WorldWideScience

Sample records for humidity sensing properties

  1. Preparation and Humidity Sensing Properties of KCl/MCM-41 Composite

    International Nuclear Information System (INIS)

    Li, Liu; Lian-Yuan, Wang; Wei, Li; Li-Ying, Kou; Zhi-Cheng, Zhong; Li-Fang, Liu

    2010-01-01

    KCl/mobil composition of matter-41 (MCM-41) composite has been synthesized via a heat-treating process and characterized by x-ray diffraction, high resolution transmission electron microscopy, and nitrogen adsorption/desorption isotherms. In contrast with pure MCM-41, KCl/MCM-41 composite exhibits improved humidity sensing properties within the relative humidity range of 11–95%. The impedance of KCl/MCM-41 composite changes by about four orders of magnitude over the whole humidity range with the response time and the recovery times are about 30 s and 35 s, respectively. Small humidity hysteresis and good stability are also observed based on our product. These results make our product a good candidate in fabricating humidity sensors with high performances and low synthetic complexity

  2. Morphological and Relative Humidity Sensing Properties of Pure ZnO Nanomaterial

    Directory of Open Access Journals (Sweden)

    N. K. Pandey

    2010-11-01

    Full Text Available In this paper we report the resistive type humidity sensing properties of pure ZnO nanomaterial prepared by solid-state reaction method. Pellets of pure ZnO nanocrystalline powder have been made with 10 weight % of glass powder at pressure of 260 MPa by hydraulic press machine for 3 hours. These pellets have been sintered at temperatures 200 °C - 500 °C in an electric muffle furnace for 3 hours at heating rate of 5°C/min. After sintering, these pellets have been exposed to humidity in a specially designed humidity chamber at room temperature. It has been observed that as relative humidity increases, resistance of the pellets decreases for entire range of humidity i.e. 10 % to 90 %. The sensing element of ZnO shows best results with sensitivity of 11.13 MΩ/%RH for the annealing temperature of 400 °C. This sensing element manifests lower hysteresis, less effect of aging and high reproducibility for annealing temperature 400 °C. SEM micrographs show that the sensing elements manifest porous structure with a network of pores that are expected to provide sites for humidity adsorption. The average grain size calculated from SEM micrograph is 236 nm. XRD pattern shows peaks of hexagonal zincite. As calculated from Scherer’s formula, the average crystalline size for this sensing element is 59.4 nm. For this sensing element, the values of activation energy from the Arrhenius plot is 0.041 eV for temperature range 200 °C - 400 °C and 0.393 eV for temperature range 400 °C - 500 °C. The adsorption of water molecules on the surface takes place via a dissociative chemisorption process leading to release of electrons. ZnO has electron vacancy. Hence, because of this reaction, the electrons are accumulated at the ZnO surface and consequently, the resistance of the sensing element decreases with increase in relative humidity.

  3. Evaluate humidity sensing properties of novel TiO2–WO3 composite material

    International Nuclear Information System (INIS)

    Lin, Wang-De; Lai, De-Sheng; Chen, Min-Hung; Wu, Ren-Jang; Chen, Fu-Chou

    2013-01-01

    Graphical abstract: TiO 2 –WO 3 (1:1) showed better humidity sensing properties than others within the range of 12–90% relative humidity (RH), the response and recovery time were about 20 s and 160 s, respectively. Compared to the previous studies, the prepared sensor exhibits higher sensitivity (S = 451) and the low hysteresis value was around 0.13% at 32% RH. - Highlights: • Novel TiO 2 –WO 3 composite material was prepared for humidity sensor. • The sensor exhibits higher sensitivity (S = 451). • Low hysteresis value was around 0.13% at 32% RH. - Abstract: A novel TiO 2 –WO 3 composite material was prepared using a different proportion of TiO 2 and WO 3 to that investigated in previous studies. The obtained mesoporous material was characterized using X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, energy dispersive X-ray spectroscopy, and N 2 adsorption-desorption techniques. The humidity-sensing properties were measured using an inductance, capacitance and resistance analyzer. The results demonstrated that the TiO 2 –WO 3 sample with a ratio of 1:1 showed better humidity sensing properties. Compared to previous studies, the prepared sensor exhibited higher sensitivity (S = 451) and the lower hysteresis value was around 0.13% at 32% RH. Complex impedance analysis indicated that the enhanced humidity sensitivity was probably due to spherical Brunauer–Emmett–Teller surface area and the hetero-junction between TiO 2 –WO 3 thin films, while the impedance varied about three orders of magnitude. Our results demonstrated the potential application of TiO 2 –WO 3 composite for fabricating high performance humidity sensors

  4. Evaluate humidity sensing properties of novel TiO{sub 2}–WO{sub 3} composite material

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wang-De [Department of Applied Chemistry, Providence University, Taichung 43301 Taiwan, ROC (China); Department of Center for General Education, St. Mary' s Junior College of Medicine, Nursing and Management, Yilan 26644 Taiwan, ROC (China); Lai, De-Sheng; Chen, Min-Hung [Department of Applied Chemistry, Providence University, Taichung 43301 Taiwan, ROC (China); Wu, Ren-Jang, E-mail: rjwu@pu.edu.tw [Department of Applied Chemistry, Providence University, Taichung 43301 Taiwan, ROC (China); Chen, Fu-Chou [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan, ROC (China)

    2013-10-15

    Graphical abstract: TiO{sub 2}–WO{sub 3} (1:1) showed better humidity sensing properties than others within the range of 12–90% relative humidity (RH), the response and recovery time were about 20 s and 160 s, respectively. Compared to the previous studies, the prepared sensor exhibits higher sensitivity (S = 451) and the low hysteresis value was around 0.13% at 32% RH. - Highlights: • Novel TiO{sub 2}–WO{sub 3} composite material was prepared for humidity sensor. • The sensor exhibits higher sensitivity (S = 451). • Low hysteresis value was around 0.13% at 32% RH. - Abstract: A novel TiO{sub 2}–WO{sub 3} composite material was prepared using a different proportion of TiO{sub 2} and WO{sub 3} to that investigated in previous studies. The obtained mesoporous material was characterized using X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, energy dispersive X-ray spectroscopy, and N{sub 2} adsorption-desorption techniques. The humidity-sensing properties were measured using an inductance, capacitance and resistance analyzer. The results demonstrated that the TiO{sub 2}–WO{sub 3} sample with a ratio of 1:1 showed better humidity sensing properties. Compared to previous studies, the prepared sensor exhibited higher sensitivity (S = 451) and the lower hysteresis value was around 0.13% at 32% RH. Complex impedance analysis indicated that the enhanced humidity sensitivity was probably due to spherical Brunauer–Emmett–Teller surface area and the hetero-junction between TiO{sub 2}–WO{sub 3} thin films, while the impedance varied about three orders of magnitude. Our results demonstrated the potential application of TiO{sub 2}–WO{sub 3} composite for fabricating high performance humidity sensors.

  5. A Sensor Based on LiCl/NaA Zeolite Composites for Effective Humidity Sensing.

    Science.gov (United States)

    Zhang, Ying; Xiang, Hongyu; Sun, Liang; Xie, Qiuhong; Liu, Man; Chen, Yu; Ruan, Shengping

    2018-03-01

    LiCl/NaA zeolite composites were successfully prepared by doping 1 wt%, 2 wt%, 5 wt%, and 8 wt% of LiCl into NaA zeolite. The humidity sensing properties of LiCl/NaA composites were investigated among 11% 95% relative humidity (RH). The LiCl/NaA composites exhibited better humidity sensing properties than pure NaA zeolite. The sensor made by 2 wt% Li-doped NaA zeolite possesses the best linearly in the whole RH. These results demonstrate that the LiCl/NaA composites have the potential application in humidity sensing.

  6. Fabrication of Porous Silicon Based Humidity Sensing Elements on Paper

    Directory of Open Access Journals (Sweden)

    Tero Jalkanen

    2015-01-01

    Full Text Available A roll-to-roll compatible fabrication process of porous silicon (pSi based sensing elements for a real-time humidity monitoring is described. The sensing elements, consisting of printed interdigitated silver electrodes and a spray-coated pSi layer, were fabricated on a coated paper substrate by a two-step process. Capacitive and resistive responses of the sensing elements were examined under different concentrations of humidity. More than a three orders of magnitude reproducible decrease in resistance was measured when the relative humidity (RH was increased from 0% to 90%. A relatively fast recovery without the need of any refreshing methods was observed with a change in RH. Humidity background signal and hysteresis arising from the paper substrate were dependent on the thickness of sensing pSi layer. Hysteresis in most optimal sensing element setup (a thick pSi layer was still noticeable but not detrimental for the sensing. In addition to electrical characterization of sensing elements, thermal degradation and moisture adsorption properties of the paper substrate were examined in connection to the fabrication process of the silver electrodes and the moisture sensitivity of the paper. The results pave the way towards the development of low-cost humidity sensors which could be utilized, for example, in smart packaging applications or in smart cities to monitor the environment.

  7. Study of Optical Humidity Sensing Properties of Sol-Gel Processed TiO2 and MgO Films

    Directory of Open Access Journals (Sweden)

    B. C. Yadav

    2007-04-01

    Full Text Available Paper reports a comparative study of humidity sensing properties of TiO2 and MgO films fabricated by Sol-gel technique using optical method. One sensing element of the optical humidity sensor presented here consists of rutile structured two-layered TiO2 thin film deposited on the base of an isosceles glass prism. The other sensing element consists of a film of MgO deposited by same technique on base of the prism. Light from He-Ne laser enters prism from one of refracting faces of the prism and gets reflected from the glass-film interface, before emerging out from its other isosceles face. This emergent beam is allowed to pass through an optical fiber. Light coming out from the optical fiber is measured with an optical power meter. Variations in the intensity of light caused by changes in humidity lying in the range 5%RH to 95%RH have been recorded. MgO film shows better sensitivity than TiO2 film.

  8. The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2

    Science.gov (United States)

    Li, Zhong; Haidry, Azhar Ali; Gao, Bin; Wang, Tao; Yao, ZhengJun

    2017-08-01

    Monitoring of humidity is of utmost importance as it is essential part of almost every process in our life. Many commercial humidity sensors based on metal oxide semiconductors are available in the market, but there is still need to synthesize low-cost, fast and highly sensitive humidity sensors with no interference from background environment. The aim of this work was to fabricate the ordered mesoporous un-doped and Co-doped TiO2 (0.1-5 mol% Co) and to analyze its humidity sensing properties at room temperatures. The ordered mesoporous powders with high specific surface area (SSA) were prepared by multicomponent self-assembly procedure and then spray-coated onto the sensor substrates with interdigitated gold electrodes. The sensors exhibited excellent stability and reproducible resistance change under various relative humidity percentages (9-90% RH) with negligible effect of background environment. For instance, the response to 90% RH at room temperature was about five orders of magnitude (∼1.39 × 105) and the response time (Tres) was ∼24 s. The reaction/recovery times of the sensors were compared with commercial humidity sensor to show that the reaction times in this work are not given by the surface reaction of water vapor on the sensor surfaces, rather these are mainly influenced by the experimental setup. The sensor response increased up to 3 mol% Co-contents and then decreased for 5 mol% Co-contents. Based on the experimental results, the surface reaction of humidity is discussed related to specific surface area, average grain size and cobalt contents to understand the humidity sensing mechanism.

  9. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method

    International Nuclear Information System (INIS)

    Fang, F; Futter, J; Markwitz, A; Kennedy, J

    2009-01-01

    The UV and humidity sensing properties of ZnO nanorods prepared by arc discharge have been studied. Scanning electron microscopy and photoluminescence spectroscopy were carried out to analyze the morphology and optical properties of the as-synthesized ZnO nanorods. Proton induced x-ray emission was used to probe the impurities in the ZnO nanorods. A large quantity of high purity ZnO nanorod structures were obtained with lengths of 0.5-1 μm. The diameters of the as-synthesized ZnO nanorods were found to be between 40 and 400 nm. The nanorods interlace with each other, forming 3D networks which make them suitable for sensing application. The addition of a polymeric film-forming agent (BASF LUVISKOL VA 64) improved the conductivity, as it facilitates the construction of conducting networks. Ultrasonication helped to separate the ZnO nanorods and disperse them evenly through the polymeric agent. Improved photoconductivity was measured for a ZnO nanorod sensor annealed in air at 200 deg. C for 30 min. The ZnO nanorod sensors showed a UV-sensitive photoconduction, where the photocurrent increased by nearly four orders of magnitude from 2.7 x 10 -10 to 1.0 x 10 -6 A at 18 V under 340 nm UV illumination. High humidity sensitivity and good stability were also measured. The resistance of the ZnO nanorod sensor decreased almost linearly with increasing relative humidity (RH). The resistance of the ZnO nanorods changed by approximately five orders of magnitude from 4.35 x 10 11 Ω in dry air (7% RH) to about 4.95 x 10 6 Ω in 95% RH air. It is experimentally demonstrated that ZnO nanorods obtained by the arc discharge method show excellent performance and promise for applications in both UV and humidity sensors.

  10. Effect of thickness on surface morphology, optical and humidity sensing properties of RF magnetron sputtered CCTO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadipour, Mohsen [Structural Materials Niche Area, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Ain, Mohd Fadzil [School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Ahmad, Zainal Arifin, E-mail: srzainal@usm.my [Structural Materials Niche Area, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)

    2016-11-01

    Highlights: • CCTO thin film was synthesized by RF magnetron sputtering successfully. • Increase in thickness lead to increase in grain size and decrease in band gap. • Short response times and recovery times of lead CCTO humidity sensor. • Sensor could detect humidity range (30–90%). - Abstract: In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV–vis spectrophotometer and current-voltage (I–V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30–90% relative humidity (RH).

  11. Relative Humidity Sensing Properties Of Cu2O Doped ZnO Nanocomposite

    International Nuclear Information System (INIS)

    Pandey, N. K.; Tiwari, K.; Tripathi, A.; Roy, A.; Rai, A.; Awasthi, P.

    2009-01-01

    In this paper we report application of Cu 2 O doped ZnO composite prepared by solid state reaction route as humidity sensor. Pellet samples of ZnO-Cu 2 O nanocrystalline powders with 2, 5 and 10 weight% of Cu 2 O in ZnO have been prepared. Pellets have been annealed at temperatures of 200-500 deg. C and exposed to humidity. It is observed that as relative humidity increases, resistance of the pellet decreases for the humidity from 10% to 90%. Sample with 5% of Cu 2 O doped in ZnO and annealed at 500 deg. C shows best results with sensitivity of 1.50 MΩ/%RH. In this case the hysteresis is low and the reproducibility high, making it the suitable candidate for humidity sensing.

  12. Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Zafar, Qayyum; Azmer, Mohamad Izzat; Al-Sehemi, Abdullah G.; Al-Assiri, Mohammad S.; Kalam, Abul; Sulaiman, Khaulah

    2016-01-01

    In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe_2O_4 nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe_2O_4) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe_2O_4/Al) has been investigated at three different frequencies of the AC applied voltage (V_r_m_s ~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.

  13. Role of Morphological Structure, Doping, and Coating of Different Materials in the Sensing Characteristics of Humidity Sensors

    Science.gov (United States)

    Tripathy, Ashis; Pramanik, Sumit; Cho, Jongman; Santhosh, Jayasree; Osman, Noor Azuan Abu

    2014-01-01

    The humidity sensing characteristics of different sensing materials are important properties in order to monitor different products or events in a wide range of industrial sectors, research and development laboratories as well as daily life. The primary aim of this study is to compare the sensing characteristics, including impedance or resistance, capacitance, hysteresis, recovery and response times, and stability with respect to relative humidity, frequency, and temperature, of different materials. Various materials, including ceramics, semiconductors, and polymers, used for sensing relative humidity have been reviewed. Correlations of the different electrical characteristics of different doped sensor materials as the most unique feature of a material have been noted. The electrical properties of different sensor materials are found to change significantly with the morphological changes, doping concentration of different materials and film thickness of the substrate. Various applications and scopes are pointed out in the review article. We extensively reviewed almost all main kinds of relative humidity sensors and how their electrical characteristics vary with different doping concentrations, film thickness and basic sensing materials. Based on statistical tests, the zinc oxide-based sensing material is best for humidity sensor design since it shows extremely low hysteresis loss, minimum response and recovery times and excellent stability. PMID:25256110

  14. Humidity Sensing in Drosophila.

    Science.gov (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C

    2016-05-23

    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Holographic sol-gel monoliths: optical properties and application for humidity sensing

    Science.gov (United States)

    Ilatovskii, Daniil A.; Milichko, Valentin; Vinogradov, Alexander V.; Vinogradov, Vladimir V.

    2018-05-01

    Sol-gel monoliths based on SiO2, TiO2 and ZrO2 with holographic colourful diffraction on their surfaces were obtained via a sol-gel synthesis and soft lithography combined method. The production was carried out without any additional equipment at near room temperature and atmospheric pressure. The accurately replicated wavy structure with nanoscale size of material particles yields holographic effect and its visibility strongly depends on refractive index (RI) of materials. Addition of multi-walled carbon nanotubes (MWCNTs) in systems increases their RI and lends absorbing properties due to extremely high light absorption constant. Further prospective and intriguing applications based on the most successful samples, MWCNTs-doped titania, were investigated as reversible optical humidity sensor. Owing to such property as reversible resuspension of TiO2 nanoparticles while interacting with water, it was proved that holographic xerogels can repeatedly act as humidity sensors. Materials which can be applied as humidity sensors in dependence on holographic response were discovered for the first time.

  16. Holographic sol–gel monoliths: optical properties and application for humidity sensing

    Science.gov (United States)

    Milichko, Valentin; Vinogradov, Alexander V.; Vinogradov, Vladimir V.

    2018-01-01

    Sol–gel monoliths based on SiO2, TiO2 and ZrO2 with holographic colourful diffraction on their surfaces were obtained via a sol–gel synthesis and soft lithography combined method. The production was carried out without any additional equipment at near room temperature and atmospheric pressure. The accurately replicated wavy structure with nanoscale size of material particles yields holographic effect and its visibility strongly depends on refractive index (RI) of materials. Addition of multi-walled carbon nanotubes (MWCNTs) in systems increases their RI and lends absorbing properties due to extremely high light absorption constant. Further prospective and intriguing applications based on the most successful samples, MWCNTs-doped titania, were investigated as reversible optical humidity sensor. Owing to such property as reversible resuspension of TiO2 nanoparticles while interacting with water, it was proved that holographic xerogels can repeatedly act as humidity sensors. Materials which can be applied as humidity sensors in dependence on holographic response were discovered for the first time.

  17. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    Directory of Open Access Journals (Sweden)

    Fangming Deng

    2014-05-01

    Full Text Available This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  18. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    Science.gov (United States)

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  19. A CMOS humidity sensor for passive RFID sensing applications.

    Science.gov (United States)

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  20. Humidity sensing in insects-from ecology to neural processing.

    Science.gov (United States)

    Enjin, Anders

    2017-12-01

    Humidity is an omnipresent climatic factor that influences the fitness, reproductive behavior and geographic distribution of animals. Insects in particular use humidity cues to navigate the environment. Although the sensory neurons of this elusive sense were first described more than fifty years ago, the transduction mechanism of humidity sensing (hygrosensation) remains unknown. Recent work has uncovered some of the key molecules involved, opening up for novel approaches to study hygrosensory transduction. In this review, I will discuss this progress made toward understanding hygrosensation in insects. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing.

    Science.gov (United States)

    Zhang, Dongzhi; Sun, Yan'e; Li, Peng; Zhang, Yong

    2016-06-08

    An ultrasensitive humidity sensor based on molybdenum-disulfide- (MoS2)-modified tin oxide (SnO2) nanocomposite has been demonstrated in this work. The nanostructural, morphological, and compositional properties of an as-prepared MoS2/SnO2 nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), nitrogen sorption analysis, and Raman spectroscopy, which confirmed its successful preparation and rationality. The sensing characteristics of the MoS2/SnO2 hybrid film device against relative humidity (RH) were investigated at room temperature. The RH sensing results revealed an unprecedented response, ultrafast response/recovery behaviors, and outstanding repeatability. To our knowledge, the sensor response yielded in this work was tens of times higher than that of the existing humidity sensors. Moreover, the MoS2/SnO2 hybrid nanocomposite film sensor exhibited great enhancement in humidity sensing performances as compared to the pure MoS2, SnO2, and graphene counterparts. Furthermore, complex impedance spectroscopy and bode plots were employed to understand the underlying sensing mechanisms of the MoS2/SnO2 nanocomposite toward humidity. The synthesized MoS2/SnO2 hybrid composite was proved to be an excellent candidate for constructing ultrahigh-performance humidity sensor toward various applications.

  2. Immobilization of Bovine Serum Albumin Upon Multiwall Carbon Nanotube for High Speed Humidity Sensing Application.

    Science.gov (United States)

    Bhattacharya, Sankhya; Sasmal, Milan

    2016-01-01

    We present a high-speed humidity sensor based on immobilization of bovine serum albumin upon multiwall carbon nanotube (IBC). A simple and versatile drop casting technique was employed to make the humidity sensor using novel material IBC at room temperature. IBC was synthesized using easy solution process technique. The working principle of the IBC humidity sensor depends upon the variation of output current or conductance with the exposure of different humidity level. Humidity sensing properties of our device is explained on the basis of charge transfer from water molecules to IBC and bovine serum albumin to multiwall carbon nanotube (MWCNT). Our sensor exhibits faster response time around 1.2 s and recovery time 1.5 s respectively.

  3. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    Science.gov (United States)

    Quddious, Abdul; Yang, Shuai; Khan, Munawar M.; Tahir, Farooq A.; Shamim, Atif; Salama, Khaled N.; Cheema, Hammad M.

    2016-01-01

    An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (H2S) changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a H2S concentration of 10 ppm at a relative humidity (RH) of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4–5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2–3 GHz band. PMID:27929450

  4. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    Directory of Open Access Journals (Sweden)

    Abdul Quddious

    2016-12-01

    Full Text Available An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (H2S changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a H2S concentration of 10 ppm at a relative humidity (RH of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4–5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2–3 GHz band.

  5. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    KAUST Repository

    Quddious, Abdul; Yang, Shuai; Khan, Munawar M.; Tahir, Farooq A.; Shamim, Atif; Salama, Khaled N.; Cheema, Hammad M.

    2016-01-01

    An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (HS) changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a HS concentration of 10 ppm at a relative humidity (RH) of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4-5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2-3 GHz band.

  6. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    KAUST Repository

    Quddious, Abdul

    2016-12-06

    An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (HS) changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a HS concentration of 10 ppm at a relative humidity (RH) of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4-5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2-3 GHz band.

  7. 3d noncontact humidity sensing technologies and methods of use thereof

    KAUST Repository

    Tai, Yanlong

    2017-09-08

    Noncontact sensing components are provided herein, in an aspect, they can be for an electronic device. The noncontact sensing components can contain a semiconductor layer having a r-GO portion and a CNT portion. The noncontact sensing components can be used to detect the presence or movement of a humidity source in the vicinity of the noncontact sensing component. The resistance/humidity response of the component can be based on the combined contribution of carbon nanotube (positive resistance variation) and reduced-graphene oxide (negative resistance variation) behaviors.

  8. Biochars as Innovative Humidity Sensing Materials

    Directory of Open Access Journals (Sweden)

    Daniele Ziegler

    2017-12-01

    Full Text Available In this work, biochar-based humidity sensors were prepared by drop-coating technique. Polyvinylpyrrolidone (PVP was added as an organic binder to improve the adhesion of the sensing material onto ceramic substrates having platinum electrodes. Two biochars obtained from different precursors were used. The sensors were tested toward relative humidity (RH at room temperature and showed a response starting around 5 RH%, varying the impedance of 2 orders of magnitude after exposure to almost 100% relative humidity. In both cases, biochar materials are behaving as p-type semiconductors under low amounts of humidity. On the contrary, for higher RH values, the impedance decreased due to water molecules adsorption. When PVP is added to SWP700 biochar, n-p heterojunctions are formed between the two semiconductors, leading to a higher sensitivity at low RH values for the sensors SWP700-10% PVP and SWP700-20% PVP with respect to pure SWP700 sensor. Finally, response and recovery times were both reasonably fast (in the order of 1 min.

  9. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  10. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    The electrical conductivity of the films is observed to vary with humidity and selectively show high sensitivity to moisture at room temperature. In order to understand the mechanism of sensing, the films were examined by X-ray diffraction at elevated temperatures and in controlled atmospheres. Based on these observations ...

  11. A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Khasan S. Karimov

    2013-03-01

    Full Text Available In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O-based humidity sensor. Silver thin films (thickness ~200 nm were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.

  12. Synthesis and characterization of nanocrystalline ZnWO4-ZnO composites and their humidity sensing performance

    Directory of Open Access Journals (Sweden)

    M.V. Arularasu

    2016-12-01

    Full Text Available We investigate the experimental results on the composites ZnWO4-ZnO for electrical and humidity sensing properties are described. ZnWO4 (ZW prepared by precipitation method and this prepared zinc tungstate mixed with ZnO (ZO in different mole rations (100:0, 80:20, 60:40, 40:60, 20:80, 0:100. The products were characterized in detail by multi techniques: X-ray diffraction (XRD, energy dispersive X-ray analysis (EDX, field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, Brunauer-Emmett-Teller (BET analysis and vibrating sample magnetometer (VSM. The composites were sintered in the form of the disc and subjected to dc resistance measurements. The dc resistance of these composites decreased on exposure to humidity at room temperature. These results demonstrate composite ZWZO-46 has the highest humidity sensitivity Sf = 3416, with a response and recovery time of 50 s and 100 s respectively. Keywords: Composites, Relative humidity, Humidity sensor, VSM, Hysteresis

  13. Gelatin as a new humidity sensing material: Characterization and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Shapardanis, Steven [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, Michigan, 48859 (United States); Hudpeth, Mathew [Department of Physics, Central Michigan University, Mt. Pleasant, Michigan, 48859 (United States); Kaya, Tolga, E-mail: kaya2t@cmich.edu [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, Michigan, 48859 (United States); Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, Michigan, 48859 (United States)

    2014-12-15

    The goal of this work is to assert the utility of collagen and its denatured counterpart gelatin as cost-effective alternatives to existing sensing layers comprised of polymers. Rather than producing a material that will need to be discarded or recycled, collagen, as a by-product of the meat and leather industry, could be repurposed. This work examines the feasibility of using collagen as a sensing layer. Planar electrodes were patterned with lift-off process to work with the natural characteristics of gelatin by utilizing metal vapor deposition, spin coating, and photolithography. Characterization methods have also been optimized through the creation of specialized humidity chambers that isolate specific characteristics such as response time, accuracy, and hysteresis. Collagen-based sensors are found to have a sensitivity to moisture in the range of 0.065 pF/%RH. Diffusion characteristics were also analyzed with the diffusion coefficient found to be 2.5 × 10{sup −5} cm{sup 2}/s. Absorption and desorption times were found to be 20 seconds and 8 seconds, respectively. Hysteresis present in the data is attributed to temperature cross-sensitivity. Ultimately, the utility of collagen as a dielectric sensing material is, in part, due to its fibrous macrostructures as well its hydrophilic sites along the peptide chains. Gelatin was patterned between and below interdigitated copper electrodes and tested as a relative humidity sensor. This work shows that gelatin, which is inexpensive, widely available, and easy to process, can be an effective dielectric sensing polymer for capacitive-type relative humidity sensors.

  14. Gelatin as a new humidity sensing material: Characterization and limitations

    Directory of Open Access Journals (Sweden)

    Steven Shapardanis

    2014-12-01

    Full Text Available The goal of this work is to assert the utility of collagen and its denatured counterpart gelatin as cost-effective alternatives to existing sensing layers comprised of polymers. Rather than producing a material that will need to be discarded or recycled, collagen, as a by-product of the meat and leather industry, could be repurposed. This work examines the feasibility of using collagen as a sensing layer. Planar electrodes were patterned with lift-off process to work with the natural characteristics of gelatin by utilizing metal vapor deposition, spin coating, and photolithography. Characterization methods have also been optimized through the creation of specialized humidity chambers that isolate specific characteristics such as response time, accuracy, and hysteresis. Collagen-based sensors are found to have a sensitivity to moisture in the range of 0.065 pF/%RH. Diffusion characteristics were also analyzed with the diffusion coefficient found to be 2.5 × 10−5 cm2/s. Absorption and desorption times were found to be 20 seconds and 8 seconds, respectively. Hysteresis present in the data is attributed to temperature cross-sensitivity. Ultimately, the utility of collagen as a dielectric sensing material is, in part, due to its fibrous macrostructures as well its hydrophilic sites along the peptide chains. Gelatin was patterned between and below interdigitated copper electrodes and tested as a relative humidity sensor. This work shows that gelatin, which is inexpensive, widely available, and easy to process, can be an effective dielectric sensing polymer for capacitive-type relative humidity sensors.

  15. Electrochemical synthesis of poly(aniline-co-fluoroaniline) films and their application as humidity sensing material

    International Nuclear Information System (INIS)

    Sharma, Amit L.

    2009-01-01

    In the present manuscript, humidity sensing properties of a copolymer, poly(aniline-co-fluoroaniline) have been reported. The copolymer was prepared on indium-tin-oxide coated glass plates as well as platinum surface in the form of films using electrochemical technique (versus standard calomel electrode) in acidic medium. Synthesis of copolymer films was supported by Fourier transform infra-red, ultraviolet-visible, scanning electron microscope and cyclic voltammetry techniques. Molecular weight and electrical conductivity of these films were measured at different temperature. Polyaniline and poly(2-fluoroaniline) films were also synthesized using the same technique to compare the data with copolymer film. On exposure to humid atmosphere, the response behaviour of copolymer film exhibited a change in resistance with respect to relative humidity (RH). This copolymer film was found to be most sensitive in the 30-65% RH range and shows a linear behaviour with in this range.

  16. The quest for highly sensitive QCM humidity sensors: the coating of CNT/MOF composite sensing films as case study

    KAUST Repository

    Chappanda, Karumbaiah. N.

    2017-11-01

    The application of metal-organic frameworks (MOFs) as a sensing layer has been attracting great interest over the last decade, due to their uniform properties in terms of high porosity and tunability, which provides a large surface area and/or centers for trapping/binding a targeted analyte. Here we report the fabrication of a highly sensitive humidity sensor that is based on composite thin films of HKUST-1 MOF and carbon nanotubes (CNT). The composite sensing films were fabricated by spin coating technique on a quartz-crystal microbalance (QCM) and a comparison of their shift in resonance frequencies to adsorbed water vapor (5 to 75% relative humidity) is presented. Through optimization of the CNT and HKUST-1 composition, we could demonstrate a 230% increase in sensitivity compared to plain HKUST-1 film. The optimized CNT-HKUST-1 composite thin films are stable, reliable, and have an average sensitivity of about 2.5×10−5 (Δf/f) per percent of relative humidity, which is up to ten times better than previously reported QCM-based humidity sensors. The approach presented here is facile and paves a promising path towards enhancing the sensitivity of MOF-based sensors.

  17. Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film.

    Science.gov (United States)

    Chi, Hong; Liu, Yan Jun; Wang, FuKe; He, Chaobin

    2015-09-16

    Uniform graphene oxide (GO) film for optical humidity sensing was fabricated by dip-coating technique. The resulting GO thin film shows linear optical shifts in the visible range with increase of humidity in the whole relative humidity range (from dry state to 98%). Moreover, GO films exhibit ultrafast sensing to moisture within 250 ms because of the unique atomic thinness and superpermeability of GO sheets. The humidity sensing mechanism was investigated using XRD and computer simulation. The ultrasensitive humidity colorimetric properties of GOs film may enable many potential applications such as disposable humidity sensors for packaging, health, and environmental monitoring.

  18. Sensing and electrical properties of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Usman, M.

    2011-01-01

    The purpose of this work was to synthesize TiO 2 nanoparticles using Coprecipitation method. 2 different samples were synthesized, one with a modifier and other without using a modifier. After synthesis, newly formed nanoparticles were characterized b different techniques to find various properties of these nanoparticles. Scanning electron Microscopy (SEM) was used to study structure and morphology of Cu nanoparticles and for compositional analysis Energy dispersive spectroscopy (EDS) was used. X-Ray Diffraction (XRD) Studies were also carried out to find phase an average particle Size. To find the band gap of our nanoparticles, UV-Visible Spectroscopy was also done. Non-Modified nanoparticles were as small as 12nm reported by SEM images which were synthesized using a modifier were as small as 10nm. Modified TiO 2 nanoparticles were used in humidity sensing devices and it properties as a humidity sensor were examined by doing Impedance spectroscopy, D measurements and Dielectric measurements. Our TiO 2 humidity sensor showed sensitivity for humidity at low and mid-range frequencies while its response time was 4 seconds when we changed RH% to 90 from 40% and measured the impedance. (author)

  19. A nafion coated capacitive humidity sensor on a flexible PET substrate

    KAUST Repository

    Sapsanis, Christos

    2017-03-07

    This paper reports a simple and low-cost technique for fabricating low-power capacitive humidity sensors without the use of a cleanroom environment. A maskless laser engraving system was utilized to fabricate two different gold electrode structures, interdigitated electrodes and Hilbert\\'s fifth-order fractal. The capacitive structures were implemented on a flexible PET substrate. The usage of Nafion, a well-known polymer for its hydrophilic properties as a sensing film, was attempted on the PET and outperformed the current efforts in flexible substrates. Its humidity sensing properties were evaluated in an automated gas setup with a relative humidity (RH %) ranging from 15% to 95 %.

  20. A nafion coated capacitive humidity sensor on a flexible PET substrate

    KAUST Repository

    Sapsanis, Christos; Buttner, Ulrich; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Eddaoudi, Mohamed; Salama, Khaled N.

    2017-01-01

    This paper reports a simple and low-cost technique for fabricating low-power capacitive humidity sensors without the use of a cleanroom environment. A maskless laser engraving system was utilized to fabricate two different gold electrode structures, interdigitated electrodes and Hilbert's fifth-order fractal. The capacitive structures were implemented on a flexible PET substrate. The usage of Nafion, a well-known polymer for its hydrophilic properties as a sensing film, was attempted on the PET and outperformed the current efforts in flexible substrates. Its humidity sensing properties were evaluated in an automated gas setup with a relative humidity (RH %) ranging from 15% to 95 %.

  1. Human-Finger Electronics Based on Opposing Humidity-Resistance Responses in Carbon Nanofilms

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2017-01-01

    Carbon nanomaterials have excellent humidity sensing properties. Here, it is demonstrated that multiwalled carbon-nanotube (MWCNT)- and reduced-graphene-oxide (rGO)-based conductive films have opposite humidity/electrical resistance responses

  2. Stable and Selective Humidity Sensing Using Stacked Black Phosphorus Flakes.

    Science.gov (United States)

    Yasaei, Poya; Behranginia, Amirhossein; Foroozan, Tara; Asadi, Mohammad; Kim, Kibum; Khalili-Araghi, Fatemeh; Salehi-Khojin, Amin

    2015-10-27

    Black phosphorus (BP) atomic layers are known to undergo chemical degradation in humid air. Yet in more robust configurations such as films, composites, and embedded structures, BP can potentially be utilized in a large number of practical applications. In this study, we explored the sensing characteristics of BP films and observed an ultrasensitive and selective response toward humid air with a trace-level detection capability and a very minor drift over time. Our experiments show that the drain current of the BP sensor increases by ∼4 orders of magnitude as the relative humidity (RH) varies from 10% to 85%, which ranks it among the highest ever reported values for humidity detection. The mechanistic studies indicate that the operation principle of the BP film sensors is based on the modulation in the leakage ionic current caused by autoionization of water molecules and ionic solvation of the phosphorus oxoacids produced on moist BP surfaces. Our stability tests reveal that the response of the BP film sensors remains nearly unchanged after prolonged exposures (up to 3 months) to ambient conditions. This study opens up the route for utilizing BP stacked films in many potential applications such as energy generation/storage systems, electrocatalysis, and chemical/biosensing.

  3. Thin plasma-polymerized layers of hexamethyldisiloxane for humidity sensor development

    International Nuclear Information System (INIS)

    Guermat, N.; Bellel, A.; Sahli, S.; Segui, Y.; Raynaud, P.

    2009-01-01

    The response of resistive-type sensors based on thin hexamethyldisiloxane layers to relative humidity (RH) was evaluated. Humidity sensitive layers were plasma polymerized at low frequency glow discharge using a capacitively coupled parallel plate reactor. The sensor design comprises the absorbing layer deposited on clean glass substrate with comb-shape aluminum electrodes (interdigitated structure). The change in electrical impedance of the sensing film was monitored as the device was exposed to humidity. The variation of the plasma-polymerization parameters resulted in different humidity sensing properties which could be correlated to the results of Fourier transform infrared spectroscopy (FTIR). The deposited films exhibited a detectable response to RH ranging from 30 to 95% with low hysteresis, good reproducibility and stability in long-term use. Films with a greater thickness showed a significant decrease in the humidity sensing capability. FTIR analysis revealed the presence of SiH bonding groups, which are frequently linked to the film density. The increase in the plasma discharge power induced also a significant decrease in the diffusion process of water vapor inside the sensitive layer bulk.

  4. Room temperature humidity sensor based on polyaniline-tungsten disulfide composite

    Science.gov (United States)

    Manjunatha, S.; Chethan, B.; Ravikiran, Y. T.; Machappa, T.

    2018-05-01

    Polyaniline-tungsten disulfide (PANI-WS2) composite was synthesized using in situ polymerization technique by adding finely grinded powder of WS2 during the polymerization of aniline. Field emission scanning electron microscopy (FESEM) images showed the granular morphology with porous nature. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of carbon, nitrogen, chlorine of PANI, tungsten and sulfur elements of WS2. Humidity sensing property of the composite was investigated by plotting change in its resistance with different relative humidity environments ranging from 10 to 97% RH. Decrease in resistance of the composite was observed with increase in relative humidity. Maximum sensing response of the composite was found to be 88.46%. Response and recovery times of the composite at 97%RH were fair enough to fabricate a sensor based on it. Stability of the composite with respect to the humidity sensing behavior was observed to be unchanged even after two months.

  5. New calculation method for thermodynamic properties of humid air in humid air turbine cycle – The general model and solutions for saturated humid air

    International Nuclear Information System (INIS)

    Wang, Zidong; Chen, Hanping; Weng, Shilie

    2013-01-01

    The article proposes a new calculation method for thermodynamic properties (i.e. specific enthalpy, specific entropy and specific volume) of humid air in humid air turbine cycle. The research pressure range is from 0.1 MPa to 5 MPa. The fundamental behaviors of dry air and water vapor in saturated humid air are explored in depth. The new model proposes and verifies the relationship between total gas mixture pressure and gas component pressures. This provides a good explanation of the fundamental behaviors of gas components in gas mixture from a new perspective. Another discovery is that the water vapor component pressure of saturated humid air equals P S , always smaller than its partial pressure (f·P S ) which was believed in the past researches. In the new model, “Local Gas Constant” describes the interaction between similar molecules. “Improvement Factor” is proposed for the first time by this article, and it quantitatively describes the magnitude of interaction between dissimilar molecules. They are combined to fully describe the real thermodynamic properties of humid air. The average error of Revised Dalton's Method is within 0.1% compared to experimentally-based data. - Highlights: • Our new model is suitable to calculate thermodynamic properties of humid air in HAT cycle. • Fundamental behaviors of dry air and water vapor in saturated humid air are explored in depth. • Local-Gas-Constant describes existing alone component and Improvement Factor describes interaction between different components. • The new model proposes and verifies the relationship between total gas mixture pressure and component pressures. • It solves saturated humid air thoroughly and deviates from experimental data less than 0.1%

  6. Cross Linking Polymers (PVA & PEG with TiO2 Nanoparticles for Humidity Sensing

    Directory of Open Access Journals (Sweden)

    Monika Joshi

    2009-11-01

    Full Text Available Humidity Sensors of different types are being used for various applications. Resistive Humidity Sensor has advantage over others for being small, low cost, interchangeable and long term stable. This makes them suitable for industrial, commercial and residential applications. In the present investigation humidity sensing behavior of various composite films made of Polyvinyl Alcohol (PVA, Polyethylene glycol (PEG, alkalies and oxide nanoparticles has been studied. It was found that relationship of resistance v/s relative humidity (RH was linear from 40 RH to 60 RH for a composite film made of PVA + PEG+ alkalies .The film can work with reliable efficiency for more than 100 days for the above range of humidity at room temperature. In order to improve the efficiency of composite polymer film TiO2 nanoparticles were added in the film and studied for resistance vs. RH responses. It was found that humidity range expands from 30 RH to 65 RH indicating the proportional decrease in resistance with increase in humidity at both ends as a result of the presence of TiO2 nanoparticles. The composite film with TiO2 nanoparticles can thus be used for wider range of humidity with reasonable stability and consistency. The observed behavior of the film has been attributed to the transportation of charge through TiO2 nanoparticles enhancing the conduction with the cross linked polymers.

  7. Synthesis of γ-WO{sub 3} thin films by hot wire-CVD and investigation of its humidity sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Jadkar, Vijaya; Waykar, Ravindra; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Physical and Material Chemistry Division, National Chemical Laboratory, Pune 411 008 (India); Date, Abhijit [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Plenty Road, Bundoora, Melbourne VIC 3083 (Australia); Late, Dattatray [Physical and Material Chemistry Division, National Chemical Laboratory, Pune 411 008 (India); Pathan, Habib; Gosavi, Suresh; Jadkar, Sandesh [Department of Physics, Savitribai Phule Pune University, Pune 411 007 (India)

    2017-05-15

    In this study, monoclinic tungsten oxide (γ-WO{sub 3}) have been grown in a single step using HW-CVD method by resistively heating W filaments in a constant O{sub 2} pressure. The formation of γ-WO{sub 3} was confirmed using low angle-XRD and Raman spectroscopy analysis. Low angle-XRD analysis revealed that as-deposited WO{sub 3} film are highly crystalline and the crystallites have preferred orientation along the (002) direction. HRTEM analysis and SAED pattern also show the highly crystalline nature of WO{sub 3} with d spacing of ∝ 0.38 nm, having an orientation along the (002) direction. Surface topography investigated by SEM analysis shows the formation of a uniform and homogeneous cauliflower like morphology throughout the substrate surface without flaws and cracks. A humidity sensing device incorporating WO{sub 3} is also fabricated, which shows a maximum humidity sensitivity factor of ∝ 3954% along with a response time of ∝14 s and a recovery time of ∝25 s. The obtained results demonstrate that it is possible to synthesize WO{sub 3} in a single step by HW-CVD method and to fabricate a humidity sensor by using it. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Humidity Sensing Behavior of Polyaniline / Strontium Arsenate Composites

    Directory of Open Access Journals (Sweden)

    Machappa T.

    2009-08-01

    Full Text Available The response of conducting Polyaniline (PANI / Ceramic (Sr3(AsO42 composites system to air moisture environment is studied. The conducting PANI and its composites are prepared by in situ polymerization technique. These prepared samples were characterized by XRD, FTIR & SEM, which confirms crystallinity, composite formation and porosity of the samples. The temperature dependent conductivity measurement shows the thermally activated behavior, where the conductivity increases with increase in temperature. The decrease in electrical resistance with change in relative humidity (RH over broad range (ranging between 20 to 95 % is due to the increase in surface electrical conductivity resulting from moisture absorption and due to capillary condensation of water causing increase in conductivity within the sensing materials.

  9. Porous ZrO_2-TiO_2 ceramics for applications as sensing elements in the air humidity monitoring

    International Nuclear Information System (INIS)

    Oliveira, Rodrigo de Matos; Nono, Maria do Carmo de Andrade

    2011-01-01

    The environmental monitoring requires versatile, reliable and lower cost instruments. The chemical superficial absorption/adsorption capability of water molecules by several ceramic oxides makes them excellent candidates for this application. In this way, many efforts have been made for the development of porous ceramics, manufactured from mechanical mixture of ZrO_2 and TiO_2 powders, for application as air humidity sensing elements. The sintered ceramics were characterized as for crystalline phases (X-ray diffraction) and pores structure (scanning electron microscopy and mercury porosimetry). The relative humidity curves for the ceramics were obtained from measurements with RLC bridge in climatic chamber. The behavior of these curves were comparatively analyzed with the aid of pores sizes distribution curves, obtained through mercury porosimetry. The results evidenced that the air humidity ceramic sensing elements are very promising ones. (author)

  10. Human-Finger Electronics Based on Opposing Humidity-Resistance Responses in Carbon Nanofilms

    KAUST Repository

    Tai, Yanlong

    2017-01-09

    Carbon nanomaterials have excellent humidity sensing properties. Here, it is demonstrated that multiwalled carbon-nanotube (MWCNT)- and reduced-graphene-oxide (rGO)-based conductive films have opposite humidity/electrical resistance responses: MWCNTs increase their electrical resistance (positive response) and rGOs decrease their electrical resistance (negative response). The authors propose a new phenomenology that describes a

  11. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    All matter is more or less hygroscopic. The moisture content varies with vapour concentration of the surrounding air and, as a consequence, most material properties change with humidity. Mechanical and thermal properties of many materials, such as the tensile strength of adhesives, stiffness of plastics, stoutness of building and packaging materials or the thermal resistivity of isolation materials, all decrease with increasing environmental humidity or cyclic humidity changes. The presence of water vapour may have a detrimental influence on many electrical constructions and systems exposed to humid air, from high-power systems to microcircuits. Water vapour penetrates through coatings, cable insulations and integrated-circuit packages, exerting a fatal influence on the performance of the enclosed systems. For these and many other applications, knowledge of the relationship between moisture content or humidity and material properties or system behaviour is indispensable. This requires hygrometers for process control or test and calibration chambers with high accuracy in the appropriate temperature and humidity range. Humidity measurement methods can roughly be categorized into four groups: water vapour removal (the mass before and after removal is measured); saturation (the air is brought to saturation and the `effort' to reach that state is measured); humidity-dependent parameters (measurement of properties of humid air with a known relation between a specific property and the vapour content, for instance the refractive index, electromagnetic spectrum and acoustic velocity); and absorption (based on the known relation between characteristic properties of non-hydrophobic materials and the amount of absorbed water from the gas to which these materials are exposed). The many basic principles to measure air humidity are described in, for instance, the extensive compilations by Wexler [1] and Sonntag [2]. Absorption-type hygrometers have small dimensions and can be

  12. Humidity effects on the electronic transport properties in carbon based nanoscale device

    International Nuclear Information System (INIS)

    He, Jun; Chen, Ke-Qiu

    2012-01-01

    By applying nonequilibrium Green's functions in combination with the density functional theory, we investigate the effect of humidity on the electronic transport properties in carbon based nanoscale device. The results show that different humidity may form varied localized potential barrier, which is a very important factor to affect the stability of electronic transport in the nanoscale system. A mechanism for the humidity effect is suggested. -- Highlights: ► Electronic transport in carbon based nanoscale device. ► Humidity affects the stability of electronic transport. ► Different humidity may form varied localized potential barrier.

