriate use of non-conventional water resources including surface runoff and sewage is produced an issue that has emerged as a necessity particularly in Iran. This thread has been created specifically in Tehran. The current study was aimed to investigate the economic value of sewage at Agricultural Sector in South of Tehran with produced approach in the contaminated and clean area. From the results, the average yield of wheat production among the farmers from polluted water was 376 kg ha-1 more than farmers who used clean water. Moreover, the economic value of water was 110 Rials more than farmers who used clean water. According to the results, the total value of wastewater in Tehran in 1405 would be equivalent to 335,480 million Rials. The priorities for interests of irrigation using wastewater from an agricultural perspective suggests that availability and reliability of wastewater than other water sources and low cost of its use is the most important benefit. The next priority result of irrigation with wastewater is increasing crop yield and improving soil fertility. This explains why farmers despite the legal prohibition of the use of untreated sewage continue to utilize this source of irrigation water.

  15. Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    2017-05-01

    Full Text Available To improve adaptive capacity and further strengthen the role of irrigation in mitigating climate change impacts, the Chinese government has planned to expand irrigated areas by 4.4% by the 2030s. Examining the adaptive potential of irrigated area expansion under climate change is therefore critical. Here, we assess the effects of irrigated area expansion on crop yields based on county-level data during 1980–2011 in northern China and estimate climate impacts under irrigated area scenarios in the 2030s. Based on regression analysis, there is a statistically significant effect of irrigated area expansion on reducing negative climate impacts. More irrigated areas indicate less heat and drought impacts. Irrigated area expansion will alleviate yield reduction by 0.7–0.8% in the future but associated yield benefits will still not compensate for greater adverse climate impacts. Yields are estimated to decrease by 4.0–6.5% under future climate conditions when an additional 4.4% of irrigated area is established, and no fundamental yield increase with an even further 10% or 15% expansion of irrigated area is predicted. This finding suggests that expected adverse climate change risks in the 2030s cannot be mitigated by expanding irrigated areas. A combination of this and other adaptation programs is needed to guarantee grain production under more serious drought stresses in the future.

  16. Practical application of wastewater reuse in tourist resorts.

    Science.gov (United States)

    Antakyali, D; Krampe, J; Steinmetz, H

    2008-01-01

    A medium-scale membrane bioreactor was tested in a large tourist resort on the south-western coast of Turkey with the treated wastewater subsequently being used for irrigational purposes. The wastewater treatment system was designed to eliminate carbonaceous and nitrogenous substances. Treatment efficiency was monitored by means of regular chemical and microbiological analyses. Information was collected on water use at different locations of the hotel. Specific values based on the number of guests were determined. Wastewater streams from kitchen, laundry and rooms were analysed to investigate the various contribution from these points. The social acceptance of the guests concerning the on-site wastewater treatment and reuse in the hotel was analysed using a questionnaire. The investigations indicated that the treated wastewater provides the required chemical and hygienic conditions to satisfy requirement for its reuse in irrigation. The acceptance by guests was encouraging for such applications. IWA Publishing 2008.

  17. Global sensitivity analysis for an integrated model for simulation of nitrogen dynamics under the irrigation with treated wastewater.

    Science.gov (United States)

    Sun, Huaiwei; Zhu, Yan; Yang, Jinzhong; Wang, Xiugui

    2015-11-01

    As the amount of water resources that can be utilized for agricultural production is limited, the reuse of treated wastewater (TWW) for irrigation is a practical solution to alleviate the water crisis in China. The process-based models, which estimate nitrogen dynamics under irrigation, are widely used to investigate the best irrigation and fertilization management practices in developed and developing countries. However, for modeling such a complex system for wastewater reuse, it is critical to conduct a sensitivity analysis to determine numerous input parameters and their interactions that contribute most to the variance of the model output for the development of process-based model. In this study, application of a comprehensive global sensitivity analysis for nitrogen dynamics was reported. The objective was to compare different global sensitivity analysis (GSA) on the key parameters for different model predictions of nitrogen and crop growth modules. The analysis was performed as two steps. Firstly, Morris screening method, which is one of the most commonly used screening method, was carried out to select the top affected parameters; then, a variance-based global sensitivity analysis method (extended Fourier amplitude sensitivity test, EFAST) was used to investigate more thoroughly the effects of selected parameters on model predictions. The results of GSA showed that strong parameter interactions exist in crop nitrogen uptake, nitrogen denitrification, crop yield, and evapotranspiration modules. Among all parameters, one of the soil physical-related parameters named as the van Genuchten air entry parameter showed the largest sensitivity effects on major model predictions. These results verified that more effort should be focused on quantifying soil parameters for more accurate model predictions in nitrogen- and crop-related predictions, and stress the need to better calibrate the model in a global sense. This study demonstrates the advantages of the GSA on a

  18. Toxigenic Vibrio cholerae O1 in vegetables and fish raised in wastewater irrigated fields and stabilization ponds during a non-cholera outbreak period in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Hounmanou, Yaovi M G; Mdegela, Robinson H; Dougnon, Tamègnon V

    2016-01-01

    gene (tcpA) and the haemolysin gene (hlyA). RESULTS: The prevalence of V. cholerae in wastewater, vegetables and fish was 36.7, 21.7 and 23.3 %, respectively. Two isolates from fish gills were V. cholerae O1 and tested positive for ctx and tcpA. One of these contained in addition the hlyA gene while......BACKGROUND: Cholera, one of the world's deadliest infectious diseases, remains rampant and frequent in Tanzania and thus hinders existing control measures. The present study was undertaken to evaluate the occurrence of toxigenic Vibrio cholerae O1 in wastewater, fish and vegetables during a non......-outbreak period in Morogoro, Tanzania. METHODS: From October 2014 to February 2015, 60 wastewater samples, 60 fish samples from sewage stabilization ponds and 60 wastewater irrigated vegetable samples were collected. Samples were cultured for identification of V. cholerae using conventional bacteriological...

  19. Agriculture and wildlife: ecological implications of subsurface irrigation drainage

    Science.gov (United States)

    A. Dennis Lemly

    1994-01-01

    Subsurface agricultural irrigation drainage is a wastewater with the potential to severely impact wetlands and wildlife populations. Widespread poisoning of migratory birds by drainwater contaminants has occurred in the western United States and waterfowl populations are threatened in the Pacific and Central flyways. Irrigated agriculture could produce subsurface...

  20. Location of irrigated land classified from satellite imagery - High Plains Area, nominal date 1992

    Science.gov (United States)

    Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean

    2002-01-01

    Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land overlying the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a water-quality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated-land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres).

  1. Membrane filtration of olive mill wastewater and exploitation of its fractions.

    Science.gov (United States)

    Paraskeva, C A; Papadakis, V G; Kanellopoulou, D G; Koutsoukos, P G; Angelopoulos, K C

    2007-04-01

    Olive mill wastewater (OMW) produced from small units scattered in rural areas of Southern Europe is a major source of pollution of surface and subsurface water. In the present work, a treatment scheme based on physical separation methods is presented. The investigation was carried out using a pilot-plant unit equipped with ultrafiltration, nanofiltration, and reverse osmosis membranes. Approximately 80% of the total volume of wastewater treated by the membrane units was sufficiently cleaned to meet the standards for irrigation water. The concentrated fractions collected in the treatment concentrates were characterized by high organic load and high content of phenolic compounds. The concentrates were tested in hydroponic systems to examine their toxicity towards undesired herbs. The calculations of the cost of the overall process showed that fixed and operational costs could be recovered from the exploitation of OMW byproducts as water for irrigation and/or as bioherbicides.

  2. Central Facilities Area Sewage Lagoon Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Giesbrecht, Alan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose of this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.

  3. Estimating irrigated areas from satellite and model soil moisture data over the contiguous US

    Science.gov (United States)

    Zaussinger, Felix; Dorigo, Wouter; Gruber, Alexander

    2017-04-01

    Information about irrigation is crucial for a number of applications such as drought- and yield management and contributes to a better understanding of the water-cycle, land-atmosphere interactions as well as climate projections. Currently, irrigation is mainly quantified by national agricultural statistics, which do not include spatial information. The digital Global Map of Irrigated Areas (GMIA) has been the first effort to quantify irrigation at the global scale by merging these statistics with remote sensing data. Also, the MODIS-Irrigated Agriculture Dataset (MirAD-US) was created by merging annual peak MODIS-NDVI with US county level irrigation statistics. In this study we aim to map irrigated areas by confronting time series of various satellite soil moisture products with soil moisture from the ERA-Interim/Land reanalysis product. We follow the assumption that irrigation signals are not modelled in the reanalysis product, nor contributing to its forcing data, but affecting the spatially continuous remote sensing observations. Based on this assumption, spatial patterns of irrigation are derived from differences between the temporal slopes of the modelled and remotely sensed time series during the irrigation season. Results show that a combination of ASCAT and ERA-Interim/Land show spatial patterns which are in good agreement with the MIrAD-US, particularly within the Mississippi Delta, Texas and eastern Nebraska. In contrast, AMSRE shows weak agreements, plausibly due to a higher vegetation dependency of the soil moisture signal. There is no significant agreement to the MIrAD-US in California, which is possibly related to higher crop-diversity and lower field sizes. Also, a strong signal in the region of the Great Corn Belt is observed, which is generally not outlined as an irrigated area. It is not yet clear to what extent the signal obtained in the Mississippi Delta is related to re-reflection effects caused by standing water due to flood or furrow

  4. Application of electron beam to industrial wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, D.K.; Boo, J.Y.; Kim, J.K.; Kim, Y.; Chung, W.; Choi, J.S.; Kang, H.J.; Pikaev, A.K.

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with EB irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an EB pilot plant for treating 1,000m 3 /day of wastewater from 60,000m 3 /day of total dyeing wastewater has been constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  5. Agricultural irrigated land-use inventory for Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama, 2014

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.

    2015-09-18

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate water use or to project future water demands in many Florida counties. This report provides a detailed digital map and summary of irrigated areas for 2014 within Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama. The irrigated areas were delineated using land-use data and orthoimagery that were then field verified between June and November 2014. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results of the 2014 study indicate that an estimated 31,608 acres were irrigated in Jackson County during 2014. This estimate includes 25,733 acres of field crops, 1,534 acres of ornamentals and grasses (including pasture), and 420 acres of orchards. Specific irrigated crops include cotton (11,759 acres), peanuts (9,909 acres), field corn (2,444 acres), and 3,235 acres of various vegetable (row) crops. The vegetable acreage includes 1,714 acres of which 857 acres were planted with both a spring and fall crop on the same field (double cropped). Overall, groundwater was used to irrigate 98.6 percent of the total irrigated acreage in Jackson County during 2014, whereas surface water and wastewater were used to irrigate the remaining 1.4 percent.

  6. Local desalination treatment plant wastewater reuse and evaluation potential absorption of salts by the halophyte plants

    Directory of Open Access Journals (Sweden)

    Elham Kalantari

    2018-01-01

    Full Text Available The expansion of arid and semi-arid areas and consequently water scarcity are affected by climate change. This can influence on availability and quality of water while demands on food and water are increasing. As pressure on freshwater is increasing, utilization of saline water in a sustainable approach is inevitable. Therefore, bioremediation using salt tolerant plants that is consistent with sustainable development objectives might be an alternative and effective approach. In this study, saline wastewater from a local desalination treatment plant was utilized to irrigate four halophyte plants, including Aloevera, Tamarix aphylla, Rosmarinus officinalis and Matricaria chamomilla. A field experiment was designed and conducted in Zarrindasht, south of Iran in years 2012-2013 accordingly. Two irrigation treatments consisting of freshwater with salinity of 2.04 dS.m-1 and desalination wastewater with salinity of 5.77dSm-1 were applied. The experiment was designed as a split plot in the form of randomized complete block design (RCB with three replications. The results of variance analysis, ANOVA, on salt concentration in Aloevera showed that there was no significant difference between the effects of two irrigation water qualities except for Na. In Rosmarinus officinalis, only the ratio of K/Na showed a significant difference. None of the examined salt elements showed a significant difference in Tamarix aphylla irrigated with both water qualities. In Matricaria chamomilla, only Mg and K/Na ratio showed a significant difference (Duncan 5%. As a result, no significant difference was observed in salt absorption by the examined plants in treatments which were irrigated by desalination wastewater and freshwater. This could be a good result that encourages the use of similar wastewater to save freshwater in a sustainable system.

  7. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium

    Science.gov (United States)

    Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; Vithanage, J.; Schull, M.A.; Dutta, R.

    2009-01-01

    A Global Irrigated Area Map (GIAM) has been produced for the end of the last millennium using multiple satellite sensor, secondary, Google Earth and groundtruth data. The data included: (a) Advanced Very High Resolution Radiometer (AVHRR) 3-band and Normalized Difference Vegetation Index (NDVI) 10 km monthly time-series for 1997-1999, (b) Syste me pour l'Observation de la Terre Vegetation (SPOT VGT) NDVI 1 km monthly time series for 1999, (c) East Anglia University Climate Research Unit (CRU) rainfall 50km monthly time series for 1961-2000, (d) Global 30 Arc-Second Elevation Data Set (GTOPO30) 1 km digital elevation data of the World, (e) Japanese Earth Resources Satellite-1 Synthetic Aperture Radar (JERS-1 SAR) data for the rain forests during two seasons in 1996 and (f) University of Maryland Global Tree Cover 1 km data for 1992-1993. A single mega-file data-cube (MFDC) of the World with 159 layers, akin to hyperspectral data, was composed by re-sampling different data types into a common 1 km resolution. The MFDC was segmented based on elevation, temperature and precipitation zones. Classification was performed on the segments. Quantitative spectral matching techniques (SMTs) used in hyperspectral data analysis were adopted to group class spectra derived from unsupervised classification and match them with ideal or target spectra. A rigorous class identification and labelling process involved the use of: (a) space-time spiral curve (ST-SC) plots, (b) brightness-greenness-wetness (BGW) plots, (c) time series NDVI plots, (d) Google Earth very-high-resolution imagery (VHRI) 'zoom-in views' in over 11 000 locations, (e) groundtruth data broadly sourced from the degree confluence project (3 864 sample locations) and from the GIAM project (1 790 sample locations), (f) high-resolution Landsat-ETM+ Geocover 150m mosaic of the World and (g) secondary data (e.g. national and global land use and land cover data). Mixed classes were resolved based on decision tree

  8. Disposal of olive mill wastewater with DC arc plasma method.

    Science.gov (United States)

    Ibrahimoglu, Beycan; Yilmazoglu, M Zeki

    2018-07-01

    Olive mill wastewater is an industrial waste, generated as a byproduct of olive oil production process and generally contains components such as organic matter, suspended solids, oil, and grease. Although various methods have been developed to achieve the disposal of this industrial wastewater, due to the low cost, the most common disposal application is the passive storage in the lagoons. The main objective of this study is to reduce pollution parameters in olive mill wastewater and draw water to discharge limits by using plasma technology. Plasma-assisted disposal of olive mill wastewater method could be an alternative disposal technique when considering potential utilization of treated water in agricultural areas and economic value of flammable plasma gas which is the byproduct of disposal process. According to the experimental results, the rates of COD (chemical oxygen demand) and BOD (biological oxygen demand) of olive mill wastewater are decreased by 94.42% and 95.37%, respectively. The dissolved oxygen amount is increased from 0.36 to 6.97 mg/l. In addition, plasma gas with high H 2 content and treated water that can be used in agricultural areas for irrigation are obtained from non-dischargeable wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Assessment of On-Site Treatment Process of Institutional Building’s Wastewater

    Directory of Open Access Journals (Sweden)

    Motasem N. Saidan

    2018-03-01

    Full Text Available This study is conducted to investigate the characteristics of outflow wastewater of the 1 m3 on-site wastewater treatment unit on the basis of the testing and measurement data of the samples that were taken during the study monitored period (August 2017 to January 2018. For this purpose, samples were taken on a weekly basis from the treated wastewater effluent and five quality parameters (biochemical oxygen demand (BOD, chemical oxygen demand (COD, total suspended solids (TSS, pH, E-coli counts were monitored and measured. The average values of the five parameters were compared with the Jordanian standard maximum values, and water reuse in irrigation of plants classifications have been assessed and investigated. Average values of BOD, COD, TSS, pH, and E-coli in treated wastewater were 11 mg/L, 104 mg/L, 15 mg/L, 7.51, and 387 counts, respectively. The installation of in-line ultraviolet (UV unit in recirculating delivery system played a vital role in the reduction of counts far below the permissible maximum level (1000 counts. Based on national and international standards and criteria, results showed that the treated wastewater is suitable for the irrigation of two classifications of plants: (i Fruit trees, road-green sides outside cities, and green landscape; (ii Crops, commercial crops, and forest trees. Hence, such very low water flow rate treatment system can be utilized in refugees’ camps and water scarce residential areas in Jordan.

  10. Wastewater for agriculture: A reuse-oriented planning model and its application in peri-urban China.

    Science.gov (United States)

    Murray, Ashley; Ray, Isha

    2010-03-01

    The benefits of Integrated Water Resources Management (IWRM) are widely known but its recommendations remain thinly implemented. Designing wastewater treatment plants for reuse in irrigation is a particularly underutilized IWRM opportunity that could potentially increase agricultural yields, conserve surface water, offset chemical fertilizer demand, and reduce the costs of wastewater treatment by eliminating nutrient removal processes. This paper presents a novel planning model, consisting of a reuse-centric performance assessment and optimization model to help design wastewater treatment plants for reuse in agriculture. The performance assessment and optimization model are described, and their coupled application is demonstrated in the peri-urban district of Pixian, China. Based on the results of the performance assessment, two reuse scenarios are evaluated: wastewater to supplement business as usual (BAU) irrigation, and wastewater to replace BAU irrigation. The results indicate that wastewater supplementation could increase profits by $20 million (M) annually; alternatively, wastewater replacement could conserve 35Mm(3) of water in local rivers each year. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Treatment of wastewater by lemna minor

    International Nuclear Information System (INIS)

    Iram, S.; Zahra, A.

    2012-01-01

    The aim of the present study was to study the performance of bio-treatment ponds after one year of functioning at National Agricultural Research Center, Islamabad, Pakistan. The physical parameters (colour, pH, EC, TDS, turbidity) and chemical parameters (Zn, Cu, Cd, Ni, Mn, Fe and Pb) are with in the limits which are not sub-lethal for fish rearing. Lemna accumulates higher concentration of heavy metals as compared to wastewater and best for phyto remediation purpose. The treated wastewater is currently used for rearing of fish and irrigation of crops and plants. The plants around the bio-treatment ponds are healthy, green and showing enough production. The present investigation indicates that in future it would be possible to construct bio-treatment ponds in polluted areas of Pakistan. (author)

  12. Willingness to Pay Additional Water Rate and Irrigation Knowledge of Farmers in Dinar Karakuyu Irrigation Areas in Turkey

    Directory of Open Access Journals (Sweden)

    Mevlüt Gül

    2017-08-01

    Full Text Available Water which has become commodity product which is an important product today. Turkey is not a water rich country. In this study, agricultural enterprises in the field of Irrigation Project in Dinar Karakuyu which was implemented in 1992 by DSI. The study analysed which factors affect the willingness to pay additional irrigation water rate with the help of logit model and the irrigation knowledge of farmers was determined by Likert scale. Dinar Karakuyu irrigation network has begun to lose the function in the region. It was supposed 100% irrigation rate but decreased by approximately 9% today. In this context, DSI (General Directorate of State Hydraulic Works plans to rehabilitation work in the same area. The main material of this study was data obtained from 67 agricultural enterprises through a survey covered by the Irrigation Rehabilitation Project in the province of Afyonkarahisar Karakuyu Dinar. The data was gathered with the help of questionnaires which were answered by farmers in Karakuyu Dinar region. The results indicated that 74.6% of farmers were willingness to pay additional water charge. The data were statistically analysed with the use of the logit model. The model results show that agricultural income, farmers’ educational level, computer ownership, attendance of agricultural training activities, family size and agricultural experience were positive factors affect farmers’ willingness to pay additional water fee.

  13. Leaching risk of N-nitrosodimethylamine (NDMA) in soil receiving reclaimed wastewater.

    Science.gov (United States)

    Haruta, Shinsuke; Chen, Weiping; Gan, Jay; Simůnek, Jirka; Chang, Andrew C; Wu, Laosheng

    2008-03-01

    N-nitrosodimethylamine (NDMA) is a potential carcinogen frequently found in treated wastewater as a byproduct of chlorination. The potential for NDMA to contaminate the groundwater is a significant concern. A solute fate and transport model, Hydrus-1D, was used to evaluate the leaching potential of NDMA under different irrigation practices and soil properties. The results indicate that the risk of NDMA to reach the ground water is slim, when the reclaimed wastewater is applied under the customary conditions for landscape irrigation. The NDMA disappears in the reclaimed wastewater receiving soils rapidly through the microbial degradation and the volatilization processes. The factors that enhance the leaching risk are the soil hydraulic conductivity, the NDMA adsorption constants, and the irrigation intensity. When the hydraulic conductivity of soil is high, the NDMA adsorption constant of soil is low and/or the irrigation intensity is high, the NDMA leaching risk may dramatically increase. To reduce the NDMA leaching risk, it is imperative that the fields be irrigated at the proper volume and frequency and attention be paid to fields with soils having high-hydraulic conductivities and/or low-NDMA adsorption constants.

  14. New techniques to control salinity-wastewater reuse interactions in golf courses of the Mediterranean regions

    Science.gov (United States)

    Beltrao, J.; Costa, M.; Rosado, V.; Gamito, P.; Santos, R.; Khaydarova, V.

    2003-04-01

    or artificial leaching remained; 3) Enhanced fertilization increases turfgrass tolerance to salinity, but the contamination will be increased by other hazardous chemicals such as nitrate; 4) Use of salt tolerant turfgrass species this technique will be very useful to the plants, but does not solve the problem os soil or groundwater contamination. When reusing treated wastewater in the Mediterranean areas, the only way to control the salination process and to maintain the sustainability of golf courses is to combat the salination problems by environmentally safe and clean techniques. These new clean techniques include: 1) Use of salt removing turfgrass species; 2) Use of drought tolerant turfgrass species - reduction of salt application by deficit irrigation; 3) Reuse of minimal levels of wastewater enough to obtain a good visual appearance GVA of the turfgrass. Regarding these new clean techniques, experiments were carried out in golf courses of Algarve, Portugal, the most southwest part of Europe. It was shown: 1) Use of salt removing turfgrass species - 3 sprinkle irrigated cultivars were studied (Agrostis solonífera L.; Cynodon dactylon, L. and Penninsetum clandestinum Hochst ex Chiov). 2) Use of drought tolerant turfgrass species -responses to several levels of sprinkle irrigation wastewater and potable water (with and without fertilization). An experimental design, known as sprinkle point source was specially used to simulate the several levels of water application, expressed by the crop coefficient kc and by the crop evapotranspiration rate ETc. Turfgrass yield was enhanced linearly with the increased application of treated wastewater. 3) Reuse of minimal levels of wastewater enough to obtain a good visual appearance GVA of the turfgrass - The minimal crop coefficient kc for a good visual appearance GVA of the turfgrass was around 1.0 to potable water irrigated mixed cultivars (with 30 kg nitrogen ha-1 month-1) and 1.2 to wastewater irrigated Bermuda grass

  15. Groundwater pollution by nitrates in irrigated areas with drainage

    International Nuclear Information System (INIS)

    Chandio, B.M.; Azam, M.; Abdullah, M.

    2001-01-01

    Field studies were conducted at three selected sites in irrigated areas of Pakistan to assess magnitude and severity of groundwater pollution by nitrates. The results of these studies indicate that concentration of nitrates in most of the samples collected from irrigated areas having drainage facility is much lower than threshold limit. The nitrate-nitrogen level within drainage projects ranges from 0.01-9.00 mg/l and in the area without drainage system ranges from 10.1-12.5 mg/l. The mineral fertilizers though are making contribution of NO3-N to the groundwater sources but that is much lower than threshold limits. The presence of septic tanks or farmyard manure dumps is also significant contributors of NO3-N to the groundwater. Thus drinking water sources near these polluting points are probable danger to human health. It is, therefore, concluded that still there is a lot of potential for fertilizer use in the agriculture but proper drainage facilities should be provided to minimize the potential threat of NO/sub 3/ pollution. (author)

  16. A review on wastewater disinfection

    OpenAIRE

    Mohammad Mehdi Amin; Hassan Hashemi; Amir Mohammadi Bovini; Yung Tse Hung

    2013-01-01

    Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent d...

  17. Geospatial compilation and digital map of centerpivot irrigated areas in the mid-Atlantic region, United States

    Science.gov (United States)

    Finkelstein, Jason S.; Nardi, Mark R.

    2015-01-01

    To evaluate water availability within the Northern Atlantic Coastal Plain, the U.S. Geological Survey, in cooperation with the University of Delaware Agricultural Extension, created a dataset that maps the number of acres under center-pivot irrigation in the Northern Atlantic Coastal Plain study area. For this study, the extent of the Northern Atlantic Coastal Plain falls within areas of the States of New York, New Jersey, Delaware, Maryland, Virginia, and North Carolina. The irrigation dataset maps about 271,900 acres operated primarily under center-pivot irrigation in 57 counties. Manual digitizing was performed against aerial imagery in a process where operators used observable center-pivot irrigation signatures—such as irrigation arms, concentric wheel paths through cropped areas, and differential colors—to identify and map irrigated areas. The aerial imagery used for digitizing came from a variety of sources and seasons. The imagery contained a variety of spatial resolutions and included online imagery from the U.S. Department of Agriculture National Agricultural Imagery Program, Microsoft Bing Maps, and the Google Maps mapping service. The dates of the source images ranged from 2010 to 2012 for the U.S. Department of Agriculture imagery, whereas maps from the other mapping services were from 2013.

  18. Parasitological Profile of Raw Wastewater and the Efficacy of ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    960 L of wastewater was examined and a significant level of parasite eggs, cysts and oocysts were .... crop irrigation is less than one (≤ 1) Helminth Ova. (HO) per Litre .... due to wastewater reuse for agriculture in the suburbs of Asmara City ...

  19. Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications

    Directory of Open Access Journals (Sweden)

    Nicole L Fahrenfeld

    2013-05-01

    Full Text Available Treated wastewater is increasingly being reused to achieve sustainable water management in arid regions. The objective of this study was to quantify the distribution of antibiotic resistance genes (ARGs in recycled water, particularly after it has passed through the distribution system, and to consider point-of-use implications for soil irrigation. Three separate reclaimed wastewater distribution systems in the western U.S. were examined. Quantitative polymerase chain reaction (qPCR was used to quantify ARGs corresponding to resistance to sulfonamides (sul1, sul2, macrolides (ermF, tetracycline (tet(A, tet(O, glycopeptides (vanA, and methicillin (mecA, in addition to genes present in waterborne pathogens Legionella pneumophila (Lmip, Escherichia coli (gadAB, and Pseudomonas aeruginosa (ecfx, gyrB. In a parallel lab study, the effect of irrigating an agricultural soil with secondary, chlorinated, or dechlorinated wastewater effluent was examined in batch microcosms. A broader range of ARGs were detected after the reclaimed water passed through the distribution systems, highlighting the importance of considering bacterial re-growth and the overall water quality at the point of use. Screening for pathogens with qPCR indicated presence of Lmip and gadAB genes, but not ecfx or gyrB. In the lab study, chlorination was observed to reduce 16S rRNA and sul2 gene copies in the wastewater effluent, while dechlorination had no apparent effect. ARGs levels did not change with time in soil slurries incubated after a single irrigation event with any of the effluents. However, when irrigated repeatedly with secondary wastewater effluent (not chlorinated or dechlorinated, elevated levels of sul1 and sul2 were observed. This study suggests that reclaimed water may be an important reservoir of ARGs, especially at the point of use, and that attention should be directed towards the fate of ARGs in irrigation water and the implications for human health.

  20. The impact of informal irrigation practices on soil drainage condition, soil pollution and land suitability for agriculture in El Saf area of El Giza Governorate

    Directory of Open Access Journals (Sweden)

    Hanan E.M. El Azab

    2015-12-01

    Full Text Available The study area was selected in El Saf District of El Giza Governorate in Egypt, covering 21461.4 ha of Nile sediments and their outskirts of alluvial higher and lower terraces. The aim of this study was to assess the impact of informal irrigation practices on drainage deterioration, soil pollution and land suitability for agricultural use using the satellite LDCM data 2013. From the lower alluvial terraces (partly cultivated using wastewater, the drainage flows westward via descending slopes resulting in land deterioration in both the alluvial lower terraces and alluvial plain of River Nile. The drainage conditions are excessively drained soils in the alluvial upper terraces within soils of Typic Haplocalcids, sandy skeletal, but in the lower terraces it partly occurred within soils of Typic Torriorthents, sandy skeletal. Moderately well drained soils occurred in soils of Typic Torriorthents, sandy in the alluvial lower terraces, while in the alluvial plain of Nile sediments are Sodic Haplotorrerts, fine. Poorly drained soils in the lower alluvial terraces have soils of Typic Epiaquents, sandy associated with Sodic Psammaquents and Aquic Haplocalcids, coarse loamy, while in the alluvial plain of River Nile the soils are Halic Epiaquerts, fine. Very poorly drained soils (submerged areas are scattered spots in both the lower alluvial terraces and the alluvial plain. In the alluvial plain of River Nile, 1967.1 ha become not suitable for the traditional cultivated crops, while in the alluvial terraces 3251.0 ha are not suitable for the proposed cultivation of Jojoba plants. Heavy metals of Cadmium (Cd, Cobalt (Co, Lead (Pb and Nickel (Ni were added to the soil surface and sub-surface in the irrigated areas by wastewater in the lower alluvial terraces (moderately well drained soils, but Cd and Co exceeded the standards of permissible total concentrations in these soils. The same metals were added to soil sub-surface layers in the alluvial plain

  1. Soil properties evolution after irrigation with reclaimed water

    Science.gov (United States)

    Leal, M.; González-Naranjo, V.; de Miguel, A.; Martínez-Hernández, V.; Lillo, J.

    2012-04-01

    Many arid and semi-arid countries are forced to look for new and alternative water sources. The availability of suitable quality water for agriculture in these regions often is threatened. In this context of water scarcity, the reuse of treated wastewater for crop irrigation could represent a feasible solution. Through rigorous planning and management, irrigation with reclaimed water presents some advantages such as saving freshwater, reducing wastewater discharges into freshwater bodies and decreasing the amount of added fertilizers due to the extra supply of nutrients by reclaimed water. The current study, which involves wastewater reuse in agriculture, has been carried out in the Experimental Plant of Carrión de los Céspedes (Sevile, Spain). Here, two survey parcels equally designed have been cultivated with Jatropha curcas L, a bioenergetic plant and a non-interfering food security crop. The only difference between the two parcels lies on the irrigation water quality: one is irrigated with groundwater and another one with reclaimed water. The main aim of this study focuses on analysing the outstanding differences in soil properties derived from irrigation with two water qualities, due to their implications for plant growth. To control and monitor the soil variables, soil samples were collected before and after irrigation in the two parcels. pH, electrical conductivity, cation exchange capacity, exchangeable cations (Ca2+, Mg2+, Na+ and K+), kjeldahl nitrogen, organic matter content and nutrients (boron, phosphorus, nitrogen, potassium) were measured. Data were statistically analyzed using the R package. To evaluate the variance ANOVA test was used and to obtain the relations between water quality and soil parameters, Pearson correlation coefficient was computed. According to other authors, a decrease in the organic matter content and an increase of parameters such as pH, electrical conductivity and some exchangeable cations were expected. To date and after

  2. Delineating shallow ground water irrigated areas in the Atankwidi ...

    African Journals Online (AJOL)

    user

    Basin Lan Use/Land Cover (LULC) and irrigated area Mapping using. Continuous Streams of MODIS Data. Remote Sensing Environ.,. 95(3): 317-341. Neckel H, Labs D (1984). The solar radiation between 3300 and 12500. A. Solar Phys., 90: 205-258. Tucker CJ, Grant DM, Dykstra JD (2005). NASA's global orthorectified.

  3. A participatory modelling approach to define farm-scale effects of reclaimed wastewater irrigation in the Lockyer Valley, Australia

    NARCIS (Netherlands)

    Opstal, van J.D.; Huibers, F.P.; Cresswell, R.G.

    2012-01-01

    The Lockyer Valley is an important agricultural area experiencing water insecurity, which causes a decrease in agricultural production. Regional authorities are initiating a wastewater reclamation project conveying treated municipal wastewater to water users, including potentially the Lockyer

  4. Characterization of Salmonella spp. from wastewater used for food production in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mhongole, Ofred J.; Mdegela, Robinson H.; Lughano J. M. Kusiluk

    2017-01-01

    Wastewater use for crop irrigation and aquaculture is commonly practiced by communities situated close to wastewater treatment ponds. The objective of this study was to characterize Salmonella spp. and their antimicrobial susceptibility patterns among isolates from wastewater and Tilapia fish...

  5. Short-rotation Willow Biomass Plantations Irrigated and Fertilised with Wastewaters. Results from a 4-year multidisciplinary field project in Sweden, France, Northern Ireland and Greece

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Stig [Svaloef Weibull AB, Svaloef (Sweden); Cuingnet, Christian; Clause, Pierre [Association pour le Developpement des Culture Energetiques, Lille (France); Jakobsson, Ingvar [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Dawson, Malcolm [Queens Univ., Northern Ireland (United Kingdom); Backlund, Arne [A and B Backlund ApS, Charlottenlund (Denmark); Mavrogianopoulus, George [Agricultural Univ. of Athens (Greece)

    2003-01-01

    rate fully comparable to a tertiary effluent quality with regard to biodegradable organic material and eutrophying nutrients (nitrogen and phosphorus). Introductory analyses of the costs of a wastewater irrigated willow plantation for bio-fuel production indicate that the benefits of the wastewater treatment per se appear to be greater than the benefits from the increased production of wood chips. The risks of contamination via faecal micro-organisms of animals and humans seem possible to reduce or eliminate if proper precautions are taken. The awareness of the hygienic aspects is among the most important issues to deal with concerning the public acceptance. The gathered opinion from the members of the multidisciplinary project team is that the concept of recycling wastewater or fractions of wastewater within willow plantations for combined energy production and wastewater treatment would be worth developing on a wider scale. Experiences from a few full-scale facilities in Sweden are well in accordance with the findings outlined here. The fact that wastewater could be treated at reasonable costs might encourage the municipal sector as well as the energy and agricultural industry in Europe to further expand the concept with increased willow plantation areas as a consequence. This would increase the opportunities for an over all better environment for generations to come.

  6. APPROACH TO CONSTRUCTING 3D VIRTUAL SCENE OF IRRIGATION AREA USING MULTI-SOURCE DATA

    Directory of Open Access Journals (Sweden)

    S. Cheng

    2015-10-01

    Full Text Available For an irrigation area that is often complicated by various 3D artificial ground features and natural environment, disadvantages of traditional 2D GIS in spatial data representation, management, query, analysis and visualization is becoming more and more evident. Building a more realistic 3D virtual scene is thus especially urgent for irrigation area managers and decision makers, so that they can carry out various irrigational operations lively and intuitively. Based on previous researchers' achievements, a simple, practical and cost-effective approach was proposed in this study, by adopting3D geographic information system (3D GIS, remote sensing (RS technology. Based on multi-source data such as Google Earth (GE high-resolution remote sensing image, ASTER G-DEM, hydrological facility maps and so on, 3D terrain model and ground feature models were created interactively. Both of the models were then rendered with texture data and integrated under ArcGIS platform. A vivid, realistic 3D virtual scene of irrigation area that has a good visual effect and possesses primary GIS functions about data query and analysis was constructed.Yet, there is still a long way to go for establishing a true 3D GIS for the irrigation are: issues of this study were deeply discussed and future research direction was pointed out in the end of the paper.

  7. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    Decentralised wastewater treatment effluent fertigation: preliminary technical assessment. ... living in informal settlements with the effluent produced being used on agricultural land. ... Banana and taro required 3 514 mm of irrigation effluent.

  8. Wastewater Irrigation and Health: Assessing and Mitigating Risk in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    18 déc. 2009 ... The book therefore complements other books on the topic of wastewater which focus on high-end treatment options and the use of treated wastewater. ... Pay Drechsel is Global Theme Leader on Water Quality, Health and Environment at the International Water Management Institute ( IWMI ), Sri Lanka.

  9. Influence of wastewater reuse on the microbiological quality of sunflowers for animal feed

    Directory of Open Access Journals (Sweden)

    Roseanne Santos de Carvalho

    2013-08-01

    Full Text Available The use of treated wastewater for agricultural purposes can be an alternative to maintaining the quality of water bodies and the biota of natural systems. It can also reduce the demand for water and preserve water supplies for more important uses. This study aimed to evaluate the effects of wastewater reuse in the microbiological quality of above ground parts of sunflower crops. The experiment was conducted from July to September 2012 in the greenhouse of the Department of Agricultural Engineering (DEA at the Federal University of Sergipe, São Cristóvão Campus. Treated wastewater was collected at the Sewage Treatment Plant (WWTP Rosa Elze, located in the municipality of São Cristóvão, SE. Irrigation was performed using different ratios of water and treated wastewater. The irrigation followed the FAO 56 method. We used a completely randomized design (CRD with five treatments and four replicates per plot. The data were analyzed according to the parameters recommended by Resolution no. 12, 02/01/2001 of the Brazilian National Agency for Sanitary Vigilance. Coliforms, E. coli, yeast and mold, and Salmonella were counted. Results have shown that the microbiological quality of the superficial area of sunflower crops analyzed met the standards of Brazilian law. However, further studies should be conducted to investigate the effects of soil.

  10. Inactivation of microorganisms in treated municipal wastewater and biosolids by gamma irradiation

    International Nuclear Information System (INIS)

    2009-01-01

    Increasing growth of the world's population, waste minimization policies and agricultural needs make the recycling of domestic wastewater quite a desirable practice. Factors like environmental and public health risks must be taken into account when considering treated wastewater for field irrigation and biosolids for land application. Pathogens present in wastewater and biosolids may remain active after treatment and there is always a great risk of transmission of infections via consuming crop and vegetables. Therefore it is very important to treat domestic wastewater properly before using it as an irrigation water and as a fertilizer. The work reported herein represents an evaluation of the variations in the population densities of below indicated pathogens monitored during a one year study in Ankara Central Municipal Wastewater Treatment Plant, and the efficiency of gamma irradiation for the inactivation of these important waterborne pathogens. Parasitological investigation Treated wastewater and biosolids - Cryptosporidium sp. - Giardia lamblia - Entamoeba histolytica - Cyclospora cayetanensis - Helminth ova Bacteriological investigation Treated wastewater - Total coliforms - Salmonella sp. - Fecal streptococci - Enterococcus sp. Biosolids - Fecal coliforms - Salmonella sp. (Includes 12 tables, 16 figures)

  11. Effect of dry land transformation and quality of water use for crop irrigation on the soil bacterial community in the Mezquital Valley, Mexico

    Science.gov (United States)

    Lüneberg, Kathia; Schneider, Dominik; Daniel, Rolf; Siebe, Christina

    2017-04-01

    Soil bacteria are important determinants of soil fertility and ecosystem services as they participate in all biogeochemical cycles. Until now the comprehension of compositional and functional response that bacterial communities have to land use change and management, specifically in dry land its limited. Dry lands cover 40% of the world's land surface and its crop production supports one third of the global population. In this regions soil moisture is limited constraining farming to the rainy season or oblige to irrigate, as fresh water resources become scarce, to maintain productivity, treated or untreated wastewater for field irrigation is used. In this study the transformation of semiarid shrubland to agriculture under different land systems regarding quantity and quality of water use for crop irrigation on bacterial communities was investigated. The land systems included maize rain-fed plantations and irrigation systems with freshwater, untreated wastewater stored in a dam and untreated wastewater during dry and rainy season. Bacterial community structure and function was heavily affected by land use system and soil properties, whereas seasonality had a slighter effect. A soil moisture, nutrient and contaminant-content increasing gradient among the land use systems, going from rain fed plantation over fresh water, dam wastewater to untreated wastewater irrigated plantations was detected, this gradient diminished the abundance of Actinobacteria and Cyanobacteria, but enhanced the one from Bacteroidetes and Proteobacteria. Discernible clustering of the dry land soil communities coincides with the moisture, nutrient and contaminant gradient, being shrubland soil communities closer to the rain-fed's system and farer to the one from untreated wastewater irrigated soil. Soil moisture together with sodium content and pH were the strongest drivers of the community structure. Seasonality promoted shifts in the composition of soil bacteria under irrigation with

  12. Risk screening for exposure to groundwater pollution in a wastewater irrigation district of the Mexico City region.

    Science.gov (United States)

    Downs, T J; Cifuentes-García, E; Suffet, I M

    1999-07-01

    Untreated wastewater from the Mexico City basin has been used for decades to irrigate cropland in the Mezquital Valley, State of Hidalgo, Mexico. Excess irrigation water recharges the near-surface aquifer that is used as a domestic water supply source. We assessed the groundwater quality of three key groundwater sources of domestic water by analyzing for 24 trace metals, 67 target base/neutral/acid (BNA) organic compounds, nontarget BNA organics, 23 chlorinated pesticides, 20 polychlorinated biphenyls, and nitrate, as well as microbiological contaminants--coliforms, Vibrio cholerae, and Salmonella. Study participants answered a questionnaire that estimated ingestion and dermal exposure to groundwater; 10% of the sample reported frequent diarrhea and 9% reported persistent skin irritations. Detection of V. cholerae non-01 in surface waters at all sites suggested a potential risk (surrogate indicator present) of diarrheal disease for canal and river bathers by accidental ingestion, as well as potential Vibrio contamination of near-surface groundwater and potential cholera risk, magnified by lapses in disinfection. High total coliform levels in surface water and lower levels in groundwater at all sites indicated fecal contamination and a potential risk of gastrointestinal disease in populations exposed to inadequately disinfected groundwater. Using chemical criteria, no significant risk from ingestion or dermal contact was identified at the method detection limits at any site, except from nitrate exposure: infants and young children are at risk from methemoglobinemia at all sites. Results suggest that pathogen risk interventions are a priority, whereas nitrate risk needs further characterization to determine if formal treatment is needed. The risks exist inside and outside the irrigation district. The method was highly cost-effective.

  13. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    Science.gov (United States)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  14. Heavy metals contamination of soils in response to wastewater irrigation in Rawalpindi region

    International Nuclear Information System (INIS)

    Mushtaq, N.; Khan, K.S.