  13. Humidity Detection Using Metal Organic Framework Coated on QCM

    KAUST Repository

    Kosuru, Lakshmoji

    2016-06-28

    Quartz crystal microbalance (QCM) coated with poly-4-vinylpyridine (PVP) and metal organic framework HKUST-1 are investigated and compared for humidity sensing. Drop casting method is employed to coat the PVP and HKUST-1 solutions onto the surface of a quartz crystal microbalance. The resonance frequencies of these sensors with varying relative humidity (RH) from 22% RH to 69% RH are measured using impedance analysis method. The sensitivity, humidity hysteresis, response, and recovery times of these sensors are studied. The sensitivities of uncoated, PVP, and HKUST-1 coated QCM sensors are 7 Hz, 48 Hz, and 720 Hz, respectively, in the range of 22% RH–69% RH. The extraction of desorption rate and adsorption energy associated with the adsorption and desorption of water molecules on these surfaces reveals that HKUST-1 has better sensing properties than PVP and uncoated QCM sensors. In this work, the HKUST-1 coated QCM is shown to be a promising material for moisture detection.

  14. Humidity Detection Using Metal Organic Framework Coated on QCM

    Directory of Open Access Journals (Sweden)

    Lakshmoji Kosuru

    2016-01-01

    Full Text Available Quartz crystal microbalance (QCM coated with poly-4-vinylpyridine (PVP and metal organic framework HKUST-1 are investigated and compared for humidity sensing. Drop casting method is employed to coat the PVP and HKUST-1 solutions onto the surface of a quartz crystal microbalance. The resonance frequencies of these sensors with varying relative humidity (RH from 22% RH to 69% RH are measured using impedance analysis method. The sensitivity, humidity hysteresis, response, and recovery times of these sensors are studied. The sensitivities of uncoated, PVP, and HKUST-1 coated QCM sensors are 7 Hz, 48 Hz, and 720 Hz, respectively, in the range of 22% RH–69% RH. The extraction of desorption rate and adsorption energy associated with the adsorption and desorption of water molecules on these surfaces reveals that HKUST-1 has better sensing properties than PVP and uncoated QCM sensors. In this work, the HKUST-1 coated QCM is shown to be a promising material for moisture detection.

  15. Morphological and humidity sensing characteristics of SnO 2 –CuO ...

    Indian Academy of Sciences (India)

    This paper reports the synthesis of SnO2–CuO, SnO2–Fe2O3 and SnO2–SbO2 composites of nano oxides and comparative study of humidity sensing on their electrical resistances. CuO, Fe2O3 and SbO2 were added within base material SnO2 in the ratio 1 : 0.25, 1 : 0.50 and 1 : 1. Characterizations of materials were done ...

  16. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S.V.; Mandale, A.B.

    2002-01-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2 . Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping

  17. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    Science.gov (United States)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S. V.; Mandale, A. B.

    2002-07-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2. Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping.

  18. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S.V. E-mail: svb@physics.unipune.ernet.in; Mandale, A.B

    2002-07-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H{sub 2} and 75% N{sub 2}. Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping.

  19. Modification of sensing properties of metallophthalocyanine by an Ecr plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S.V.; Mandale, A.B

    2004-01-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2 . Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping. (author)

  20. MoS2-modified ZnO quantum dots nanocomposite: Synthesis and ultrafast humidity response

    International Nuclear Information System (INIS)

    Ze, Lu; Yueqiu, Gong; Xujun, Li; Yong, Zhang

    2017-01-01

    Highlights: • MoS 2 @ZnO QDs composite structure was synthesized by two-steps methods. • Ultrafast humidity sensing response is achieved by MoS 2 @ZnO QDs humidity sensor. • Sensor performs excellent cycle stability from 11% to 95% RH. • Humidity sensor could detect wide humidity range (11–95%). - Abstract: In this work, ZnO quantum dots (QDs), layered MoS 2 and MoS 2 -modified ZnO QDs (MoS 2 @ZnO QDs) nanocomposite were synthesized and then applied as humidity sensor. The crystal structure, morphology and element distribution of ZnO QDs, MoS 2 and MoS 2 @ZnO QDs were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectrometry, respectively. The humidity sensing characteristics of the MoS 2 and MoS 2 @ZnO QDs against various relative humidity were measured at room temperature. The results show that the MoS 2 @ZnO QDs sensor exhibits high sensitivity with an impedance variation of three or four orders of magnitude to relative humidity range of 11–95% and it exhibits a short response-recovery time (1 s for adsorption and 20 s for desorption) and excellent repeatability. The mechanisms of the excellent performance for humidity sensing of MoS 2 @ZnO QDs sensor were discussed based on its impedance properties. Our work could offer guidelines to design higher performance especially ultrafast humidity response sensor utilizing the nanocomposite structure with two dimensional material and QDs.

  1. A Humidity Sensor Based on Nb-doped Nanoporous TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2011-11-01

    Full Text Available The humidity sensing properties of the sensor fabricated from Nb-doped nanoporous TiO2 by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes have been investigated. The nanoporous thin film has been prepared by sol-gel technique. The product has been characterized by X-ray diffraction and scanning electron microscopy to analyze the structure and its morphology. It is found that the impedance of this sensor changes more than four orders of magnitude in the relative humidity (RH range of 11–95 % at 25 °C. The response and recovery time of the sensor are about 19 and 25 s, respectively, during the RH variation from 11 to 95 %. The sensor shows high humidity sensitivity, rapid response and recovery, prominent stability, good repeatability and narrow hysteresis loop. These results indicate that Nb-doped nanoporous TiO2 thin films have a great potential for humidity sensing applications in room temperature operations.

  2. Roles of inter-SWCNT junctions in resistive humidity response

    International Nuclear Information System (INIS)

    Zhang, Kang; Zou, Jianping; Zhang, Qing

    2015-01-01

    As a promising chemiresistor for gas sensing, the single-walled carbon nanotube (SWCNT) network has not yet been fully utilized for humidity detection. In this work, it is found that as humidity increases from 10% to 85%, the resistance of as-grown SWCNT networks first decreases and then increases. This non-monotonic resistive response to humidity limits their sensing capabilities. The competition between SWCNT resistance and inter-tube junction resistance changes is then found to be responsible for the non-monotonic resistive humidity responses. Moreover, creating sp"3 scattering centers on the SWCNT sidewall by monovalent functionalization of four-bromobenzene diazonium tetrafluoroborate is shown to be capable of eliminating the influence from the inter-tube junctions, resulting in a continuous resistance drop as humidity increases from 10% to 85%. Our results revealed the competing resistive humidity sensing process in as-grown SWCNT networks, which could also be helpful in designing and optimizing as-grown SWCNT networks for humidity sensors and other gas sensors. (paper)

  3. Humidity Sensing Properties of Surface Modified Polyaniline Metal Oxide Composites

    Directory of Open Access Journals (Sweden)

    S. C. Nagaraju

    2014-01-01

    Full Text Available Polyaniline- (PANI praseodymium Oxide (Pr2O3 composites have been synthesized by in situ polymerization method with different weight percentages. The synthesized composites have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The temperature dependent conductivity shows that the conductivity is due to the hopping of polarons and bipolarons. These composites show negative thermal coefficient (α behavior as a function of temperature, which is characteristic behavior of semiconducting materials. Sensor studies have been carried out by two-probe method and found that the sensitivity increases with increase in % RH. It is noticed that stability increase is due to the presence of Pr2O3 in polyaniline up to 30 wt%. A fast recovery and response time along with high sensitivity make these composites suitable for humidity sensors.

  4. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor.

    Science.gov (United States)

    Shao, Yu; Wang, Ying; Cao, Shaoqing; Huang, Yijian; Zhang, Longfei; Zhang, Feng; Liao, Changrui; Wang, Yiping

    2018-06-25

    A surface plasmon resonance (SPR) sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA) is demonstrated for relative humidity (RH) sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.

  5. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Yu Shao

    2018-06-01

    Full Text Available A surface plasmon resonance (SPR sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA is demonstrated for relative humidity (RH sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.

  6. MoS{sub 2}-modified ZnO quantum dots nanocomposite: Synthesis and ultrafast humidity response

    Energy Technology Data Exchange (ETDEWEB)

    Ze, Lu [School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 (China); Yueqiu, Gong, E-mail: yqgong@xtu.edu.cn [School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 (China); Xujun, Li; Yong, Zhang [School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105 (China)

    2017-03-31

    Highlights: • MoS{sub 2}@ZnO QDs composite structure was synthesized by two-steps methods. • Ultrafast humidity sensing response is achieved by MoS{sub 2}@ZnO QDs humidity sensor. • Sensor performs excellent cycle stability from 11% to 95% RH. • Humidity sensor could detect wide humidity range (11–95%). - Abstract: In this work, ZnO quantum dots (QDs), layered MoS{sub 2} and MoS{sub 2}-modified ZnO QDs (MoS{sub 2}@ZnO QDs) nanocomposite were synthesized and then applied as humidity sensor. The crystal structure, morphology and element distribution of ZnO QDs, MoS{sub 2} and MoS{sub 2}@ZnO QDs were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectrometry, respectively. The humidity sensing characteristics of the MoS{sub 2} and MoS{sub 2}@ZnO QDs against various relative humidity were measured at room temperature. The results show that the MoS{sub 2}@ZnO QDs sensor exhibits high sensitivity with an impedance variation of three or four orders of magnitude to relative humidity range of 11–95% and it exhibits a short response-recovery time (1 s for adsorption and 20 s for desorption) and excellent repeatability. The mechanisms of the excellent performance for humidity sensing of MoS{sub 2}@ZnO QDs sensor were discussed based on its impedance properties. Our work could offer guidelines to design higher performance especially ultrafast humidity response sensor utilizing the nanocomposite structure with two dimensional material and QDs.

  7. Preparation and properties of DLC/MoS2 multilayer coatings for high humidity tribology

    Science.gov (United States)

    Zhao, Xiaoyu; Lu, Zhibin; Wu, Guizhi; Zhang, Guangan; Wang, Liping; Xue, Qunji

    2016-06-01

    The DLC/MoS2 multilayer coatings with different modulus ratios were deposited by magnetron sputtering in this study. The morphology, structure, composition, mechanical properties and tribological properties were investigated using several analytical techniques (FESEM, AFM, TEM, AES, XPS, nanoindentation and high humidity tribological test). The results showed that the well-defined multilayer coatings were composed of densely packed particles in which many nanocrystallines with some kinds of defects were distributed in matrix. The incorporation of oxygen into the lattice led to the degraded chemical stability. The coating’s hardness and elastic modulus were almost in the same range. Moderate improvement on the high humidity tribological properties were obtained, which was important for the extension of the service life of MoS2 in humid air.

  8. Insights on Capacitive Interdigitated Electrodes Coated with MOF Thin Films: Humidity and VOCs Sensing as a Case Study

    KAUST Repository

    Sapsanis, Christos; Omran, Hesham; Chernikova, Valeriya; Shekhah, Osama; Belmabkhout, Youssef; Buttner, Ulrich; Eddaoudi, Mohamed; Salama, Khaled N.

    2015-01-01

    have been used for achieving planar CMOS-compatible low-cost capacitive sensing structures for the detection of humidity and volatile organic compounds (VOCs). Accordingly, the resultant IDEs coated with the Cu(bdc)·xH2O thin film was evaluated

  9. Effect of Firing Temperature on Humidity Sensing Properties of SnO2 Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    R. Y. Borse

    2009-12-01

    Full Text Available Thick films of SnO2 were prepared using standard screen printing technique. The films were dried and fired at different temperatures. Tin-oxide is an n-type wide band gap semiconductor, whose resistance is described as a function of relative humidity. An increasing firing temperature on SnO2 film increases the sensitivity to humidity. The parameters such as sensitivity, response times and hysteresis of the SnO2 film sensors have been evaluated. The thick films were characterized by XRD, SEM and EDAX and grain size, composition of elements, relative phases are obtained.

  10. Application of nano-structured conducting polymers to humidity sensing

    Science.gov (United States)

    Park, Pilyeon

    moisture levels because even low humidity levels saturate the sample surface within a few minutes. Because of this, it was not perfect to distinguish the effects of etching the PEDOT film for humidity detection and difficult to apply nano-columned PEDOT films as a humidity sensors under continuously changing humidity conditions. However, nano-columned PEDOT films showed excellent performance in simulated breath tests, i.e., an area where the medical needs sensors for pulmonary monitoring. Since the polymers are sensitive to heat, it was important to characterize the influence of temperature on the sensor performance. PANI nanowires and nano-columned PEDOT sensors were tested in the environmental chamber developed in this work as a function of temperature with the humidity fixed, and only the temperature was varied. The PANI nanowires showed very fast degradation at temperatures above room temperature, while the nano-columned PEDOT film performed up to 50 °C. The influence of other gases was also tested for the potential of gas sensing, selectivity, and chemical stability. In order to exclude the moisture effect during the measurement, the samples were characterized under the lowest humidity condition, RH 14% preserved in the system. Under these conditions the PANI nanowires responded to the gases (hydrogen and carbon monoxide were used), but the moisture inside the PANI nanowire was forced to influence the gas detection. Therefore, samples were dried overnight under a nitrogen environment and tested again. With this careful control of the moisture present, it was found that PANI nanowires respond to both hydrogen and carbon monoxide gases, however, there is no selectivity between gases. Nano-columned PEDOT films were also tested under the same experimental moisture-controlling conditions. It was shown that there was little response to other gases. Any response that may have been presented was buried in the electrical noise. Finally, both samples were tested for long

  11. Effects of humidity on the mechanical properties of gecko setae.

    Science.gov (United States)

    Prowse, Michael S; Wilkinson, Matt; Puthoff, Jonathan B; Mayer, George; Autumn, Kellar

    2011-02-01

    We tested the hypothesis that an increase in relative humidity (RH) causes changes in the mechanical properties of the keratin of adhesive gecko foot hairs (setae). We measured the effect of RH on the tensile deformation properties, fracture, and dynamic mechanical response of single isolated tokay gecko setae and strips of the smooth lamellar epidermal layer. The mechanical properties of gecko setae were strongly affected by RH. The complex elastic modulus (measured at 5 Hz) of a single seta at 80% RH was 1.2 GPa, only 39% of the value when dry. An increase in RH reduced the stiffness and increased the strain to failure. The loss tangent increased significantly with humidity, suggesting that water absorption produces a transition to a more viscous type of deformation. The influence of RH on the properties of the smooth epidermal layer was comparable with that of isolated seta, with the exception of stress at rupture. These values were two to four times greater for the setae than for the smooth layer. The changes in mechanical properties of setal keratin were consistent with previously reported increases in contact forces, supporting the hypothesis that an increase in RH softens setal keratin, which increases adhesion and friction. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Humidity Response of Polyaniline Based Sensor

    Directory of Open Access Journals (Sweden)

    Mamta PANDEY

    2010-02-01

    Full Text Available Abstract: This paper presents hitherto unreported humidity sensing capacity of emeraldine salt form of polyaniline. Humidity plays a major role in different processes in industries ranging from food to electronic goods besides human comfort and therefore its monitoring is an essential requirement during various processes. Polyaniline has a wide use for making sensors as it can be easily synthesized and has long stability. Polyaniline is synthesized here by chemical route and is found to sense humidity as it shows variation in electrical resistance with variation in relative humidity. Results are presented here for a range of 15 to 90 RH%. The resistance falls from 5.8 to 0.72 Giga ohms as RH varies from 15 to 65 % and then falls to 13.9 Mega ohms as RH approaches 90 %. The response and recovery times are also measured.

  13. Heterogeneous nucleation for synthesis of sub-20nm ZnO nanopods and their application to optical humidity sensing.

    Science.gov (United States)

    Majithia, R; Ritter, S; Meissner, K E

    2014-02-17

    We present a novel method for colloidal synthesis of one-dimensional ZnO nanopods by heterogeneous nucleation on zero-dimensional ZnO nanoparticle 'seeds'. Ultra-small ZnO nanopods, multi-legged structures with sub-20 nm individual leg diameters, can be synthesized by hydrolysis of a Zn2+ precursor growth solution in presence of ∼4 nm ZnO seeds under hydrothermal conditions via microwave-assisted heating in as little as 20 min of reaction time. One-dimensional ZnO nanorods are initially generated in the reaction mixture by heterogeneous nucleation and growth along the [0001] direction of the ZnO crystal. Growth of one-dimensional nanorods subsequently yields to an 'attachment' and size-focusing phase where individual nanorods fuse together to form multi-legged nanopods having diameters ∼15 nm. ZnO nanopods exhibit broad orange-red defect-related photoluminescence in addition to a near-band edge emission at 373 nm when excited above the band-gap at 350 nm. The defect-related photoluminescence of the ZnO nanopods has been applied towards reversible optical humidity sensing at room temperature. The sensors demonstrated a linear response between 22% and 70% relative humidity with a 0.4% increase in optical intensity per % change in relative humidity. Due to their ultra-small dimensions, ZnO nanopods exhibit a large dynamic range and enhanced sensitivity to changes in ambient humidity, thus showcasing their ability as a platform for optical environmental sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A Humidity Sensor Based on Silver Nanoparticles Thin Film Prepared by Electrostatic Spray Deposition Process

    Directory of Open Access Journals (Sweden)

    Thutiyaporn Thiwawong

    2013-01-01

    Full Text Available In this work, thin film of silver nanoparticles for humidity sensor application was deposited by electrostatic spray deposition technique. The influence of the deposition times on properties of films was studied. The crystal structures of sample films, their surface morphology, and optical properties have been investigated by X-ray diffraction (XRD, field emission scanning electron microscopy (FE-SEM, and UV-VIS spectrophotometer, respectively. The crystalline structure of silver nanoparticles thin film was found in the orientation of (100 and (200 planes of cubic structure at diffraction angles 2θ  =  38.2° and 44.3°, respectively. Moreover, the silver nanoparticles thin films humidity sensor was fabricated onto the interdigitated electrodes. The sensor exhibited the humidity adsorption and desorption properties. The sensing mechanisms of the device were also elucidated by complex impedance analysis.

  15. Gas Sensing Properties of Ordered Mesoporous SnO2

    Directory of Open Access Journals (Sweden)

    Michael Tiemann

    2006-04-01

    Full Text Available We report on the synthesis and CO gas-sensing properties of mesoporoustin(IV oxides (SnO2. For the synthesis cetyltrimethylammonium bromide (CTABr wasused as a structure-directing agent; the resulting SnO2 powders were applied as films tocommercially available sensor substrates by drop coating. Nitrogen physisorption showsspecific surface areas up to 160 m2·g-1 and mean pore diameters of about 4 nm, as verifiedby TEM. The film conductance was measured in dependence on the CO concentration inhumid synthetic air at a constant temperature of 300 °C. The sensors show a high sensitivityat low CO concentrations and turn out to be largely insensitive towards changes in therelative humidity. We compare the materials with commercially available SnO2-basedsensors.

  16. Ultrahigh humidity sensitivity of graphene oxide.

    Science.gov (United States)

    Bi, Hengchang; Yin, Kuibo; Xie, Xiao; Ji, Jing; Wan, Shu; Sun, Litao; Terrones, Mauricio; Dresselhaus, Mildred S

    2013-01-01

    Humidity sensors have been extensively used in various fields, and numerous problems are encountered when using humidity sensors, including low sensitivity, long response and recovery times, and narrow humidity detection ranges. Using graphene oxide (G-O) films as humidity sensing materials, we fabricate here a microscale capacitive humidity sensor. Compared with conventional capacitive humidity sensors, the G-O based humidity sensor has a sensitivity of up to 37800% which is more than 10 times higher than that of the best one among conventional sensors at 15%-95% relative humidity. Moreover, our humidity sensor shows a fast response time (less than 1/4 of that of the conventional one) and recovery time (less than 1/2 of that of the conventional one). Therefore, G-O appears to be an ideal material for constructing humidity sensors with ultrahigh sensitivity for widespread applications.

  17. Nacre-like hybrid films: Structure, properties, and the effect of relative humidity.

    Science.gov (United States)

    Abba, Mohammed T; Hunger, Philipp M; Kalidindi, Surya R; Wegst, Ulrike G K

    2015-03-01

    Functional materials often are hybrids composed of biopolymers and mineral constituents. The arrangement and interactions of the constituents frequently lead to hierarchical structures with exceptional mechanical properties and multifunctionality. In this study, hybrid thin films with a nacre-like brick-and-mortar microstructure were fabricated in a straightforward and reproducible manner through manual shear casting using the biopolymer chitosan as the matrix material (mortar) and alumina platelets as the reinforcing particles (bricks). The ratio of inorganic to organic content was varied from 0% to 15% and the relative humidities from 36% to 75% to determine their effects on the mechanical properties. It was found that increasing the volume fraction of alumina from 0% to 15% results in a twofold increase in the modulus of the film, but decreases the tensile strength by up to 30%, when the volume fraction of alumina is higher than 5%. Additionally, this study quantifies and illustrates the critical role of the relative humidity on the mechanical properties of the hybrid film. Increasing the relative humidity from 36% to 75% decreases the modulus and strength by about 45% and triples the strain at failure. These results suggest that complex hybrid materials can be manufactured and tailor made for specific applications or environmental conditions. Copyright © 2015. Published by Elsevier Ltd.

  18. Effect of vulcanization temperature and humidity on the properties of RTV silicone rubber

    Science.gov (United States)

    Wu, Xutao; Li, Xiuguang; Hao, Lu; Wen, Xishan; Lan, Lei; Yuan, Xiaoqing; Zhang, Qingping

    2017-06-01

    In order to study the difference in performance of room temperature vulcanized (RTV) silicone rubber in vulcanization environment with different temperature and humidity, static contact angle method, FTIR and TG is utilized to depict the properties of hydrophobicity, transfer of hydrophobicity, functional groups and thermal stability of RTV silicone rubber. It is found that different vulcanization conditions have effects on the characteristics of RTV silicone rubber, which shows that the hydrophobicity of RTV silicone rubber changes little with the vulcanization temperature but a slight increase with the vulcanization humidity. Temperature and humidity have obvious effects on the hydrophobicity transfer ability of RTV silicone rubber, which is better when vulcanization temperature is 5°C or vulcanization humidity is 95%. From the Fourier transform infrared spectroscopy, it can be concluded that humidity and temperature of vulcanization conditions have great effect on the functional groups of silicone rubber, and vulcanization conditions also have effect on thermal stability of RTV silicone rubber. When vulcanization temperature is 5°C or vulcanization humidity is 15% or 95%, the thermal stability of silicone rubber becomes worse.

  19. Effect of fuels on conductivity, dielectric and humidity sensing properties of ZrO2 nanocrystals prepared by low temperature solution combustion method

    Directory of Open Access Journals (Sweden)

    H.C. Madhusudhana

    2016-09-01

    Full Text Available ZrO2 nanopowders were synthesized by low temperature solution combustion method using two different fuels namely glycine and oxalyldihydrazide (ODH. The phase confirmation was done by powder X-ray diffraction (PXRD and Raman spectral analysis. Use of glycine resulted in ZrO2 with mixture of tetragonal and monoclinic phase with average crystallite size of ∼30 nm. However, ODH as fuel aids in the formation of ZrO2 with mixture of tetragonal and cubic phase with average crystallite size ∼20 nm. Further, in present work we present novel way to tune conductivity property of the nano ZrO2. We show that merely changing the fuel from glycine to ODH, we obtain better DC conductivity and dielectric constant. On the other hand use of glycine leads to the formation of ZrO2 with better AC conductivity and humidity sensing behavior. The dielectric constants calculated for samples prepared with glycine and ODH were found to be 45 and 26 respectively at 10 MHz. The AC and DC conductivity values of the samples prepared with glycine was found to be 9.5 × 10−4 S cm−1, 1.1 × 10−3 S cm−1 and that of ODH was 7.6 × 10−4 S cm−1, 3.6 × 10−3 S cm−1 respectively.

  20. Changes in materials properties explain the effects of humidity on gecko adhesion.

    Science.gov (United States)

    Puthoff, Jonathan B; Prowse, Michael S; Wilkinson, Matt; Autumn, Kellar

    2010-11-01

    Geckos owe their remarkable stickiness to millions of dry setae on their toes, and the mechanism of adhesion in gecko setae has been the topic of scientific scrutiny for over two centuries. Previously, we demonstrated that van der Waals forces are sufficient for strong adhesion and friction in gecko setae, and that water-based capillary adhesion is not required. However, recent studies demonstrated that adhesion increases with relative humidity (RH) and proposed that surface hydration and capillary water bridge formation is important or even necessary. In this study, we confirmed a significant effect of RH on gecko adhesion, but rejected the capillary adhesion hypothesis. While contact forces of isolated tokay gecko setal arrays increased with humidity, the increase was similar on hydrophobic and hydrophilic surfaces, inconsistent with a capillary mechanism. Contact forces increased with RH even at high shear rates, where capillary bridge formation is too slow to affect adhesion. How then can a humidity-related increase in adhesion and friction be explained? The effect of RH on the mechanical properties of setal β-keratin has escaped consideration until now. We discovered that an increase in RH softens setae and increases viscoelastic damping, which increases adhesion. Changes in setal materials properties, not capillary forces, fully explain humidity-enhanced adhesion, and van der Waals forces remain the only empirically supported mechanism of adhesion in geckos.

  1. A Low-Power Integrated Humidity CMOS Sensor by Printing-on-Chip Technology

    Directory of Open Access Journals (Sweden)

    Chang-Hung Lee

    2014-05-01

    Full Text Available A low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, poly(3,4-ethylene-dioxythiophene/polystyrene sulfonate that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The sensor shows a sensitivity of 0.98% to humidity in the atmosphere. The maximum dynamic range of the readout circuit is 9.8 MΩ, which can be further tuned by the frequency of input signal to fit the requirement of the resistance of printed sensor. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an ultra-small integrated sensor for the applications in miniaturized sensing systems.

  2. A low-power integrated humidity CMOS sensor by printing-on-chip technology.

    Science.gov (United States)

    Lee, Chang-Hung; Chuang, Wen-Yu; Cowan, Melissa A; Wu, Wen-Jung; Lin, Chih-Ting

    2014-05-23

    A low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, poly(3,4-ethylene-dioxythiophene)/polystyrene sulfonate that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The sensor shows a sensitivity of 0.98% to humidity in the atmosphere. The maximum dynamic range of the readout circuit is 9.8 MΩ, which can be further tuned by the frequency of input signal to fit the requirement of the resistance of printed sensor. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an ultra-small integrated sensor for the applications in miniaturized sensing systems.

  3. Effects of High-Humidity Aging on Platinum, Palladium, and Gold Loaded Tin Oxide—Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Maiko Nishibori

    2010-07-01

    Full Text Available This study is an investigation of high-humidity aging effects on the total volatile organic compound (T–VOC gas-sensing properties of platinum, palladium, and gold-loaded tin oxide (Pt,Pd,Au/SnO2 thick films. The sensor responses of the high-humidity aged Pt,Pd,Au/SnO2, a non-aged Pt,Pd,Au/SnO2, and a high-humidity aged Pt/SnO2 to T–VOC test gas have been measured. The high-humidity aging is an effective treatment for resistance to humidity change for the Pt,Pd,Au/SnO2 but not effective for the Pt/SnO2. The mechanism of the high-humidity aging effects is discussed based on the change of surface state of the SnO2 particles.

  4. Nanosized Thin SnO2 Layers Doped with Te and TeO2 as Room Temperature Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Biliana Georgieva

    2014-05-01

    Full Text Available In this paper the humidity sensing properties of layers prepared by a new method for obtaining doped tin oxide are studied. Different techniques—SEM, EDS in SEM, TEM, SAED, AES and electrical measurements—are used for detailed characterization of the thin layers. The as-deposited layers are amorphous with great specific area and low density. They are built up of a fine grained matrix, consisting of Sn- and Te-oxides, and a nanosized dispersed phase of Te, Sn and/or SnTe. The chemical composition of both the matrix and the nanosized particles depends on the ratio RSn/Te and the evaporation conditions. It is shown that as-deposited layers with RSn/Te ranging from 0.4 to 0.9 exhibit excellent characteristics as humidity sensors operating at room temperature—very high sensitivity, good selectivity, fast response and short recovery period. Ageing tests have shown that the layers possess good long-term stability. Results obtained regarding the type of the water adsorption on the layers’ surface help better understand the relation between preparation conditions, structure, composition and humidity sensing properties.

  5. Insights on Capacitive Interdigitated Electrodes Coated with MOF Thin Films: Humidity and VOCs Sensing as a Case Study

    KAUST Repository

    Sapsanis, Christos

    2015-07-24

    A prototypical metal-organic framework (MOF), a 2D periodic porous structure based on the assembly of copper ions and benzene dicarboxylate (bdc) ligands (Cu(bdc)·xH2O), was grown successfully as a thin film on interdigitated electrodes (IDEs). IDEs have been used for achieving planar CMOS-compatible low-cost capacitive sensing structures for the detection of humidity and volatile organic compounds (VOCs). Accordingly, the resultant IDEs coated with the Cu(bdc)·xH2O thin film was evaluated, for the first time, as a capacitive sensor for gas sensing applications. A fully automated setup, using LabVIEW interfaces to experiment conduction and data acquisition, was developed in order to measure the associated gas sensing performance.

  6. Uniformly Porous Nanocrystalline CaMgFe1.33Ti3O12 Ceramic Derived Electro-Ceramic Nanocomposite for Impedance Type Humidity Sensor

    Science.gov (United States)

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti3O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti3O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%–95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of humidity sensors. PMID:27916913

  7. Polypyrrole Porous Micro Humidity Sensor Integrated with a Ring Oscillator Circuit on Chip

    Science.gov (United States)

    Yang, Ming-Zhi; Dai, Ching-Liang; Lu, De-Hao

    2010-01-01

    This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS) process. The area of the humidity sensor chip is about 1 mm2. The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C. PMID:22163459

  8. Preparation and hygrothermal properties of composite phase change humidity control materials

    International Nuclear Information System (INIS)

    Chen, Zhi; Qin, Menghao

    2016-01-01

    Highlights: • A new kind of phase change humidity control material (PCHCM) was prepared. • The PCHCM can moderate both the indoor temperature and humidity. • The silicon dioxide shell can improve the thermal properties of the composite. • The PCM microcapsules can improve the moisture buffer ability of the composite. • The CPCM/vesuvianite composite has a better hygrothermal performance than pure hygroscopic material. - Abstract: A novel phase change humidity control material (PCHCM) was prepared by using PCM microcapsules and different hygroscopic porous materials. The PCHCM composite can regulate the indoor hygrothermal environment by absorbing or releasing both heat and moisture. The PCM microcapsules were synthesized with methyl triethoxysilane by the sol–gel method. The vesuvianite, sepiolite and zeolite were used as hygroscopic materials. The scanning electron microscopy (SEM) was used to measure the morphology profiles of the microcapsules and PCHCM. The differential scanning calorimetry (DSC) and the thermal gravimetric analysis (TGA) were used to determine the thermal properties and thermal stability. Both the moisture transfer coefficient and moisture buffer value (MBV) of different PCHCMs were measured by the improved cup method. The DSC results showed that the SiO 2 shell can reduce the super-cooling degree of PCM. The super-cooling degrees of microcapsules and PCHCM are lower than that of the pure PCM. The onset temperature of thermal degradation of the microcapsules and PCHCMs is higher than that of pure PCM. Both the moisture transfer coefficient and MBV of PCHCMs are higher than that of the pure hygroscopic materials. The results indicated the PCHCMs have better thermal properties and moisture buffer ability.

  9. AuNPs Hybrid Black ZnO Nanorods Made by a Sol-Gel Method for Highly Sensitive Humidity Sensing

    Directory of Open Access Journals (Sweden)

    Hongyan Zhang

    2018-01-01

    Full Text Available A highly sensitive self-powered humidity sensor has been realized from AuNPs hybrid black zinc oxide (ZnO nanorods prepared through a sol-gel method. XRD pattern reveals that both ZnO and ZnO/AuNPs exhibit a wurtzite structure. ZnO/AuNPs nanorods grow in a vertical alignment, which possesses high uniformity and forms dense arrays with a smaller diameter than that of ZnO nanoparticles. All ZnO/AuNPs and pure black ZnO show lower band gap energy than the typically reported 3.34 eV of pure ZnO. Furthermore, the band gap of ZnO/AuNPs nanocomposites is effectively influenced by the amount of AuNPs. The humidity sensing tests clearly prove that all the ZnO/AuNPs humidity sensors exhibit much higher response than that of ZnO sensors, and the sensitivity of such ZnO/AuNPs nanorods (6 mL AuNPs display a change three orders higher than that of pure ZnO with relative humidity (RH ranging from 11% to 95% at room temperature. The response and recovery time of the ZnO/AuNPs are 5.6 s and 32.4 s, respectively. This study of the construction of semiconductor/noble metal sensors provides a rational way to control the morphology of semiconductor nanomaterials and to design a humidity sensor with high performance.

  10. Enhanced piezo-humidity sensing of a Cd-ZnO nanowire nanogenerator as a self-powered/active gas sensor by coupling the piezoelectric screening effect and dopant displacement mechanism.

    Science.gov (United States)

    Yu, Binwei; Fu, Yongming; Wang, Penglei; Zhao, Yayu; Xing, Lili; Xue, Xinyu

    2015-04-28

    Highly sensitive humidity sensing has been realized from a Cd-doped ZnO nanowire (NW) nanogenerator (NG) as a self-powered/active gas sensor. The piezoelectric output of the device acts not only as a power source, but also as a response signal to the relative humidity (RH) in the environment. The response of Cd-ZnO (1 : 10) NWs reached up to 85.7 upon exposure to 70% relative humidity, much higher than that of undoped ZnO NWs. Cd dopant can increase the number of oxygen vacancies in the NWs, resulting in more adsorption sites on the surface of the NWs. Upon exposure to a humid environment, a large amount of water molecules can displace the adsorbed oxygen ions on the surface of Cd-ZnO NWs. This procedure can influence the carrier density in Cd-ZnO NWs and vary the screening effect on the piezoelectric output. Our study can stimulate a research trend on exploring composite materials for piezo-gas sensing.

  11. Single-crystal Au microflakes modulated by amino acids and their sensing and catalytic properties.

    Science.gov (United States)

    Li, Mingjie; Wu, Xiaochen; Zhou, Jiyu; Kong, Qingshan; Li, Chaoxu

    2016-04-01

    Single-crystal Au microflakes with the planar area over 10(3)μm(2) (i.e. being accessible to the human eye resolution) were synthesized in an environment-friendly route by directing two-dimensional growth of Au nanocrystals into macroscopic scales with amino acids as both reducing agents and capping agents. Side groups of amino acids were found to be a determinant parameter to tune the dimension and size of Au single crystals. The successful synthesis of Au microflakes provides an unprecedented opportunity to bridge nanotechnology and macroscopic devices, and hereby to start a new scenario of exploring their unique properties and applications in optoelectronic devices and bio-sensing fields across multiple length scales. For example, Au microflakes respond to air humidity upon depositing on films of chitin nanofibrils, and sense various physiological molecules as electrode materials of biosensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A Resistive Humidity Sensor Based on Nanostructured WO3-ZnO Composites

    Directory of Open Access Journals (Sweden)

    Karunesh Tiwari

    2011-11-01

    Full Text Available Paper reports morphological and humidity sensing studies of WO3 and WO3-ZnO composite pellets prepared in the weight % ratio of 10:1, 4:1 and 2:1 by solid-state reaction route. The pellets have been annealed at temperatures of 300-500 °C. XRD pattern shows peaks of ZnWO4 formed due to solid state reaction between WO3 and ZnO. SEM micrographs show that the sensing elements manifest porous structure. Granulation and tendency to agglomerate seen in the SEM micrograph are due to the presence of zinc ions in ZnWO4. Nanoparticles are having their sizes in the range 37-182 nm. The average Kelvin radius at 20˚C room temperature is 27 Ả. Humidity sensing application of the pellets has been studied in a humidity control cabinet. It is observed that as relative humidity increases, there is decrease in the resistance of pellets in the range 10-85 % RH. Sensing element of WO3-ZnO in 2:1 weight % ratio shows best results in 10-85 % relative humidity range. The average sensitivity of this sample is 1.25 MΩ/%RH. This sensing element shows good reproducibility, low hysteresis and less effect of aging.

  13. Polypyrrole Porous Micro Humidity Sensor Integrated with a Ring Oscillator Circuit on Chip

    Directory of Open Access Journals (Sweden)

    De-Hao Lu

    2010-11-01

    Full Text Available This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS process. The area of the humidity sensor chip is about 1 mm2. The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C.

  14. A Fast Humidity Sensor Based on Li+-Doped SnO2 One-Dimensional Porous Nanofibers

    Directory of Open Access Journals (Sweden)

    Min Yin

    2017-05-01

    Full Text Available One-dimensional SnO2- and Li+-doped SnO2 porous nanofibers were easily fabricated via electrospinning and a subsequent calcination procedure for ultrafast humidity sensing. Different Li dopant concentrations were introduced to investigate the dopant’s role in sensing performance. The response properties were studied under different relative humidity levels by both statistic and dynamic tests. The best response was obtained with respect to the optimal doping of Li+ into SnO2 porous nanofibers with a maximum 15 times higher response than that of pristine SnO2 porous nanofibers, at a relative humidity level of 85%. Most importantly, the ultrafast response and recovery time within 1 s was also obtained with the 1.0 wt % doping of Li+ into SnO2 porous nanofibers at 5 V and at room temperature, benefiting from the co-contributions of Li-doping and the one-dimensional porous structure. This work provides an effective method of developing ultrafast sensors for practical applications—especially fast breathing sensors.

  15. Fast humidity sensors based on CeO2 nanowires

    International Nuclear Information System (INIS)

    Fu, X Q; Wang, C; Yu, H C; Wang, Y G; Wang, T H

    2007-01-01

    Fast humidity sensors are reported that are based on CeO 2 nanowires synthesized by a hydrothermal method. Both the response and recovery time are about 3 s, and are independent of the humidity. The sensitivity increases gradually as the humidity increases, and is up to 85 at 97% RH. The resistance decreases exponentially with increasing humidity, implying ion-type conductivity as the humidity sensing mechanism. A model based on the morphology and surface energy of the nanowires is given to explain these results further. Our experimental results indicate a pathway to improving the performance of humidity sensors

  16. Angle-tip Fiber Probe as Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Pabitra NATH

    2010-05-01

    Full Text Available In this paper, I present a simple fiber optic relative humidity sensor (FORHS using an angled-tip multimode optical fiber. The sensing region is fabricated by coating moisture sensitive Cobalt Chloride (CoCl2 doped polyvinyl alcohol (PVA film on the surface of fiber optic tip. Light signal introducing from flat-end of the fiber is back-reflected at the fiber tip-air interface by the effect of total internal refection. The change of relative humidity (RH in the outstanding medium affects of evanescent field absorption at the fiber tip-sensing film interface thus, modulates the back-reflected signal. With the present sensing investigation, RH ranging from 5 % to 95 % can be measured with high degree of repeatability and has a fast response time of about 2 seconds.

  17. Humidity sensing behaviour of polyaniline/magnesium chromate

    Indian Academy of Sciences (India)

    The decrease in electrical resistance was observed when the polymer composites were exposed to the broad range of relative humidity (ranging between 20 and 95% RH). This decrease is due to increase in surface electrical conductivity resulting from moisture absorption and due to capillary condensation of water causing ...

  18. Fabrication and Evaluation of a Graphene Oxide-Based Capacitive Humidity Sensor.

    Science.gov (United States)

    Feng, Jinfeng; Kang, Xiaoxu; Zuo, Qingyun; Yuan, Chao; Wang, Weijun; Zhao, Yuhang; Zhu, Limin; Lu, Hanwei; Chen, Juying

    2016-03-01

    In this study, a CMOS compatible capacitive humidity sensor structure was designed and fabricated on a 200 mm CMOS BEOL Line. A top Al interconnect layer was used as an electrode with a comb/serpent structure, and graphene oxide (GO) was used as sensing material. XRD analysis was done which shows that GO sensing material has a strong and sharp (002) peak at about 10.278°, whereas graphite has (002) peak at about 26°. Device level CV and IV curves were measured in mini-environments at different relative humidity (RH) level, and saturated salt solutions were used to build these mini-environments. To evaluate the potential value of GO material in humidity sensor applications, a prototype humidity sensor was designed and fabricated by integrating the sensor with a dedicated readout ASIC and display/calibration module. Measurements in different mini-environments show that the GO-based humidity sensor has higher sensitivity, faster recovery time and good linearity performance. Compared with a standard humidity sensor, the measured RH data of our prototype humidity sensor can match well that of the standard product.

  19. Humidity detection using chitosan film based sensor

    Science.gov (United States)

    Nasution, T. I.; Nainggolan, I.; Dalimunthe, D.; Balyan, M.; Cuana, R.; Khanifah, S.

    2018-02-01

    A humidity sensor made of the natural polymer chitosan has been successfully fabricated in the film form by a solution casting method. Humidity testing was performed by placing a chitosan film sensor in a cooling machine room, model KT-2000 Ahu. The testing results showed that the output voltage values of chitosan film sensor increased with the increase in humidity percentage. For the increase in humidity percentage from 30 to 90% showed that the output voltage of chitosan film sensor increased from 32.19 to 138.75 mV. It was also found that the sensor evidenced good repeatability and stability during the testing. Therefore, chitosan has a great potential to be used as new sensing material for the humidity detection of which was cheaper and environmentally friendly.

  20. Humidity effects on soluble core mechanical and thermal properties (polyvinyl alcohol/microballoon composite) type CG extendospheres, volume 2

    Science.gov (United States)

    1993-01-01

    This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties under Contract No. 100345. This report describes test results procedures employed, and any unusual occurrences or specific observations associated with this test program. The primary objective of this work was to determine if cured soluble core filler material regains its tensile and compressive strength after exposure to high humidity conditions and following a drying cycle. Secondary objectives include measurements of tensile and compressive modulus, and Poisson's ratio, and coefficient of thermal expansion (CTE) for various moisture exposure states. A third objective was to compare the mechanical and thermal properties of the composite using 'SG' and 'CG' type extendospheres. The proposed facility for the manufacture of soluble cores at the Yellow Creek site incorporates no capability for the control of humidity. Recent physical property tests performed with the soluble core filler material showed that prolonged exposure to high humidity significantly degradates in strength. The purpose of these tests is to determine if the product, process or facility designs require modification to avoid imparting a high risk condition to the ASRM.

  1. Humidity Effects on Soluble Core Mechanical and Thermal Properties (Polyvinyl Alcohol/Microballoon Composite)

    Science.gov (United States)

    1993-01-01

    This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties. This report describes test results, procedures employed, and any unusual occurrences or specific observations associated with this test program.