    2010-01-01

    The study was conducted to evaluate the quality of effluents/ waste water samples from Rawalpindi region for irrigation purpose and to elucidate effects of their application on heavy metal contents in soils of area. Results indicated that the EC, SAR, RSC and TDS of most effluent/ waste water samples were above the critical limits. Cadmium and Cr were above the critical limits in almost all the effluent samples, whereas Ni was high in 14, Pb was high in 10, Cu was high in 5 and the Fe was high in 3 effluent samples as compared to critical limits. Regarding heavy metals contents of soils irrigated by these effluents/ waste water, total Fe, total Cd and total Ni were higher in almost all the sampled sites, whereas total Cr was high at 7 sampled sites. AB-DTPA extractable Fe and Zn were higher at all the sampled sites, while the extractable Cd was higher at 2 sampled sites. Overall, the effluent samples collected from Adiala showed high concentrations of heavy metals, whereas soils of Wah factory and Islamabad area had higher heavy metal contents (total and AB-DTPA extractable). On the basis of results it is concluded that quality of effluents/ waste water samples collected from different locations of Rawalpindi is not good for irrigation and the long term use of these effluents for crop production caused accumulation of some toxic metals in soils above critical limits which is harmful for soil health and may lead to elevated levels of heavy metals in crop plants. (author)

  15. Impact of municipal wastewater effluent on seed bank response and soils excavated from a wetland impoundment

    Science.gov (United States)

    Finocchiaro, R.G.; Kremer, R.J.; Fredrickson, L.H.

    2009-01-01

    Intensive management of wetlands to improve wildlife habitat typically includes the manipulation of water depth, duration, and timing to promote desired vegetation communities. Increased societal, industrial, and agricultural demands for water may encourage the use of alternative sources such as wastewater effluents in managed wetlands. However, water quality is commonly overlooked as an influence on wetland soil seed banks and soils. In four separate greenhouse trials conducted over a 2-yr period, we examined the effects of municipal wastewater effluent (WWE) on vegetation of wetland seed banks and soils excavated from a wildlife management area in Missouri, USA. We used microcosms filled with one of two soil materials and irrigated with WWE, Missouri River water, or deionized water to simulate moist-soil conditions. Vegetation that germinated from the soil seed bank was allowed to grow in microcosms for approximately 100 d. Vegetative taxa richness, plant density, and biomass were significantly reduced in WWE-irrigated soil materials compared with other water sources. Salinity and sodicity rapidly increased in WWE-irrigated microcosms and probably was responsible for inhibiting germination or interfering with seedling development. Our results indicate that irrigation with WWE promoted saline-sodic soil conditions, which alters the vegetation community by inhibiting germination or seedling development. ?? 2009, The Society of Wetland Scientists.

  16. Design of a pot experiment to study the effect of irrigation with ...

    African Journals Online (AJOL)

    Due to the intensification of environmental legislation, the wine industry is expected to find solutions for the treatment or re-use of winery wastewater. The objective of the study was to design and evaluate a pot experiment for determining the effects of irrigation with diluted winery wastewater on different soils.

  17. Water type and irrigation time effects on microbial metabolism of a soil cultivated with Bermuda-grass Tifton 85

    Directory of Open Access Journals (Sweden)

    Sandra Furlan Nogueira

    2011-06-01

    Full Text Available This study investigated the microbial metabolism in Bermuda-grass Tifton 85 areas after potable-water and effluent irrigation treatments. The experiment was carried out in Lins/SP with samples taken in the rainy and dry seasons (2006 after one year and three years of irrigation management, and set up on an entirely randomized block design with four treatments: C (control, without irrigation or fertilization, PW (potable water + 520 kg of N ha-1 year-1; TE3 and TE0 (treated effluent + 520 kg of N ha-1 year-1 for three years and one year, respectively. The parameters determined were: microbial biomass carbon, microbial activity, and metabolic quotient. Irrigation with wastewater after three years indicated no alteration in soil quality for C and ET3; for PW, a negative impact on soil quality (microbial biomass decrease suggested that water-potable irrigation in Lins is not an adequate option. Microbial activity alterations observed in TE0 characterize a priming effect.

  18. physico-chemical evaluation of wastewater in katsina metropolis ...

    African Journals Online (AJOL)

    pc

    associated sludge and grey water kitchen and bathroom wastewater or the mixture of domestic wastewater from commercial establishments and institutions ... oil mill Ltd and Katsina steel rolling company Ltd. K/Durbi:- It is located on latitude. 59'44.10”N and. 37'00.73”E, the midpoint of the water and irrigational activities ...

  19. Target virus log10 reduction values determined for two reclaimed wastewater irrigation scenarios in Japan based on tolerable annual disease burden.

    Science.gov (United States)

    Ito, Toshihiro; Kitajima, Masaaki; Kato, Tsuyoshi; Ishii, Satoshi; Segawa, Takahiro; Okabe, Satoshi; Sano, Daisuke

    2017-11-15

    Multiple-barriers are widely employed for managing microbial risks in water reuse, in which different types of wastewater treatment units (biological treatment, disinfection, etc.) and health protection measures (use of personal protective gear, vegetable washing, etc.) are combined to achieve a performance target value of log 10 reduction (LR) of viruses. The LR virus target value needs to be calculated based on the data obtained from monitoring the viruses of concern and the water reuse scheme in the context of the countries/regions where water reuse is implemented. In this study, we calculated the virus LR target values under two exposure scenarios for reclaimed wastewater irrigation in Japan, using the concentrations of indigenous viruses in untreated wastewater and a defined tolerable annual disease burden (10 -4 or 10 -6 disability-adjusted life years per person per year (DALY pppy )). Three genogroups of norovirus (norovirus genogroup I (NoV GI), geogroup II (NoV GII), and genogroup IV (NoV GIV)) in untreated wastewater were quantified as model viruses using reverse transcription-microfluidic quantitative PCR, and only NoV GII was present in quantifiable concentration. The probabilistic distribution of NoV GII concentration in untreated wastewater was then estimated from its concentration dataset, and used to calculate the LR target values of NoV GII for wastewater treatment. When an accidental ingestion of reclaimed wastewater by Japanese farmers was assumed, the NoV GII LR target values corresponding to the tolerable annual disease burden of 10 -6 DALY pppy were 3.2, 4.4, and 5.7 at 95, 99, and 99.9%tile, respectively. These percentile values, defined as "reliability," represent the cumulative probability of NoV GII concentration distribution in untreated wastewater below the corresponding tolerable annual disease burden after wastewater reclamation. An approximate 1-log 10 difference of LR target values was observed between 10 -4 and 10 -6 DALY pppy

  20. Infrastructure performance of irrigation canal to irrigation efficiency of irrigation area of Candi Limo in Mojokerto District

    Science.gov (United States)

    Kisnanto, S.; Hadiani, R. R. R.; Ikhsan, C.

    2018-03-01

    Performance is a measure of infrastructure success in delivering the benefits corresponding it’s design implementation. Debit efficiency is a comparison between outflow debit and inflow debit. Irrigation canal performance is part of the overall performance aspects of an irrigation area. The greater of the canal performance will be concluded that the canal is increasingly able to meet the planned benefits, need to be seen its comparison between the performance and debit efficiency of the canal. The existing problems in the field that the value of the performance of irrigation canals are not always comparable to the debit efficiency. This study was conducted to describe the relationship between the performance of the canal to the canal debit efficiency. The study was conducted at Candi Limo Irrigation Area in Mojokerto Disctrict under the authority of Pemerintahan Provinsi Jawa Timur. The primary canal and secondary canal are surveyed to obtain data. The physical condition of the primary and secondary canals into the material of this study also. Primary and secondary canal performance based on the physical condition in the field. Measurement inflow and outflow debit into the data for the calculation of the debit efficiency. The instrument used in this study such as the current meter for debit measurements in the field as a solution when there is a building measure in the field were damaged, also using the meter and the camera. Permen PU No.32 is used to determine the value of the performance of the canal, while the efficiency analysis to calculate a comparison value between outflow and inflow debit. The process of data running processing by performing the measurement and calculation of the performance of the canal, the canal debit efficiency value calculation, and display a graph of the relationship between the value of the performance with the debit efficiency in each canal. The expected results of this study that the performance value on the primary canal in the

  1. The protection of urban areas from surface wastewater pollutions

    Directory of Open Access Journals (Sweden)

    Vialkova Elena

    2017-01-01

    Full Text Available In this paper it considered the problem of collection, treatment and discharge into waters of rain and melted wastewater. To reduce the load on the combined sewer system, there are engineering solutions collect rain and melt water for use in the irrigation of lawns and green spaces. Research carried out at the department “Water supply and sanitation”, (Russia, confirm the high pollution concentrations of meltwater and rainfall in urban arias. Series of measurements of heavy metal in rainwater runoff carried out in Hungary demonstrates clearly the differences in concentrations in the function of distance from the edge of the road. Also differences are introduced between pollution concentrations in runoff water from within and outside urban traffic roads. The quality of snow cover, forming meltwater is observed to be changing in dependence on roadway location. Quality characteristics of surface runoff and its sediments can be effectively improved with super-high frequency radiation (SHF treatment which is presented in this paper.

  2. Treatment of wastewater from service areas at motorways

    Directory of Open Access Journals (Sweden)

    Makowska Małgorzata

    2016-12-01

    Full Text Available This paper deals with wastewater treatment systems placed in motorway service areas (MSAs. In the years 2008-2009 eight of such facilities installed on the stretch of the A2 motorway between Poznań and Nowy Tomyśl were examined and analyzed. The system consists of a septic tank, a submerged aerated biofilter and an outflow filter. The volume of traffic on the highway was analyzed, the amount of water use was measured and peak factors were calculated. On this basis it was concluded that the inflows to the wastewater treatment systems in many cases exceeded the nominal design values.

  3. A GIS-based assessment of groundwater suitability for irrigation purposes in flat areas of the wet Pampa plain, Argentina.

    Science.gov (United States)

    Romanelli, Asunción; Lima, María Lourdes; Quiroz Londoño, Orlando Mauricio; Martínez, Daniel Emilio; Massone, Héctor Enrique

    2012-09-01

    The Pampa in Argentina is a large plain with a quite obvious dependence on agriculture, water availability and its quality. It is a sensitive environment due to weather changes and slope variations. Supplementary irrigation is a useful practice for compensating the production in the zone. However, potential negative impacts of this type of irrigation in salinization and sodification of soils are evident. Most conventional methodologies for assessing water irrigation quality have difficulties in their application in the region because they do not adjust to the defined assumptions for them. Consequently, a new GIS-based methodology integrating multiparametric data was proposed for evaluating and delineating groundwater suitability zones for irrigation purposes in flat areas. Hydrogeological surveys including water level measurements, groundwater samples for chemical analysis and electrical conductivity (EC) measurements were performed. The combination of EC, sodium adsorption ratio, residual sodium carbonate, slopes and hydraulic gradient parameters generated an irrigation water index (IWI). With the integration of the IWI 1 to 3 classes (categories of suitable waters for irrigation) and the aquifer thickness the restricted irrigation water index (RIWI) was obtained. The IWI's index application showed that 61.3 % of the area has "Very high" to "Moderate" potential for irrigation, while the 31.4 % of it has unsuitable waters. Approximately, 46 % of the tested area has high suitability for irrigation and moderate groundwater availability. This proposed methodology has advantages over traditional methods because it allows for better discrimination in homogeneous areas.

  4. Phytoextraction of 55-year-old wastewater-irrigated soil in a Zn-Pb mine district: effect of plant species and chelators.

    Science.gov (United States)

    Tai, YiPing; Yang, YuFen; Li, ZhiAn; Yang, Yang; Wang, JiaXi; Zhuang, Ping; Zou, Bi

    2017-07-16

    Untreated water from mining sites spreads heavy metal contamination. The present study assessed the phytoextraction performance of heavy metal-accumulating plants and the effects of chemical chelators on cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) removal from paddy fields that have been continuously irrigated with mining wastewater from mines for 55 years. Outdoor pot experiments showed that the total Pb, Zn, and Cd content was lower in the rhizosphere soil of Amaranthus hypochondriacus than in that of Sedum alfredii, Solanum nigrum, and Sorghum bicolor. The aboveground biomass (dry weight) and relative growth rate of A. hypochondriacus were significantly higher than that of the other three species (P phytoextraction effect.

  5. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    Science.gov (United States)

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  6. Status, Restrictions and Suggested Approaches in Wastewater Management in Rural Areas of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2012-08-01

    Full Text Available Please cite this article as: Fahiminia M, Farrokhi M, Talebi M, Memary G, Fazlzadeh Davil M. Status, restrictions and suggested approaches in wastewater management in rural areas of Iran. Arch Hyg Sci 2012;1(1:12-9. Aims of the Study: The objective of this study was to appraise wastewater management approaches in rural areas of Iran, restrictions, effects on environment and also definition of suitable management approaches in wastewater for future. Materials & Methods: This descriptive study was performed in 2010 in rural areas of Iran. A questionnaire was prepared with subjects such as available management approaches on wastewater, suggested approaches on collecting wastewater and its final disposal and was sent to rural area’s wastewater companies in each province. Study results of 4588 rural areas of Iran (with above 200 families were collected. Results were analyzed using mean and percentage. Results: The current available management systems were mainly based on absorption wells. The main problem in this system was high ground water levels, and low permeability of soil. The most important current problem of the absorbing wells was considerable damaging effects on surface and ground water. Conclusions: The current wastewater management in rural areas especially in the field of wastewater collection was improper and undesirable. To overcome the current problem, it is necessary to use collecting methods relative to that of region. Considerable attention is required for the application of reused wastewater in agriculture. References: 1. Wilderer PA, Schreff D. Decentralized and centralized wastewater management: a challenge for technology developers. Wat Sci Tech 2000; 41(1:1-8. 2. Jackson HB. Global needs and developments in urban sanitation. in: Mara D, editor. Low-Cost sewerage. Chichester, UK: John Wiley & Sons; 1996. p. 77-90. 3. UNEP/GPA. Strategy options for sewage management to protect the marine environment. The Netherlands: UNEP

  7. Winery wastewater treatment using the land filter technique.

    Science.gov (United States)

    Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S

    2010-08-01

    This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  8. Increase globe artichoke cropping sustainability using sub-surface drip-irrigation systems in a Mediterranean coastal area for reducing groundwater withdrawal

    Science.gov (United States)

    Mantino, Alberto; Marchina, Chiara; Bonari, Enrico; Fabbrizzi, Alessandro; Rossetto, Rudy

    2017-04-01

    During the last decades in coastal areas of the Mediterranean basin, human growth posed severe stresses on freshwater resources due to increasing demand by agricultural, industrial and civil activities, in particular on groundwater. This in turn led to worsening of water quality, loss/reduction of wetlands, up to soil salinization and abandonment of agricultural areas. Within the EU LIFE REWAT project a number of demonstration measures will take place in the lower Cornia valley (Livorno, Italy), both structural (pilot) and non-structural (education, dissemination and capacity building), aiming at achieving sustainable and participated water management. In particular, the five demonstration actions are related to: (1) set up of a managed aquifer recharge facility, (2) restoration of a Cornia river reach, (3) water saving in the civil water supply sector, (4) water saving in agriculture, (5) reuse of treated wastewater for irrigation purposes. Thus, the REWAT project general objective is to develop a new model of governance for sustainable development of the lower Cornia valley based on the water asset at its core. As per water use in agriculture, the lower Cornia valley is well known for the horticultural production. In this regard, globe artichoke (Cynara cardunculus L. var. scolymus L. (Fiori)) crops, a perennial cool-season vegetable, cover a surface of about 600 ha. In order to increase stability and productivity of the crop, about 2000 - 4000 m3 ha-1 yr-1 of irrigation water is required. Recent studies demonstrated that yield of different crops increases using Sub-surface Drip-Irrigation (SDI) system under high frequency irrigation management enhancing water use efficiency. In the SDI systems, the irrigation water is delivered to the plant root zone, below the soil surface by buried plastic tubes containing embedded emitters located at regular spacing. Within the LIFE REWAT, the specific objectives of the pilot on irrigation efficiency is to (i) demonstrate the

  9. Environmental transport and fate of endocrine disruptors from non-potable reuse of municipal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, B; Beller, H; Bartel, C M; Kane, S; Campbell, C; Grayson, A; Liu, N; Burastero, S

    2005-11-16

    This project was designed to investigate the important but virtually unstudied topic of the subsurface transport and fate of Endocrine Disrupting Compounds (EDCs) when treated wastewater is used for landscape irrigation (non-potable water reuse). Although potable water reuse was outside the scope of this project, the investigation clearly has relevance to such water recycling practices. The target compounds, which are discussed in the following section and include EDCs such as 4-nonylphenol (NP) and 17{beta}-estradiol, were studied not only because of their potential estrogenic effects on receptors but also because they can be useful as tracers of wastewater residue in groundwater. Since the compounds were expected to occur at very low (part per trillion) concentrations in groundwater, highly selective and sensitive analytical techniques had to be developed for their analysis. This project assessed the distributions of these compounds in wastewater effluents and groundwater, and examined their fate in laboratory soil columns simulating the infiltration of treated wastewater into an aquifer (e.g., as could occur during irrigation of a golf course or park with nonpotable treated water). Bioassays were used to determine the estrogenic activity present in effluents and groundwater, and the results were correlated with those from chemical analysis. In vitro assays for estrogenic activity were employed to provide an integrated measure of estrogenic potency of environmental samples without requiring knowledge or measurement of all bioactive compounds in the samples. For this project, the Las Positas Golf Course (LPGC) in the City of Livermore provided an ideal setting. Since 1978, irrigation of this area with treated wastewater has dominated the overall water budget. For a variety of reasons, a group of 10 monitoring wells were installed to evaluate wastewater impacts on the local groundwater. Additionally, these wells were regularly monitored for tritium ({sup 3}H

  10. Managed Aquifer Recharge (MAR Economics for Wastewater Reuse in Low Population Wadi Communities, Kingdom of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Thomas M. Missimer

    2014-08-01

    Full Text Available Depletion of water supplies for potable and irrigation use is a major problem in the rural wadi valleys of Saudi Arabia and other areas of the Middle East and North Africa. An economic analysis of supplying these villages with either desalinated seawater or treated wastewater conveyed via a managed aquifer recharge (MAR system was conducted. In many cases, there are no local sources of water supply of any quality in the wadi valleys. The cost per cubic meter for supplying desalinated water is $2–5/m3 plus conveyance cost, and treated wastewater via an MAR system is $0–0.50/m3 plus conveyance cost. The wastewater reuse, indirect for potable use and direct use for irrigation, can have a zero treatment cost because it is discharged to waste in many locations. In fact, the economic loss caused by the wastewater discharge to the marine environment can be greater than the overall amortized cost to construct an MAR system, including conveyance pipelines and the operational costs of reuse in the rural environment. The MAR and associated reuse system can solve the rural water supply problem in the wadi valleys and reduce the economic losses caused by marine pollution, particularly coral reef destruction.

  11. Managed aquifer recharge (MAR) economics for wastewater reuse in low population wadi communities, Kingdom of Saudi Arabia

    KAUST Repository

    Missimer, T.M.

    2014-08-07

    Depletion of water supplies for potable and irrigation use is a major problem in the rural wadi valleys of Saudi Arabia and other areas of the Middle East and North Africa. An economic analysis of supplying these villages with either desalinated seawater or treated wastewater conveyed via a managed aquifer recharge (MAR) system was conducted. In many cases, there are no local sources of water supply of any quality in the wadi valleys. The cost per cubic meter for supplying desalinated water is $2-5/m3 plus conveyance cost, and treated wastewater via an MAR system is $0-0.50/m3 plus conveyance cost. The wastewater reuse, indirect for potable use and direct use for irrigation, can have a zero treatment cost because it is discharged to waste in many locations. In fact, the economic loss caused by the wastewater discharge to the marine environment can be greater than the overall amortized cost to construct an MAR system, including conveyance pipelines and the operational costs of reuse in the rural environment. The MAR and associated reuse system can solve the rural water supply problem in the wadi valleys and reduce the economic losses caused by marine pollution, particularly coral reef destruction. 2014 by the authors.

  12. Recycling of canteen waste water for irrigation purpose

    International Nuclear Information System (INIS)

    Ahmad, J.

    2005-01-01

    Recycling of wastewater of a canteen was done at Attock refinery Limited, Rawalpindi during 2002. The wastewater of the refinery canteen was recycled after a long process and was reused for irrigation of nearby garden and other landscape plants. The average outflow of the wastewater from the canteen was calculated as 4000 liters/day. Laboratory analysis for the quality of wastewater was conducted and it was found that suspended solid. Chemical Oxygen demand (COD) and biochemical oxygen demand (BOD) of the wastewater were above the National Environmental Quality Standards (NEQS) limits. Treatment system employed was composed of screening and settling tank for removing the suspended solids and aeration for decreasing the COD and BOD. It was a low cost system in which the materials used were mostly taken from the redundant stock. Air was given for aeration with the help of a compressor. The treated water was tested in the laboratory for the priority parameters i.e. temperature, pH, BOD, COD, Total suspended solids (TSS), Total dissolved (TDS), oil and grease and Phenols. These parameters were compared with the National Environmental Quality Standards (NEQS). Treated water was used for irrigation of the nearby garden and landscape. The recycling process was successfully conducted and a huge quantity of 4000 liters water/day (1000 G water/day) was processes was successfully conducted and a huge quantity of 4000 liters water/day (1000 G water/day) was recycled with a daily saving of Rs.100 at the rate of Rs.1/10 G water that was taken from market survey. (author)

  13. Wastewater collection and treatment technologies for semi-urban areas of India: a case study.

    Science.gov (United States)

    Sundaravadivel, M; Vigneswaran, S

    2001-01-01

    Sanitation and wastewater management problems in small and medium towns in India (referred to as "semi-urban areas"--SUAs) are distinctly different from those of large cities or rural villages. There is an apparent lack of choices of appropriate sanitation options for these semi-urban areas, leading them to adopt on-site sanitation technologies. A field study of four such small towns in India was conducted to evaluate the suitability of available low-cost wastewater collection and treatment technologies, in light of their current practice. Based on the field study, this paper suggests a system comprising "combined surface sewers" and "reed-bed channel" for collection and treatment of wastewater for semi-urban areas, that can utilize all the existing infrastructure to effect better sanitation at lower costs. The suggested system involves converting the existing open wastewater collection drains on the road sides, as "decentralized" networks of covered drains with simple structural modifications to collect both wastewater and stormwater; and, converting the large open drains on the outskirts of SUAs that carry wastewater to agricultural fields, as gravel media filled beds planted with local reeds. Cost estimates for the towns studied indicate this system to be over 70% cheaper compared to conventional collection and treatment systems.

  14. Irrigation water quality influences heavy metal uptake by willows in biosolids.

    Science.gov (United States)

    Laidlaw, W Scott; Baker, Alan J M; Gregory, David; Arndt, Stefan K

    2015-05-15

    Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a dry climate. However, the reclaimed water can also change biosolids properties, which will influence the effectiveness of willows to extract different metals. Copyright © 2015 Elsevier Ltd. All rights

  15. Survey of Solid Waste and Wastewater Separate and Combined Management Strategies in Rural Areas of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2014-12-01

    Full Text Available Background and Purpose: Improper wastewater and solid waste management in rural areas could be a risk to human health and environment pollution. One percent of Iran’s rural area is connected to the wastewater collection network. Solid waste management in rural areas of Iran is mainly consisted uncontrolled dumping and open burning. The aim of this study is prioritization of wastewater and solid waste separate and combined management strategies in rural areas of Iran. Materials and Methods: This was a descriptive study. In this study, firstly were determined appropriate and conventional methods for wastewater and solid waste separate and combined management by using national and case studies. Then, using specified criteria and by applying a weighting system, prioritization was conducted and implementation strategies presented for wastewater and solid waste separate and combined management. Results: The first priority for the collection and treatment, wastewater in rural areas are smalldiameter gravity systems and preliminary treatment with complementary treatment by land, respectively. In order to the rural solid waste management, organic compost complementary systems were in first priority. In the wastewater and solid waste combined management, the first priority was compost and biogas production by combining anaerobic UASB reactor and Chinese biogas. Conclusion: Considering for influence of various factors in selecting an appropriate method is very important in order to wastewater and solid waste separate and the combined management of a rural. Therefore, the accordance of presenting strategy with local conditions and facilities should be taken into consideration.

  16. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose.

    Science.gov (United States)

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K; Abaidoo, Robert C; Dalsgaard, Anders; Hald, Tine

    2017-12-01

    The need to replace the commonly applied fecal indicator conversions ratio (an assumption of 1:10 -5 virus to fecal indicator organism) in Quantitative Microbial Risk Assessment (QMRA) with models based on quantitative data on the virus of interest has gained prominence due to the different physical and environmental factors that might influence the reliability of using indicator organisms in microbial risk assessment. The challenges facing analytical studies on virus enumeration (genome copies or particles) have contributed to the already existing lack of data in QMRA modelling. This study attempts to fit a QMRA model to genome copies of norovirus data. The model estimates the risk of norovirus infection from the intake of vegetables irrigated with wastewater from different sources. The results were compared to the results of a corresponding model using the fecal indicator conversion ratio to estimate the norovirus count. In all scenarios of using different water sources, the application of the fecal indicator conversion ratio underestimated the norovirus disease burden, measured by the Disability Adjusted Life Years (DALYs), when compared to results using the genome copies norovirus data. In some cases the difference was >2 orders of magnitude. All scenarios using genome copies met the 10 -4 DALY per person per year for consumption of vegetables irrigated with wastewater, although these results are considered to be highly conservative risk estimates. The fecal indicator conversion ratio model of stream-water and drain-water sources of wastewater achieved the 10 -6 DALY per person per year threshold, which tends to indicate an underestimation of health risk when compared to using genome copies for estimating the dose. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Review of wastewater problems and wastewater-management planning in the San Francisco Bay region, California

    Science.gov (United States)

    Hines, Walter G.

    1973-01-01

    The San Francisco Bay region has suffered adverse environmental effects related to the discharge of municipal-, industrial-, and agricultural- wastewater and storm-water runoff. Specific pollutional properties of theses discharges are not well understood in all cases although the toxic materials and aquatic-plant nutrients (biostimulants) found in municipal and industrial waterwater are considered to be a major cause of regional water-quality problems. Other water-quality problems in the region are commonly attributed to pesticides found in agricultural wastewater and potentially pathogenic bacteria in municipal-wastewater discharges and in storm-water runoff. The geographical distribution and magnitude of wastewater discharges in the bay region, particularly those from municipalities and industries, is largely a function of population, economic growth, and urban development. As might be expected, the total volume of wastewater has increased in a trend paralleling this growth and development. More significant, perhaps, is the fact that the total volume parameters such as BOD (biochemical oxygen demand), biostimulant concentrations, and toxicity, has increased despite large expenditures on new and improved municipal- and industrial-wastewater-treatment plants. Also, pollutant loadings from other major source, such as agriculture and storm-water runoff, have increased. At the time of writing (1972), many Federal, State, regional, and local agencies are engaged in a comprehensive wastewater-management-planning effort for the entire bay region. Initial objectives of this planning effort are: (1) the consolidation and coordination of loosely integrated wastewater-management facilities and (2) the elimination of wastewater discharges to ecologically sensitive areas, such as fresh-water streams and shallow extremities of San Francisco Bay. There has been some investigation of potential long-range wastewater-management alternatives based upon disposal in deep water in the

  18. Recent practices on wastewater reuse in Turkey.

    Science.gov (United States)

    Tanik, A; Ekdal, A; Germirli Babuna, F; Orhon, D

    2005-01-01

    Reuse of wastewater for irrigational purposes in agriculture has been a widely applied practice all around the world compared to such applications in industries. In most of the developing countries, high costs of wastewater treatment stimulate the direct reuse of raw or partly treated effluent in irrigation despite the socio-cultural objections in some countries regarding religious rituals towards consuming wastewater. In Turkey, reuse applications in agriculture have been in use by indirect application by means of withdrawing water from the downstream end of treatment plants. Such practices affected the deterioration of surface water resources due to the lack of water quality monitoring and control. However, more conscious and planned reuse activities in agriculture have recently started by the operation of urban wastewater treatment plants. Turkey does not face any severe water scarcity problems for the time being, but as the water resources show the signs of water quality deterioration it seems to be one of the priority issues in the near future. The industrial reuse activities are only at the research stage especially in industries consuming high amounts of water. In-plant control implementation is the preferred effort of minimizing water consumption in such industries. The current reuse activities are outlined in the article forming an example from a developing country.

  19. Design and development of decentralized water and wastewater technologies: a combination of safe wastewater disposal and fertilizer production.

    Science.gov (United States)

    Fach, S; Fuchs, S

    2010-01-01

    Modern wastewater treatment plants are often inappropriate for communities in developing countries. Such communities lack the funding, resources and skilled labour required to implement, operate, and maintain these plants. This research was conducted to investigate and establish an appropriate wastewater treatment system for the district of Gunung Kidul, Indonesia. Due to its lack of water during the dry season, this district is considered one of the poorest areas in the nation. First, wastewater was stored in septic tank units for a retention time of 26 days. Anaerobic conditions occurred, resulting in an 80% reduction of initial COD. The retained sludge was well stabilized with great potential, if dewatered, for reuse as fertilizer. Consequently, supernatant was separated for experiments consisting of lab scale aerobic sand filtering unit. Through filtration, further removals of COD (about 30%) and pathogens were achieved. Rich in nitrogen, the resulting effluent could be used for irrigation and soil conditioning. With faecal sludge and also a mixture of septic sludge and food waste, the hydrolysis stage of anaerobic digestion was examined. This paper discusses the laboratory findings in Karlsruhe and the design and implementation of a treatment system in Glompong, Indonesia.

  20. Evaluation of leafy vegetables as bioindicators of gaseous mercury pollution in sewage-irrigated areas.

    Science.gov (United States)

    Zheng, Shun-An; Wu, Zeying; Chen, Chun; Liang, Junfeng; Huang, Hongkun; Zheng, Xiangqun

    2018-01-01

    Mercury (Hg) can evaporate and enter the plants through the stomata of plant leaves, which will cause a serious threat to local food safety and human health. For the risk assessment, this study aimed to investigate the concentration and accumulation of total gaseous mercury (TGM) in five typical leafy vegetables (Chinese chives (Allium tuberosum Rottler), amaranth (Amaranthus mangostanus L.), rape (Brassica campestris L.), lettuce (Lactuca sativa L.), and spinach (Spinacia oleracea L.)) grown on sewage-irrigated areas in Tianjin, China. The following three sites were chosen to biomonitor Hg pollution: a paddy field receiving sewage irrigation (industrial and urban sewage effluents) for the last 30 years, a vegetable field receiving sewage irrigation for 15 years, and a grass field which did not receive sewage irrigation in history. Results showed that the total Hg levels in the paddy (0.65 mg kg -1 ) and vegetation fields (0.42 mg kg -1 ) were significantly higher than the local background level (0.073 mg kg -1 ) and the China national soil environment quality standard for Hg in grade I (0.30 mg kg -1 ). The TGM levels in ambient air were significantly higher in the paddy (71.3 ng m -3 ) and vegetable fields (39.2 ng m -3 ) relative to the control (9.4 ng m -3 ) and previously reported levels (1.45 ng m -3 ), indicating severe Hg pollution in the atmospheric environment of the sewage-irrigated areas. Furthermore, gaseous mercury was the dominant form of Hg uptake in the leaves or irreversibly bound to leaves. The comparison of Hg uptake levels among the five vegetables showed that the gradient of Hg accumulation followed the order spinach > red amaranth > Chinese chives > rape > lettuce. These results suggest that gaseous Hg exposure in the sewage-irrigated areas is a dominant Hg uptake route in leafy vegetables and may pose a potential threat to agricultural food safety and human health.

  1. Low C/N ratio raw textile wastewater reduced labile C and enhanced organic-inorganic N and enzymatic activities in a semiarid alkaline soil.

    Science.gov (United States)

    Roohi, Mahnaz; Riaz, Muhammad; Arif, Muhammad Saleem; Shahzad, Sher Muhammad; Yasmeen, Tahira; Ashraf, Muhammad Arslan; Riaz, Muhammad Atif; Mian, Ishaq A

    2017-02-01

    Application of raw and treated wastewater for irrigation is an extensive practice for agricultural production in arid and semiarid regions. Raw textile wastewater has been used for cultivation in urban and peri-urban areas in Pakistan without any systematic consideration to soil quality. We conducted a laboratory incubation study to investigate the effects of low C/N ratio raw textile wastewater on soil nitrogen (N) contents, labile carbon (C) as water-soluble C (WSC) contents, and activities of urease and dehydrogenase enzymes. The 60-day incubation study used an alkaline clay loam aridisol that received 0 (distilled water), 25, 50, and 100% wastewater concentrations, and microcosms were incubated aerobically under room temperature at 70% water holding capacity. Results revealed that raw wastewater significantly (p 50% of the soil total Kjeldahl N (TKN) contents and served as the major N pool. However, nitrification index (NO 3 - -N/NH 4 + -N ratio) decreased at high wastewater concentrations. A significant negative correlation was observed between EON and WSC (p production and accumulation of soil NO 3 - -N and EON contents in concentrated wastewater-treated soil could pose an ecological concern for soil fertility, biological health, and water quality. However, the EON could lead to mineral N pool but only if sufficient labile C source was present. The effects of wastewater irrigation on soil N cycling need to be assessed before it is recommended for crop production.

  2. Towards a smart automated surface irrigation management in rice-growing areas in Italy

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-02-01

    Full Text Available Italy is the leading rice producer in Europe, accounting for more than half of the total high-quality production of this crop. Rice is traditionally grown in fields that remain flooded starting with crop establishment until close to harvest, and this traditional irrigation technique (i.e., continuous submergence is recognised as an important water resource sink (almost 40% of the irrigation water available worldwide is used for paddy areas. Meanwhile, the water management in rice areas requires a high level of labour because it is based on maintaining a predetermined water height in paddy fields and because the regulation of input and output flow is typically operated manually by the farmer. This study reveals the hardware and software characteristics of an automated and remote controlled technology tested for the first time in a rice farm near Pavia (Italy, during the 2016 growing season, aiming at a more efficient and less burdensome irrigation management system for rice fields. A water level sensor in the field provides the data required to govern the inflow regulation gate in real-time, according to the precise time to cut off the flow rate. Using a dedicated web page, the farmer can control flows, volumes and water levels in the fields by operating directly on the gate if necessary or setting the irrigation program according to his agronomic practices.

  3. Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern?

    KAUST Repository

    Aljassim, Nada I.

    2017-11-06

    Resistance to antibiotics is increasingly being recognized as an emerging contaminant posing great risks to effective treatment of infections and to public health. Pristine soils or even soils that predate the antibiotic era naturally contain ARB and ARGs. This book chapter explores the native resistome of soils and collates information on whether soil perturbation through wastewater reuse can lead to accumulation of ARB and ARGs in agricultural soils. Special emphasis was given to ARGs, particularly the blaNDM gene that confers resistance against carbapenem. The fate and persistence of these emerging ARGs have not been studied in depth; however, this book chapter reviews available information on other ARGs to gain insight into the possibility of horizontal gene transfer events in wastewater-irrigated soils and plant surfaces and tissues. Lastly, this book chapter visits solar irradiation and bacteriophage treatment as intervention options to limit dissemination of emerging contaminant threats.

  4. Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern?

    KAUST Repository

    Aljassim, Nada I.; Hong, Pei-Ying

    2017-01-01

    Resistance to antibiotics is increasingly being recognized as an emerging contaminant posing great risks to effective treatment of infections and to public health. Pristine soils or even soils that predate the antibiotic era naturally contain ARB and ARGs. This book chapter explores the native resistome of soils and collates information on whether soil perturbation through wastewater reuse can lead to accumulation of ARB and ARGs in agricultural soils. Special emphasis was given to ARGs, particularly the blaNDM gene that confers resistance against carbapenem. The fate and persistence of these emerging ARGs have not been studied in depth; however, this book chapter reviews available information on other ARGs to gain insight into the possibility of horizontal gene transfer events in wastewater-irrigated soils and plant surfaces and tissues. Lastly, this book chapter visits solar irradiation and bacteriophage treatment as intervention options to limit dissemination of emerging contaminant threats.

  5. Management of textile wastewater for improving growth and yield of field mustard (Brassica campestris L.).

    Science.gov (United States)

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Komal, Aqleema; Naveed, Muhammad

    2017-09-02

    Disposal of industrial wastewater is a current issue of urbanization. However, this problem can be sorted out by using wastewater as an alternate source of irrigation after the addition of some amendment. In this way, the problem of disposal of wastewater not only will be resolved but also scarcity of irrigation water can be kept off in the future. The current research study was performed to evaluate the influence of different concentrations of wastewater along with canal water for enhancing growth and yield of field mustard. Plants were irrigated with different mixtures of canal water and wastewater (75:25, 50:50, 25:75, and 00:100) in addition to canal water as control. The results revealed that application of 50:50% waste and canal water improved plant height, the number of pods plant -1 , pod length, root length, root dry weight, shoot dry weight, 100 grain weight, grain and biomass yield plant -1 , and nitrogen, phosphorus, and potassium concentration in grain and straw up to 16%, 15%, 17%, 29%, 15%, 56%, 25%, 41%, 35%, 20%, 52%, 45%, 20%, 44%, and 42%, respectively, over positive control treatment. While, nutrient uptakes and agronomic efficiency of fertilizers also improved by the application of 50:50% canal and wastewater compared to positive control treatment. Furthermore, the concentration of heavy metals, predominantly Cr, Cu, Cd, and Pb, was reduced in grains by application of 50% canal water and 50% wastewater. The outcomes suggest that wastewater utilization along with canal water mixing might be an effective approach for enhancing growth and yield of field mustard.

  6. [Ecological risks of reclaimed water irrigation: a review].

    Science.gov (United States)

    Chen, Wei-Ping; Zhang, Wei-Ling; Pan, Neng; Jiao, Wen-Tao

    2012-12-01

    Wastewater reclamation and reuse have become an important approach to alleviate the water crisis in China because of its social, economic and ecological benefits. The irrigation on urban green space and farmland is the primary utilization of reclaimed water, which has been practiced world widely. To understand the risk of reclaimed water irrigation, we summarized and reviewed the publications associated with typical pollutants in reclaimed water including salts, nitrogen, heavy metals, emerging pollutants and pathogens, systematically analyzed the ecological risk posed by reclaimed water irrigation regarding plant growth, groundwater quality and public health. Studies showed that salt and salt ions were the major risk sources of reclaimed water irrigation, spreading disease was another potential risk of using reclaimed water, and emerging pollutants was the hot topic in researches of ecological risk. Based on overseas experiences, risk control measures on reclaimed water irrigation in urban green space and farmland were proposed. Five recommendations were given to promote the safe use of reclaimed water irrigation including (1) strengthen long-term in situ monitoring, (2) promote the modeling studies, (3) build up the connections of reclaimed water quality, irrigation management and ecological risk, (4) evaluate the soil bearing capacity of reclaimed water irrigation, (5) and establish risk management system of reclaimed water reuse.

  7. Heavy metals accumulation in edible part of vegetables irrigated ...

    African Journals Online (AJOL)

    Heavy metals accumulation in edible part of vegetables irrigated with untreated municipal wastewater in tropical savannah zone, Nigeria. HI Mustapha, OB Adeboye. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  8. Comparison of Some Rural Wastewater Refining Systems Considering Chemical Properties and Heavy Metals

    Directory of Open Access Journals (Sweden)

    Najme Yazdanpanah

    2016-02-01

    Full Text Available Introduction: Water scarcity is an important challenge worldwide, especially in arid and semi-arid regions. In these areas, the excessive exploitation of groundwater for irrigation, inefficient irrigation methods, irrigation with low-quality water and uncontrolled utilization of fertilizers in agricultural lands in addition to contamination of water resources by domestic and industrial wastewater in urban as well as rural regions, have led to water pollution problems. Furthermore, pollution and transportation of pollutants through wastewater have been considered as an environmental issue. Wastewater is a term that is used to describe waste materials that includes liquid waste and sewage waste. Wastewaters from single houses in the countryside that are not connected to sewers are generally treated on-site by septic tank systems or individual domestic wastewater treatment systems. Study on wastewater quality derived from refining systems in rural areas has been rarely taken into account. This study investigates the efficiency of some refining systems in the reduction of wastewater pollution indices and heavy metal concentrations. Materials and Methods: This study was done in four rural areas including Dehmilan, Hotkan, Sarbagh and Sekukan which are located around the city of Zarand in the Kerman province. Recently, some refining systems have been established in these areas in order to mitigate the environmental issues. An experiment was done to assess the efficiency of these refining systems and to determine the pollution indices for such small communities. Wastewater sampling was done in 10 replicates each at one week interval from four refineries. Different variables including BOD, COD, TOC, EC, TSS, TDS, DO, TKN, TP, pH, temperature, turbidity (Turb, alkanity (Alk and also the concentrations of Cd, Zn, Pb, Ni and Mo were measured using standard methods. To quantify the performance of each system, the amount of each variable at the outlet was

  9. Utilization of wastewater on seed germination and physioogical parameters of rice (Oryza sativa L.)

    Science.gov (United States)

    Huy, V.; Iwai, C. B.

    2018-03-01

    Due to increasing world population and demand, fresh water availability is becoming a limited resource. Reusing wastewater for agriculture has received attention since it contains nutrients, which are beneficial for growing crops. Even though wastewater can be used as the nutrient source for the plant, the toxicity of wastewater can still be a cause for concern and investigation. The main objective of this paper was to assess the effect of different sources of wastewater on the germination of Jasmine rice (KDML105), White rice (Phatum Thani 1), and Sticky rice (RD6) under laboratory conditions. Petri dish cultures were used with various concentrations (0, 50, and 100%) of wastewater collected from swine farm, aquaculture activity, and domestic. Seed germination, root length, shoot length, seed vigor index, fresh weight and dry weight were measured after each experiment. The results have shown that domestic wastewater and aquaculture activity wastewater did not decrease performance of Jasmine rice (KDML105), White rice (Phatum thani 1), and Sticky rice (RD6) while the germination of Jasmine rice (KDML105), White rice (Phatum thani 1), and Sticky rice (RD6) decreased when irrigated with swine farm wastewater. Therefore, using domestic and aquaculture activity wastewater for irrigation are suitable for growth of these crop.

  10. Infrastructure for irrigation of grapevines with diluted winery ...

    African Journals Online (AJOL)

    110-mm diameter PVC pipeline required to convey the water from the wastewater pit at the winery to the experimental vineyard ... TABLE 1. General Authorisation for legislated limits for chemical oxygen demand (COD), faecal coliforms, pH, electrical conductivity. (EC) and sodium adsorption ratio (SAR) for irrigation with ...

  11. Technology of surface wastewater purification, including high-rise construction areas

    Science.gov (United States)

    Tsyba, Anna; Skolubovich, Yury

    2018-03-01

    Despite on the improvements in the quality of high-rise construction areas and industrial wastewater treatment, the pollution of water bodies continues to increase. This is due to the organized and unorganized surface untreated sewage entry into the reservoirs. The qualitative analysis of some cities' surface sewage composition is carried out in the work. Based on the published literature review, the characteristic contamination present in surface wastewater was identified. The paper proposes a new technology for the treatment of surface sewage and presents the results of preliminary studies.

  12. Mortality of vertebrates in irrigation canals in an area of west-central Spain

    Directory of Open Access Journals (Sweden)

    P. Garcia

    2009-01-01

    Full Text Available Mortality patterns of vertebrates in irrigation canals have been poorly studied despite their potential impact on wildlife. Concrete irrigation canals in a cropland area in west-central Spain were monitored over 13 months to assess their impact on small fauna. A total of 134 vertebrates were found dead. Most were amphibians (86.46% or mammals (20.90%, though fishes, reptiles and a bird were also recorded. Mortality peaked in autumn months. Corrective measurements are needed to reduce this cause of non-natural mortality.

  13. Spatial distribution of Cd and Cu in soils in Shenyang Zhangshi Irrigation Area (SZIA), China*

    Science.gov (United States)

    Sun, Li-na; Yang, Xiao-bo; Wang, Wen-qing; Ma, Li; Chen, Su

    2008-01-01

    Heavy metal contamination of soils, derived from sewage irrigation, mining and inappropriate utilization of various agrochemicals and pesticides, and so on, has been of wide concern in the last several decades. The Shenyang Zhangshi Irrigation Area (SZIA) in China is a representative area of heavy metal contamination of soils resulting from sewage irrigation for about 30 years. This study investigated the spatial distribution and temporal variation of soil cadmium (Cd) and copper (Cu) contamination in the SZIA. The soil samples were collected from the SZIA in 1990 and 2004; Cd and Cu in soils was analyzed and then the spatial distribution and temporal variation of Cd and Cu in soils were modeled using Kriging methods. The results show that long-term sewage irrigation had caused serious Cd and Cu contamination in soils. The mean and the maximum of soil Cd are markedly higher than the levels in second grade standard soil (LSGSS) in China, and the maximum of soil Cu is close to the LSGSS in China in 2004 and is more than the LSGSS in China in 1990. The contamination magnitude of soil Cd and the soil extent of Cd contamination had evidently increased since sewage irrigation ceased in 1992. The contamination magnitude of soil Cu and the soil extent of Cu contamination had evidently increased in topsoil, but obviously decresed in subsoil. The soil contamination of Cd and Cu was mainly related to Cd and Cu reactivation of contaminated sediments in Shenyang Xi River and the import of Cd and Cu during irrigation. The eluviation of Cd and Cu in contaminated topsoil with rainfall and irrigation water was another factor of temporal-spatial variability of Cd and Cu contamination in soils. PMID:18357631

  14. Chlorinated and ultraviolet radiation -treated reclaimed irrigation water is the source of Aeromonas found in vegetables used for human consumption

    Energy Technology Data Exchange (ETDEWEB)

    Latif-Eugenín, Fadua; Beaz-Hidalgo, Roxana; Silvera-Simón, Carolina [Unidad de Microbiología, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus (Spain); Fernandez-Cassi, Xavi [Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Barcelona (Spain); Figueras, María J., E-mail: mariajose.figueras@urv.cat [Unidad de Microbiología, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus (Spain)

    2017-04-15

    Wastewater is increasingly being recognized as a key water resource, and reclaimed water (or treated wastewater) is used for irrigating vegetables destined for human consumption. The aim of the present study was to determine the diversity and prevalence of Aeromonas spp. both in reclaimed water used for irrigation and in the three types of vegetables irrigated with that water. Seven of the 11 (63.6%) samples of reclaimed water and all samples of vegetables were positive for the presence of Aeromonas. A total of 216 Aeromonas isolates were genotyped and corresponded to 132 different strains that after identification by sequencing the rpoD gene belonged to 10 different species. The prevalence of the species varied depending on the type of sample. In the secondary treated reclaimed water A. caviae and A. media dominated (91.4%) while A. salmonicida, A. media, A. allosaccharophila and A. popoffii represented 74.0% of the strains in the irrigation water. In vegetables, A. caviae (75.0%) was the most common species, among which a strain isolated from lettuce had the same genotype (ERIC pattern) as a strain recovered from the irrigation water. Furthermore, the same genotype of the species A. sanarellii was recovered from parsley and tomatoes demonstrating that irrigation water was the source of contamination and confirming the risk for public health. - Highlights: • Reclaimed water (= treated wastewater) is used for the irrigation of vegetables. • Aeromonas was found in reclaimed water and irrigated vegetables with this water. • The prevalence of Aeromonas spp. varied between irrigation water and vegetables. • Epidemiological relationships were found between irrigation water and vegetables. • The water was the source of contamination which means a risk for the public health.

  15. Chlorinated and ultraviolet radiation -treated reclaimed irrigation water is the source of Aeromonas found in vegetables used for human consumption

    International Nuclear Information System (INIS)

    Latif-Eugenín, Fadua; Beaz-Hidalgo, Roxana; Silvera-Simón, Carolina; Fernandez-Cassi, Xavi; Figueras, María J.

    2017-01-01

    Wastewater is increasingly being recognized as a key water resource, and reclaimed water (or treated wastewater) is used for irrigating vegetables destined for human consumption. The aim of the present study was to determine the diversity and prevalence of Aeromonas spp. both in reclaimed water used for irrigation and in the three types of vegetables irrigated with that water. Seven of the 11 (63.6%) samples of reclaimed water and all samples of vegetables were positive for the presence of Aeromonas. A total of 216 Aeromonas isolates were genotyped and corresponded to 132 different strains that after identification by sequencing the rpoD gene belonged to 10 different species. The prevalence of the species varied depending on the type of sample. In the secondary treated reclaimed water A. caviae and A. media dominated (91.4%) while A. salmonicida, A. media, A. allosaccharophila and A. popoffii represented 74.0% of the strains in the irrigation water. In vegetables, A. caviae (75.0%) was the most common species, among which a strain isolated from lettuce had the same genotype (ERIC pattern) as a strain recovered from the irrigation water. Furthermore, the same genotype of the species A. sanarellii was recovered from parsley and tomatoes demonstrating that irrigation water was the source of contamination and confirming the risk for public health. - Highlights: • Reclaimed water (= treated wastewater) is used for the irrigation of vegetables. • Aeromonas was found in reclaimed water and irrigated vegetables with this water. • The prevalence of Aeromonas spp. varied between irrigation water and vegetables. • Epidemiological relationships were found between irrigation water and vegetables. • The water was the source of contamination which means a risk for the public health.

  16. Effects of greywater irrigation on germination, growth and ...

    African Journals Online (AJOL)

    The reuse of greywater, wastewater from sources other than toilets, could enable low-income households to save potable water for drinking and cooking. Greywater irrigation of food crops is widely practised but its effects on African leafy vegetables (ALVs), which hold potential for cultivation to improve food security, are ...

  17. Wastewater reuse in agriculture in the outskirts of the city Batna ...

    African Journals Online (AJOL)

    The study is based on a survey of farmers. The data collected allow us to understand the reasons for the reuse of wastewater. This resource can be an important element in irrigation water management strategy. The possibilities of wastewater reuse in agriculture are significant, as is the case in the Batna region. In this ...

  18. Modification of Wastewater Treatment Technology at Cottonseed Oil Plant

    Directory of Open Access Journals (Sweden)

    Alshabab Mary Shick

    2016-01-01

    Full Text Available Wastewaters from cottonseed oil producing plant in Syria were studied in laboratory experiments. Aim of the study was to suggest modification of wastewater treatment technology in order to increase its efficiency. Concentration of pollutants in wastewaters was controlled by measurement of COD. According to the results of experiments it was suggested to decrease significantly (8-20 times dosages of reagents (acidifier, coagulant, flocculant in several actual stages of treatment (acidification, separation, coagulation and sedimentation and add stage of dispersed air flotation before coagulation treatment. The modified wastewater treatment technology would reduce COD to the values allowed for irrigation waters by Syrian National Standard.

  19. Liquid manna? Treating urban wastewater for local gardening ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-02-02

    Feb 2, 2011 ... “Before, we had no proper sewage system and people were forced to empty ... Conventional sewage treatment is beyond the means of the municipality, ... Researchers found that some vegetables irrigated with wastewater ...

  20. Qualitative monitoring of a treated wastewater reuse extensive ...

    African Journals Online (AJOL)

    Qualitative monitoring of a treated wastewater reuse extensive distribution system: ... region where 80 % of the freshwater resources are consumed by agriculture. ... the reuse limits for orchard irrigation, being 80 mg/ℓ and 25 mg/ℓ respectively.

  1. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1994-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  2. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  3. Wastewater Use in Irrigated Agriculture: Confronting the Livelihood ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The use of urban wastewater in agriculture is a centuries-old practice that is ... and water quality in Mexico, India, Nepal, Jordan, and the United States over the ... over 18 years experience in the planning and management of environmental ...

  4. An appraisal of ground water for irrigation in the Wadena area, central Minnesota

    Science.gov (United States)

    Lindholm, F.G.

    1970-01-01

    The Wadena area is part of a large sandy plain in central Minnesota whose soils have low water-holding capacity. Drought conditions which adversely affect plant growth frequently occur in the summer when moisture is most needed. To reduce the risk of crop failure in the area supplemental irrigation is on the increase.

  5. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands

  6. Transfer of antibiotics from wastewater or animal manure to soil and edible crops.

    Science.gov (United States)

    Pan, Min; Chu, L M

    2017-12-01

    Antibiotics are added to agricultural fields worldwide through wastewater irrigation or manure application, resulting in antibiotic contamination and elevated environmental risks to terrestrial environments and humans. Most studies focused on antibiotic detection in different matrices or were conducted in a hydroponic environment. Little is known about the transfer of antibiotics from antibiotic-contaminated irrigation wastewater and animal manure to agricultural soil and edible crops. In this study, we evaluated the transfer of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) to different crops under two levels of antibiotic-contaminated wastewater irrigation and animal manure fertilization. The final distribution of tetracycline (TC), norfloxacin (NOR) and chloramphenicol (CAP) in the crop tissues under these four treatments were as follows: fruit > leaf/shoot > root, while an opposite order was found for sulfamethazine (SMZ) and erythromycin (ERY): root > leaf/shoot > fruit. The growth of crops could accelerate the dissipation of antibiotics by absorption from contaminated soil. A higher accumulation of antibiotics was observed in crop tissues under the wastewater treatment than under manure treatment, which was due to the continual irrigation that increased adsorption in soil and uptake by crops. The translocation of antibiotics in crops mainly depended on their physicochemical properties (e.g. log K ow ), crop species, and the concentrations of antibiotics applied to the soil. The levels of antibiotics ingested through the consumption of edible crops under the different treatments were much lower than the acceptable daily intake (ADI) levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modeling Trihalomethane Formation Potential from Wastewater Chlorination

    Science.gov (United States)

    1994-09-01

    Aerated Lagoon Chlor/Dechlor - - - King Salmon River Luke, AZ Tertiary Ultraviolet 1.2 MGD Agua Fria River / Irrigation MacDD, FL Activated Sludge...November 1988). Tchobanoglous, George and Burton, Franklin L. Wastewater engineering: treatment, disposal, and reuse / Metcalf & Eddy, Inc. -3rd ed

  8. Using Remote Sensing Technology on the Delimitation of the Conservation Area for the Jianan Irrigation System Cultural Landsccape

    Directory of Open Access Journals (Sweden)

    C. H. Wang

    2015-08-01

    Full Text Available In recent years the cultural landscape has become an important issue for cultural heritages throughout the world. It represents the "combined works of nature and of man" designated in Article 1 of the World Heritage Convention. When a landscape has a cultural heritage value, important features should be marked and mapped through the delimitation of a conservation area, which may be essential for further conservation work. However, a cultural landscape’s spatial area is usually wider than the ordinary architectural type of cultural heritage, since various elements and impact factors, forming the cultural landscape’s character, lie within a wide geographic area. It is argued that the conservation of a cultural landscape may be influenced by the delimitation of the conservation area, the corresponding land management measures, the limits and encouragements. The Jianan Irrigation System, an historical cultural landscape in southern Taiwan, was registered as a living cultural heritage site in 2009. However, the system’s conservation should not be limited to just only the reservoir or canals, but expanded to irrigated areas where farmland may be the most relevant. Through the analysis process, only approximately 42,000 hectares was defined as a conservation area, but closely related to agricultural plantations and irrigated by the system. This is only half of the 1977 irrigated area due to urban sprawl and continuous industrial expansion.

  9. Using Remote Sensing Technology on the Delimitation of the Conservation Area for the Jianan Irrigation System Cultural Landsccape

    Science.gov (United States)

    Wang, C. H.

    2015-08-01

    In recent years the cultural landscape has become an important issue for cultural heritages throughout the world. It represents the "combined works of nature and of man" designated in Article 1 of the World Heritage Convention. When a landscape has a cultural heritage value, important features should be marked and mapped through the delimitation of a conservation area, which may be essential for further conservation work. However, a cultural landscape's spatial area is usually wider than the ordinary architectural type of cultural heritage, since various elements and impact factors, forming the cultural landscape's character, lie within a wide geographic area. It is argued that the conservation of a cultural landscape may be influenced by the delimitation of the conservation area, the corresponding land management measures, the limits and encouragements. The Jianan Irrigation System, an historical cultural landscape in southern Taiwan, was registered as a living cultural heritage site in 2009. However, the system's conservation should not be limited to just only the reservoir or canals, but expanded to irrigated areas where farmland may be the most relevant. Through the analysis process, only approximately 42,000 hectares was defined as a conservation area, but closely related to agricultural plantations and irrigated by the system. This is only half of the 1977 irrigated area due to urban sprawl and continuous industrial expansion.

  10. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops

    Energy Technology Data Exchange (ETDEWEB)

    Verbyla, M.E., E-mail: verbylam@mail.usf.edu [Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL (United States); Iriarte, M.M.; Mercado Guzmán, A.; Coronado, O.; Almanza, M. [Centro de Aguas y Saneamiento Ambiental, Universidad Mayor de San Simón, Cochabamba (Bolivia, Plurinational State of); Mihelcic, J.R. [Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL (United States)

    2016-05-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10 years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1 mL g{sup −1} for coliphage, between 1 and 100 mL g{sup −1} for Giardia and Cryptosporidium, and between 100 and 1000 mL g{sup −1} for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. - Highlights: • Study of health risks from reclaimed wastewater irrigation from aging pond systems • Coliphages, protozoan parasites, and helminths were measured in water/soil/crops. • Sludge accumulation in

  11. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops

    International Nuclear Information System (INIS)

    Verbyla, M.E.; Iriarte, M.M.; Mercado Guzmán, A.; Coronado, O.; Almanza, M.; Mihelcic, J.R.

    2016-01-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10 years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1 mL g"−"1 for coliphage, between 1 and 100 mL g"−"1 for Giardia and Cryptosporidium, and between 100 and 1000 mL g"−"1 for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. - Highlights: • Study of health risks from reclaimed wastewater irrigation from aging pond systems • Coliphages, protozoan parasites, and helminths were measured in water/soil/crops. • Sludge accumulation in ponds may limit

  12. D-Area Drip Irrigation/Phytoremediation Project: SRTC Report on Phase 1

    International Nuclear Information System (INIS)

    Wilde, E.W.

    2001-01-01

    The overall objective of this project is to evaluate a novel drip irrigation-phytoremediation process for remediating volatile organic contaminants (VOCs), primarily trichloroethylene (TCE), from groundwater in D-Area at the Savannah River Site (SRS). The process is expected to be less expensive and more beneficial to the environment than alternative TCE remediation technologies

  13. Wastewater impact on physiology, biomass and yield of canola (brassica napus L.)

    International Nuclear Information System (INIS)

    Khan, I.U.; Khan, M.J.

    2012-01-01

    The impact of domestic/municipal wastewater (mww) of Dera Ismail Khan, Pakistan was assessed through its effects on biomass, physiology and yield of canola (Brassica napus L.). The pot experiments were conducted in a completely randomized design with three replications in net house during winter season 2006-07 and 2007-08 at Gomal University, Dera Ismail Khan, Pakistan. Treatments included were T0 (tube well/tap water), T/sub 1/ (20% mww), T/sub 2/ (40% mww), T/sub 3/ (80% mww) and T/sub 4/ (100% mww/raw-form municipal wastewater). The quality and chemical composition of wastewater was deviating from international (Anon., 1985) as well as NEQS (2005) standard. Analysis of wastewater showed that biochemical oxygen demand (BOD), chemical oxygen demand (COD), sodium adsorption ratio (SAR) and total suspended solids (TSS) were above the permissible limit of irrigation. In pods per plant, the reduction was 61.55% by recording 110 pods per plant with T/sub 4/ (100% mww) as compared to control T0 (286.1 pods per plant). Similarly pod length (reduced by 59.72%), seeds per pod (reduced by 42.53%), Seeds per plant (reduced by 82%), seed weight per plant (reduced by 88%), 100-seed weight (reduced by 19.54%) and straw yield (reduced by 54.23%) were significantly reduced by applying 100% wastewater. The most affected yield contributing traits were seeds per plant and seed weight per plant with 82% and 88% reduction, respectively due to T/sub 4/ (100% mww). On average, the decrease was 60% in the first stage and a further decrement of 4.83% was observed when the obtained seeds were re-sown in 2007-08. Results revealed that utilizing municipal wastewater of the area under investigation for irrigation purpose of food and feed crops might not be safe. The major reason seems to be the high salinity and sodium adsorption ratio that restricted crop growth and yield. (author)

  14. Salinity of irrigation water in the Philippi farming area of the Cape ...

    African Journals Online (AJOL)

    Salinity of irrigation water in the Philippi farming area of the Cape Flats, Cape Town, ... Isotope analysis was done for the summer samples so as to assess effects of ... It is concluded that the accumulation of salts in groundwater and soil in the ...

  15. Improved methods for irrigation and planting of major crops in waterlogged areas

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Iqbal, M.; Raoof, A.

    2002-01-01

    The improved irrigation methods for wheat and cotton were evaluated in the fordwah Eastern Sadigia (South) Irrigation and Drainage Project area, during 1996-97 and 1997-98 cropping seasons, under three water table depths. Irrigation methods for wheat included 70, 95 and 120 cm Beds, with Flat Basin, as a check for comparative evaluation. Cotton had Ridge-planting on the top and side, Bed and Furrow, and Flat Basin as control. These irrigation methods were compared at water table depths of < 1 m, 1-2 and 2-3 m. The wheat variety inqalab-91, and cotton cultivar, CIM-109, were planted during the 3rd week of November and May every year. All the inputs and management practices, such as seed-rate, fertilizer, seeding method, weed control, plant-protection measures, etc. were kept common. The results on cotton indicated maximum water-use efficiency with the Bed and Furrow Method of irrigation Followed by ridge planting. The traditional Flat-planting had the lowest yield and the highest water-consumption, resulting in the minimum water-use efficiency. In harmony with cotton, the Flat Method of planting had maximum water-consumption. For wheat crop, the water-use efficiency was in descending order, with 120, 95 and 70 cm for Bed and Flat Methods. Bed planting of 95 cm had a fairly high water-use efficiency and yields were more were more comparable than Flat planting. This method had a high level of adaptabilities, especially when the groundwater was close to the root-zone and higher possibilities, especially when the groundwater was close to the root-zone and higher possibility of crop-submergence are existent during rainy spells. The results of the investigation strongly favoured the Bed and furrow methods to irrigate cotton and wheat. However, under well-drained soil conditions, Bed planting of wheat is not recommended. (author)

  16. Preferential flow, nitrogen transformations and 15N balance under urine-affected areas of irrigated and non-irrigated clover-based pastures

    Science.gov (United States)

    Pakro, Naser; Dillon, Peter

    1995-12-01

    Urine-affected areas can lead to considerable losses of N by leaching, ammonia volatilisation and denitrification from dairy pastures in the southeast of South Australia. Potable groundwater supplies are considered to have become contaminated by nitrate as a result of leaching from these leguminous pastures. Dairy cow urine, labelled with 15N urea, was applied to micro-plots and mini-lysimeters installed in two adjacent irrigated (white clover-rye grass) and non-irrigated (subterranean clover-annual grasses) paddocks of a dairy farm on four occasions representing different seasonal conditions. These experiments allowed measurement of nitrogen transformations, recovery of 15N in the pasture and soil, and leaching below various depths. Gaseous losses were calculated from the nitrogen balance. The results of the four experiments showed that within a day of urine application up to 40% of the applied urinary-N was leached below a depth of 150 mm as a result of macropore flow in the irrigated paddock, and up to 24% in the non-irrigated one. After application to the irrigated paddock 17% of the urinary-N moved immediately below 300 mm but only 2% below the 450-mm depth. The urinary-N remaining in the soil was converted from urea to ammonium within a day regardless of season. Within the first 7 days of application six times more nitrate was produced in summer than in winter. This has obvious implications for leaching potential. Leaching of 15N from the top 150 mm of soil, following urine applications in all seasons, was between 41% and 62% of the applied 15N in the irrigated paddock and 25-51% in the non-irrigated paddock. However, leaching losses measured at depths of 300 or 450 mm were smaller by a factor of 2-4. The leaching loss of 15N applied in spring in both paddocks was 41% below 150 mm and 12% below 450 mm. Recovery of 15N from the soil-plant system in the 450-nm deep lysimeters was ˜60% of that applied. Estimated ammonia was ˜9% of applied 15N with no paddock

  17. City of Richland 300 Area industrial wastewater permit application

    International Nuclear Information System (INIS)

    1995-05-01

    Battelle-Pacific Northwest Labs and Westinghouse Hanford Co. are responsible for operating most of the facilities within the 300 Area; other contractors are also involved. The document gives briefly water/wastewater data: water sources, water usage, water discharge/loss, NPDES permit status, plant sewer outlets size and flow, etc. The document also includes the following attachments: 300 Area building list, Oct. 1993-Oct. 1994 300 Area water balance, waste shipments for CY 1994, complete chemical listing, sanitary sewer sampling results (12/19/94, 1/18/95, 1/15/95), and priority pollutant listings

  18. Traditional Irrigation Management in Betmera-Hiwane, Ethiopia: The Main Peculiarities for the Persistence of Irrigation Practices

    Institute of Scientific and Technical Information of China (English)

    Solomon Habtu; Kitamura Yoshinobu

    2006-01-01

    Traditional irrigation, as part of the ancient agricultural practices in northern Ethiopia (Tigray), has persisted for long time since 500 B.C.,while many newly introduced irrigation projects have usually failed there. The main objective of this study is thus to investigate the peculiarities pertinent to irrigation management and those having contributed for the persistence of traditional irrigation practices for a long period of time. The experience gained from such areas can definitely help make irrigation management system of new irrigation schemes sustainable. Betmera-Hiwane, one of the ancient traditional irrigation areas in Tigray region, was selected for the field study. Direct observations through field visits accompanied by interviews to farmers, local officials, local knowledgeable individuals and higher officials were made. After analyzing the collected primary and secondary information, the main peculiarities that contributed to the persistence of traditional irrigation areas were identified, and they are: the presence of communally constructed local rules, locally designed hydraulic control structures, ownership feeling of the irrigators and accountability of water distributors to the irrigation management, the culture for mobilizing communal resources and the culture of self-initiating local water management strategies.

  19. Quality Evaluation of Household Wastewater for Irrigation | Musa ...

    African Journals Online (AJOL)

    Ten samples were collected respectively from kitchen, laundry and toilet wastewaters were collected and physical, chemical, metallic and non-metallic analysis were carried out on the various samples collected following standard procedures. @JASEM J. Appl. Sci. Environ. Manage. Sept, 2011, Vol. 15 (3) 431 - 437 ...

  20. Effects of changing irrigation practices on the ground-water hydrology of the Santa Isabel-Juana Diaz area, south central Puerto Rico

    Science.gov (United States)

    Ramos-Gines, Orlando

    1994-01-01

    Prior to 1930, the principal source of water for irrigation in the Santa Isabel-Juana Diaz area was surface water from outside the study area, which was delivered by a complex channel-pond system. Recharge from water applied to the fields, estimated to be 18.7 million of gallons per day, and discharge by ground-water flow to sea, estimated to be 17 million of gallons per day, were the major water- budget components prior to intensive development of the ground-water resources. Development of the ground-water resources after 1930 resulted in a substantial increase in irrigation, primarily furrow irrigation. The surface water supplied by the complex channel-pond system continued to be used and ground-water withdrawals increased sub- stantially. By 1966-68, ground-water recharge from irrigation water applied to the fields, estimated to be 37 million of gallons per day, and discharge by pumpage for irrigation, estimated to be 77 million of gallons per day, were the two major components of the ground-water budget. By 1987, drip irrigation had become the principal method of irrigation in the study area, and surface-water irrigation had, for the most part, been discontinued. The estimated aquifer recharge from irrigation water in 1987 was about 6.6 million of gallons per day, which occurred primarily in the remaining fields where furrow irrigation was still practiced. Although aquifer recharge had been reduced as a result of the conversion from furrow to drip irrigation, water levels in the aquifer were higher in 1987 than in 1968 because of the large reduction in ground-water withdrawals and subsequent recovery of ground-water levels.

  1. Irrigation of treated wastewater in Braunschweig, Germany

    DEFF Research Database (Denmark)

    Ternes, T.A.; Bonerz, M.; Herrmann, N.

    2007-01-01

    pharmaceuticals and two personal care products (PPCPs; e.g. betablockers, antibiotics, antiphlogistics, carbamazepine, musk fragrances, iodinated contrast media (ICM) and estrogens). No differences in PPCP pollution of the groundwater were found due to irrigation of STP effluents with and without addition....... In the groundwater and lysimeter samples primarily the ICM diatrizoate and iopamidol, the antiepileptic carbamazepine and the antibiotic sulfamethoxazole were detected up to several mu g l(-1), while the acidic pharmaceuticals, musk fragrances, estrogens and betablockers were likely sorbed or transformed while...

  2. Desorption of organophosphorous pesticides from soil with wastewater and surfactant solutions

    International Nuclear Information System (INIS)

    Hernandez-Soriano, M. C.; Mingorance, M. D.; Pena, A.

    2009-01-01

    Surfactants can be introduced in the environment by wastewater discharge, point-charge pollution or deliberate action, e. g. to remediate contaminated soil or groundwater. The irrigation of soil with wastewater containing surfactants may modify pesticide desorption from soil, thus affecting their affecting their environmental fate. Desorption from soil of the plain of Granada (South-eastern Spain) of two organophosphorous pesticides, diazinon and dimethoate, differing in solubility and hydrophobicity, has been evaluated in the presence of different surfactant aqueous solutions and municipal wastewater. (Author)

  3. Assessment of Suitable Areas for Home Gardens for Irrigation Potential, Water Availability, and Water-Lifting Technologies

    Directory of Open Access Journals (Sweden)

    Tewodros Assefa

    2018-04-01

    Full Text Available The study was conducted in Lake Tana Basin of Ethiopia to assess potentially irrigable areas for home gardens, water availability, and feasibility of water-lifting technologies. A GIS-based Multi-Criteria Evaluation (MCE technique was applied to access the potential of surface and groundwater sources for irrigation. The factors affecting irrigation practice were identified and feasibility of water-lifting technologies was evaluated. Pairwise method and expert’s opinion were used to assign weights for each factor. The result showed that about 345,000 ha and 135,000 ha of land were found suitable for irrigation from the surface and groundwater sources, respectively. The rivers could address about 1–1.2% of the irrigable land during dry season without water storage structure whereas groundwater could address about 2.2–2.4% of the irrigable land, both using conventional irrigation techniques. If the seven major dams within the basin were considered, surface water potential would be increased and satisfy about 21% of the irrigable land. If rainwater harvesting techniques were used, about 76% of the basin would be suitable for irrigation. The potential of surface and groundwater was evaluated with respect to water requirements of dominant crops in the region. On the other hand, rope pump and deep well piston hand pump were found with relatively the most (26% and the least (9% applicable low-cost water-lifting technologies in the basin.

  4. Soils and irrigation of three areas in the Lower Tana Region, Kenya : a comparative study of soil conditions and irrigation suitability

    NARCIS (Netherlands)

    Muchena, F.N.

    1987-01-01

    The soils and soil conditions of three areas situated in different physiographic positions in the Lower Tana Region of Kenya were investigated in respect of their suitability for irrigated agriculture. The soils vary widely in both physical and chemical properties. Most of the soils have an

  5. Field observations and management strategy for hot spring wastewater in Wulai area, Taiwan.

    Science.gov (United States)

    Lin, J Y; Chen, C F; Lei, F R; Hsieh, C D

    2010-01-01

    Hot springs are important centers for recreation and tourism. However, the pollution that may potentially be caused by hot spring wastewater has rarely been discussed. More than half of Taiwan's hot springs are located in areas where the water quality of water bodies is to be protected, and untreated wastewater could pollute the receiving water bodies. In this study, we investigate hot spring wastewater in the Wulai area, one of Taiwan's famous hot spring resorts. Used water from five hot spring hotels was sampled and ten sampling events were carried out to evaluate the changes in the quality of used water in different seasons, at different periods of the week, and from different types of hotels. The concentrations of different pollutants in hot spring wastewater were found to exhibit wide variations, as follows: COD, 10-250 mg/L; SS, N.D.-93 mg/L; NH(3)-N, 0.01-1.93 mg/L; TP, 0.01-0.45 mg/L; and E. coli, 10-27,500 CFU/100 mL. The quality of hot spring wastewater depends on the operation of public pools, because this affects the frequency of supplementary fresh water and the outflow volume. Two management strategies, namely, onsite treatment systems and individually packaged treatment equipment, are considered, and a multi-objective optimization model is used to determine the optimal strategy.

  6. Sustainability of Water Reclamation: Long-Term Recharge with Reclaimed Wastewater Does Not Enhance Antibiotic Resistance in Sediment Bacteria

    Directory of Open Access Journals (Sweden)

    Jean E. McLain

    2014-03-01

    Full Text Available Wastewater reclamation for municipal irrigation is an increasingly attractive option for extending water supplies. However, public health concerns include the potential for development of antibiotic resistance (AR in environmental bacteria after exposure to residual pharmaceuticals in reclaimed water. Though scientific studies have reported high levels of AR in soils irrigated with wastewater, these works often fail to address the soil resistome, or the natural occurrence of AR. This study compared AR patterns in sediment Enterococcus isolated from water storage basins containing either reclaimed water or groundwater in central Arizona. Resistance to 16 antibiotics was quantified in isolates to a depth of 30 cm. Results reveal high levels of resistance to certain antibiotics, including lincomycin, ciprofloxacin, and erythromycin, exists in sediments regardless of the water source (groundwater, reclaimed water, and higher AR was not detectable in reclaimed water sediments. Furthermore, multiple-antibiotic-resistance (MAR was substantially reduced in isolates from reclaimed water sediments, compared to freshwater sediment isolates. Comparing the development of AR in sediment bacteria at these two sites will increase awareness of the environmental and public health impacts of using reclaimed water for irrigation of municipal areas, and illustrates the necessity for control sites in studies examining AR development in environmental microbiota.

  7. Performance Evaluation of Membrane-Based Septic Tank and Its Reuse Potential for Irrigating Crops.

    Science.gov (United States)

    Khalid, Mehwish; Hashmi, Imran; Khan, Sher Jamal

    2017-08-01

      Membrane technology, being the most emerging wastewater treatment option, has gained substantial importance with the massive objective of the reuse potential of wastewater. Keeping this in view, the present study was conducted with the rationale to evaluate the performance efficiency of membrane-based septic tank (MBST), and its reuse perspective for irrigating crops. The septic tank was designed by submerging a woven fiber microfiltration membrane module to treat domestic wastewater. Three crops Triticum aestivum (wheat), Coriandrum sativum (coriander), and Mentha arvensis (mint) were selected to be irrigated with treated MBST effluent, untreated wastewater, and tap water (as a control) for comparative growth analysis. Two pathogenic strains, Escherichia coli and Salmonella sp. were selected as reference microbes and their translocation rate was observed in root, shoot, and leaves. Upon maturity, the roots, shoots, and leaves of the above-mentioned plants were aseptically removed for microbiological analysis. Strains were analyzed, using analytical profile index and PCR analysis. Maximum removal efficiencies for MBST in terms of chemical oxygen demand (COD), turbidity, nutrients deduction (phosphorus), and indicator bacteria (Escherichia coli) were found to be 73, 96, 48, and 88%, respectively. Significant bacterial load reduction (p < 0.001) in terms of E. coli (3.8 log CFU/100 mL) and helminths (2 eggs/L) was observed in treated water. High plant yield was observed when irrigated with treated water as compared to tap water, as minimal nutrient removal (48%) was recorded in treated water, with the germination percentage of 88.8%.

  8. Problems of irrigated agriculture in saline groundwater areas: farmers' perceptions

    International Nuclear Information System (INIS)

    Ahmad, S.; Yasin, M.; Ahmad, M.M.; Hussain, Z.; Khan, Z.; Akbar, G.

    2005-01-01

    A research study was conducted using participatory interactive dialogue in the brackish groundwater area of Mona SCARP-II, Bhalwal district Sargodha, Pakistan. The Participatory Rural Appraisal (PRA) was conducted in thirteen villages to identify macro- and micro-level issues related to irrigated agriculture in saline groundwater areas. SCARP tube wells have been abandoned or few have been handed over to farmers' organizations. Groundwater in the Indus basin contributes around 35% to the total water available for agriculture. Water quality of 60% area of the Indus basin is marginal to brackish. Minimum land holding of cultivated land in the elected villages varied from 0.10 to 4 ha. The maximum land holding of cultivated area in selected villages varied for 6 to 50 ha. However, the average size of farm was around 4 ha. The average salt-affected area per household was 17% of the total cultivated area. The salt-affected lands in 8 villages out of 13 were barren, where mainly rice crop is grown during kharif season. About 67% farms had access to conjunctive use of water, as water from both canal and private tube wells is available. In addition, 10% farms were having tube well water only. Therefore, 77% farms are having access to the groundwater. According to the farmers' perceptions, 100% villages have fresh groundwater to a depth of 7.5 m and 62% villages had depth ranging from 15-30 m. Furthermore, in all thirteen selected villages, groundwater quality beyond 30 m depth was brackish. Laboratory analysis confirmed the farmer's perception that groundwater quality is a function of depth. About 92% farmers groups indicated that non-availability and high price of inputs was a major problem. The second major issue was related to the shortage of canal water supplies and 77% villages are facing this problem. Moreover, 31% farmers' groups of selected villages indicated that water logging and salinity are the major concerns affecting agricultural productivity. This figure is

  9. Potentials for Supplemental Irrigation in Some Rainfall Areas of Imo ...

    African Journals Online (AJOL)

    In addition, there were up to five months of the year during which rainwater was much in deficit of evapotranspiration. All these stress the need for irrigation. Analysis of water quality (surface, groundwater, and rainfall runoff) showed their suitability for irrigation. Quantity assessment of supplemental irrigation during the dry ...

  10. Cross-Contamination of Residual Emerging Contaminants and Antibiotic Resistant Bacteria in Lettuce Crops and Soil Irrigated with Wastewater Treated by Sunlight/H2O2.

    Science.gov (United States)

    Ferro, Giovanna; Polo-López, María I; Martínez-Piernas, Ana B; Fernández-Ibáñez, Pilar; Agüera, Ana; Rizzo, Luigi

    2015-09-15

    The sunlight/H2O2 process has recently been considered as a sustainable alternative option compared to other solar driven advanced oxidation processes (AOPs) in advanced treatment of municipal wastewater (WW) to be reused for crop irrigation. Accordingly, in this study sunlight/H2O2 was used as disinfection/oxidation treatment for urban WW treatment plant effluent in a compound parabolic collector photoreactor to assess subsequent cross-contamination of lettuce and soil by contaminants of emerging concern (CECs) (determined by QuEChERS extraction and LC-QqLIT-MS/MS analysis) and antibiotic resistant (AR) bacteria after irrigation with treated WW. Three CECs (carbamazepine (CBZ), flumequine (FLU), and thiabendazole (TBZ) at 100 μg L(-1)) and two AR bacterial strains (E. coli and E. faecalis, at 10(5) CFU mL(-1)) were spiked in real WW. A detection limit (DL) of 2 CFU mL(-1) was reached after 120 min of solar exposure for AR E. coli, while AR E. faecalis was more resistant to the disinfection process (240 min to reach DL). CBZ and TBZ were poorly removed after 90 min (12% and 50%, respectively) compared to FLU (94%). Lettuce was irrigated with treated WW for 5 weeks. CBZ and TBZ were accumulated in soil up to 472 ng g(-1) and 256 ng g(-1) and up-taken by lettuce up to 109 and 18 ng g(-1), respectively, when 90 min treated WW was used for irrigation; whereas no bacteria contamination was observed when the bacterial density in treated WW was below the DL. A proper treatment time (>90 min) should be guaranteed in order to avoid the transfer of pathogens from disinfected WW to irrigated crops and soil.

  11. The Response and Repairing of Three Kinds of Crops on Xi’an’s Sewage Irrigation Area Soil

    Science.gov (United States)

    Xin, H.; Zhimei, Z.; Lei, H.; Huan, L.; Tian, Z.

    2017-10-01

    This paper focuses on the XiChaZhai village’s vegetable soil which is located in the northern suburbs of Xi’an and on its vegetables, thus analyzes the quality of sewage irrigation region soil and its influence on vegetables through the measurement of Cu, Zn, Pb, Cd’s content in samples. The results show that the research area soil contains apparently excessive heavy metals, and there exists significant differences of different elements’ integrated intensity in soil, the content declines in sequence from Cd, Zn, Pb to Cu. The four heavy metals’ contents in sewage irrigation region soil vary greatly from that in non-sewage irrigation region soil(Prepairing effects on Xi’an sewage irrigation region soil are Raphanus sativus, Ottelia acuminate and Brassica chinensis, in that order. Different crop tissues differ in the accumulation of heavy metal, the order according as roots, stem and leaves, fruits. Therefore, based on differences of various crops on heavy metals’ absorption and translocation, appropriate crops should be scientifically planted in heavy metal contaminated area soil.

  12. Effect of soil contamination due to wastewater irrigation on total cesium as determined by destructive and nondestructive analytical techniques in some soils of egypt

    International Nuclear Information System (INIS)

    Abdel-Sabour, M.F.; Abdel-Lattif, A.

    2005-01-01

    Fifteen soil samples were chosen from different locations to represent different soils irrigated with different sources of contaminated wastewater (sewage and industrial effluent). Sequential extraction experiment was carried out to determine different forms of Cs in soils. Moreover, Soil samples were analyzed for total Cs using two analytical methods i.e. destructive wet digestion technique (Atomic Absorption Spectrometry, AAS or by summation of all sequential extracted fractions, SUM) and non-destructive technique (Neutron Activation Analysis, NAA). The aim of this study was to evaluate soil total Cs-forms (especially, bio-available fraction) as affected by soil pollution. Cesium was mostly concentrated in the residual fraction, and its values ranged from 57.4% to 82.9 % of total Cs in sandy soils and from 31.5% to 64.5 % of total Cs in tested clayey soil. Then organically bound Cs- fraction followed by Cs-occluded in Fe-Mn fraction, carbonate, exchangeable and water soluble fractions. Results suggested that, Cs level is affected by soil organic matter content, Fe-Mn oxides and clay content. The mobile Cs fraction (the sum of soluble and exchangeable fractions) ranged from 2% up to 9.9 % of total Cs in sandy soils. However, a higher value (9.82% to 15.31 %) could be observed in case of the tested clayey soils. Soils D and E were more contaminated than other tested soils. Data show obviously, that soil contaminated due to the irrigation with either sewage effluent or industrial wastewater has resulted in a drastic increase in both metal-organic and occluded in Fe and Mn oxide fractions followed by the carbonate fraction

  13. Wastewater Treatment Optimization for Fish Migration Using Harmony Search

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2014-01-01

    Full Text Available Certain types of fish migrate between the sea and fresh water to spawn. In order for them to swim without any breathing problem, river should contain enough oxygen. If fish is passing along the river in municipal area, it needs sufficient dissolved oxygen level which is influenced by dumped amount of wastewater into the river. If existing treatment methods such as settling and biological oxidation are not enough, we have to consider additional treatment methods such as microscreening filtration and nitrification. This study constructed a wastewater treatment optimization model for migratory fish, which considers three costs (filtration cost, nitrification cost, and irrigation cost and two environmental constraints (minimal dissolved oxygen level and maximal nitrate-nitrogen concentration. Results show that the metaheuristic technique such as harmony search could find good solutions robustly while calculus-based technique such as generalized reduced gradient method was trapped in local optima or even divergent.

  14. Wastewater Irrigation and Health: Assessing and Mitigating Risk in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2009-12-18

    Dec 18, 2009 ... In most developing countries wastewater treatment systems have very low ... from a practical and realistic perspective, addressing the issues of health risk ... at the International Water Management Institute ( IWMI ), Sri Lanka.

  15. Groundwater recharge in irrigated semi-arid areas: quantitative hydrological modelling and sensitivity analysis

    Science.gov (United States)

    Jiménez-Martínez, Joaquín; Candela, Lucila; Molinero, Jorge; Tamoh, Karim

    2010-12-01

    For semi-arid regions, methods of assessing aquifer recharge usually consider the potential evapotranspiration. Actual evapotranspiration rates can be below potential rates for long periods of time, even in irrigated systems. Accurate estimations of aquifer recharge in semi-arid areas under irrigated agriculture are essential for sustainable water-resources management. A method to estimate aquifer recharge from irrigated farmland has been tested. The water-balance-modelling approach was based on VisualBALAN v. 2.0, a computer code that simulates water balance in the soil, vadose zone and aquifer. The study was carried out in the Campo de Cartagena (SE Spain) in the period 1999-2008 for three different groups of crops: annual row crops (lettuce and melon), perennial vegetables (artichoke) and fruit trees (citrus). Computed mean-annual-recharge values (from irrigation+precipitation) during the study period were 397 mm for annual row crops, 201 mm for perennial vegetables and 194 mm for fruit trees: 31.4, 20.7 and 20.5% of the total applied water, respectively. The effects of rainfall events on the final recharge were clearly observed, due to the continuously high water content in soil which facilitated the infiltration process. A sensitivity analysis to assess the reliability and uncertainty of recharge estimations was carried out.