  2. Humidity sensing properties of WO3 thick film resistor prepared by screen printing technique

    International Nuclear Information System (INIS)

    Garde, Arun S

    2014-01-01

    Highlights: • Polycrystalline WO 3 Thick films are fabricated by screen printing technique. • Monoclinic phases were the majority in formation of films. • The peak at 1643 cm −1 shows stretching vibrations attributed to W-OH of adsorbed H 2 O. • Absorption peaks in the range 879–650 cm −1 are attributed to the stretching W-O-W bonds. • Increase in resistance with decrease in RH when exposed to 20–100% RH. - Abstract: Thick films of tungsten oxide based were prepared using standard screen printing technique. To study the effect of temperature on the thick films were fired at different temperature for 30 min in air atmosphere. The WO 3 thick films were characterized with X-ray diffraction, scanning electron microscopy and EDAX for elemental analysis. The formation of mixed phases of the film together with majority of monoclinic phase was observed. IR spectra confirm the peak at 1643 cm −1 clearly shows stretching vibrations attributed to the W-OH bending vibration mode of the adsorbed water molecules. The absorption peaks in the range 879–650 cm −1 are attributed to the stretching W-O-W bonds (i.e. ν [W-O inter -W]). The peak located at 983 cm −1 belong to W=O terminal of cluster boundaries. A change in the resistance was observed with respect to the relative humidity when the WO 3 thick films were exposed to a wide humidity range of 20–100%. An increasing firing temperature of WO 3 film increases with the sensitivity. The parameters such as sensitivity and hysteresis of the WO 3 film sensors have been evaluated

  3. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  4. Enhancement of humidity sensitivity of graphene through functionalization with polyethylenimine

    International Nuclear Information System (INIS)

    Ben Aziza, Zeineb; Zhang, Kang; Baillargeat, Dominique; Zhang, Qing

    2015-01-01

    In this work, we show that the sensing performance of graphene based humidity sensors can be largely improved through polymer functionalization. Chemical vapor deposited graphene is functionalized with amine rich polymer, leading to electron transfer from amine groups in the polymer to graphene. The functionalized graphene humidity sensor has demonstrated good sensitivity, recovery, and repeatability. Charge transfer between the functionalized graphene and water molecules and the sensing mechanism are studied systemically using field effect transistor geometry and scanning Kelvin probe microscopy

  5. Fabrication and Evaluation of a Graphene Oxide-Based Capacitive Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Jinfeng Feng

    2016-03-01

    Full Text Available In this study, a CMOS compatible capacitive humidity sensor structure was designed and fabricated on a 200 mm CMOS BEOL Line. A top Al interconnect layer was used as an electrode with a comb/serpent structure, and graphene oxide (GO was used as sensing material. XRD analysis was done which shows that GO sensing material has a strong and sharp (002 peak at about 10.278°, whereas graphite has (002 peak at about 26°. Device level CV and IV curves were measured in mini-environments at different relative humidity (RH level, and saturated salt solutions were used to build these mini-environments. To evaluate the potential value of GO material in humidity sensor applications, a prototype humidity sensor was designed and fabricated by integrating the sensor with a dedicated readout ASIC and display/calibration module. Measurements in different mini-environments show that the GO-based humidity sensor has higher sensitivity, faster recovery time and good linearity performance. Compared with a standard humidity sensor, the measured RH data of our prototype humidity sensor can match well that of the standard product.

  6. Humidity Sensor Based on Multi-Walled Carbon Nanotube Thin Films

    International Nuclear Information System (INIS)

    Cao, C.L.; Hu, C.G.; Fang, L.; Wang, S.X.; Cao, C.L.; Tian, Y.S.; Pan, C.Y.

    2009-01-01

    The properties of the humidity sensors made of chemically treated and untreated multi-walled carbon nano tube (MWCNT) thin films are investigated systematically. It shows that both the chemically treated and untreated MWCNT thin films demonstrate humidity sensitive properties, but the former have stronger sensitivity than the latter. In the range of 11%-98% relative humidity (RH), the resistances of the chemically treated and untreated MWCNT humidity sensors increase 120% and 28%, respectively. Moreover, the treated humidity sensors showed higher sensitivity and better stability. In addition, the response and recover properties, and stabilization of the humidity sensors are measured, and the humidity sensitive mechanisms of the sensors are analyzed. The humidity sensitivity of carbon nano tube thin films indicates it promise as a kind of humidity sensitive material

  7. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans.

    Science.gov (United States)

    Russell, Joshua; Vidal-Gadea, Andrés G; Makay, Alex; Lanam, Carolyn; Pierce-Shimomura, Jonathan T

    2014-06-03

    All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm's cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans.

  8. In situ aerosol characterization at Cape Verde. Part 2: Parametrization of relative humidity- and wavelength-dependent aerosol optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Schladitz, Alexander; Muller, Thomas; Nordmann, Stephan; Tesche, Matthias; Wiedensohler, Alfred (Leibniz Institute for Tropospheric Research (IfT), Leipzig (Germany)), e-mail: alexander.schladitz@tropos.de; Gross, Silke; Freudenthaler, Volker; Gasteiger, Josef (Meteorological Institute, Ludwig-Maximilians-Universitaet, Munich (Germany))

    2011-09-15

    An observation-based numerical study of humidity-dependent aerosol optical properties of mixed marine and Saharan mineral dust aerosol is presented. An aerosol model was developed based on measured optical and microphysical properties to describe the marine and Saharan dust aerosol at Cape Verde. A wavelength-dependent optical equivalent imaginary part of the refractive index and a scattering non-sphericity factor for Saharan dust were derived. Simulations of humidity effects on optical properties by the aerosol model were validated with relative measurements of the extinction coefficient at ambient conditions. Parametrizations were derived to describe the humidity dependence of the extinction, scattering, and absorption coefficients as well as the asymmetry parameter and single scattering albedo. For wavelengths (300-950 nm) and dry dust volume fractions (0-1), aerosol optical properties as a function of relative humidity (RH = 0-90%) can be calculated from tabulated parameters. For instance, at a wavelength of 550 nm, a volume fraction of 0.5 of dust on the total particle volume (dry conditions) and a RH of 90%, the enhancements for the scattering, extinction and absorption coefficients are 2.55, 2.46 and 1.04, respectively, while the enhancements for the asymmetry parameter and single scattering albedo are 1.11 and 1.04

  9. Changes of pressure and humidity affect olfactory function.

    Science.gov (United States)

    Kuehn, Michael; Welsch, Heiko; Zahnert, Thomas; Hummel, Thomas

    2008-03-01

    The present study aimed at investigating the question whether olfactory function changes in relation to barometric pressure and humidity. Using climate chambers, odor threshold and discrimination for butanol were tested in 75 healthy volunteers under hypobaric and hyperbaric, and different humidity conditions. Among other effects, olfactory sensitivity at threshold level, but not suprathreshold odor discrimination, was impaired in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests.

  10. Graphene based humidity-insensitive films

    KAUST Repository

    Tai, Yanlong

    2017-09-08

    A humidity nonsensitive material based on reduced-graphene oxide (r-GO) and methods of making the same are provided, in an embodiment, the materia! has a resistance/humidity variation of about -15% to 15% based on different sintering time or temperature. In an aspect, the resistance variation to humidity can be close to zero or -0.5% to 0.5%, showing a humidity non sensitivity property. In an embodiment, a humidity nonsensitive material based on the r-GO and carbon nanotube (CNT) composites is provided, wherein the ratio of CNT to r-GO is adjusted. The ratio can be adjusted based on the combined contribution of carbon nanotube (positive resistance variation) and reduced- graphene oxide (negative resistance variation) behaviors.

  11. Predictive evaluation of pharmaceutical properties of direct compression tablets containing theophylline anhydrate during storage at high humidity by near-infrared spectroscopy.

    Science.gov (United States)

    Otsuka, Yuta; Yamamoto, Masahiro; Tanaka, Hideji; Otsuka, Makoto

    2015-01-01

    Theophylline anhydrate (TA) in tablet formulation is transformed into monohydrate (TH) at high humidity and the phase transformation affected dissolution behavior. Near-infrared spectroscopic (NIR) method is applied to predict the change of pharmaceutical properties of TA tablets during storage at high humidity. The tablet formulation containing TA, lactose, crystalline cellulose and magnesium stearate was compressed at 4.8 kN. Pharmaceutical properties of TA tables were measured by NIR, X-ray diffraction analysis, dissolution test and tablet hardness. TA tablet was almost 100% transformed into TH after 24 hours at RH 96%. The pharmaceutical properties of TA tablets, such as tablet hardness, 20 min dissolution amount (D20) and increase of tablet weight (TW), changed with the degree of hydration. Calibration models for TW, tablet hardness and D20 to predict the pharmaceutical properties at high-humidity conditions were developed on the basis of the NIR spectra by partial least squares regression analysis. The relationships between predicted and actual measured values for TW, tablet hardness and D20 had straight lines, respectively. From the results of NIR-chemometrics, it was confirmed that these predicted models had high accuracy to monitor the tablet properties during storage at high humidity.

  12. Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments.

    Science.gov (United States)

    Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze

    2017-11-01

    Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The improvement of gas-sensing properties of SnO2/zeolite-assembled composite

    Science.gov (United States)

    Sun, Yanhui; Wang, Jing; Li, Xiaogan; Du, Haiying; Huang, Qingpan

    2018-05-01

    SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of 10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the "filtering effect" by the pores of ZSM-5.

  14. Strontium-doped hematite as a possible humidity sensing material for soil water content determination.

    Science.gov (United States)

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-09-10

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800-1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil.

  15. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination

    Directory of Open Access Journals (Sweden)

    Carlo Grignani

    2013-09-01

    Full Text Available The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800–1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil.

  16. Combining the Converse Humidity/Resistance Response Behaviors of RGO Films for Flexible Logic Devices

    KAUST Repository

    Tai, Yanlong; Bera, Tushar Kanti; Lubineau, Gilles; Yang, Zhen-Guo

    2017-01-01

    Carbon nanomaterials have excellent humidity sensing performance. Here, we demonstrate that reduced-graphene-oxide- (rGO) based conductive films with different thermal reduction times have gradient and invertible humidity/electrical resistance

  17. Long-term Effects of Relative Humidity on Properties of Microwave Hardened Moulding Sand with Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Stachowicz M.

    2017-09-01

    Full Text Available Moulding sands containing sodium silicate (water-glass belong to the group of porous mixture with low resistance to increased humidity. Thanks to hydrophilic properties of hardened or even overheated binder, possible is application of effective methods of hydrous reclamation consisting in its secondary hydration. For the same reason (hydrophilia of the binder, moulds and foundry cores made of high-silica moulding sands with sodium silicate are susceptible to the action of components of atmospheric air, including the contained steam. This paper presents results of a research on the effect of (relative humidity on mechanical and technological properties of microwave-hardened moulding mixtures. Specimens of the moulding sand containing 1.5 wt% of sodium water-glass with module 2.5 were subjected, in a laboratory climatic chamber, to long-term action of steam contained in the chamber atmosphere. Concentration of water in atmospheric air was stabilized for 28 days (672 h according to the relative humidity parameter that was ca. 40%, 60% and 80% at constant temperature 20 °C. In three cycles of the examinations, the specimens were taken out from the chamber every 7 days (168 h and their mechanical and technological parameters were determined. It was found on the grounds of laboratory measurements that moulds and cores hardened with microwaves are susceptible to action of atmospheric air and presence of water (as steam intensifies action of the air components on glassy film of sodium silicate. Microwave-hardened moulding sands containing sodium silicate may be stored on a long-term basis in strictly determined atmospheric conditions only, at reduced humidity. In spite of a negative effect of steam contained in the air, the examined moulding mixtures maintain a part of their mechanical and technological properties, so the moulds and foundry cores stored in specified, controlled conditions could be still used in manufacture.

  18. Wavelength properties of DCG holograms under the conditions of different temperature and humidity

    Science.gov (United States)

    Liu, Yujie; Li, Wenqiang; Ding, Quanxin; Yan, Zhanjun

    2014-12-01

    Holograms recorded in dichromated gelatin (DCG) are usually sealed with a glass plate cemented with an epoxy glue to protect the holograms from moisture in the environment. An investigation of the wavelength properties of sealed DCG holograms had been carried out paying attention to holograms which were exposed to different temperature and humidity environment in this work. The investigation had revealed that (a) exposing the sealed DCG holograms to high relative humidity (RH=98%) environment or immersing them in room-temperature water for 20 hours can not affect the holograms; (b) the sealed DCG holograms can be used at temperature below 50°C without showing undue detrimental effects regarding their optical properties; (c) the peak wavelength of sealed DCG holograms can cause blue shift of several nanometers at 70°C~85°C and the velocity of blue shift is proportional to the environmental temperature; (d) the holograms can be destroyed at 100° or above. The experimental results above will be analyzed and discussed in this paper. A method to improve the stability of sealed DCG holograms is proposed: baking the sealed DCG holograms at proper temperature (e.g., 85°C in this study).

  19. Low Loss Polycarbonate Polymer Optical Fiber for High Temperature FBG Humidity Sensing

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2017-01-01

    We report the fabrication and characterization of a polycarbonate (PC) microstructured polymer optical fiber (mPOF) Bragg grating (FBG) humidity sensor that can operate beyond 100°C. The PC preform, from which the fiber was drawn, was produced using an improved casting approach to reduce...... the attenuation of the fiber. The fiber loss was found reduced by a factor of two compared to the latest reported PC mPOF [20], holding the low loss record in PC based fibers. PC mPOFBG was characterized to humidity and temperature, and a relative humidity (RH) sensitivity of 7.31± 0.13 pm/% RH in the range 10...

  20. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

    Science.gov (United States)

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  1. Fabrication and Characterization of Polyaniline/PVA Humidity Microsensors

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    2011-08-01

    Full Text Available This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm2. The sensitive film is polyaniline doping polyvinyl alcohol (PVA that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction. The commercial 0.35 mm Complimentary Metal Oxide Semiconductor (CMOS process is used to fabricate the humidity microsensor. The sensor needs a post-CMOS process to etch the sacrificial layer and to coat the sensitive film on the interdigitated electrodes. The sensor produces a change in resistance as the polyaniline/PVA film absorbs or desorbs vapor. Experimental results show that the sensitivity of the humidity sensor is about 12.6 kΩ/%RH at 25 °C.

  2. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications.

    Science.gov (United States)

    Han, Kook In; Kim, Seungdu; Lee, In Gyu; Kim, Jong Pil; Kim, Jung-Ha; Hong, Suck Won; Cho, Byung Jin; Hwang, Wan Sik

    2017-02-19

    Cylindrical silk fiber (SF) was coated with Graphene oxide (GO) for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF's positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH) and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO's excellent sensing properties and SF's flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  3. Stable and Fast-Response Capacitive Humidity Sensors Based on a ZnO Nanopowder/PVP-RGO Multilayer

    Directory of Open Access Journals (Sweden)

    Hui Yang

    2017-10-01

    Full Text Available In this paper, capacitive-type humidity sensors were prepared by sequentially drop-coating the aqueous suspensions of zinc oxide (ZnO nanopowders and polyvinyl pyrrolidone–reduced graphene oxide (PVP-RGO nanocomposites onto interdigitated electrodes. Significant improvements in both sensitivity and linearity were achieved for the ZnO/PVP-RGO sensors compared with the PVP-RGO/ZnO, PVP-RGO, and ZnO counterparts. Moreover, the produced ZnO/PVP-RGO sensors exhibited rather small hysteresis, fast response-recovery time, and long-term stability. Based on morphological and structural analyses, it can be inferred that the excellent humidity sensing properties of the ZnO/PVP-RGO sensors may be attributed to the high surface-to-volume ratio of the multilayer structure and the supporting roles of the PVP-RGO nanocomposites. The results in this work hence provide adequate guidelines for designing high-performance humidity sensors that make use of the multilayer structure of semiconductor oxide materials and PVP-RGO nanocomposites.

  4. Humidity effects on scanning polarization force microscopy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue, E-mail: shenyue@isl.ac.cn [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, Yuan, E-mail: zhouy@isl.ac.cn [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Sun, Yanxia; Zhang, Lijuan [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Ying; Hu, Jun; Zhang, Yi [Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-08-01

    Highlights: • The humidity dramatically affects the contrast of scanning polarization force microscopy (SPFM) imaging on mica surface. • This influence roots in the sensitive dielectric constant of mica surface to the humidity change. • A strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM is proposed. - Abstract: Scanning polarization force microscopy (SPFM) is a useful surface characterization technique to visually characterize and distinguish nanomaterial with different local dielectric properties at nanometer scale. In this paper, taking the individual one-atom-thick graphene oxide (GO) and reduced graphene oxide (rGO) sheets on mica as examples, we described the influences of environmental humidity on SPFM imaging. We found that the apparent heights (AHs) or contrast of SPFM imaging was influenced significantly by relative humidity (RH) at a response time of a few seconds. And this influence rooted in the sensitive dielectric constant of mica surface to the RH change. While dielectric properties of GO and rGO sheets were almost immune to the humidity change. In addition, we gave the method to determine the critical humidity at which the contrast conversion happened under different conditions. And this is important to the contrast control and repeatable imaging of SPFM through RH adjusting. These findings suggest a strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM, which is critically important for further distinguishment, manipulation, electronic applications, etc.

  5. Miniature Flexible Humidity Sensitive Patches for Space Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced space suit technologies demand improved, simplified, long-life regenerative sensing technologies, including humidity sensors, that exceed the performance of...

  6. Remote sensing application for property tax evaluation

    Science.gov (United States)

    Jain, Sadhana

    2008-02-01

    This paper presents a study for linking remotely sensed data with property tax related issues. First, it discusses the key attributes required for property taxation and evaluates the capabilities of remote sensing technology to measure these attributes accurately at parcel level. Next, it presents a detailed case study of six representative wards of different characteristics in Dehradun, India, that illustrates how measurements of several of these attributes supported by field survey can be combined to address the issues related to property taxation. Information derived for various factors quantifies the property taxation contributed by an average dwelling unit of the different income groups. Results show that the property tax calculated in different wards varies between 55% for the high-income group, 32% for the middle-income group, 12% for the low-income group and 1% for squatter units. The study concludes that higher spatial resolution satellite data and integrates social survey helps to assess the socio-economic status of the population for tax contribution purposes.

  7. Gate voltage controlled humidity sensing using MOSFET of VO2 particles

    CSIR Research Space (South Africa)

    Akande, Amos A

    2017-01-01

    Full Text Available (A), VO2 (AH) [4], [5] and M2 the intermediate phase between M1 and R phase. These phases have been generally useful in technologies such as thermal switch (thermochromic window), thermal/infrared sensors, A.A Akande holds PhD studentship...) is 272.1, A1 and A2 are respectively 0.118 and 12096 with a correlation coefficient, R2, of 0.925. These results suggest that the VO2 sensor is very resilient to humidity such that it does not saturate even when humidity approaches 100%. This sensor...

  8. Study the gas sensing properties of boron nitride nanosheets

    International Nuclear Information System (INIS)

    Sajjad, Muhammad; Feng, Peter

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized boron nitride nanosheets (BNNSs) on silicon substrate. • We analyzed gas sensing properties of BNNSs-based gas-sensor device. • CH 4 gas is used to measure gas-sensing properties of the device. • Quick response and recovery time of the device is recorded. • BNNSs showed excellent sensitivity to the working gas. - Abstract: In the present communication, we report on the synthesis of boron nitride nanosheets (BNNSs) and study of their gas sensing properties. BNNSs are synthesized by irradiating pyrolytic hexagonal boron nitride (h-BN) target using CO 2 laser pulses. High resolution transmission electron microscopic measurements (HRTEM) revealed 2-dientional honeycomb crystal lattice structure of BNNSs. HRTEM, electron diffraction, XRD and Raman scattering measurements clearly identified h-BN. Gas sensing properties of synthesized BNNSs were analyzed with prototype gas sensor using methane as working gas. A systematic response curve of the sensor is recorded in each cycle of gas “in” and “out”; suggesting excellent sensitivity and high performance of BNNSs-based gas-sensor

  9. Nondestructive sensing and stress transferring evaluation of carbon nanotube, nanofiber, and Ni nanowire strands/polymer composites using an electro-micromechanical technique

    Science.gov (United States)

    Park, Joung-Man; Kim, Sung-Ju; Jung, Jin-Gyu; Hansen, George; Yoon, Dong-Jin

    2006-03-01

    Nondestructive damage sensing and load transfer mechanisms of carbon nanotube (CNT), nanofiber (CNF), and Ni nanowire strands/epoxy composites were investigated using electro-micromechanical technique. Electrospun PVDF nanofiber was also prepared as a piezoelectric sensor. High volume% CNT/epoxy composites showed significantly higher tensile properties than neat and low volume% CNT/epoxy composites. CNF /epoxy composites with smaller aspect ratio showed higher apparent modulus due to high volume content in case of shorter aspect ratio. Using Ni nanowire strands/silicone composites with different content, load sensing response of electrical contact resistivity was investigated under tensile and compression condition. The mechanical properties of Ni nanowire strands with different type and content/epoxy composites were indirectly measured apparent modulus using uniformed cyclic loading and electro-pullout test. CNT or Ni nanowire strands/epoxy composites showed humidity and temperature sensing within limited ranges, 20 vol% reinforcement. Thermal treated electrospun PVDF nanofiber showed higher mechanical properties than the untreated case due to increased crystallization, whereas load sensing decreased in heat treated case. Electrospun PVDF nanofiber web also responded the sensing effect on humidity and temperature. Nanocomposites using CNT, CNF, Ni nanowire strands, and electrospun PVDF nanofiber web can be applicable practically for multifunctional applications nondestructively.

  10. Humidity insensitive TOPAS polymer fiber Bragg grating sensor

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Khan, Lutul; Webb, David J.

    2011-01-01

    We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850nm spectral region. For the demonstration we have fabricated FBGs with resonance...... wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPAS and the conventional poly (methyl methacrylate) (PMMA). Characterization of the FBGs shows that the TOPAS FBG is more than 50 times less sensitive to humidity than the conventional PMMA FBG in both...... wavelength regimes. This makes the TOPAS FBG very appealing for sensing applications as it appears to solve the humidity sensitivity problem suffered by the PMMA FBG....

  11. Effect of temperature and humidity on electrical properties of organic semiconductor orange dye films deposited from solution

    International Nuclear Information System (INIS)

    Karimov, K.S.; Babadzhanov, A.; Turaeva, M.A.; Marupov, R.; Ahmed, M.M.; Khalid, F.A.; Khan, M.N.; Zakaullah, Kh.; Moiz, S.A.

    2003-01-01

    In this study the effect of temperature and humidity on electrical properties of organic semiconductor orange dye (OD) have been examined. Thin films of OD (C/sub 17/H/sub 17/N/sub 5/O/sub 2/) were deposited from 10 wt. % aqueous solution on gold and conductive glass (SnO/sub 2/) substrates. The films were grown at room temperature under normal gravity conditions, i.e., 1 g and in a spin coater up to an angular speed of 1000 RPM. Two different types of structures: surface Ga/OD/Au and sandwich AVOD/SnO/sub 2/ were fabricated and their DC and low frequency AC characteristics were evaluated for the temperature range 30-70 deg. C at ambient humidity of 50-80 %. It was observed that the sandwich structure of OD films show rectification behavior whilst the conductivity of all devices are temperature and humidity dependent. Observed room temperature activation energy for OD films was 0.30 eV which showed an increase up to 0.51 eV as a function of temperature. It was found that certain sandwich structures are more sensitive to humidity than others and the observed resistance to humidity ratio for Au/OD/Au was 5.4 whereas for Au/OD/Ga samples it was 5.0. (author)

  12. A hybrid humidity sensor using optical waveguides on a quartz crystal microbalance

    International Nuclear Information System (INIS)

    Shinbo, Kazunari; Otuki, Shunya; Kanbayashi, Yuichi; Ohdaira, Yasuo; Baba, Akira; Kato, Keizo; Kaneko, Futao; Miyadera, Nobuo

    2009-01-01

    In this study, slab and ridge optical waveguides (OWGs) made of fluorinated polyimides were deposited on a quartz crystal microbalance (QCM), and hybrid sensors using OWG spectroscopy and the QCM technique were prepared. Polyvinyl alcohol (PVA) film with CoCl 2 was deposited on the OWGs, and the characteristics of humidity sensing were investigated. A prism coupler was used to enter a He-Ne laser beam (λ = 632.8 nm) to the slab OWG. The output light intensity markedly changed due to chromism of the CoCl 2 as a result of humidity sorption, and this change was dependent on the incident angle of the laser beam to the slab OWG. During the measurement of output light, the QCM frequency was simultaneously monitored. The humidity dependence of the sensor with the slab OWG was also investigated in the range from 15 to 85%. For the sensor with the ridge OWG, white light was entered by butt-coupling, and the characteristics of humidity sensing were investigated by observing the output light spectrum and the QCM frequency.

  13. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong; Yassine, Omar; Kosel, Jü rgen

    2013-01-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  14. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong

    2013-11-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  15. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Hamid Farahani

    2014-04-01

    Full Text Available Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors, polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types.

  16. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review

    Science.gov (United States)

    Farahani, Hamid; Wagiran, Rahman; Hamidon, Mohd Nizar

    2014-01-01

    Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors), polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types. PMID:24784036

  17. Colorimetric humidity sensor based on liquid composite materials for the monitoring of food and pharmaceuticals.

    Science.gov (United States)

    Bridgeman, Devon; Corral, Javier; Quach, Ashley; Xian, Xiaojun; Forzani, Erica

    2014-09-09

    Using supported ionic-liquid membrane (SILM)-inspired methodologies, we have synthesized, characterized, and developed a humidity sensor by coating a liquid composite material onto a hygroscopic, porous substrate. Similar to pH paper, the sensor responds to the environment's relative humidity and changes color accordingly. The humidity indicator is prepared by casting a few microliters of low-toxicity reagents on a nontoxic substrate. The sensing material is a newly synthesized liquid composite that comprises a hygroscopic medium for environmental humidity capture and a color indicator that translates the humidity level into a distinct color change. Sodium borohydride was used to form a liquid composite medium, and DenimBlu30 dye was used as a redox indicator. The liquid composite medium provides a hygroscopic response to the relative humidity, and DenimBlu30 translates the chemical changes into a visual change from yellow to blue. The borate-redox dye-based humidity sensor was prepared, and then Fourier transform infrared spectroscopy, differential scanning calorimetry, and image analysis methods were used to characterize the chemical composition, optimize synthesis, and gain insight into the sensor reactivity. Test results indicated that this new sensing material can detect relative humidity in the range of 5-100% in an irreversible manner with good reproducibility and high accuracy. The sensor is a low-cost, highly sensitive, easy-to-use humidity indicator. More importantly, it can be easily packaged with products to monitor humidity levels in pharmaceutical and food packaging.

  18. A Water-Stable Proton-Conductive Barium(II)-Organic Framework for Ammonia Sensing at High Humidity.

    Science.gov (United States)

    Guo, Kaimeng; Zhao, Lili; Yu, Shihang; Zhou, Wenyan; Li, Zifeng; Li, Gang

    2018-06-07

    In view of environmental protection and the need for early prediction of major diseases, it is necessary to accurately monitor the change of trace ammonia concentration in air or in exhaled breath. However, the adoption of proton-conductive metal-organic frameworks (MOFs) as smart sensors in this field is limited by a lack of ultrasensitive gas-detecting performance at high relative humidity (RH). Here, the pellet fabrication of a water-stable proton-conductive MOF, Ba( o-CbPhH 2 IDC)(H 2 O) 4 ] n (1) ( o-CbPhH 4 IDC = 2-(2-carboxylphenyl)-1 H-imidazole-4,5-dicarboxylic acid) is reported. The MOF 1 displays enhanced sensitivity and selectivity to NH 3 gas at high RHs (>85%) and 30 °C, and the sensing mechanism is suggested. The electrochemical impedance gas sensor fabricated by MOF 1 is a promising sensor for ammonia at mild temperature and high RHs.

  19. Adsorption properties of thermally sputtered calcein film

    Science.gov (United States)

    Kruglenko, I.; Burlachenko, J.; Kravchenko, S.; Savchenko, A.; Slabkovska, M.; Shirshov, Yu.

    2014-05-01

    High humidity environments are often found in such areas as biotechnology, food chemistry, plant physiology etc. The controlling of parameters of such ambiences is vitally important. Thermally deposited calcein films have extremely high adsorptivity at exposure to water vapor of high concentration. This feature makes calcein a promising material for humidity sensing applications. The aim of this work is to explain high sensitivity and selectivity of calcein film to high humidity. Quartz crystal microbalance sensor, AFM and ellipsometry were used for calcein film characterization and adsorption properties investigation. The proposed model takes into account both the molecular properties of calcein (the presence of several functional groups capable of forming hydrogen bonds, and their arrangement) and the features of structure of thermally deposited calcein film (film restructuring due to the switching of bonds "calcein-calcein" to "calcein-water" in the course of water adsorption).

  20. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    Directory of Open Access Journals (Sweden)

    Shuangxi Zhou

    2016-09-01

    Full Text Available This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF Radio Frequency Identification (RFID technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  1. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring.

    Science.gov (United States)

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-09-20

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  2. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    Science.gov (United States)

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-01-01

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods. PMID:27657070

  3. Bilayer-structured nanocomposite of Ag and crosslinked polyelectrolyte for the detection of humidity

    International Nuclear Information System (INIS)

    Li, Yang; Wu, Taotao; Yang, Mujie

    2015-01-01

    Nanocomposites of quaternized and crosslinked poly(4-vinylpyridine) (QC-P4VP) and silver nanoparticles were prepared by a two-step procedure, and characterized by Fourier-transform infrared spectroscopy, Ultraviolet–visible spectroscopy and scanning electron microscopy. Bilayer-structured humidity sensors based on the nanocomposites were fabricated, and the effects of the concentration of silver salt precursor and poly(4-vinylpyridine), the method for the reduction of silver salt, the deposition order of the sensitive layers and environmental temperature on the humidity sensing characteristics of the composite sensor have been examined at room temperature. The composite sensor exhibited low impedance under dry atmosphere due to the introduction of Ag nanoparticles, and could detect very low relative humidity (RH) (down to 1% RH) with good sensitivity (impedance change of 2000% from 1% to 30% RH). In addition, the composite sensor demonstrated very wide measuring range (1–98% RH), and revealed faster response and smaller hysteresis than the sensor based on QC-P4VP alone. The complex impedance spectra of the composite sensor in the environments with different RH levels were investigated to explore its humidity sensing mechanism. - Highlights: • Bilayer-structured nanocomposite of Ag and polyelectrolyte are facilely prepared. • Nanocomposite could measure humidity as low as 1% RH and show small hysteresis. • Nanocomposite is capable of detecting full-range humidity with high sensitivity

  4. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications

    Directory of Open Access Journals (Sweden)

    Kook In Han

    2017-02-01

    Full Text Available Cylindrical silk fiber (SF was coated with Graphene oxide (GO for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF’s positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDS, Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO’s excellent sensing properties and SF’s flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  5. A New Insight into Cross-Sensitivity to Humidity of SnO2 Sensor.

    Science.gov (United States)

    Zhu, He; Li, Qiang; Ren, Yang; Gao, Qilong; Chen, Jun; Wang, Na; Deng, Jinxia; Xing, Xianran

    2018-03-01

    The efficiency of gas sensors varies enormously from fundamental study to practical application. This big gap comes mainly from the complex and unpredictable effect of atmospheric environment, especially in humidity. Here, the cross-sensitivity to humidity of a SnO 2 sensor from local structural and lattice evolutions is studied. The sensing response of ethanol is found to be efficiently activated by adsorbing trace of water but inhibited as humidity increases. By X-ray diffraction, pair distribution function of synchrotron and ab initio calculations, the independent effect of water and ethanol on lattice and local structure are clearly revealed, which elucidate the intricate sensing reactions. The formation of hydrogen bonds and repulsion of ethoxides play key roles in the structural distortions, and also in adsorption energies that are critical to the sensitive behavior. The results show the sensor performance coupled with local structural evolution, which provides a new insight into the controversial effects of humidity on SnO 2 sensors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cubic mesoporous Ag@CN: a high performance humidity sensor.

    Science.gov (United States)

    Tomer, Vijay K; Thangaraj, Nishanthi; Gahlot, Sweta; Kailasam, Kamalakannan

    2016-12-01

    The fabrication of highly responsive, rapid response/recovery and durable relative humidity (%RH) sensors that can precisely monitor humidity levels still remains a considerable challenge for realizing the next generation humidity sensing applications. Herein, we report a remarkably sensitive and rapid %RH sensor having a reversible response using a nanocasting route for synthesizing mesoporous g-CN (commonly known as g-C 3 N 4 ). The 3D replicated cubic mesostructure provides a high surface area thereby increasing the adsorption, transmission of charge carriers and desorption of water molecules across the sensor surfaces. Owing to its unique structure, the mesoporous g-CN functionalized with well dispersed catalytic Ag nanoparticles exhibits excellent sensitivity in the 11-98% RH range while retaining high stability, negligible hysteresis and superior real time %RH detection performances. Compared to conventional resistive sensors based on metal oxides, a rapid response time (3 s) and recovery time (1.4 s) were observed in the 11-98% RH range. Such impressive features originate from the planar morphology of g-CN as well as unique physical affinity and favourable electronic band positions of this material that facilitate water adsorption and charge transportation. Mesoporous g-CN with Ag nanoparticles is demonstrated to provide an effective strategy in designing high performance %RH sensors and show great promise for utilization of mesoporous 2D layered materials in the Internet of Things and next generation humidity sensing applications.

  7. Substitutionally doped phosphorene: electronic properties and gas sensing.

    Science.gov (United States)

    Suvansinpan, Nawat; Hussain, Fayyaz; Zhang, Gang; Chiu, Cheng Hsin; Cai, Yongqing; Zhang, Yong-Wei

    2016-02-12

    Phosphorene, a new elemental two-dimensional material, has attracted increasing attention owing to its intriguing electronic properties. In particular, pristine phospohorene, due to its ultrahigh surface-volume ratio and high chemical activity, has been shown to be promising for gas sensing (Abbas et al 2015 ACS Nano 9 5618). To further enhance its sensing ability, we perform first-principles calculations based on density functional theory to study substitutionally doped phosphorene with 17 different atoms, focusing on structures, energetics, electronic properties and gas sensing. Our calculations reveal that anionic X (X = O, C and S) dopants have a large binding energy and highly dispersive electronic states, signifying the formation of covalent X-P bonds and thus strong structural stability. Alkali atom (Li and Na) doping is found to donate most of the electrons in the outer s-orbital by forming ionic bonds with P, and the band gap decreases by pushing down the conduction band, suggesting that the optical and electronic properties of the doped phosphorene can be tailored. For doping with VIIIB-group (Fe, Co and Ni) elements, a strong affinity is predicted and the binding energy and charge transfer are correlated strongly with their electronegativity. By examining NO molecule adsorption, we find that these metal doped phosphorenes (MDPs) in general exhibit a significantly enhanced chemical activity compared with pristine phosphorene. Our study suggests that substitutionally doped phosphorene shows many intriguing electronic and optic properties different from pristine phosphorene and MDPs are promising in chemical applications involving molecular adsorption and desorption processes, such as materials growth, catalysis, gas sensing and storage.

  8. Effect of relative humidity on the tribological properties of hydrogenated diamond-like carbon films in a nitrogen environment

    International Nuclear Information System (INIS)

    Li Hongxuan; Xu Tao; Wang Chengbing; Chen Jianmin; Zhou Huidi; Liu Huiwen

    2005-01-01

    Hydrogenated diamond-like carbon (DLC) films were deposited on Si (100) wafers by a plasma enhanced chemical vapour deposition technique using CH 4 plus Ar as the feedstock. The friction and wear properties of the resulting films under different relative humidities, ranging from 5% to 100%, in a nitrogen environment, were measured using a ball-on-disc tribometer, with Si 3 N 4 balls as the counterparts. The friction surfaces of the films and Si 3 N 4 balls were observed on a scanning electron microscope, and investigated by x-ray photoelectron spectroscopy. The results showed that the friction coefficient increased continuously from 0.025 to 0.09 with increase in relative humidity from 5% to 100%, while the wear rate of the films sharply decreased and reached a minimum at a relative humidity of 40%, then it increased with further increase of the relative humidity. The interruption of the transferred carbon-rich layer on the Si 3 N 4 ball, and the friction-induced oxidation of the films at higher relative humidity were proposed as the main reasons for the increase in the friction coefficient. Moreover, the oxidation and hydrolysis of the Si 3 N 4 ball at higher relative humidity, leading to the formation of a tribochemical film, which mainly consists of silica gel, on the friction surface, are also thought to influence the friction and wear behaviour of the hydrogenated DLC films

  9. Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets

    Science.gov (United States)

    Feng, Dongdong; Peng, Jinfeng; Liu, Sisi; Zheng, Xuejun; Yan, Xinyang; He, Wenyuan

    2018-01-01

    Distinguishing with the traditional cantilever mechanics method, we propose the extended cantilever mechanics method to calibrate the lateral calibration factor by using the normal spring constant obtained from atomic force microscopy (AFM) but not the Young’s modulus and the width of the cantilever, before the influences of thickness, scanning velocity and humidity on the frictional properties are investigated via friction measurement performed by the lateral force mode (LFM) of AFM. Tungsten disulfide (WS2) nanosheets were prepared through hydrothermal intercalation and exfoliation route, and AFM and Raman microscope were used to investigate the frictional properties, thickness and crystalline structure. The friction force and coefficient decrease monotonically with the increase of the nanosheet’s thickness, and the friction coefficient minimum value is close to 0.012 when the thickness larger than 5 nm. The friction property variation on the nanosheet’s thickness can be explained by the puckering effect of tip-sheet adhesion according thickness dependence of bending stiffness in the frame of continuum mechanics. The friction force is a constant value 1.7 nN when the scanning speed larger than the critical value 3.10 μm s-1, while it logarithmically increases for the scanning speed less than the critical value. It is easy to understand through the energy dissipation model and the thermally activated effect. The friction force and friction coefficient increase with the relative humidity at the range of 30%-60%, and the latter is at the range of 0.010-0.013. Influence of relative humidity is discussed via the increasing area of the water monolayer during the water adsorption process. The research can not only enrich nanotribology theory, but also prompt two dimensions materials for nanomechanical applications.

  10. Recent Developments in Fiber Optics Humidity Sensors.

    Science.gov (United States)

    Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R

    2017-04-19

    A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution.

  11. Selective gas sensing for photonic crystal lasers

    DEFF Research Database (Denmark)

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas

    2011-01-01

    We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk.......We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk....

  12. Effects of oxygen plasma treatment power on Aramid fiber III/BMI composite humidity resistance properties

    Science.gov (United States)

    Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang

    2018-01-01

    The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.

  13. Ethanol vapour sensing properties of screen printed WO 3 thick films

    Indian Academy of Sciences (India)

    The ethanol vapour sensing properties of these thick films were investigated at different operating temperatures and ethanol vapour concentrations. The WO3 thick films exhibit excellent ethanol vapour sensing properties with a maximum sensitivity of ∼1424.6% at 400°C in air atmosphere with fast response and recovery ...

  14. Metal oxide nanostructures and their gas sensing properties: a review.

    Science.gov (United States)

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given.

  15. Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers

    International Nuclear Information System (INIS)

    Lin Qianqian; Li Yang; Yang Mujie

    2012-01-01

    Highlights: ► Polyanline/poly(vinyl butyral) nanofibers are prepared by electrospinning. ► Nanofiber-based SAW humidity sensor show high sensitivity and ultrafast response. ► The SAW sensor can detect very low humidity. - Abstract: Polyaniline (PANi) composite nanofibers were deposited on surface acoustic wave (SAW) resonator with a central frequency of 433 MHz to construct humidity sensors. Electrospun nanofibers of poly(methyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(vinylidene fluoride), poly(vinyl butyral) (PVB) were characterized by scanning electron microscopy, and humidity response of corresponding SAW humidity sensors were investigated. The results indicated that PVB was suitable as a matrix to form nanofibers with PANi by electrospinning (ES). Electrospun PANi/PVB nanofibers exhibited a core–sheath structure as revealed by transmittance electron microscopy. Effects of ES collection time on humidity response of SAW sensor based on PANi/PVB nanofibers were examined at room temperature. The composite nanofiber sensor exhibited very high sensitivity of ∼75 kHz/%RH from 20 to 90%RH, ultrafast response (1 s and 2 s for humidification and desiccation, respectively) and good sensing linearity. Furthermore, the sensor could detect humidity as low as 0.5%RH, suggesting its potentials for low humidity detection. Attempts were done to explain the attractive humidity sensing performance of the sensor by considering conductivity, hydrophilicity, viscoelasticity and morphology of the polymer composite nanofibers.

  16. All-Optical Graphene Oxide Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Weng Hong Lim

    2014-12-01

    Full Text Available The optical characteristics of graphene oxide (GO were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  17. All-optical graphene oxide humidity sensors.

    Science.gov (United States)

    Lim, Weng Hong; Yap, Yuen Kiat; Chong, Wu Yi; Ahmad, Harith

    2014-12-17

    The optical characteristics of graphene oxide (GO) were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s) to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  18. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO3 Piezoelectric Nanofibers

    Directory of Open Access Journals (Sweden)

    Li Gu

    2016-06-01

    Full Text Available The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO3 piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO3 sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO3 nanofibers, which was generated due to proton hopping among the H3O+ groups in the absorbed H2O layers under the driving force of the piezoelectric potential.

  19. Impact of humidity on functionality of on-paper printed electronics.

    Science.gov (United States)

    Bollström, Roger; Pettersson, Fredrik; Dolietis, Peter; Preston, Janet; Osterbacka, Ronald; Toivakka, Martti

    2014-03-07

    A multilayer coated paper substrate, combining barrier and printability properties was manufactured utilizing a pilot-scale slide curtain coating technique. The coating structure consists of a thin mineral pigment layer coated on top of a barrier layer. The surface properties, i.e. smoothness and surface porosity, were adjusted by the choice of calendering parameters. The influence of surface properties on the fine line printability and conductivity of inkjet-printed silver lines was studied. Surface roughness played a significant role when printing narrow lines, increasing the risk of defects and discontinuities, whereas for wider lines the influence of surface roughness was less critical. A smooth, calendered surface resulted in finer line definition, i.e. less edge raggedness. Dimensional stability and its influence on substrate surface properties as well as on the functionality of conductive tracks and transistors were studied by exposure to high/low humidity cycles. The barrier layer of the multilayer coated paper reduced the dimensional changes and surface roughness increase caused by humidity and helped maintain the conductivity of the printed tracks. Functionality of a printed transistor during a short, one hour humidity cycle was maintained, but a longer exposure to humidity destroyed the non-encapsulated transistor.

  20. Design of a Humidity Sensor Tag for Passive Wireless Applications.

    Science.gov (United States)

    Wu, Xiang; Deng, Fangming; Hao, Yong; Fu, Zhihui; Zhang, Lihua

    2015-10-07

    This paper presents a wireless humidity sensor tag for low-cost and low-power applications. The proposed humidity sensor tag, based on radio frequency identification (RFID) technology, was fabricated in a standard 0.18 μm complementary metal oxide semiconductor (CMOS) process. The top metal layer was deposited to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture, resulting in a flat power conversion efficiency curve. The capacitive sensor interface, based on phase-locked loop (PLL) theory, employs a simple architecture and can work with 0.5 V supply voltage. The measurement results show that humidity sensor tag achieves excellent linearity, hysteresis and stability performance. The total power-dissipation of the sensor tag is 2.5 μW, resulting in a maximum operating distance of 23 m under 4 W of radiation power of the RFID reader.

  1. Surface-type humidity sensor based on cellulose-PEPC for telemetry systems

    International Nuclear Information System (INIS)

    Karimov, Kh. S.; Saleem, M.; Qasuria, T. A.; Farooq, M.

    2011-01-01

    Au/cellulose-PEPC/Au surface-type humidity sensors were fabricated by drop-casting cellulose and poly-N-epoxypropylcarbazole (PEPC) blend thin films. A blend of 2wt% of each cellulose and PEPC in benzol was used for the deposition of humidity sensing films. Blend films were deposited on glass substrates with preliminary deposited surface-type gold electrodes. Films of different thicknesses of cellulose and PEPC composite were deposited by drop-casting technique. A change in electrical resistance and capacitance of the fabricated devices was observed by increasing the relative humidity in the range of 0-95% RH. It was observed that the capacitances of the sensors increase, while their resistances decrease with increasing the relative humidity. The sensors were connected to op-amp square wave oscillators. It was observed that with increasing the relative humidity, the oscillator's frequencies were also increased in the range of 4.2-12.0 kHz for 65 μm thick film sample, 4.1-9.0 kHz for 88 μm thick film sample, and 4.2-9.0 kHz for 210 μm sample. Effects of film thickness on the oscillator's frequency with respect to humidity were also investigated. This polymer humidity sensor controlled oscillator can be used for short-range and long-range remote systems at environmental monitoring and assessment of the humidity level. (semiconductor integrated circuits)

  2. Humidity Sensing Behaviour of Nanocrystalline α-PbO Synthesized by Alcohol Thermal Process

    Directory of Open Access Journals (Sweden)

    Sk. Khadeer Pasha

    2010-11-01

    Full Text Available Alcohol thermal route has been used to synthesize meta stable nanocrystalline α-PbO at a relatively low temperature of 75 oC using lead acetate. The synthesized α-PbO (P75 was subjected to different heat treatment with temperatures ranging from 200-500 oC for 2 h to study the effect of crystallinity and phase changes and were labeled as P200, P300, P400 and P500, respectively. X-Ray diffraction and FT-IR spectroscopy were carried out to identify the structural phases and vibrational stretching frequencies respectively. The TEM images revealed the porous nature of P75 sample which is an important criterion for the humidity sensor. All the samples were subjected to different humidity levels (5 – 98 %. Among the different composites prepared, P75 possessed the highest humidity sensitivity of 5000, while the heat treated sample P500 possessed a low sensitivity of 127. The response and recovery characteristics of the maximum sensitivity sample P75 were 210 s and 140 s respectively.