  16. Review of the wastewater situation in Morocco.

    Science.gov (United States)

    Mandi, L

    2000-01-01

    Recent estimations of the wastewater production of Morocco amounted to 370 million m3 per year, and this is expected to increase to 900 million m3 by the year 2020. In most cases wastewater is discharged directly into the environment, either to the sea via short outfalls or onto farmland for irrigation or infiltration. Major improvements in the quality of wastewater are needed urgently because of the strong migration of the rural population towards the towns and the very rapid demographic expansion. Studies for Sanitation Master Plans for the main towns are currently in progress and are a first step towards meeting these requirements. Development of a national master plan for liquid sewage is a way of extending this procedure over the whole territory.

  17. Woody biomass production in a spray irrigation wastewater treatment facility in North Carolina

    International Nuclear Information System (INIS)

    Frederick, D.; Lea, R.; Milosh, R.

    1993-01-01

    Application of municipal wastewater to deciduous tree plantations offers a viable opportunity to dispose of nutrients and pollutants, while protecting water quality. Production of woody biomass for energy or pulp mill furnish, using wastewater if feasible and markets exist in may parts of the world for this biomass. Plantations of sycamore (Platanus occidentalis L.), and sweetgum (Liquidambar styraciflua L.), have been established in Edenton, North Carolina for application of municipal wastewater. Research describing the dry weight biomass following the fifth year of seedling growth is presented along with future estimates for seedling and coppice yields. Ongoing and future work for estimating nutrient assimilation and wastewater renovation are described and discussed

  18. A review on wastewater disinfection

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2013-01-01

    Full Text Available Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent disinfection. Understanding the differences in inactivation mechanisms is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies. Disinfection byproducts discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Numerous inorganic and organic micropollutants can undergo reactions with disinfectants. Therefore, to mitigate the adverse effects and also to enhance that efficiency, the use of alternative oxidation/disinfection systems should be evaluated as possible alternative to chlorine. This review gives a summary of the traditional, innovative, and combined disinfection alternatives and also disinfection byproducts for effluent of municipal wastewater treatment plants.

  19. Modernisation Strategy for National Irrigation Systems in the Philippines: Balanac and Sta. Maria River Irrigation Systems

    NARCIS (Netherlands)

    Delos Reyes, M.L.F.

    2017-01-01

    This book examines the nature and impact of irrigation system rehabilitation on increasing the actual area irrigated by the publicly funded canal irrigation systems of the Philippines. It proposes a system diagnosis approach for the development of a more appropriate and climate-smart irrigation

  20. Remotely-Sensed Mapping of Irrigation Area in the Chu-Talas River Basin in Central Asia and Application to Compliance Monitoring of Transboundary Water Sharing

    Science.gov (United States)

    Ragettli, S.; Siegfried, T.; Herberz, T.

    2017-12-01

    In the Central Asian Chu-Talas River Basin, farmers depend on freshwater from international rivers to irrigate their fields during the summer growing season. While the allocation percentages of water sharing between up- and downstream are defined for both rivers, marked interannual supply variability plus inadequate monitoring renders the compliance with these quotas difficult. In such circumstances, data on irrigated area obtained by remote sensing can be used to map the extent of irrigation in terms of its area on at national and subnational scales. Due to its transparency on how the data was obtained (freely available satellite data) and processed, this objective measure could potentially be used as a data product for confidence building and for compliance monitoring. This study assesses the extent and location of irrigated areas over the period 2000 - 2016 in the basins by using state-of-the-art remote sensing technology. Using a random forest classifier, an automated irrigated cropland mapping algorithm was implemented in Google Earth Engine using Landsat 7 data. First, a training set was established through visual interpretation (irrigated and non-irrigated classes for the year 2015) and the classifier then trained. The classier was then applied on a series of seasonal greenest pixels image mosaics from 2000 to 2016. A four-stepped accuracy assessment confirmed that the classifier yielded robust, reliable and reproducible results. Outcomes indicate that irrigated areas in the Kyrgyz side of the Talas Basin approximately doubled by 2016 since 2000 while the irrigated area in the Kazakh part of the basin did not significantly change over the 17 year time period. In the Chu River Basin, total irrigated area tripled since 2000. Comparison with officially reported statistics shows differences and points to reporting issues in both countries. We conclude that remote sensing of irrigated areas in arid and semi-arid regions in combination with cloud computing offers

  1. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    2017-01-01

    . We argue that the effect has historical origins: irrigation allowed landed elites in arid areas to monopolize water and arable land. This made elites more powerful and better able to oppose democratization. Consistent with this conjecture, we show that irrigation dependence predicts land inequality...

  2. Substrates of Mauritia flexuosa and wastewater from pig farming on growth and quality in seedlings of Acacia mangium

    Directory of Open Access Journals (Sweden)

    Emanuel França Araújo

    Full Text Available ABSTRACT Sustainable alternatives should be adopted to minimise the negative environmental impacts of agricultural activities. The use of wastewater as well as organic waste, from agricultural activities or found naturally, such as the decomposed stems of the Buriti palm (Mauritia flexuosa, can be a sustainable alternative in the production of seedlings for the reforestation of areas in the process of degradation or desertification, common in the State of Piauí, Brazil. The aim of this study was to evaluate growth and quality in seedlings of Acacia mangium Willd grown in substrates with different proportions of decomposed stems of Mauritia flexuosa (DSB, and irrigated with wastewater from pig farming (WPF. The experimental design was completely randomised, arranged in a 5 x 2 factorial scheme, corresponding to five proportions of DSB and soil (v/v,% - 0:100, 20:80, 40:60, 60:40, 80:20, and two sources of irrigation water (well water and WPF, with four replications. At 100 days after sowing (DAS, the seedlings were collected to measure the variables related to growth, quality and nodulation. Height, root collar diameter, shoot dry weight, leaf area and nitrogen accumulation in the shoots were significantly influenced (p≤0.05 by the interaction between substrate and source of irrigation water. The WPF had no significant influence on the growth or quality of the Acacia mangium Willd seedlings. The best ratio between DSB substrate and soil was 46:54, considered the most suitable for seedling production in Acacia mangium Willd.

  3. Economical Evaluation of Single Irrigation Efficient of Rainfed Barley under Different Agronimic Managements at On-farm Areas

    Directory of Open Access Journals (Sweden)

    Ali Reza Tavakoli

    2016-02-01

    Full Text Available Introduction: Two of the main challenges in developing countries are food production and trying to get a high income for good nutrition and reduction of poverty. Cereals and legumes are the most important crops in the rainfed areas of the country occupying the majority of dry land areas. Irrigated production systems had a main role in food production in the past years; but unfortunately, in recent years, with high population and competition of industry and environment with agricultural sectors, getting adequate irrigation water is difficult. The main purpose of this study is to determine the best option of crop agronomic management. Rainfed agriculture is important in the world; because this production system establishes %80 of the agriculture area and prepares %70 of the food in the world. In the Lorestan province, production area for rainfed barley is 120,000 ha and the amount produced is 120000 ton (approximately 1009 kg per ha. The purposes of this study were to evaluate cost, benefit and profit of rainfed barley production, economical and non-economical substitution of treatments in different agronomic management, study of sale return, cost ratio, determining break-even of price and comparing it with the guaranteed price of barley and estimating the value of water irrigation. Materials and Methods: This research was carried out by sample farmers (12 farmers on rainfed barley at the Honam selected site in the Lorestan province during 2005-07. At on-farm areas of the upper Karkheh River Basin (KRB three irrigation levels were analyzed (rainfed, single irrigation at planting time and single irrigation at spring time under two agronomic managements (advanced management (AM and traditional management (TM. Data was analyzed by Partial Budgeting (PB technique, Marginal Benefit-Cost Ratio (MBCR, and economical and non-economical test. For estimation of net benefit the following formula was used: (1 Where: N.B: Net income (Rials/ ha , B(w : Gross

  4. Accumulation, mobility and plant availability of heavy metals in soils irrigated with untreated sewage effluent in Central Mexico

    International Nuclear Information System (INIS)

    Siebe-Grabach, C.

    1994-01-01

    In Irrigation District 03, Tula, Mexico, wastewater from Mexico City has been used for irrigating agricultural land since the beginning of this century. Today, approximately 85 000 ha are irrigated, alfalfa and maize being the main crops. The sewage effluent does not receive any treatment previous to its evacuation to this irrigation district, and only a part of the water is stored in the Endho Dam before being used, receiving in this way a kind or primary treatment through the sedimentation processes taking place. The reuse of wastewater for agricultural purposes represents an economic source of water and nutrients and has become an important disposal alternative for Mexico City. Nevertheless the contaminants and pathogens contained in the water represent a potential public health hazard and the production capacity of the soils. The aim of the present investigation is to determine the actual contamination levels of heavy metals (Pb, Cd, Cu, Zn) in soils, analysing the accumulation tendencies in time and space, and also to characterize their mobility and plant availability and thus their ecotoxicity. (orig.) [de

  5. Social Innovations in the Field of Wastewater Treatment in Rural Areas

    Directory of Open Access Journals (Sweden)

    Eymontt Andrzej

    2014-12-01

    Full Text Available In order to meet social needs and create new social relations, the EU Commission classified under the concept of social innovations, development and implementation of new ideas (products, services, models. In rural areas, this kind of social needs is represented among others by the need of solving the issue of domestic wastewater treatment. The paper describes the imple-mentation of sewerage development program in Poland, as well as problems derived from large value variation of factors encoun-tered characterising the domestic sewage contamination. In view of the current state, the environmental risks due to improper use of domestic wastewater treatment technologies were specified.

  6. Use of Moringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water.

    Science.gov (United States)

    Sengupta, Mita E; Keraita, Bernard; Olsen, Annette; Boateng, Osei K; Thamsborg, Stig M; Pálsdóttir, Guðný R; Dalsgaard, Anders

    2012-07-01

    Water from wastewater-polluted streams and dug-outs is the most commonly used water source for irrigation in urban farming in Ghana, but helminth parasite eggs in the water represent health risks when used for crop production. Conventional water treatment is expensive, requires advanced technology and often breaks down in less developed countries so low cost interventions are needed. Field and laboratory based trials were carried out in order to investigate the effect of the natural coagulant Moringa oleifera (MO) seed extracts in reducing helminh eggs and turbidity in irrigation water, turbid water, wastewater and tap water. In medium to high turbid water MO extracts were effective in reducing the number of helminth eggs by 94-99.5% to 1-2 eggs per litre and the turbidity to 7-11 NTU which is an 85-96% reduction. MO is readily available in many tropical countries and can be used by farmers to treat high turbid water for irrigation, however, additional improvements of water quality, e.g. by sand filtration, is suggested to meet the guideline value of ≤ 1 helminth egg per litre and a turbidity of ≤ 2 NTU as recommended by the World Health Organization and the U.S. Environmental Protection Agency for water intended for irrigation. A positive correlation was established between reduction in turbidity and helminth eggs in irrigation water, turbid water and wastewater treated with MO. This indicates that helminth eggs attach to suspended particles and/or flocs facilitated by MO in the water, and that turbidity and helminth eggs are reduced with the settling flocs. However, more experiments with water samples containing naturally occurring helminth eggs are needed to establish whether turbidity can be used as a proxy for helminth eggs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Performance of Salix viminalis and Populus nigra x Populus maximowiczii in short rotation intensive culture under high irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Fillion, Maud; Brisson, Jacques [Departement de Sciences biologiques, Universite de Montreal, C.P. 6128, succ. Centre-ville, Montreal, Quebec (Canada); Institut de recherche en biologie vegetale, 4101 Sherbrooke East, Montreal, Quebec (Canada); Teodorescu, Traian I.; Labrecque, Michel [Institut de recherche en biologie vegetale, 4101 Sherbrooke East, Montreal, Quebec (Canada); Sauve, Sebastien [Departement de chimie, Universite de Montreal, C.P. 6128, succursale Centre-ville, Montreal, Quebec (Canada)

    2009-09-15

    On a plantation established in 2004 from stem cuttings at a density of 20,000 trees per hectare, we investigated growth and nutritional plant response to a high hydraulic regime for two species (Salix viminalis and Populus nigra x Populus maximowiczii), using a comparative approach with measurements from irrigated and control plots. The plantation was irrigated from June to September 2005 with about 140 mm per day. The equivalent of 120 Kg NO{sub 3}-N, 40 Kg P{sub 2}O{sub 5}-P and 85 Kg K{sub 2}O-K per hectare per year was applied by means of irrigation with wastewater. No mortality occurred and stem biomass production of both poplar and willow species were not statistically different on irrigated and control areas. However, S. viminalis revealed to be more tolerant to flooded conditions since these corresponded more closely to its nutritional requirements (foliar concentration of 20 mgN g{sup -1}). The capacity of S. viminalis to withstand waterlogged conditions could play an important role in the sustainability of a plantation for the filtration of effluent at low pollutant concentration. (author)

  8. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    Science.gov (United States)

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  9. Side-effects of pesticides used in irrigated rice areas on Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    Science.gov (United States)

    Pazini, Juliano de Bastos; Pasini, Rafael Antonio; Seidel, Enio Júnior; Rakes, Matheus; Martins, José Francisco da Silva; Grützmacher, Anderson Dionei

    2017-08-01

    Telenomus podisi Ashmead (Hymenoptera: Platygastridae) is an important agent for the biological control of stink bug eggs in irrigated rice areas and the best strategy for its preservation is the use of selective pesticides. The aim of this study was to know the side-effects of pesticides used in Brazilian irrigated rice areas on egg parasitoid T. podisi. We evaluated, under laboratory conditions, 13 insecticides, 11 fungicides, 11 herbicides, and a control (distilled water) in choice and no-choice tests. In the no-choice tests, the pesticides were sprayed at pre and post-parasitism stages (egg and larval stages of T. podisi). In the choice tests, sprays were conducted only at pre-parasitism stages. For all tests, we prepared cards with 25 eggs of the alternative host Euschistus heros (Fabricius) (Hemiptera: Pentatomidae) non-parasitized (pre-parasitism) and parasitized (post-parasitism), which were subjected to pesticide sprays. The parasitism and emergence rates of T. podisi were determined classifying the pesticides in terms of the reduction of parasitism or emergence rates compared to the control. The neurotoxic insecticide cypermethrin, lambda-cyhalothrin, zeta-cypermethrin, etofenprox, thiamethoxam, thiamethoxam + lambda-cyhalothrin, acetamiprid + alpha-cypermethrin, and bifenthrin + alpha-cypermethrin + carbosulfan were more harmful to T. podisi and, therefore, are less suitable for the integrated management of insect pests in irrigated rice areas.

  10. DNA damage and repair process in earthworm after in-vivo and in vitro exposure to soils irrigated by wastewaters

    International Nuclear Information System (INIS)

    Qiao Min; Chen Ying; Wang Chunxia; Wang Zijian; Zhu Yongguan

    2007-01-01

    In this study, DNA damage to earthworms (Eisenia fetida) after in vivo exposure to contaminated soils was measured by detecting DNA strand breakages (DSBs) and causality was analyzed through fractionation based bioassays. A non-linear dose-response relationship existed between DNA damage and total soil PAHs levels. DNA damage, measured with the comet assay, and its repair process, were observed. To identify the chemical causality, an in vitro comet assay using coelomocytes was subsequently performed on the fractionated organic extracts from soils. The results showed that the PAHs in the soils were responsible for the exerting genotoxic effects on earthworms. When normalized to benzo(a)pyrene toxic equivalent (TEQ BaP ), the saturation dose in the dose-response curve was about 10 ng TEQ BaP g -1 soil (dw). - A non-linear dose-response relationship exists between earthworm DNA damage, measured with comet assay, and total PAHs levels in soils irrigated by wastewaters

  11. DNA damage and repair process in earthworm after in-vivo and in vitro exposure to soils irrigated by wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Min [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Chen Ying [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wang Chunxia [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wang Zijian [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)]. E-mail: wangzj@rcees.ac.cn; Zhu Yongguan [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2007-07-15

    In this study, DNA damage to earthworms (Eisenia fetida) after in vivo exposure to contaminated soils was measured by detecting DNA strand breakages (DSBs) and causality was analyzed through fractionation based bioassays. A non-linear dose-response relationship existed between DNA damage and total soil PAHs levels. DNA damage, measured with the comet assay, and its repair process, were observed. To identify the chemical causality, an in vitro comet assay using coelomocytes was subsequently performed on the fractionated organic extracts from soils. The results showed that the PAHs in the soils were responsible for the exerting genotoxic effects on earthworms. When normalized to benzo(a)pyrene toxic equivalent (TEQ{sub BaP}), the saturation dose in the dose-response curve was about 10 ng TEQ{sub BaP} g{sup -1} soil (dw). - A non-linear dose-response relationship exists between earthworm DNA damage, measured with comet assay, and total PAHs levels in soils irrigated by wastewaters.

  12. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling

    Science.gov (United States)

    Portmann, Felix T.; Siebert, Stefan; DöLl, Petra

    2010-03-01

    To support global-scale assessments that are sensitive to agricultural land use, we developed the global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000). With a spatial resolution of 5 arc min (about 9.2 km at the equator), MIRCA2000 provides both irrigated and rainfed crop areas of 26 crop classes for each month of the year. The data set covers all major food crops as well as cotton. Other crops are grouped into categories (perennial, annual, and fodder grasses). It represents multicropping systems and maximizes consistency with census-based national and subnational statistics. According to MIRCA2000, 25% of the global harvested areas are irrigated, with a cropping intensity (including fallow land) of 1.12, as compared to 0.84 for the sum of rainfed and irrigated harvested crops. For the dominant crops (rice (1.7 million km2 harvested area), wheat (2.1 million km2), and maize (1.5 million km2)), roughly 60%, 30%, and 20% of the harvested areas are irrigated, respectively, and half of the citrus, sugar cane, and cotton areas. While wheat and maize are the crops with the largest rainfed harvested areas (1.5 million km2 and 1.2 million km2, respectively), rice is clearly the crop with the largest irrigated harvested area (1.0 million km2), followed by wheat (0.7 million km2) and maize (0.3 million km2). Using MIRCA2000, 33% of global crop production and 44% of total cereal production were determined to come from irrigated agriculture.

  13. Performance Evaluation of wastewater treatment plant of Noosh Azar company by online monitoring station

    Directory of Open Access Journals (Sweden)

    leila haddadi

    2018-02-01

    Full Text Available Background& Objective: One of the reuses of wastewater in industries is irrigation of green space. Therefore, with proper treatment and reduction of environmental pollution of wastewater and in compliance with environmental standards, it can be used for irrigation purposes. The present study was aimed to evaluate the performance of Noosh Azar Wastewater Treatment Plant by the online monitoring station in 2016.   Materials and Methods: This descriptive cross-sectional study was performed at Noosh Azar Waste Water Treatment Plant (WWTP in Tehran. The effluent outlet parameters include COD, BOD, TSS, TOC, Turbidity, pH and temperature which were measured 12 times/day by the online monitoring station of the refinery according to the standard methods (the Examinations of Water and Wastewater, and reported at the end of each month. Data were entered into SPSS software and analyzed using statistical indices including mean and standard deviation. Results: The average total of BOD/COD ratio in the wastewater was 0.8. The results of the study showed that the average concentration of COD, BOD and TSS of the wastewater was 1624.91 ±134.85, 1310±75.38 and 283.58± 39.76 mg/L, respectively. The average of total outlet parameters of turbidity, COD, BOD, TSS and TOC were 12.78±2.21, 83.73±12.90, 41.26±6.65, 6.70±2.14, 46.03±7.08 mg/L, and pH=7.80±0.35. The total average of removal efficiencies of COD, BOD and TSS were 93.92±3.62, 96.57±1.002 and 97.57±0.936, respectively. Conclusion: Regarding the proper performance of the activated sludge system of Noosh Azar Company, the effluent  parameters such as COD, BOD, TSS, TOC, turbidity and pH, were in accordance with the standard of the Iranian Environmental Protection Agency for irrigation use. However in order to ensure the quality of the wastewater for reuse, the microbial parameters should also be considered.

  14. Impacts of long-term waste-water irrigation on the development of sandy Luvisols: consequences for metal pollutant distributions

    NARCIS (Netherlands)

    Oort, van F.; Jongmans, A.G.; Lamy, I.; Baize, D.; Chevallier, P.

    2008-01-01

    Studies relating macro- and microscopic aspects of impacts of long-term contaminative practices on soils are scarce. We performed such an approach by assessing the fate of metal pollutants in an area close to Paris, where sandy Luvisols were irrigated for 100 years with urban waste water. As a

  15. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  16. Assessing the changes of groundwater recharge / irrigation water use between SRI and traditional irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2015-04-01

    To respond to agricultural water shortage impacted by climate change without affecting rice yield in the future, the application of water-saving irrigation, such as SRI methodology, is considered to be adopted in rice-cultivation in Taiwan. However, the flooded paddy fields could be considered as an important source of groundwater recharge in Central Taiwan. The water-saving benefit of this new methodology and its impact on the reducing of groundwater recharge should be integrally assessed in this area. The objective of this study was to evaluate the changes of groundwater recharge/ irrigation water use between the SRI and traditional irrigation schemes (continuous irrigation, rotational irrigation). An experimental paddy field located in the proximal area of the Choushui River alluvial fan (the largest groundwater pumping region in Taiwan) was chosen as the study area. The 3-D finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge process and amount under traditional irrigation schemes and SRI methodology. The use of effective rainfall was taken into account or not in different simulation scenarios for each irrigation scheme. The simulation results showed that there were no significant variations of infiltration rate in the use of effective rainfall or not, but the low soil moisture setting in deep soil layers resulted in higher infiltration rate. Taking the use of effective rainfall into account, the average infiltration rate for continuous irrigation, rotational irrigation, and SRI methodology in the first crop season of 2013 were 4.04 mm/day, 4.00 mm/day and 3.92 mm/day, respectively. The groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reducing 4% and 2% compared with continuous irrigation and rotational irrigation, respectively. The field irrigation requirement amount of SRI methodology was significantly

  17. Water rights of the head reach farmers in view of a water supply scenario at the extension area of the Babai Irrigation Project, Nepal

    Science.gov (United States)

    Adhikari, B.; Verhoeven, R.; Troch, P.

    The farmer managed irrigation systems (FMIS) represent those systems which are constructed and operated solely by the farmers applying their indigenous technology. The FMIS generally outperform the modern irrigation systems constructed and operated by the government agencies with regard to the water delivery effectiveness, agricultural productivity etc., and the presence of a sound organization responsible to run the FMIS, often referred to as the ‘social capital’, is the key to this success. This paper studies another important aspect residing in the FMIS: potentials to expand the irrigation area by means of their proper rehabilitation and modernization. Taking the case study of the Babai Irrigation Project in Nepal, it is demonstrated that the flow, which in the past was used to irrigate the 5400 ha area covered by three FMIS, can provide irrigation to an additional 8100 ha in the summer, 4180 ha vegetables in the winter and 1100 ha maize in the spring season after the FMIS rehabilitation. The “priority water rights” of the FMIS part have been evaluated based on relevant crop water requirement calculations and is found to be equal to 85.4 million m 3 per year. Consequently, the dry season irrigation strategy at the extension area could be worked out based on the remaining flow. By storing the surplus discharge of the monsoon and autumn in local ponds, and by consuming them in dry period combined with nominal partial irrigation practice, wheat and mustard can be cultivated over about 4000 ha of the extension area. Furthermore, storage and surface irrigation both contribute to the groundwater recharge. The conjunctive use of ground, surface and harvested water might be the mainstream in the future for a sustainable irrigation water management in the region.

  18. Use of hydroponics culture to assess nutrient supply by treated wastewater.

    Science.gov (United States)

    Adrover, Maria; Moyà, Gabriel; Vadell, Jaume

    2013-09-30

    The use of treated wastewater for irrigation is increasing, especially in those areas where water resources are limited. Treated wastewaters contain nutrients that are useful for plant growth and help to reduce fertilizers needs. Nutrient content of these waters depends on the treatment system. Nutrient supply by a treated wastewater from a conventional treatment plant (CWW) and a lagooned wastewater from the campus of the University of Balearic Islands (LWW) was tested in an experiment in hydroponics conditions. Half-strength Hoagland nutrient solution (HNS) was used as a control. Barley (Hordeum vulgare L.) seedlings were grown in 4 L containers filled with the three types of water. Four weeks after planting, barley was harvested and root and shoot biomass was measured. N, P, K, Ca, Mg, Na and Fe contents were determined in both tissues and heavy metal concentrations were analysed in shoots. N, P and K concentrations were lower in LWW than in CWW, while HNS had the highest nutrient concentration. Dry weight barley production was reduced in CWW and LWW treatments to 49% and 17%, respectively, comparing to HNS. However, to a lesser extent, reduction was found in shoot and root N content. Treated wastewater increased Na content in shoots and roots of barley and Ca and Cr content in shoots. However, heavy metals content was lower than toxic levels in all the cases. Although treated wastewater is an interesting water resource, additional fertilization is needed to maintain a high productivity in barley seedlings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Greenhouse studies on the phyto-extraction capacity of Cynodon nlemfuensis for lead and cadmium under irrigation with treated wastewater

    Science.gov (United States)

    Madyiwa, S.; Chimbari, M. J.; Schutte, C. F.; Nyamangara, J.

    For over 30 years, discharge of sewage effluent and sludge on pasturelands has been used in Zimbabwe as a cheap method for secondary treatment of wastewater without any monitoring of accumulation of heavy metals in soils and grasses, let alone in animals grazing on the pastures. Cynodon nlemfuensis (star grass) has been the main grass planted on the wastewater irrigated pasturelands. This study was conducted to assess the capacity of star grass to accumulate lead (Pb) and cadmium (Cd) and develop models incorporating grass yield, metal uptake and soil bio-available (EDTA extractable) metal content, that could be used to determine critical grass and soil concentrations at which grass productivity declines. Star grass was planted in 30 fertilized pots containing sandy soil within a greenhouse. The pots consisted of nine treatments of varying levels of added inorganic Pb and Cd subjected to treated wastewater application and one control that had no added metals and received water application only. The elements were applied to the soils once just after planting the grass. Chemical analyses showed that star grass had a relatively high phyto-extraction capacity of Pb and Cd, comparable to that of hyper-accumulating grasses such as Lolium perenne (rye grass). It accumulated Pb and Cd to levels far beyond the recommended maximum limits for pasture grass. Analysis of variance on log-normal transformed data showed that bio-available soil metal concentrations correlated strongly with grass metal content and grass metal content correlated strongly with the yield. There was however a weak correlation between the yield and bio-available soil levels. The yield versus grass metal content models that were developed for the first crop and re-growth predicted similar critical metal concentrations and yields. Using the critical grass metal concentrations in the soil bio-available metal concentration versus grass metal concentration models allowed for the prediction of the

  20. Impacts on irrigated agriculture of changes in electricity costs resulting from Western Area Power Administration's power marketing alternatives

    International Nuclear Information System (INIS)

    Edwards, B.K.; Flaim, S.J.; Howitt, R.E.; Palmer, S.C.

    1995-03-01

    Irrigation is a major factor in the growth of US agricultural productivity, especially in western states, which account for more than 85% of the nation's irrigated acreage. In some of these states, almost all cropland is irrigated, and nearly 50% of the irrigation is done with electrically powered pumps. Therefore, even small increases in the cost of electricity could have a disproportionate impact on irrigated agriculture. This technical memorandum examines the impacts that could result from proposed changes in the power marketing programs of the Western Area Power Administration's Salt Lake City Area Office. The changes could increase the cost of power to all Western customers, including rural municipalities and irrigation districts that rely on inexpensive federal power to pump water. The impacts are assessed by translating changes in Western's wholesale power rate into changes in the cost of pumping water as an input for agricultural production. Farmers can adapt to higher electricity prices in many ways, such as (1) using different pumping fuels, (2) adding workers and increasing management to irrigate more efficiently, and (3) growing more drought-tolerant crops. This study projects several responses, including using less groundwater and planting fewer waterintensive crops. The study finds that when dependence on Western's power is high, the cost of power can have a major effect on energy use, agricultural practices, and the distribution of planted acreage. The biggest percentage changes in farm income would occur (1) in Nevada and Utah (however, all projected changes are less than 2% of the baseline) and (2) under the marketing alternatives that represent the lowest capacity and energy offer considered in Western's Electric Power Marketing Environmental Impact Statement. The aggregate impact on farm incomes and the value of total farm production would be much smaller than that suggested by the changes in water use and planted acreage

  1. Increasing Crop Yields in Water Stressed Countries by Combining Operations of Freshwater Reservoir and Wastewater Reclamation Plant

    Science.gov (United States)

    Bhushan, R.; Ng, T. L.

    2015-12-01

    Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.

  2. Mapping Soil hydrologic features in a semi-arid irrigated area in Spain

    Science.gov (United States)

    Jiménez-Aguirre, M.° Teresa; Isidoro, Daniel; Usón, Asunción

    2016-04-01

    The lack of soil information is a managerial problem in irrigated areas in Spain. The Violada Irrigation District (VID; 5234 ha) is a gypsic, semi-arid region in the Middle Ebro River Basin, northeast Spain. VID is under irrigation since the 1940's. The implementation of the flood irrigation system gave rise to waterlogging problems, solved along the years with the installation of an artificial drainage network. Aggregated water balances have been performed in VID since the early 1980's considering average soil properties and aggregated irrigation data for the calculations (crop evapotranspiration, canal seepage, and soil drainage). In 2008-2009, 91% of the VID was modernized to sprinkler irrigation. This new system provides detailed irrigation management information that together with detailed soil information would allow for disaggregated water balances for a better understanding of the system. Our goal was to draw a semi-detailed soil map of VID presenting the main soil characteristics related to irrigation management. A second step of the work was to set up pedotransfer functions (PTF) to estimate the water content and saturated hydraulic conductivity (Ks) from easily measurable parameters. Thirty four pits were opened, described and sampled for chemical and physical properties. Thirty three additional auger holes were sampled for water holding capacity (WHC; down to 60 cm), helping to draw the soil units boundaries. And 15 Ks tests (inverse auger hole method) were made. The WHC was determined as the difference between the field capacity (FC) and wilting point (WP) measured in samples dried at 40°C during 5 days. The comparison with old values dried at 105°C for 2 days highlighted the importance of the method when gypsum is present in order to avoid water removal from gypsum molecules. The soil map was drawn down to family level. Thirteen soil units were defined by the combination of five subgroups [Typic Calcixerept (A), Petrocalcic Calcixerept (B), Gypsic

  3. Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity.

    Science.gov (United States)

    Margenat, Anna; Matamoros, Víctor; Díez, Sergi; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2017-12-01

    Water scarcity and water pollution have increased the pressure on water resources worldwide. This pressure is particularly important in highly populated areas where water demand exceeds the available natural resources. In this regard, water reuse has emerged as an excellent water source alternative for peri-urban agriculture. Nevertheless, it must cope with the occurrence of chemical contaminants, ranging from trace elements (TEs) to organic microcontaminants. In this study, chemical contaminants (i.e., 15 TEs, 34 contaminants of emerging concern (CECs)), bulk parameters, and nutrients from irrigation waters and crop productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia) were seasonally surveyed in 4 farm plots in the peri-urban area of the city of Barcelona. A pristine site, where rain-groundwater is used for irrigation, was selected for background concentrations. The average concentration levels of TEs and CECs in the irrigation water impacted by treated wastewater (TWW) were 3 (35±75μgL -1 ) and 13 (553±1050ngL -1 ) times higher than at the pristine site respectively. Principal component analysis was used to classify the irrigation waters by chemical composition. To assess the impact of the occurrence of these contaminants on agriculture, a seed germination assay (Lactuca sativa L) and real field-scale study of crop productivity (i.e., lettuce and tomato) were used. Although irrigation waters from the peri-urban area exhibited a higher frequency of detection and concentration of the assessed chemical contaminants than those of the pristine site (P1), no significant differences were found in seed phytotoxicity or crop productivity. In fact, the crops impacted by TWW showed higher productivity than the other farm plots studied, which was associated with the higher nutrient availability for plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Biological soil attributes in oilseed crops irrigated with oilfield produced water in the semi-arid region

    Directory of Open Access Journals (Sweden)

    Ana Clarice Melo Azevedo de Meneses

    Full Text Available ABSTRACT Wastewater from oil is the main residue of the oil industry. Studies have shown that wastewater, or produced water, can be treated and used as an alternative source for the irrigation of oilseed crops. The aim of this work was to evaluate the effect of treated produced water on the biological properties of soil cultivated with the castor bean cv. BRS Energy and the sunflower cv. BRS 321 respectively, for two and three successive cycles of grain production. The first cycle in the sunflower and castor bean corresponds to the dry season and the second cycle to the rainy season. The third crop cycle in the sunflower relates to the dry season. The research was carried out from August 2012 to October 2013, in the town of Aracati, in the State of Ceará (Brazil, where both crops were submitted to irrigation with filtered produced water (FPW, produced water treated by reverse osmosis (OPW, or groundwater water from the Açu aquifer (ACW, and to no irrigation (RFD. The treatments, with three replications, were evaluated during the periods of pre-cultivation and plant reproduction for soil respiration (Rs, total organic carbon (TOC and the population density of bacteria (Bact and filamentous fungi (Fung in the soil. In the sunflower crop, these soil attributes are sensitive to the irrigation water used. Irrigation of the castor bean affects soil respiration. Under the conditions of this study, irrigation with FPW may be a short-term alternative in the castor bean and sunflower crops.

  5. Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation

    International Nuclear Information System (INIS)

    Tamtam, Fatima; Oort, Folkert van; Le Bot, Barbara; Dinh, Tuc; Mompelat, Sophie; Chevreuil, Marc; Lamy, Isabelle; Thiry, Medard

    2011-01-01

    Spreading of urban wastewater on agricultural land may lead to concomitant input of organic and inorganic pollutants. Such multiple pollution sites offer unique opportunities to study the fate of both heavy metals and pharmaceuticals. We examined the occurrence and fate of selected antibiotics in sandy-textured soils, sampled four years after cessation of 100 years irrigation with urban wastewater from the Paris agglomeration. Previous studies on heavy metal contamination of these soils guided our sampling strategy. Six antibiotics were studied, including quinolones, with a strong affinity for organic and mineral soil components, and sulfonamides, a group of more mobile molecules. Bulk samples were collected from surface horizons in different irrigation fields, but also in subsurface horizons in two selected profiles. In surface horizons, three quinolones (oxolinic acid, nalidixic acid, and flumequine) were present in eight samples out of nine. Their contents varied spatially, but were well-correlated one to another. Their distributions showed great similarities regarding spatial distribution of total organic carbon and heavy metal contents, consistent with a common origin by wastewater irrigation. Highest concentrations were observed for sampling sites close to irrigation water outlets, reaching 22 μg kg -1 for nalidixic acid. Within soil profiles, the two antibiotic groups demonstrated an opposite behavior: quinolones, found only in surface horizons; sulfamethoxazole, detected in clay-rich subsurface horizons, concomitant with Zn accumulation. Such distribution patterns are consistent with chemical adsorption properties of the two antibiotic groups: immobilization of quinolones in the surface horizons ascribed to strong affinity for organic matter (OM), migration of sulfamethoxazole due to a lower affinity for OM and its interception and retention in electronegative charged clay-rich horizons. Our work suggests that antibiotics may represent a durable

  6. Hydrogeology and water quality of areas with persistent ground- water contamination near Blackfoot, Bingham County, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1987-01-01

    The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications

  7. Constructed wetlands and solar-driven disinfection technologies for sustainable wastewater treatment and reclamation in rural India: SWINGS project.

    Science.gov (United States)

    Álvarez, J A; Ávila, C; Otter, P; Kilian, R; Istenič, D; Rolletschek, M; Molle, P; Khalil, N; Ameršek, I; Mishra, V K; Jorgensen, C; Garfi, A; Carvalho, P; Brix, H; Arias, C A

    2017-09-01

    SWINGS was a cooperation project between the European Union and India, aiming at implementing state of the art low-cost technologies for the treatment and reuse of domestic wastewater in rural areas of India. The largest wastewater treatment plant consists of a high-rate anaerobic system, followed by vertical and horizontal subsurface flow constructed wetlands with a treatment area of around 1,900 m 2 and a final step consisting of solar-driven anodic oxidation (AO) and ultraviolet (UV) disinfection units allowing direct reuse of the treated water. The implementation and operation of two pilot plants in north (Aligarh Muslim University, AMU) and central India (Indira Gandhi National Tribal University, IGNTU) are shown in this study. The overall performance of AMU pilot plant during the first 7 months of operation showed organic matter removal efficiencies of 87% total suspended solids, 95% 5-day biological oxygen demand (BOD 5 ) and 90% chemical oxygen demand, while Kjeldahl nitrogen removal reached 89%. The UV disinfection unit produces water for irrigation and toilet flushing with pathogenic indicator bacteria well below WHO guidelines. On the other hand, the AO disinfection unit implemented at IGNTU and operated for almost a year has been shown to produce an effluent of sufficient quality to be reused by the local population for agriculture and irrigation.

  8. Effect of Irrigation with Reclaimed Water on Fruit Characteristics and Photosynthesis of Olive Trees under Two Irrigation Systems

    Directory of Open Access Journals (Sweden)

    N. Ashrafi

    2016-02-01

    (Ci, and stomatal conductance (gs between (09.30 – 11.30 h on a fully expanded current season leaves situated at mid canopy height. Statistical assessments of differences between mean values were performed by the LSD test at P = 0.05. Results and Discussion The results revealed that reclaimed water enhanced fruit yield, weight (15%, volume (23% and leaf photosynthesis (22% in plants compared with clear water. Recycled water was found to supply more nutrients than clear water. High nutrient concentrations in RW, compared to those in clear water, result in nutrient accumulation in the soil, making them available to plant roots to promote overall plant growth and fruit production. Improved N, P, K nutrition of wastewater-irrigated plants has been reported (Farooq et al, 2006. Olive leaves and stems represent storage organs for N and release it in response to the metabolic demands of developing reproductive and vegetative organs (Fernandez-Escobar et al., 2004. However, Al-Abasi et al. (2009 found no statistical differences. Irrigation with SLI systems increased the photosynthesis (33%, and stomatal conductance (57% when compared with surface irrigation systems. The results showed that reclaimed water had a significant effect on photosynthesis and stomatal conductance. However, fruit length and firmness had no significant difference. Substomatal CO2 decreased when the SI systems were used for irrigation. Also SLI system could enhance fruit yield (65%, weight (17%, photosynthesis (32% and chlorophyll Fluorescence (Fv/Fm (18%. The SLI systems with recycled water induced greater shoot growth, total leaf surface area, and transpiration during the entire growing period. This led to an overall positive effect on mean fruit weight and total fruit production per tree. The SLI system applying RW led to more photosynthesis by 34% as compared to the SI system. In the present study, the SLI system delivered water directly in the root zone and improved water availability, which

  9. Utilization of reverse osmosis (RO) for reuse of MBR-treated wastewater in irrigation-preliminary tests and quality analysis of product water.

    Science.gov (United States)

    Bunani, Samuel; Yörükoğlu, Eren; Sert, Gökhan; Kabay, Nalan; Yüksel, Ümran; Yüksel, Mithat; Egemen, Özdemir; Pek, Taylan Özgür

    2018-02-01

    Membrane bioreactor (MBR) effluent collected from a wastewater treatment plant installed at an industrial zone was used for reverse osmosis (RO) membrane tests in the laboratory. For this, two different GE Osmonics RO membranes (AK-BWRO and AD-SWRO) were employed. The results showed that AK-brackish water reverse osmosis (AK-BWRO) and AD-seawater reverse osmosis (AD-SWRO) membranes have almost similar rejection performances regarding analyzed parameters such as conductivity, salinity, color, chemical oxygen demand (COD), and total organic carbon (TOC). On the other hand, these membranes behaved quite differently considering their permeate water flux at the same applied pressure of 10 bar. AD-SWRO membrane was also tested at 20 bar. The results revealed that AD-SWRO membrane had almost the same rejections either at 10 or at 20 bar of applied pressure. Compared with irrigation water standards, AK-BWRO and AD-SWRO gave an effluent with low salinity value and sodium adsorption ratio (SAR) which makes it unsuitable for irrigation due to the infiltration problems risi0ng from unbalanced values of salinity and SAR. Combination of MBR effluent and RO effluent at respective proportions of 0.3:0.7 and 0.4:0.6 for AK-BWRO and AD-SWRO, respectively, are the optimum mixing ratios to overcome the infiltration hazard problem. Choice of less-sensitive crops to chloride and sodium ions is another strategy to overcome all hazards which may arise from above suggested mixing proportions.

  10. The use of hydrological models in the irrigated areas of Mendoza, Argentina

    NARCIS (Netherlands)

    Querner, E.P.; Morábito, J.A.; Manzanera, M.; Pazos, J.A.; Ciancaglini, N.C.; Menenti, M.

    1997-01-01

    A proper understanding of the interaction of irrigation and drainage canals with an aquifer system is necessary to improve the performance of irrigation. This mechanism must be studied with a detail sufficient to identify operational guidelines for specific portions of an irrigation and drainage

  11. Crescimento e produtividade da mamoneira irrigada com diferentes diluições de esgoto doméstico tratado Growth and production of castor bean irrigated with different dilutions of domestic wastewater

    Directory of Open Access Journals (Sweden)

    Mário C. de F. Ribeiro

    2012-06-01

    Full Text Available Objetivou-se avaliar, neste trabalho, os efeitos da irrigação com água de esgoto doméstico sobre as variáveis de crescimento e produtividade da mamoneira, genótipo EBDA MPB 01, em condições de campo. A pesquisa foi realizada no período de dezembro de 2009 a junho 2010, na Universidade Federal do Recôncavo da Bahia, Campus de Cruz das Almas. Foram estudadas quatro diferentes proporções de diluição de esgoto doméstico tratado em comparação com o tratamento testemunha (adubação e irrigação convencional, da seguinte forma: T1 - 100% do efluente tratado; T2 - 75% do efluente tratado mais 25% de água de poço artesiano; T3 - 50% do efluente tratado mais 50% de água de poço artesiano; T4 - 25% do efluente tratado mais 75% de água de poço artesiano e T5 - manejo convencional (adubação química e irrigação suplementar com água de poço artesiano. O delineamento experimental foi em blocos casualizados (DBC com quatro blocos cada tratamento, constituindo de 20 parcelas experimentais. A produtividade da mamoneira não apresentou diferença estatística entre os tratamentos. O uso de água residuária de esgoto doméstico na cultura da mamoneira, não afetou as variáveis de crescimento analisadas.The effects of the irrigation with domestic wastewater effluent on the growth variables and the productivity of castor bean, genotyps EBDA MPB 01, were evaluated under field conditions. The research was carried out from December 2009 to June 2010, at UFRB experimental area, in Cruz das Almas, BA. Four different proportions of dilution of domestic wastewater effluent in comparison with the conventional treatment were studied, in the following way: T1 - 100% of the treated effluent; T2 - 75% of the effluent +25% of artesian well water; T3 - 50% of the efluent +50% of artesian well water; T4 - 25% of the effluent +75% of artesian well water; T5 - conventional treatment (chemical fertilization and supplementary irrigation with water of

  12. Influence of a deficit irrigation regime during ripening on berry composition in grapevines (Vitis vinifera L.) grown in semi-arid areas.

    Science.gov (United States)

    López, María-Isabel; Sánchez, María-Teresa; Díaz, Antonio; Ramírez, Pilar; Morales, José

    2007-11-01

    A study was made of the effects of irrigation management strategies during ripening on the quality of Spanish field-grown grapevine (Vitis vinifera L.) cultivars (Baladi, Airén, Montepila, Muscat Blanc à Petits Grains and Pedro Ximénez) grown under the "Montilla-Moriles" Appellation of Origin in Cordoba, Spain. From 1999 to 2002, two water-availability regimes were established: irrigation and non-irrigation. The study aimed to ascertain the effect of irrigation on berry development and ripening, and hence on grape juice quality. Changes in phenological stages, vegetative growth, vineyard yield, berry weight, total soluble solids, titrable acidity, pH, tartaric acid, malic acid, and potassium content were monitored. No significant differences were noted in phenological phases between the non-irrigation and deficit irrigation regimes. The Ravaz index, pruning weight, vineyard yield and berry weight were significantly higher in all varieties and years under deficit irrigation. Deficit irrigation induced higher titrable acidity, higher malic acid and potassium contents and a lower pH, but had no significant effects on berry sugar accumulation or tartaric acid content. Deficit irrigation thus appears to be a promising technique for the production of quality young wines in semi-arid areas.

  13. Irrigation of steppe soils in the south of Russia: Problems and solutions (Analysis of Irrigation Practices in 1950-1990)

    Science.gov (United States)

    Minashina, N. G.

    2009-07-01

    Experience in irrigation of chernozems in the steppe zone of Russia for a period from 1950 to 1990 is analyzed. By the end of this period and in the subsequent years, the areas under irrigation reduced considerably, and the soil productivity worsened. This was caused by the improper design of irrigation systems, on the one hand, and by the low tolerance of chernozems toward increased moistening upon irrigation, on the other hand. The analysis of the factors and regimes of soil formation under irrigation conditions shows that irrigation-induced changes in the soil hydrology also lead to changes in the soil physicochemical, biochemical, and other properties. In particular, changes in the composition of exchangeable cations lead to the development of solonetzic process. In many areas, irrigation of chernozems was accompanied by the appearance of solonetzic, vertic, saline, and eroded soils. The development of soil degradation processes is described. In general, the deterioration of irrigated chernozems was related to the absence of adequate experience in irrigation of steppe soils, unskilled personnel, improper regime of irrigation, and excessively high rates of watering. In some cases, the poor quality of irrigation water resulted in the development of soil salinization and alkalization. To improve the situation, the training of personnel is necessary; the strategy of continuous irrigation should be replaced by the strategy of supplementary irrigation in the critical periods of crop development.

  14. Using the SIMGRO regional hydrological model to evaluate salinity control measures in an irrigation area

    NARCIS (Netherlands)

    Kupper, E.; Querner, E.P.; Morábito, J.A.; Menenti, M.

    2002-01-01

    In irrigated areas with drainage and an important interaction with the groundwater system, it is often difficult to predict effects of measures to control salinity. Therefore, in order to evaluate measures to control salinity the SIMGRO integrated regional hydrological model was extended with a

  15. Treated Wastewater Reuse on Potato (Solanum Tuberosum)

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann

    2014-01-01

    A field experiment was carried out in Northern Italy (Po Valley), within the frame of the EU project SAFIR, to asses the impact of treated wastewater reuse on potato yield, quality and hygiene. The potato crop was drip irrigated and fertigated. Wastewater produced by small communities (≤2000 EI......) was treated by Membrane Bio Reactor (MBR) technology and gravel filter (FTS) during three cropping seasons. Treated wastewater, soil and tubers were analysed for the faecal indicator bacterium E. coli and heavy metals contents. Potato total yield was similar for tap and reused water, while the marketable...... production has been found higher with the latter. The tuber dry matter content as well as reducing sugars were not affected by reused water. Total sugars content was higher with MBR and FTS water. Water use efficiency (WUE) was significantly higher with reused water. Compared to tap water, crop gross margin...

  16. Continuous measurement of soil evaporation in a drip-irrigated wine vineyard in a desert area

    Science.gov (United States)

    Evaporation from the soil surface (E) can be a significant source of water loss in arid areas. In sparsely vegetated systems, E is expected to be a function of soil, climate, irrigation regime, precipitation patterns, and plant canopy development, and will therefore change dynamically at both daily ...

  17. Small wastewater treatment plants in mountain areas: combination of septic tank and biological filter.

    Science.gov (United States)

    Maunoir, S; Philip, H; Rambaud, A

    2007-01-01

    Research work has been carried out for more than 20 years by Eparco and the University of Montpellier (France) on the application of biological wastewater treatment processes for small communities. This research has led to a new process which is particularly suitable for remote populations, taking into account several specificities such as as the seasonal fluctuations in the population, the accessibility of the site, the absence of a power supply on site, the reduced area of land available and the low maintenance. Thus, the process, which combines a septic tank operating under anaerobic conditions and a biological aerobic filter, is a solution for wastewater treatment in mountain areas. This paper presents the process and three full-scale applications in the region of the Alps.

  18. Removal of Escherichia coli in treated wastewater used for food production in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mhongole, J. O.; Mdegela, R. H.; Kusiluka, L. J. M.

    2016-01-01

    The aim of this study was to assess the removal efficiency of Escherichia coli at Mafisa and Mzumbe domestic wastewater treatment ponds in Morogoro, Tanzania. The study was done from October, 2013 to April, 2014. A total of 125 water samples from inlets and subsequent anaerobic, facultative......, April and August. To conclude, the simple wastewater treatment ponds in the study sites were effective and demonstrated potential for reduction of public health risks associated with use of treated wastewater in agricultural irrigation and aquaculture....... and maturation ponds as well as treated wastewater were collected and analysed for E. coli. The estimated retention times of the wastewater treatment units were 19 and 22 days in Mafisa and Mzumbe ponds, respectively. The concentration of E. coli ranged from 4.70 to 5.60 log cfu/mL in untreated wastewater...

  19. Sorption behavior of nonylphenol (NP) on sewage-irrigated soil: Kinetic and thermodynamic studies

    International Nuclear Information System (INIS)

    Liao, Xiaoping; Zhang, Caixiang; Yao, Linlin; Li, Jiale; Liu, Min; Xu, Liang; Evalde, Mulindankaka

    2014-01-01

    The reuse of wastewater for irrigation of agricultural land is a well established resources management practice but has the disadvantage of inputting various forms of contaminants into the terrestrial environment including nonylphenol (NP), a well known endocrine disrupting substance. To elucidate the environmental fate and transport of NP, the sorption behavior on sewage-irrigated soil was studied by batch experiment. It was found that sorption processes of NP on different sorbents (soil, humic acid (HA) and silica) could be expressed well using two compartment pseudo first-order model, where both surface and intra-particle diffusion were probable rate-controlling processes. Linear model could better express the sorption of NP on soil, black carbon (BC) and mineral (e.g., SiO 2 ) except HA than Freundlich model. The large value of distribution coefficients of normalized organic carbon (K oc ) on soils indicated that NP was limited to migrate to deep soil. The higher desorption partition coefficient of NP on soil showed enhanced hysteresis. According to the experimental data, the calculated thermodynamic parameters implied that the sorption reaction on sewage-irrigation was spontaneous, exothermic and entropy decreasing process. The amount of soil organic matter (SOM) dominated the sorption capacity, whereas the sorption behavior of NP on soil showed no significant correlation with ionic strength. - Highlights: • Both surface and intra-particle diffusion were rate-controlling processes. • Soil composition influences the partition activity of NP. • Soil organic matter has dominated the sorption capacity of NP on soil. • NP molecule was limited to migrate to deep soil in sewage-irrigated area

  20. Effects of the dissolved organic carbon of treated municipal wastewater on soil infiltration as related to sodium adsorption ratio and pH

    Science.gov (United States)

    Increasing scarcity of fresh water in arid and semi arid regions means that we must utilize alternative water supplies for irrigation if we are to sustain agricultural production in these regions. Treated municipal wastewaters are being increasingly utilized for irrigation. In general only the salin...

  1. Farm-based measures for reducing microbiological health risks for consumers from informal wastewater-irrigated agriculture

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, Pay

    2010-01-01

    in developing countries as part of a multiple-barrier approach for health-risk reduction along the farm to fork pathway. Measures discussed include treatment of irrigation water using ponds, filters and wetland systems; water application techniques; irrigation scheduling; and crop selection. In addition...

  2. 2015 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2014, through October 31, 2015.

  3. Corrective action investigation plan: Area 2 Photo Skid 16 Wastewater Pit, Corrective Action Unit 332. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This Corrective Action Investigation Plan (CAIP) contains a detailed description and plan for an environmental investigation of the Area 2 Photo Skid 16 Wastewater Pit. The site is located in Area 2 of the Nevada Test Site. The Photo Skid Wastewater Pit was used for disposal of photochemical process waste, and there is a concern that such disposal may have released photochemicals and metals to the soil beneath the pit and adjacent to it. The purpose of this investigation is to identify the presence and nature of contamination present in and adjacent to the wastewater pit and to determine the appropriate course of environmental response action for the site. The potential courses of action for the site are clean closure through remediation, closure in place (with or without remediation), or no further action.

  4. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review.

    Science.gov (United States)

    Christou, Anastasis; Agüera, Ana; Bayona, Josep Maria; Cytryn, Eddie; Fotopoulos, Vasileios; Lambropoulou, Dimitra; Manaia, Célia M; Michael, Costas; Revitt, Mike; Schröder, Peter; Fatta-Kassinos, Despo

    2017-10-15

    The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation. Copyright © 2017 Elsevier

  5. Raised bed technology for wheat crop in irrigated areas of punjab, pakistan

    International Nuclear Information System (INIS)

    Taj, S.; Ali, A.; Akmal, N.; Yaqoob, S.; Ali, M.

    2013-01-01

    The present paper analyzes the determinants of adoption of raised bed planting of wheat in irrigated areas of Punjab, Pakistan. Wheat is an important staple food of Pakistan. It contributes 13 % to the value added in agriculture and 2.6 % to the GDP. The agrarian economy of Pakistan is continuously under stress due to the low yield of almost all the crops and constrained with many problem. One of the most important issues of agriculture is water shortage which is increasing day by day and is a major challenge now a days. Therefore, water saving becomes the utmost need of the hour. The national research system is now putting their focus and efforts to manage the precious water through various modern/latest water saving models to draw some solid method of irrigation with less wastage. Raised bed planting method is also one of the modern methods of planting crop with significant water saving. The study was planned and conducted by the Social Sciences Research Institute, Faisalabad in 2011-12 to assess the determinants of the adoption of the raised bed technology for wheat crop in irrigated Punjab, Pakistan. The study was conducted at three sites of the districts Faisalabad and Toba Tek Singh where the Water Management Research Institute, University of Faisalabad promoted the raised bed technology for wheat crop. A sample of 63 farmers was interviewed in detail to understand the whole system and the factors contributing to the adoption of the technology. The study revealed that adopters typically have a more favorable resource base and tend to variously outperform non-adopters. More access to education and other social indicators increases the chances to adopt new technologies by the farming community. However, the small farmers can also be benefited with the technology with proper education regarding the technology in the area with good social mobilization for the conservation of scarce and valuable farm resources. (author)

  6. Uptake and Accumulation of Pharmaceuticals in Lettuce Under Surface and Overhead Irrigations

    Science.gov (United States)

    Bhalsod, G.; Chuang, Y. H.; Jeon, S.; Gui, W.; Li, H.; Guber, A.; Zhang, W.

    2015-12-01

    Pharmaceuticals and personal care products are being widely detected in wastewater and surface waters. As fresh water becomes scarcer, interests in using reclaimed water for crop irrigation is intensified. Since reclaimed waters often carry trace levels of pharmaceuticals, accumulation of pharmaceuticals in food crops could increase the risk of human exposure. This study aims to investigate uptake and accumulations of pharmaceuticals in greenhouse-grown lettuce under contrasting irrigation practices (i.e., overhead and surface irrigations). Lettuce was irrigated with water spiked with 11 commonly used pharmaceuticals (acetaminophen, caffeine, carbamazepine, sulfadiazine, sulfamethoxazole, carbadox, trimethoprim, lincomycin hydrochloride, oxytetracycline hydrochloride, monensin sodium, and tylosin). Weekly sampling of lettuce roots, shoots, and soils were continued for 5 weeks, and the samples were freeze dried, extracted for pharmaceuticals and analyzed by LC-MS/MS. Preliminary results indicate that higher concentrations of pharmaceuticals were found in overhead irrigated lettuce compared to surface irrigated lettuce. For carbamezapine, sulfadiazine, trimethoprim, oxytetracycline, and monensin sodium, their concentrations generally increased in lettuce shoots in the overhead treatment over time. However, acetaminophen was found at higher concentrations in both shoots and roots, indicating that acetaminophen can be easily transported in the plant system. This study provides insight on developing better strategies for using reclaimed water for crop irrigations, while minimizing the potential risks of pharmaceutical contamination of vegetables.

  7. Groundwater-level change and evaluation of simulated water levels for irrigated areas in Lahontan Valley, Churchill County, west-central Nevada, 1992 to 2012

    Science.gov (United States)

    Smith, David W.; Buto, Susan G.; Welborn, Toby L.

    2016-09-14

    The acquisition and transfer of water rights to wetland areas of Lahontan Valley, Nevada, has caused concern over the potential effects on shallow aquifer water levels. In 1992, water levels in Lahontan Valley were measured to construct a water-table map of the shallow aquifer prior to the effects of water-right transfers mandated by the Fallon Paiute-Shoshone Tribal Settlement Act of 1990 (Public Law 101-618, 104 Stat. 3289). From 1992 to 2012, approximately 11,810 water-righted acres, or 34,356 acre-feet of water, were acquired and transferred to wetland areas of Lahontan Valley. This report documents changes in water levels measured during the period of water-right transfers and presents an evaluation of five groundwater-flow model scenarios that simulated water-level changes in Lahontan Valley in response to water-right transfers and a reduction in irrigation season length by 50 percent.Water levels measured in 98 wells from 2012 to 2013 were used to construct a water-table map. Water levels in 73 of the 98 wells were compared with water levels measured in 1992 and used to construct a water-level change map. Water-level changes in the 73 wells ranged from -16.2 to 4.1 feet over the 20-year period. Rises in water levels in Lahontan Valley may correspond to annual changes in available irrigation water, increased canal flows after the exceptionally dry and shortened irrigation season of 1992, and the increased conveyance of water rights transferred to Stillwater National Wildlife Refuge. Water-level declines generally occurred near the boundary of irrigated areas and may be associated with groundwater pumping, water-right transfers, and inactive surface-water storage reservoirs. The largest water-level declines were in the area near Carson Lake.Groundwater-level response to water-right transfers was evaluated by comparing simulated and observed water-level changes for periods representing water-right transfers and a shortened irrigation season in areas near Fallon

  8. Water Pricing and Implementation Strategies for the Sustainability of an Irrigation System: A Case Study within the Command Area of the Rakh Branch Canal

    Directory of Open Access Journals (Sweden)

    Muhammad Uzair Qamar

    2018-04-01

    Full Text Available The command area of the Rakh branch canal grows wheat, sugarcane, and rice crops in abundance. The canal water, which is trivial for irrigating these crops, is conveyed to the farms through the network of canals and distributaries. For the maintenance of this vast infrastructure; the end users are charged on a seasonal basis. The present water charges are severely criticized for not being adequate to properly manage the entire infrastructure. We use the residual value to determine the value of the irrigation water and then based on the quantity of irrigation water supplied to farm land coupled with the infrastructure maintenance cost, full cost recovery figures are executed for the study area, and policy recommendations are made for the implementation of the full cost recovery system. The approach is unique in the sense that the pricings are based on the actual quantity of water conveyed to the field for irrigating crops. The results of our analysis showed that the canal water is severely under charged in the culturable command area of selected distributaries, thus negating the plan of having a self-sustainable irrigation system.

  9. Reuse of drainage water from irrigated areas

    NARCIS (Netherlands)

    Willardson, L.S.; Boels, D.; Smedema, L.K.

    1997-01-01

    Increasing competition for water of good quality and the expectation that at least half of the required increase in food production in the near-future decades must come from the world's irrigated land requires to produce more food by converting more of the diverted water into food. Reuse of the

  10. Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India

    Science.gov (United States)

    Miller-Robbie, Leslie; Ramaswami, Anu; Amerasinghe, Priyanie

    2017-07-01

    Nutrients and water found in domestic treated wastewater are valuable and can be reutilized in urban agriculture as a potential strategy to provide communities with access to fresh produce. In this paper, this proposition is examined by conducting a field study in the rapidly developing city of Hyderabad, India. Urban agriculture trade-offs in water use, energy use and GHG emissions, nutrient uptake, and crop pathogen quality are evaluated, and irrigation waters of varying qualities (treated wastewater, versus untreated water and groundwater) are compared. The results are counter-intuitive, and illustrate potential synergies and key constraints relating to the food-energy-water-health (FEW-health) nexus in developing cities. First, when the impact of GHG emissions from untreated wastewater diluted in surface streams is compared with the life cycle assessment of wastewater treatment with reuse in agriculture, the treatment-plus-reuse case yields a 33% reduction in life cycle system-wide GHG emissions. Second, despite water cycling benefits in urban agriculture, only contamination and farmer behavior and harvesting practices. The study uncovers key physical, environmental, and behavioral factors that constrain benefits achievable at the FEW-health nexus in urban areas.

  11. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  12. Effect of Treated Wastewater Combined with Various Amounts of Manure and Chemical Fertilizers on Nutrient Content and Yield in Corn

    Directory of Open Access Journals (Sweden)

    Abolfazal Tavassoli

    2010-09-01

    Full Text Available In order to study the effects of treated wastewater combined with manure and chemical fertilizers on the nutrients content and forage yield in corn, field experiments were conducted in 2007. The experiments were conducted in a split plot design with three replications. The treatments were comprised of two levels of irrigation water (W1= well water and W2= wastewater in the main plot and five levels of fertilizer (F1= unfertilized, F2 = 100% manure, F3= 50% manure, F4= 100% fertilizer, and F5= 50% fertilizer in the subplot. Results showed that, compared to ordinary water, irrigation with treated wastewater significantly increased fresh and dry forage yield of corn. The treatment using treated wastewater also had a significant effect on N, P, and K contents in corn forage. However, wastewater had no significant effect on plant Fe, Mn, and Zn contents. Among the fertilizer treatments, the highest fresh and dry forage yields and the highest N, P and K contents belonged to the treatments using 100% fertilizer. The highest Fe, Mn, and Zn contents were observed in plants in the treatment with 100% manure.

  13. High resolution electrical resistivity tomography of golf course greens irrigated with reclaimed wastewater: Hydrological approach

    Science.gov (United States)

    Tapias, Josefina C.; Lovera, Raúl; Himi, Mahjoub; Gallardo, Helena; Sendrós, Alexandre; Marguí, Eva; Queralt, Ignasi; Casas, Albert

    2014-05-01

    Actually, there are over 300 golf courses and more than three thousand licensed players in Spain. For this reason golf cannot be considered simply a hobby or a sport, but a very significant economic activity. Considered as one of the most rapidly expanding land-use and water demanding business in the Mediterranean, golf course development generates controversy. In the recent years there has been a considerable demand for golf courses to adopt environmentally sustainable strategies and particularly water authorities are forcing by law golf managers to irrigate with alternative water resources, mainly reclaimed wastewater. Watering practices must be based on soil properties that are characterized by samples removed from the different zones of the golf course and submitted to an accredited physical soil testing laboratory. Watering schedules are critical on greens with poor drainage or on greens with excessively high infiltration rates. The geophysical survey was conducted over the greens of the Girona Golf Club. Eighteen electrical resistivity tomographies were acquired using a mixed Wenner-Schlumberger configuration with electrodes placed 0.5 meter apart. Small stainless-steel nails were used as electrodes to avoid any damage in the fine turfgrass of greens The resistivity meter was set for systematically and automatically selects current electrodes and measurement electrodes to sample apparent resistivity values. Particle size analysis (PSA) has been performed on soil materials of any putting green. The PSA analysis has been composed of two distinct phases. The first has been the textural analysis of the soils for determining the content of sand, silt, and clay fraction via the use of a stack of sieves with decreasing sized openings from the top sieve to the bottom. Subsequently, the hydraulic conductivity of the substrates has been evaluated by means of Bredding and Hazen empirical relationships. The results of this research show that the electrical resistivity

  14. Ocean-Atmosphere Interactions Modulate Irrigation's Climate Impacts

    Science.gov (United States)

    Krakauer, Nir Y.; Puma, Michael J.; Cook, Benjamin I.; Gentine, Pierre; Nazarenko, Larissa

    2016-01-01

    Numerous studies have focused on the local and regional climate effects of irrigated agriculture and other land cover and land use change (LCLUC) phenomena, but there are few studies on the role of ocean- atmosphere interaction in modulating irrigation climate impacts. Here, we compare simulations with and without interactive sea surface temperatures of the equilibrium effect on climate of contemporary (year 2000) irrigation geographic extent and intensity. We find that ocean-atmosphere interaction does impact the magnitude of global-mean and spatially varying climate impacts, greatly increasing their global reach. Local climate effects in the irrigated regions remain broadly similar, while non-local effects, particularly over the oceans, tend to be larger. The interaction amplifies irrigation-driven standing wave patterns in the tropics and mid-latitudes in our simulations, approximately doubling the global-mean amplitude of surface temperature changes due to irrigation. The fractions of global area experiencing significant annual-mean surface air temperature and precipitation change also approximately double with ocean-atmosphere interaction. Subject to confirmation with other models, these findings imply that LCLUC is an important contributor to climate change even in remote areas such as the Southern Ocean, and that attribution studies should include interactive oceans and need to consider LCLUC, including irrigation, as a truly global forcing that affects climate and the water cycle over ocean as well as land areas.

  15. Irrigation management to optimize controlled drainage in a semi-arid area

    NARCIS (Netherlands)

    Soppe, R.W.O.; Ayars, J.E.; Christen, E.W.; Shouse, P.J.

    2003-01-01

    On the west side of the San Joaquin Valley, California, groundwater tables have risen after several decades of irrigation. A regional semi-permeable layer at 100 m depth (Corcoran Clay) combined with over-irrigation and leaching is the major cause of the groundwater rise. Subsurface drain systems

  16. Chloride ion transport and fate in oilfield wastewater reuse by interval dynamic multimedia aquivalence model.

    Science.gov (United States)

    Hu, Y; Zhang, C; Wang, D Z; Wen, J Y; Chen, M H; Li, Y

    2013-01-01

    A surface flow constructed wetland was built up to dispose of oilfield wastewater with a high level of inorganic salt ions. Chlorine ion (Cl(-)) was selected as an indicator of soil secondary salinization, and an interval dynamic multimedia aquivalence (IDMA) model was developed to investigate the dynamic multimedia environmental (air, water, soil, flora, and groundwater) effects of Cl(-) in the wastewater irrigation process between 2002 and 2020. The modeled Cl(-) concentrations were in good agreement with the measured ones, as indicated by the interval average logarithmic residual errors (IALREs) being generally lower than 0.5 logarithmic units. The model results showed that the temporal trends of Cl(-) concentrations in the multimedia environments represented a relatively steady state. More than 97.00% of the mass exchange was finished between soil and groundwater compartments, and Cl(-) finally outputted the environmental system by the pathways of advection outflows in the water (71.03%) and groundwater (24.02%). Soil (59.17%) was the dominant sink of Cl(-). It was revealed that the high level of Cl(-) in oilfield wastewater was well treated by the constructed wetland, and there was not a significant environmental effect of soil secondary salinization in the oilfield wastewater reused for the constructed wetland irrigation.

  17. Long-term effects of irrigation with waste water on soil AM fungi diversity and microbial activities: the implications for agro-ecosystem resilience.

    Directory of Open Access Journals (Sweden)

    Maria del Mar Alguacil

    Full Text Available The effects of irrigation with treated urban wastewater (WW on the arbuscular mycorrhizal fungi (AMF diversity and soil microbial activities were assayed on a long-term basis in a semiarid orange-tree orchard. After 43 years, the soil irrigated with fresh water (FW had higher AMF diversity than soils irrigated with WW. Microbial activities were significantly higher in the soils irrigated with WW than in those irrigated with FW. Therefore, as no negative effects were observed on crop vitality and productivity, it seems that the ecosystem resilience gave rise to the selection of AMF species better able to thrive in soils with higher microbial activity and, thus, to higher soil fertility.

  18. A Fuzzy analytical hierarchy process approach in irrigation networks maintenance

    Science.gov (United States)

    Riza Permana, Angga; Rintis Hadiani, Rr.; Syafi'i

    2017-11-01

    Ponorogo Regency has 440 Irrigation Area with a total area of 17,950 Ha. Due to the limited budget and lack of maintenance cause decreased function on the irrigation. The aim of this study is to make an appropriate system to determine the indices weighted of the rank prioritization criteria for irrigation network maintenance using a fuzzy-based methodology. The criteria that are used such as the physical condition of irrigation networks, area of service, estimated maintenance cost, and efficiency of irrigation water distribution. 26 experts in the field of water resources in the Dinas Pekerjaan Umum were asked to fill out the questionnaire, and the result will be used as a benchmark to determine the rank of irrigation network maintenance priority. The results demonstrate that the physical condition of irrigation networks criterion (W1) = 0,279 has the greatest impact on the assessment process. The area of service (W2) = 0,270, efficiency of irrigation water distribution (W4) = 0,249, and estimated maintenance cost (W3) = 0,202 criteria rank next in effectiveness, respectively. The proposed methodology deals with uncertainty and vague data using triangular fuzzy numbers, and, moreover, it provides a comprehensive decision-making technique to assess maintenance priority on irrigation network.

  19. Geo-environmental model for the prediction of potential transmission risk of Dirofilaria in an area with dry climate and extensive irrigated crops. The case of Spain.

    Science.gov (United States)

    Simón, Luis; Afonin, Alexandr; López-Díez, Lucía Isabel; González-Miguel, Javier; Morchón, Rodrigo; Carretón, Elena; Montoya-Alonso, José Alberto; Kartashev, Vladimir; Simón, Fernando

    2014-03-01

    Zoonotic filarioses caused by Dirofilaria immitis and Dirofilaria repens are transmitted by culicid mosquitoes. Therefore Dirofilaria transmission depends on climatic factors like temperature and humidity. In spite of the dry climate of most of the Spanish territory, there are extensive irrigated crops areas providing moist habitats favourable for mosquito breeding. A GIS model to predict the risk of Dirofilaria transmission in Spain, based on temperatures and rainfall data as well as in the distribution of irrigated crops areas, is constructed. The model predicts that potential risk of Dirofilaria transmission exists in all the Spanish territory. Highest transmission risk exists in several areas of Andalucía, Extremadura, Castilla-La Mancha, Murcia, Valencia, Aragón and Cataluña, where moderate/high temperatures coincide with extensive irrigated crops. High risk in Balearic Islands and in some points of Canary Islands, is also predicted. The lowest risk is predicted in Northern cold and scarcely or non-irrigated dry Southeastern areas. The existence of irrigations locally increases transmission risk in low rainfall areas of the Spanish territory. The model can contribute to implement rational preventive therapy guidelines in accordance with the transmission characteristics of each local area. Moreover, the use of humidity-related factors could be of interest in future predictions to be performed in countries with similar environmental characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Wastewater stabilization ponds - an appropriate technology for sewage treatment and refuse

    International Nuclear Information System (INIS)

    Aziz, J.A.

    1999-01-01

    Treatment of wastewater is imperative to protect human health and environmental quality. To this effect, the chosen technology should be cost effective, simple and easy to operate and maintain. Wastewater stabilization ponds offer one such technology and their use should be promoted in countries with scarcity of water so as to reuse the treated effluents in irrigation. Long term, pilot scale investigations on the performance of wastewater stabilization ponds have been undertaken at the Institute of Environmental Engineering and Research, Lahore to develop design criteria for their local use. This paper discuss the types and operation of waste stabilization ponds and the extent of their application in Pakistan. The need for users' education for effective operation of this simple facility is also emphasized. (author)

  1. Quantitative Analysis on the Influence Factors of the Sustainable Water Resource Management Performance in Irrigation Areas: An Empirical Research from China

    Directory of Open Access Journals (Sweden)

    Hulin Pan

    2018-01-01

    Full Text Available Performance evaluation and influence factors analysis are vital to the sustainable water resources management (SWRM in irrigation areas. Based on the objectives and the implementation framework of modern integrated water resources management (IWRM, this research systematically developed an index system of the performances and their influence factors ones of the SWRM in irrigation areas. Using the method of multivariate regression combined with correlation analysis, this study estimated quantitatively the effect of multiple factors on the water resources management performances of irrigation areas in the Ganzhou District of Zhangye, Gansu, China. The results are presented below. The overall performance is mainly affected by management enabling environment and management institution with the regression coefficients of 0.0117 and 0.0235, respectively. The performance of ecological sustainability is mainly influenced by local economic development level and enable environment with the regression coefficients of 0.08642 and −0.0118, respectively. The performance of water use equity is mainly influenced by information publicity, administrators’ education level and ordinary water users’ participation level with the correlation coefficients of 0.637, 0.553 and 0.433, respectively. The performance of water use economic efficiency is mainly influenced by the management institutions and instruments with the regression coefficients of −0.07844 and 0.01808, respectively. In order to improve the overall performance of SWRM in irrigation areas, it is necessary to strengthen the public participation, improve the manager’ ability and provide sufficient financial support on management organization.

  2. Public Health Risk Assessment of Heavy Metal Uptake by Vegetables Grown at a Waste-water-Irrigated Site in Dhaka, Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammad Shakhaoat Hossain

    2015-01-01

    Conclusions. Higher values in the metal pollution index and health risk index indicate heavy metal contamination in wastewater-irrigated soils that present the potential for a significant negative impact on human health.

  3. Ozonization of reclaimed wastewater and effects on particulate matter and disinfection. Reuse perspectives for irrigation in Tenerife (Spain); Ozonizacion del agua residual depurada y sus efectos sobre la materia particulada y desinfeccion. Perspectivas para su posterior uso en el riego agricola en Tenerife

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Gomez, L. E.; Diaz Gonzalez, F.; Abreu Acosta, N.; Martin Delgado, M.; Aguilar Gonzalez, E.

    2006-07-01

    In this work a study on the feasibility of ozonization as a disinfection and organic matter removal method was carried out on reclaimed wastewater for crop irrigation in the South of Tenerife. three different O{sub 3} doses were applied to reclaimed wastewater: 10, 15 and 20 g/m''3. The highest total suspended solids (TSS) removal obtained was 44%, with both 15 and 20 mg/l O{sub 3}. However, a direct relationship between the O{sub 3} dose applied and the reduction of faecal coliforms has been found, achieving a complete removal with the O{sub 3} dose of 20 mg/l. (Author) 17 refs.

  4. A Tool for the Evaluation of Irrigation Water Quality in the Arid and Semi-Arid Regions

    Directory of Open Access Journals (Sweden)

    Lucia Bortolini

    2018-02-01

    Full Text Available In the Mediterranean arid and semi-arid regions, large amounts of low quality waters could be used for crop irrigation, but the adoption of articulated classifications with too rigid quality limits can often reduce the recoverable quantities of water and make the monitoring of water quality too much expensive. Therefore, an evaluation of irrigation water quality based on only a few crucial parameters, which consider the crop species to be irrigated and the type of irrigation system and management adopted, can be an easy and flexible method for maximizing the reuse of wastewater and low-quality water for agricultural purposes. In this view, an irrigation water quality tool (IWQT was developed to support farmers of arid and semi-arid regions on evaluating the use of low quality water for crop irrigation. The most significant and cheapest parameters of irrigation water quality were identified and clustered in three quality classes according to their effects on crop yield and soil fertility (agronomic quality indicators, human health (hygiene and health quality indicators, and irrigation systems (management quality indicators. According to IWQT parameters, a tool reporting a series of recommendations, including water treatment types, was implemented to guide farmers on the use of low quality irrigation water.

  5. Agricultural reuse of municipal wastewater through an integral water reclamation management.

    Science.gov (United States)

    Intriago, Juan Carlo; López-Gálvez, Francisco; Allende, Ana; Vivaldi, Gaetano Alessandro; Camposeo, Salvatore; Nicolás Nicolás, Emilio; Alarcón, Juan José; Pedrero Salcedo, Francisco

    2018-05-01

    The DESERT-prototype, a state-of-the-art compact combination of water treatment technologies based on filtration and solar-based renewable energy, was employed to reclaim water for agricultural irrigation. Water reclaimed through the DESERT-prototype (PW) from a secondary effluent of a wastewater treatment plant, as well as conventional irrigation water (CW) and the secondary effluent (SW) itself, were employed to cultivate baby romaine lettuces in a greenhouse in Murcia (Spain), by means of drip and sprinkler irrigation methods, thus establishing six treatments. Assessments of physicochemical and microbiological quality of irrigation water, as well as agronomic and microbiological quality of crops from all treatments, showed that results associated to PW complied in all cases with relevant standards and guidelines. In contrast, results linked to SW and CW presented certain non-compliance cases of water and crop microbiological quality. These assessments lead to conclude that the DESERT-prototype is an appropriate technology for safe water reclamation oriented to agricultural production, that can be complemented by a proper irrigation method in reaching safety targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Investigations into the biodegradation of microcystin-LR in wastewaters

    International Nuclear Information System (INIS)

    Ho, Lionel; Hoefel, Daniel; Palazot, Sebastien; Sawade, Emma; Newcombe, Gayle; Saint, Christopher P.; Brookes, Justin D.

    2010-01-01

    Microcystins are potent hepatotoxins that can be produced by cyanobacteria. These organisms can proliferate in wastewaters due to a number of factors including high concentrations of nutrients for growth. As treated wastewaters are now being considered as supplementary drinking water sources, in addition to their frequent use for irrigated agriculture, it is imperative that these wastewaters are free of toxins such as microcystins. This study investigated the potential for biodegradation of microcystin-LR (MCLR) in wastewaters through a biological sand filtration experiment and in static batch reactor experiments. MCLR was effectively removed at a range of concentrations and at various temperatures, with degradation attributed to the action of microorganisms indigenous to the wastewaters. No hepatotoxic by-products were detected following the degradation of MCLR as determined by a protein phosphatase inhibition assay. Using TaqMan polymerase chain reaction, the first gene involved in bacterial degradation of MCLR (mlrA) was detected and the responsible bacteria shown to increase with the amount of MCLR being degraded. This finding suggested that the degradation of MCLR was dependent upon the abundance of MCLR-degrading organisms present within the wastewater, and that MCLR may provide bacteria with a significant carbon source for proliferation; in turn increasing MCLR removal.

  7. Estimation of furrow irrigation sediment loss using an artificial neural network

    Science.gov (United States)

    The area irrigated by furrow irrigation in the U.S. has been steadily decreasing but still represents about 20% of the total irrigated area in the U.S. Furrow irrigation sediment loss is a major water quality issue and a method for estimating sediment loss is needed to quantify the environmental imp...

  8. Modernized Irrigation Technologies in West Africa

    Directory of Open Access Journals (Sweden)

    Hakan Büyükcangaz

    2017-12-01

    Full Text Available Crop production in West Africa is mostly dependent upon rainfed agriculture. Irrigation is a vital need due to uneven distribution of rainfall and seasonality of water resources. However, management and sustainability of irrigation are under risk due to notably weak database, excessive cost, unappropriate soil or land use, environmental problems and extreme pessimism in some quarters since rainfed agriculture is seen as potentially able to support the present population. This paper focuses on modernized irrigation technologies and systems that utilize less water. Information about irrigation systems in Ghana and Liberia were gathered through: 1 Irrigation development authorities in both countries, by reviewing past literatures, online publications, reports and files about irrigation in West Africa, specifically Ghana and Liberia; 2 International Food Policy Research Institute (IFPRI; 3 Collation of information, reports and data from Ghana Irrigation Development Authority (GIDA and 4 International Water Management Institute (IWMI. The result shows that both countries have higher irrigation potential. However, the areas developed for irrigation is still a small portion as compare to the total land available for irrigation. On the other hand, as seen in the result, Liberia as compare to Ghana has even low level of irrigation development.

  9. 2015 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    International Nuclear Information System (INIS)

    Lewis, Michael George

    2016-01-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2014, through October 31, 2015.

  10. Clustering of Groundwater Used in Isfahan Landscape Irrigation and Their Qualititative Changes Over one Decade

    Directory of Open Access Journals (Sweden)

    Jahangir Abedi Koupai

    2010-06-01

    Full Text Available Ten irrigation wells were selected along Chaharbagh Street and the Zayandehrood River bank to investigate and classify the groundwaters used for irrigating Isfahan landscape for their quality. Monthly sampling was performed and the results of the quality tests were used as seasonal averages. Different measurements such as pH, EC, Na+, C1-, HCO3-, Fe+2 were made according to standard methods and the Surfer program was used and the results were represented as isolines. Also seasonal classification of wells was performed based on similarities found among the water quality of the wells using statistical programs. Results revealed the poor quality of water from some of the study wells due to the discharge of urban and industrial wastewaters, chemical manure, etc. Besides, investigation of changes in water quality indicated the declining irrigation water quality and the increasing availability of water for landscape irrigation.

  11. Industrial reuse of regenerated of wastewater; Reutilizacion industrial de aguas residuales regeneradas

    Energy Technology Data Exchange (ETDEWEB)

    Cortacans Torre, J.A.

    1998-12-01

    The reuse of treated wastewater is a realistic possibility not only for agricultural irrigation or in recreational uses (golf greens), but for other purposes which require a better quality. In the wastewater plant of Monclova the effluent must be of a high quality in order to reuse it in the processes of the existing steel-mill. To achieve this quality a biological process including nitrification and denitrification is followed by a tertiary treatment including a physico-chemical treatment with flotation, chemical precipitation of phosphorus, pressure filtration and chlorination. (Author)

  12. Introduction: Panda or Hydra? The untold stories of drip irrigation

    NARCIS (Netherlands)

    Kuper, M.; Venot, J.P.; Zwarteveen, M.; Venot, J.P.; Kuper, M.; Zwarteveen, M.

    2017-01-01

    Irrigated areas in the world are witnessing a transformation from open canal systems to more ‘modern’ irrigation methods such as drip irrigation that convey water through closed pipe systems. Initially associated with hi-tech irrigated agriculture, drip irrigation is now being used by a wide range

  13. Effects of irrigating poplar energy crops with landfill leachate on soil micro- and meso-fauna

    Science.gov (United States)

    Jill A. Zalesny; David R. Coyle; Ronald S. Jr. Zalesny; Adam H. Wiese

    2009-01-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization for the trees. Populus species and hybrids (i.e., poplars) are ideal for such systems given their fast...

  14. Characterization of some metal pollutants in the topsoil of Shukari irrigation farm area, Jere, Borno State

    International Nuclear Information System (INIS)

    Bukar, P.H.; Egwuonwu, G.N.

    2011-01-01

    A study of the abundance, distribution and accumulation of some metal pollutants in irrigation farm area of Shukari, Jere Local Government area of Borno State was carried out. XRF instrument was used to determine the presence and concentration of the metals in the top soil samples (0-25 cm) to ascertain their level of toxicity and distribution in the area. Results show that Ni(0.93 -8.07 ppm), Zn(0.06 -8.57 ppm), Mn(0.05-0.21 ppm), Fe(0.0652-0.2866 ppm), Ba(0.0157-0.0411 ppm), Ce(0.0059-0.0118 ppm) Rb(0.0070-0.0165 ppm), V(0.0031-0.0142 ppm) Ti(0.0153-0.0256 ppm), P(0.0064-0.0077 ppm), La(0.0006-0.0007 ppm), Sr(0.0226-0.0230 ppm), Y(0.0033-0.0046 ppm), Mo(0.0002-0.00024 ppm) and Ta(0.000093-0.00014 ppm) concentrations in the soil. Detailed discrepancy analysis of the results with reference to WHO and FEPA standard for soil pollution shows that the accumulation and distribution of the toxic metals in the area were predominantly below soil maximum permissible limits for agricultural activities. Hence, the implications of the results to the environment, irrigation farming activities and public health in the area were highlighted.

  15. Impact of watering with UV-LED-treated wastewater on microbial and physico-chemical parameters of soil.

    Science.gov (United States)

    Chevremont, A-C; Boudenne, J-L; Coulomb, B; Farnet, A-M

    2013-04-15

    Advanced oxidation processes based on UV radiations have been shown to be a promising wastewater disinfection technology. The UV-LED system involves innovative materials and could be an advantageous alternative to mercury-vapor lamps. The use of the UV-LED system results in good water quality meeting the legislative requirements relating to wastewater reuse for irrigation. The aim of this study was to investigate the impact of watering with UV-LED treated wastewaters (UV-LED WW) on soil parameters. Solid-state ¹³C NMR shows that watering with UV-LED WW do not change the chemical composition of soil organic matter compared to soil watered with potable water. Regarding microbiological parameters, laccase, cellulase, protease and urease activities increase in soils watered with UV-LED WW which means that organic matter brought by the effluent is actively degraded by soil microorganisms. The functional diversity of soil microorganisms is not affected by watering with UV-LED WW when it is altered by 4 and 8 months of watering with wastewater (WW). After 12 months, functional diversity is similar regardless of the water used for watering. The persistence of faecal indicator bacteria (coliform and enterococci) was also determined and watering with UV-LED WW does not increase their number nor their diversity unlike soils irrigated with activated sludge wastewater. The study of watering-soil microcosms with UV-LED WW indicates that this system seems to be a promising alternative to the UV-lamp-treated wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    Science.gov (United States)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  17. Soil Quality after Six Years of Paper Mill Industrial Wastewater Application

    Directory of Open Access Journals (Sweden)

    Ivan Carlos Carreiro Almeida

    Full Text Available ABSTRACT The application of wastewater to irrigate soils may be an attractive option for paper mills, especially when the effluents can also provide nutrients to plants. Since there could be negative environmental effects, such activity must be preceded by a thorough evaluation of the consequences. The changes in soil quality of a Neossolo Flúvico Distrófico (Typic Udifluvent were evaluated over a period of six years of irrigation with treated effluent from a wood pulp company. Although effluent application for six years did not affect soil resistance to penetration and soil hydraulic conductivity, it promoted a decrease in the mean size of aggregates and an increase in clay dispersion. Effluent application increased soil pH but did not change exchangeable Ca and Mg contents and organic carbon. After a full rotation of eucalyptus cultivation common in Brazil (six years, no negative effects in tree growth were found due to effluent irrigation. However, effluent addition caused higher values of Na adsorption ratio and intermediate electrical conductivity in the soil, which indicates a possible negative effect on soil quality if the application continues over a longer period. Therefore, a monitoring program should be carried out during subsequent crop rotations, and alternatives must be studied to obtain better effluent quality, such as adding Ca and Mg to the wastewater and using gypsum in the soil.