  3. Combining the Converse Humidity/Resistance Response Behaviors of RGO Films for Flexible Logic Devices

    KAUST Repository

    Tai, Yanlong

    2017-03-23

    Carbon nanomaterials have excellent humidity sensing performance. Here, we demonstrate that reduced-graphene-oxide- (rGO) based conductive films with different thermal reduction times have gradient and invertible humidity/electrical resistance responses: rGO films (< 11 h, negative response, regarded as a signal of “0”), rGO films (around 11-13 h, balance point) and rGO films (> 13 h, negative response, regarded as a signal of “1”). We propose a new mechanism that describes a “scale”-like model for rGO films to explain these behaviors based on contributions from Ohm-contact resistance and capacitive reactance at interplate junctions, and intrinsic resistances of the nanoplates, respectively. This mechanism is accordingly validated via a series of experiments and electrical impedance spectroscopies, which complement more classical models based on proton conductivity. To explore the practical applications of the converse humidity/resistance responses, three simple flexible logic devices were developed, i) a rGO pattern for humidity-insensitive conductive film, which has the potential to greatly improve the stability of carbon-based electrical device to humidity; ii) a Janus pattern of rGO films for gesture recognition, which is very useful to human/machine interactions; iii) a sandwich pattern of rGO films for 3-dimensional (3D) noncontact sensing, which will be complementary to existing 3D touch technique.

  4. Co3O4 as p-Type Material for CO Sensing in Humid Air

    Directory of Open Access Journals (Sweden)

    Svetlana Vladimirova

    2017-09-01

    Full Text Available Nanocrystalline cobalt oxide Co3O4 has been prepared by precipitation and subsequent thermal decomposition of a carbonate precursor, and has been characterized in detail using XRD, transmission electron microscopy, and FTIR spectroscopy. The sensory characteristics of the material towards carbon monoxide in the concentration range 6.7–20 ppm have been examined in both dry and humid air. A sensor signal is achieved in dry air at sufficiently low temperatures T = 80–120 °C, but the increase in relative humidity results in the disappearance of sensor signal in this temperature range. At temperatures above 200 °C the inversion of the sensor signal in dry air was observed. In the temperature interval 180–200 °C the sensor signal toward CO is nearly the same at 0, 20 and 60% r.h. The obtained results are discussed in relation with the specific features of the adsorption of CO, oxygen, and water molecules on the surface of Co3O4. The independence of the sensor signal from the air humidity combined with a sufficiently short response time at a moderate operating temperature makes Co3O4 a very promising material for CO detection in conditions of variable humidity.

  5. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2017-11-01

    The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.

  6. Synthesis, characterization and humidity sensing properties of sol-gel derived novel nanomaterials of LaFe1-xSrxO3-δ

    International Nuclear Information System (INIS)

    Mary Teresita, V.; Avila Josephine, B.; Jeseentharani, V.; Jeyaraj, B.; Arul Antony, S.

    2011-01-01

    LaFe 1-x Sr x O 3-δ (x = 0, 0.2, 0.4, 0.6, 0.8, 1) were prepared by sol-gel method. The compounds were sintered at 700 deg C for 5 h. Then the compounds were characterized by X-ray diffraction, scanning electron microscopy (SEM) and BET analysis. The dc electrical resistance in different relative humidity (RH%) for the samples in the form of pellets was determined by two-probe method. The change in surface conductivity as a function of applied field was measured using picoammeter (Keithley-6485). The sensitivity factor S f was calculated by the ratio of resistances, R 5% /R 98% , where R 5% and R 98% are the dc resistances 5 and 98% RH, respectively. Response and recovery times were measured. Among various composites, the LaSrO 3δ (x = 1) composite possessed the highest humidity response with S f = 3290, while the LaFe 0.8 Sr 0.2 O 3δ (x = 0.2) possessed low sensitivity factors of 0.1. (author)

  7. Influence of humidity on the growth characteristics and properties of chemical bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Cheng; Chao, Yen-Tai [Department of Mechatronics Engineering, National Changhua University of Education, Changhua 50007, Taiwan (China); Yao, Pin-Chuan, E-mail: pcyao@mail.dyu.edu.tw [Department of Materials Science and Engineering, Da-Yeh University, Dacun, Changhua 51591, Taiwan (China)

    2014-07-01

    In this study, the effect of humidity on the growth characteristics and properties of chemical bath-deposited ZnS thin films was systematically investigated. All deposition was conducted by an open CBD system under various relative humidity levels (RH) or by a hermetic CBD system as a comparison. It shows, for films deposited by an open system, the ambient humidity plays an important role in the quality of the resultant films. Damp environments lead to powdery films. Generally, all films prepared in this study using NH{sub 3} and hydrazine hydrate as the complexing agents were amorphous or poorly crystalline. For an open system, the [H{sup +}] from the dissolved carbon dioxide in the air competes with the ammonium ions in the bath solution. According to Le Châtelier's principle, more ammonia was consumed, which favors the free [Zn{sup +2}] in the solution, facilitating the homogeneous precipitation of Zn(OH){sub 2} and giving rise to a powdery film. The x-ray photoelectron spectrum shows, for an open system, the content of Zn–O compounds in the form of Zn(OH){sub 2} and ZnO, etc., is increased by the relative humidity of the environment. The visible transmittance is reduced by RH. The higher optical band gap of the as-deposited films could be attributed to the quantum confinement effects due to the small grain size of the polycrystalline ZnS films over the substrates.

  8. 3d noncontact humidity sensing technologies and methods of use thereof

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2017-01-01

    Noncontact sensing components are provided herein, in an aspect, they can be for an electronic device. The noncontact sensing components can contain a semiconductor layer having a r-GO portion and a CNT portion. The noncontact sensing components can

  9. Humidity effects on the electrical properties of hexagonal boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, A. [Institut d' Electronique, de Microelectronique et de Nanotechnologie/CNRS UMR 8520, Cite Scientifique, Avenue Poincare, 59652 Villeneuve d' Ascq (France)]. E-mail: ali.soltani@iemn.univ-lille1.fr; Thevenin, P. [Laboratoire Materiaux Optiques Photonique et Systemes/CNRS FRE 2304, Universite de Metz and Supelec, 2 rue Edouard Belin, 57070 Metz (France); Bakhtiar, H. [Faculty of Science, Physics Department, Technology University of Malaysia, Karung Berkunci 791, 80990, Johor Bahru, Johor (Malaysia); Bath, A. [Laboratoire Materiaux Optiques Photonique et Systemes/CNRS FRE 2304, Universite de Metz and Supelec, 2 rue Edouard Belin, 57070 Metz (France)]. E-mail: bath@metz.supelec.fr

    2005-01-03

    Thin films of hexagonal boron nitride (h-BN) were grown by a plasma enhanced chemical vapour deposition (PECVD) technique. The quality of the films was assessed by infrared spectroscopy, microRaman spectroscopy as a function of annealing temperature and by X-ray photoelectron spectroscopy. The films proved to be thermally stable up to 1370 K. Current-voltage measurements were performed, as a function of humidity, using metal-insulator-semiconductor and metal-insulator-metal structures. Typical resistivities were found in the range 10{sup 13}-10{sup 14} {omega} cm in dry air and exhibit high sensitivity against humidity. The influence of the mean orientation of the c-axis of the BN films was considered. Sawtooth voltage pulse trains were also applied. Threshold switching phenomena were observed, but only in atmosphere containing humidity. The values of the switching voltages depend strongly on the relative humidity (RH), on the characteristics of the applied sawtooth voltage pulse trains, as well as on the nature of the metallic electrode.

  10. Relative humidity measurements with thermocouple psychrometer and capacitance sensors

    International Nuclear Information System (INIS)

    Mao, Naihsien.

    1991-01-01

    The relative humidity is one of the important hydrological parameters affecting waste package performance. Water potential of a system is defined as the amount of work required to reversibly and isothermally move an infinitesimal quantity of water from a pool of pure water to that system at the same elevation. The thermocouple psychrometer, which acts as a wet-dry bulb instrument based on the Peltier effect, is used to measure water potential. The thermocouple psychrometer works only for relative humidity greater than 94 percent. Other sensors must be used for drier conditions. Hence, the author also uses a Vaisala Humicap, which measures the capacitance change due to relative humidity change. The operation range of the Humicap (Model HMP 135Y) is from 0 to 100 percent relative humidity and up to 160C (320F) in temperature. A psychrometer has three thermocouple junctions. Two copper-constantan junctions serve as reference temperature junctions and the constantan-chromel junction is the sensing junction. Current is passed through the thermocouple causing cooling of the sensing junction by the Peltier effect. When the temperature of the junction is below the dew point, water will condense upon the junction from the air. The Peltier current is discontinued and the thermocouple output is recorded as the temperature of the thermocouple returns to ambient. The temperature changes rapidly toward the ambient temperature until it reaches the wet bulb depression temperature. At this point, evaporation of the water from the junction produces a cooling effect upon the junction that offsets the heat absorbed from the ambient surroundings. This continues until the water is depleted and the thermocouple temperature returns to the ambient temperature (Briscoe, 1984). The datalogger starts to take data roughly at the wet bulb depression temperature

  11. MetHumi - Humidity Device for Mars MetNet Lander

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Harri, Ari-Matti; Schmidt, Walter; Leinonen, Jussi; Mäkinen, Teemu; Haukka, Harri

    2010-05-01

    MetNet Mars Mission focused for Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetHumi is the humidity sensor of MetNet Lander designed to work on Martian surface. It is based on Humicap® technology developed by Vaisala, Inc. MetHumi is a capacitive type of sensing device where an active polymer film changes capacitance as function of relative humidity. One MetHumi device package consists of one humidity transducer including three Humicap® sensor heads, an accurate temperature sensor head (Thermocap® by Vaisala, Inc.) and constant reference channels. MetHumi is very small, lightweighed and has low power consumption. It weighs only about 15 g without wires, and consumes 15 mW of power. MetHumi can make meaningful relative humidity measurements in range of 0 - 100%RH down to -70°C ambient temperature, but it survives even -135°C ambient temperature.

  12. Remote Sensing of Crystal Shapes in Ice Clouds

    Science.gov (United States)

    van Diedenhoven, Bastiaan

    2017-01-01

    Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally

  13. Characterisation and optical vapour sensing properties of PMMA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Capan, I. [Balikesir University, Science and Arts Faculty, Physics Department, 10100 Balikesir (Turkey)], E-mail: inci.capan@gmail.com; Tarimci, C. [Ankara University, Faculty of Engineering, Department of Engineering Physics, 06100, Tandogan, Ankara (Turkey); Hassan, A.K. [Sheffield Hallam University, Materials and Engineering Research Institute, City Campus, Pond Street, Sheffield S1 1WB (United Kingdom); Tanrisever, T. [Balikesir University, Science and Arts Faculty, Chemistry Department, 10100 Balikesir (Turkey)

    2009-01-01

    The present article reports on the characterisation of spin coated thin films of poly (methyl methacrylate) (PMMA) for their use in organic vapour sensing application. Thin film properties of PMMA are studied by UV-visible spectroscopy, atomic force microscopy and surface plasmon resonance (SPR) technique. Results obtained show that homogeneous thin films with thickness in the range between 6 and 15 nm have been successfully prepared when films were spun at speeds between 1000-5000 rpm. Using SPR technique, the sensing properties of the spun films were studied on exposures to several halohydrocarbons including chloroform, dichloromethane and trichloroethylene. Data from measured kinetic response have been used to evaluate the sensitivity of the studied films to the various analyte molecules in terms of normalised response (%) per unit concentration (ppm). The highest PMMA film sensitivity of 0.067 normalised response per ppm was observed for chloroform vapour, for films spun at 1000 rpm. The high film's sensitivity to chloroform vapour was ascribed mainly to its solubility parameter and molar volume values. Effect of film thickness on the vapour sensing properties is also discussed.

  14. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive...... readout scheme. In order to verify its feasibility in liquid bio-chemical sensing environment, an experimental measurement is conducted with humidity sensing application. The measured resonant frequency changes 60kHz of 67.7MHz with a humidity change of 0~80%....

  15. Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material

    Directory of Open Access Journals (Sweden)

    Alexander G. Bannov

    2017-02-01

    Full Text Available Graphite oxide has been investigated as a possible room-temperature chemiresistive sensor of ammonia in a gas phase. Graphite oxide was synthesized from high purity graphite using the modified Hummers method. The graphite oxide sample was investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Sensing properties were tested in a wide range of ammonia concentrations in air (10–1000 ppm and under different relative humidity levels (3%–65%. It was concluded that the graphite oxide–based sensor possessed a good response to NH3 in dry synthetic air (ΔR/R0 ranged from 2.5% to 7.4% for concentrations of 100–500 ppm and 3% relative humidity with negligible cross-sensitivity towards H2 and CH4. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing the ambient relative humidity led to an increase of the sensor response. The highest response of 22.2% for 100 ppm of ammonia was achieved at a 65% relative humidity level.

  16. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    International Nuclear Information System (INIS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-01-01

    The fabrication method and characterization results of a TiO 2 -TiO 2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO 2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO 2 crystallites embedded in a matrix of nanometric TiO 2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant. (paper)

  17. AC Response to Humidity and Propane of Sprayed Fe-Zn Oxide Films

    Directory of Open Access Journals (Sweden)

    Alejandro AVILA-GARCÍA

    2009-09-01

    Full Text Available Iron-zinc oxide films with different Zn contents were ultrasonically sprayed on glass substrates and inter-digital gold electrodes were evaporated upon them. Films were deposited from solutions containing 2, 10 and 30 at. % Zn. Hematite, amorphous and Franklinite structures turned out, respectively. They were assessed as humidity and propane detectors under alternating-current conditions for frequencies from 1 to 105 Hz and temperatures 30 and 250 oC. Their impedances in dry air, humid air and humid air plus propane were determined from voltage measurements with a Lock-In amplifier. Sensitivities to humidity (53 % RH. and 189, 500 and 786 ppm of propane from the response of the resistance, reactance and also the total impedance were determined as functions of frequency. The maximum sensitivity to humidity ranges from 24 % up to 308 %. For propane, the maximum sensitivity ranges from 45 % up to 711 %. The largest sensitivity values correspond in all cases to reactance. From the dynamical response, the response and recovery times are determined, along with the concentration-dependence of the sensitivity. The sensing mechanisms are commented.

  18. Synthesis of Antimony Doped Tin Oxide and its Use as Electrical Humidity Sensor

    Directory of Open Access Journals (Sweden)

    B. C. Yadav

    2008-05-01

    Full Text Available In this paper we report the humidity sensitive electrical properties of antimony doped tin oxide. Antimony has been doped within SnO2 in the ratio 1:1. The pellet has been made by hydraulic pressing machine at pressure 30 MPa and room temperature 24°C. This pellet, has been annealed at 200ºC, 300ºC, 400ºC, 500ºC and 600ºC successively for 3 hrs and after each step annealing, observations were taken. It has been observed, as Relative Humidity (%RH increases, there is decrease in the resistivity of pellet for the entire range of RH i.e. from 10% to 95%. Linear decrease is observed for the range of RH from 10% to 85% for annealing temperature 200ºC and 300ºC, from 10% to 60% for annealing temperature 400ºC and from 10% to 30% for annealing temperature 500ºC and 600ºC respectively. Scanning electron micrographs show the surface morphology and X-ray diffraction reveals the nanostructure of sensing element. Results have been found reproducible with hysterisis of ± 2% after 3 months.

  19. Influence of humidity on the graphene band gap

    International Nuclear Information System (INIS)

    Zakaryan, H.A.; Aroutiounian, V.M.

    2015-01-01

    Influences of the humidity on graphene properties are studied and comparisons of graphene and polymer humidity sensors are carried out. Graphene sensors have remarkable response compare to nanoporous polymer membranes. The resistance of polymer sensors is 150 GOhm and decreases in 7.5 times at 60 per cent of the relative humidity. For graphene, resistance drops 4 times starting from ~100 kOhm. This is connected with the extension of graphene band gap. The reason of this is adsorbed water, which can create defects in the lattice or can transfer charge which depends on relative position of HOMO/LUMO of water and Dirac point of graphene

  20. Low Humidity Characteristics of Polymer-Based Capacitive Humidity Sensors

    OpenAIRE

    Majewski Jacek

    2017-01-01

    Polymer-based capacitive humidity sensors emerged around 40 years ago; nevertheless, they currently constitute large part of sensors’ market within a range of medium (climatic and industrial) humidity 20−80%RH due to their linearity, stability and cost-effectiveness. However, for low humidity values (0−20%RH) that type of sensor exhibits increasingly nonlinear characteristics with decreasing of humidity values. This paper presents the results of some experimental trials of CMOS polymer-based ...

  1. Application of graphene oxide based Microfiber-Knot resonator for relative humidity sensing

    Directory of Open Access Journals (Sweden)

    S.R. Azzuhri

    2018-06-01

    Full Text Available A relative humidity (RH sensor is proposed and demonstrated using a micro-knot resonator (MKR enhanced with a layer graphene oxide (GO coating. The MKR is fabricated by means of tapering a standard fiber, with the GO coating added by the drop-cast method. The proposed sensor is tested for an RH range of between 0% and 80% at 20% intervals, and the configurations with and without the GO coating achieve sensitivities of 0.0104 nm/% and 0.0095 nm/%, respectively. The MKR configuration without the GO coating has a linear response correlation coefficient of 0.9098 and a resolution of 0.1%, while the configuration with the GO coating has a linear response correlation coefficient of 0.9548 and a resolution of 0.096% which is better. The proposed sensor has multiple applications, especially in the area of climate and atmospheric measurement and monitoring. Keywords: Microfiber, Resonator, Humidity sensor

  2. Biominerals doped nanocrystalline nickel oxide as efficient humidity sensor: A green approach

    International Nuclear Information System (INIS)

    John Kennedy, L.; Magesan, P.; Judith Vijaya, J.; Umapathy, M.J.; Aruldoss, Udaya

    2014-01-01

    Graphical abstract: - Highlights: • A new resistive type of sensor was prepared by green synthesis. • The mineral oxide from seed part of Hygrophila spinosa T. Anders (HST) plant is chosen as a dopant in NiO. • The HST plant is found abundantly and commercially available in many countries. • The band gap of NH2 (Ni:HST of 0.5:0.5 weight ratio) sample is greater than prepared bulk NiO due to quantum effects. • The NH2 sample shows remarkable changes in the humidity sensing properties. - Abstract: The simple and green method is adopted for the preparation of biominerals (derived from the Hygrophila spinosa T. Anders plant seeds) doped nanocrystalline NiO. The prepared samples were subjected to instrumental analysis such as XRD, FT-IR, HR-SEM, EDX, UV–vis–DRS techniques. The surface area of all the samples was calculated from the Williamson–Hall's plot. The humidity sensitivity factor (S f ) of the prepared samples was evaluated by two probe dc electrical resistance method at different relative humidity levels. The change in the resistance was observed for the entire sensor samples except pure NiO (NH0). Compared to all the other composition, HST of 0.5% in NiO (NH2 sample) enhances the sensitivity factor (S f ) of about 90,000. The NH2 sample exhibited good linearity, reproducibility and response and recovery time about 210 ± 5 s and 232 ± 4 s, respectively. It is found that the sensitivity largely depends on composition, crystallite size and surface area

  3. Gas Sensing Properties of ZnO-SnO2 Nanostructures.

    Science.gov (United States)

    Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen

    2015-02-01

    One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.

  4. Evaluation and application of passive and active optical remote sensing methods for the measurement of atmospheric aerosol properties

    Energy Technology Data Exchange (ETDEWEB)

    Mielonen, T.

    2010-07-01

    Atmospheric aerosol particles affect the atmosphere's radiation balance by scattering and absorbing sunlight. Moreover, the particles act as condensation nuclei for clouds and affect their reflectivity. In addition, aerosols have negative health effects and they reduce visibility. Aerosols are emitted into the atmosphere from both natural and anthropogenic sources. Different types of aerosols have different effects on the radiation balance, thus global monitoring and typing of aerosols is of vital importance. In this thesis, several remote sensing methods used in the measurement of atmospheric aerosols are evaluated. Remote sensing of aerosols can be done with active and passive instruments. Passive instruments measure radiation emitted by the sun and the Earth while active instruments have their own radiation source, for example a black body radiator or laser. The instruments utilized in these studies were sun photometers (PFR, Cimel), lidars (POLLYXT, CALIOP), transmissiometer (OLAF) and a spectroradiometer (MODIS). Retrieval results from spaceborne instruments (MODIS, CALIOP) were evaluated with ground based measurements (PFR, Cimel). In addition, effects of indicative aerosol model assumptions on the calculated radiative transfer were studied. Finally, aerosol particle mass at the ground level was approximated from satellite measurements and vertical profiles of aerosols measured with a lidar were analyzed. For the evaluation part, these studies show that the calculation of aerosol induced attenuation of radiation based on aerosol size distribution measurements is not a trivial task. In addition to dry aerosol size distribution, the effect of ambient relative humidity on the size distribution and the optical properties of the aerosols need to be known in order to achieve correct results from the calculations. Furthermore, the results suggest that aerosol size parameters retrieved from passive spaceborne measurements depend heavily on surgace reflectance

  5. On the distribution of relative humidity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2004-01-01

    Full Text Available We have analysed relative humidity statistics from measurements in cirrus clouds taken unintentionally during the Measurement of OZone by Airbus In-service airCraft project (MOZAIC. The shapes of the in-cloud humidity distributions change from nearly symmetric in relatively warm cirrus (warmer than −40°C to considerably positively skew (i.e. towards high humidities in colder clouds. These results are in agreement to findings obtained recently from the INterhemispheric differences in Cirrus properties from Anthropogenic emissions (INCA campaign (Ovarlez et al., 2002. We interprete the temperature dependence of the shapes of the humidity distributions as an effect of the length of time a cirrus cloud needs from formation to a mature equilibrium stage, where the humidity is close to saturation. The duration of this transitional period increases with decreasing temperature. Hence cold cirrus clouds are more often met in the transitional stage than warm clouds.

  6. Synthesis of humidity sensitive zinc stannate nanomaterials and modelling of Freundlich adsorption isotherm model

    Science.gov (United States)

    Sharma, Alfa; Kumar, Yogendra; Shirage, Parasharam M.

    2018-04-01

    The chemi-resistive humidity sensing behaviour of as prepared and annealed ZnSnO3 nanoparticles synthesized using a wet chemical synthesis method was investigated. The effect of stirring temperature over the evolution of varied nanomorphology of zinc stannate is in accordance to Ostwald's ripening law. At room temperature, an excellent humidity sensitivity of ˜800% and response/recovery time of 70s./102s. is observed for ZnSnO3 sample within 08-97% relative humidity range. The experimental data observed over the entire range of RH values well fitted with the Freundlich adsorption isotherm model, and revealing two distinct water adsorption regimes. The excellent humidity sensitivity observed in the nanostructures is attributed to Grotthuss mechanism considering the availability and distribution of available adsorption sites. This present result proposes utilization of low cost synthesis technique of ZnSnO3 holds the promising capabilities as potential candidate for the fabrication of next generation humidity sensors.

  7. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor

    Science.gov (United States)

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-01-01

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly

  8. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor.

    Science.gov (United States)

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-07-10

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly

  9. Investigations on microstructure, electrical and magnetic properties of copper spinel ferrite with WO3 addition for applications in the humidity sensors

    Science.gov (United States)

    Tudorache, Florin

    2018-04-01

    In the present study we report the structural, electrical, magnetic and humidity characteristics of copper ferrite with different percent on tungsten trioxide addition. The aim of this study was to obtain more stable and sensitive active materials for humidity sensors. In order to highlight the influence of tungsten on the structural, electrical and magnetic properties, the ferrite samples were fabricated via sol-gel self-combustion method and sintered for 30 min at 1000 °C with percent between 0 and 20% tungsten trioxide additions. The X-ray diffraction investigations showed the copper ferrite phase composition. The scanning electron microscopy revealed the influence of the substitution on characteristics of the crystallites and the profilometry showed the surface topography of samples. The investigation was focused on the variation of permittivity and electrical conductivity, in relation with tungsten trioxide addition, frequency and humidity. We have also, investigated the relevant magnetic characteristics of the copper ferrite material by highlighting the influence of tungsten trioxide addition on to Curie temperature and the permeability frequency characteristics. The data suggests that the copper ferrite with tungsten trioxide addition can be used as active material for humidity sensors.

  10. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Science.gov (United States)

    Huang, Che-Wei; Huang, Yu-Jie; Lu, Shey-Shi; Lin, Chih-Ting

    2012-01-01

    A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC) architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm) integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK) wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH) range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  11. Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2.

    Science.gov (United States)

    Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C K; Ahmad, Harith; Chong, W Y

    2016-01-01

    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.

  12. Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2.

    Directory of Open Access Journals (Sweden)

    Mahdiar Ghadiry

    Full Text Available Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH causes the cladding refractive index (RI to increase due to cladding water absorption. However, if graphene oxide (GO is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time of the device, reveals a great linearity in a wide range of RH (35% to 98% and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.

  13. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing

    Science.gov (United States)

    Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru

    2018-03-01

    This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.

  14. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Giorgio Sberveglieri

    2013-10-01

    Full Text Available Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes

  15. CVD transfer-free graphene for sensing applications.

    Science.gov (United States)

    Schiattarella, Chiara; Vollebregt, Sten; Polichetti, Tiziana; Alfano, Brigida; Massera, Ettore; Miglietta, Maria Lucia; Di Francia, Girolamo; Sarro, Pasqualina Maria

    2017-01-01

    The sp 2 carbon-based allotropes have been extensively exploited for the realization of gas sensors in the recent years because of their high conductivity and large specific surface area. A study on graphene that was synthetized by means of a novel transfer-free fabrication approach and is employed as sensing material is herein presented. Multilayer graphene was deposited by chemical vapour deposition (CVD) mediated by CMOS-compatible Mo. The utilized technique takes advantage of the absence of damage or contamination of the synthesized graphene, because there is no need for the transfer onto a substrate. Moreover, a proper pre-patterning of the Mo catalyst allows one to obtain graphene films with different shapes and dimensions. The sensing properties of the material have been investigated by exposing the devices to NO 2 , NH 3 and CO, which have been selected because they are well-known hazardous substances. The concentration ranges have been chosen according to the conventional monitoring of these gases. The measurements have been carried out in humid N 2 environment, setting the flow rate at 500 sccm, the temperature at 25 °C and the relative humidity (RH) at 50%. An increase of the conductance response has been recorded upon exposure towards NO 2 , whereas a decrease of the signal has been detected towards NH 3 . The material appears totally insensitive towards CO. Finally, the sensing selectivity has been proven by evaluating and comparing the degree of adsorption and the interaction energies for NO 2 and NH 3 on graphene. The direct-growth approach for the synthesis of graphene opens a promising path towards diverse applicative scenarios, including the straightforward integration in electronic devices.

  16. CVD transfer-free graphene for sensing applications

    Directory of Open Access Journals (Sweden)

    Chiara Schiattarella

    2017-05-01

    Full Text Available The sp2 carbon-based allotropes have been extensively exploited for the realization of gas sensors in the recent years because of their high conductivity and large specific surface area. A study on graphene that was synthetized by means of a novel transfer-free fabrication approach and is employed as sensing material is herein presented. Multilayer graphene was deposited by chemical vapour deposition (CVD mediated by CMOS-compatible Mo. The utilized technique takes advantage of the absence of damage or contamination of the synthesized graphene, because there is no need for the transfer onto a substrate. Moreover, a proper pre-patterning of the Mo catalyst allows one to obtain graphene films with different shapes and dimensions. The sensing properties of the material have been investigated by exposing the devices to NO2, NH3 and CO, which have been selected because they are well-known hazardous substances. The concentration ranges have been chosen according to the conventional monitoring of these gases. The measurements have been carried out in humid N2 environment, setting the flow rate at 500 sccm, the temperature at 25 °C and the relative humidity (RH at 50%. An increase of the conductance response has been recorded upon exposure towards NO2, whereas a decrease of the signal has been detected towards NH3. The material appears totally insensitive towards CO. Finally, the sensing selectivity has been proven by evaluating and comparing the degree of adsorption and the interaction energies for NO2 and NH3 on graphene. The direct-growth approach for the synthesis of graphene opens a promising path towards diverse applicative scenarios, including the straightforward integration in electronic devices.

  17. U-shaped micro-groove fiber based on femtosecond laser processing for humidity sensing

    Science.gov (United States)

    Fu, Gui; Ma, Li-li; Su, Fu-fang; Shi, Meng

    2018-05-01

    A novel optical fiber sensor with a U-shaped micro-groove structure ablated by femtosecond laser on single-mode fiber for measuring air relative humidity (RH) is reported in this paper. In order to improve the accuracy of sensor, a graphene oxide (GO)/polyvinyl alcohol (PVA) composite film is coated on the surface of micro-groove structure. In the U-shaped micro-groove structure, the remaining core and micro-cavity in the micro-groove make up two major optical propagation paths, forming a Mach-Zehnder interferometer (MZI). The sensor has a good linear response within the RH range of 30%—85%, and the maximum sensitivity can reach 0.638 1 nm/%RH. The effect of temperature on the overall performance of the humidity sensor is also investigated. As a new type of all-fiber device, the sensor shows excellent sensitivity and stability.

  18. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Directory of Open Access Journals (Sweden)

    Chih-Ting Lin

    2012-08-01

    Full Text Available A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  19. Bullet Optical Fiber Humidity Sensor Based on Ag Nanoparticles Dispersed in Leaf Extract of Alstonia Scholaris

    Directory of Open Access Journals (Sweden)

    Anu VIJAYAN

    2008-05-01

    Full Text Available An optical fiber with a clad of Ag nanoparticles dispersed in leaf extract of Alstonia Scholaris is used as an optical humidity sensor. The fabricated sensor showed response to humidity in the range of 40-95%. The specialty of this sensor is that it can be used when stored at room temperature (25 oC up to a maximum of 25 days with 90% retention of original sensitivity. These humidity sensing bio-films showed good operational efficiency for 5 cycles. The plastic optical fiber is versatile and can be used easily for humidity measurement with high sensitivity. The sensor exhibited a short response time of 4-5 sec. and recovery time of 45 sec with repeatability, reproducibility and low hysteresis effect. This Ag dispersed in leaf extract of Alstonia Scholaris showed higher humidity response compared to response shown by the leaf extract alone.

  20. Effect of humidity on thoron adsorption in activated charcoal bed

    International Nuclear Information System (INIS)

    Sudeep Kumara, K.; Karunakara, N.; Yashodhara, I.; Sapra, B.K.; Sahoo, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2014-01-01

    Activated charcoal is a well-known adsorber of 222 Rn and 220 Rn gases. This property can be effectively used for remediation of these gases in the workplaces of uranium and thorium processing facilities. However, the adsorption on charcoal is sensitive to variation in temperature and humidity. The successful designing and characterization of adsorption systems require an adequate understanding of these sensitivities. The study has been carried out towards this end, to delineate the effect of relative humidity on the efficacy of 220 Rn mitigations in a charcoal bed. Air carrying 220 Rn from a Pylon source was passed through a column filled with coconut shell-based granular activated charcoal. The relative humidity of the air was controlled, and the transmission characteristics were examined at relative humidity varying from 45% to 60%. The mitigation factor was found to decrease significantly with an increase of humidity in the air. (author)

  1. Humidity sensing performance of in-situ fabricated Cu/Cu2O/Cu2S-polymer nanocomposite via polyphenylene sulphide cyclisation route.

    Science.gov (United States)

    Adkar, Dattatraya; Hake, Abhay; Jadkar, Sandesh; Adhyapak, Parag; Mulik, Uttamrao; Amalnerkar, Dinesh

    2011-08-01

    We herein report the feasibility of novel polymer-inorganic solid state reaction route for simultaneous in situ generation of Cu2S and Cu nanostructures in polymer network. Polyphenylene Sulphide (PPS) which is engineering thermoplastic acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the two reactants i.e., copper acetate and PPS by varying molar ratios mainly 1:1, 1:5, 1:10, 1:15, 1:20 at the crystalline melting temperature (285 degrees C) of PPS. The synthesized products were characterized using various physicochemical characterization techniques like X-ray Diffractometry, Field emission Scanning Electron Microscopy, Transmission Electron Microscopy, UV-Visible spectroscopy and X-ray photoelectron spectroscopy. The prima facie observations suggest occurrence of nanocrystalline Cu2S in case of product obtained with equimolar ratio, whereas remaining samples show mixture of Cu and Cu2O. The TEM analysis reveals nanoscale polydispersity (5-60 nm) and prevalence of mainly spherical morphological features in all the cases with occasional indications of plate like and cubical morphological features depending upon the molar ratio of the reactants. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 70% RH) was compared for these nanocomposites. The linear response is obtained for all the samples. The sensitivity of 1:1 molar ratio sample was found to be maximum among all the samples.

  2. Fabrication of a capacitive relative humidity sensor using aluminum thin films deposited on etched printed circuit board

    Directory of Open Access Journals (Sweden)

    Lee Jacqueline Ann L.

    2016-01-01

    Full Text Available A capacitive humidity-sensing device was created by thermal evaporation of 99.999% aluminum. The substrate used for the coating was etched double-sided printed circuit board. The etched printed circuit board serves as the dielectric of the capacitor while the aluminum thin films deposited on either side serve as the plates of the capacitor. The capacitance was measured before and after exposure to humidity. The device was then calibrated by comparing the readings of capacitance with that of the relative humidity sensor of the Vernier LabQuest2. It was found that there is a linear relationship between the capacitance and relative humidity given by the equation C=1.418RH+29.139 where C is the capacitance and RH is the relative humidity. The surface of the aluminum films is porous and it is through these pores that water is adsorbed and capillary condensation occurs, thereby causing the capacitance to change upon exposure to humidity.

  3. ZnO:Ca nanopowders with enhanced CO2 sensing properties

    International Nuclear Information System (INIS)

    Dhahri, R; Hjiri, M; El Mir, L; Fazio, E; Neri, F; Barreca, F; Donato, N; Bonavita, A; Leonardi, S G; Neri, G

    2015-01-01

    Calcium doped ZnO (CZO) nanopowders with [Ca]/[Zn] atomic ratios of 0, 0.01, 0.03 and 0.05 were prepared via a sol-gel route and characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy (FT-IR). Characterization data showed that undoped and Ca-doped ZnO samples have a hexagonal wurtzite structure with a slight distortion of the ZnO lattice and no extra secondary phases, suggesting the substitution of Ca ions in the ZnO structure.Chemo-resistive devices based on a thick layer of the synthesized CZO nanoparticles were fabricated and their electrical and sensing properties towards CO 2 were investigated. Sensing tests have demonstrated that Ca loading is the key factor in modulating the electrical properties and strongly improving the response of ZnO matrix towards CO 2 . An increased CO 2 adsorption with Ca loading has been also evidenced by FT-IR, providing the basis for the formulation of a plausible mechanism for CO 2 sensing operating on these sensors. (paper)

  4. Single-Stroke Synthesis of Tin Sulphide/Oxide Nanocomposites Within Engineering Thermoplastic and Their Humidity Response.

    Science.gov (United States)

    Adkar, Dattatraya; Adhyapak, Parag; Mulik, Uttamrao; Jadkar, Sandesh; Vutova, Katia; Amalnerkar, Dinesh

    2018-05-01

    SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.

  5. Methods of humidity determination Part II: Determination of material humidity

    OpenAIRE

    Rübner, Katrin; Balköse, Devrim; Robens, E.

    2008-01-01

    Part II covers the most common methods of measuring the humidity of solid material. State of water near solid surfaces, gravimetric measurement of material humidity, measurement of water sorption isotherms, chemical methods for determination of water content, measurement of material humidity via the gas phase, standardisation, cosmonautical observations are reviewed.

  6. Novel Non-Stoichiometric Manganese – Cobalt – Nickel – Oxide Composite as Humidity Sensor Through Solid-State Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    R. Sundaram

    2006-08-01

    Full Text Available Equimolar amounts of manganese(II chloride, cobalt(III nitrate and nickel(II chloride in aqueous solution were reacted with ammonia and the resulting precipitate of hydroxides was heated to 7500 C in 6h to yield a non stoichiometric oxides having a composition of Mn0.06Co0.6Ni0.6O2.5 as analyzed by atomic absorption spectroscopy to a pellet and sintered at 6000 C. Characterization of the material has been made with AAS, Far-IR, TG-DTA, XRD, SEM, VSM and electrical conductance measurement. The far-IR spectra indicated the presence of metal-oxygen bonds and the discrete nature of the oxide was established from power X-ray diffraction pattern recorded at room temperature. The thermogravimetric data indicated the successive loss and gain of fraction of oxygen atoms, a specific feature of non-stoichiometric metal oxides. It was subjected to solid-state DC electrical conductivity measurements at room temperature. The current increases linearly with applied field and exponentially with increase in temperature showing conformance to ohmic law and semiconducting nature. The scanning electron microscopy (SEM studies were carried out to study the surface and pores structure of the sensor materials. The Brunauer-Emmett-Teller (BET surface adsorption studies showed that the radiuses of the pore sizes were found to be distributed from 10-45A with the pore specific volume being 0.01 cm3 g-1. As the composites having micropores are preferred for humidity sensing properties, the material was subjected to water vapour of different humidity achieved by various water buffers at room temperature and the electrical conductivity was measured as a function of relative humidity (RH. The electrical resistivity drastically decreases with increase in humidity, proving the material to be a good water vapour sensor. The sensitivity factor (Sf was 55000 in the range 5–98% RH, meaning the resistivity falls by a factor of 5.5 x 104 when the atmospheric RH increases from 5

  7. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    Science.gov (United States)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  8. A surface acoustic wave humidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films

    International Nuclear Information System (INIS)

    Lei Sheng; Chen Dajing; Chen Yuquan

    2011-01-01

    Humidity detection has been widely used in a variety of fields. A humidity sensor with high sensitivity is reported in this paper. A surface acoustic wave resonator (SAWR) with high resonance frequency was fabricated as a basic sensitive component. Various nanotechnologies were used to improve the sensor's performance. A multi-walled carbon nanotube/Nafion (MWCNT/Nafion) composite material was prepared as humidity-sensitive films, deposited on the surface of an SAWR by the electrospinning method. The electrospun MWCNT/Nafion nanofiber films showed a three-dimensional (3D) porous structure, which was profitable for improving the sensor's performance. The new nano-water-channel model of Nafion was also applied in the humidity sensing process. Compared to other research, the present sensor showed excellent sensitivity (above 400 kHz/% relative humidity (RH) in the range from 10% RH to 80% RH), good linearity (R 2 > 0.98) and a short response time (∼3 s-63%).

  9. Observational evidence for aerosols increasing upper tropospheric humidity

    Directory of Open Access Journals (Sweden)

    L. Riuttanen

    2016-11-01

    Full Text Available Aerosol–cloud interactions are the largest source of uncertainty in the radiative forcing of the global climate. A phenomenon not included in the estimates of the total net forcing is the potential increase in upper tropospheric humidity (UTH by anthropogenic aerosols via changes in the microphysics of deep convection. Using remote sensing data over the ocean east of China in summer, we show that increased aerosol loads are associated with an UTH increase of 2.2 ± 1.5 in units of relative humidity. We show that humidification of aerosols or other meteorological covariation is very unlikely to be the cause of this result, indicating relevance for the global climate. In tropical moist air such an UTH increase leads to a regional radiative effect of 0.5 ± 0.4 W m−2. We conclude that the effect of aerosols on UTH should be included in future studies of anthropogenic climate change and climate sensitivity.

  10. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths.

    Science.gov (United States)

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A

    2012-06-12

    Most research on plant-pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue--transient humidity gradients--using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12-24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator.

  11. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths

    Science.gov (United States)

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A.

    2012-01-01

    Most research on plant–pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue—transient humidity gradients—using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12–24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator. PMID:22645365

  12. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  13. Optical remote sensing of properties and concentrations of atmospheric trace constituents

    Science.gov (United States)

    Vladutescu, Daniela Viviana

    The effect of human activities on the global climate may lead to large disturbances of the economic, social and political circumstances in the middle and long term. Understanding the dynamics of the Earth's climate is therefore of high importance and one of the major scientific challenges of our time. The estimation of the contribution of the Earth's climate system components needs observation and continuous monitoring of various atmospheric physical and chemical parameters. Temperature, water vapor and greenhouse gases concentration, aerosol and clouds loads, and atmospheric dynamics are parameters of particular importance in this respect. The quantification of the anthropogenic influence on the dynamics of these above-mentioned parameters is of crucial importance nowadays but still affected by significant uncertainties. In the present context of these huge uncertainties in our understanding of how these different atmospheric compounds contribute to the radiative forcing, a significant part of my research interest is related to the following topics: (1) Development of lidar (Light Detection and Ranging)-based remote sensing techniques for monitoring atmospheric compounds and processes; (2) Aerosols hygroscopic properties and atmospheric modeling; (3) Water vapor mixing ratio and relative humidity estimation in the troposphere; (4) Characterization of the long-range transported aerosols; (5) Ambient gases detection using Fourier Transform Interferometers (FTIR); (6) Design of inexpensive Fabry Perot Interferometer for visible and near infrared for land and ocean surface remote sensing applications. The lidar-based remote sensing measurement techniques for the monitoring of climate change parameters where implemented at the City College of the City University of New York (CCNY/CUNY) LIDAR station and are presented in the second section of the paper. The geographical location of the CCNY lidar station is 40.86N, -73.86W. Among the lidar retrievals one important

  14. Developing Remote Sensing Capabilities for Meter-Scale Sea Ice Properties

    Science.gov (United States)

    2014-09-30

    Malinka and A. Prikchach, The melt pond fraction and spectral sea ice albedo retrieval from MERIS data: validation and trends of sea ice albedo and... Sea Ice Properties Chris Polashenski, PI USACE-CRREL Building 4070 Fort Wainwright, AK 99703 phone: (570) 956-6990 fax: (907) 361-5188...overarching goal of this work is to develop and validate remote sensing techniques to track sea ice physical properties of geophysical importance that

  15. Indoor air humidity, air quality, and health - An overview.

    Science.gov (United States)

    Wolkoff, Peder

    2018-04-01

    There is a long-standing dispute about indoor air humidity and perceived indoor air quality (IAQ) and associated health effects. Complaints about sensory irritation in eyes and upper airways are generally among top-two symptoms together with the perception "dry air" in office environments. This calls for an integrated analysis of indoor air humidity and eye and airway health effects. This overview has reviewed the literature about the effects of extended exposure to low humidity on perceived IAQ, sensory irritation symptoms in eyes and airways, work performance, sleep quality, virus survival, and voice disruption. Elevation of the indoor air humidity may positively impact perceived IAQ, eye symptomatology, and possibly work performance in the office environment; however, mice inhalation studies do not show exacerbation of sensory irritation in the airways by low humidity. Elevated humidified indoor air appears to reduce nasal symptoms in patients suffering from obstructive apnea syndrome, while no clear improvement on voice production has been identified, except for those with vocal fatigue. Both low and high RH, and perhaps even better absolute humidity (water vapor), favors transmission and survival of influenza virus in many studies, but the relationship between temperature, humidity, and the virus and aerosol dynamics is complex, which in the end depends on the individual virus type and its physical/chemical properties. Dry and humid air perception continues to be reported in offices and in residential areas, despite the IAQ parameter "dry air" (or "wet/humid air") is semantically misleading, because a sensory organ for humidity is non-existing in humans. This IAQ parameter appears to reflect different perceptions among other odor, dustiness, and possibly exacerbated by desiccation effect of low air humidity. It is salient to distinguish between indoor air humidity (relative or absolute) near the breathing and ocular zone and phenomena caused by moisture

  16. Effect of Relative Humidity and CO2 Concentration on the Properties of Carbonated Reactive MgO Cement Based Materials

    Science.gov (United States)

    Bilan, Yaroslav

    Sustainability of modern concrete industry recently has become an important topic of scientific discussion, and consequently there is an effort to study the potential of the emerging new supplementary cementitious materials. This study has a purpose to investigate the effect of reactive magnesia (reactive MgO) as a replacement for general use (GU) Portland Cements and the effect of environmental factors (CO2 concentrations and relative humidity) on accelerated carbonation curing results. The findings of this study revealed that improvement of physical properties is related directly to the increase in CO2 concentrations and inversely to the increase in relative humidity and also depends much on %MgO in the mixture. The conclusions of this study helped to clarify the effect of variable environmental factors and the material replacement range on carbonation of reactive magnesia concrete materials, as well as providing an assessment of the optimal conditions for the effective usage of the material.

  17. Frequency Dependence of Electrical Parameters of an Organic-Inorganic Hybrid Composite Based Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Rizwan Akram

    2016-05-01

    Full Text Available The present study highlights the interdependence of ambient humidity levels on the electrical parameters of organic-inorganic hybrid composite based humidity sensor at varied AC frequencies of input signal. Starting from the bottom, the layer stack of the fabricated humidity sensor was 200-nm silver (Ag thin film and 4 μm spun-coated PEPC+NiPC+Cu2O active layer. Silver thin films were deposited by thermal evaporator on well cleaned microscopic glass slides, which served as a substrate. Conventional optical lithography procedure was adapted to define pairs of silver-silver surface electrodes with two sorts of configurations, i.e., interdigitated and rectangular. Humidity-sensitive layers of organic-inorganic composite were then spun-cast upon the channel between the silver electrodes. The changes in relative humidity levels induced variation in capacitance and impedance of the sensors. These variations in electrical parameters of sensors were also found to be highly dependent upon frequency of input AC signal. Our findings reveal that the organic-inorganic composite shows higher humidity sensitivity at smaller orders of frequency. This finding is in accordance with the established fact that organic semiconductors-based devices are not applicable for high frequency applications due to their lower charge carrier mobility values. Two distinct geometries of semiconducting medium between the silver electrodes were investigated to optimize the sensing parameters of the humidity sensor. Furthermore, the effect of temperature change on the resistance of organic composite has also been studied.

  18. Trends in continental temperature and humidity directly linked to ocean warming.

    Science.gov (United States)

    Byrne, Michael P; O'Gorman, Paul A

    2018-05-08

    In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

  19. Ethanol vapour sensing properties of screen printed WO3 thick films

    Indian Academy of Sciences (India)

    TECS

    trations. The WO3 thick films exhibit excellent ethanol vapour sensing properties with a maximum sensitivity ... methanol, acetone, isopropanol and acetic acid, have been reported .... maximum sensitivity was obtained at an operating tem-.

  20. Improving methane gas sensing properties of multi-walled carbonnanotubes by vanadium oxide filling

    CSIR Research Space (South Africa)

    Chimowa, George

    2017-08-01

    Full Text Available Manipulation of electrical properties and hence gas sensing properties of multi-walled carbon nanotubes (MWNTs) by filling the inner wall with vanadium oxide is presented. Using a simple capillary technique, MWNTs are filled with vanadium metal...

  1. Humidity affects the performance of von Frey monofilaments

    DEFF Research Database (Denmark)

    Werner, M U; Nielsen, Per Rotbøll; Ellehuus-Hilmersson, C

    2011-01-01

    Assessment of tactile and nociceptive thresholds of the skin with calibrated polyamide monofilaments is an established testing method both in animal and in human research. It is known that changes in relative humidity may affect the physical properties of the monofilaments. As this effect has onl...

  2. Structural properties and sensing characteristics of high-k Ho2O3 sensing film-based electrolyte-insulator-semiconductor

    International Nuclear Information System (INIS)

    Pan, Tung-Ming; Huang, Ming-De

    2011-01-01

    Highlights: → We report the structural properties and sensing characteristics of Ho 2 O 3 sensing membranes deposited on Si substrates by reactive sputtering. → We applied X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy to study the structural and morphological features of these films after they had been subjected to annealing at various temperatures (700 deg. C, 800 deg. C, and 900 deg. C). → The Ho 2 O 3 electrolyte-insulator-semiconductor device annealed at 800 deg. C exhibited a higher sensitivity, a lower hysteresis voltage, and a smaller drift rate than other annealing temperatures. - Abstract: In this study, we report a Ho 2 O 3 electrolyte-insulator-semiconductor (EIS) device films deposited on Si substrates through reactive sputtering. The effect of thermal annealing (700, 800, and 900 deg. C) on the structural and surface properties of Ho 2 O 3 sensing film was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. We found that the EIS device with a Ho 2 O 3 sensing film annealed at 800 deg. C exhibited a higher sensitivity of ∼57 mV/pH, a lower hysteresis voltage of 2.68 mV, and a smaller drift rate of 2.83 mV h -1 compared to those at other annealing conditions. This improvement can be attributed to the well-crystallized Ho 2 O 3 structure and the large surface roughness.

  3. Structural properties and gas sensing behavior of sol-gel grown nanostructured zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rajyaguru, Bhargav; Gadani, Keval; Kansara, S. B.; Pandya, D. D.; Shah, N. A.; Solanki, P. S., E-mail: piyush.physics@gmail.com [Department of Physics, Saurashtra University, Rajkot – 360 005 (India); Rathod, K. N.; Solanki, Sapana [Department of Physics, Saurashtra University, Rajkot – 360 005 (India); V.V.P. Engineering College, Gujarat Technological University, Rajkot – 360 005 (India)

    2016-05-06

    In this communication, we report the results of the studies on structural properties and gas sensing behavior of nanostructured ZnO grown using acetone precursor based modified sol-gel technique. Final product of ZnO was sintered at different temperatures to vary the crystallite size while their structural properties have been studied using X-ray diffraction (XRD) measurement performed at room temperature. XRD results suggest the single phasic nature of all the samples and crystallite size increases from 11.53 to 20.96 nm with increase in sintering temperature. Gas sensing behavior has been studied for acetone gas which indicates that lower sintered samples are more capable to sense the acetone gas and related mechanism has been discussed in the light of crystallite size, crystal boundary density, defect mechanism and possible chemical reaction between gas traces and various oxygen species.

  4. Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties

    Directory of Open Access Journals (Sweden)

    J. Michel Flores

    2012-06-01

    Full Text Available One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS and a tandem hygroscopic DMA (differential mobility analyzer are used to measure the extinction coefficient and hygroscopic growth factors of humidified aerosols, respectively. The measurements are performed at 80% and 90%RH at wavelengths of 532 nm and 355 nm using size-selected aerosols with different degrees of absorption; from purely scattering to highly absorbing particles. The ratio of the humidified to the dry extinction coefficients (fRHext(%RH, Dry is measured and compared to theoretical calculations based on Mie theory. Using the measured hygroscopic growth factors and assuming homogeneous mixing, the expected RIs using the volume weighted mixing rule are compared to the RIs derived from the extinction measurements.

    We found a weak linear dependence or no dependence of fRH(%RH, Dry with size for hydrated absorbing aerosols in contrast to the non-monotonically decreasing behavior with size for purely scattering aerosols. No discernible difference could be made between the two wavelengths used. Less than 7% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. However, for substances with growth factor less than 1

  5. Advancing the quantification of humid tropical forest cover loss with multi-resolution optical remote sensing data: Sampling & wall-to-wall mapping

    Science.gov (United States)

    Broich, Mark

    Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single

  6. Temperature sensing by primary roots of maize

    Science.gov (United States)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  7. Simulation of electronic circuit sensitivity towards humidity using electrochemical data on water layer

    DEFF Research Database (Denmark)

    Joshy, Salil; Verdingovas, Vadimas; Jellesen, Morten Stendahl

    2015-01-01

    Climatic conditions like temperature and humidity have direct influence on the operation of electronic circuits. The effects of temperature on the operation of electronic circuits have been widely investigated, while the effect of humidity and solder flux residues are not well understood including...... the effect on circuit and PCBA (printed circuit board assembly) layout design. This paper elucidates a methodology for analyzing the sensitivity of an electronic circuit based on parasitic circuit analysis using data on electrical property of the water layer formed under humid as well as contaminated...

  8. Reduced graphene oxide decorated with Fe doped SnO{sub 2} nanoparticles for humidity sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toloman, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Popa, A., E-mail: popa@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Stan, M.; Socaci, C.; Biris, A.R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Katona, G. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028 Cluj-Napoca (Romania); Tudorache, F. [Interdisciplinary Research Department – Field Science & RAMTECH, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania); Petrila, I. [Interdisciplinary Research Department – Field Science & RAMTECH, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania); Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 27 Dimitrie Mangeron Street, 700050 Iasi (Romania); Iacomi, F. [Faculty of Physics, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania)

    2017-04-30

    Highlights: • Reduced graphene oxide decorated with Fe doped SnO{sub 2} nanoparticles were synthesized. • The decoration of rGO layers with SnO{sub 2}:Fe nanoparticles was highlited by TEM. • The reduction of graphene oxide was evidenced using XRD and FT-IR. • Sensitivity tests for relative humidity (RH) were carried out. • The composite sensor exhibited enhanced sensing response as compared with Fe:SnO{sub 2}. - Abstract: Reduced graphene oxide (rGO) decorated with Fe doped SnO{sub 2} nanoparticles were fabricated via the electrostatic interaction between positively charged modified Fe-doped SnO{sub 2} oxide and negatively charged graphene oxide (GO) in the presence of poly(allylamine) hydrochloride (PAH). The decoration of rGO layers with SnO{sub 2}:Fe nanoparticles was highlited by TEM microsopy. For composite sample the diffraction patterns coincide well with those of SnO{sub 2}:Fe nanoparticles. The reduction of graphene oxide was evidenced using XRD and FT-IR spectroscopy. The formation of SnO{sub 2}:Fe-PAH-graphene composites was confirmed by FT-IR, Raman and EPR spectroscopy. Sensitivity tests for relative humidity (RH) measurements were carried out at five different concentrations of humid air at room temperature. The prepared composite sensor exhibited a higher sensing response as compared with Fe:SnO{sub 2} nanoparticles.

  9. Radiation absorption and use by humid savanna grassland: assessment using remote sensing and modelling

    International Nuclear Information System (INIS)

    Roux, X. le; Gauthier, H.; Begue, A.; Sinoquet, H.

    1997-01-01

    The components of the canopy radiation balance in photosynthetically active radiation (PAR), phytomass and leaf area index (LAI) were measured during a complete annual cycle in an annually burned African humid savanna. Directional reflectances measured by a hand-held radiometer were used to compute the canopy normalized difference vegetation index (NDVI). The fraction f APAR of PAR absorbed by the canopy (APAR) and canopy reflectances were simulated by the scattering from arbitrarily inclined leaves (SAIL) and the radiation interception in row intercropping (RIRI) models. The daily PAR to solar radiation ratio was linearly related to the daily fraction of diffuse solar radiation with an annual value around 0.47. The observed f APAR was non-linearly related to NDVI. The SAIL model simulated reasonably well directional reflectances but noticeably overestimated f APAR during most of the growing season. Comparison of simulations performed with the 1D and 3D versions of the RIRI model highlighted the weak influence of the heterogeneous structure of the canopy after fire and of the vertical distribution of dead and green leaves on total f APAR . Daily f APAR values simulated by the 3D-RIRI model were linearly related to and 9.8% higher than observed values. For sufficient soil water availability, the net production efficiency ϵ n of the savanna grass canopy was 1.92 and 1.28 g DM MJ −1 APAR (where DM stands for dry matter) during early regrowth and mature stage, respectively. In conclusion, the linear relationship between NDVI and f APAR used in most primary production models operating at large scales may slightly overestimate f APAR by green leaves for the humid savanna biome. Moreover, the net production efficiency of humid savannas is close to or higher than values reported for the other major natural biomes. (author)

  10. Research on trend of warm-humid climate in Central Asia

    Science.gov (United States)

    Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng

    2017-07-01

    Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper

  11. Integrated CMOS dew point sensors for relative humidity measurement

    Science.gov (United States)

    Savalli, Nicolo; Baglio, Salvatore; Castorina, Salvatore; Sacco, Vincenzo; Tringali, Cristina

    2004-07-01

    This work deals with the development of integrated relative humidity dew point sensors realized by adopting standard CMOS technology for applications in various fields. The proposed system is composed by a suspended plate that is cooled by exploiting integrated Peltier cells. The cold junctions of the cells have been spread over the plate surface to improve the homogeneity of the temperature distribution over its surface, where cooling will cause the water condensation. The temperature at which water drops occur, named dew point temperature, is a function of the air humidity. Measurement of such dew point temperature and the ambient temperature allows to know the relative humidity. The detection of water drops is achieved by adopting a capacitive sensing strategy realized by interdigited fixed combs, composed by the upper layer of the adopted process. Such a capacitive sensor, together with its conditioning circuit, drives a trigger that stops the cooling of the plate and enables the reading of the dew point temperature. Temperature measurements are achieved by means of suitably integrated thermocouples. The analytical model of the proposed system has been developed and has been used to design a prototype device and to estimate its performances. In such a prototype, the thermoelectric cooler is composed by 56 Peltier cells, made by metal 1/poly 1 junctions. The plate has a square shape with 200 μm side, and it is realized by exploiting the oxide layers. Starting from the ambient temperature a temperature variation of ΔT = 15 K can be reached in 10 ms thus allowing to measure a relative humidity greater than 40%.

  12. Air humidity requirements for human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole

    1999-01-01

    level near 100% rh. For respiratory comfort are the requirements much more stringent and results in lower permissible indoor air humidities. Compared with the upper humidity limit specified in existing thermal comfort standards, e.g. ASHRAE Addendum 55a, the humidity limit based on skin humidity......Upper humidity limits for the comfort zone determined from two recently presented models for predicting discomfort due to skin humidity and insufficient respiratory cooling are proposed. The proposed limits are compared with the maximum permissible humidity level prescribed in existing standards...... for the thermal indoor environment. The skin humidity model predicts discomfort as a function of the relative humidity of the skin, which is determined by existing models for human heat and moisture transfer based on environmental parameters, clothing characteristics and activity level. The respiratory model...

  13. A Smart Gas Sensor Insensitive to Humidity and Temperature Variations

    International Nuclear Information System (INIS)

    Hajmirzaheydarali, Mohammadreza; Ghafarinia, Vahid

    2011-01-01

    The accuracy of the quantitative sensing of volatile organic compounds by chemoresistive gas sensors suffers from the fluctuations in the background atmospheric conditions. This is caused by the drift-like terms introduced in the responses by these instabilities, which should be identified and compensated. Here, a mathematical model is presented for a specific chemoresistive gas sensor, which facilitates these identification and compensation processes. The resistive gas sensor was considered as a multi-input-single-output system. Along with the steady state value of the measured sensor resistance, the ambient humidity and temperature are the inputs to the system, while the concentration level of the target gas is the output. The parameters of the model were calculated based on the experimental database. The model was simulated by the utilization of an artificial neural network. This was connected to the sensor and could deliver the correct contamination level upon receiving the measured gas response, ambient humidity and temperature.

  14. Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films.

    Science.gov (United States)

    Chinma, C E; Ariahu, C C; Alakali, J S

    2015-04-01

    The effect of temperature and relative humidity on the water vapour permeability (WVP) and mechanical properties of cassava starch and soy protein concentrate (SPC) based edible films containing 20 % glycerol level were studied. Tensile strength and elastic modulus of edible films increased with increase in temperature and decreased with increase in relative humidity, while elongation at break decreased. Water vapour permeability of the films increased (2.6-4.3 g.mm/m(2).day.kPa) with increase in temperature and relative humidity. The temperature dependence of water vapour permeation of cassava starch-soy protein concentrate films followed Arrhenius relationship. Activation energy (Ea) of water vapour permeation of cassava starch-soy protein concentrate edible films ranged from 1.9 to 5.3 kJ/mol (R (2)  ≥ 0.93) and increased with increase in SPC addition. The Ea values were lower for the bio-films than for polyvinylidene chloride, polypropylene and polyethylene which are an indication of low water vapour permeability of the developed biofilms compared to those synthetic films.

  15. Electrical conduction and NO{sub 2} gas sensing properties of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Yasin [Council of Forensic Medicine, Bahçelievler, 34196 Istanbul (Turkey); Öztürk, Sadullah, E-mail: sadullahozturk@gyte.edu.tr [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Kılınç, Necmettin [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Koc University, Department of Electrical and Electronics Engineering, Sariyer, 34450 Istanbul (Turkey); Kösemen, Arif [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Mus Alparslan University, Department of Physics, 49100 Mus (Turkey); Erkovan, Mustafa [SAKARYA University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus, 54187 Sakarya (Turkey); Öztürk, Zafer Ziya [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); TÜBİTAK-Marmara Research Center, Materials Institute, 41470 Gebze, Kocaeli (Turkey)

    2014-06-01

    Thermally stimulated current (TSC), photoresponse and gas sensing properties of zinc oxide (ZnO) nanorods were investigated depending on heating rates, illumination and dark aging times with using sandwich type electrode system. Vertically aligned ZnO nanorods were grown on indium tin oxide (ITO) coated glass substrate by hydrothermal process. TSC measurements were performed at different heating rates under constant potential. Photoresponse and gas sensing properties were investigated in dry air ambient at 200 °C. For gas sensing measurements, ZnO nanorods were exposed to NO{sub 2} (100 ppb to 1 ppm) in dark and illuminated conditions and the resulting resistance transient was recorded. It was found from dark electrical measurements that the dependence of the dc conductivity on temperature followed Mott's variable range hopping (VRH) model. In addition, response time and recovery times of ZnO nanorods to NO{sub 2} gas decreased by exposing to white light.

  16. Physical characterization of functionalized spider silk: electronic and sensing properties

    Directory of Open Access Journals (Sweden)

    Eden Steven, Jin Gyu Park, Anant Paravastu, Elsa Branco Lopes, James S Brooks, Ongi Englander, Theo Siegrist, Papatya Kaner and Rufina G Alamo

    2011-01-01

    Full Text Available This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline and amorphous (helical structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size, on the process of pyrolization (suppressing mass loss rates and on the resulting carbonized fiber structure (that becomes more robust against bending and strain. The effects of iodine doping and other functional parameters (vacuum and thin film coating motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  17. Physical characterization of functionalized spider silk: electronic and sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Steven, Eden; Brooks, James S [Department of Physics and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, FL 32310 (United States); Park, Jin Gyu [FAMU-FSU Department of Industrial and Manufacturing Engineering, High-Performance Materials Institute, Florida State University, 2005 Levy Ave., Tallahassee, FL 32310 (United States); Paravastu, Anant; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G [FAMU-FSU Department of Chemical and Biomedical Engineering and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, FL 32310 (United States); Branco Lopes, Elsa [Departamento de Quimica, Instituto Tecnologico e Nuclear/CFMC-UL, P-2686-953 Sacavem (Portugal); Englander, Ongi, E-mail: esteven@magnet.fsu.edu [FAMU-FSU Department of Mechanical Engineering and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, Florida 32310 (United States)

    2011-10-15

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of {beta}-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 deg. C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and {beta}-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of {beta}-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  18. Physical characterization of functionalized spider silk: electronic and sensing properties

    International Nuclear Information System (INIS)

    Steven, Eden; Brooks, James S; Park, Jin Gyu; Paravastu, Anant; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G; Branco Lopes, Elsa; Englander, Ongi

    2011-01-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 deg. C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of

  19. Colorimetric Humidity Sensor Using Inverse Opal Photonic Gel in Hydrophilic Ionic Liquid.

    Science.gov (United States)

    Kim, Seulki; Han, Sung Gu; Koh, Young Gook; Lee, Hyunjung; Lee, Wonmok

    2018-04-27

    We demonstrate a fast response colorimetric humidity sensor using a crosslinked poly(2-hydroxyethyl methacrylate) (PHEMA) in the form of inverse opal photonic gel (IOPG) soaked in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM⁺][BF₄ − ]), a non-volatile hydrophilic room temperature ionic liquid (IL). An evaporative colloidal assembly enabled the fabrication of highly crystalline opal template, and a subsequent photopolymerization of PHEMA followed by solvent-etching and final soaking in IL produced a humidity-responsive IOPG showing highly reflective structural color by Bragg diffraction. Three IOPG sensors with different crosslinking density were fabricated on a single chip, where a lightly crosslinked IOPG exhibited the color change response over entire visible spectrum with respect to the humidity changes from 0 to 80% RH. As the water content increased in IL, thermodynamic interactions between PHEMA and [BMIM⁺][BF₄ − ] became more favorable, to show a red-shifted structural color owing to a longitudinal swelling of IOPG. Highly porous IO structure enabled fast humidity-sensing kinetics with the response times of ~1 min for both swelling and deswelling. Temperature-dependent swelling of PHEMA in [BMIM⁺][BF₄ − ] revealed that the current system follows an upper critical solution temperature (UCST) behavior with the diffraction wavelength change as small as 1% at the temperature changes from 10 °C to 30 °C.

  20. Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests

    Science.gov (United States)

    Gregory P. Asner; Roberta E. Martin; Raul Tupayachi; Ruth Emerson; Paola Martinez; Felipe Sinca; George V.N. Powell; S. Joseph Wright; Ariel E. Lugo

    2011-01-01

    Leaf mass per area (LMA) is a trait of central importance to plant physiology and ecosystem function, but LMA patterns in the upper canopies of humid tropical forests have proved elusive due to tall species and high diversity. We collected top-of-canopy leaf samples from 2873 individuals in 57 sites spread across the Neotropics, Australasia, and Caribbean and Pacific...

  1. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors

    Science.gov (United States)

    Dieu, Bjorn; Roeffaers, Maarten B.J.; Hofkens, Johan

    2016-01-01

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film. PMID:27911397

  2. Ion track based tunable device as humidity sensor: a neural network approach

    Science.gov (United States)

    Sharma, Mamta; Sharma, Anuradha; Bhattacherjee, Vandana

    2013-01-01

    Artificial Neural Network (ANN) has been applied in statistical model development, adaptive control system, pattern recognition in data mining, and decision making under uncertainty. The nonlinear dependence of any sensor output on the input physical variable has been the motivation for many researchers to attempt unconventional modeling techniques such as neural networks and other machine learning approaches. Artificial neural network (ANN) is a computational tool inspired by the network of neurons in biological nervous system. It is a network consisting of arrays of artificial neurons linked together with different weights of connection. The states of the neurons as well as the weights of connections among them evolve according to certain learning rules.. In the present work we focus on the category of sensors which respond to electrical property changes such as impedance or capacitance. Recently, sensor materials have been embedded in etched tracks due to their nanometric dimensions and high aspect ratio which give high surface area available for exposure to sensing material. Various materials can be used for this purpose to probe physical (light intensity, temperature etc.), chemical (humidity, ammonia gas, alcohol etc.) or biological (germs, hormones etc.) parameters. The present work involves the application of TEMPOS structures as humidity sensors. The sample to be studied was prepared using the polymer electrolyte (PEO/NH4ClO4) with CdS nano-particles dispersed in the polymer electrolyte. In the present research we have attempted to correlate the combined effects of voltage and frequency on impedance of humidity sensors using a neural network model and results have indicated that the mean absolute error of the ANN Model for the training data was 3.95% while for the validation data it was 4.65%. The corresponding values for the LR model were 8.28% and 8.35% respectively. It was also demonstrated the percentage improvement of the ANN Model with respect to the

  3. Four-channel temperature and humidity microwave scanning radiometer

    Science.gov (United States)

    Xu, Pei-Yuan

    1994-06-01

    A compact four-channel microwave scanning radiometer for tropospheric remote sensing is being developed. A pair of 53.85 and 56.02 GHz and a pair of 23.87 and 31.65 GHz are adopted as temperature and humidity channels' frequencies respectively. For each pair of frequencies it has an offset reflector antenna and a Dicke-switching receiver. The pair of receivers is assembled in an enclosure, which is mounted on the rotating table of an azimuth mounting and the pair of antennas is connected with the rotating table of an azimuth mounting in the opposite side by a pair of elevation arms. Each antenna is composed of a 90 degree off-set paraboloid and a conical corrugated horn. Each antenna patterrn of four channels has nearly same HPBW, low side lobes, and low VSWR. The dual band humidity receiver is a time sharing type with 0.2K sensitivity at 1-sec integration time. The dual band temperature receiver is a band sharing type with 0.2K sensitivity at 10-sec integration time. The radiometer and observation are controlled by a single chip microcomputer to realize the unattended operation.

  4. Polymer-embedded stannic oxide nanoparticles as humidity sensors

    International Nuclear Information System (INIS)

    Hatamie, Shadie; Dhas, Vivek; Kale, B.B.; Mulla, I.S.; Kale, S.N.

    2009-01-01

    Stannic oxide (SnO 2 ) nanoparticles have been suspended in polyvinyl alcohol (PVA) matrix in different PVA:SnO 2 molar ratios ranging from 1:1 to 1:5 using simple chemical route. This suspension was deposited on ceramic substrate and upon drying was carefully detached from the substrate. SnO 2 -embedded self-standing, transparent and flexible thin films were hence synthesized. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques show the rutile tetragonal structure of SnO 2 with particle size ∼ 5 nm. UV-Visible spectroscopy demonstrates the band gap of 3.9 eV, which does not alter when embedded in polymer. Fourier transform infrared spectroscopy (FTIR) reveals that the properties of SnO 2 do not modify due to incorporation in the PVA matrix. The structures work as excellent humidity sensors at room temperature. For a critical PVA:SnO 2 molar ratio of 1:3, the resistance changes to five times of magnitude in 92% humidity within fraction of second when compared with resistance at 11% humidity. The sample regains its original resistance almost instantaneously after being removed from humid chamber. Nanodimensions of SnO 2 particles and percolation mechanism related to transport through polymer matrix and water molecule as a carrier has been used to understand the mechanism.

  5. Self-Sensing Control of Nafion-Based Ionic Polymer-Metal Composite (IPMC Actuator in the Extremely Low Humidity Environment

    Directory of Open Access Journals (Sweden)

    Minoru Sasaki

    2013-10-01

    Full Text Available This paper presents feedforward, feedback and two-degree-of-freedom control applied to an Ionic Polymer-Metal Composite (IPMC actuator. It presents a high potential for development of miniature robots and biomedical devices and artificial muscles. We have reported in the last few years that dehydration treatment improves the electrical controllability of bending in Selemion CMV-based IPMCs. We tried to replicate this controllability in Nafion-based IPMC. We found that the displacement of a Nafion-based IPMC was proportional to the total charge imposed, just as in the Selemion-CMV case. This property is the basis of self-sensing controllers for Nafion-based IPMC bending behavior: we perform bending curvature experiments on Nafion-based IPMCs, obtaining the actuator's dynamics and transfer function. From these, we implemented self-sensing controllers using feedforward, feedback and two-degree-of-freedom techniques. All three controllers performed very well with the Nafion-based IPMC actuator.

  6. Planar Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing.

    Science.gov (United States)

    Bogner, Andreas; Steiner, Carsten; Walter, Stefanie; Kita, Jaroslaw; Hagen, Gunter; Moos, Ralf

    2017-10-24

    A planar microstrip ring resonator structure on alumina was developed using the commercial FEM software COMSOL. Design parameters were evaluated, eventually leading to an optimized design of a miniaturized microwave gas sensor. The sensor was covered with a zeolite film. The device was successfully operated at around 8.5 GHz at room temperature as a humidity sensor. In the next step, an additional planar heater will be included on the reverse side of the resonator structure to allow for testing of gas-sensitive materials under sensor conditions.

  7. Humidity fluctuations in the marine boundary layer measured at a coastal site with an infrared humidity sensor

    DEFF Research Database (Denmark)

    Sempreviva, A.M.; Gryning, Sven-Erik

    1996-01-01

    An extensive set of humidity turbulence data has been analyzed from 22-m height in the marine boundary layer. Fluctuations of humidity were measured by an ''OPHIR'', an infrared humidity sensor with a 10 Hz scanning frequency and humidity spectra were produced. The shapes of the normalized spectra...... follow the established similarity functions. However the 10-min time averaged measurements underestimate the value of the absolute humidity. The importance of the humidity flux contribution in a marine environment in calculating the Obukhov stability length has been studied. Deviations from Monin......-Obukhov similarity theory seem to be connected to a low correlation between humidity and temperature....

  8. Humidity-dependent bacterial cells functional morphometry investigations using atomic force microscope.

    Science.gov (United States)

    Nikiyan, Hike; Vasilchenko, Alexey; Deryabin, Dmitry

    2010-01-01

    The effect of a relative humidity (RH) in a range of 93-65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH

  9. Humidity-Dependent Bacterial Cells Functional Morphometry Investigations Using Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Hike Nikiyan

    2010-01-01

    Full Text Available The effect of a relative humidity (RH in a range of 93–65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH ≤ 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells.

  10. Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor.

    Science.gov (United States)

    Wei, Zhiqiang; Zhou, Zhang-Kai; Li, Qiuyu; Xue, Jiancai; Di Falco, Andrea; Yang, Zhongjian; Zhou, Jianhua; Wang, Xuehua

    2017-07-01

    Wearable plasmonic devices combine the advantages of high flexibility, ultrathinness, light weight, and excellent integration with the optical benefits mediated by plasmon-enhanced electric fields. However, two obstacles severely hinder further developments and applications of a wearable plasmonic device. One is the lack of efficient approach to obtaining devices with robust antimotion-interference property, i.e., the devices can work independently on the morphology changes of their working structures caused by arbitrary wearing conditions. The other issue is to seek a facile and high-throughput fabrication method to satisfy the financial requirement of industrialization. In order to overcome these two challenges, a functional flexible film of nanowire cluster is developed, which can be easily fabricated by taking the advantages of both conventional electrochemical and sputtering methods. Such flexible plasmonic films can be made into wearable devices that work independently on shape changes induced by various wearing conditions (such as bending, twisting and stretching). Furthermore, due to plasmonic advantages of color controlling and high sensitivity to environment changes, the flexible film of nanowire cluster can be used to fabricate wearable items (such as bracelet, clothes, bag, or even commercial markers), with the ability of wireless visualization for humidity sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Study on the Correlation between Humidity and Material Strains in Separable Micro Humidity Sensor Design

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Chang

    2017-05-01

    Full Text Available Incidents of injuries caused by tiles falling from building exterior walls are frequently reported in Taiwan. Humidity is an influential factor in tile deterioration but it is more difficult to measure the humidity inside a building structure than the humidity in an indoor environment. Therefore, a separable microsensor was developed in this study to measure the humidity of the cement mortar layer with a thickness of 1.5–2 cm inside the external wall of a building. 3D printing technology is used to produce an encapsulation box that can protect the sensor from damage caused by the concrete and cement mortar. The sensor is proven in this study to be capable of measuring temperature and humidity simultaneously and the measurement results are then used to analyze the influence of humidity on external wall tile deterioration.

  12. Smartphones for distributed multimode sensing: biological and environmental sensing and analysis

    Science.gov (United States)

    Feitshans, Tyler; Williams, Robert

    2013-05-01

    Active and Agile Environmental and Biological sensing are becoming obligatory to generate prompt warnings for the troops and law enforcements conducting missions in hostile environments. The traditional static sensing mesh networks which provide a coarse-grained (far-field) measurement of the environmental conditions like air quality, radiation , CO2, etc … would not serve the dynamic and localized changes in the environment, which requires a fine-grained (near-field) sensing solutions. Further, sensing the biological conditions of (healthy and injured) personnel in a contaminated environment and providing a personalized analysis of the life-threatening conditions in real-time would greatly aid the success of the mission. In this vein, under SATE and YATE programs, the research team at AFRL Tec^Edge Discovery labs had demonstrated the feasibility of developing Smartphone applications , that employ a suite of external environmental and biological sensors, which provide fine-grained and customized sensing in real-time fashion. In its current state, these smartphone applications leverage a custom designed modular standalone embedded platform (with external sensors) that can be integrated seamlessly with Smartphones for sensing and further provides connectivity to a back-end data architecture for archiving, analysis and dissemination of real-time alerts. Additionally, the developed smartphone applications have been successfully tested in the field with varied environmental sensors to sense humidity, CO2/CO, wind, etc…, ; and with varied biological sensors to sense body temperature and pulse with apt real-time analysis

  13. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    Science.gov (United States)

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  14. Ambient humidity and the skin: the impact of air humidity in healthy and diseased states.

    Science.gov (United States)

    Goad, N; Gawkrodger, D J

    2016-08-01

    Humidity, along with other climatic factors such as temperature and ultraviolet radiation, can have an important impact on the skin. Limited data suggest that external humidity influences the water content of the stratum corneum. An online literature search was conducted through Pub-Med using combinations of the following keywords: skin, skin disease, humidity, dermatoses, dermatitis, eczema, and mist. Publications included in this review were limited to (i) studies in humans or animals, (ii) publications showing relevance to the field of dermatology, (iii) studies published in English and (iv) publications discussing humidity as an independent influence on skin function. Studies examining environmental factors as composite influences on skin health are only included where the impact of humidity on the skin is also explored in isolation of other environmental factors. A formal systematic review was not feasible for this topic due to the heterogeneity of the available research. Epidemiological studies indicated an increase in eczema with low internal (indoors) humidity and an increase in eczema with external high humidity. Other studies suggest that symptoms of dry skin appear with low humidity internal air-conditioned environments. Murine studies determined that low humidity caused a number of changes in the skin, including the impairment of the desquamation process. Studies in humans demonstrated a reduction in transepidermal water loss (TEWL) (a measure of the integrity of the skin's barrier function) with low humidity, alterations in the water content in the stratum corneum, decreased skin elasticity and increased roughness. Intervention with a humidifying mist increased the water content of the stratum corneum. Conversely, there is some evidence that low humidity conditions can actually improve the barrier function of the skin. Ambient relative humidity has an impact on a range of parameters involved in skin health but the literature is inconclusive. Further

  15. Radiation tolerant fiber optic humidity sensors for High Energy Physics applications

    CERN Document Server

    Berruti, Gaia Maria; Cusano, Andrea

    This work is devoted to the development of fiber optic humidity sensors to be applied in high-energy physics applications and in particular in experiments currently running at CERN. The high radiation level resulting from the operation of the accelerator at full luminosity can cause serious performance deterioration of the silicon sensors which are responsible for the particle tracking. To increase their lifetime, the sensors must be kept cold at temperatures below 0 C. At such low temperatures, any condensation risk has to be prevented and a precise thermal and hygrometric control of the air filling and surrounding the tracker detector cold volumes is mandatory. The technologies proposed at CERN for relative humidity monitoring are mainly based on capacitive sensing elements which are not designed with radiation resistance characteristic. In this scenario, fiber optic sensors seem to be perfectly suitable. Indeed, the fiber itself, if properly selected, can tolerate a very high level of radiation, optical fi...

  16. A comparative analysis of predictors of sense of place dimensions: attachment to, dependence on, and identification with lakeshore properties.

    Science.gov (United States)

    Jorgensen, Bradley S; Stedman, Richard C

    2006-05-01

    Sense of place can be conceived as a multidimensional construct representing beliefs, emotions and behavioural commitments concerning a particular geographic setting. This view, grounded in attitude theory, can better reveal complex relationships between the experience of a place and attributes of that place than approaches that do not differentiate cognitive, affective and conative domains. Shoreline property owners (N=290) in northern Wisconsin were surveyed about their sense of place for their lakeshore properties. A predictive model comprising owners' age, length of ownership, participation in recreational activities, days spent on the property, extent of property development, and perceptions of environmental features, was employed to explain the variation in dimensions of sense of place. In general, the results supported a multidimensional approach to sense of place in a context where there were moderate to high correlations among the three place dimensions. Perceptions of environmental features were the biggest predictors of place dimensions, with owners' perceptions of lake importance varying in explanatory power across place dimensions.

  17. Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films.

    Science.gov (United States)

    Kumar, Manjeet; Kumar, Akshay; Abhyankar, A C

    2015-02-18

    For the first time, a new facile approach based on simple and inexpensive chemical spray pyrolysis (CSP) technique is used to deposit Tungsten (W) doped nanocrystalline SnO2 thin films. The textural, optical, structural and sensing properties are investigated by GAXRD, UV spectroscopy, FESEM, AFM, and home-built sensing setup. The gas sensing results indicate that, as compared to pure SnO2, 1 wt % W-doping improves sensitivity along with better response (roughness values of 3.82 eV and 3.01 nm, respectively. Reduction in texture coefficient along highly dense (110) planes with concomitant increase along loosely packed (200) planes is found to have prominent effect on gas sensing properties of W-doped films.

  18. Generic Properties of Curvature Sensing through Vision and Touch

    Directory of Open Access Journals (Sweden)

    Birgitta Dresp-Langley

    2013-01-01

    Full Text Available Generic properties of curvature representations formed on the basis of vision and touch were examined as a function of mathematical properties of curved objects. Virtual representations of the curves were shown on a computer screen for visual scaling by sighted observers (experiment 1. Their physical counterparts were placed in the two hands of blindfolded and congenitally blind observers for tactile scaling. The psychophysical data show that curvature representations in congenitally blind individuals, who never had any visual experience, and in sighted observers, who rely on vision most of the time, are statistically linked to the same mathematical properties of the curves. The perceived magnitude of object curvature, sensed through either vision or touch, is related by a mathematical power law, with similar exponents for the two sensory modalities, to the aspect ratio of the curves, a scale invariant geometric property. This finding supports biologically motivated models of sensory integration suggesting a universal power law for the adaptive brain control and balance of motor responses to environmental stimuli from any sensory modality.

  19. Ethanol sensing properties and dominant sensing mechanism of NiO-decorated SnO2 nanorod sensors

    Science.gov (United States)

    Sun, Gun-Joo; Lee, Jae Kyung; Lee, Wan In; Dwivedi, Ram Prakash; Lee, Chongmu; Ko, Taegyung

    2017-05-01

    NiO-decorated SnO2 nanorods were synthesized by the thermal evaporation of Sn powders followed by the solvothermal deposition of NiO. A multi-networked p- n heterostructured nanorod sensor was fabricated by dropping the p-NiO-decorated n-SnO2 nanorods onto the interdigited electrode pattern and then annealing. The multi-networked p- n heterostructured nanorod sensor exhibited enhanced response to ethanol compared with the pristine SnO2 nanorod and NiO nanoparticle sensors. The former also exhibited a shorter sensing time for ethanol. Both sensors exhibited selectivity for ethanol over other volatile organic compounds (VOCs) such as HCHO, methanol, benzene and toluene and the decorated sensor exhibited superior selectivity to the other two sensors. In addition, the dominant sensing mechanism is discussed in detail by comparing the sensing properties and current-voltage characteristics of a p-NiO/ n-SnO2 heterostructured nanorod sensor with those of a pristine SnO2 nanorod sensor and a pristine NiO nanoparticle sensor. Of the two competing electronic mechanisms: a potential barrier-controlled carrier transport mechanism at a NiO-SnO2 p- n junction and a surface-depletio n-controlled carrier transport mechanism, the former has some contribution to the enhanced gas sensing performance of the p- n heterostructured nanorod sensor, however, its contribution is not as significant as that of the latter. [Figure not available: see fulltext.

  20. UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film.

    Science.gov (United States)

    Huang, Jinyu; Du, Yu; Wang, Quan; Zhang, Hao; Geng, Youfu; Li, Xuejin; Tian, Xiaoqing

    2017-12-26

    ZnO film was deposited by the magnetron sputtering method. The thickness of ZnO film is approximately 2 μm. The influence of UV light illumination on C₂H₅OH sensing properties of ZnO film was investigated. Gas sensing results revealed that the UV-illuminated ZnO film displays excellent C₂H₅OH characteristics in terms of high sensitivity, excellent selectivity, rapid response/recovery, and low detection limit down to 0.1 ppm. The excellent sensing performance of the sensor with UV activation could be attributed to the photocatalytic oxidation of ethanol on the surface of the ZnO film, the planar film structure with high utilizing efficiency of UV light, high electron mobility, and a good surface/volume ratio of of ZnO film with a relatively rough and porous surface.

  1. Effect of CSA Concentration on the Ammonia Sensing Properties of CSA-Doped PA6/PANI Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Zengyuan Pang

    2014-11-01

    Full Text Available Camphor sulfonic acid (CSA-doped polyamide 6/polyaniline (PA6/PANI composite nanofibers were fabricated using in situ polymerization of aniline under different CSA concentrations (0.02, 0.04, 0.06, 0.08 and 0.10 M with electrospun PA6 nanofibers as templates. The structural, morphological and ammonia sensing properties of the prepared composite nanofibers were studied using scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, four-point probe techniques, X-ray diffraction (XRD and a home-made gas sensing test system. All the results indicated that the CSA concentration had a great influence on the sensing properties of CSA-doped PA6/PANI composite nanofibers. The composite nanofibers doped with 0.02 M CSA showed the best ammonia sensing properties, with a significant sensitivity toward ammonia (NH3 at room temperature, superior to that of the composite nanofibers doped with 0.04–0.10 mol/L CSA. It was found that for high concentrations of CSA, the number of PANI–H+ reacted with NH3 would not make up a high proportion of all PANI–H+ within certain limits. As a result, within a certain range even though higher CSA-doped PA6/PANI nanofibers had better conductivity, their ammonia sensing performance would degrade.

  2. Methanol Gas-Sensing Properties of SWCNT-MIP Composites

    Science.gov (United States)

    Zhang, Jin; Zhu, Qin; Zhang, Yumin; Zhu, Zhongqi; Liu, Qingju

    2016-11-01

    The single-walled carbon nanotube (SWCNT)-molecularly imprinted powder (MIP) composites in this paper were prepared by mixing SWCNTs with MIPs. The structure and micrograph of the as-prepared SWCNTs-MIPs samples were characterized by XRD and TEM. The gas-sensing properties were tested through indirect-heating sensors based on SWCNT-MIP composites fabricating on an alumina tube with Au electrodes and Pt wires. The results showed that the structure of SWCNTs-MIPs is of orthogonal perovskite and the average particle size of the SWCNTs-MIPs was in the range of 10-30 nm. SWCNTs-MIPs exhibit good methanol gas-sensitive properties. At 90 °C, the response to 1 ppm methanol is 19.7, and the response to the interferent is lower than 5 to the other interferent gases (ethanol, formaldehyde, toluene, acetone, ammonia, and gasoline). The response time and recovery time are 50 and 58 s, respectively.

  3. Photon parameters for gamma-rays sensing properties of some oxide of lanthanides

    Science.gov (United States)

    Issa, Shams A. M.; Sayyed, M. I.; Zaid, M. H. M.; Matori, K. A.

    2018-06-01

    In the present research work, the mass attenuation coefficients (μm) representing the interaction of gamma photons with some oxide of lanthanides (Lu2O3Yb2O3, Er2O3, Sm2O3, Dy2O3, Eu2O3, Nd2O3, Pr6O11, La2O3 and Ce2O3) were investigated using WinXCom software in the wide energy range of 1 keV-100 GeV. The calculated values of μm afterwards were used to evaluate some gamma rays sensing properties as effective atomic effective atomic numbers (Zeff), effective electron densities (Nel), half value layer (HVL) and mean free path (MFP). The computed data observes that, the Lu2O3 shown excellent γ-rays sensing response in the broad energy range. At the absorption edges of the high elements present in the lanthanide compounds, more than a single value of Zeff were found due to the non-uniform variation of μm. Comparisons with experiments wherever possible have been achieved for the calculated μm and Zeff values. The calculated properties are beneficial expanded use of designing in radiation shielding, gas sensors, glass coloring agent and in electronic sensing devices.

  4. Effect of Humid Aging on the Oxygen Adsorption in SnO₂ Gas Sensors.

    Science.gov (United States)

    Suematsu, Koichi; Ma, Nan; Watanabe, Ken; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2018-01-16

    To investigate the effect of aging at 580 °C in wet air (humid aging) on the oxygen adsorption on the surface of SnO₂ particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO₂ resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants ( K ₁; for O - adsorption, K ₂; for O 2- adsorption) were estimated on the basis of the theoretical model of oxygen adsorption. The K ₁ and K ₂ in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O - and O 2- . These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO₂ resistive-type gas sensors in dry and wet atmospheres.

  5. Optical fiber sensors based on novel polyimide for humidity monitoring of building materials

    Science.gov (United States)

    Chai, Jing; Liu, Qi; Liu, Jinxuan; Zhang, Dingding

    2018-03-01

    This paper presents novel preparation methods of polyimide and coupling agent, coated on the fiber Bragg grating (FBG) sensor for monitoring relative humidity (RH). The sensing mechanism that the volume change of the moisture-sensitive polyimide induces the shift of the Bragg wavelength of FBG is used in the RH sensor. The performance of the polymer-coated RH sensor was evaluated under laboratory conditions of temperature over a range of values (20.0-80.0 °C) and humidity over a range of RH values (25.0-95.0%). The time response and RH sensitivity of the sensor based on novel polyimide and coupling agent was improved, compared to the previous. A new packaged RH sensor was designed, which was used in detecting the moisture diffusion and evolutions inside of sample made of building materials which exposed to a controlled environment in the lab after casting. Relative humidity inside of sample with time was 100% in the first phase of vapor-saturated, slowly reduced in the latter phase. The results indicate the RH sensor developed provides a feasible method to detect the influence of environment on moisture inside the material in the drying process.

  6. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating

    Science.gov (United States)

    Yan, Haitao; Han, Daofu; Li, Ming; Lin, Bo

    2017-01-01

    This paper presents the design, fabrication, and characterization of a D-shaped fiber coated with polyvinyl alcohol (PVA) embedding an Au grating-based relative humidity (RH) sensor. The Au grating is fabricated on a D-shaped fiber to match the wave-vector and excite the surface plasmon, and the PVA is embedded in the Au grating as a sensitive cladding film. The refractive index of PVA changes with the ambient humidity. Measurements in a controlled environment show that the RH sensor can achieve a sensitivity of 5.4 nm per relative humidity unit in the RH range from 0% to 70% RH. Moreover, the surface plasmon resonance can be realized and used for RH sensing at the C band of optical fiber communication instead of the visible light band due to the metallic grating microstructure on the D-shaped fiber.

  7. Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter

    Science.gov (United States)

    Azad, Saeed; Sadeghi, Ebrahim; Parvizi, Roghaieh; Mazaheri, Azardokht; Yousefi, M.

    2017-05-01

    In this work, the multimode optical fiber size effects on the performances of the clad-modified fiber with ZnO nanorods relative humidity (RH) sensor were experimentally investigated. Simple and controlled chemical etching method through on line monitoring was used to prepare different fiber waist diameter with long length of 15 mm. More precisely, the competition behavior of sensor performances with varying fiber waist diameter was studied to find appropriate size of maximizing evanescent fields. The obtained results revealed that evanescent wave absorption coefficient (γ) enhanced more than 10 times compare to bare fiber at the proposed optimum fiber diameter of 28 μm. Also, high linearity and fast recovery time about 7 s was obtained at the proposed fiber waist diameter. Applicable features of the proposed sensor allow this device to be used for humidity sensing applications, especially to be applied in remote sensing technologies.