  18. Ancestral irrigation method by kanis in Bolivia

    Science.gov (United States)

    Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María

    2015-04-01

    Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and

  19. Deficit irrigation and fertilization strategies to improve soil quality and alfalfa yield in arid and semi-arid areas of northern China.

    Science.gov (United States)

    Jia, Qianmin; Kamran, Muhammad; Ali, Shahzad; Sun, Lefeng; Zhang, Peng; Ren, Xiaolong; Jia, Zhikuan

    2018-01-01

    In the arid and semi-arid areas of northern China, overexploitation of fertilizers and extensive irrigation with brackish groundwater have led to soil degradation and large areas of farmland have been abandoned. In order to improve the soil quality of abandoned farmland and make reasonable use of brackish groundwater, we conducted field trials in 2013 and 2014. In our study, we used three fertilization modes (CF, chemical fertilizer; OM, organic manure and chemical fertilizer; NF, no fertilizer) and three deficit irrigation levels (I 0 : 0 mm; I 75 : 75 mm; I 150 : 150 mm). The results showed that the activities of soil urease, alkaline phosphatase, invertase, catalase, and dehydrogenase in the OM treatment were significantly improved compared with those in the CF and NF treatments under the three deficit irrigation levels. Compared with NF, the OM treatment significantly increased soil organic carbon (SOC), water-soluble carbon (WSC), total nitrogen, microbial biomass carbon and nitrogen (MBC and MBN), and soil respiration rate, and significantly decreased soil C:N and MBC:MBN ratios and the metabolic quotient, thus improving the soil quality of abandoned farmland. Furthermore, the OM treatment increased alfalfa plant height, leaf area index, leaf chlorophyll content, and biomass yield. Under the CF and OM fertilization modes, the activities of urease and catalase in I 150 were significantly higher than those in I 0 , whereas irrigating without fertilizer did not significantly increase the activity of these two enzymes. Regardless of fertilization, alkaline phosphatase activity increased with an increase in irrigation amount, whereas invertase activity decreased. The results showed that deficit irrigation with brackish groundwater under the OM treatment can improve soil quality. Over the two years of the study, maximum SOC, total nitrogen, WSC, MBC, and MBN were observed under the OM-I 150 treatment, and the alfalfa biomass yield of this treatment was also

  20. Deficit irrigation and fertilization strategies to improve soil quality and alfalfa yield in arid and semi-arid areas of northern China

    Directory of Open Access Journals (Sweden)

    Qianmin Jia

    2018-02-01

    Full Text Available Background In the arid and semi-arid areas of northern China, overexploitation of fertilizers and extensive irrigation with brackish groundwater have led to soil degradation and large areas of farmland have been abandoned. In order to improve the soil quality of abandoned farmland and make reasonable use of brackish groundwater, we conducted field trials in 2013 and 2014. Methods In our study, we used three fertilization modes (CF, chemical fertilizer; OM, organic manure and chemical fertilizer; NF, no fertilizer and three deficit irrigation levels (I0: 0 mm; I75: 75 mm; I150: 150 mm. Results The results showed that the activities of soil urease, alkaline phosphatase, invertase, catalase, and dehydrogenase in the OM treatment were significantly improved compared with those in the CF and NF treatments under the three deficit irrigation levels. Compared with NF, the OM treatment significantly increased soil organic carbon (SOC, water-soluble carbon (WSC, total nitrogen, microbial biomass carbon and nitrogen (MBC and MBN, and soil respiration rate, and significantly decreased soil C:N and MBC:MBN ratios and the metabolic quotient, thus improving the soil quality of abandoned farmland. Furthermore, the OM treatment increased alfalfa plant height, leaf area index, leaf chlorophyll content, and biomass yield. Under the CF and OM fertilization modes, the activities of urease and catalase in I150 were significantly higher than those in I0, whereas irrigating without fertilizer did not significantly increase the activity of these two enzymes. Regardless of fertilization, alkaline phosphatase activity increased with an increase in irrigation amount, whereas invertase activity decreased. Discussion The results showed that deficit irrigation with brackish groundwater under the OM treatment can improve soil quality. Over the two years of the study, maximum SOC, total nitrogen, WSC, MBC, and MBN were observed under the OM-I150 treatment, and the alfalfa

  1. Hollow fiber membrane ultrafiltration of a simulated secondary treatment wastewater. Process and fouling modeling

    OpenAIRE

    Soler Cabezas, José Luis; Vincent Vela, Maria Cinta; Mendoza Roca, José Antonio; Martínez Francisco, Francisco Juan

    2012-01-01

    It is well known that there is a scarcity of drinking and irrigation water around the world nowadays. According to the United Nations, water scarcity affects 1.2 billion people (one-fifth of the world's population) and the water use has been growing at twice the rate of population increase in the last century. This fact makes the reuse of the wastewater from municipal wastewater treatment plants (MWTPs) an interesting option. Ultrafiltration after the secondary settling is becoming more f...

  2. Research on monitoring system of water resources in irrigation region based on multi-agent

    International Nuclear Information System (INIS)

    Zhao, T H; Wang, D S

    2012-01-01

    Irrigation agriculture is the basis of agriculture and rural economic development in China. Realizing the water resource information of irrigated area will make full use of existing water resource and increase benefit of irrigation agriculture greatly. However, the water resource information system of many irrigated areas in our country is not still very sound at present, it lead to the wasting of a lot of water resources. This paper has analyzed the existing water resource monitoring system of irrigated areas, introduced the Multi-Agent theories, and set up a water resource monitoring system of irrigated area based on multi-Agent. This system is composed of monitoring multi-Agent federal, telemetry multi-Agent federal, and the Communication Network GSM between them. It can make full use of good intelligence and communication coordination in the multi-Agent federation interior, improve the dynamic monitoring and controlling timeliness of water resource of irrigated area greatly, provide information service for the sustainable development of irrigated area, and lay a foundation for realizing high information of water resource of irrigated area.

  3. Potential dual use of biochar for wastewater treatment and soil amelioration

    Science.gov (United States)

    Marschner, Bernd; Werner, Steffen; Alfes, Karsten; Lübken, Manfred

    2013-04-01

    Irrigating crops with wastewater from open drainage channels is a common practice in urban agricultural production in many dry regions of Africa, Asia and Latin America. While the wastewater-borne nutrients reduce the need for inputs of mineral fertilizers or manures and thus reduce production costs, wastewater-borne pathogens and contaminants pose a health risk for the producers and consumers of the crops. Furthermore, the input of nutrients with the irrigation water may greatly exceed crop requirements and thus lead to unproductive leaching losses of nutrients. It is generally acknowledged that biochar additions can increase the soil's sorption and retention capacity for nutrients and water. However, positive effects on crop production are generally only observed, if this is combined with mineral fertilizers or manures due to the low nutrient content of biochars. Biochar possibly also has a high potential for use in water purification, replacing the coal-based activated carbon as a sorbent for contaminants and pathogens. It was therefore hypothesized that biochar can be used for pathogen removal from wastewater while at the same time being loaded with nutrients and contaminants. If contaminants are of minor concern the "loaded" biochar can be used as a soil amendment, providing not only long-term sorption capacity but also nutrients. Experiments were conducted with pyrochar from Miscanthus, rice husks and wood chips, which strongly differed in elemental composition, MIR-DRIFT spectra, surface charge properties and sorption potential for DOC and phosphate. When used as top filter layer in a sand column system, the biochars effectively reduced E. coli concentrations from raw wastewater by up to 2 log units. While biochars from rice husks and Miscanthus accumulated N substantially, wood chip biochar showed no N retention. On the other hand, P accumulation was most pronounced for wood chip biochar. Ongoing incubation experiments with the "loaded" and fresh biochar in

  4. Diverse Land Use and the Impact on (Irrigation Water Quality and Need for Measures — A Case Study of a Norwegian River

    Directory of Open Access Journals (Sweden)

    Gro S. Johannessen

    2015-06-01

    Full Text Available Surface water is used for irrigation of food plants all over the World. Such water can be of variable hygienic quality, and can be contaminated from many different sources. The association of contaminated irrigation water with contamination of fresh produce is well established, and many outbreaks of foodborne disease associated with fresh produce consumption have been reported. The objective of the present study was to summarize the data on fecal indicators and selected bacterial pathogens to assess the level of fecal contamination of a Norwegian river used for irrigation in an area which has a high production level of various types of food commodities. Sources for fecal pollution of the river were identified. Measures implemented to reduce discharges from the wastewater sector and agriculture, and potential measures identified for future implementation are presented and discussed in relation to potential benefits and costs. It is important that the users of the water, independent of intended use, are aware of the hygienic quality and the potential interventions that may be applied. Our results suggest that contamination of surface water is a complex web of many factors and that several measures and interventions on different levels are needed to achieve a sound river and safe irrigation.

  5. Optimizing conjunctive use of surface water and groundwater for irrigation in arid and semi-arid areas: an integrated modeling approach

    Science.gov (United States)

    Wu, Xin; Wu, Bin; Zheng, Yi; Tian, Yong; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    In arid and semi-arid agricultural areas, groundwater (GW) is an important water source of irrigation, in addition to surface water (SW). Groundwater pumping would significantly alter the regional hydrological regime, and therefore complicate the water resources management process. This study explored how to optimize the conjunctive use of SW and GW for agricultural irrigation at a basin scale, based on integrated SW-GW modeling and global optimization methods. The improved GSFLOW model was applied to the Heihe River Basin, the second largest inland river basin in China. Two surrogate-based global optimization approaches were implemented and compared, including the well-established DYCORS algorithm and a new approach we proposed named as SOIM, which takes radial basis function (RBF) and support vector machine (SVM) as the surrogate model, respectively. Both temporal and spatial optimizations were performed, aiming at maximizing saturated storage change of midstream part conditioned on non-reduction of irrigation demand, constrained by certain annual discharge for the downstream part. Several scenarios for different irrigation demand and discharge flow are designed. The main study results include the following. First, the integrated modeling not only provides sufficient flexibility to formulation of optimization problems, but also makes the optimization results more physically interpretable and managerially meaningful. Second, the surrogate-based optimization approach was proved to be effective and efficient for the complex, time-consuming modeling, and is quite promising for decision-making. Third, the strong and complicated SW-GW interactions in the study area allow significant water resources conservation, even if neither irrigation demand nor discharge for the downstream part decreases. Under the optimal strategy, considerable part of surface water division is replaced by 'Stream leakage-Pump' process to avoid non-beneficial evaporation via canals. Spatially

  6. Irrigated agriculture with limited water supply:Tools for understanding and managing irrigation and crop water use efficiencies

    Science.gov (United States)

    Water availability for irrigated agriculture is declining in both China and the United States due to increased use for power generation, municipalities, industries and environmental protection. Persistent droughts have exacerbated the situation, leading to increases in irrigated area as farmers atte...

  7. Trash-polluted irrigation: characteristics and impact on agriculture

    Science.gov (United States)

    Sulaeman, D.; Arif, SS; Sudarmadji

    2018-04-01

    Trash pollution has been a problem in sustainable water resources management. Trash pollutes not only rivers, lakes and seas, but also irrigation canals and rice fields. This study aimed to identify the characteristics of solid waste (type, time of occurrence and sources of trash) and its impact on agriculture. The study was conducted in four irrigation areas, namely Gamping, Merdiko, Nglaren and Karangploso in Bantul District, Yogyakarta Special Region. We applied the Irrigation Rapid Trash Assessment (IRTA) as our field survey instrument. The results showed that trash was found throughout irrigation canals and rice fields, and the occurrence was influenced by water flow, time and farmer activities. The irrigation was dominantly polluted by plastic trash (52.2%), biodegradable waste (17.91%) and miscellaneous trash (12.3%). The IRTA score showed that Gamping Irrigation Area was at marginal condition, bearing a high risk of disturbing the operation and maintenance of the irrigation canals as well as farmers’ health. Trash in irrigation also generated technical impact of the irrigation operation and maintenance, environmental quality, and social life. This research also offered environmental policy integration approach and water-garbage governance approach as an alternative solution to manage water resources and agriculture in a sustainable manner, under the pressure of increasing amount of trash.

  8. Mapping Irrigation Potential in the Upper East Region of Ghana

    Science.gov (United States)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  9. Nematode suppression and growth stimulation in corn plants (Zea mays L.) irrigated with domestic effluent.

    Science.gov (United States)

    Barros, Kenia Kelly; do Nascimento, Clístenes Williams Araújo; Florencio, Lourdinha

    2012-01-01

    Treated wastewater has great potential for agricultural use due to its concentrations of nutrients and organic matter, which are capable of improving soil characteristics. Additionally, effluents can induce suppression of plant diseases caused by soil pathogens. This study evaluates the effect of irrigation with effluent in a UASB reactor on maize (Zea mays L.) development and on suppression of the diseases caused by nematodes of the genus Meloidogyne. Twelve lysimeters of 1 m(3) each were arranged in a completely randomized design, with four treatments and three replicates. The following treatments were used: T1 (W+I), irrigation with water and infestation with nematodes; T2 (W+I+NPK), irrigation with water, infestation with nematodes and fertilization with nitrogen (N), phosphorus (P) and potassium (K); T3 (E+I), irrigation with effluent and infestation with nematodes; and T4 (E+I+P), irrigation with effluent, infestation with nematodes and fertilization with phosphorus. The plants irrigated with the effluent plus the phosphorus fertilizer had better growth and productivity and were more resistant to the disease symptoms caused by the nematodes. The suppression levels may have been due to the higher levels of Zn and NO(3)(-) found in the leaf tissue of the plants irrigated with the effluent and phosphorus fertilizer.

  10. Scheduling of Irrigation and Leaching Requirements

    Directory of Open Access Journals (Sweden)

    Amer Hassan Al-haddad

    2015-03-01

    Full Text Available Iraq depends mainly on Tigris and Euphrates Rivers to provide high percentage of agricultural water use for thousands years. At last years, Iraq is suffering from shortage in water resources due to global climate changes and unfair water politics of the neighboring countries, which affected the future of agriculture plans for irrigation, added to that the lack of developed systems of water management in the irrigation projects and improper allocation of irrigation water, which reduces water use efficiency and lead to losing irrigation water and decreasing in agricultural yield. This study aims at studying the usability of irrigation and leaching scheduling within the irrigating projects and putting a complete annual or seasonal irrigation program as a solution for the scarcity of irrigation water, the increase of irrigation efficiency, lessening the salinity in the projects and preparing an integral irrigation calendar through field measurements of soil physical properties and chemical for project selected and compared to the results of the irrigation scheduling and leaching with what is proposed by the designers. The process is accomplished by using a computer program which was designed by Water Resources Department at the University of Baghdad, with some modification to generalize it and made it applicable to various climatic zone and different soil types. Study area represented by large project located at the Tigris River, and this project was (Al-Amara irrigation project. Sufficient samples of project's soil were collected so as to identify soil physical and chemical properties and the salinity of soil and water as well as identifying the agrarian cycles virtually applied to this project. Finally, a comparison was conducted between the calculated water quantities and the suggested ones by the designers. The research results showed that using this kind of scheduling (previously prepared irrigation and leaching scheduling with its properties

  11. Seasonal occurrence and distribution of a group of ECs in the water resources of Granada city metropolitan areas (South of Spain): Pollution of raw drinking water

    Science.gov (United States)

    Luque-Espinar, Juan Antonio; Navas, Natalia; Chica-Olmo, Mario; Cantarero-Malagón, Samuel; Chica-Rivas, Lucía

    2015-12-01

    This piece of research deals with the monitoring of a group of emerging contaminants (ECs) in the metropolitan area of Granada, a city representative of the South of Spain, in order to evaluate the environmental management of the wastewater system. With that aim, the spatial and seasonal occurrence and distribution of a group of ECs in groundwater, surface and irrigation water resources from the aquifer "Vega de Granada" (VG) have been investigated for the first time. A set of the most prescribed drugs in Spain (ibuprofen, loratadine, pantoprazole and paracetamol), a pesticide widely used in agriculture (atrazine) and a typical anthropogenic contaminant (caffeine) were included in the study. Water samples were taken from the metropolitan area of the city of Granada inside of the zone of the aquifer, from the downstream of two waste water treatment plants (WWTPs) and from the two main irrigation channels where surface and wastewater are mixed before distribution for irrigation purposes in the crops of the study area. A total of 153 water samples were analyzed through liquid chromatography coupled with mass spectrometry (LC-MS/MS) throughout the study that took place over a period of two years, from July 2011 to July 2013. Results demonstrated the occurrence of four of the six target pollutants. Ibuprofen was detected several times, always in both channels with concentration ranges from 5.3 to 20.8 μg/L. The occurrence of paracetamol was detected in rivers and channels up to 34.3 μg/L. Caffeine was detected in all the water resources up to 39.3 μg/L. Pantoprazole was detected twice in the surface water source near to a WWPT ranging from 0.02 to 0.05 μg/L. The pesticide atrazine and the drug loratadine were not detected in any of the water samples analyzed. These results show evidence of poor environmental management of the wastewater concerning the water quality of the aquifer studied. The groundwater sources seem to receive a very continuous input of wastewater

  12. Contribution to the improvement of irrigation management practices through water - deficit irrigation

    International Nuclear Information System (INIS)

    Bazza, M.

    1995-01-01

    The study aimed at identifying irrigation management practices which could result in water savings through -water deficit irrigation. Two field experiments, one on wheat and the other on sugar beet, were conducted and consisted of refraining from supplying water during specific stages of the cycle so as to identy the period(s) during which water deficit would have a limited effect on crop production. In the case of wheat, high water deficit occurred during the early and during these stages was the most beneficial for the crop. However, one water application during the tillering stage allowed the yield to be lower only to that of the treatement with three irrigations. Irrigation during the stage of grain filling caused the kernel weight to be as high as under three irrigations. The lowest value corresponded to the treatement with one irrigation during grain filling and that under rainfed conditions. For sugar beet, when water stress was was applied early in the crop cycle, its effect could be almost entirely recovered with adequate watering during the rest of the growing season. On the opposite, good watering early in cycle, followed by a stress, resulted in the second lowest yield. Water deficit during the maturity stage had also a limited effect on yield. The most crucial periods for adequate watering were which correspond to late filiar development and root growth which coincided with the highest water requirements period. For the same amount of water savings through deficit irrigation, it was better to partition the stress throughout the cycle than during the critical stages of the crop. However, at the national level, it would have been more important to practice deficit irrigation and the irrigated area. For both crops, high yields as high as water - use efficiency values could have been obtained. 8 tabs; 5 refs ( Author )

  13. Occurrence of vancomycin-resistant and -susceptible Enterococcus spp. in reclaimed water used for spray irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Stephanie Ann; Goldstein, Rachel E. Rosenberg [Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD (United States); Gibbs, Shawn G. [Department of Environmental Health, School of Public Health-Bloomington, Indiana University, Bloomington, IN (United States); Claye, Emma [Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD (United States); He, Xin [Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, MD (United States); Sapkota, Amy R., E-mail: ars@umd.edu [Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD (United States)

    2016-05-15

    Reclaiming municipal wastewater for agricultural, environmental, and industrial purposes is increasing in the United States to combat dwindling freshwater supplies. However, there is a lack of data regarding the microbial quality of reclaimed water. In particular, no previous studies have evaluated the occurrence of vancomycin-resistant enterococci (VRE) in reclaimed water used at spray irrigation sites in the United States. To address this knowledge gap, we investigated the occurrence, concentration, and antimicrobial resistance patterns of VRE and vancomycin-susceptible enterococci at three U.S. spray irrigation sites that use reclaimed water. We collected 48 reclaimed water samples from one Mid-Atlantic and two Midwest spray irrigation sites, as well as their respective wastewater treatment plants, in 2009 and 2010. Samples were analyzed for total enterococci and VRE using standard membrane filtration. Isolates were purified and then confirmed using biochemical tests and PCR. Antimicrobial susceptibility testing was conducted using the Sensititre® microbroth dilution system. Data were analyzed by two-sample proportion tests and one-way analysis of variance. We detected total enterococci and VRE in 71% (34/48) and 4% (2/48) of reclaimed water samples, respectively. Enterococcus faecalis was the most common species identified. At the Mid-Atlantic spray irrigation site, UV radiation decreased total enterococci to undetectable levels; however, subsequent storage in an open-air pond at this site resulted in increased concentrations of enterococci. E. faecalis isolates recovered from the Mid-Atlantic spray irrigation site expressed intrinsic resistance to quinupristin/dalfopristin; however, non-E. faecalis isolates expressed resistance to quinupristin/dalfopristin (52% of isolates), vancomycin (4%), tetracycline (13%), penicillin (4%) and ciprofloxacin (17%). Our findings show that VRE are present in low numbers in reclaimed water at point-of-use at the sampled spray

  14. Occurrence of vancomycin-resistant and -susceptible Enterococcus spp. in reclaimed water used for spray irrigation

    International Nuclear Information System (INIS)

    Carey, Stephanie Ann; Goldstein, Rachel E. Rosenberg; Gibbs, Shawn G.; Claye, Emma; He, Xin; Sapkota, Amy R.

    2016-01-01

    Reclaiming municipal wastewater for agricultural, environmental, and industrial purposes is increasing in the United States to combat dwindling freshwater supplies. However, there is a lack of data regarding the microbial quality of reclaimed water. In particular, no previous studies have evaluated the occurrence of vancomycin-resistant enterococci (VRE) in reclaimed water used at spray irrigation sites in the United States. To address this knowledge gap, we investigated the occurrence, concentration, and antimicrobial resistance patterns of VRE and vancomycin-susceptible enterococci at three U.S. spray irrigation sites that use reclaimed water. We collected 48 reclaimed water samples from one Mid-Atlantic and two Midwest spray irrigation sites, as well as their respective wastewater treatment plants, in 2009 and 2010. Samples were analyzed for total enterococci and VRE using standard membrane filtration. Isolates were purified and then confirmed using biochemical tests and PCR. Antimicrobial susceptibility testing was conducted using the Sensititre® microbroth dilution system. Data were analyzed by two-sample proportion tests and one-way analysis of variance. We detected total enterococci and VRE in 71% (34/48) and 4% (2/48) of reclaimed water samples, respectively. Enterococcus faecalis was the most common species identified. At the Mid-Atlantic spray irrigation site, UV radiation decreased total enterococci to undetectable levels; however, subsequent storage in an open-air pond at this site resulted in increased concentrations of enterococci. E. faecalis isolates recovered from the Mid-Atlantic spray irrigation site expressed intrinsic resistance to quinupristin/dalfopristin; however, non-E. faecalis isolates expressed resistance to quinupristin/dalfopristin (52% of isolates), vancomycin (4%), tetracycline (13%), penicillin (4%) and ciprofloxacin (17%). Our findings show that VRE are present in low numbers in reclaimed water at point-of-use at the sampled spray

  15. The reuse of regenerated water for irrigation of a golf course: evolution geochemistry and probable affection to a volcanic aquifer (Canary Islands); La reutilizacion de aguas regeneradas para riego de un campo de golf: evolucion geoquimica y probable afeccion a un acuifero volconico (Islas Canarias)

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, M. C.; Palacios, M. P.; Estevez, E.; Cruz, T.; Hernandez-Moreno, J. M.; Fernandez-Vera, J. R.

    2009-07-01

    Irrigation reuse of treated urban wastewater presents unquestionable advantages, but recently some possible unfavourable effects that need to be studied in the long term have been detected. The Bandama golf course, located at the NE of Gran Canaria, has been selected to develop an integrated study of the affection on a medium-long term, due to it has been irrigated with reused water for more than 30 years. The characterization of irrigation water, soil, soil lixiviate and aquifer functioning has allowed to obtain preliminary conclusions pointing to the importance of the soil nature, the precipitation, the irrigation management and the hydrogeologic conditions in the soil and aquifer response, In the study area, this is complicated for the existence of about 250 m thick unsaturated zone conformed by volcanic materials where water must flow through fractures, making impossible to be sampled. (Author) 7 refs.

  16. Improved Optimization for Wastewater Treatment and Reuse System Using Computational Intelligence

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2018-01-01

    Full Text Available River water pollution by wastewater can cause significant negative impact on the aquatic sustainability. Hence, accurate modeling of this complicated system and its cost-effective treatment and reuse decision is very important because this optimization process is related to economic expenditure, societal health, and environmental deterioration. In order to optimize this complex system, we may consider three treatment or reuse options such as microscreening filtration, nitrification, and fertilization-oriented irrigation on top of two existing options such as settling and biological oxidation. The objective of this environmental optimization is to minimize the economic expenditure of life cycle costs while satisfying the public health standard in terms of groundwater quality and the environmental standard in terms of river water quality. Particularly, this study improves existing optimization model by pinpointing the critical deficit location of dissolved oxygen sag curve by using analytic differentiation. Also, the proposed formulation considers more practical constraints such as maximal size of irrigation area and minimal amount of filtration treatment process. The results obtained by using an evolutionary algorithm, named a parameter-setting-free harmony search algorithm, show that the proposed model successfully finds optimal solutions while conveniently locating the critical deficit point.

  17. Wastewater garden--a system to treat wastewater with environmental benefits to community.

    Science.gov (United States)

    Nair, Jaya

    2008-01-01

    Many communities and villages around the world face serious problems with lack of sanitation especially in disposing of the wastewater-black water and grey water from the houses, or wash outs from animal rearing sheds. Across the world diverting wastewater to the surroundings or to the public spaces are not uncommon. This is responsible for contaminating drinking water sources causing health risks and environmental degradation as they become the breeding grounds of mosquitoes and pathogens. Lack of collection and treatment facilities or broken down sewage systems noticed throughout the developing world are associated with this situation. Diverting the wastewater to trees and vegetable gardens was historically a common practice. However the modern world has an array of problems associated with such disposal such as generation of large quantity of wastewater, unavailability of space for onsite disposal or treatment and increase in population. This paper considers the wastewater garden as a means for wastewater treatment and to improve the vegetation and biodiversity of rural areas. This can also be implemented in urban areas in association with parks and open spaces. This also highlights environmental safety in relation to the nutrient, pathogen and heavy metal content of the wastewater. The possibilities of different types of integration and technology that can be adopted for wastewater gardens are also discussed. IWA Publishing 2008.

  18. Wastewater Irrigation and Health

    International Development Research Centre (IDRC) Digital Library (Canada)

    Web: www.idrc.ca ... The paper used is FSC certified. ..... Manzoor Qadir, International Center for Agricultural Research in the Dry Areas (ICARDA) and International ... IR. ingestion rates. IWMI. International Water Management Institute. KAPP.

  19. Buried aquifers in the Brooten-Belgrade and Lake Emily areas, west-central Minnesota--Factors related to developing water for irrigation

    Science.gov (United States)

    Wolf, R.J.

    1976-01-01

    Irrigation has given a substantial boost to the economy in the Brooten-Belgrade and Lake Emily areas of Minnesota. The surficial outwash aquifer is capable of yielding sufficient quantities of water for irrigation over half of its area; the remaining part may be supplied by deep aquifers. Buried glacial outwash and Cretaceous sand aquifers, as thick as 50 feet occur to depths of 300 feet. In places, the buried aquifers are sufficiently thick and permeable to yield large quantities of water to wells. The buried aquifers are probably narrow, elongate, truncated bodies enclosed by clay till. The Precambrian surface, ranging from 190 to 350 feet below the land surface, is the lower limit of the buried aquifers.

  20. Modeling irrigation behavior in groundwater systems

    Science.gov (United States)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  1. Heavy metals in cow's milk and cheese produced in areas irrigated with waste water in Puebla, Mexico.

    Science.gov (United States)

    Castro-González, Numa Pompilio; Calderón-Sánchez, Francisco; Castro de Jesús, Jair; Moreno-Rojas, Rafael; Tamariz-Flores, José V; Pérez-Sato, Marcos; Soní-Guillermo, Eutiquio

    2018-03-01

    The aim of this work was to determine Ni, Cr, Cu, Zn, Pb, and As levels in raw milk and Oaxaca and ranchero type cheeses, produced in areas irrigated with waste water from Puebla in Mexico. Milk results showed a mean Pb level of 0.03 mg kg -1 , which is above the maximum limit as set by Codex Alimentarius and the European Commission standards. For As a mean value of 0.12 mg kg -1 in milk was obtained. Mean As and Pb levels in milk were below the Mexican standard. Milk whey and ranchero cheese had mean Pb levels of 0.07 and 0.11 mg kg -1 , respectively. As was higher in Oaxaca and ranchero cheese at 0.17 and 0.16 mg kg -1 , respectively. It was concluded that cheeses made from cow's milk from areas irrigated with waste water are contaminated with Pb and As, which may represent a health risk.

  2. Biomphalaria species distribution and its effect on human Schistosoma mansoni infection in an irrigated area used for rice cultivation in northeast Brazil

    Directory of Open Access Journals (Sweden)

    Delmany Moitinho Barboza

    2012-09-01

    Full Text Available The role of irrigated areas for the spread of schistosomiasis is of worldwide concern. The aim of the present study was to investigate the spatial distribution of the intermediate snail host Biomphalaria in an area highly endemic for schistosomiasis due to Schistosoma mansoni, evaluating the relationship between irrigation and types of natural water sources on one hand, and the influence of place and time of water exposure on the intensity of human infection on the other. A geographical information system (GIS was used to map the distribution of the intermediate snail hosts in Ilha das Flores, Sergipe, Brazil, combined with a clinical/epidemiological survey. We observed a direct correlation between the intensity of human infection with S. mansoni and irrigation projects. Malacological studies to identify snail species and infection rates showed that B. glabrata is the main species responsible for human schistosomiasis in the municipality, but that B. straminea also plays a role. Our results provide evidence for a competitive selection between the two snail species in rice fields with a predominance of B. glabrata in irrigation systems and B. straminea in natural water sources.

  3. Detection of Anthropogenic pressures on western Mediterranean irrigation systems (La Albufera de Valencia agriculture system, eastern Spain)

    Science.gov (United States)

    Pascual-Aguilar, J. A.; Andreu, V.; Picó, Y.

    2012-04-01

    Irrigation systems are considered as one of the major landscapes features in western Mediterranean environments. Both socio-economic and cultural elements are interrelated in their development and preservation. Generally, due to their location in flat lands and close to major urban-industrial zones, irrigation lands are suffering of intense pressures that can alter their agricultural values, environmental quality and, consequently, the sustainability of the systems. To understand the nature of anthropogenic pressures on large Mediterranean water agricultural systems a methodology based on environmental forensics criteria has been developed and applied to La Albufera Natural Park in Valencia (Eastern Spain), a protected area where traditional irrigation systems exists since Muslim times (from 8th to 15th centuries). The study analysed impacts on water and soils, for the first case the fate of emerging contaminants of urban origin (pharmaceuticals and illegal drugs) are analysed. Impact on soils is analysed using the dynamics urban expansion and the loss and fragmentation of soils. The study focused is organised around two major procedures: (1) analysis of 16 water samples to identify the presence of 14 illicit drugs and 17 pharmaceutical compounds by Liquid Chromatography-Mass Spectrometry techniques; (2) spatial analysis with Geographical Information Systems (GIS) integrating different sources and data formats such as water analysis, social, location of sewage water treatment plan and the synchronic comparison of two soil sealing layers -for the years 1991 and 2010. Results show that there is a clear trend in the introduction of pharmaceutical in the irrigation water through previous use of urban consumption and, in many cases, for receiving the effluents of wastewaters treatment plants. Impacts on soils are also important incidence in the fragmentation and disappearance of agricultural land due to soil sealing, even within the protected area of the Natural Park

  4. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain.

    Science.gov (United States)

    Abrahão, Raphael; Carvalho, Monica; Causapé, Jesús

    2017-02-01

    Irrigation increases yields and allows several crops to be produced in regions where it would be naturally impossible due to limited rainfall. However, irrigation can cause several negative environmental impacts, and it is important to understand these in depth for the correct application of mitigation measures. The life cycle assessment methodology was applied herein to compare the main irrigated and non-irrigated crops in Northeast Spain (corn and wheat, respectively), identifying those processes with greater contribution to environmental impacts (carbon and water footprint categories) and providing scientifically-sound information to facilitate government decisions. Due to concerns about climate change and water availability, the methods selected for evaluation of environmental impacts were IPCC 2013 GWP (carbon footprint) and water scarcity indicator (water footprint). The area studied, a 7.38-km 2 basin, was monitored for 12 years, including the period before, during, and after the implementation of irrigation. The functional unit, to which all material and energy flows were associated with, was the cultivation of 1 ha, throughout 1 year. The overall carbon footprint for irrigated corn was higher, but when considering the higher productivity achieved with irrigation, the emissions per kilogram of corn decrease and finally favor this irrigated crop. When considering the water footprint, the volumes of irrigation water applied were so high that productivity could not compensate for the negative impacts associated with water use in the case of corn. Nevertheless, consideration of productivities and gross incomes brings the results closer. Fertilizer use (carbon footprint) and irrigation water (water footprint) were the main contributors to the negative impacts detected.

  5. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Science.gov (United States)

    Lee, Ho Min; Sadollah, Ali

    2015-01-01

    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252

  6. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Directory of Open Access Journals (Sweden)

    Do Guen Yoo

    2015-01-01

    Full Text Available Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6. The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.

  7. Zinc solubility and fractionation in cultivated calcareous soils irrigated with wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Nazif, W. [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom); Marzouk, E.R. [Division of Soil and Water Sciences, Faculty of Environmental Agricultural Sciences, Suez Canal University, North Sinai 45516 (Egypt); Perveen, S. [Department of Soil and Environmental Sciences, Khyber Pakhtunkhwa Agricultural University, Peshawar (Pakistan); Crout, N.M.J. [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom); Young, S.D., E-mail: scott.young@nottingham.ac.uk [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom)

    2015-06-15

    The solubility, lability and fractionation of zinc in a range of calcareous soils from Peshawar, Pakistan were studied (18 topsoils and 18 subsoils). The lability (E-value) of Zn was assessed as the fraction isotopically exchangeable with {sup 70}Zn{sup 2+}; comparative extractions included 0.005 M DTPA, 0.43 M HNO{sub 3} and a Tessier-style sequential extraction procedure (SEP). Because of the extremely low concentration of labile Zn the E-value was determined in soils suspended in 0.0001 M Na{sub 2}-EDTA which provided reliable analytical conditions in which approximately 20% of the labile Zn was dissolved. On average, only 2.4% of soil Zn was isotopically exchangeable. This corresponded closely to Zn solubilised by extraction with 0.005 DTPA and by the carbonate extraction step (F1 + F2) of the Tessier-style SEP. Crucially, although the majority of the soil CaCO{sub 3} was dissolved in F2 of the SEP, the DTPA dissolved only a very small proportion of the soil CaCO{sub 3}. This suggests a superficial carbonate-bound form of labile Zn, accessible to extraction with DTPA and to isotopic exchange. Zinc solubility from soil suspended in 0.01 M Ca(NO{sub 3}){sub 2} (PCO{sub 2} controlled at 0.03) was measured over three days. Following solution speciation using WHAM(VII) two simple solubility models were parameterised: a pH dependent ‘adsorption’ model based on the labile (isotopically exchangeable) Zn distribution coefficient (Kd) and an apparent solubility product (Ks) for ZnCO{sub 3}. The distribution coefficient showed no pH-dependence and the solubility model provided the best fit to the free ion activity (Zn{sup 2+}) data, although the apparent value of log{sub 10} Ks (5.1) was 2.8 log units lower than that of the mineral smithsonite (ZnCO{sub 3}). - Highlights: • Isotopically exchangeable Zn in the calcareous soils of Peshawar is extremely low. • There is no evidence of topsoil enrichment from the use of wastewater for irrigation. • Solubility

  8. Zinc solubility and fractionation in cultivated calcareous soils irrigated with wastewater

    International Nuclear Information System (INIS)

    Nazif, W.; Marzouk, E.R.; Perveen, S.; Crout, N.M.J.; Young, S.D.

    2015-01-01

    The solubility, lability and fractionation of zinc in a range of calcareous soils from Peshawar, Pakistan were studied (18 topsoils and 18 subsoils). The lability (E-value) of Zn was assessed as the fraction isotopically exchangeable with 70 Zn 2+ ; comparative extractions included 0.005 M DTPA, 0.43 M HNO 3 and a Tessier-style sequential extraction procedure (SEP). Because of the extremely low concentration of labile Zn the E-value was determined in soils suspended in 0.0001 M Na 2 -EDTA which provided reliable analytical conditions in which approximately 20% of the labile Zn was dissolved. On average, only 2.4% of soil Zn was isotopically exchangeable. This corresponded closely to Zn solubilised by extraction with 0.005 DTPA and by the carbonate extraction step (F1 + F2) of the Tessier-style SEP. Crucially, although the majority of the soil CaCO 3 was dissolved in F2 of the SEP, the DTPA dissolved only a very small proportion of the soil CaCO 3 . This suggests a superficial carbonate-bound form of labile Zn, accessible to extraction with DTPA and to isotopic exchange. Zinc solubility from soil suspended in 0.01 M Ca(NO 3 ) 2 (PCO 2 controlled at 0.03) was measured over three days. Following solution speciation using WHAM(VII) two simple solubility models were parameterised: a pH dependent ‘adsorption’ model based on the labile (isotopically exchangeable) Zn distribution coefficient (Kd) and an apparent solubility product (Ks) for ZnCO 3 . The distribution coefficient showed no pH-dependence and the solubility model provided the best fit to the free ion activity (Zn 2+ ) data, although the apparent value of log 10 Ks (5.1) was 2.8 log units lower than that of the mineral smithsonite (ZnCO 3 ). - Highlights: • Isotopically exchangeable Zn in the calcareous soils of Peshawar is extremely low. • There is no evidence of topsoil enrichment from the use of wastewater for irrigation. • Solubility products for smithsonite and hydrozincite fail to describe Zn 2

  9. Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China

    Science.gov (United States)

    Zhang, Xuezhen; Xiong, Zhe; Tang, Qiuhong

    2017-08-01

    In Northwest China, water originates from the mountain area and is largely used for irrigation agriculture in the middle reaches. This study investigates the local and remote impact of irrigation on regional climate in the Heihe River Basin, the second largest inland river basin in Northwest China. An irrigation scheme was developed and incorporated into the Weather Research and Forecasting (WRF) model with the Noah-MP land surface scheme (WRF/Noah-MP). The effects of irrigation is assessed by comparing the model simulations with and without consideration of irrigation (hereafter, IRRG and NATU simulations, respectively) for five growth seasons (May to September) from 2009 to 2013. As consequences of irrigation, daily mean temperature decreased by 1.7°C and humidity increased by 2.3 g kg-1 (corresponding to 38.5%) over irrigated area. The temperature and humidity of IRRG simulation matched well with the observations, whereas NATU simulation overestimated temperature and underestimated humidity over irrigated area. The effects on temperature and humidity are generally small outside the irrigated area. The cooling and wetting effects have opposing impacts on convective precipitation, resulting in a negligible change in localized precipitation over irrigated area. However, irrigation may induce water vapor convergence and enhance precipitation remotely in the southeastern portion of the Heihe River Basin.

  10. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  11. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  12. Improving yield and water productivity of maize grown under deficit-irrigated in dry area conditions

    Directory of Open Access Journals (Sweden)

    Mohamed H. Abd el-wahed

    2015-10-01

    Full Text Available Scarcity of water is the most severe constraint for development of maize in arid and semi-arid areas. Based on the actual crop need, the irrigation management has to be improved so that the water supply to the crop can be reduced while still achieving high yield. Therefore, the current study has been organized to evaluate the effects of deficit sprinkler irrigation (DSI and farmyard manure (FYM on Grain yield (GY and crop water productivity (CWP of corn, a 2-year experiment was conducted in arid region of Libya. The DSI treatments were (I100 = 100%, I85 = 85% or I70 = 70% of the crop evapotranspiration. FYM treatments were (0, 10 ton ha−1 spread either on the soil surface, incorporated with surface or subsurface layer (FYM10s, FYM10m or FYM10ss, respectively and 20 ton ha−1 spread as before (FYM20s, FYM20m or FYM20ss, respectively. Results indicated that the highest values of grain yield (GY were obtained from I100 treatment, while the lowest were observed in I70. FYM20ss enhanced GY than other FYM treatments in both seasons. The highest GY and CWP were recorded with I100 and received FYM20ss. It could be considered as a suitable under arid environmental conditions and similar regions, the treatment (I100 × FYM20ss is the most suitable for producing high GY and CWP. Under limited irrigation water, application of (I85 ×FYM20ss treatment was found to be favorable to save 15% of the applied irrigation water, at the time in which produced the same GY.

  13. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  14. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose

    DEFF Research Database (Denmark)

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K.

    2017-01-01

    physical and environmental factors that might influence the reliability of using indicator organisms in microbial risk assessment. The challenges facing analytical studies on virus enumeration (genome copies or particles) have contributed to the already existing lack of data in QMRA modelling. This study......The need to replace the commonly applied fecal indicator conversions ratio (an assumption of 1:10− 5 virus to fecal indicator organism) in Quantitative Microbial Risk Assessment (QMRA) with models based on quantitative data on the virus of interest has gained prominence due to the different...... attempts to fit a QMRA model to genome copies of norovirus data. The model estimates the risk of norovirus infection from the intake of vegetables irrigated with wastewater from different sources. The results were compared to the results of a corresponding model using the fecal indicator conversion ratio...

  15. Irrigation water quality in southern Mexico City based on bacterial and heavy metal analyses

    International Nuclear Information System (INIS)

    Solis, C.; Sandoval, J.; Perez-Vega, H.; Mazari-Hiriart, M.

    2006-01-01

    Xochimilco is located in southern Mexico City and represents the reminiscence of the pre-Columbian farming system, the 'chinampa' agriculture. 'Chinampas' are island plots surrounded by a canal network. At present the area is densely urbanized and populated, with various contaminant sources contributing to the water quality degradation. The canal system is recharged by a combination of treated-untreated wastewater, and precipitation during the rainy season. Over 40 agricultural species, including vegetables, cereals and flowers, are produced in the 'chinampas'. In order to characterize the quality of Xochimilcos' water used for irrigation, spatial and temporal contaminant indicators such as microorganisms and heavy metals were investigated. Bacterial indicators (fecal coliforms, fecal enterococcus) were analyzed by standard analytical procedures, and heavy metals (such as Fe, Cu, Zn and Pb) were analyzed by particle induced X-ray emission (PIXE). The more contaminated sites coincide with the heavily populated areas. Seasonal variation of contaminants was observed, with the higher bacterial counts and heavy metal concentrations reported during the rainy season

  16. Irrigation water quality in southern Mexico City based on bacterial and heavy metal analyses

    Science.gov (United States)

    Solís, C.; Sandoval, J.; Pérez-Vega, H.; Mazari-Hiriart, M.

    2006-08-01

    Xochimilco is located in southern Mexico City and represents the reminiscence of the pre-Columbian farming system, the "chinampa" agriculture. "Chinampas" are island plots surrounded by a canal network. At present the area is densely urbanized and populated, with various contaminant sources contributing to the water quality degradation. The canal system is recharged by a combination of treated-untreated wastewater, and precipitation during the rainy season. Over 40 agricultural species, including vegetables, cereals and flowers, are produced in the "chinampas". In order to characterize the quality of Xochimilcos' water used for irrigation, spatial and temporal contaminant indicators such as microorganisms and heavy metals were investigated. Bacterial indicators (fecal coliforms, fecal enterococcus) were analyzed by standard analytical procedures, and heavy metals (such as Fe, Cu, Zn and Pb) were analyzed by particle induced X-ray emission (PIXE). The more contaminated sites coincide with the heavily populated areas. Seasonal variation of contaminants was observed, with the higher bacterial counts and heavy metal concentrations reported during the rainy season.

  17. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR)

    Science.gov (United States)

    Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites

  18. Agro-ecology and irrigation technology : comparative research on farmer-managed irrigation systems in the Mid-hills of Nepal

    NARCIS (Netherlands)

    Parajuli, U.N.

    1999-01-01

    Design and management of irrigation infrastructure in farmer managed irrigation systems (FMISs) are strongly influenced by social and agro-ecological conditions of an area. This thesis analyzes the elements of social and agro-ecological conditions in FMISs in the mid-hills of Nepal and

  19. Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania.

    Science.gov (United States)

    Ijumba, J N; Mosha, F W; Lindsay, S W

    2002-03-01

    Malaria vector Anopheles and other mosquitoes (Diptera: Culicidae) were monitored for 12 months during 1994-95 in villages of Lower Moshi irrigation area (37 degrees 20' E, 3 degrees 21' S; approximately 700 m a.s.l.) south of Mount Kilimanjaro in northern Tanzania. Adult mosquito populations were sampled fortnightly by five methods: human bait collection indoors (18.00-06.00 hours) and outdoors (18.00-24.00 hours); from daytime resting-sites indoors and outdoors; by CDC light-traps over sleepers. Anopheles densities and rates of survival, anthropophily and malaria infection were compared between three villages representing different agro-ecosystems: irrigated sugarcane plantation; smallholder rice irrigation scheme, and savannah with subsistence crops. Respective study villages were Mvuleni (population 2200), Chekereni (population 3200) and Kisangasangeni (population approximately/= 1000), at least 7 km apart. Anopheles arabiensis Patton was found to be the principal malaria vector throughout the study area, with An. funestus Giles sensu lato of secondary importance in the sugarcane and savannah villages. Irrigated sugarcane cultivation resulted in water pooling, but this did not produce more vectors. Anopheles arabiensis densities averaged four-fold higher in the ricefield village, although their human blood-index was significantly less (48%) than in the sugarcane (68%) or savannah (66%) villages, despite similar proportions of humans and cows (ratio 1:1.1-1.4) as the main hosts at all sites. Parous rates, duration of the gonotrophic cycle and survival rates of An. arabiensis were similar in villages of all three agro-ecosystems. The potential risk of malaria, based on measurements of vectorial capacity of An. arabiensis and An.funestus combined, was four-fold higher in the ricefield village than in the sugarcane or savannah villages nearby. However, the more realistic estimate of malaria risk, based on entomological inoculation rates, indicated that exposure to

  20. Estimated Colorado Golf Course Irrigation Water Use, 2005

    Science.gov (United States)

    Ivahnenko, Tamara

    2009-01-01

    Golf course irrigation water-use data were collected as part of the U.S. Geological Survey National Water Use Program's 2005 compilation to provide baseline information, as no golf course irrigation water-use data (separate from crop irrigation) have been reported in previous compilations. A Web-based survey, designed by the U.S. Geological Survey, in cooperation with the Rocky Mountain Golf Course Superintendents Association (RMGCSA), was electronically distributed by the association to the 237 members in Colorado. Forty-three percent of the members returned the survey, and additional source water information was collected by telephone for all but 20 of the 245 association member and non-member Colorado golf courses. For golf courses where no data were collected at all, an average 'per hole' coefficient, based on returned surveys from that same county, were applied. In counties where no data were collected at all, a State average 'per hole' value of 13.2 acre-feet was used as the coefficient. In 2005, Colorado had 243 turf golf courses (there are 2 sand courses in the State) that had an estimated 2.27 acre-feet per irrigated course acre, and 65 percent of the source water for these courses was surface water. Ground water, potable water (public supply), and reclaimed wastewater, either partially or wholly, were source waters for the remaining courses. Fifty-three of the 64 counties in Colorado have at least one golf course, with the greatest number of courses in Jefferson (23 courses), Arapahoe (22 courses), and El Paso Counties (20 courses). In 2005, an estimated 5,647.8 acre-feet in Jefferson County, 5,402 acre-feet in Arapahoe County, and 4,473.3 acre-feet in El Paso County were used to irrigate the turf grass.

  1. Irrigation Scheduling for Green Bell Peppers Using Capacitance Soil Moisture Sensors

    NARCIS (Netherlands)

    Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Femminella, K.; Munoz-Carpena, R.

    2011-01-01

    Vegetable production areas are intensively managed with high inputs of fertilizer and irrigation. The objectives of this study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling using soil moisture sensor irrigation controllers (SMS) on yield, irrigation water use

  2. Small scale recirculating vertical flow constructed wetland (RVFCW) for the treatment and reuse of wastewater.

    Science.gov (United States)

    Gross, A; Sklarz, M Y; Yakirevich, A; Soares, M I M

    2008-01-01

    The quantity of freshwater available worldwide is declining, revealing a pressing need for its more efficient use. Moreover, in many developing countries and lightly populated areas, raw wastewater is discarded into the environment posing serious ecological and health problems. Unfortunately, this situation will persist unless low-cost, effective and simple technologies are brought in. The aim of this study is to present such a treatment method, a novel setup which is termed recirculating vertical flow constructed wetland (RVFCW). The RVFCW is composed of two components: (i) a three-layer bed consisting of planted organic soil over an upper layer of filtering media (i.e. tuff or beads) and a lower layer of limestone pebbles, and (ii) a reservoir located beneath the bed. Wastewater flows directly into the plant root zone and trickles down through the three-layer bed into the reservoir, allowing passive aeration. From the reservoir the water is recirculated back to the bed, several times, until the desired purification is achieved. The results obtained show that the RVFCW is an effective and convenient strategy to treat (domestic, grey and agro) wastewater for re-use in irrigation. The system performance is expected to be further improved once current optimization experiments and mathematical modeling studies are concluded. IWA Publishing 2008.

  3. Report of the 2nd RCM on Radiation Treatment of Wastewater for Reuse with Particular Focus on Wastewaters Containing Organic Pollutants. Working Material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    compounds using validated analytical methods and develop guidelines for selection of areas where the radiation treatment has high potential for rendering treated wastewater suitable for industrial and irrigation purposes. The first Research Coordination Meeting (RCM) of the CRP was held at the Agency’s Headquarters in Vienna, during 2-6 May, 2011. The meeting summarized the current status of investigations in this field and discussed the ways to meet the CRP goals. All participants were encouraged to make use of the available material of the CRP participant and work plan, networking and sub-groups activities were defined to enhance cooperation among the participants. The second RCM, held in Republic of Korea from 29 October 29 to 2 November, 2012 reported on the progress achieved since the first meeting, critically evaluated the results obtained by different groups and formulated the work programme and networking activities for the next period.

  4. Report of the 2nd RCM on Radiation Treatment of Wastewater for Reuse with Particular Focus on Wastewaters Containing Organic Pollutants. Working Material

    International Nuclear Information System (INIS)

    2012-01-01

    compounds using validated analytical methods and develop guidelines for selection of areas where the radiation treatment has high potential for rendering treated wastewater suitable for industrial and irrigation purposes. The first Research Coordination Meeting (RCM) of the CRP was held at the Agency’s Headquarters in Vienna, during 2-6 May, 2011. The meeting summarized the current status of investigations in this field and discussed the ways to meet the CRP goals. All participants were encouraged to make use of the available material of the CRP participant and work plan, networking and sub-groups activities were defined to enhance cooperation among the participants. The second RCM, held in Republic of Korea from 29 October 29 to 2 November, 2012 reported on the progress achieved since the first meeting, critically evaluated the results obtained by different groups and formulated the work programme and networking activities for the next period

  5. Expanding the Annual Irrigation Maps (AIM) Product to the entire High Plains Aquifer (HPA): Addressing the Challenges of Cotton and Deficit-Irrigated Fields

    Science.gov (United States)

    Rapp, J. R.; Deines, J. M.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    The High Plains Aquifer (HPA) is the most extensively irrigated aquifer in the continental United States and is the largest major aquifer in North America with an area of 500,000 km2. Increased demand for agricultural products has led to expanded irrigation extent, but brought with it declining groundwater levels that have made irrigation unsustainable in some locations. Understanding these irrigation dynamics and mapping irrigated areas through time are essential for future sustainable agricultural practices and hydrological modeling. Map products using remote sensing have only recently been able to track annual dynamics at relatively high spatial resolution (30 m) for a large portion of the northern HPA. However follow-on efforts to expand these maps to the entire HPA have met with difficulty due to the challenge of distinguishing irrigation in crop types that are commonly deficit- or partially-irrigated. Expanding these maps to the full HPA requires addressing unique features of partially irrigated fields and irrigated cotton, a major water user in the southern HPA. Working in Google Earth Engine, we used all available Landsat imagery to generate annual time series of vegetation indices. We combined this information with climate covariables, planting dates, and crop specific training data to algorithmically separate fully irrigated, partially irrigated, and non-irrigated field locations. The classification scheme was then applied to produce annual maps of irrigation across the entire HPA. The extensive use of ancillary data and the "greenness" time series for the algorithmic classification generally increased accuracy relative to previous efforts. High-accuracy, representative map products of irrigation extent capable of detecting crop type and irrigation intensity within aquifers will be an essential tool to monitor the sustainability of global aquifers and to provide a scientific bases for political and economic decisions affecting those aquifers.

  6. ASSESSMENT OF ENVIRONMENTAL AND PUBLIC HEALTH HAZARDS IN WASTEWATER USED FOR URBAN AGRICULTURE IN NAIROBI, KENYA

    Directory of Open Access Journals (Sweden)

    Nancy Njarua Karanja

    2009-08-01

    Full Text Available Thirty percent of residents in Nairobi practise urban agriculture (UA with a majority of the farmers using untreated sewage to irrigate crop and fodder. Due to the environmental and health risks associated with wastewater irrigation, a study was carried out in partnership with farmers in Kibera and Maili Saba which are informal settlements along the Ngong River, a tributary of the Nairobi River Basin. Soil, water, crops and human faecal samples from the farming and non-farming households were analysed to elucidate sources, types and level of heavy metal pollutants in the wastewater and the pathogen loads in humans and vegetable crops.  Heavy metal accumulation in soils collected from Kibera and Maili Saba were Cd (14.3 mg kg-1, Cr (9.7 mg kg-1 and Pb (1.7 mg kg-1 and Cd (98.7 mg kg-1,  Cr (4.0 mg kg-1 and Pb (74.3 mg kg-1, respectively.  This led to high phytoaccumulation of Cd, Cr and Pb in the crops that exceeded the maximum permissible limits. No parasitic eggs were detected in the vegetables but coliform count in the wastewater was 4.8 x108±2.2 x1011/100ml. Soils irrigated with this water had parasitic eggs and non-parasitic larvae counts of 54.62 and 27.5/kg respectively. Faecal coliform and parasitic eggs of common intestinal parasites increased in leafy vegetable sampled from the informal markets along the value chain.

  7. Irrigation management to optimize controlled drainage in a semi-arid area

    OpenAIRE

    Soppe, R.W.O.; Ayars, J.E.; Christen, E.W.; Shouse, P.J.

    2003-01-01

    On the west side of the San Joaquin Valley, California, groundwater tables have risen after several decades of irrigation. A regional semi-permeable layer at 100 m depth (Corcoran Clay) combined with over-irrigation and leaching is the major cause of the groundwater rise. Subsurface drain systems were installed from the 60¿s to the 80¿s to remove excess water and maintain an aerated root zone. However, drainage water resulting from these subsurface systems contained trace elements like seleni...

  8. Data on assessment of groundwater quality for drinking and irrigation in rural area Sarpol-e Zahab city, Kermanshah province, Iran.

    Science.gov (United States)

    Soleimani, Hamed; Abbasnia, Abbas; Yousefi, Mahmood; Mohammadi, Ali Akbar; Khorasgani, Fazlollah Changani

    2018-04-01

    In present study 30 groundwater samples were collected from Sarpol-e Zahab area, Kermanshah province of Iran in order to assess the quality of groundwater in subjected area and determining its suitability for drinking and agricultural purposes. Also the variations in the quality levels of groundwater were compared over the years of 2015 and 2016. Statistical analyses including Spearman correlation coefficients and factor analysis display good correlation between physicochemical parameters (EC, TDS and TH) and Na + , Mg 2+ , Ca 2+ , Cl - and [Formula: see text] ionic constituents. Also in order to assess water quality for irrigation we used the United States Department of Agriculture (USDA) classification which is based on SAR for irrigation suitability assessment. In addition, the residual sodium carbonate (RSC), %Na, PI, KR, SSP, MH, EC characteristics were calculated for all samples and used for assessment of irrigation suitability. Based on these indicators, for every two years, the quality of water for agriculture is in good and excellent category. The Piper classification for hydro geochemical facies indicates that the water in the study area is of Ca-HCO 3 - type. However, the study of water hardness shows that more than 80% of samples are in hard and very hard water class. Therefore, there is a need for decisions to refine and soften the water.

  9. Engineered ecosystem for on-site wastewater treatment in tropical areas.

    Science.gov (United States)

    de Sá Salomão, André Luis; Marques, Marcia; Severo, Raul Gonçalves; da Cruz Roque, Odir Clécio

    2012-01-01

    There is a worldwide demand for decentralized wastewater treatment options. An on-site engineered ecosystem (EE) treatment plant was designed with a multistage approach for small wastewater generators in tropical areas. The array of treatment units included a septic tank, a submersed aerated filter, and a secondary decanter followed by three vegetated tanks containing aquatic macrophytes intercalated with one tank of algae. During 11 months of operation with a flow rate of 52 L h(-1), the system removed on average 93.2% and 92.9% of the chemical oxygen demand (COD) and volatile suspended solids (VSS) reaching final concentrations of 36.3 ± 12.7 and 13.7 ± 4.2 mg L(-1), respectively. Regarding ammonia-N (NH(4)-N) and total phosphorus (TP), the system removed on average 69.8% and 54.5% with final concentrations of 18.8 ± 9.3 and 14.0 ± 2.5 mg L(-1), respectively. The tanks with algae and macrophytes together contributed to the overall nutrient removal with 33.6% for NH(4)-N and 26.4% for TP. The final concentrations for all parameters except TP met the discharge threshold limits established by Brazilian and EU legislation. The EE was considered appropriate for the purpose for which it was created.

  10. Treatment and Reuse of Wastewaters Discharged by Petroleum Industries (HMD/Algeria)

    Energy Technology Data Exchange (ETDEWEB)

    Sellami, MH, E-mail: sellami2000dz@gmail.com [Process Engineering Department, Laboratory of Process Engineering, Ouargla University (Algeria); Loudiyi, K [Renewable Energies Laboratory (REL) Al Akhawayne University, Ifrane (Morocco); Boubaker, MC; Habbaz, H [Process Engineering Department, Laboratory of Process Engineering, Ouargla University (Algeria)

    2015-12-23

    Industrial wastewaters discharged by petroleum industries contains: oil, heavy metals and chemicals used in the process of oil separation and treatment. These waters are a source of soil, water and air pollution, and lead a mortal danger to the ecosystem. Our aim in this work has an aspect that can contribute to the collective effort to address the enormous amount of water purges storage bins and reuse them to avoid any environmental damage. This was achieved by chemical treating of these wastewaters discharged from three different locations of Hassi Messaoud (HMD) petroleum field by flocculation with (C-5563) followed by coagulation with (C-2061) using two different acids as sequestering namely: Ascorbic and Citric acid. After experiments, the results showed that the wastewater can be treated without sequestering by adding 40 ppm of activated silicates. The best result was obtained by addition of 160 ppm of Ascorbic acid as sequestering agent and 20 ppm of activated silicates; resulting in removal of 92.81 % of suspended matter and 95.53 % of turbidity. Finally we concluded that this wastewater was satisfactorily treated and we recommend either inject it for enhanced oil recovery in industrial closest field (North field) to maintain the reservoir pressure and the improved rate recovery of oil reserves or reuse it in garden irrigation. In order to see the impact of the treated water on plants, irrigation tests have conducted on two types of plants (date palm and shaft apocalyptic) for one year. The tests showed that the thick layer of 5 cm and 0.08mm of particles diameter of dune sand removes most of remaining oil. The sand layer that fills the basin surrounding the shaft is removed and replaced every 06 months. So, Dune sand plays the role of natural filter. The garden plants appear and grow normally.

  11. Treatment and Reuse of Wastewaters Discharged by Petroleum Industries (HMD/Algeria)

    International Nuclear Information System (INIS)

    Sellami, MH; Loudiyi, K; Boubaker, MC; Habbaz, H

    2015-01-01

    Industrial wastewaters discharged by petroleum industries contains: oil, heavy metals and chemicals used in the process of oil separation and treatment. These waters are a source of soil, water and air pollution, and lead a mortal danger to the ecosystem. Our aim in this work has an aspect that can contribute to the collective effort to address the enormous amount of water purges storage bins and reuse them to avoid any environmental damage. This was achieved by chemical treating of these wastewaters discharged from three different locations of Hassi Messaoud (HMD) petroleum field by flocculation with (C-5563) followed by coagulation with (C-2061) using two different acids as sequestering namely: Ascorbic and Citric acid. After experiments, the results showed that the wastewater can be treated without sequestering by adding 40 ppm of activated silicates. The best result was obtained by addition of 160 ppm of Ascorbic acid as sequestering agent and 20 ppm of activated silicates; resulting in removal of 92.81 % of suspended matter and 95.53 % of turbidity. Finally we concluded that this wastewater was satisfactorily treated and we recommend either inject it for enhanced oil recovery in industrial closest field (North field) to maintain the reservoir pressure and the improved rate recovery of oil reserves or reuse it in garden irrigation. In order to see the impact of the treated water on plants, irrigation tests have conducted on two types of plants (date palm and shaft apocalyptic) for one year. The tests showed that the thick layer of 5 cm and 0.08mm of particles diameter of dune sand removes most of remaining oil. The sand layer that fills the basin surrounding the shaft is removed and replaced every 06 months. So, Dune sand plays the role of natural filter. The garden plants appear and grow normally

  12. Occurrence and potential transport of selected pharmaceuticals and other organic wastewater compounds from wastewater-treatment plant influent and effluent to groundwater and canal systems in Miami-Dade County, Florida

    Science.gov (United States)

    Foster, Adam L.; Katz, Brian G.; Meyer, Michael T.

    2012-01-01

    An increased demand for fresh groundwater resources in South Florida has prompted Miami-Dade County to expand its water reclamation program and actively pursue reuse plans for aquifer recharge, irrigation, and wetland rehydration. The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department (WASD) and the Miami-Dade Department of Environmental Resources Management (DERM), initiated a study in 2008 to assess the presence of selected pharmaceuticals and other organic wastewater compounds in the influent and effluent at three regional wastewater-treatment plants (WWTPs) operated by the WASD and at one WWTP operated by the City of Homestead, Florida (HSWWTP).

  13. Using Automation to Improve Surface Irrigation Management

    Science.gov (United States)

    In the Lower Mississippi Water Resource Area (WRA 08), also called the Mid-South, 2 million ha of cropland (80% of the irrigated farmland) employ surface irrigation, almost equally divided between furrow (52%) and controlled flooding (48%). Because Mid-South farmers experience less-than-optimal surf...

  14. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  15. Irrigation in dose assessments models

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Barkefors, Catarina

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  16. Reuse of urban waste water, recovered by deep on in farms; Reutilizacion de aguas residuales urbanas, regeneradas mediante lagunaje profundo, en riego de praderas forrajeras

    Energy Technology Data Exchange (ETDEWEB)

    Arauzo Sanchez, M.; Colmenarejo Morcillo, M.F.; Bustos Aragon, A.; Hernaiz Algarra, P.J.; Martinez Alavarez, E.

    1998-10-01

    The reuse of regenerated urban wastewater in agriculture irrigation is a practice that is having an increasing leading role in Mediterranean Countries. it is, therefore, fundamental to safeguard the chemical and sanitary qualities of the regenerated wastewater by regeneration technologies improvement, as well as storing-regulation flow systems. The Research Group has started up a deep wastewater stabilization pond and a nearby experimental agricultural system, to study the reuse of regenerated wastewater in agriculture irrigation. The deep stabilization pond, 4,75 m deep and 2161 m``3 volume, is supplied continuously with urban wastewater from the secondary effluent of a conventional purifying plant. Hydraulic retention time is about 9 days. The experimental agricultural system consists of 6 plots (12.5x8 m each) sown with Festuca arundianacea Schreber, next to the deep stabilization pond. Plots were surface flooding irrigated from spring to autumn, and corp was cut 2 times, in July and October. Two treatments have been established; the irrigation with the deep stabilization pond effluent, and the second, irrigation with water from the Jarama river (which is normally used by farmers nearby the experimental area). Our intention is to compare both treatments in order to verify the suitability of wastewater reuse, stabilised and stored in a deep pond, in surface flooding irrigation of pastures. (Author) 13 refs.

  17. Sanity of bell pepper fruit fertigated with wastewater from hog production

    Directory of Open Access Journals (Sweden)

    José Antonio Rodrigues de Souza

    2013-08-01

    Full Text Available In order to evaluate the microbiological quality of bell pepper fruits produced with swine wastewater (SW, after preliminary treatment, pepper seedlings of variety Casca Dura Elquida were grown and fertigated with different levels of this wastewater providing 100 and 200% of the amount of the nitrogen needed for cultivation, with and without supplementation of fertilization. The fruits were analyzed for the presence of thermo-tolerant and total coliforms, and of Salmonella sp. The results showed that fertigation with SW, by trickle irrigation system, resulted in bell pepper fruits uncontaminated by fecal coliform and Salmonella spp., in accordance with the microbiological standards required by RDC n°12 02/01/2001.

  18. Simulating Effects of Long Term Use of Wastewater on Farmers Health Using System Dynamics Modeling (Case Study: Varamin Plain

    Directory of Open Access Journals (Sweden)

    Hamzehali Alizadeh

    2017-06-01

    Full Text Available Introduction: Agricultural activity in Varamin plain has been faced with many challenges in recent years, due to vicinity to Tehran the capital of Iran (competition for Latian dam reservoir, and competition with Tehran south network in allocation of Mamlou dam reservoir and treated wastewater of south wastewater treatment plant. Mamlou and Latian dam reservoirs, due to increase of population and industry sectors, allocated to urban utilization of Tehran. Based on national policy, the treated wastewater should be replaced with Latian dam reservoir water to supply water demand of agricultural sector. High volume transmission of wastewater to Varamin plain, will be have economical, environmental, and social effects. Several factors effect on wastewater management and success of utilization plans and any change in these factors may have various feedbacks on the other elements of wastewater use system. Hence, development of a model with capability of simulation of all factors, aspects and interactions that affect wastewater utilization is very necessary. The main objective of present study was development of water integrated model to study long-term effects of irrigation with Tehran treated wastewater, using system dynamics modeling (SD approach. Materials and Methods: Varamin Plain is one of the most important agricultural production centers of the country due to nearness to the large consumer market of Tehran and having fertile soil and knowledge of agriculture. The total agricultural irrigated land in Varamin Plain is 53486 hectares containing 17274 hectares of barley, 16926 hectares of wheat, 3866 hectares of tomato, 3521 hectares of vegetables, 3556 hectares of alfalfa, 2518 hectares of silage maize, 1771 hectares of melon, 1642 hectares of cotton, 1121 hectares of cucumber and 1291 hectares of other crops. In 2006 the irrigation requirement of the crop pattern was about 690 MCM and the actual agriculture water consumption was about 620 MCM

  19. The combined effect of deficit irrigation by treated wastewater and organic amendment on quinoa (Chenopodium quinoa Willd.) productivity

    DEFF Research Database (Denmark)

    Hirich, Abdelaziz; Choukr-Allah, Redouane; Jacobsen, Sven-Erik

    2014-01-01

    One of the most important factors that limits crop production is the availability of water. Deficit irrigation is the most important irrigation strategy to increase water use efficiency and crop water productivity. Organic amendment combined with deficit irrigation can be practical solution to co...

  20. Behavioural modelling of irrigation decision making under water scarcity

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2013-12-01

    Providing effective policy solutions to aquifer depletion caused by abstraction for irrigation is a key challenge for socio-hydrology. However, most crop production functions used in hydrological models do not capture the intraseasonal nature of irrigation planning, or the importance of well yield in land and water use decisions. Here we develop a method for determining stochastic intraseasonal water use that is based on observed farmer behaviour but is also theoretically consistent with dynamically optimal decision making. We use the model to (i) analyse the joint land and water use decision by farmers; (ii) to assess changes in behaviour and production risk in response to water scarcity; and (iii) to understand the limits of applicability of current methods in policy design. We develop a biophysical model of water-limited crop yield building on the AquaCrop model. The model is calibrated and applied to case studies of irrigated corn production in Nebraska and Texas. We run the model iteratively, using long-term climate records, to define two formulations of the crop-water production function: (i) the aggregate relationship between total seasonal irrigation and yield (typical of current approaches); and (ii) the stochastic response of yield and total seasonal irrigation to the choice of an intraseasonal soil moisture target and irrigated area. Irrigated area (the extensive margin decision) and per-area irrigation intensity (the intensive margin decision) are then calculated for different seasonal water restrictions (corresponding to regulatory policies) and well yield constraints on intraseasonal abstraction rates (corresponding to aquifer system limits). Profit- and utility-maximising decisions are determined assuming risk neutrality and varying degrees of risk aversion, respectively. Our results demonstrate that the formulation of the production function has a significant impact on the response to water scarcity. For low well yields, which are the major concern

  1. Evaluation some Forage Legumes in Limited Irrigation Condition

    Directory of Open Access Journals (Sweden)

    Hassan Moniri Far

    2015-11-01

    Full Text Available Forage legumes respond differently to limited irrigation regimes. Their evaluation may, thus, help to select drought tolerant types for limited irrigation conditions. In this study four type of forage legume were studied for two years in Tikma-Dash Research Station of East Azarbaijan Agricultural and Natural Research Center, Tabriz, Iran, in a randomized complete block design using split-plot experiment in 2011-2013 years. Irrigation regimes (without irrigation, one irrigation and two irrigations were assigned to main plots and four forage types (hairy vetch, grass pea, Pannonica sativa and lathyrus were assigned to subplots. The results of analysis of variance showed that the effect of irrigation on plant height, number of shoots, leaf area and plant fresh and dry weights were not significant. Howere, legume types affected these traits significantly (P≤0.01. The effect of irrigation levels and legume types on protein content of hay were significant (P

  2. Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine

    International Nuclear Information System (INIS)

    Ben Mordechay, Evyatar; Tarchitzky, Jorge; Chen, Yona; Shenker, Moshe; Chefetz, Benny

    2018-01-01

    Irrigation with treated wastewater (TWW) and application of biosolids to arable land expose the agro-environment to pharmaceuticals and personal care products (PPCPs) which can be taken up by crops. In this project, we studied the effect of a carrier medium (e.g., biosolids and TWW) on plant (tomato, wheat and lettuce) uptake, translocation and metabolism of carbamazepine as a model for non-ionic PPCPs. Plant uptake and bioconcentration factors were significantly lower in soils amended with biosolids compared to soils irrigated with TWW. In soils amended with biosolids and irrigated with TWW, the bioavailability of carbamazepine for plant uptake was moderately decreased as compared to plants grown in soils irrigated with TWW alone. While TWW acts as a continuous source of PPCPs, biosolids act both as a source and a sink for these compounds. Moreover, it appears that decomposition of the biosolids in the soil after amendment enhances their adsorptive properties, which in turn reduces the bioavailability of PPCPs in the soil environment. In-plant metabolism of carbamazepine was found to be independent of environmental factors, such as soil type, carrier medium, and absolute amount implemented to the soil, but was controlled by the total amount taken up by the plant. - Highlights: • Bioaccumulation of carbamazepine is higher in plants irrigated with TWW than in plants grown in soils applied with biosolids. • Application of composted biosolids reduces the bioavailability of carbamazepine originated from TWW irrigation. • Plant metabolism of carbamazepine is affected by the total amount taken-up by the plant. - Bioavailability of PPCPs originated from biosolids amendment is lower than the bioavailability of those introduced by irrigation with treated wastewater.

  3. Participatory management reforms in irrigation sector of sindh

    International Nuclear Information System (INIS)

    Lashari, B.K.

    2009-01-01

    Pakistan has been making efforts to restructuring the century old irrigation system by involving beneficiaries (water users) at various units of the irrigation system management. The main purposes of reforms are to improve O and M (Operation and Maintenance) of irrigation system, to make balance in expenditure and revenue, to improve crop production through efficient use of water, to maintain affordable drainage system and to adopt PWRM (Participatory Water Resource Management) approach. In these reforms, the Sindh provincial irrigation department was transferred to an autonomous body as SmA (Sindh Irrigation and Drainage Authority). Under SmA, CAWB (Canal Area Water Board) at each canal command area, water users association at watercourse level and Farmer Organizations at each secondary canal (Distributary/ Minor) command area were being formed. So far 335 FOs (Farmers Organizations) have been formed in Sindh. To evaluate the performance of FOs in their day to day activities such as water distribution, O and M of irrigation channels, conflict management and revenue (Abiana) collection, IMI (Institutional Maturity Index) of FOs is conducted. The objective IMI analysis was to assess the maturity of FOs in terms of organizational aspects, conflict resolution, financial aspects, water distribution, operation and maintenance, environmental aspects and capacity building of FOs. The IMI analyses identified the weaker aspects of the FOs and need of focus these aspects for improved performance of FOs through effective social mobilization and capacity building activities. (author)

  4. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    Science.gov (United States)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  5. Sustainable irrigation in fruit trees

    Directory of Open Access Journals (Sweden)

    Cristos Xiloyannis

    2010-09-01

    Full Text Available Water management in fruit growing, particularly in areas with high water deficit, low rainfall and limited availability of water for irrigation should aid to save water by: i the choice of high efficiency irrigation methods and their correct management; ii the proper choice of the specie, cultivar and rootstock to optimise plant water use; iii the proper choice of the architecture of the canopy and it’s correct management in order to improve water use efficiency; iv the application of regulated deficit irrigation at growth stages less sensitive to water deficit; v strengthening the role of technical assistance for a rapid transfer of knowledge to the growers on the sustainable use of water in fruit growing.

  6. Sustainable irrigation in fruit trees

    Directory of Open Access Journals (Sweden)

    Cristos Xiloyannis

    Full Text Available Water management in fruit growing, particularly in areas with high water deficit, low rainfall and limited availability of water for irrigation should aid to save water by: i the choice of high efficiency irrigation methods and their correct management; ii the proper choice of the specie, cultivar and rootstock to optimise plant water use; iii the proper choice of the architecture of the canopy and it’s correct management in order to improve water use efficiency; iv the application of regulated deficit irrigation at growth stages less sensitive to water deficit; v strengthening the role of technical assistance for a rapid transfer of knowledge to the growers on the sustainable use of water in fruit growing.

  7. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao

    2015-01-01

    The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area. The prog......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area...... mechanism of water resources is not perfect, the model for optimal water resources allocation is not practical, and the basic conditions for optimal allocation of water resources is relatively weak. In order to solve those problems in water resources allocation practice, six important as?pects must...... in irrigation districts, studying the water resources control technology in irrigation districts by hydrology ecological system, studying the technologies of real?time risk dispatching and intelligent management in irrigation districts, and finally studying the technology of cou?pling optimal allocation...

  8. Simulated evapotranspiration from a landfill irrigated with landfill leachate

    International Nuclear Information System (INIS)

    Aronsson, P.

    1996-01-01

    Evapotranspiration from a landfill area, irrigated with leachate water, was simulated with the SOIL model. Three different types of vegetation (bare soil, grass ley, and willow) were used both with and without irrigation. The highest simulated evapotranspiration (604 mm) during the growing season was found from an irrigated willow stand with a high interception capacity. The lowest evapotranspiration (164 mm) was found from the bare soil. The relatively high evapotranspiration from the willow was probably caused by the high LAI (Leaf Area Index) and the low aerodynamic resistance within the willow stand. The results indicate that it is possible to reduce most of the leakage water from a landfill by irrigation of willow stands. 9 refs, 4 figs, 1 tab

  9. REDUCTION OF SOIL INFILTRATION AREA THANKS TO THE WASTEWATER SECONDARY TREATMENT FILTERS

    Directory of Open Access Journals (Sweden)

    Marcin Spychała

    2016-05-01

    Full Text Available The aim of the article was to determine the feasibility and advisability of the use of secondary filters applied before discharge of wastewater into the ground in the context of the fulfillment of the conditions of the current Regulation of the Minister of Environment of 18 November 2014 on the conditions to be met during the discharge of wastewater into the water or the ground and on substances particularly harmful to the aquatic environment. Due to expected in practice, an application and popularity, as compared variants, reactors having a very simple construction were used. The average values of removal of BOD5, COD and total suspended solids for three secondary filters technologies: biological trickling filter with natural ventilation, sand filter and nonwoven filter were compared. Additionally, as a fourth option a simple mathematical model has been presented. This model allows to estimate of BOD5 at the outflow from biological trickling filter and to verify the empirical data. Despite a large usefulness, it is rarely used in our country. It has been found the possibility of reduction of the infiltration area (surface area after reduction is 38–63% of the initial value due to the application of secondary filters. In the case of a high initial demand of the terrain area for drainage localization the benefit in costs resulting from the reduction (several thousand of PLN or may even significantly exceed the cost of buying and installing a cheap secondary filter. In addition, reduction the occupied area of the lot (in extreme cases up to 100 m2 by using the secondary filter allows to use the unoccupied space for other purposes, and thus gives additional economic advantage.

  10. Sustainable Optimization for Wastewater Treatment System Using PSF-HS

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2016-03-01

    Full Text Available The sustainability in a river with respect to water quality is critical because it is highly related with environmental pollution, economic expenditure, and public health. This study proposes a sustainability problem of wastewater treatment system for river ecosystem conservation which helps the healthy survival of the aquatic biota and human beings. This study optimizes the design of a wastewater treatment system using the parameter-setting-free harmony search algorithm, which does not require the existing tedious value-setting process for algorithm parameters. The real-scale system has three different options of wastewater treatment, such as filtration, nitrification, and diverted irrigation (fertilization, as well as two existing treatment processes (settling and biological oxidation. The objective of this system design is to minimize life cycle costs, including initial construction costs of those treatment options, while satisfying minimal dissolved oxygen requirements in the river, maximal nitrate-nitrogen concentration in groundwater, and a minimal nitrogen requirement for crop farming. Results show that the proposed technique could successfully find solutions without requiring a tedious setting process.

  11. Pore size distribution in soils irrigated with sodic water and wastewater Distribuição de poros em solos irrigados com água salina e com água residuária

    Directory of Open Access Journals (Sweden)

    Roberta Alessandra Bruschi Gonçalves

    2010-06-01

    Full Text Available Soil porosity, especially pore size distribution, is an important controlling factor for soil infiltration, hydraulic conductivity, and water retention. This study aimed to verify the effect of secondary-treated domestic wastewater (STW on the porosity of a sandy loam Oxisol in the city of Lins, state of São Paulo, Brazil. The two-year experiment was divided into three plots: soil cultivated with corn and sunflower and irrigated with STW, soil cultivated and irrigated with sodic groundwater, and non-irrigated and non-cultivated soil (control. At the end of the experiment, undisturbed core samples were sampled from 0 to 2.0 m (8 depths. The water retention curves were obtained by tension plates and Richard's pressure plate apparatus, and the pore size distribution inferred from the retention curves. It was found that irrigation with treated wastewater and treated groundwater led to a decrease in microporosity (V MI, defined as the pore class ranging from 0.2 to 50 μm diameter. On the other hand, a significant increase in cryptoporosity (V CRI (A porosidade do solo, principalmente a distribuição dos poros, é um fator importante que controla a infiltração de água, condutividade hidráulica e retenção da água no solo. Este estudo teve como objetivo verificar os efeitos do efluente de estação de tratamento de esgoto (TSE na porosidade de um Latossolo de textura média. A área experimental foi dividida em três parcelas: solo cultivado com milho e girassol e irrigado com TSE (STW; solo cultivado e irrigado com água subterrânea sódica (W; e solo não cultivado e não irrigado (C-controle. No final de dois anos de experimento, amostras não deformadas de solo foram coletadas de 0 a 2,0 m (oito amostras. As curvas de retenção de água no solo foram obtidas com mesas de tensão e câmara de Richards, e a distribuição de poros no solo foi calculada a partir da derivação dessas curvas. Foi observado decréscimo da microporosidade V MI

  12. On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes - NEREUS COST Action ES1403 position paper

    DEFF Research Database (Denmark)

    Piña, Benjamin; Bayona, Josep M.; Christou, Anastasis

    2018-01-01

    Antibiotic resistance (AR) is becoming a worldwide threat due to the increasing occurrence of antibiotic-resistant pathogenic bacterial strains. There is a general consensus about the potential implications of the use of antibiotics in livestock on the onset of antibiotic resistant bacteria (ARB......), mainly through meat consumption. However, the ever-increasing use of reclaimed wastewater (RWW) in agriculture may also contribute significantly to the non-accounted exposure to antibiotics, ARB, and antibiotic resistance genes (ARGs). This position paper aims at evaluating the current knowledge...... concerning the occurrence of antibiotics, ARBs, and ARGs in edible parts of different common crops irrigated with RWW. We will discuss which regulations on the use of RWW may contribute to the minimization of the prevalence of these contaminants in crops, and provide recommendations on how to minimize...

  13. Optimized Subsurface Irrigation System: The Future of Sugarcane Irrigation

    Directory of Open Access Journals (Sweden)

    M. H. J. P. Gunarathna

    2018-03-01

    Full Text Available Climate change may harm the growth and yield of sugarcane (Saccharum officinarum L. without the introduction of appropriate irrigation facilities. Therefore, new irrigation methods should be developed to maximize water use efficiency and reduce operational costs. OPSIS (optimized subsurface irrigation system is a new solar-powered automatic subsurface irrigation system that creates a phreatic zone below crop roots and relies on capillarity to supply water to the root zone. It is designed for upland crops such as sugarcane. We investigated the performance of OPSIS for irrigating sugarcane and evaluated its performance against sprinkler irrigation under subtropical conditions. We conducted field experiments in Okinawa, Japan, over the period from 2013 to 2016 and took measurements during spring- and summer-planted main crops and two ratoon crops of the spring-planted crop. Compared with sprinkler irrigation, OPSIS produced a significantly higher fresh cane yield, consumed less irrigation water and provided a higher irrigation water use efficiency. We conclude that OPSIS could be adopted as a sustainable solution to sugarcane irrigation in Okinawa and similar environments.

  14. Soil and water management in spate irrigation systems in Eritrea

    NARCIS (Netherlands)

    Hadera, M.T.

    2001-01-01

    Spate irrigation has been practised over 100 years in the Red Sea coastal zone of Eritrea such as the Sheeb area. Main problem of the spate irrigation system is water shortage caused by irregular rainfall in the highlands of Eritrea and breaching of the irrigation structures by destructive

  15. ARS irrigation research priorities and projects-An update

    Science.gov (United States)

    The USDA Agricultural Research Service focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) Irrigation Scheduling Technologies for Water Productivity; 2) Water Productivity (WP) at Multiple Scales; 3) Irrigation Applicatio...

  16. Optimum contracted-for water supply for hotels in arid coastal regions.

    Science.gov (United States)

    Lamei, A; von Münch, E; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water for their domestic water demands, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their domestic water needs. There is normally a contractual agreement stating a minimum requirement that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). This paper describes a model to determine what value a hotel should choose for its contracted-for water supply in order to minimize its total annual water costs. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh, Egypt.The managers of hotels with expected high occupancy rates (74% and above) can contract for more than 80%. On the other hand, hotels with expected lower occupancy rates (60% and less) can contract for less than 70% of the peak daily domestic water demand. With a green area ratio of 40 m(2)/room or less, an on-site wastewater treatment plant can satisfy the required irrigation demand for an occupancy rate as low as 42%. Increasing the ratio of green irrigated area to 100 m(2)/room does not affect the contracted-for water supply at occupancy rates above 72%; at lower occupancy rates, however, on-site treated wastewater is insufficient for irrigating the green areas. Increasing the green irrigated area to 120 m(2)/room increases the need for additional water, either from externally sourced treated wastewater or potable water. The cost of the former is much lower than the latter (0.58 versus 1.52 to 2.14 US$/m(3) in the case study area).

  17. Effects of irrigation on streamflow in the Central Sand Plain of Wisconsin

    Science.gov (United States)

    Weeks, E.P.; Stangland, H.G.