  8. Adaptive observer-based control for an IPMC actuator under varying humidity conditions

    Science.gov (United States)

    Bernat, Jakub; Kolota, Jakub

    2018-05-01

    As ionic polymer metal composites (IPMC) are increasingly applied to mechatronic systems, many new IPMC modeling efforts have been reported in the literature. The demands of rapidly growing technology has generated interest in advancing the intrinsic actuation and sensing capabilities of IPMC. Classical IPMC applications need constant hydration to operate. On the other hand, for IPMCs operating in air, the water content of the polymer varies with the humidity level of the ambient environment, which leads to its strong humidity-dependent behavior. Furthermore, decreasing water content over time plays a crucial role in the effectiveness of IPMC. Therefore, the primary challenge of this work is to accurately model this phenomenon. The principal contribution of the paper is a new IPMC model, which considers the change of moisture content. A novel nonlinear adaptive observer is designed to determine the unknown electric potential and humidity level in the polymer membrane. This approach effectively determines the moisture content of the IPMC during long-term continuous operation in air. This subsequently allows us to develop an effective back-stepping control algorithm that considers varying moisture content. Data from experiments are presented to support the effectiveness of the observation process, which is shown in illustrative examples.

  9. Sensitivity of honeybee hygroreceptors to slow humidity changes and temporal humidity variation detected in high resolution by mobile measurements.

    Science.gov (United States)

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between -1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  10. Mechanical properties of porous silicon by depth-sensing nanoindentation techniques

    International Nuclear Information System (INIS)

    Fang Zhenqian; Hu Ming; Zhang Wei; Zhang Xurui; Yang Haibo

    2009-01-01

    Porous silicon (PS) was prepared using the electrochemical corrosion method. Thermal oxidation of the as-prepared PS samples was performed at different temperatures for tuning their mechanical properties. The mechanical properties of as-prepared and oxidized PS were thoroughly investigated by depth-sensing nanoindentation techniques with the continuous stiffness measurements option. The morphology of as-prepared and oxidized PS was characterized by field emission scanning electron microscope and the effect of observed microstructure changes on the mechanical properties was discussed. It is shown that the hardness and Young's elastic modulus of as-prepared PS exhibit a strong dependence on the preparing conditions and decrease with increasing current density. In particular, the mechanical properties of oxidized PS are improved greatly compared with that of as-prepared ones and increase with increasing thermal oxidation temperature. The mechanism responsible for the mechanical property enhancement is possibly the formation of SiO 2 cladding layers encapsulating on the inner surface of the incompact sponge PS to decrease the porosity and strengthen the interconnected microstructure

  11. Highly improved hydration level sensing properties of copper oxide films with sodium and potassium doping

    International Nuclear Information System (INIS)

    Sahin, Bünyamin; Kaya, Tolga

    2016-01-01

    Graphical abstract: - Highlights: • A series of Na- and K-doped CuO were growth via SILAR method. • The hydration level monitoring activity has been tested with CuO films. • The highest sensing efficiency was obtained with 4 M% K. - Abstract: In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current–voltage (I–V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.

  12. Highly improved hydration level sensing properties of copper oxide films with sodium and potassium doping

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Bünyamin, E-mail: sahin38@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay, 31034 (Turkey); School of Engineering and Technology, Central Michigan University, Mt. Pleasant, 48859 (United States); Kaya, Tolga [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, 48859 (United States); Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, 48859 (United States)

    2016-01-30

    Graphical abstract: - Highlights: • A series of Na- and K-doped CuO were growth via SILAR method. • The hydration level monitoring activity has been tested with CuO films. • The highest sensing efficiency was obtained with 4 M% K. - Abstract: In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current–voltage (I–V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.

  13. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Milani Moghaddam, Hossain, E-mail: hossainmilani@yahoo.com [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Nasirian, Shahruz [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Basic Sciences Department, Mazandaran University of Science and Technology, Babol (Iran, Islamic Republic of)

    2014-10-30

    Graphical abstract: - Highlights: • Polyaniline/titania (rutile) nanocomposite (TPNC) was synthesized by a chemical oxidative polymerization method. • Surface morphology and titania (rutile) wt% in TPNC sensors were significant factors for H{sub 2} gas sensing. • TPNC sensors could be used for H{sub 2} gas sensing at different R.H. humidity. • TPNC Sensors exhibited considerable sensitive, reversible and repeatable response to H{sub 2} gas at environmental conditions. - Abstract: The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H{sub 2}) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H{sub 2} gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H{sub 2} gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H{sub 2} gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  14. Nanocrystalline composites of transition metal molybdate (Ni1-xCoxMoO4; x = 0, 0.3, 0.5, 0.7, 1) synthesized by a co-precipitation method as humidity sensors and their photoluminescence properties

    Science.gov (United States)

    Jeseentharani, V.; Dayalan, A.; Nagaraja, K. S.

    2018-04-01

    In this study, nanocrystalline transition metal nickel-cobalt molybdate (Ni1-xCoxMoO4, NiCM; x = 0, 0.3, 0.5, 0.7, 1) composites were prepared using a simple co-precipitation method. The composites were characterized by thermogravimetric/differential thermal analysis, Fourier transform-infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The NiCM composites were studied to determine their possible use as humidity sensors, and photoluminescence (PL) measurements were obtained. The sensing study was performed in environments with different relative humidity levels (5-98%). The maximum sensitivity of 18624 ± 168 was observed with the Ni0.7Co0.3MoO4 composite where the humidity could be calculated according to the relationship: Sf = R5%/R98%, where R5% and R98% are the dc resistances at 5 and 98% RH, respectively. The photoluminescence measurements acquired at room temperature for the NiCMs included green and red emission peaks when excited at a wavelength (λex) of 520 nm.

  15. Characterization and Electrical Response to Humidity of Sintered Polymeric Electrospun Fibers of Vanadium Oxide-({TiO}_{{2}} /{WO}_{{3}} )

    Science.gov (United States)

    Araújo, E. S.; Libardi, J.; Faia, P. M.; de Oliveira, H. P.

    2018-02-01

    Metal oxide composites have attracted much consideration due to their promising applications in humidity sensors in response to the physical and chemical property modifications of the resulting materials. This work focused on the preparation, microstructural characterization and analysis of humidity-dependent electrical properties of undoped and vanadium oxide (V2O5)-doped titanium oxide/tungsten oxide (TiO2/WO3) sintered ceramic films obtained by electrospinning. The electrical properties were investigated by impedance spectroscopy (400 Hz-40 MHz) as a function of relative humidity (RH). The results revealed a typical transition in the transport mechanisms controlled by the appropriated doping level of V2O5, which introduces important advantages to RH detection due to the atomic substitution of titanium by vanadium atoms in highly doped structures. These aspects are directly related to the microstructure modification and structure fabrication procedure.

  16. Photoelectric properties of ZnO/Ag2S heterostructure and its photoelectric ethanol sensing characteristics

    International Nuclear Information System (INIS)

    Zhang Yu; Liu Bingkun; Wang Dejun; Lin Yanhong; Xie Tengfeng; Zhai Jiali

    2012-01-01

    Highlights: ► The ZnO/Ag 2 S heterostructure shows good photoelectric properties under visible-light irradiation. ► Transient photovoltage results reveal the separation process of photo-generated charges and give further evidence of interfacial effects. ► Photoelectric ethanol sensing characteristics have been found for the ZnO/Ag 2 S heterostructure at room temperature. - Abstract: The photoelectric properties of ZnO microspheres, ZnO/Ag 2 S heterogeneous microspheres and Ag 2 S hollow microspheres were investigated systematically by surface photovoltage, transient photovoltage and surface photocurrent techniques. The ZnO/Ag 2 S heterostructure shows superior photoelectric properties in visible-light region compared with pure Ag 2 S. Transient photovoltage results reveal the separation processes of photo-generated charge carriers in the samples. The photoelectric ethanol sensing property induced by visible light for the ZnO/Ag 2 S heterostructure has been found, which should be valuable for the practical application of semiconductor gas sensors at room temperature.

  17. Determination of equilibrium humidities using temperature and humidity controlled X-ray diffraction (RH-XRD)

    International Nuclear Information System (INIS)

    Linnow, Kirsten; Steiger, Michael

    2007-01-01

    Confined growth of crystals in porous building materials is generally considered to be a major cause of damage. We report on the use of X-ray diffraction under controlled conditions of temperature and relative humidity (RH-XRD) for the investigation of potentially deleterious phase transition reactions. An improved procedure based on rate measurements is used for the accurate and reproducible determination of equilibrium humidities of deliquescence and hydration reactions. The deliquescence humidities of NaCl (75.4 ± 0.5% RH) and Ca(NO 3 ) 2 .4H 2 O (50.8 ± 0.7% RH) at 25 deg. C determined with this improved RH-XRD technique are in excellent agreement with available literature data. Measurement of the hydration of anhydrous Ca(NO 3 ) 2 to form Ca(NO 3 ) 2 .2H 2 O revealed an equilibrium humidity of 10.2 ± 0.3%, which is also in reasonable agreement with available data. In conclusion, dynamic X-ray diffraction measurements are an appropriate method for the accurate and precise determination of equilibrium humidities with a number of interesting future applications

  18. Microwave remote sensing of soil moisture for estimation of profile soil property

    International Nuclear Information System (INIS)

    Mattikalli, N.M.; Engman, E.T.; Ahuja, L.R.; Jackson, T.J.

    1998-01-01

    Multi-temporal microwave remotely-sensed soil moisture has been utilized for the estimation of profile soil property, viz. the soil hydraulic conductivity. Passive microwave remote sensing was employed to collect daily soil moisture data across the Little Washita watershed, Oklahoma, during 10-18 June 1992. The ESTAR (Electronically Steered Thin Array Radiometer) instrument operating at L -band was flown on a NASA C-130 aircraft. Brightness temperature (TB) data collected at a ground resolution of 200m were employed to derive spatial distribution of surface soil moisture. Analysis of spatial and temporal soil moisture information in conjunction with soils data revealed a direct relation between changes in soil moisture and soil texture. A geographical information system (GIS) based analysis suggested that 2-days initial drainage of soil, measured from remote sensing, was related to an important soil hydraulic property viz. the saturated hydraulic conductivity (Ksat). A hydrologic modelling methodology was developed for estimation of Ksat of surface and sub-surface soil layers. Specifically, soil hydraulic parameters were optimized to obtain a good match between model estimated and field measured soil moisture profiles. Relations between 2-days soil moisture change and Ksat of 0-5 cm, 0-30 cm and 0-60cm depths yielded correla tions of 0.78, 0.82 and 0.71, respectively. These results are comparable to the findings of previous studies involving laboratory-controlled experiments and numerical simulations, and support their extension to the field conditions of the Little Washita watershed. These findings have potential applications of microwave remote sensing to obtain 2-days of soil moisture and then to quickly estimate the spatial distribution of Ksat over large areas. (author)

  19. Photon parameters for gamma-rays sensing properties of some oxide of lanthanides

    Directory of Open Access Journals (Sweden)

    Shams A.M. Issa

    2018-06-01

    Full Text Available In the present research work, the mass attenuation coefficients (μm representing the interaction of gamma photons with some oxide of lanthanides (Lu2O3Yb2O3, Er2O3, Sm2O3, Dy2O3, Eu2O3, Nd2O3, Pr6O11, La2O3 and Ce2O3 were investigated using WinXCom software in the wide energy range of 1 keV–100 GeV. The calculated values of μm afterwards were used to evaluate some gamma rays sensing properties as effective atomic effective atomic numbers (Zeff, effective electron densities (Nel, half value layer (HVL and mean free path (MFP. The computed data observes that, the Lu2O3 shown excellent γ-rays sensing response in the broad energy range. At the absorption edges of the high elements present in the lanthanide compounds, more than a single value of Zeff were found due to the non-uniform variation of µm. Comparisons with experiments wherever possible have been achieved for the calculated µm and Zeff values. The calculated properties are beneficial expanded use of designing in radiation shielding, gas sensors, glass coloring agent and in electronic sensing devices. Keywords: Oxide of lanthanides, Gamma ray sensors, Effective atomic numbers, Half value layer

  20. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilhwan You

    2017-10-01

    Full Text Available This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC with and without carbon nanotubes (CNTs. For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher steel fiber content, better fiber orientation, and higher amount of pore water led to higher electrical conductivity of UHPFRC. The effects of fiber orientation and drying condition on the electrical conductivity became minor as sufficiently high amount of steel fibers, 3% by volume, was added. Including only steel fibers did not impart UHPFRC with piezoresistive properties. Addition of CNTs substantially improved the electrical conductivity of UHPFRC. Under compression, UHPFRC with a CNT content of 0.3% or greater had a self-sensing ability that was activated by the formation of cracks, and better sensing capacity was achieved by including greater amount of CNTs. Furthermore, the pre-peak flexural behavior of UHPFRC was precisely simulated with a fractional change in resistivity when 0.3% CNTs were incorporated. The pre-cracking self-sensing capacity of UHPFRC with CNTs was more effective under tensile stress state than under compressive stress state.

  1. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes.

    Science.gov (United States)

    You, Ilhwan; Yoo, Doo-Yeol; Kim, Sooho; Kim, Min-Jae; Zi, Goangseup

    2017-10-29

    This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher steel fiber content, better fiber orientation, and higher amount of pore water led to higher electrical conductivity of UHPFRC. The effects of fiber orientation and drying condition on the electrical conductivity became minor as sufficiently high amount of steel fibers, 3% by volume, was added. Including only steel fibers did not impart UHPFRC with piezoresistive properties. Addition of CNTs substantially improved the electrical conductivity of UHPFRC. Under compression, UHPFRC with a CNT content of 0.3% or greater had a self-sensing ability that was activated by the formation of cracks, and better sensing capacity was achieved by including greater amount of CNTs. Furthermore, the pre-peak flexural behavior of UHPFRC was precisely simulated with a fractional change in resistivity when 0.3% CNTs were incorporated. The pre-cracking self-sensing capacity of UHPFRC with CNTs was more effective under tensile stress state than under compressive stress state.

  2. Graphene oxide for gas detection under standard humidity conditions

    International Nuclear Information System (INIS)

    Donarelli, Maurizio; Prezioso, Stefano; Perrozzi, Francesco; Ottaviano, Luca; Giancaterini, Luca; Cantalini, Carlo; Treossi, Emanuele; Palermo, Vincenzo; Santucci, Sandro

    2015-01-01

    Graphene oxide (GO) synthesis is the easiest way to functionalize graphene, preserving the high graphene surface to volume ratio. Therefore, GO is a promising candidate for gas sensing applications. In this paper, an easy-to-fabricate and high sensitivity GO-based gas sensor is proposed. The device is fabricated by drop-casting a solution of GO flakes dispersed in water on a prepatterned Si 3 N 4 substrate with 30 μm spaced Pt electrodes. The sensing material has been studied using scanning electron microscopy and x-ray photoelectron spectroscopy. The large lateral dimensions of the flakes (tens of microns) allow single GO flake to bridge adjacent electrodes. The high quality of the synthesized flakes results in the gas sensor high sensitivity to and low detection limit (20 ppb) of NO 2 . The gas sensor response to NO 2 has been studied in various relative humidity environments and it is demonstrated not to be affected by the presence of water vapor. Finally, the gas sensor responses to acetone, toluene, ethanol, and ammonia are reported. (paper)

  3. Gamma-ray remote sensing of soil properties in a forested area near Batlow, NSW

    International Nuclear Information System (INIS)

    Bierwirth, P.N.; Aspin, S.J.; Ryan, P.J.; McKenzie, N.J.

    1998-01-01

    In forested and agricultural areas, reflective remote sensing methods are of limited utility for soil studies due to the variable effects of vegetation. Airborne gamma-ray remote sensing is presented here as a useful technique for soils. Short wavelength gamma-rays are detected from the upper 0.30-0.45 m of the soil . They are emitted from radioactive elements in the soil and largely pass through vegetation cover. In this paper, images of gamma parent elements (K, Th and U) are presented and element associations with soil properties and vegetation are analysed for a forested area near Batlow, NSW. Effects of vegetation are evident in gamma-ray data and in Landsat TM along powerlines and in clearings. A technique for removing this effect in the gamma-ray data is demonstrated. Detailed soil and rock chemistry together with ground gamma-spectrometer measurements were collected to support the interpretation and analysis of the image data. The work focuses mainly on the variation of soil properties within areas mapped as granodiorite lithology. Many areas of deep red soils are accurately mapped by the radiometric K data. The precise origin of these soils is not clear and their parent materials may include contributions from aeolian deposition, in situ weathering of granodiorite, and remnant basalt. . In areas of granodiorite, K patterns are interpreted to be a function of the degree of mineral weathering and can be related to soil depth and erosion status. This study demonstrates the effectiveness of gamma-ray remote sensing for directly mapping soil units and properties (authors). Copyright (1998) Remote Sensing and Photogrammetry Association of Australasia Ltd

  4. Effect of Humid Aging on the Oxygen Adsorption in SnO2 Gas Sensors

    Directory of Open Access Journals (Sweden)

    Koichi Suematsu

    2018-01-01

    Full Text Available To investigate the effect of aging at 580 °C in wet air (humid aging on the oxygen adsorption on the surface of SnO2 particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO2 resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants (K1; for O− adsorption, K2; for O2− adsorption were estimated on the basis of the theoretical model of oxygen adsorption. The K1 and K2 in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O− and O2−. These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO2 resistive-type gas sensors in dry and wet atmospheres.

  5. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes

    Energy Technology Data Exchange (ETDEWEB)

    Björklund, Sebastian, E-mail: sebastianbjorklund@gmail.com; Kocherbitov, Vitaly [Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden); Biofilms—Research Center for Biointerfaces, Malmö University, Malmö (Sweden)

    2015-05-15

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  6. Influence of PANI Additions on Methanol Sensing Properties of ZnO Thin Films

    International Nuclear Information System (INIS)

    Mohammad Hafizuddin Jumali; Norhashimah Ramli; Izura Izzuddin; Muhammad Yahaya; Muhamad Mat Salleh

    2011-01-01

    The influence of PANI additions on methanol sensing properties of ZnO thin films at room temperature had been investigated. Commercial poly aniline powder (PANI) was mixed into 3 mL ZnO solution in five different weight percentages namely 1.25, 2.50, 3.75, 5.00 and 6.25 % to obtain ZnO/ PANI composite solutions. These solutions were spin coated onto glass substrate to form thin films. Microstructural studies by FESEM indicated that ZnO/ PANI films showed porous structures with nano size grains. The thickness of the film increased from 55 to 256 nm, proportionate to increment of PANI. The presence of 2 adsorption peaks at ∼310 nm and ∼610 nm in UV-Vis spectrum proved that addition of PANI has modified the adsorption peak of ZnO film. Methanol vapour detection showed that addition of PANI into ZnO dramatically improved the sensing properties of the sensor. The sensors also exhibited good repeatability and reversibility. Sensor with the amount of PANI of 3.75 wt % exhibited the highest sensitivity with response and recovery time was about 10 and 80 s, respectively. The possible sensing mechanism of the sensor was also discussed in this article. (author)

  7. Sodium tripolyphosphate cross-linked chitosan based sensor for enhacing sensing properties towards acetone

    Science.gov (United States)

    Nasution, T. I.; Asrosa, R.; Nainggolan, I.; Balyan, M.; Indah, R.; Wahyudi, A.

    2018-02-01

    In this report, sensing properties of sodium tripolyphosphate (TPP) cross-linked chitosan based sensor has been successfully enhanced towards acetone. Chitosan solutions were cross-linked with sodium TPP in variation of 0.1%, 0.5%, 1% and 1.5% w/v, respectively. The sensors were fabricated in film form using an electrochemical deposition method. The sensing properties of the sensors were observed by exposing the pure chitosan and sodium TPP cross-linked chitosan sensors towards acetone concentrations of 5, 10, 50, 100 and 200 ppm. The measurement results revealed that the maximum response in output voltage value of pure chitosan sensor was 0.35 V while sodium TPP crosslinked chitosan sensors were above 0.35 V towards 5 ppm acetone concentration. When the sensors were exposed towards acetone concentration of 200 ppm, the maximum response of pure chitosan was 0.45 V while sodium TPP crosslinked chitosan sensors were above 0.45 V. Amongst the variation of sodium TPP, the maximum response of 1% sodium TPP was the highest since the maximum response was 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration, respectively. While the maximum responses of other sodium TPP concentrations were under 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration. Moreover, 1% sodium TPP cross-linked chitosan based sensor showed good reproducibility and outstanding lifetime. Therefore, 1% sodium TPP cross-linked chitosan based sensor has exhibited remarkable sensing properties as a novel acetone sensor.

  8. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor

    Directory of Open Access Journals (Sweden)

    Yanhui Sun

    2018-01-01

    Full Text Available In order to improve the sensing properties of tin dioxide gas sensor, four kinds of different SiO2/Al2O3 ratio, different particle size of MFI type zeolites (ZSM-5 were coated on the SnO2 to prepared zeolite modified gas sensors, and the gas sensing properties were tested. The measurement results showed that the response values of ZSM-5 zeolite (SiO2/Al2O3 = 70, grain size 300 nm coated SnO2 gas sensors to formaldehyde vapor were increased, and the response to acetone decreased compared with that of SnO2 gas sensor, indicating an improved selectivity property. The other three ZSM-5 zeolites with SiO2/Al2O3 70, 150 and 470, respectively, and grain sizes all around 1 μm coated SnO2 sensors did not show much difference with SnO2 sensor for the response properties to both formaldehyde and acetone. The sensing mechanism of ZSM-5 modified sensors was briefly analyzed.

  9. Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing.

    Science.gov (United States)

    Fabbri, Barbara; Bonoldi, Lucia; Guidi, Vincenzo; Cruciani, Giuseppe; Casotti, Davide; Malagù, Cesare; Bellussi, Giuseppe; Millini, Roberto; Montanari, Luciano; Carati, Angela; Rizzo, Caterina; Montanari, Erica; Zanardi, Stefano

    2017-07-26

    A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

  10. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2012-12-01

    Full Text Available Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change. We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere to 8 km (in the upper troposphere and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model. We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  11. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Science.gov (United States)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-12-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  12. Mechanical properties of metallic ribbons investigated by depth sensing indentation technique

    International Nuclear Information System (INIS)

    Pesek, Ladislav; Dobrzanski, Leszek A.; Zubko, Pavol; Konieczny, Jaroslaw

    2006-01-01

    The paper presents mechanical properties of two kinds of Co-based and one Fe-based metallic ribbons by the depth sensing indentation (DSI) technique. Investigations were carried out on two kinds ternary alloy Co 77 Si 11,5 B 11,5 and Fe 78 Si 13 B 9 and multicomponent Co 68 Fe 4 Mo 1 Si 13,5 B 13,5 , which are so-called 'zero-magnetostriction' materials. Metallic ribbons were investigated in amorphous state and partially crystallized state after annealing in 400deg. C in argon atmosphere. Heating of ribbons obtained by melt spinning technique was performed to check its effect on changes of mechanical properties

  13. Optical, electrical and sensing properties of β-ketoimine calix[4]arene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Echabaane, M., E-mail: mosaab.echabaane@yahoo.fr [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Rouis, A. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Bonnamour, I. [Institut de Chimie and Biochimie Moléculaires and Supramoléculaires (ICBMS), UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, Université Claude Bernard Lyon 1, 69100 Villeurbanne (France); Ben Ouada, H. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia)

    2013-09-16

    Optical, electrical and ion sensing properties of β-ketoimine calix[4]arene thin films have been investigated. These calix[4]arene derivative films exhibit absorption spectra with a resolved electronic structure in the UV–vis and the energy gap was found to be 3.65 eV. Electrical properties of ITO/β-ketoimine calix[4]arene/Al devices have been investigated by I–V characteristics and impedance spectroscopy measurements. The conduction is governed by space-charge-limited current (SCLC) mechanism. The impedance spectroscopy study showed a hopping transport process, a typical behavior of disordered materials. The device was modeled by a single parallel resistor and capacitor network in series with a resistance. The β-ketoimine calix[4]arene was used for the conception of the novel optical chemical sensor and the detection of Cu{sup 2+} ions was monitored by UV–visible spectroscopy. The linear dynamic range for the determination of Cu{sup 2+} has been 10{sup −5}–10{sup −3.7} M with a detection limit of 10{sup −5} M. The characteristics of this optode such as regeneration, repeatability, reproducibility, short-term stability, life time and ion selectivity have been discussed. - Highlights: • We examine optical properties of β-ketoimine calix[4]arene ligand. • We investigate the electric properties of ITO/β-ketoimine calix[4]arene/Al device. • We study the sensing properties of optode films for the detection of copper (II)

  14. Visual and reversible carbon dioxide sensing enabled by doctor blade coated macroporous photonic crystals.

    Science.gov (United States)

    Lin, Yi-Han; Suen, Shing-Yi; Yang, Hongta

    2017-11-15

    With significant impacts of carbon dioxide on global climate change, carbon dioxide sensing is of great importance. However, most of the existing sensing technologies are prone to interferences from carbon monoxide, or suffer from the use of sophisticated instruments. This research reports the development of reproducible carbon dioxide sensor using roll-to-roll compatible doctor blade coated three-dimensional macroporous photonic crystals. The pores are functionalized with amine groups to allow the reaction with carbon dioxide in the presence of humidity. The adsorption of carbon dioxide leads to red-shift and amplitude reduction of the optical stop bands, resulting in carbon dioxide detection with visible readout. The dependences of the diffraction wavelength on carbon dioxide partial pressure for various amine-functionalized photonic crystals and different humidities in the environment are systematically investigated. In addition, the reproducibility of carbon dioxide sensing has also been demonstrated in this research. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Pedersen, Jens Kristian Mølgaard; Fasano, Andrea

    2017-01-01

    A microstructured polymer optical fiber (mPOF) Bragg grating sensor system for the simultaneous measurement of temperature and relative humidity (RH) has been developed and characterized. The sensing head is based on two in-line fiber Bragg gratings recorded in a mPOF. The sensor system has a root...... mean square deviation of 1.04 % RH and 0.8 °C in the range 10 to 90% RH and 20 to 80 °C. The proposed sensor system is easy to fabricate, cheap and compact....

  16. Relative Humidity Sensor Based on No-Core Fiber Coated by Agarose-Gel Film

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2017-10-01

    Full Text Available A relative humidity (RH sensor based on single-mode–no-core–single-mode fiber (SNCS structure is proposed and experimentally demonstrated. The agarose gel is coated on the no-core fiber (NCF as the cladding, and multimode interference (MMI occurs in the SNCS structure. The transmission spectrum of the sensor is modulated at different ambient relative humidities due to the tunable refractive index property of the agarose gel film. The relative humidity can be measured by the wavelength shift and intensity variation of the dip in the transmission spectra. The humidity response of the sensors, coated with different concentrations and coating numbers of the agarose solution, were experimentally investigated. The wavelength and intensity sensitivity is obtained as −149 pm/%RH and −0.075 dB/%RH in the range of 30% RH to 75% RH, respectively. The rise and fall time is tested to be 4.8 s and 7.1 s, respectively. The proposed sensor has a great potential in real-time RH monitoring.

  17. Humidity influence on the adhesion of SU-8 polymer from MEMS applications

    Directory of Open Access Journals (Sweden)

    Birleanu Corina

    2017-01-01

    Full Text Available In this paper, the adhesion behaviors of SU-8 polymer thin film from MEMS application were investigated as a function of relative humidity. The adhesion test between the AFM tip and SU-8 polymer have been extensively studied using the atomic force microscope (AFM, for a relative humidity (RH varying between 20 and 90%. The samples for tests are SU-8 polymers hard baked at different temperatures. The hard bake temperature changes the tribo-mechanical properties of polymers. The paper reports the measurements and the modeling of adhesion forces versus humidity in controlled ranges between 20 to 90%RH. To investigate the effect of relative humidity on adhesion for SU-8 polymer hard baked we used an analytical method which encompasses the effect of capillarity as well as the solid-to-solid interaction. While the capillary force expression is considered to be the sum of the superficial tension and the Laplace force for the solid-solid interaction is expressed by the Derjagin, Muller and Toropov (DMT model of solids adhesion. The analytical results obtained are in accordance with those obtained experimentally.

  18. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes

    OpenAIRE

    You, Ilhwan; Yoo, Doo-Yeol; Kim, Soonho; Kim, Min-Jae; Zi, Goangseup

    2017-01-01

    This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher ...

  19. Methanol-Sensing Property Improvement of Mesostructured Zinc Oxide Prepared by the Nanocasting Strategy

    Directory of Open Access Journals (Sweden)

    Qian Gao

    2013-01-01

    Full Text Available The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, mesostructured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged mesopores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, mesostructured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the nonporous ZnO prepared through conventional coprecipitation approach, mesostructured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice.

  20. Synthesis, characterization and liquefied petroleum gas (LPG) sensing properties of WO3 nano-particles

    Science.gov (United States)

    Singh, Subhash; Majumder, S. B.

    2018-05-01

    Metal oxide sensors, such as ZnO, SnO2, and WO3 etc. have been utilized for several decades for low-costd etection of combustible and toxic gases. In the present work tungsten oxide (WO3) nanoparticles have been prepared by using an economic wet chemical synthesis route. To understand the phase formation behavior of the synthesized powders, X-ray diffraction analysis has been performed. The microstructure evolution of the synthesized powders was characterized by field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The calcined phase pure WO3 nanoparticles are investigated in terms of LPG gas sensing properties. The gas sensing measurements has been done in two different mode of operation (namely static and dynamic measurements). The degree of oxygen deficiency in the WO3 sensor also affected the sensor properties and the optimum oxygen content of WO3 was necessary to get high sensitivity for LPG. The WO3 sensor shows the excellent sensor properties for LPG at the operating temperature of 250°C.

  1. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System

    Science.gov (United States)

    Chen, Ling-Hsi

    2018-01-01

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories. PMID:29466313

  2. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System.

    Science.gov (United States)

    Chen, Ling-Hsi; Chen, Chiachung

    2018-02-21

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories.

  3. Controlled Synthesis of Hierarchically Assembled Porous ZnO Microspheres with Enhanced Gas-Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shengsheng You

    2015-01-01

    Full Text Available The ZnO microspheres constructed by porous nanosheets were successfully synthesized by calcinating zinc hydroxide carbonate (ZHC microspheres obtained by a sample hydrothermal method. The samples were characterized in detail with scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and thermogravimetric and differential scanning calorimetry (TG-DSC. The results indicated that the prepared ZnO microspheres were well crystalline with wurtzite hexagonal phase. The effects of reaction time, temperature, the amount of trisodium citrate, and urea on the morphology of ZnO microspheres were studied. The formation mechanism of porous ZnO microspheres was discussed. Furthermore, the gas-sensing properties for detection of organic gas of the prepared porous ZnO microspheres were investigated. The results indicated that the prepared porous ZnO microspheres exhibited high gas-sensing properties for detection of ethanol gas.

  4. Graphene based humidity-insensitive films

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2017-01-01

    A humidity nonsensitive material based on reduced-graphene oxide (r-GO) and methods of making the same are provided, in an embodiment, the materia! has a resistance/humidity variation of about -15% to 15% based on different sintering time

  5. Highly improved hydration level sensing properties of copper oxide films with sodium and potassium doping

    Science.gov (United States)

    Sahin, Bünyamin; Kaya, Tolga

    2016-01-01

    In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current-voltage (I-V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.

  6. Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2015-05-01

    Full Text Available Ag@α-Fe2O3 nanocomposite having a core–shell structure was synthesized by a two-step reduction-sol gel approach, including Ag nanoparticles synthesis by sodium borohydride as the reducing agent in a first step and the subsequent mixing with a Fe+3 sol for α-Fe2O3 coating. The synthesized Ag@α-Fe2O3 nanocomposite has been characterized by various techniques, such as SEM, TEM and UV-Vis spectroscopy. The electrical and gas sensing properties of the synthesized composite towards low concentrations of ethanol have been evaluated. The Ag@α-Fe2O3 nanocomposite showed better sensing characteristics than the pure α-Fe2O3. The peculiar hierarchical nano-architecture and the chemical and electronic sensitization effect of Ag nanoparticles in Ag@α-Fe2O3 sensors were postulated to play a key role in modulating gas-sensing properties in comparison to pristine α-Fe2O3 sensors.

  7. Nanostructure and Volatile Organic Compounds Sensing Properties of α-Fe2O3/Reduced Graphene Oxide Nanocomposite Derived by Spray Method

    Science.gov (United States)

    Zolghadr, S.; Kimiagar, S.; Khojier, K.

    2017-12-01

    This paper investigates the α-Fe2O3/reduced graphene oxide (rGO) nanocomposite as a volatile organic compounds (VOCs) sensor. The α-Fe2O3/reduced graphene oxide nanocomposites of about 370 nm thickness were synthesized by a spray method with different rGO contents (3%, 4%, and 5%) on SiO2/Si substrates. The samples were structurally and morphologically characterized by x-ray diffraction, and field emission scanning electron microscopy. These analyses showed that an increase in rGO content decreases the crystallinity of the samples. In order to study the VOCs sensing properties, the sensitivity and selectivity of the samples were tested with different VOCs vapors including ethanol, methanol, toluene, benzene, and formic acid in the temperature range of 200-400°C. The results show that the α-Fe2O3/rGO nanocomposites are more selective to ethanol than the other vapors, while an increase in rGO content decreases the sensitivity of the samples. The α-Fe2O3/rGO (3%)-based ethanol sensor also shows a good stability with respect to relative humidity in the range of 20-50% with a 1-ppm detection limit at the operating temperature of 280°C.

  8. Vanadium Doped Tungsten Oxide Material - Electrical Physical and Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shishkin N. Y.

    2008-05-01

    Full Text Available The electrical physical and sensing (to VOCs and inorganic gases properties of vanadium doped tungsten oxide in the regions of phase transition temperature were investigated. Vanadium oxide (II dimerization was observed in the doped material, corresponding to new phase transition. The extreme sensitivity and selectivity to chemically active gases and vapors in small concentrations: CO, NOx, NH3 acetone, ethanol near phase transitions temperature was found. Sensor elements were manufactured for the quantitative detection (close to 1 ppm of alcohol and ammonia.

  9. Controlled humidity gas circulators

    International Nuclear Information System (INIS)

    Gruner, S.M.

    1981-01-01

    A programmable circulator capable of regulating the humidity of a gas stream over a wide range of humidity is described. An optical dew-point hygrometer is used as a feedback element to control the addition or removal of water vapor. Typical regulation of the gas is to a dew-point temperature of +- 0.2 0 C and to an accuracy limited by the dew-point hygrometer

  10. Synthesis, formation mechanism and sensing properties of WO3 hydrate nanowire netted-spheres

    International Nuclear Information System (INIS)

    Yan, Aihua; Xie, Changsheng; Zeng, Dawen; Cai, Shuizhou; Hu, Mulin

    2010-01-01

    Tungsten oxide hydrate nanowire netted-spheres were successfully synthesized in the glycol solution using a facile solvothermal approach. The nanowires with uniform diameter of 4-6 nm are actually a kind of tungsten oxide hydrate/surfactant hybrid materials. The influence of surfactant, solvent, time and temperature on tailoring morphology was investigated in detail. The possible formation process of WO 3 hydrate nanowire netted-sphere was proposed. Sensing properties of such WO 3 hydrate sensor show that the desirable sensing characteristics towards 100 ppm ammonia gas at 320 o C were obtained, such as rapid response (18.3 s), high sensitivity, good reproducibility and stability.

  11. Fabrication of bismuth ferrite based hybrid nanostructures: Insight into a catalytic and sensing properties for the detection of biomolecules

    Science.gov (United States)

    Bharathkumar, S.; Sakar, M.; Balakumar, S.

    2018-04-01

    We made an attempt to construct a photocatalytic and biosensor platform by using bismuth ferrite (BiFeO3/BFO) particulates and fibers nanostructures towards the degradation of dye and electrochemical sensing of ascorbic acid. The crystal phase and morphology of the BFO nanostructures were confirmed using XRD and FESEM respectively. Further, their photocatalytic activity was tested under sunlight. The BFO fibers showed relatively an enhanced degradation property and an efficient electrochemical sensing property compared to the Particulates.

  12. Preparation of Pr-doped SnO{sub 2} hollow nanofibers by electrospinning method and their gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.Q.; Ma, S.Y., E-mail: lwq19891013@126.com; Li, Y.F.; Li, X.B.; Wang, C.Y.; Yang, X.H.; Cheng, L.; Mao, Y.Z.; Luo, J.; Gengzang, D.J.; Wan, G.X.; Xu, X.L.

    2014-08-25

    Highlights: • Pr-doped SnO{sub 2} hollow nanofibers were fabricated by electrospinning. • The crystal structures, surface morphology, chemical state and gas sensing performance were investigated. • The Pr-doped SnO{sub 2} hollow structure exhibited good gas-sensing properties to ethanol at 300 °C. • The relationships between response time (recovery time) and temperature, response time (recovery time) and concentration were investigated. • A sensor mechanism of hollow nanofibers depend on temperature was discussed. - Abstract: Pure and Pr-doped SnO{sub 2} hollow nanofibers were fabricated through a facile single capillary electrospinning and followed by calcination. The properties of as-synthesized nanofibers were characterized by scanning electron microscopy, Brunauer–Emmett–Teller, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Compared with pure fibers, Pr-doped SnO{sub 2} nanofibers exhibited excellent ethanol sensing properties at the optimum temperature of 300 °C. Maximum sensing response to ethanol was received in the fibers with 0.6 wt% Pr. The relationships between response time (recovery time) and temperature, response time (recovery time) and concentration were investigated. The results demonstrated that the high response and relatively short response/recovery time were related to surface area, adsorbed oxygen species and oxygen vacancies.

  13. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid U.S. Climates

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ticci, Sara [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    Past field research and simulation studies have shown that high performance homes experience elevated indoor humidity levels for substantial portions of the year in humid climates. This is largely the result of lower sensible cooling loads, which reduces the moisture removed by the cooling system. These elevated humidity levels lead to concerns about occupant comfort, health and building durability. Use of mechanical ventilation at rates specified in ASHRAE Standard 62.2-2013 are often cited as an additional contributor to humidity problems in these homes. Past research has explored solutions, including supplemental dehumidification, cooling system operational enhancements and ventilation system design (e.g., ERV, supply, exhaust, etc.). This project’s goal is to develop and demonstrate (through simulations) smart ventilation strategies that can contribute to humidity control in high performance homes. These strategies must maintain IAQ via equivalence with ASHRAE Standard 62.2-2013. To be acceptable they must not result in excessive energy use. Smart controls will be compared with dehumidifier energy and moisture performance. This work explores the development and performance of smart algorithms for control of mechanical ventilation systems, with the objective of reducing high humidity in modern high performance residences. Simulations of DOE Zero-Energy Ready homes were performed using the REGCAP simulation tool. Control strategies were developed and tested using the Residential Integrated Ventilation (RIVEC) controller, which tracks pollutant exposure in real-time and controls ventilation to provide an equivalent exposure on an annual basis to homes meeting ASHRAE 62.2-2013. RIVEC is used to increase or decrease the real-time ventilation rate to reduce moisture transport into the home or increase moisture removal. This approach was implemented for no-, one- and two-sensor strategies, paired with a variety of control approaches in six humid climates (Miami

  14. Humidity control device in a reactor container

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo; Osumi, Katsumi; Kimura, Takashi.

    1986-01-01

    Purpose: To provide a device capable of maintaining the inside of a container under high humidity circumstantial conditions causing less atmospheric corrosions, in order to prevent injuries due to atmospheric corrosions to smaller diameter stainless steel pipeways in the reactor container. Constitution: Stress corrosion cracks (SCC) to the smaller diameter stainless steel pipeways are caused dependent on the relative humidity and it is effective as the countermeasure against SCC to maintain the relative humidity at a low level less than 30 % or high level greater than 60 %. Based on the above findings, a humidity control device is disposed so as to maintain the relative humidity for the atmosphere within a reactor core on a higher humidity region. The device is adapted such that recycling gas in the dry-well coolant circuit is passed through an orifice to atomize the water introduced from feedwater pipe and introduce into a reactor core or such that the recycling gases in the dry-well cooling circuit are bubbled into water to remove chlorine gas in the reactor container gas thereby increasing the humidity in the reactor container. (Kamimura, M.)

  15. Upper limits for air humidity based on human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole; Jørgensen, Anette S.

    1998-01-01

    respiratory cooling. Human subjects perceived the condition of their skin to be less acceptable with increasing skin humidity. Inhaled air was rated warmer, more stuffy and less acceptable with increasing air humidity and temperature. Based on the subjects' comfort responses, new upper limits for air humidity......The purpose of this study was to verify the hypothesis that insufficient respiratory cooling and a high level of skin humidity are two reasons for thermal discomfort at high air humidities, and to prescribe upper limits for humidity based on discomfort due to elevated skin humidity and insufficient...

  16. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Electrical and optical properties of ZnO–WO 3 nanocomposite and its application as a ... Sensor; humidity; adsorption; hysteresis; porous. ... the resistance of the sensing samples was found to decrease with increase in relative humidity (RH).

  17. Drought or humidity oscillations? The case of coastal zone of Lebanon

    Science.gov (United States)

    Shaban, Amin; Houhou, Rola

    2015-10-01

    There is discrepancy in classifying Lebanon according to the different climatic zones; however, it is often described as a semi-arid region. Lately, Lebanon has been witnessing climatic oscillations in the meteorological parameters. The impact of these oscillations on water sector has been reflected also on energy-food nexus. Yet, there are a number of studies obtained to identify the climate of Lebanon, and they show contradictory results; especially these studies elaborated different datasets and applied diverse methods which often modeled only on large-scale regions. Therefore, the analysis of climatic data depended on complete and long-term climatic records that can be applied to assess the existing climatic status of Lebanon, as well as to assure whether Lebanon is under drought, humidity or it is oscillating between both. This study utilized considerable datasets, from different sources including the remotely sensed systems (e.g. TRMM). These datasets were interpolated and analyzed statistically according to De Martonne Aridity Index. Aiming to affirm the climatic attribute of Lebanon; however, ten climatic stations were investigated. They are with representative geographic setting and diverse time series in the coastal zone of Lebanon were investigated. Even though, Lebanon is known as a semi-arid region, yet results in this study show that the studied zone does not evidence any drought, since around 70% of the investigated years are characterized by semi-humid to humid climate. This climatic figure is well pronounced since rainfall rate exceeds 900 mm, average temperature rate is about 19 °C, and snow remains for a couple of months annually.

  18. Roller compaction: Effect of relative humidity of lactose powder.

    Science.gov (United States)

    Omar, Chalak S; Dhenge, Ranjit M; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2016-09-01

    The effect of storage at different relative humidity conditions, for various types of lactose, on roller compaction behaviour was investigated. Three types of lactose were used in this study: anhydrous lactose (SuperTab21AN), spray dried lactose (SuperTab11SD) and α-lactose monohydrate 200M. These powders differ in their amorphous contents, due to different manufacturing processes. The powders were stored in a climatic chamber at different relative humidity values ranging from 10% to 80% RH. It was found that the roller compaction behaviour and ribbon properties were different for powders conditioned to different relative humidities. The amount of fines produced, which is undesirable in roller compaction, was found to be different at different relative humidity. The minimum amount of fines produced was found to be for powders conditioned at 20-40% RH. The maximum amount of fines was produced for powders conditioned at 80% RH. This was attributed to the decrease in powder flowability, as indicated by the flow function coefficient ffc and the angle of repose. Particle Image Velocimetry (PIV) was also applied to determine the velocity of primary particles during ribbon production, and it was found that the velocity of the powder during the roller compaction decreased with powders stored at high RH. This resulted in less powder being present in the compaction zone at the edges of the rollers, which resulted in ribbons with a smaller overall width. The relative humidity for the storage of powders has shown to have minimal effect on the ribbon tensile strength at low RH conditions (10-20%). The lowest tensile strength of ribbons produced from lactose 200M and SD was for powders conditioned at 80% RH, whereas, ribbons produced from lactose 21AN at the same condition of 80% RH showed the highest tensile strength. The storage RH range 20-40% was found to be an optimum condition for roll compacting three lactose powders, as it resulted in a minimum amount of fines in the

  19. Humidity and Buildings. Technical Paper No. 188.

    Science.gov (United States)

    Hutcheon, N. B.

    Modified and controlled relative humidity in buildings for certain occupancies is discussed. New criteria are used in determining the needs, desirability and problems associated with humidities in a building. Severe winter climate requires that special attention be given to the problems associated with increased indoor humidities during cold…

  20. Humidity Graphs for All Seasons.

    Science.gov (United States)

    Esmael, F.

    1982-01-01

    In a previous article in this journal (Vol. 17, p358, 1979), a wet-bulb depression table was recommended for two simple experiments to determine relative humidity. However, the use of a graph is suggested because it gives the relative humidity directly from the wet and dry bulb readings. (JN)

  1. Humidity sensitive electrical responce of K2CrO4 doped ZnCr2O4 ceramic sensors

    International Nuclear Information System (INIS)

    Kavasoglu, N.

    2005-01-01

    The effects of the addition of various percentages of potassium chromate as a sintering aid on the response to air moisture of ZnCr 2 O 4 ceramic body along with its crystalline structure and surface morphology were studied. The fired ceramic body, which proved to be mainly constructed from about 1μm sized ZnCr 2 O 4 spinel grains, was porous. The humidity sensing behaviour of the sensors reveals that the electrical conduction is due mainly to protonic and is controlled through the thin layers of water, adsorbed on the surface of the grains, with charge transfer to the electrodes. Only the material containing 20% K 2 CrO 4 in ZnCr 2 O 4 exhibited an exponential behaviour to humidity, which shows about three orders change in the d.c. resistance over the relative humidity in the range between 25 and 90%. The addition of CuO resulted in an increase in the conductivity but had a deleterious effect on the humidity. Based on a.c. impedance measurements, an equivalent circuit associated with a net work of RC parallel circuit in series with constant phase elements (CPEs) has been suggested. It can be therefore assumed that such equivalent circuit model of the sensor under moderate moist condition indicates the charge transport processes mediated by proton hopping and diffusion. A homemade prototype of such a humidity sensor has also been successfully demonstrated in door

  2. Humid Heat Waves at different warming levels

    Science.gov (United States)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  3. 7 CFR 28.301 - Measurement: humidity; temperature.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F. ...

  4. Characterisation and vapour sensing properties of spin coated thin films of anthracene labelled PMMA polymer

    Energy Technology Data Exchange (ETDEWEB)

    Capan, I., E-mail: inci.capan@gmail.com [Balikesir University, Faculty of Art and Sciences, Department of Physics, Cagis Campus, 10145 Balikesir (Turkey); Tarimci, C., E-mail: Celik.Tarimci@eng.ankara.edu.tr [Ankara University, Faculty of Engineering, Department of Engineering Physics, 06100, Ankara (Turkey); Erdogan, M., E-mail: merdogan@balikesir.edu.tr [Balikesir University, Faculty of Art and Sciences, Department of Physics, Cagis Campus, 10145 Balikesir (Turkey); Hassan, A.K., E-mail: A.Hassan@shu.ac.uk [Materials and Engineering Research Institute, Sheffield Hallam University, Sheaf Building, Pond Street, Sheffield S1 1WB (United Kingdom)

    2009-05-05

    In the present article thin films of poly (methyl methacrylate) (PMMA) polymer labelled with anthracene (Ant-PMMA) prepared by spin coating are characterised by UV-visible spectroscopy, surface plasmon resonance (SPR), spectroscopic ellipsometry (SE) and Atomic Force Microscopy (AFM) and their organic vapour sensing properties are investigated. Ant-PMMA films' thickness are determined by performing theoretical fitting to experimental data measured using SPR and SE. Results obtained show that the spin-cast films are of good uniformity with an average thickness of 6-8 nm. Organic vapour sensing properties are studied using SPR technique during exposures to different volatile organic compounds (VOCs). Ant-PMMA films' response to the selected VOCs has been examined in terms of solubility parameters and molar volumes of the solvents, and the films were found to be largely sensitive to benzene vapour compared to other studied analytes.

  5. Characterisation and vapour sensing properties of spin coated thin films of anthracene labelled PMMA polymer

    International Nuclear Information System (INIS)

    Capan, I.; Tarimci, C.; Erdogan, M.; Hassan, A.K.

    2009-01-01

    In the present article thin films of poly (methyl methacrylate) (PMMA) polymer labelled with anthracene (Ant-PMMA) prepared by spin coating are characterised by UV-visible spectroscopy, surface plasmon resonance (SPR), spectroscopic ellipsometry (SE) and Atomic Force Microscopy (AFM) and their organic vapour sensing properties are investigated. Ant-PMMA films' thickness are determined by performing theoretical fitting to experimental data measured using SPR and SE. Results obtained show that the spin-cast films are of good uniformity with an average thickness of 6-8 nm. Organic vapour sensing properties are studied using SPR technique during exposures to different volatile organic compounds (VOCs). Ant-PMMA films' response to the selected VOCs has been examined in terms of solubility parameters and molar volumes of the solvents, and the films were found to be largely sensitive to benzene vapour compared to other studied analytes.

  6. Sensing, Measuring and Modelling the Mechanical Properties of Sandstone

    Science.gov (United States)

    Antony, S. J.; Olugbenga, A.; Ozerkan, N. G.

    2018-02-01

    We present a hybrid framework for simulating the strength and dilation characteristics of sandstone. Where possible, the grain-scale properties of sandstone are evaluated experimentally in detail. Also, using photo-stress analysis, we sense the deviator stress (/strain) distribution at the micro-scale and its components along the orthogonal directions on the surface of a V-notch sandstone sample under mechanical loading. Based on this measurement and applying a grain-scale model, the optical anisotropy index K 0 is inferred at the grain scale. This correlated well with the grain contact stiffness ratio K evaluated using ultrasound sensors independently. Thereafter, in addition to other experimentally characterised structural and grain-scale properties of sandstone, K is fed as an input into the discrete element modelling of fracture strength and dilation of the sandstone samples. Physical bulk-scale experiments are also conducted to evaluate the load-displacement relation, dilation and bulk fracture strength characteristics of sandstone samples under compression and shear. A good level of agreement is obtained between the results of the simulations and experiments. The current generic framework could be applied to understand the internal and bulk mechanical properties of such complex opaque and heterogeneous materials more realistically in future.

  7. Ni doping effect on the electronic and sensing properties of 2D SnO2

    Science.gov (United States)

    Patel, Anjali; Roondhe, Basant; Jha, Prafulla K.

    2018-05-01

    In the present work using state of art first principles calculations under the frame work of density functional theory the effect of Nickel (Ni) doping on electronic as well as sensing properties of most stable two dimensional (2D) T-SnO2 phase towards ethanol (C2H5OH) has been observed. It has been found that Ni atom when dope on T-SnO2 causes prominent decrement in the band gap from 2.26 eV to 1.48 eV and improves the sensing phenomena of pristine T-SnO2 towards C2H5OH by increasing the binding energy from -0.18eV to -0.93eV. The comparative analysis of binding energy shows that Ni improves the binding of C2H5OH by 5.16 times the values for pristine T-SnO2. The doping of Ni into 2D T-SnO2 reduces the band gap through lowering of the conduction band minimum, thereby increasing the electron affinity which increases the sensing performance of T-SnO2. The variation in the electronic properties after and before the exposure of ethanol reinforced to use Ni:SnO2 nano structure for sensing applications. The results indicate that the Ni doped T-SnO2 can be utilized in improved optoelectronic as well as sensor devices in the future.

  8. Humidity requirements in WSCF Laboratories

    International Nuclear Information System (INIS)

    Evans, R.A.

    1994-01-01

    The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment

  9. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    1999-01-01

    This paper deals with autogenous deformation and autogenous relative humidity change (RH change) in hardening cement paste. Theoretical considerations and experimental data are presented, which elucidate the influence of temperature on these properties. This is an important subject in the control...

  10. Remote sensing for global change, climate change and atmosphere and ocean forecasting. Volume 1

    International Nuclear Information System (INIS)

    1992-01-01

    This volume is separated in three sessions. First part is on remote sensing for global change (with global modelling, land cover change on global scale, ocean colour studies of marine biosphere, biological and hydrological interactions and large scale experiments). Second part is on remote sensing for climate change (with earth radiation and clouds, sea ice, global climate research programme). Third part is on remote sensing for atmosphere and ocean forecasting (with temperatures and humidity, winds, data assimilation, cloud imagery, sea surface temperature, ocean waves and topography). (A.B.). refs., figs., tabs

  11. Structural Properties and Sensing Performance of CeYxOy Sensing Films for Electrolyte-Insulator-Semiconductor pH Sensors.

    Science.gov (United States)

    Pan, Tung-Ming; Wang, Chih-Wei; Chen, Ching-Yi

    2017-06-07

    In this study we developed CeY x O y sensing membranes displaying super-Nernstian pH-sensitivity for use in electrolyte-insulator-semiconductor (EIS) pH sensors. We examined the effect of thermal annealing on the structural properties and sensing characteristics of the CeY x O y sensing membranes deposited through reactive co-sputtering onto Si substrates. X-ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy revealed the structural, morphological, and chemical features, respectively, of the CeY x O y films after their annealing at 600-900 °C. Among the tested systems, the CeY x O y EIS device prepared with annealing at 800 °C exhibited the highest sensitivity (78.15 mV/pH), the lowest hysteresis voltage (1.4 mV), and the lowest drift rate (0.85 mV/h). Presumably, these annealing conditions optimized the stoichiometry of (CeY)O 2 in the film and its surface roughness while suppressing silicate formation at the CeY x O y -Si interface. We attribute the super-Nernstian pH-sensitivity to the incorporation of Y ions in the Ce framework, thereby decreasing the oxidation state Ce (Ce 4+  → Ce 3+ ) and resulting in less than one electron transferred per proton in the redox reaction.

  12. Ethanol Sensing Properties of Au-functionalized NiO Nanoparticles

    International Nuclear Information System (INIS)

    Park, Sunghoon; Kheel, Hyejoon; Sun, Gun-Joo; Hyun, Soong Keun; Park, Sang Eon; Lee, Chongmu

    2016-01-01

    Pristine and Au-functionalized nickel oxide (NiO) nanoparticles were synthesized via a simple solvo thermal route and the ethanol sensing properties of multiple-networked Au-doped and undoped NiO nanoparticle sensors were examined. The pristine and Au-functionalized NiO nanoparticle sensor showed responses of 442 and 273%, respectively, to 1000 ppm of ethanol at 325 .deg. C. The Au-functionalized NiO nanoparticle sensor showed faster response than the pristine NiO counterpart, whereas the recovery time of the former was similar to that of the latter. The optimal operating temperature of the pristine and Au-functionalized NiO nanoparticles was 325 and 350 .deg. C, respectively, by Au-doping. Both the pristine and Au-functionalized NiO nanoparticle sensors showed selectivity for ethanol gas over methanol, acetone, benzene, and toluene gases. The underlying mechanism of the enhanced sensing performance of the Au-functionalized NiO nanoparticles toward ethanol might be due to modulation of the depletion layer formed around Au particles and the Schottky barriers formed at the Au-NiO junction accompanying ethanol adsorption and desorption, the spill-over effect and high catalytic activity of Au nanoparticles and the smaller diameter of the particles in the Au-functionalized NiO sensor.

  13. Ethanol Sensing Properties of Au-functionalized NiO Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghoon; Kheel, Hyejoon; Sun, Gun-Joo; Hyun, Soong Keun; Park, Sang Eon; Lee, Chongmu [Inha University, Incheon (Korea, Republic of)

    2016-05-15

    Pristine and Au-functionalized nickel oxide (NiO) nanoparticles were synthesized via a simple solvo thermal route and the ethanol sensing properties of multiple-networked Au-doped and undoped NiO nanoparticle sensors were examined. The pristine and Au-functionalized NiO nanoparticle sensor showed responses of 442 and 273%, respectively, to 1000 ppm of ethanol at 325 .deg. C. The Au-functionalized NiO nanoparticle sensor showed faster response than the pristine NiO counterpart, whereas the recovery time of the former was similar to that of the latter. The optimal operating temperature of the pristine and Au-functionalized NiO nanoparticles was 325 and 350 .deg. C, respectively, by Au-doping. Both the pristine and Au-functionalized NiO nanoparticle sensors showed selectivity for ethanol gas over methanol, acetone, benzene, and toluene gases. The underlying mechanism of the enhanced sensing performance of the Au-functionalized NiO nanoparticles toward ethanol might be due to modulation of the depletion layer formed around Au particles and the Schottky barriers formed at the Au-NiO junction accompanying ethanol adsorption and desorption, the spill-over effect and high catalytic activity of Au nanoparticles and the smaller diameter of the particles in the Au-functionalized NiO sensor.

  14. Effect of humidity on radon exhalation rate from concrete

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Obayashi, Haruo; Tsuji, Naruhito; Nakayoshi, Hisao

    1998-01-01

    The objective of the present study is evaluation of seasonal humidity effect on radon exhalation rate from concrete. Three concrete pieces have been placed in three different fixed humidity circumstances for about a year. The three fixed humidities are selected 3, 10, 25 g m -3 in absolute humidity, those correspond to dry condition as control, winter and summer, respectively. Radon exhalation rate from each concrete piece is measured every one month during humidity exposure. Under the lower humidity, radon exhalation rate from concrete is small. On the contrary, radon exhalation rate is large in the higher humidity circumstance. This trend is consistent with the seasonal variation of indoor air radon concentration in low air-exchange-rate room. (author)

  15. The quest for highly sensitive QCM humidity sensors: the coating of CNT/MOF composite sensing films as case study

    KAUST Repository

    Chappanda, Karumbaiah. N.; Shekhah, Osama; Yassine, Omar; Patole, Shashikant P.; Eddaoudi, Mohamed; Salama, Khaled N.

    2017-01-01

    coating technique on a quartz-crystal microbalance (QCM) and a comparison of their shift in resonance frequencies to adsorbed water vapor (5 to 75% relative humidity) is presented. Through optimization of the CNT and HKUST-1 composition, we could

  16. Building Environment Analysis Based on Temperature and Humidity for Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Won

    2012-10-01

    Full Text Available In this paper, we propose a new HVAC (heating, ventilation, and air conditioning control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

  17. Building environment analysis based on temperature and humidity for smart energy systems.

    Science.gov (United States)

    Yun, Jaeseok; Won, Kwang-Ho

    2012-10-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

  18. Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials

    DEFF Research Database (Denmark)

    Leal-Junior, A.; Frizera, A.; Pontes, M. J.

    2018-01-01

    This paper presents a dynamic mechanical analysis (DMA) of polymer optical fibers (POFs) to obtain their Young modulus with respect to the variation of strain, temperature, humidity and frequency. The POFs tested are made of polymethyl methacrylate (PMMA), Topas grade 5013, Zeonex 480R...... and Polycarbonate (PC). In addition, a step index POF with a core composed of Topas 5013 and cladding of Zeonex 480R is also analyzed. Results show a tradeoffbetween the different fibers for different applications, where the Zeonex fiber shows the lowest Young modulus among the ones tested, which makes it suitable...... for high-sensitivity strain sensing applications. In addition, the fibers with Topas in their composition presented low temperature and humidity sensitivity, whereas PMMA fibers presented the highest Young modulus variation with different frequencies. The results presented here provide guidelines...

  19. Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing data sets and measurements on the ground

    Directory of Open Access Journals (Sweden)

    F. Hurter

    2013-11-01

    Full Text Available We reconstruct atmospheric wet refractivity profiles for the western part of Switzerland with a least-squares collocation approach from data sets of (a zenith path delays that are a byproduct of the GPS (global positioning system processing, (b ground meteorological measurements, (c wet refractivity profiles from radio occultations whose tangent points lie within the study area, and (d radiosonde measurements. Wet refractivity is a parameter partly describing the propagation of electromagnetic waves and depends on the atmospheric parameters temperature and water vapour pressure. In addition, we have measurements of a lower V-band microwave radiometer at Payerne. It delivers temperature profiles at high temporal resolution, especially in the range from ground to 3000 m a.g.l., though vertical information content decreases with height. The temperature profiles together with the collocated wet refractivity profiles provide near-continuous dew point temperature or relative humidity profiles at Payerne for the study period from 2009 to 2011. In the validation of the humidity profiles, we adopt a two-step procedure. We first investigate the reconstruction quality of the wet refractivity profiles at the location of Payerne by comparing them to wet refractivity profiles computed from radiosonde profiles available for that location. We also assess the individual contributions of the data sets to the reconstruction quality and demonstrate a clear benefit from the data combination. Secondly, the accuracy of the conversion from wet refractivity to dew point temperature and relative humidity profiles with the radiometer temperature profiles is examined, comparing them also to radiosonde profiles. For the least-squares collocation solution combining GPS and ground meteorological measurements, we achieve the following error figures with respect to the radiosonde reference: maximum median offset of relative refractivity error is −16% and quartiles are 5% to

  20. Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect

    Science.gov (United States)

    Pontes, Maria José

    2018-01-01

    This paper presents a system capable of measuring temperature and relative humidity with polymer optical fiber (POF) sensors. The sensors are based on variations of the Young’s and shear moduli of the POF with variations in temperature and relative humidity. The system comprises two POFs, each with a predefined torsion stress that resulted in a variation in the fiber refractive index due to the stress-optic effect. Because there is a correlation between stress and material properties, the variation in temperature and humidity causes a variation in the fiber’s stress, which leads to variations in the fiber refractive index. Only two photodiodes comprise the sensor interrogation, resulting in a simple and low-cost system capable of measuring humidity in the range of 5–97% and temperature in the range of 21–46 °C. The root mean squared errors (RMSEs) between the proposed sensors and the reference were 1.12 °C and 1.36% for the measurements of temperature and relative humidity, respectively. In addition, fiber etching resulted in a sensor with a 2 s response time for a relative humidity variation of 10%, which is one of the lowest recorded response times for intrinsic POF humidity sensors. PMID:29558387

  1. A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties

    Science.gov (United States)

    Li, Yanqiong

    2018-02-01

    Snowflake-like SnO2 hierarchical architecture has been synthesized via a facile hydrothermal method and followed by calcination. The SnO2 hierarchical structures are assembled with thin nanoflakes blocks, which look like snowflake shape. A possible mechanism for the formation of the SnO2 hierarchical structures is speculated. Moreover, gas sensing tests show that the sensor based on snowflake-like SnO2 architectures exhibited excellent gas sensing properties. The enhancement may be attributed to its unique structures, in which the porous feature on the snowflake surface could further increase the active surface area of the materials and provide facile pathways for the target gas.

  2. The sensitivity to humidity of radon monitoring instruments

    International Nuclear Information System (INIS)

    Schmied, H.

    1984-01-01

    In a project funded by the Swedish Building Research Council (BFR) a continuous radon monitoring instrument (RGA-400 EDA Instr. Inc.) with electrostatic field collection has been calibrated. The original calibration factor gave no reliable radon readings and was therefore corrected for relative humidity by EDA. From four calibrations in the radon chamber at the Swedish Radiation Protection Board (SSI) it was clear that the instrument was sensitive to absolute humidity, which gave better agreement than relative humidity or temperature. Sensitivity to humidity for this principle of measure ment has been presented in various papers without presenting any combined influence with temperature, which can lead to the wrong conclusions, especially when the temperature levels differ. Some laboratories use humidity absorbants to overcome this humidity dependence. In this paper the calibration results for the FGA-400 radon readings only, are presented. (Author)

  3. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    Directory of Open Access Journals (Sweden)

    G. Masiello

    2009-11-01

    Full Text Available Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment.

    The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength, which are fundamental to infer geometrical and microphysical properties of clouds.

    A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer.

    The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud.

    Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is

  4. Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring.

    Science.gov (United States)

    Bhattacharjee, Mitradip; Nemade, Harshal B; Bandyopadhyay, Dipankar

    2017-08-15

    The frequency of breathing and peak flow rate of exhaled air are necessary parameters to detect chronic obstructive pulmonary diseases (COPDs) such as asthma, bronchitis, or pneumonia. We developed a lung function monitoring point-of-care-testing device (LFM-POCT) consisting of mouthpiece, paper-based humidity sensor, micro-heater, and real-time monitoring unit. Fabrication of a mouthpiece of optimal length ensured that the exhaled air was focused on the humidity-sensor. The resistive relative humidity sensor was developed using a filter paper coated with nanoparticles, which could easily follow the frequency and peak flow rate of the human breathing. Adsorption followed by condensation of the water molecules of the humid air on the paper-sensor during the forced exhalation reduced the electrical resistance of the sensor, which was converted to an electrical signal for sensing. A micro-heater composed of a copper-coil embedded in a polymer matrix helped in maintaining an optimal temperature on the sensor surface. Thus, water condensed on the sensor surface only during forcible breathing and the sensor recovered rapidly after the exhalation was complete by rapid desorption of water molecules from the sensor surface. Two types of real-time monitoring units were integrated into the device based on light emitting diodes (LEDs) and smart phones. The LED based unit displayed the diseased, critical, and fit conditions of the lungs by flashing LEDs of different colors. In comparison, for the mobile based monitoring unit, an application was developed employing an open source software, which established a wireless connectivity with the LFM-POCT device to perform the tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. 3D printed System-on-Package (SoP) for environmental sensing and localization applications

    KAUST Repository

    Zhen, Su; Bilal, Rana Muhammad; Shamim, Atif

    2017-01-01

    This paper presents for the first time an innovative 3D printed SoP sensor node with temperature, pressure and humidity sensing capabilities. It has an integrated wireless readout through a near isotropic (900MHz) GSM antenna-on-package. This sensor

  6. ZnO–TiO2 nanocomposite: Characterization and moisture sensing ...

    Indian Academy of Sciences (India)

    Sensor; humidity; TiO2; ZnO; XRD; SEM. 1. Introduction. Research has been going on to find suitable materials that show good sensitivity over large range of relative humidity. (RH), low hysteresis and properties that are stable to thermal cycling and exposure to the various chemicals likely to be present in the environment.

  7. 40 CFR 89.326 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air... type of intake air supply, the humidity measurements must be made within the intake air supply system...

  8. 40 CFR 91.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply. Air...

  9. 40 CFR 90.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a) Humidity...

  10. Ferrite thin films: Synthesis, characterization and gas sensing properties towards LPG

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratibha; Godbole, R.V. [Department of Physics, Abasaheb Garware College, Karve Road, Pune 411 004 (India); Phase, D.M. [UGC-DAE CSR Centre, Indore (India); Chikate, R.C. [Department of Chemistry, Abasaheb Garware College, Karve Road, Pune 411 004 (India); Bhagwat, Sunita, E-mail: smb.agc@gmail.com [Department of Physics, Abasaheb Garware College, Karve Road, Pune 411 004 (India)

    2015-01-15

    Nanocrystalline (Co, Cu, Ni, Zn) ferrite thin films have been deposited onto the Si (100) and alumina substrates by spray pyrolysis deposition technique. Respective metal chlorides and iron chloride were used as precursors. The structural properties of (Co, Cu, Ni, Zn) ferrite thin films were investigated by X-ray diffraction (XRD) technique which confirms polycrystalline nature and single phase spinel structure. The surface morphology was studied using scanning electron microscopy (SEM) which reveals spherical morphology for these films except NiFe{sub 2}O{sub 4} films that exhibit petal like structure. The optical transmittance and reflectance measurements were recorded using a double beam spectrophotometer. The optical studies reveal that the transition is direct band gap energy. The VSM analyzes reveal the predominant ferrimagnetic nature for CuFe{sub 2}O{sub 4} films. The gas sensing properties towards Liquid Petroleum Gas (LPG) revealed that ZnFe{sub 2}O{sub 4} films are sensitive at lower temperature while NiFe{sub 2}O{sub 4} films show steep rise at higher temperature. - Highlights: • (Co, Cu, Ni, Zn) ferrite thin films are synthesized by simple spray pyrolysis technique. • Homogenization of substituent within ferrite structure. • CuFe{sub 2}O{sub 4} film exhibits predominantly ferrimagnetic nature. • LPG sensing at lower temperature for ZnFe{sub 2}O{sub 4} film. • High sensitivity for NiFe{sub 2}O{sub 4} film at higher temperature due to defects created in the structure.

  11. Photoelectron spectroscopy of surfaces under humid conditions

    International Nuclear Information System (INIS)

    Bluhm, Hendrik

    2010-01-01

    The interaction of water with surfaces plays a major role in many processes in the environment, atmosphere and technology. Weathering of rocks, adhesion between surfaces, and ionic conductance along surfaces are among many phenomena that are governed by the adsorption of molecularly thin water layers under ambient humidities. The properties of these thin water films, in particular their thickness, structure and hydrogen-bonding to the substrate as well as within the water film are up to now not very well understood. Ambient pressure photoelectron spectroscopy (APXPS) is a promising technique for the investigation of the properties of thin water films. In this article we will discuss the basics of APXPS as well as the particular challenges that are posed by investigations in water vapor at Torr pressures. We will also show examples of the application of APXPS to the study of water films on metals and oxides.

  12. Gas sensing with gold-decorated vertically aligned carbon nanotubes.

    Science.gov (United States)

    Mudimela, Prasantha R; Scardamaglia, Mattia; González-León, Oriol; Reckinger, Nicolas; Snyders, Rony; Llobet, Eduard; Bittencourt, Carla; Colomer, Jean-François

    2014-01-01

    Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.

  13. Gas sensing with gold-decorated vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Prasantha R. Mudimela

    2014-06-01

    Full Text Available Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2 at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.

  14. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  15. Is Obsidian Hydration Dating Affected by Relative Humidity?

    Science.gov (United States)

    Friedman, I.; Trembour, F.W.; Smith, G.I.; Smith, F.L.

    1994-01-01

    Experiments carried out under temperatures and relative humidities that approximate ambient conditions show that the rate of hydration of obsidian is a function of the relative humidity, as well as of previously established variables of temperature and obsidian chemical composition. Measurements of the relative humidity of soil at 25 sites and at depths of between 0.01 and 2 m below ground show that in most soil environments, at depths below about 0.25 m, the relative humidity is constant at 100%. We have found that the thickness of the hydrated layer developed on obsidian outcrops exposed to the sun and to relative humidities of 30-90% is similar to that formed on other portions of the outcrop that were shielded from the sun and exposed to a relative humidity of approximately 100%. Surface samples of obsidian exposed to solar heating should hydrate more rapidly than samples buried in the ground. However, the effect of the lower mean relative humidity experiences by surface samples tends to compensate for the elevated temperature, which may explain why obsidian hydration ages of surface samples usually approximate those derived from buried samples.

  16. RFI and Remote Sensing of the Earth from Space

    Science.gov (United States)

    Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.

    2016-01-01

    Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.

  17. Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases

    Directory of Open Access Journals (Sweden)

    Elena Dilonardo

    2016-01-01

    Full Text Available A one-step electrochemical method based on sacrificial anode electrolysis (SAE was used to deposit stabilized gold nanoparticles (Au NPs directly on the surface of nanostructured ZnO powders, previously synthesized through a sol–gel process. The effect of thermal annealing temperatures (300 and 550 °C on chemical, morphological, and structural properties of pristine and Au-doped ZnO nancomposites (Au@ZnO was investigated. Transmission and scanning electron microscopy (TEM and SEM, as well as X-ray photoelectron spectroscopy (XPS, revealed the successful deposition of nanoscale gold on the surface of spherical and rod-like ZnO nanostructures, obtained after annealing at 300 and 550 °C, respectively. The pristine ZnO and Au@ZnO nanocomposites are proposed as active layer in chemiresistive gas sensors for low-cost processing. Gas-sensing measurements towards NO2 were collected at 300 °C, evaluating not only the Au-doping effect, but also the influence of the different ZnO nanostructures on the gas-sensing properties.

  18. Short Oligonucleotides Aligned in Stretched Humid Matrix: Secondary DNA Structure in Poly(vinyl alcohol) Environment

    KAUST Repository

    Hanczyc, Piotr; Å kerman, Bjö rn; Nordé n, Bengt

    2012-01-01

    ) spectroscopy. Oligonucleotides of lengths varying between 10 (3.4 nm) and 60 bases (20.4 nm) were investigated with respect to structural properties in the gel-like polymer environment. The DNA conformation as a function of relative humidity reveals a strong

  19. Biomolecule-assisted synthesis and gas-sensing properties of porous nanosheet-based corundum In2O3 microflowers

    International Nuclear Information System (INIS)

    Zhang Wenhui; Zhang Weide

    2012-01-01

    Porous nanosheet-based corundum In 2 O 3 microflowers were fabricated by one-pot hydrothermal treatment of D-fructose and In(NO 3 ) 3 mixture using urea as a precipitating agent followed by calcination. The products were characterized by X-ray diffraction, scanning and transmission electron microscopy. The effects of D-fructose and urea on the fabrication of nanosheet-based corundum In 2 O 3 microflowers were investigated and a possible mechanism is proposed to explain the formation of the hierarchical nanostructures. The gas sensor based on the In 2 O 3 microflowers exhibits excellent sensing properties for the detection of formaldehyde. - Graphical abstract: Nanosheets-based corundum In 2 O 3 microflowers were fabricated by one-pot hydrothermal treatment of D-fructose/In(NO 3 ) 3 mixture followed by calcination, which show high performance for formaldehyde sensing. Highlights: ► Preparation of porous nanosheet-based corundum In 2 O 3 microflowers. ► Morphology and phase control of In 2 O 3 . ► Gas sensor based on the In 2 O 3 microflowers exhibits excellent sensing properties for the detection of formaldehyde.

  20. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties.

    Science.gov (United States)

    Megawati, Monica; Chua, Chun Kiang; Sofer, Zdenek; Klímová, Kateřina; Pumera, Martin

    2017-06-21

    Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.

  1. Humidity correction in the standard measurement of exposure

    International Nuclear Information System (INIS)

    Ibaraki, Yasuyuki; Katoh, Akira

    1980-01-01

    This paper deals with the humidity correction to be made in the standard measurement of the exposure to the measured ionization current in the humid air for the purpose of excluding the influence of the water vapour that is not included in the definition of the exposure. First, formulae giving the humidity correction factors for a parallel plate free air chamber and a cavity chamber have been derived respectively in the case where the contributions of air and water vapour to the ionization are independent. Next, in the case where the contributions are not independent, i.e., the Jesse effect is taken into account, a formula to obtain the W-value for humid air has been derived on the basis of the Niatel's experimental result. Using this formula, formulae to obtain the humidity correction factors for the free air chamber and the cavity chamber are derived. The humidity calculated by the latter formulae show good agreements with the results by Niatel and Guiho, respectively. (author)

  2. Organic Vapour Sensing Properties of Area-Ordered and Size-Controlled Silicon Nanopillar

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-11-01

    Full Text Available Here, a silicon nanopillar array (Si-NPA was fabricated. It was studied as a room-temperature organic vapour sensor, and the ethanol and acetone gas sensing properties were detected with I-V curves. I-V curves show that these Si-NPA gas sensors are sensitive to ethanol and acetone organic vapours. The turn-on threshold voltage is about 0.5 V and the operating voltage is 3 V. With 1% ethanol gas vapour, the response time is 5 s, and the recovery time is 15 s. Furthermore, an evaluation of the gas sensor stability for Si-NPA was performed. The gas stability results are acceptable for practical detections. These excellent sensing characteristics can mainly be attributed to the change of the overall dielectric constant of Si-NPA caused by the physisorption of gas molecules on the pillars, and the filling of the gas vapour in the voids.

  3. Process of long-term tunnel instability by temperature and humidity variation in sedimentary rock

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji; Nakata, Eiji

    2009-01-01

    It is concerned that tunnels in the sedimentary rock are seriously damaged during the long operation after excavation, while there are various plans to construct significant underground facilities such as a high-level radioactive waste disposal facility. A case history study on tunnel instability is important in order to assess and evaluate tunnel instability behavior. In this respect, an accelerated tunnel deformation test by removing tunnel supports was conducted. Instability of tunnel wall was observed before and after this test in the summer, when it is warm and humid in the test tunnel. Fiber optic sensing detected the instability. Scale of collapsed rock was evaluated from the variation of shape of tunnel cross-section measured by a 3-D lazar measurement tool. The maximum size of collapsed rock block is 1m in diameter. Surrounding sandstone has such a characteristic that crack growth is much faster and its strength decreases gradually in the condition of high relative humidity. Numerical simulation considering this decrease of rock strength reproduced the instable zone around the test tunnel. (author)

  4. Methanol-Sensing Property Improvement of Meso structured Zinc Oxide Prepared by the Nano casting Strategy

    International Nuclear Information System (INIS)

    Gao, Q.; Zheng, W.T.; Wei, C.D.; Lin, H.M.

    2013-01-01

    The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, meso structured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged meso pores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, meso structured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the non porous ZnO prepared through conventional coprecipitation approach, meso structured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice

  5. Room temperature H2S gas sensing property of indium oxide thin films obtained by pulsed D.C. magnetron sputtering

    International Nuclear Information System (INIS)

    Nisha, R.; Madhusoodanan, K.N.; Karthikeyan, Sreejith; Hill, Arthur E.; Pilkington, Richard D.

    2013-01-01

    Indium oxide thin films were prepared by pulsed dc magnetron sputtering technique with no substrate heating. X-ray diffraction was used to investigate the structural properties and AFM was used to study the surface morphology gas sensing performance were conducted using a static gas sensing system. Room temperature gas sensing performance was conducted in range of 17 to 286 ppm. The sensitivity, response and recovery time of the sensor was also determined. (author)

  6. Properties of ammonium ion-water clusters: analyses of structure evolution, noncovalent interactions, and temperature and humidity effects.

    Science.gov (United States)

    Pei, Shi-Tu; Jiang, Shuai; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Wen, Hui; Zhu, Yu-Peng; Huang, Wei

    2015-03-26

    Although ammonium ion-water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion-water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters of different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion-water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion-water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH4(+)(H2O)n and M(H2O)n (where M represents an alkali metal ion or water molecule); when n = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G(3df, 3pd) level and is consistent with the experimentally determined values.

  7. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    Science.gov (United States)

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  8. A Trial Intercomparison of Humidity Generators at Extremes of Range Using Relative Humidity Transmitters

    Science.gov (United States)

    Stevens, M.; Benyon, R.; Bell, S. A.; Vicente, T.

    2008-10-01

    In order to effectively implement the Mutual Recognition Arrangement (MRA) of the International Committee for Weights and Measures (CIPM), national metrology institutes (NMIs) are required to support their claims of calibration and measurement capability (CMC) with a quality system compliant with ISO/IEC 17025, and with suitable evidence of participation in key or supplementary comparisons. The CMC review process, both at regional and inter-regional levels, uses criteria that combine the provisions mentioned above, together with additional evidence demonstrating scientific and technical competence of the institutes. For dew-point temperatures, there are key comparisons in progress under the Consultative Committee for Thermometry (CCT) and under the European regional metrology organisation (EUROMET), together with information available on past regional supplementary comparisons. However, for relative humidity there are, to date, no such comparisons available to support CMC entries. This paper presents and discusses the results of a preliminary investigation of the use of relative humidity and temperature transmitters in order to determine their suitability for the intercomparison of standard humidity generators in support of CMC claims for the calibration of relative humidity instruments. The results of a recent bilateral comparison between 2 NMIs at the extremes of the range up to 98%rh at 70 °C, and down to 1%rh at -40 °C are reported. Specific precautions and recommendations on the use of the devices as transfer standards are presented.

  9. Adjustment of web-building initiation to high humidity: a constraint by humidity-dependent thread stickiness in the spider Cyrtarachne.

    Science.gov (United States)

    Baba, Yuki G; Kusahara, Miki; Maezono, Yasunori; Miyashita, Tadashi

    2014-07-01

    Cyrtarachne is an orb-weaving spider belonging to the subfamily Cyrtarachninae (Araneidae) which includes triangular-web-building Pasilobus and bolas spiders. The Cyrtarachninae is a group of spiders specialized in catching moths, which is thought to have evolved from ordinary orb-weaving araneids. Although the web-building time of nocturnal spiders is in general related to the time of sunset, anecdotal evidence has suggested variability of web-building time in Cyrtarachne and its closely related genera. This study has examined the effects of temperature, humidity, moonlight intensity, and prey (moths) availability on web-building time of Cyrtarachne bufo, Cyrtarachne akirai, and Cyrtarachne nagasakiensis. Generalized linear mixed model (GLMM) have revealed that humidity, and not prey availability, was the essential variable that explained the daily variability of web-building time. Experiments measuring thread stickiness under different humidities showed that, although the thread of Cyrtarachne was found to have strong stickiness under high humidity, low humidity caused a marked decrease of thread stickiness. By contrast, no obvious change in stickiness was seen in an ordinary orb-weaving spider, Larinia argiopiformis. These findings suggest that Cyrtarachne adjusts its web-building time to favorable conditions of high humidity maintaining strong stickiness, which enables the threads to work efficiently for capturing prey.

  10. Submm-Wave Radiometry for Cloud/Humidity/Precipitation Sciences

    Science.gov (United States)

    Wu, Dong L.

    2011-01-01

    Although active sensors can provide cloud profiles at good vertical resolution, clouds are often coupled with dynamics to form fast and organized structures. Lack of understanding of these organized systems leads to great challenge for numerical models. The deficiency is partly reflected, for example, in poorly modeled intraseasonal variations (e.g., MJD). Remote sensing clouds in the middle and upper troposphere has been challenging from space. Vis/IR sensors are sensitive to the topmost cloud layers whereas low-frequency MW techniques are sensitivity to liquid and precipitation at the bottom of cloud layers. The middle-level clouds, mostly in the ice phase, require a sensor that has moderate penetration and sensitivity to cloud scattering, in order to measure cloud water content. Sensors at submm wavelengths provide promising sensitivity and coverage with the spatial resolution needed to measure cloud water content floating in the upper air. In addition, submm-wave sensors are able to provide better measurements of upper-tropospheric humidity than traditional microwave instruments.

  11. Impacts of Present and Future Climate Variability On Agriculture and Forestry in the Humid and Sub-Humid Tropics

    International Nuclear Information System (INIS)

    Zhao, Y.; Wang, C.; Wang, S.; Tibig, Lourdes V.

    2005-01-01

    Although there are different results from different studies, most assessments indicate that climate variability would have negative effects on agriculture and forestry in the humid and sub-humid tropics. Cereal crop yields would decrease generally with even minimal increases in temperature. For commercial crops, extreme events such as cyclones, droughts and floods lead to larger damages than only changes of mean climate. Impacts of climate variability on livestock mainly include two aspects; impacts on animals such as increase of heat and disease stress-related death, and impacts on pasture. As to forestry, climate variability would have negative as well as some positive impacts on forests of humid and sub-humid tropics. However, in most tropical regions, the impacts of human activities such as deforestation will be more important than climate variability and climate change in determining natural forest cover

  12. A high sensitivity nanomaterial based SAW humidity sensor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, T-T; Chou, T-H [Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan (China); Chen, Y-Y [Department of Mechanical Engineering, Tatung University, Taipei 104, Taiwan (China)], E-mail: wutt@ndt.iam.ntu.edu.tw

    2008-04-21

    In this paper, a highly sensitive humidity sensor is reported. The humidity sensor is configured by a 128{sup 0}YX-LiNbO{sub 3} based surface acoustic wave (SAW) resonator whose operating frequency is at 145 MHz. A dual delay line configuration is realized to eliminate external temperature fluctuations. Moreover, for nanostructured materials possessing high surface-to-volume ratio, large penetration depth and fast charge diffusion rate, camphor sulfonic acid doped polyaniline (PANI) nanofibres are synthesized by the interfacial polymerization method and further deposited on the SAW resonator as selective coating to enhance sensitivity. The humidity sensor is used to measure various relative humidities in the range 5-90% at room temperature. Results show that the PANI nanofibre based SAW humidity sensor exhibits excellent sensitivity and short-term repeatability.

  13. Humidity-Induced Photoluminescence Hysteresis in Variable Cs/Br Ratio Hybrid Perovskites.

    Science.gov (United States)

    Howard, John M; Tennyson, Elizabeth M; Barik, Sabyasachi; Szostak, Rodrigo; Waks, Edo; Toney, Michael F; Nogueira, Ana F; Neves, Bernardo R A; Leite, Marina S

    2018-06-12

    Hybrid organic-inorganic perovskites containing Cs are a promising new material for light-absorbing and light-emitting optoelectronics. However, the impact of environmental conditions on their optical properties is not fully understood. Here, we elucidate and quantify the influence of distinct humidity levels on the charge carrier recombination in Cs x FA 1- x Pb(I y Br 1- y ) 3 perovskites. Using in situ environmental photoluminescence (PL), we temporally and spectrally resolve light emission within a loop of critical relative humidity (rH) levels. Our measurements show that exposure up to 35% rH increases the PL emission for all Cs (10-17%) and Br (17-38%) concentrations investigated here. Spectrally, samples with larger Br concentrations exhibit PL redshift at higher humidity levels, revealing water-driven halide segregation. The compositions considered present hysteresis in their PL intensity upon returning to a low-moisture environment due to partially reversible hydration of the perovskites. Our findings demonstrate that the Cs/Br ratio strongly influences both the spectral stability and extent of light emission hysteresis. We expect our method to become standard when testing the stability of emerging perovskites, including lead-free options, and to be combined with other parameters known for affecting material degradation, e.g., oxygen and temperature.

  14. Attribution of observed surface humidity changes to human influence.

    Science.gov (United States)

    Willett, Katharine M; Gillett, Nathan P; Jones, Philip D; Thorne, Peter W

    2007-10-11

    Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.

  15. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2015-12-08

    Flexible transparent conductive films (FTCFs) as the essential components of the next generation of functional circuits and devices are presently attracting more attention. Here, a new strategy has been demonstrated to fabricate thickness-controllable FTCFs through coffee ring lithography (CRL) of single-wall carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) hybrid ink. The influence of ink concentration and volume on the thickness and size of hybrid film has been investigated systematically. Results show that the final FTCFs present a high performance, including a homogeneous thickness of 60-65 nm, a sheet resistance of 1.8 kohm/sq, a visible/infrared-range transmittance (79%, PET = 90%), and a dynamic mechanical property (>1000 cycle, much better than ITO film), respectively, when SWCNT concentration is 0.2 mg/mL, ink volume is 0.4 μL, drying at room temperature. Moreover, the benefits of these kinds of FTCFs have been verified through a full transparent, flexible noncontact sensing panel (3 × 4 sensing pixels) and a flexible battery-free wireless sensor based on a humidity sensing mechanism, showing excellent human/machine interaction with high sensitivity, good stability, and fast response/recovery ability. © 2015 American Chemical Society.

  16. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong; Yang, Zhen Guo

    2015-01-01

    Flexible transparent conductive films (FTCFs) as the essential components of the next generation of functional circuits and devices are presently attracting more attention. Here, a new strategy has been demonstrated to fabricate thickness-controllable FTCFs through coffee ring lithography (CRL) of single-wall carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) hybrid ink. The influence of ink concentration and volume on the thickness and size of hybrid film has been investigated systematically. Results show that the final FTCFs present a high performance, including a homogeneous thickness of 60-65 nm, a sheet resistance of 1.8 kohm/sq, a visible/infrared-range transmittance (79%, PET = 90%), and a dynamic mechanical property (>1000 cycle, much better than ITO film), respectively, when SWCNT concentration is 0.2 mg/mL, ink volume is 0.4 μL, drying at room temperature. Moreover, the benefits of these kinds of FTCFs have been verified through a full transparent, flexible noncontact sensing panel (3 × 4 sensing pixels) and a flexible battery-free wireless sensor based on a humidity sensing mechanism, showing excellent human/machine interaction with high sensitivity, good stability, and fast response/recovery ability. © 2015 American Chemical Society.

  17. A multi-channel humidity control system based on LabVIEW

    International Nuclear Information System (INIS)

    Zhang Aiwu; Xie Yuguang; Liu Hongbang; Liu Yingbiao; Cai Xiao; Yu Boxiang; Lu Junguang; Zhou Li

    2011-01-01

    A real time multi-channel humidity control system was designed based on LabVIEW, using the dry air branch of BESⅢ drying system. The hardware of this control system consist of mini humidity and temperature sensors, intelligent collection module, switch quantity controller and electromagnetic valves. The humidity can be controlled at arbitrary value from air humidity to 3% with accuracy better than 2%. Multi microenvironment with different humidity can be easily controlled and monitored in real time by this system. It can also be extended to hybrid control of multi channel humidity and temperature. (authors)

  18. Structural, optical and gas sensing properties of screen-printed nanostructured Sr-doped SnO2 thick film sensor

    International Nuclear Information System (INIS)

    Shaikh, F.I.; Chikhale, L.P.; Patil, J.Y.; Rajgure, A.V.; Suryavanshi, S.S.; Mulla, I.S.

    2013-01-01

    The nanocrystalline materials of strontium doped tin oxide powders were synthesized by conventional co-precipitation method. Synthesized nanophase SnO 2 powders were used to fabricate thick films of pure and Sr-doped SnO 2 using screen-printing technology and investigated for their gas sensing properties towards LPG, ethanol, ammonia and acetone vapor. The crystal structure and phase of the sintered powders were characterized by X-ray diffractometer (XRD) and microstructure by scanning electron microscopy (SEM). All the doped and undoped SnO 2 compositions revealed single phase and solid solution formation. X-ray diffractometer (XRD) results indicated that well crystallized Sr-doped SnO 2 particles of size about 10 nm were obtained at sintering temperature 700℃. The optical properties viz. UV-Vis, FTIR and Raman were used to characterize various physico-chemical properties of samples. The reduction of grain size in metal oxide is a key factor to enhance the gas sensing properties. The doping of Sr in SnO 2 has reduced the grain size and improved the gas response. The results of gas sensing measurements showed that the thick films deposited on alumina substrates using screen-printing technique exhibited high gas response, quick response time and fast recovery time to acetone gas at a working temperature of 250℃. Further, the selectivity of sensor towards acetone with respect to other reducing gases (LPG, ethanol, ammonia) was studied. (author)

  19. Hydrothermal Synthesis of Pt-, Fe-, and Zn-doped SnO2 Nanospheres and Carbon Monoxide Sensing Properties

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2013-01-01

    Full Text Available Pure and M-doped (M = Pt, Fe, and Zn SnO2 nanospheres were successfully synthesized via a simple and facile hydrothermal method and characterized by X-ray powder diffraction, field-emission scanning electron microscopy, and energy dispersive spectroscopy. Chemical gas sensors were fabricated based on the as-synthesized nanostructures, and carbon monoxide sensing properties were systematically measured. Compared to pure, Fe-, and Zn-doped SnO2 nanospheres, the Pt-doped SnO2 nanospheres sensor exhibits higher sensitivity, lower operating temperature, more rapid response and recovery, better stability, and excellent selectivity. In addition, a theoretical study based on the first principles calculation was conducted. All results demonstrate the potential of Pt dopant for improving the gas sensing properties of SnO2-based sensors to carbon monoxide.