    1971-01-01

    Development of ground water for irrigation affects streamflow and water levels in the sand-plain area of central Wisconsin. Additional irrigation development may reduce opportunities for water-based recreation by degrading the streams as trout habitat and by lowering lake levels. This study was made to inventory present development of irrigation in the sand-plain area, assess potential future development, and estimate the effects of irrigation on streamflow and ground-water levels. The suitability of land and the availability of ground water for irrigation are dependent, to a large extent, upon the geology of the area. Rocks making up the ground-water reservoir include outwash, morainal deposits, and glacial lake deposits. These deposits are underlain by crystalline rocks and by sandstone, which act as the floor of the ground-water reservoir. Outwash, the main aquifer, supplies water to about 300 irrigation wells and maintains relatively stable flow in the streams draining the area. The saturated thickness of these deposits is more than 100 feet over much of the area and is as much as 180 feet in bedrock valleys. The saturated thickness of the outwash generally is great enough to provide sufficient water for large-scale irrigation in all but two areas --one near the town of Wisconsin Rapids and one near Dorro Couche Mound. Aquifer tests indicate that the permeability of the outwash is quite high, ranging from about 1,000 gpd per square foot to about 3,800 gpd per square foot, Specific capacities of irrigation wells in the area range from 14 to 157 gpm per foot of drawdown. Water use in the sand-plain area is mainly for irrigation and waterbased recreation. Irrigation development began in the area in the late 1940's, and by 1967 about 19,500 acre-feet of water were pumped to irrigate 34,000 acres of potatoes, snap beans, corn, cucumbers, and other crops. About 70 percent of the applied water was lost to evapotranspiration, and about 30 percent was returned to the

  18. The maximum economic depth of groundwater abstraction for irrigation

    Science.gov (United States)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of

  19. Estimating irrigation water use in the humid eastern United States

    Science.gov (United States)

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to

  20. LOW COST SMART SOLAR POWERED AUTOMATIC IRRIGATION SYSTEM

    OpenAIRE

    Hinsermu Alemayehu*, Kena Likassa

    2016-01-01

    In developing countries Photovoltaic energy can find many applications in agriculture, providing electrical energy in various cases, particularly OFF grid and desert area. Today Modern irrigation methods in developing country are needed to fulfill the food demands. Although in these countries Ethiopia, there are many diesel engine operated and rare solar operated water pumps for irrigation; but due to the running cost of diesel and capital cost of photovoltaic irrigation system. So Photovolta...

  1. Modeling of wastewater quality in an urban area during festival and rainy days.

    Science.gov (United States)

    Obaid, H A; Shahid, S; Basim, K N; Chelliapan, S

    2015-01-01

    Water pollution during festival periods is a major problem in all festival cities across the world. Reliable prediction of water pollution is essential in festival cities for sewer and wastewater management in order to ensure public health and a clean environment. This article aims to model the biological oxygen demand (BOD(5)), and total suspended solids (TSS) parameters in wastewater in the sewer networks of Karbala city center during festival and rainy days using structural equation modeling and multiple linear regression analysis methods. For this purpose, 34 years (1980-2014) of rainfall, temperature and sewer flow data during festival periods in the study area were collected, processed, and employed. The results show that the TSS concentration increases by 26-46 mg/l while BOD(5) concentration rises by 9-19 mg/l for an increase of rainfall by 1 mm during festival periods. It was also found that BOD(5) concentration rises by 4-17 mg/l for each increase of 10,000 population.

  2. Irrigation and Rural Welfare: Implications of Schistosomiasis among ...

    African Journals Online (AJOL)

    This paper examines the effects of the prevalence of urinary schistosomiasis infection on the socio-economic health of irrigation farmers in the rural districts of Kazaure Area, Northern Nigeria. It first reviews some general consideration of irrigation environment and schistosomiasis, its major associated health problem.

  3. Effect of Irrigation Intervals on Some Morphophysiological Traits of Basil (Ocimum basilicum L. Ecotypes

    Directory of Open Access Journals (Sweden)

    M Goldani

    2012-10-01

    Full Text Available In order to determine the effect of different irrigation intervals on some morphophysiological traits of basil (Ocimum basilicum L., an experiment was conducted as factorial based on randomized complete block design with three replications under greenhouse conditions during 2010. Treatments included five irrigation intervals with 4, 8, 12, 16 and 20 days intervals and two ecotypes of basil (green and purple. The results showed that by increasing irrigation interval plant height, spike number, spike weight and shoot dry weight between irrigation intervals decreased. Purple basil was more tolerant than basil green ecotype to drought stress. Interaction between irrigation intervals and ecotypes showed that the best treatment related to four days irrigation interval and purple basil ecotype. The effect of irrigation intervals on root area, root diameter mean, total length, root volume and dry weight of root was significant. In all irrigation intervals, purple basil had better performance compared to green ecotype. The results showed that by increasing in irrigation interval decreased root surface area, but increased total root length. It was concluded that increasing irrigation interval up to 12 days decreased shoot and root surface areas. Increasing irrigation interval decreased chlorophyll- a, b and increased prolin amino acid content of basil leaf.

  4. Crescimento e estado nutricional de helicônia irrigada com água residuária tratada em casa de vegetação Growth and nutritional status of helicônia irrigated with treated wastewater in greenhouse

    Directory of Open Access Journals (Sweden)

    Olívia S. N. Santos

    2012-08-01

    Full Text Available Neste trabalho se estudaram o desenvolvimento e o estado nutricional de helicônias irrigadas com água residuária tratada de origem doméstica associada a fertilizantes químicos (NPK. O experimento foi conduzido em casa de vegetação na qual se utilizaram plantas de helicônia Golden Adrian. O experimento foi instalado no esquema fatorial 5 x 3 + 1 constituídos de cinco níveis de lâmina de água aplicada (equivalente a 60, 80, 100, 120 e 140% da evaporação do tanque classe A ECA, três tipos de água (água residuária (AR, água pluvial (AP e mistura de 50% de AR + 50% de AP e testemunha (solo sem adubação e recebendo 100% da ECA de água pluvial. O delineamento experimental utilizado foi blocos ao acaso, com cinco repetições. A utilização de AR e as lâminas maiores proporcionaram acréscimo nos parâmetros de crescimento avaliados. Os teores de macronutrientes presentes nas folhas das plantas irrigadas com AR se comportaram de forma semelhante às plantas que receberam AP. O uso de AR e AP resultou em acréscimo de teores de micronutrientes nas folhas, principalmente Fe e Mn, acima dos teores recomendados para a cultura.In this study the growth and nutritional status of helicônias irrigated with treated wastewater of domestic origin associated with chemical fertilizers (NPK was studied. The experiment was conducted in a greenhouse utilizing plants of helicônia Golden Adrian. The experiment was installed in 5 x 3 + 1 factorial scheme consisting of five depths of irrigation water (equivalent to 60, 80, 100, 120 and 140% of class A pan evaporation - ECA, three types of water (wastewater (AR, rainwater (AP and a mixture of 50% AR + 50% AP and control (soil without fertilizer and receiving rainwater corresponding to 100% ECA. The experimental design was in randomized blocks with five repetitions. The use of AR and larger depths of irrigation provided increases in evaluated parameters of growth. The levels of macronutrients in the

  5. Soil Heavy Metal Concentrations in Green Space of Mobarake Steel Complex

    Directory of Open Access Journals (Sweden)

    vahid Moradinasab

    2017-01-01

    -triethanolamine (DTPA-TEA. To determine the total concentration of heavy metals, the soil samples were digested in 6 M HNO3. Concentrations of heavy metals in the extracts were determined by Atomic Absorption Spectroscopy. Finally, available metal micronutrient levels in the soil were compared with the critical deficiency ranges suggested for calcareous soils. Also, total concentrations of the metals in the soils were compared with the standards of the Iranian Environmental Protection Agency to assess possible contamination of soils with heavy metals in the studied area. Results and discussion: The results of this study showed significant increases of plant-available Fe in the soils irrigated with wastewater for 6 and 18 years as compared to the unplanted control. Regardless of the type of irrigation water used, available Mn and Ni were significantly increased in all forested areas as compared to the unplanted soils. Available Zn fraction was significantly higher in the soils with history of 6 and 18 years of wastewater irrigation. Increase in available Cu concentration was statistically significant only in the soils irrigated with wastewater for 18 years. As the metal concentration in the wastewater used for irrigation was very low, it seems that the major source of metal accumulation in the soils is particulate fallout or emissions directly from the dump sites and metal plating operation. Furthermore, irrigation and forestation practices might have improved bioavailability of micronutrient metals in the soils of green space of Mobarakeh Steel complex through increasing organic matter content of the soils which enhances metal chelation reactions. Total concentrations of the metals in the forested soils also increased as compared to those of the control. Total Fe, Mn, and Zn concentrations were notably higher in all soils of the green space area as compared to those in the unplanted control sites. Wind-driven particle transport from dumping site to nearby soils may be the main

  6. Soil Contamination With Heavy Metals and Its Effect on Growth, Yield and Physiological Responses of Vegetable Crop Plants (Turnip and Lettuce

    Directory of Open Access Journals (Sweden)

    Raifa Ahmed Hassanein

    2013-11-01

    Full Text Available The present study was conducted to investigate the impact of irrigation with industrial wastewater on soil and plant. For these purpose turnip and lettuce plants were cultivated in soil irrigated with wastewater then heavy metals content of the soil, plant growth, yield and the subsequent changes in biochemical constituents of plant were examined. Irrigation with wastewater was found to load the soil with heavy metals (Pb, Co, Ni and Cd that were not detected in soil before irrigation. The magnitude of Cd in soils after irrigation with industrial wastewater exceeds the maximum allowable limit (3 mg Kg-1. Both turnip and lettuce exhibited significant decreases in leaf area, fresh weight and dry weight of shoots and roots as well as all the measured yield components in response to wastewater irrigation. The magnitude of decrease was positively correlated with the amounts of heavy metals detected in the soil and the inhibitory effect on turnip was much more pronounced than in lettuce. Furthermore, heavy metals accumulation in soil resulted in an oxidative damage to turnip and lettuce as indicated by the significant increase in lipid peroxidation and H2O2 levels in both plants comparing to control values. The significant increases in putrescine in lettuce and turnip shoots and roots and spermidine in lettuce roots as well as total phenolics and flavonoids in plants cultivated in soil enriched with heavy metals are believed to be defense mechanisms in turnip and lettuce plants to counteract the oxidative stress resulted from heavy metals contamination generated from irrigation with wastewater.

  7. Maximizing the value of limited irrigation water: USDA researchers study how producers on limited irrigation can save water and be profitable

    Science.gov (United States)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  8. Occurrence of Organic Wastewater Compounds in Selected Surface-Water Supplies, Triangle Area of North Carolina, 2002-2005

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.M .

    2007-01-01

    Selected organic wastewater compounds, such as household, industrial, and agricultural-use compounds, sterols, pharmaceuticals, and antibiotics, were measured at eight sites classified as drinking-water supplies in the Triangle Area of North Carolina. From October 2002 through July 2005, seven of the sites were sampled twice, and one site was sampled 28 times, for a total of 42 sets of environmental samples. Samples were analyzed for as many as 126 compounds using three laboratory analytical methods. These methods were developed by the U.S. Geological Survey to detect low levels (generally less than or equal to 1.0 microgram per liter) of the target compounds in filtered water. Because analyses were conducted on filtered samples, the results presented in this report may not reflect the total concentration of organic wastewater compounds in the waters that were sampled. Various quality-control samples were used to quality assure the results in terms of method performance and possible laboratory or field contamination. Of the 108 organic wastewater compounds that met method performance criteria, 24 were detected in at least one sample during the study. These 24 compounds included 3 pharmaceutical compounds, 6 fire retardants and plasticizers, 3 antibiotics, 3 pesticides, 6 fragrances and flavorants, 1 disinfectant, and 2 miscellaneous-use compounds, all of which likely originated from a variety of domestic, industrial, and agricultural sources. The 10 most frequently detected compounds included acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran (synthetic musks that are widely used in personal-care products and are known endocrine disruptors); tri(2-chloroethyl) phosphate, tri(dichloroisopropyl) phosphate, and tributyl phosphate (fire retardants); metolachlor (herbicide); caffeine (nonprescription stimulant); cotinine (metabolite of nicotine); acetaminophen (nonprescription analgesic); and sulfamethoxazole (prescription antibiotic

  9. Evolution of industrial wastewater pollution in the Barcelona Metropolitan Area; Evolucion de la contaminacion industrial en las aguas residuales del area metropolitana de Barcelona

    Energy Technology Data Exchange (ETDEWEB)

    Mantecon Pascual, R.

    2005-07-01

    The Environmental Agency of the Barcelona Metropolitan Area has full powers regarding sewerage. Industrial wastewater emptied into the public sewer system has been monitored and analysed since 1988. the data showing the evolution of the pollution in industrial wastewater are presented, broken down by activities and parameters. These data are based on the analysis of 14,528 samples taken during 19,555 inspections of 5,655 factories. It was found that there has been a gradual improvement in the quality of the effluents. Failure to meet the requirements concerning one or more of the physico-chemical parameters fell from 71% to 39% of the samples analysed. (Author)

  10. M-X Environmental Technical Report. Environmental Characteristics of Alternative Designated Areas, Water Resources.

    Science.gov (United States)

    1980-12-29

    approximately half will be returned as wastewater. Properly treated wastewater can be reused for such activities as irrigation and groundwater recharge...PUNTA DE AGUA CANADIAN RESERVOIR CREEK (NM) STATE LINE CREEK (TX) RIVER (TX) (NM) (07227100) (07227140) (07227448) (07227470) Mean specific conductance... reuse of treated waste- water. This would reduce the effective consumptive use of the demands presented by about 50 percent. GROUNDWATER RELATED IMPACTS

  11. Charts for Guiding Adjustments of Irrigation Interval to Actual Weather Conditions

    International Nuclear Information System (INIS)

    Kipkorir, E.C.

    2002-01-01

    Major problems in irrigation management at short time-step during the season are unreliability of rainfall and absence of guidance. By considering the climate of region, crop and soil characteristics, the irrigation method and local irrigation practices, this paper presents the concept of irrigation charts. The charts are based on soil water technique. As an example irrigation chart for a typical irrigation system located in the semi-arid area in Naivasha, Kenya is presented. The chart guides the user in adjustment of irrigation interval to the actual weather conditions throughout the growing season. It is believed that the simplicity of the chart makes it a useful tool for a better utilisation of the limited irrigation water

  12. Anthropogenic wetlands due to over-irrigation of desert areas: a challenging hydrogeological investigation with extensive geophysical input from TEM and MRS measurements

    Science.gov (United States)

    Behroozmand, Ahmad Ali; Teatini, Pietro; Bjergsted Pedersen, Jesper; Auken, Esben; Tosatto, Omar; Vest Christiansen, Anders

    2017-03-01

    During the last century, many large irrigation projects were carried out in arid lands worldwide. Despite a tremendous increase in food production, a common problem when characterizing these zones is land degradation in the form of waterlogging. A clear example of this phenomenon is in the Nubariya depression in the Western Desert of Egypt. Following the reclamation of desert lands for agricultural production, an artificial brackish and contaminated pond started to develop in the late 1990s, which at present extends for about 2.5 km2. The available data provide evidence of a simultaneous general deterioration of the groundwater system. An extensive hydrogeophysical investigation was carried out in this challenging environment using magnetic resonance sounding (MRS) and ground-based time-domain electromagnetic (TEM) techniques with the following main objectives: (1) understanding the hydrological evolution of the area; (2) characterizing the hydrogeological setting; and (3) developing scenarios for artificial aquifer remediation and recharge. The integrated interpretation of the geophysical surveys provided a hydrogeological picture of the upper 100 m sedimentary setting in terms of both lithological distribution and groundwater quality. The information is then used to set up (1) a regional groundwater flow and (2) a local density-dependent flow and transport numerical model to reproduce the evolution of the aquifer system and develop a few scenarios for artificial aquifer recharge using the treated water provided by a nearby wastewater treatment plant. The research outcomes point to the hydrological challenges that emerge for the effective management of water resources in reclaimed desert areas, and they highlight the effectiveness of using advanced geophysical and modeling methodologies.

  13. The Impact of Regular and Periodic Irrigation on the Fertility and Productivity of an Ordinary Chernozem of the Azov Irrigation System

    Science.gov (United States)

    Shchedrin, V. N.

    2016-02-01

    The effect of regular and periodic irrigation on the fertility and productivity of an ordinary chernozem cultivated under different conditions within the same cereal-fodder crop rotation is discussed. The investigation object is located in the area of the Azov irrigation system on the second terrace of the Don River in Rostov oblast. Irrigation water for the system is taken from the Veselovsk water reservoir. Its salinity is 1.7-2.1 g/dm3, and the salt composition is sulfate-sodium. The field experiments were performed in 2006-2013 on three experimental plots. Two of them were regularly irrigated; the third plot was periodically irrigated with alternation of 2-year-long periods with and without irrigation. Our study proved that periodic irrigation could be applied in the chernozemic zone. This new irrigation mode contributes to the preservation of the natural soil-forming process and stops the development of unfavorable processes typical of the lands irrigated with water of inadequate quality. In eight years of cultivation of the ordinary chernozem with periodic irrigation, the soil humus content increased by 10% (from 3.80 to 4.15%), and the yield reached 66.0 t/ha of fodder units. This was 9% higher than the yield obtained upon regular irrigation without agroameliorative measures and 12% lower than the yield upon regular irrigation in combination with soil-protective measures. Our data suggest that periodic irrigation is promising for the chernozemic zone, because it ensures lower water loads and preservation of the irrigated chernozems.

  14. El cultivo de alfalfa utilizando agua de perforación, agua residual urbana y precipitaciones The cultivation of alfalfa using artesian well water, urban wastewater and rainfall

    Directory of Open Access Journals (Sweden)

    José O. Plevich

    2012-12-01

    Full Text Available El objetivo de este trabajo fue analizar la producción de biomasa aérea, la eficiencia del uso de agua y el valor nutritivo de alfalfa cultivada aplicando riego con agua residual urbana, agua de perforación y un testigo (precipitaciones, en el Campus de la Universidad Nacional de Rio Cuarto (Córdoba-Argentina. Los tratamientos de riego tuvieron un efecto positivo sobre la producción de biomasa aérea obteniéndose un 24% más de producción de biomasa que en la situación de secano (precipitaciones. Entre los tratamientos con riego también se manifestaron diferencias estadísticamente significativas. La alfalfa regada con aguas residuales urbana supero en un 19% a la cultivada con agua de perforación. La eficiencia del uso del agua por parte del cultivo se incrementó cuando el riego se realizó con aguas residuales urbanas. Además, se determinó que la alfalfa regada con agua residual, supera los valores nutritivos del cultivo que crece en condiciones sin riego; encontrándose 39% más de proteínas, 14% más de digestibilidad e igual porcentaje de energía metabólica. Se puede concluir que el agua residual urbana representa otra posible fuente de agua, factible de ingresar al suelo y estar a disposición para el cultivo de alfalfa.The objective of this study was to analyse the production of alfalfa biomass, the efficiency of water use and the nutritional value of forage, inside an irrigation structure of an experimental facility that uses treated urban wastewater, artesian well water and rainfall, at the campus of the Universidad National de Rio Cuarto (Córdoba-Argentina. The irrigation treatment had a positive effect on the production of biomass of alfalfa. On an average 24% increase in production was observed when compared to dry-land farming. Regarding the quality of the irrigation water, statistical differences in production were observed, the irrigation with urban wastewater produced 19% more than that of well water. The

  15. Suitable woody species for a land application alternative to pulp and paper mill wastewater disposal

    International Nuclear Information System (INIS)

    Aw, M.; Wagner, M.R.

    1993-01-01

    Saline pulp and paper wastewater produced by Stone Container Corporation in Snowflake, Arizona was used to irrigate 32 different species/genotypes/hybrids of woody plants to test their suitability as an alternative treatment to the current wastewater disposal method. Suitability was measured in terms of survival and height growth. Among the 32 species, six were found to be a very good choice for wastewater treatment and biomass production. Their suitability is further justified by the fact that some have salt tolerance and others fix nitrogen. These species are Tamarix ramosissima, Atriplex canescens, Robinia pseudoacacia, Eleagnus angustifoliz, Ulmus pumila, and Populus deltoides x Populus nigra. Three other species are possible candidates. These include Caragana arborescens, Gleditsia triacanthos and Populus deltoides var. siouxland. In general, conifers performed poorly because of the harsh environment and other silvicultural problems

  16. Irrigation water quality in southern Mexico City based on bacterial and heavy metal analyses

    Energy Technology Data Exchange (ETDEWEB)

    Solis, C. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo Postal 20-364, 01000 Mexico, DF (Mexico)]. E-mail: corina@fisica.unam.mx; Sandoval, J. [Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-275, 04510 Mexico, DF (Mexico); Perez-Vega, H. [Ciencias Agropecuarias, Universidad Juarez Autonoma de Tabasco, Ave. Universidad S/N. Zona de la Cultura, 86040 Villa Hermosa, Tabasco (Mexico); Mazari-Hiriart, M. [Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-275, 04510 Mexico, DF (Mexico)

    2006-08-15

    Xochimilco is located in southern Mexico City and represents the reminiscence of the pre-Columbian farming system, the 'chinampa' agriculture. 'Chinampas' are island plots surrounded by a canal network. At present the area is densely urbanized and populated, with various contaminant sources contributing to the water quality degradation. The canal system is recharged by a combination of treated-untreated wastewater, and precipitation during the rainy season. Over 40 agricultural species, including vegetables, cereals and flowers, are produced in the 'chinampas'. In order to characterize the quality of Xochimilcos' water used for irrigation, spatial and temporal contaminant indicators such as microorganisms and heavy metals were investigated. Bacterial indicators (fecal coliforms, fecal enterococcus) were analyzed by standard analytical procedures, and heavy metals (such as Fe, Cu, Zn and Pb) were analyzed by particle induced X-ray emission (PIXE). The more contaminated sites coincide with the heavily populated areas. Seasonal variation of contaminants was observed, with the higher bacterial counts and heavy metal concentrations reported during the rainy season.

  17. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  18. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  19. Evaluation of water productivity under climate change in irrigated areas of the arid Northwest China using an assemble statistical downscaling method and an agro-hydrological model

    Science.gov (United States)

    Liu, Liu; Guo, Zezhong; Huang, Guanhua

    2018-06-01

    The Heihe River Basin (HRB) is the second largest inland river basin, located in the arid region of Northwest China with a serious water shortage. Evaluation of water productivity will provide scientific implications for agricultural water-saving in irrigated areas of the arid region under climate change. Based on observed meteorological data, 23 GCMs outputs and the ERA-40 reanalysis data, an assemble statistical downscaling model was developed to generate climate change scenarios under RCP2.6, RCP4.5, RCP8.5 respectively, which were then used to drive the SWAP-EPIC model to simulate crop growth in the irrigated areas of the middle HRB for the future period from 2018 to 2047. Crop yield showed an increasing trend, while crop water consumption decreased gradually in Gaotai and Ganzhou irrigated areas. The water productivity in future 30 years showed an increasing trend in both Gaotai and Ganzhou areas, with the most significant increase under RCP4.5 scenario, which were both larger than 2 kg m-3. Compared with that of the period from 2012 to 2015, the water productivity during 2018-2047 under three RCP scenarios increased by 9.2, 14.3 and 11.8 % in the Gaotai area, and 15.4, 21.6, 19.9 % in the Ganzhou area, respectively.

  20. Converting Surface Irrigation to Pressurized Irrigation Systems and its Effecton Yield of OrangeTrees (Case Study:North of Khouzestan

    Directory of Open Access Journals (Sweden)

    M. Khorramian

    2017-01-01

    Full Text Available Introduction: North of the Khouzestan is one of the most important citrus production center. Usually border irrigation is used to irrigate citrus in this area. This system has generally low application efficiency. Several investigations in other arid region have demonstrated in addition to improved irrigation efficiency with low-volume pressurized irrigation systems, citrus trees have adapted with these new irrigation systems. However limited information exists on the performance of mature orchards converted from border surface irrigation to pressurized irrigation systems. Therefore, the current research was conducted to evaluate the feasibility of converting surface irrigation to pressurized irrigation systems on mature citrus trees in climate conditions of North Khouzestan. Materials and Methods: This study was conducted during three years at Safiabad Agricultural Research Center to evaluate the yield of citrus trees and the quality of fruits for two Marss and Valencia varieties which grow 7 years previously with surface irrigation and converted to pressurized irrigation systems. The treatments consisted of six irrigation methods including Overhead sprinkle irrigation (OHSI, Under tree sprinkle irrigation(UTSI, Trickle irrigation(TI(six 8 L/h Netafim emitters, Microjet irrigation (MI(two 180 microjet were located under canopy near of the trunk at opposite sides of trunk,Bubbler irrigation(BI(a single located under the canopy of each treeandSurface irrigation(SI method.Soil texture was clay loam well drained without salinity(ECe=0.69ds m-1, with 1.25 percent organic carbon. The experimental design was completely randomized design. The trees were irrigated during spring and summer seasons. For calculating irrigation water depth in TI, MI and BI systems, daily evaporation from a class A evaporation pan of the Safiabad weather station (nearby the experimental field was collected, and evapotranspiration of the citrus trees was calculated applying a

  1. Environmental systems analysis of wastewater management

    International Nuclear Information System (INIS)

    Kaerrman, Erik

    2000-01-01

    The history of wastewater management tells us that efforts have been made at solving only one problem at the time; sanitation during the first half of the 20th Century followed by eutrophication of lakes and sea and, for the past ten years, recycling of nutrients. After the 'Brundtland Report', 1987, a reversal of the debate occurred where water management was discussed in a more holistic manner than before. The concept sustainable development became widely accepted and was put into practice. This thesis suggests a framework for evaluating the sustainability of wastewater systems, which contains the use of criteria and system analytical evaluation methods matching each criterion. The main categories of criteria are identified as: Health and Hygiene, Social and Cultural, Environmental, Economic and Functional and Technical. The usability of different concepts of Environmental Systems Analysis for evaluating environmental criteria of wastewater systems is also investigated. These studies show that a substance-flow model combined with evaluation methods from Life Cycle Assessment (LCA), sometimes complemented with Exergy Analysis or Analysis of Primary Energy, is a beneficial approach for evaluating environmental impacts and the usage of resources. The substance-flow model ORWARE (ORganic WAste REsearch) combined with LCA was used to compare four systems structures for the management of household wastewater and solid organic waste, namely Conventional System, Irrigation of Energy Forests, Liquid Composting and Urine Separation. This study shows a potential for further development of the three alternative systems. The comparative study also included some development of system analytical methods. This thesis shows how the contribution from oxidation of ammonia should be included in the eutrophication impact category. Furthermore, a method is given for prioritization of the most relevant impacts from wastewater management by using normalisation of these impacts in

  2. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    Science.gov (United States)

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  3. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    International Nuclear Information System (INIS)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-01-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  4. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-07-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  5. [Isolation and characterization of petroleum catabolic broad-host-range plasmids from Shen-Fu wastewater irrigation zone].

    Science.gov (United States)

    Wang, Ya-Fei; Wang, Ya-Fei; Li, Hui; Li, Xiao-Bin

    2013-11-01

    Based on triparental mating, we isolated a total of eight broad host range (BHR) petroleum hydrocarbon catabolic plasmids from the soils, sediments, and wastewater samples in the Shen-Fu irrigation zone. The antibiotic resistance of the plasmids was tested, and then, the plasmids were transferred to Escherichia coli EC100. The plasmids carrying no antibiotic resistance were tagged by miniTn5 transposon consisting of antibiotic resistant genes. The PCR-based incompatibility test revealed that the pS3-2C and pS4-6G belonged to Inc P group, the pS3-2G, pW22-3G, and pA15-7G belonged to Inc N group, the pS7-2G was identified as Inc W plasmid, and the pA23-1G and pA10-1C were placed into Inc Q group. By adopting the reported PCR amplification methods of petroleum hydrocarbon-degrading catabolic genes, the petroleum-degrading capability of these BHR plasmids were preliminarily analyzed. The plasmids pS3-2G, pS7-2G, pA23-1G, pW22-3G, and pA10-1C carried aromatic ring- hydroxylating dioxygenase gene phdA and toluene monooxygenase gene touA; the plasmid pA15-7G carried touA and toluene dioxygenase gene tod; the plasmid pS3-2C carried ben, phdA, and tod; whereas the pS4-6G only carried ben. The host range test showed that all the isolated plasmids except pS3-2C could be transferred and maintained stably in the representative strains Agrobacterium tumefaciens C58, Cupriavidus necator JMP228, and E. coli EC100 of the alpha-, beta-, and gamma-Proteobacteria, respectively.

  6. Global assessment of urban and peri-urban agriculture: irrigated and rainfed croplands

    Science.gov (United States)

    Thebo, A. L.; Drechsel, P.; Lambin, E. F.

    2014-11-01

    The role of urban agriculture in global food security is a topic of increasing discussion. Existing research on urban and peri-urban agriculture consists largely of case studies that frequently use disparate definitions of urban and peri-urban agriculture depending on the local context and study objectives. This lack of consistency makes quantification of the extent of this practice at the global scale difficult. This study instead integrates global data on croplands and urban extents using spatial overlay analysis to estimate the global area of urban and peri-urban irrigated and rainfed croplands. The global area of urban irrigated croplands was estimated at about 24 Mha (11.0 percent of all irrigated croplands) with a cropping intensity of 1.48. The global area of urban rainfed croplands found was approximately 44 Mha (4.7 percent of all rainfed croplands) with a cropping intensity of 1.03. These values were derived from the MIRCA2000 Maximum Monthly Cropped Area Grids for irrigated and rainfed crops and therefore their sum does not necessarily represent the total urban cropland area when the maximum extent of irrigated and rainfed croplands occurs in different months. Further analysis of croplands within 20 km of urban extents show that 60 and 35 percent of, respectively, all irrigated and rainfed croplands fall within this distance range.

  7. Global assessment of urban and peri-urban agriculture: irrigated and rainfed croplands

    International Nuclear Information System (INIS)

    Thebo, A L; Drechsel, P; Lambin, E F

    2014-01-01

    The role of urban agriculture in global food security is a topic of increasing discussion. Existing research on urban and peri-urban agriculture consists largely of case studies that frequently use disparate definitions of urban and peri-urban agriculture depending on the local context and study objectives. This lack of consistency makes quantification of the extent of this practice at the global scale difficult. This study instead integrates global data on croplands and urban extents using spatial overlay analysis to estimate the global area of urban and peri-urban irrigated and rainfed croplands. The global area of urban irrigated croplands was estimated at about 24 Mha (11.0 percent of all irrigated croplands) with a cropping intensity of 1.48. The global area of urban rainfed croplands found was approximately 44 Mha (4.7 percent of all rainfed croplands) with a cropping intensity of 1.03. These values were derived from the MIRCA2000 Maximum Monthly Cropped Area Grids for irrigated and rainfed crops and therefore their sum does not necessarily represent the total urban cropland area when the maximum extent of irrigated and rainfed croplands occurs in different months. Further analysis of croplands within 20 km of urban extents show that 60 and 35 percent of, respectively, all irrigated and rainfed croplands fall within this distance range. (letter)

  8. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  9. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    For sound land use and water management in irrigated area, knowledge of the chemical composition of soils, water, climate, drainage condition and irrigation methods before action are crucial for sustainability of irrigation projects. The study aimed to evaluate the physicochemical properties of soils and water for intended ...

  10. Performance evaluation of sprinkler irrigation system at Mambilla ...

    African Journals Online (AJOL)

    Variation in discharge can also be adjusted via use of uniform laterals, risers, and nozzles. This study further recommends an incorporation of a soil and water laboratory for the company to aid in monitoring the soil and water quality of the irrigation area. Keywords: Tea, irrigation System, Performance Evaluation ...

  11. Physicochemical and microbiological effects of long- and short-term winery wastewater application to soils.

    Science.gov (United States)

    Mosse, K P M; Patti, A F; Smernik, R J; Christen, E W; Cavagnaro, T R

    2012-01-30

    Application of winery wastewaters to soils for irrigation of various crops or landscapes is a common practice in the wine industry. In this study, we sought to investigate the effects of this practice, by comparing the physicochemical and microbiological soil properties in paired sites that differed in having had a history of winery waste application or not. We also compared the effects of a single application of untreated winery wastewater, to application of treated winery wastewater (sequencing batch reactor) and pure water to eliminate the effects of wetting alone. Long-term application of winery wastes was found to have significant impacts on soil microbial community structure, as determined by phospholipid fatty acid analysis, as well as on many physicochemical properties including pH, EC, and cation concentrations. (13)C NMR revealed only slight differences in the nature of the carbon present at each of the paired sites. A single application of untreated winery wastewater was shown to have significant impacts upon soil respiration, nitrogen cycling and microbial community structure, but the treated wastewater application showed no significant differences to wetting alone. Results are discussed in the context of sustainable winery wastewater disposal. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Chemism of the run-off wastewater from urbanized areas based on the Kielce City example

    Directory of Open Access Journals (Sweden)

    Rabajczyk A.

    2013-04-01

    Full Text Available The study was conducted at the collector of run-off wastewater (Si9, located in Kielce. Silnica River is a small river cutting through the city of Kielce from the North to the South-West. It has its source in Masłowskie Range at a height of 360 m a.s.l. and it flows into Bobrza River. It is ranked among mountain rivers at a 6.4 ‰ gradient. Its river-bed bas belonged to Kielecki Protected Landscape Area since 2006. Next to Szydłowek estate the artificial water body was build - Kielecki Bay. Beneath Kielecki Bay, Silnica River flows in regu1ated river-bed. Because of no separated storm water drainage, the rainwater washes away pollutants among others from industrial plants, houses, pavements, and streets into Silnica River. The wastewater treatment plant is located at the mouth of the Silnica River. It receives rainwater and snowmelt from the central - eastern part of the city with an area of 62 ha. The primary channel has a length of 1569 m and its diameter varies from 600 mm to 1250 mm. Is attached to the side of seventeen channels (with diameters from 300 mm to 1000 mm. The collector wells are 32 inspection and connection, and 24 entries. The side channels are located 119 wells and 82 outlets. The total length of the sewerage system is equal to 5583 m. The decrease of the collector changes to individual sections from 0.04% to 3.9%, and decreases in side channels to reach 2.61%. On average, one groove receives water from the surface of 0.585 ha. Ordinate the highest point in the catchment area is 271.20 m, 260.0 m above sea level the lowest, the average decrease in surface area is equal to 0.71%. Within the basin was isolated six types of surface runoff: roofs (14.3%, walks (8.4%, roads (17.7%, parking (11.2%, green (47.2% and pitch school (1.3%. Generally, paved areas with a high coefficient of runoff represent 52.83% of the total catchment area, which shows the typical urban character. The run-off wastewater is collected from the roofs by

  13. Occurrence of Escherichia coli in Brassica rapa L. chinensis ...

    African Journals Online (AJOL)

    Administrator

    2016-12-07

    Dec 7, 2016 ... chinensis irrigated with low quality water in urban areas of Morogoro ... wastewater plays a significant role in food security as it improves crop ... Low quality irrigation water is generally contaminated with humans or animals.

  14. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    Science.gov (United States)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  15. Use of swine wastewater in oilseed radish crop: agronomic and environmental aspects

    Directory of Open Access Journals (Sweden)

    Thaisa Pegoraro

    2014-12-01

    Full Text Available Swine effluent has been applied to soils to promote nutrient cycling and reduce the uncontrolled disposal of effluents into bodies of water. However, the use of these effluents on various crops has raised environmental and public health concerns. Oilseed radish crop (Raphanus sativus L. is a winter crop planted in no-tillage systems as a green fertilizer that also can be used for biodiesel, and it requires high levels of nutrients for its development. Thus, the present study aimed to evaluate the environmental and agronomic effects of the application of swine wastewater on oilseed radish. The experiment was conducted in a 0.162 ha area with the following treatments: unirrigated (rainfed, irrigated, and fertilized with swine wastewater (370 m3 ha-1 cycle-1. After each rainfall event, analyses were conducted for the main macro and micronutrients in the runoff and percolated material from drainage lysimeters. Changes in the physical and chemical characteristics of the soil were also analyzed, as were the agronomic and nutritional indices of the dry crop phytomass in full blooming stage. Application of swine wastewater at a level of 370 m3 ha-1 produces a crop with better agronomic quality. Over the long term, however, caution should be taken regarding the surface runoff of NO3-, P, K, Mn and total salts and the percolation of NO3-, Na and Cu. Moreover, the rainfall occurred one day after fertigation contributed to the increase of the levels of P, K, Na, Cu, Zn and Mn in the percolated material.

  16. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia

    Science.gov (United States)

    Balkhair, Khaled S.; Ashraf, Muhammad Aqeel

    2015-01-01

    Wastewater irrigated fields can cause potential contamination with heavy metals to soil and groundwater, thus pose a threat to human beings . The current study was designed to investigate the potential human health risks associated with the consumption of okra vegetable crop contaminated with toxic heavy metals. The crop was grown on a soil irrigated with treated wastewater in the western region of Saudi Arabia during 2010 and 2011. The monitored heavy metals included Cd, Cr, Cu, Pb and Zn for their bioaccumulation factors to provide baseline data regarding environmental safety and the suitability of sewage irrigation in the future. The pollution load index (PLI), enrichment factor (EF) and contamination factor (CF) of these metals were calculated. The pollution load index of the studied soils indicated their level of metal contamination. The concentrations of Ni, Pb, Cd and Cr in the edible portions were above the safe limit in 90%, 28%, 83% and 63% of the samples, respectively. The heavy metals in the edible portions were as follows: Cr > Zn > Ni > Cd > Mn > Pb > Cu > Fe. The Health Risk Index (HRI) was >1 indicating a potential health risk. The EF values designated an enhanced bio-contamination compared to other reports from Saudi Arabia and other countries around the world. The results indicated a potential pathway of human exposure to slow poisoning by heavy metals due to the indirect utilization of vegetables grown on heavy metal-contaminated soil that was irrigated by contaminated water sources. The okra tested was not safe for human use, especially for direct consumption by human beings. The irrigation source was identified as the source of the soil pollution in this study. PMID:26858563

  17. Pharmaceutical grey water footprint: Accounting, influence of wastewater treatment plants and implications of the reuse.

    Science.gov (United States)

    Martínez-Alcalá, Isabel; Pellicer-Martínez, Francisco; Fernández-López, Carmen

    2018-05-15

    Emerging pollutants, including pharmaceutical compounds, are producing water pollution problems around the world. Some pharmaceutical pollutants, which mainly reach ecosystems within wastewater discharges, are persistent in the water cycle and can also reach the food chain. This work addresses this issue, accounting the grey component of the water footprint (GWF P ) for four of the most common pharmaceutical compounds (carbamazepine (CBZ), diclofenac (DCF), ketoprofen (KTP) and naproxen (NPX)). In addition, the GWF C for the main conventional pollutants is also accounted (nitrate, phosphates and organic matter). The case study is the Murcia Region of southeastern Spain, where wastewater treatment plants (WWTPs) purify 99.1% of the wastewater discharges and there is an important direct reuse of the treated wastewater in irrigation. Thus, the influence of WWTPs and reuse on the GWF is analysed. The results reveal that GWF P , only taking into account pharmaceutical pollutants, has a value of 301 m 3 inhabitant -1 year -1 ; considering only conventional pollutants (GWF C ), this value increases to 4718 m 3 inhabitant -1 year -1 . So, the difference between these values is such that in other areas with consumption habits similar to those of the Murcia Region, and without wastewater purification, conventional pollutants may well establish the value of the GWF. On average, the WWTPs reduce the GWF C by 90% and the GWF P by 26%. These different reductions of the pollutant concentrations in the treated effluents show that the GWF is not only due to conventional pollutants, and other contaminants can became critical, such as the pharmaceutical pollutants. The reuse further reduces the value of the GWF for the Murcia Region, by around 43.6%. However, the reuse of treated wastewater is controversial, considering the pharmaceutical contaminants and their possible consequences in the food chain. In these cases, the GWF of pharmaceutical pollutants can be used to provide a

  18. Improvements in irrigation system modelling when using remotely sensed ET for calibration

    Science.gov (United States)

    van Opstal, J. D.; Neale, C. M. U.; Lecina, S.

    2014-10-01

    Irrigation system modelling is often used to aid decision-makers in the agricultural sector. It gives insight on the consequences of potential management and infrastructure changes. However, simulating an irrigation district requires a considerable amount of input data to properly represent the system, which is not easily acquired or available. During the simulation process, several assumptions have to be made and the calibration is usually performed only with flow measurements. The advancement of estimating evapotranspiration (ET) using remote sensing is a welcome asset for irrigation system modelling. Remotely-sensed ET can be used to improve the model accuracy in simulating the water balance and the crop production. This study makes use of the Ador-Simulation irrigation system model, which simulates water flows in irrigation districts in both the canal infrastructure and on-field. ET is estimated using an energy balance model, namely SEBAL, which has been proven to function well for agricultural areas. The seasonal ET by the Ador model and the ET from SEBAL are compared. These results determine sub-command areas, which perform well under current assumptions or, conversely, areas that need re-evaluation of assumptions and a re-run of the model. Using a combined approach of the Ador irrigation system model and remote sensing outputs from SEBAL, gives great insights during the modelling process and can accelerate the process. Additionally cost-savings and time-savings are apparent due to the decrease in input data required for simulating large-scale irrigation areas.

  19. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    Science.gov (United States)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  20. Some Morphological Characters and Yield of Common Field Bean (Vicia faba.L

    Directory of Open Access Journals (Sweden)

    L Golchin

    2014-05-01

    Full Text Available To evalauate the influences of irrigation time with wastewater of Iran mayhes factory (producing leaven on some morphological characters and yield of faba bean, a factorial experiment carried out on the base of randomized complete block design (CRBD in Iran Mayehs factory farm in spring2012. Experimental factors consisted of irrigation times at 3 levels I1 = one irrigation with determined amount of wastewater, I2 = two irrigations with determined amount of wastewater, I3 = irrigation during the growth period of plants with determined amount of wastewater and wastewater concentration at 6 levels (P0 = irrigation with normal water (control, P15=15% wastewaters + normal water, P30= 30% wastewaters + normal, P45= 45% wastewaters + normal water, P60= 60% wastewaters + normal water, P100= all wastewater with three replications. Results showed that the effect irrigation numbers on traits such as plant height, number of pods per plant and seed yield was significant. Results also revealed that the effect of weastwater concentration on1000seed weight was significant. The interaction of number of irrigations by weastwater concentrations on stem dry weight was also signification. Evaluation of different treatments showed that 45 percent concentration of wastewater was increased traits under study. It seems, that controlled irrigation of bean with wastewater of factory (producing yeast can be effective in improving its yield in the region.