  20. Tensile behavior of humid aged advanced composites for helicopter external fuel tank development

    Directory of Open Access Journals (Sweden)

    Condruz Mihaela

    2018-01-01

    Full Text Available Influence of humid aging on tensile properties of two polymeric composites was studied. The purpose of the study was to evaluate the suitability of the materials for a naval helicopter external fuel tank. Due to the application, the humid environment was kerosene and saline solution to evaluate the sea water effect on the composite tensile strength. The composite samples were immersed in kerosene for 168 hours, respective 1752 hours and in saline solution for 168 hours. Tensile tests were performed after the immersion. The composite sample tensile tests showed that kerosene and saline solution had no influence on the elastic modulus of the materials, but it was observed a slight improvement of the tensile strength of the two polymeric composites.

  1. A Standard CMOS Humidity Sensor without Post-Processing

    OpenAIRE

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    A 2 ?W power dissipation, voltage-output, humidity sensor accurate to 5% relative humidity was developed using the LFoundry 0.15 ?m CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a Intervia Photodielectric 8023?10 humidity-sensitive layer, and a CMOS capacitance to voltage converter.

  2. Zigzag GaN/Ga2O3 heterogeneous nanowires: Synthesis, optical and gas sensing properties

    Directory of Open Access Journals (Sweden)

    Li-Wei Chang

    2011-09-01

    Full Text Available Zigzag GaN/Ga2O3 heterogeneous nanowires (NWs were fabricated, and the optical properties and NO gas sensing ability of the NWs were investigated. We find that NWs are most effective at 850 °C at a switching process once every 10 min (on/off = 10 min per each with a mixture flow of NH3 and Ar. The red shift of the optical bandgap (0.66 eV is observed from the UV-vis spectrum as the GaN phase forms. The gas sensing characteristics of the developed sensor are significantly replaced to those of other types of NO sensors reported in literature.

  3. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest?

    Science.gov (United States)

    Human, Hannelie; Nicolson, Sue W.; Dietemann, Vincent

    2006-08-01

    Honeybees are highly efficient at regulating the biophysical parameters of their hive according to colony needs. Thermoregulation has been the most extensively studied aspect of nest homeostasis. In contrast, little is known about how humidity is regulated in beehives, if at all. Although high humidity is necessary for brood development, regulation of this parameter by honeybee workers has not yet been demonstrated. In the past, humidity was measured too crudely for a regulation mechanism to be identified. We reassess this issue, using miniaturised data loggers that allow humidity measurements in natural situations and at several places in the nest. We present evidence that workers influence humidity in the hive. However, there are constraints on potential regulation mechanisms because humidity optima may vary in different locations of the nest. Humidity could also depend on variable external factors, such as water availability, which further impair the regulation. Moreover, there are trade-offs with the regulation of temperature and respiratory gas exchanges that can disrupt the establishment of optimal humidity levels. As a result, we argue that workers can only adjust humidity within sub-optimal limits.

  4. Humidity: A review and primer on atmospheric moisture and human health.

    Science.gov (United States)

    Davis, Robert E; McGregor, Glenn R; Enfield, Kyle B

    2016-01-01

    Research examining associations between weather and human health frequently includes the effects of atmospheric humidity. A large number of humidity variables have been developed for numerous purposes, but little guidance is available to health researchers regarding appropriate variable selection. We examine a suite of commonly used humidity variables and summarize both the medical and biometeorological literature on associations between humidity and human health. As an example of the importance of humidity variable selection, we correlate numerous hourly humidity variables to daily respiratory syncytial virus isolates in Singapore from 1992 to 1994. Most water-vapor mass based variables (specific humidity, absolute humidity, mixing ratio, dewpoint temperature, vapor pressure) exhibit comparable correlations. Variables that include a thermal component (relative humidity, dewpoint depression, saturation vapor pressure) exhibit strong diurnality and seasonality. Humidity variable selection must be dictated by the underlying research question. Despite being the most commonly used humidity variable, relative humidity should be used sparingly and avoided in cases when the proximity to saturation is not medically relevant. Care must be taken in averaging certain humidity variables daily or seasonally to avoid statistical biasing associated with variables that are inherently diurnal through their relationship to temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A model for the impact of the nanostructure size on its gas sensing properties

    DEFF Research Database (Denmark)

    Alenezi, Mohammad R.; Alzanki, T.H.; Almeshal, A.M.

    2015-01-01

    The size of a metal oxide nanostructure plays a key role in its performance as a gas sensor. ZnO nanostructures with different morphologies including nanowires at different diameters and nanodisks at different thicknesses were synthesized hydrothermally. Gas sensors based on individual...... of the surface to volume ratio as well as the depletion region of the nanostructure. This work can be simply generalized for other metal oxides to enhance their performance as gas sensors....... nanostructures with different sizes were fabricated and their sensing properties were compared and investigated. Nanowires with smaller diameter size and higher surface to volume ratio showed enhanced gas sensing performance. Also, as the nanodisk thickness gets closer to the thickness of the ZnO depletion layer...

  6. Single-Antenna Temperature- and Humidity-Sounding Microwave Receiver

    Science.gov (United States)

    Hoppe, Daniel J.; Pukala, David M.; Lambrigtsen, Bjorn H.; Soria, Mary M.; Owen, Heather R.; Tanner, Alan B.; Bruneau, Peter J.; Johnson, Alan K.; Kagaslahti, Pekka P.; Gaier, Todd C.

    2011-01-01

    For humidity and temperature sounding of Earth s atmosphere, a single-antenna/LNA (low-noise amplifier) is needed in place of two separate antennas for the two frequency bands. This results in significant mass and power savings for GeoSTAR that is comprised of hundreds of antennas per frequency channel. Furthermore, spatial anti-aliasing would reduce the number of horns. An anti-aliasing horn antenna will enable focusing the instrument field of view to the hurricane corridor by reducing spatial aliasing, and thus reduce the number of required horns by up to 50 percent. The single antenna/receiver assembly was designed and fabricated by a commercial vendor. The 118 183-GHz horn is based upon a profiled, smooth-wall design, and the OMT (orthomode transducer) on a quad-ridge design. At the input end, the OMT presents four ver y closely spaced ridges [0.0007 in. (18 m)]. The fabricated assembly contains a single horn antenna and low-noise broadband receiver front-end assembly for passive remote sensing of both temperature and humidity profiles in the Earth s atmosphere at 118 and 183 GHz. The wideband feed with dual polarization capability is the first broadband low noise MMIC receiver with the 118 to 183 GHz bandwidth. This technology will significantly reduce PATH/GeoSTAR mass and power while maintaining 90 percent of the measurement capabilities. This is required for a Mission-of-Opportunity on NOAA s GOES-R satellite now being developed, which in turn will make it possible to implement a Decadal-Survey mission for a fraction of the cost and much sooner than would otherwise be possible.

  7. Effect of Steel Framing for Securing Drywall Panels on Thermal and Humidity Parameters of the Outer Walls

    Science.gov (United States)

    Major, Maciej; Kosiń, Mariusz

    2017-12-01

    The paper analyses the effect of steel framing used to secure drywall panels on thermal and humidity properties of outer walls. In the practice of building a light structure, the most popular components are steel and wood studs. They are used to obtain framing for building a wall (an outer wall in this study). Analysis presented in this study concerned the corner of the outer wall build using the technology of light steel framing. Computer simulation was used to perform thermal and humidity analysis for the joint of the outer wall.

  8. Effect of Steel Framing for Securing Drywall Panels on Thermal and Humidity Parameters of the Outer Walls

    Directory of Open Access Journals (Sweden)

    Major Maciej

    2017-12-01

    Full Text Available The paper analyses the effect of steel framing used to secure drywall panels on thermal and humidity properties of outer walls. In the practice of building a light structure, the most popular components are steel and wood studs. They are used to obtain framing for building a wall (an outer wall in this study. Analysis presented in this study concerned the corner of the outer wall build using the technology of light steel framing. Computer simulation was used to perform thermal and humidity analysis for the joint of the outer wall.

  9. Humidity level In psychrometric processes

    International Nuclear Information System (INIS)

    Mojsovski, Filip

    2008-01-01

    When a thermal engineer needs to control, rather than merely moderate humidity, he must focus on the moisture level as a separate variable - not simply an addition of temperature control. Controlling humidity generally demands a correct psychrometric approach dedicated to that purpose [1].Analysis of the humidity level in psychrometric thermal processes leads to relevant data for theory and practice [2]. This paper presents: (1) the summer climatic curve for the Skopje region, (2) selected results of investigation on farm dryers made outside laboratories. The first purpose of such activity was to examine relations between weather conditions and drying conditions. The estimation of weather condition for the warmest season of the year was realized by a summer climatic curve. In the science of drying, basic drying conditions are temperature, relative humidity and velocity of air, thickness of dried product and dryer construction. The second purpose was to realize correct prediction of drying rates for various psychrometrics drying processes and local products. Test runs with the dryer were carried out over a period of 24 h, using fruits and vegetables as experimental material. Air flow rate through the dryer of 150 m3/h, overall drying rate of 0.04 kg/h and air temperature of 65 oC were reached. Three types of solar dryers, were exploited in the research.

  10. Shallow Land Burial Technology - Humid

    International Nuclear Information System (INIS)

    Davis, E.C.; Spalding, B.P.; Lee, S.Y.

    1983-01-01

    The Shallow Land Burial Technology - Humid Project is being conducted for the Department of Energy Low-Level Waste Management Program with the objective of identifying and demonstrating improved technology for disposing of low-level solid waste in humid environments. Two improved disposal techniques are currently being evaluated using nine demonstration trenches at the Engineered Test Facility (ETF). The first is use of a cement-bentonite grout applied as a waste backfill material prior to trench closure and covering. The second is complete hydrologic isolation of waste by emplacement in a trench that is lined on all four sides, top and bottom using synthetic impermeable lining material. An economic analysis of the trench grouting and lining demonstration favored the trench lining operation ($1055/demonstration trench) over trench grouting ($1585/demonstration trench), with the cost differential becoming even greater (as much as a factor of 6 in favor of lining for typical ORNL trenches) as trench dimensions increase and trench volumes exceed those of the demonstration trenches. In addition to the evaluation of trench grouting and lining, major effort has centered on characterization of the ETF site. Though only a part of the overall study, characterization is an extremely important component of the site selection process; it is during these activities that potential problems, which may obviate the site from further consideration, are found. Characterization of the ETF has included studies of regional and site-specific geology, the physical and chemical properties of the soils in which the demonstration trenches are located, and hydrology of the small watershed of which the ETF is a part. 12 references, 6 figures, 2 tables

  11. FY 2015 Report: Developing Remote Sensing Capabilities for Meter-Scale Sea Ice Properties

    Science.gov (United States)

    2015-09-30

    albedo retrieval from MERIS data–Part 2: Case studies and trends of sea ice albedo and melt ponds in the Arctic for years 2002–2011. The Cryosphere, 9...and spectral sea ice albedo retrieval from MERIS data-Part 1: Validation against in situ, aerial, and ship cruise data. The Cryosphere, 9, 1551-1566. ...1 FY 2015 Report: Developing Remote Sensing Capabilities for Meter-Scale Sea Ice Properties Chris Polashenski USACE-CRREL Building 4070

  12. Effect of platinum-nanodendrite modification on the glucose-sensing properties of a zinc-oxide-nanorod electrode

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Razak, Khairunisak, E-mail: khairunisak@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research & Innovation (NanoBRI), INFORMM, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Neoh, Soo Huan; Ridhuan, N.S.; Mohamad Nor, Noorhashimah [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2016-09-01

    Highlights: • Effect of PtNDs on ZnONRs/ITO glucose sensor was studied. • Well-defined PtNDs synthesis using 20 mM K{sub 2}PtCl{sub 4} produced good dispersion between nanodendrites with uniform particle size. • Nafion coating significantly improved the catalytic oxidation of glucose sensor. • Nafion/GO{sub x}/PtNDs/ZnONRs/ITO demonstrated better properties compared with Nafion/GO{sub x}/PtNDs/ITO and Nafion/GO{sub x}/ZnONRs/ITO electrodes. - Abstract: The properties of ZnO nanorods (ZnONRs) decorated with platinum nanodendrites (PtNDs) were studied. Various sizes of PtNDs were synthesized and spin coated onto ZnONRs, which were grown on indium–titanium–oxide (ITO) substrates through a low-temperature hydrothermal method. Scanning electron microscopy and X-ray diffraction analyses were conducted to analyze the morphology and structural properties of the electrodes. The effects of PtND size, glucose concentration, and Nafion amount on glucose-sensing properties were investigated. The glucose-sensing properties of electrodes with immobilized glucose oxidase (GO{sub x}) were measured using cyclic voltammetry. The bio-electrochemical properties of Nafion/GO{sub x}/42 nm PtNDs/ZnONRs/ITO glucose sensor was observed with linear range within 1–18 mM, with a sensitivity value of 5.85 μA/mM and a limit of detection of 1.56 mM. The results of this study indicate that PtNDs/ZnONRs/ITO has potential in glucose sensor applications.

  13. Comparative analysis of property taxation policies within Greece and Cyprus evaluating the use of GIS, CAMA, and remote sensing techniques

    Science.gov (United States)

    Dimopoulos, Thomas; Labropoulos, Tassos; Hadjimitsis, Diofantos G.

    2014-08-01

    This paper aims to examine how CAMA, GIS and Remote Sensing are integrated to assist property taxation. Real property tax apart from its fiscal dimension is directly linked to geographic location. The value of the land and other immovable features such as buildings and structures is determined from specific parameters. All these immovable assets are visible and have specific geographic location & coordinates, materials, occupied area, land-use & utility, ownership & occupancy status and finally a specific value (ad valorem property taxation system) according to which the property tax is levied to taxpayers. Of high importance in the tax imposing procedure is that the use of CAMA, GIS and Remote Sensing tools is capable of providing effective and efficient collection of this property value determining data. Furthermore, these tools can track changes during a property's lifecycle such parcel subdivision into plots, demolition of a building and development of a new one or track a change in the planning zone. The integration of these systems also supports a full range of business processes on revenue mobilization ranging from billing to taxpayers objections management.

  14. The Use of Ambient Humidity Conditions to Improve Influenza Forecast

    Science.gov (United States)

    Shaman, J. L.; Kandula, S.; Yang, W.; Karspeck, A. R.

    2017-12-01

    Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast and provide further evidence that humidity modulates rates of influenza transmission.

  15. Influence of Fabricating Process on Gas Sensing Properties of ZnO Nanofiber-Based Sensors

    International Nuclear Information System (INIS)

    Xu Lei; Wang Rui; Liu Yong; Dong Liang

    2011-01-01

    ZnO nanofibers are synthesized by an electrospinning method and characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Two types of gas sensors are fabricated by loading these nanofibers as the sensing materials and their performances are investigated in detail. Compared with the sensors based on traditional ceramic tubes with Au electrodes (traditional sensors), the sensors fabricated by spinning ZnO nanofibers on ceramic planes with Ag-Pd electrodes (plane sensors) exhibit much higher sensing properties. The sensitivity for the plane sensors is about 30 to 100 ppm ethanol at 300°C, while the value is only 13 for the traditional sensors. The response and recovery times are about 2 and 3s for the plane sensors and are 3 and 6s for the traditional sensors, respectively. Lower minimum-detection-limit is also found for the plane sensors. These improvements are explained by considering the morphological damage in the fabricating process for traditional sensors. The results suggest that the plane sensors are more suitable to sensing investigation for higher veracity. (general)

  16. The influence of humidity fluxes on offshore wind speed profiles

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Sempreviva, Anna Maria; Pryor, Sara

    2010-01-01

    extrapolation from lower measurements. With humid conditions and low mechanical turbulence offshore, deviations from the traditional logarithmic wind speed profile become significant and stability corrections are required. This research focuses on quantifying the effect of humidity fluxes on stability corrected...... wind speed profiles. The effect on wind speed profiles is found to be important in stable conditions where including humidity fluxes forces conditions towards neutral. Our results show that excluding humidity fluxes leads to average predicted wind speeds at 150 m from 10 m which are up to 4% higher...... than if humidity fluxes are included, and the results are not very sensitive to the method selected to estimate humidity fluxes....

  17. Influence of Graphene Nanosheets on Rheology, Microstructure, Strength Development and Self-Sensing Properties of Cement Based Composites

    Directory of Open Access Journals (Sweden)

    Sardar Kashif Ur Rehman

    2018-03-01

    Full Text Available In this research, Graphene oxide (GO, prepared by modified hammer method, is characterized using X-ray Diffraction (XRD, Fourier Transform Infrared (FT-IR Spectrometry and Raman spectra. The dispersion efficiency of GO in aqueous solution is examined by Ultraviolet–visible spectroscopy and it is found that GO sheets are well dispersed. Thereafter, rheological properties, flow diameter, hardened density, compressive strength and electrical properties of GO based cement composite are investigated by incorporating 0.03% GO in cement matrix. The reasons for improvement in strength are also discussed. Rheological results confirm that GO influenced the flow behavior and enhanced the viscosity of the cement based system. From XRD and Thermogravimetric Analysis (TGA results, it is found that more hydration occurred when GO was incorporated in cement based composite. The GO based cement composite improves the compressive strength and density of mortar by 27% and 1.43%, respectively. Electrical properties results showed that GO–cement based composite possesses self-sensing characteristics. Hence, GO is a potential nano-reinforcement candidate and can be used as self-sensing sustainable construction material.

  18. Effects of temperature and relative humidity on DNA methylation.

    Science.gov (United States)

    Bind, Marie-Abele; Zanobetti, Antonella; Gasparrini, Antonio; Peters, Annette; Coull, Brent; Baccarelli, Andrea; Tarantini, Letizia; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2014-07-01

    Previous studies have found relationships between DNA methylation and various environmental contaminant exposures. Associations with weather have not been examined. Because temperature and humidity are related to mortality even on non-extreme days, we hypothesized that temperature and relative humidity may affect methylation. We repeatedly measured methylation on long interspersed nuclear elements (LINE-1), Alu, and 9 candidate genes in blood samples from 777 elderly men participating in the Normative Aging Study (1999-2009). We assessed whether ambient temperature and relative humidity are related to methylation on LINE-1 and Alu, as well as on genes controlling coagulation, inflammation, cortisol, DNA repair, and metabolic pathway. We examined intermediate-term associations of temperature, relative humidity, and their interaction with methylation, using distributed lag models. Temperature or relative humidity levels were associated with methylation on tissue factor (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like receptor 2 (TRL-2), carnitine O-acetyltransferase (CRAT), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and glucocorticoid receptor, LINE-1, and Alu. For instance, a 5°C increase in 3-week average temperature in ICAM-1 methylation was associated with a 9% increase (95% confidence interval: 3% to 15%), whereas a 10% increase in 3-week average relative humidity was associated with a 5% decrease (-8% to -1%). The relative humidity association with ICAM-1 methylation was stronger on hot days than mild days. DNA methylation in blood cells may reflect biological effects of temperature and relative humidity. Temperature and relative humidity may also interact to produce stronger effects.

  19. Simonkolleite nano-platelets: Synthesis and temperature effect on hydrogen gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Sithole, J. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Ngom, B.D., E-mail: bdngom@tlabs.ac.za [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa) and African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Laboratoire de Photonique et de Nano-Fabrication, Groupe de Physique du Solide et Sciences des Materiaux, Departement de Physique Facultes des Sciences et Technique Universite Cheikh Anta Diop de Dakar, Dakar (Senegal); Khamlich, S. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Manikanadan, E. [National Centre for Nano-Structured Materials (NCNSM), Council for Scientific and Industrial Research, Pretoria (South Africa); Manyala, N. [Department of Physics, SARCHI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria 0028 (South Africa); Saboungi, M.L. [Centre de Recherche sur la Matiere Divisee, CNRS-Orleans, Orleans (France); Knoessen, D. [Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Nemutudi, R.; Maaza, M. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa)

    2012-08-01

    In this work, the new refined mineral platelets-like morphology of simonkolleite based particles described by Shemetzer et al. (1985) were synthesized in zinc nitrate aqueous solution by a moderate solution process. The morphological and structural properties of the platelets-like Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O were characterized by scanning electron microscope energy dispersed X-ray spectroscopy, transmission electron microscope, powder X-ray diffraction and selected area electron diffraction as well as attenuated total reflection infrared spectroscopy. The morphology as well as the size in both basal and transversal directions of the simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano/micro crystals was found to be significantly depending on the specific concentration of 0.1 M of Zn{sup 2+}/Cl{sup -} ions in the precursor solution. The simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano-platelets revealed a significant and singular H{sub 2} gas sensing characteristics. The operating temperature was found to play a key role on the sensing properties of simonkolleite. The effect of temperature on the simonkolleite sample as a hydrogen gas sensor was studied by recording the change in resistivity of the film in presence of the test gas. The results on the sensitivity and response time as per comparison to earlier reported ZnO based sensors are indicated and discussed.

  20. Mars Science Laboratory relative humidity observations: Initial results.

    Science.gov (United States)

    Harri, A-M; Genzer, M; Kemppinen, O; Gomez-Elvira, J; Haberle, R; Polkko, J; Savijärvi, H; Rennó, N; Rodriguez-Manfredi, J A; Schmidt, W; Richardson, M; Siili, T; Paton, M; Torre-Juarez, M De La; Mäkinen, T; Newman, C; Rafkin, S; Mischna, M; Merikallio, S; Haukka, H; Martin-Torres, J; Komu, M; Zorzano, M-P; Peinado, V; Vazquez, L; Urqui, R

    2014-09-01

    The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppmMSL relative humidity observation provides good dataHighest detected relative humidity reading during first MSL 100 sols is RH75.

  1. Electrical resistivity and rheological properties of sensing bentonite drilling muds modified with lightweight polymer

    Directory of Open Access Journals (Sweden)

    Ahmed S. Mohammed

    2018-03-01

    Full Text Available In this study, the electrical resistivity and rheological properties of a water-based bentonite clay drilling mud modified with the lightweight polymer (guar gum under various temperature were investigated. Based on the experimental and analytical study, the electrical resistivity was identified as the sensing property of the bentonite drilling mud so that the changes in the properties can be monitored in real-time during the construction. The bentonite contents in the drilling muds were varied up to 8% by the weight of water and temperature was varied from 25 °C to 85 °C. The guar gum content (GG% was varied between 0% and 1% by the weight of the drilling mud to modify the rheological properties and enhance the sensing electrical resistivity of the drilling mud. The guar gum and bentonite clay were characterized using thermal gravimetric analysis (TGA. The total weight loss at 800 °C for the bentonite decreased from 12.96% to 0.7%, about 95% reduction, when the bentonite was mixed with 1% of guar gum. The results also showed that 1% guar gum decreased the electrical resistivity of the drilling mud from 50% to 90% based on the bentonite content and the temperature of the drilling mud. The guar gum modification increased the yield point (YP and plastic viscosity (PV by 58% to 230% and 44% to 77% respectively based on the bentonite content and temperature of the drilling mud. The rheological properties of the drilling muds have been correlated to the electrical resistivity of the drilling mud using nonlinear power and hyperbolic relationships. The model predictions agreed well with the experimental results. Hence the performance of the bentonite drilling muds with and without guar gum can be characterized based on the electrical resistivity which can be monitored real-time in the field. Keywords: Bentonite, Polymer (Guar gum, Electrical resistivity, Rheological properties, Temperature, Modeling

  2. Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism

    International Nuclear Information System (INIS)

    Zeng Wen; Liu Tianmo

    2010-01-01

    We report the microstructure and gas-sensing properties of the SnO 2 -TiO 2 composite oxide dope with Ag ion prepared by the sol-gel method. Of all various volatile organic compounds (VOCs) such as ethanol, methanol, acetone and formaldehyde were examined, the sensor exhibits remarkable selectivity to each VOCs at different operating temperature. Further investigations based on quantum chemistry calculation show that difference orbital energy of VOCs molecule may be a qualitative factor to affect the selectivity of the sensor.

  3. Optimizing cloud removal from satellite remotely sensed data for monitoring vegetation dynamics in humid tropical climate

    International Nuclear Information System (INIS)

    Hashim, M; Pour, A B; Onn, C H

    2014-01-01

    Remote sensing technology is an important tool to analyze vegetation dynamics, quantifying vegetation fraction of Earth's agricultural and natural vegetation. In optical remote sensing analysis removing atmospheric interferences, particularly distribution of cloud contaminations, are always a critical task in the tropical climate. This paper suggests a fast and alternative approach to remove cloud and shadow contaminations for Landsat Enhanced Thematic Mapper + (ETM + ) multi temporal datasets. Band 3 and Band 4 from all the Landsat ETM + dataset are two main spectral bands that are very crucial in this study for cloud removal technique. The Normalise difference vegetation index (NDVI) and the normalised difference soil index (NDSI) are two main derivatives derived from the datasets. Change vector analysis is used in this study to seek the vegetation dynamics. The approach developed in this study for cloud optimizing can be broadly applicable for optical remote sensing satellite data, which are seriously obscured with heavy cloud contamination in the tropical climate

  4. Humidity Sensors Printed on Recycled Paper and Cardboard

    Directory of Open Access Journals (Sweden)

    Matija Mraović

    2014-07-01

    Full Text Available Research, design, fabrication and results of various screen printed capacitive humidity sensors is presented in this paper. Two types of capacitive humidity sensors have been designed and fabricated via screen printing on recycled paper and cardboard, obtained from the regional paper and cardboard industry. As printing ink, commercially available silver nanoparticle-based conductive ink was used. A considerable amount of work has been devoted to the humidity measurement methods using paper as a dielectric material. Performances of different structures have been tested in a humidity chamber. Relative humidity in the chamber was varied in the range of 35%–80% relative humidity (RH at a constant temperature of 23 °C. Parameters of interest were capacitance and conductance of each sensor material, as well as long term behaviour. Process reversibility has also been considered. The results obtained show a mainly logarithmic response of the paper sensors, with the only exception being cardboard-based sensors. Recycled paper-based sensors exhibit a change in value of three orders of magnitude, whereas cardboard-based sensors have a change in value of few 10s over the entire scope of relative humidity range (RH 35%–90%. Two different types of capacitor sensors have been investigated: lateral (comb type sensors and modified, perforated flat plate type sensors. The objective of the present work was to identify the most important factors affecting the material performances with humidity, and to contribute to the development of a sensor system supported with a Radio Frequency Identification (RFID chip directly on the material, for use in smart packaging applications. Therefore, the authors built a passive and a battery-supported wireless module based on SL900A smart sensory tag’s IC to achieve UHF-RFID functionality with data logging capability.

  5. Morphology and gas sensing properties of as-deposited and thermally treated doped thin SnO{sub x} layers

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, B; Pirov, J; Podolesheva, I [Acad. J. Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria); Nihtianova, D, E-mail: biliana@clf.bas.b [Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.107, 1113 Sofia (Bulgaria)

    2010-04-01

    Thin layers intended for gas sensors are prepared by vacuum co-evaporation of TeO{sub 2} and Sn. The as-deposited layers consist of a nanosized oxide matrix and finely dispersed dopants (Te, Sn, TeO{sub 2} or SnTe, depending on the atomic ratio R{sub Sn/Te}). In order to improve the characteristics of the layers they are additionally doped with platinum. The gas sensing properties are strongly dependent on the atomic ratio R{sub Sn/Te}, as well as on the structure, composition and surface morphology. The as-deposited layers with R{sub Sn/Te} 0.8 are highly sensitive humidity sensors working at room temperature. Thermally treated Pt-doped layers with R{sub Sn/Te} 2.3 are promising as ethanol sensors. With the aim of obtaining more detailed knowledge about the surface morphology, structure and composition of layers sensitive to different environments, various techniques -TEM, SAED, SEM, EDS in SEM and white light interferometry (WLI), are applied. It is shown that all layers with 1.0 > R{sub Sn/Te} > 2, as-deposited and thermally treated, exhibit a columnar structure and a very smooth surface along with the nanograined matrix. The thermal treatment causes changes in the structure and composition of the layers. The ethanol-sensitive layers consist of nanosized polycrystalline phases of SnO{sub 2}, Sn{sub 2}O{sub 3}, Sn{sub 3}O{sub 4} and TeO{sub 2}. This knowledge could help us understand better the behaviour and govern the characteristics of layers obtained by co-evaporation of Sn and TeO{sub 2}.

  6. Influence of air humidity on polymeric microresonators

    International Nuclear Information System (INIS)

    Schmid, S; Kühne, S; Hierold, C

    2009-01-01

    The influence of air humidity on polymeric microresonators is investigated by means of three different resonator types. SU-8 microbeams, SU-8 microstrings and a silicon micromirror with SU-8 hinges are exposed to relative humidities between 3% and 60%. The shifts of the resonant frequencies as a function of the relative humidity (RH) are explained based on mechanical models which are extended with water absorption models in polymer materials. The dominant effect causing the resonant frequency change is evaluated for each structure type. The eigenfrequency of the microstrings and the micromirror in the out-of-plane mode, which both mainly are defined by the pre-stress of the polymeric structures, are found to be highly sensitive to changes of air humidity. The humidity-induced (hygrometric) volume expansion reversibly reduces the pre-stress which results in relative frequency changes of up to 0.78%/%RH for the microstrings. A maximum coefficient of humidity-induced volume expansion for SU-8 of α hyg = 52.3 ppm/%RH is evaluated by fitting the data with the analytical model. It was found that microstrings that were stored at 150 °C over 150 h are more moisture sensitive compared to structures that were stored at room temperature. For the SU-8 microbeams and the micromirror in the tilt mode, the eigenfrequency is mainly defined by the modulus of the polymer material. The measured relative resonant frequency changes were below 1% for the given RH range. For low RH values, antiplasticization is observed (the modulus increases) followed by a plasticization for increasing RH values

  7. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    Science.gov (United States)

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  8. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  9. Laboratory setup for temperature and humidity measurements

    CERN Document Server

    Eimre, Kristjan

    2015-01-01

    In active particle detectors, the temperature and humidity conditions must be under constant monitoring and control, as even small deviations from the norm cause changes to detector characteristics and result in a loss of precision. To monitor the temperature and humidity, different kinds of sensors are used, which must be calibrated beforehand to ensure their accuracy. To calibrate the large number of sensors that are needed for the particle detectors and other laboratory work, a calibration system is needed. The purpose of the current work was to develop a laboratory setup for temperature and humidity sensor measurements and calibration.

  10. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Bao-guo Yao

    2017-10-01

    Full Text Available Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  11. Enhancing the humidity sensitivity of Ga2O3 /SnO2 core/shell microribbon by applying mechanical strain and its application as a flexible strain sensor.

    Science.gov (United States)

    Liu, Kewei; Sakurai, Makoto; Aono, Masakazu

    2012-12-07

    The humidity sensitivity of a single β-Ga(2) O(3) /amorphous SnO(2) core/shell microribbon on a flexible substrate is enhanced by the application of tensile strain and increases linearly with the strain. The strain-induced enhancement originates from the increase in the effective surface area where water molecules are adsorbed. This strain dependence of humidity sensitivity can be used to monitor the external strain. The strain sensing of the microribbon device under various amounts of mechanical loading shows excellent reliability and reproducibility with a gauge factor of -41. The flexible device has high potential to detect both humidity and strain at room temperature. These findings and the mechanism involved are expected to pave the way for new flexible strain and multifunctional sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrospun V2O5 composite fibers: Synthesis, characterization and ammonia sensing properties

    International Nuclear Information System (INIS)

    Modafferi, V.; Trocino, S.; Donato, A.; Panzera, G.; Neri, G.

    2013-01-01

    In the present work, vanadium oxide (V 2 O 5 ) fibers have been investigated for monitoring ammonia (NH 3 ) at ppb levels in air. A simple sol gel-based electrospinning process has been applied for the synthesis of vanadium oxide/polyvinyl acetate (PVAc) and vanadium oxide/polyvinylpyrrolidone (PVP) composite fibers. Composite fibers doped with platinum (Pt) have been also prepared. The pure and Pt-doped metal oxide phase has been subsequently obtained by removing the polymer binder at high temperature in air. The samples have been widely studied to characterize their morphological and microstructural properties by X-Ray Diffraction, Fourier Transform InfraRed spectroscopy, X-ray Photoelectron Spectroscopy, and Scanning Electron Microscopy investigations. The application of the produced fibers in highly sensitive ammonia resistive sensors has been demonstrated. The influence of the nature of polymer binder and platinum addition on the sensing performances of the V 2 O 5 fibers has been investigated and discussed.V 2 O 5 fibers produced by using PVP as a polymer binder have shown higher sensitivity toward ammonia at ppb concentrations than fibers obtained with PVAc. Pt-doped samples have shown a lower response compared to un-doped samples. - Highlights: • Synthesis of vanadium oxide composite fibers by electrospinning • Physical and chemical characterization of prepared samples • Investigation of the sensing properties to ppb concentrations of ammonia in air

  13. Temperature-dependent deliquescence relative humidities and water activities using humidity controlled thermogravimetric analysis with application to malonic acid.

    Science.gov (United States)

    Beyer, Keith D; Schroeder, Jason R; Kissinger, Jared A

    2014-04-03

    We utilize a new experimental technique, humidity-controlled thermogravimetric analysis (HTGA), to determine temperature-dependent deliquescence relative humidities (DRH) and to determine the equilibrium concentration of a solution at a given temperature and relative humidity. To that end, we have investigated the malonic acid/water system determining the DRH and concentration/RH relationship in the temperature range 303-278 K. Excellent agreement is found with literature values for the DRH of malonic acid as a function of temperature and for the concentration/RH relationship at several temperatures. Thus, we extend the DRH and concentration/RH relationship to a broader temperature range and are using the HTGA experiments to investigate other organic acids.

  14. Characterization of WO3-SnO2 Nanocomposites and Application in Humidity Sensing

    Directory of Open Access Journals (Sweden)

    N. K. Pandey

    2011-02-01

    Full Text Available Pellet samples of WO3-SnO2 nanocomposite in the weight % ratio of 85:15 have been prepared and annealed at temperatures 300-600 °C for 3 hours. When exposed to humidity, the sample shows maximum sensitivity of 23.41 MΩ/%RH for the annealing temperature 600 °C. For this annealing temperature of 600 °C, the sample shows low ageing effect after four months. The hysteresis (between humidification and desiccation, measured in the RH range of 15–90 % RH for the annealing temperature of 600 °C is less than 8 % RH. Activation energy measured from Arrhenius plot in 50 to 300 °C and 300 to 600 °C range have been found to be 0.12 and 0.54 eV respectively. The response time and recovery time for the sample annealed at 600 °C are 121 seconds and 912 seconds respectively. The grain size and crystallite size of the pellets are found to be in the nanometer range. An observation of the crystallite size and grain size would suggest that smaller crystallites are getting agglomerated to form larger grains.

  15. Study on Applicability of Conceptual Hydrological Models for Flood Forecasting in Humid, Semi-Humid Semi-Arid and Arid Basins in China

    Directory of Open Access Journals (Sweden)

    Guangyuan Kan

    2017-09-01

    Full Text Available Flood simulation and forecasting in various types of watersheds is a hot issue in hydrology. Conceptual hydrological models have been widely applied to flood forecasting for decades. With the development of economy, modern China faces with severe flood disasters in all types of watersheds include humid, semi-humid semi-arid and arid watersheds. However, conceptual model-based flood forecasting in semi-humid semi-arid and arid regions is still challenging. To investigate the applicability of conceptual hydrological models for flood forecasting in the above mentioned regions, three typical conceptual models, include Xinanjiang (XAJ, mix runoff generation (MIX and northern Shannxi (NS, are applied to 3 humid, 3 semi-humid semi-arid, and 3 arid watersheds. The rainfall-runoff data of the 9 watersheds are analyzed based on statistical analysis and information theory, and the model performances are compared and analyzed based on boxplots and scatter plots. It is observed the complexity of drier watershed data is higher than that of the wetter watersheds. This indicates the flood forecasting is harder in drier watersheds. Simulation results indicate all models perform satisfactorily in humid watersheds and only NS model is applicable in arid watersheds. Model with consideration of saturation excess runoff generation (XAJ and MIX perform better than the infiltration excess-based NS model in semi-humid semi-arid watersheds. It is concluded more accurate mix runoff generation theory, more stable and efficient numerical solution of infiltration equation and rainfall data with higher spatial-temporal resolution are main obstacles for conceptual model-based flood simulation and forecasting.

  16. Cholesterol biosensor based on a plastic optical fibre with sol-gel: structural analysis and sensing properties

    Science.gov (United States)

    Razo-Medina, D. A.; Trejo-Durán, M.; Alvarado-Méndez, E.

    2018-02-01

    In this paper, we report the design and characterization of an optical fibre cholesterol biosensor by using sol-gel immobilization technique. The cholesterol enzyme is encapsulated inside of the sol-gel film onto an end of a plastic optical fibre. Two film deposition methods (Dip-Coating and Immersion) were studied. The morphology analysis and sensing properties permit us to determine the best film deposition to sense cholesterol concentration. The range of measured is 4.4-5.2 mM in real time and our results were validated by comparing them with other previously published results. The biosensor is portable, simple cheap, and easy to use.

  17. Humidity measurements in the precast concrete

    International Nuclear Information System (INIS)

    Hurez, M.

    1986-01-01

    The precast concrete industry manufactures requires a good knowledge and control of the humidity factor: during the manufacturing process, in order to regulate the water content of aggregates, or the fresh concrete workability: during the quality control of the product characteristics. The principles of measurements: conductivity, dielectric characteristics and neutron moisture meters are compared for cost, humidity range, accuracy, temperature dependence, interfering elements, density dependence, grain size and shape [fr

  18. Temperature and Humidity Control in Livestock Stables

    DEFF Research Database (Denmark)

    Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.

    2010-01-01

    The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...

  19. Effect of relative humidity on growth of sodium oxide aerosols

    International Nuclear Information System (INIS)

    Sundarajan, A.R.; Mitragotri, D.S.; Mukunda Rao, S.R.

    1982-01-01

    Behavior of aerosol resulting from sodium fires in a closed vessel is investigated and the changes in the particle size distribution of the aerosol due to coagulation and humidity have been studied. The initial mass concentration is in the range of 80 -- 500 mg/m 3 and the relative humidity is varied between 50 to 98%. The initial size of the released aerosol is found to be 0.9 μm. Equilibrium diameters of particles growing in humid air have been computed for various humidity levels using water activity of sodium hydroxide. Both theoretical and experimental results have yielded growth ratios of about 3 at about 95% relative humidity. It is recommended that the computer codes dealing with aerosol coagulation behavior in reactor containment should include an appropriate humidity-growth function. (author)

  20. Hands-on Humidity.

    Science.gov (United States)

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  1. Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing

    Energy Technology Data Exchange (ETDEWEB)

    Touihri, S., E-mail: s_touihri@yahoo.fr [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Arfaoui, A.; Tarchouna, Y. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Labidi, A. [Laboratoire Matériaux, Molécules et Applications, IPEST, BP 51 La Marsa 2070, Tunis (Tunisia); Amlouk, M. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Bernede, J.C. [LUNAM, Universite de Nantes, Moltech Anjou, CNRS, UMR 6200, FSTN, 2 Rue de la houssiniere, BP 92208, Nantes F-44322 (France)

    2017-02-01

    Highlights: • Thermally grown molybdenum oxide films are amorphous, oxygen deficient and gas sensing. • Air or vacuum annealing transforms them into a sub-stoichiometric MoO{sub 3−x} phase. • The samples annealed at 500 °C in oxygen were crystallized and identified as pure orthorhombic MoO{sub 3} phase. • The conduction process and sensing mechanism of MoO{sub 3-x} to ethanol have been studied. - Abstract: This paper deals with some physical investigations on molybdenum oxide thin films growing on glass substrates by the thermal evaporation method. These films have been subjected to an annealing process under vacuum, air and oxygen at various temperatures 673, 723 and 773 K. First, the physical properties of these layers were analyzed by means of X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM) and optical measurements. These techniques have been used to investigate the oxygen index in MoO{sub x} properties during the heat treatment. Second, from the reflectance and transmittance optical measurements, it was found that the direct band gap energy value increased from 3.16 to 3.90 eV. Finally, the heat treatments reveal that the oxygen index varies in such molybdenum oxides showing noticeably sensitivity toward ethanol gas.

  2. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    Science.gov (United States)

    Bagul, Sagar B.; Upadhye, Deepak S.; Sharma, Ramphal

    2016-05-01

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  3. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    Energy Technology Data Exchange (ETDEWEB)

    Bagul, Sagar B., E-mail: nano.sbbagul@gmail.com; Upadhye, Deepak S.; Sharma, Ramphal, E-mail: rps.phy@gmail.com [Thin Film and Nanotechnology Laboratory, Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (India)

    2016-05-06

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  4. Humidity Responsive Photonic Sensor based on a Carboxymethyl Cellulose Mechanical Actuator

    OpenAIRE

    Hartings, Matthew; Douglass, Kevin O.; Neice, Claire; Ahmed, Zeeshan

    2017-01-01

    We describe an intuitive and simple method for exploiting humidity-driven volume changes in carboxymethyl cellulose (CMC) to fabricate a humidity responsive actuator on a glass fiber substrate. We optimize this platform to generate a photonic-based humidity sensor where CMC coated on a fiber optic containing a fiber Bragg grating (FBG) actuates a mechanical strain in response to humidity changes. The humidity-driven mechanical deformation of the FBG results in a large lin...

  5. Mars Science Laboratory (MSL) - First Results of Relative Humidity Observations

    Science.gov (United States)

    Genzer, Maria; Harri, Ari-Matti; Kemppinen, Osku; Gómez-Elvira, Javier; Renno, Nilton; Savijärvi, Hannu; Schmidt, Walter; Polkko, Jouni; Rodríquez-Manfredi, Jose Antonio; de la Torre Juárez, Manuel; Mischna, Michael; Martín-Torres, Javier; Haukka, Harri; Paz Zorzano-Mier, Maria; Rafkin, Scott; Paton, Mark; MSL Science Team

    2013-04-01

    The Mars Science laboratory (MSL) called Curiosity made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity, and UV measurements. The REMS instrument suite is described at length in [1]. We concentrate on describing the first results from the REMS relative humidity observations and comparison of the measurements with modeling results. The REMS humidity device is provided by the Finnish Meteorological Institute. It is based on polymeric capacitive humidity sensors developed by Vaisala Inc. The humidity device makes use of one transducer electronics section placed in the vicinity of the three (3) humidity sensor heads. The humidity device is mounted on the REMS boom 2 providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The absolute accuracy of the humidity device is temperature dependent, and is of the order of 2% at the temperature range of -30 to -10 °C, and of the order of 10% at the temperature range of -80 to -60 °C. This enables the investigations of atmospheric humidity variations of both diurnal and seasonal scale. The humidity device measurements will have a lag, when a step-wise change in humidity is taking place. This lag effect is increasing with decreasing temperature, and it is of the order of a few hours at the temperature of -75 °C. To compensate for the lag effect we used an algorithm developed by Mäkinen [2]. The humidity observations were validated after tedious efforts. This was needed to compensate for the artifacts of the transducer electronics. The compensation process includes an assumption that the relative humidity at Mars in the temperature range of 0 to -30 °C is about zero. The

  6. Urban-Rural Humidity Contrasts in Mexico City

    Science.gov (United States)

    Jáuregui, E.; Tejeda, A.

    1997-02-01

    Data from one pair of urban-suburban (Tacubaya and Airport) andone pair of urban-rural (School of Mines and Plan Texcoco) temperature and humidity measuring stations were used to illustrate specific humidity(q) contrasts in Mexico City. Results show a marked seasonal variation of q from around 7.9 g kg-1 during the dry months to 10 g kg-1 in the wet season (May-October) on both urban and suburban sites. The mean monthly contrasts for this pair of stations, albeit small, show that the city air is somewhat drier during the first half of the year. Comparison of urban and rural q on an hourly basis shows that although urban air is more humid at night the reverse is true during the afternoon. Areal distribution of q shows two centres of maximum humidity over the city at night and a corresponding minimum during the afternoon. On average the urban-rural contrasts in q were found to be somewhat smaller than the estimated uncertainty. The above results are in agreement with mid-latitude experience.

  7. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Science.gov (United States)

    Milani Moghaddam, Hossain; Nasirian, Shahruz

    2014-10-01

    The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H2) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H2 gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H2 gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H2 gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  8. The effect of humidity on the detection of radon

    International Nuclear Information System (INIS)

    Money, M.; Heaton, B.

    1976-01-01

    As part of the investigation into the performance of a radon monitoring system the effect of altering the humidity on the levels of radon detected by the system whilst attempting to keep other factors constant, has been investigated. The variations in the levels of radon detected in four experiments, as the humidity of the surrounding atmosphere was artificially raised, are shown graphically together with the variations in temperature and water vapour pressure, as calculated from the relative humidity and saturation vapour pressure. In each case a general rise and fall in radon detected follows a similar rise and fall in humidity, but temperature rise has only a small effect on the radon emanation rate. As the levels of humidity do not alter the rate of emanation it is assumed that the efficiency of collection is altered in some way. Mechanisms are discussed. (U.K.)

  9. The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-06-01

    We use a thin-film adhesion technique that enables us to precisely measure the energy required to separate adjacent layers in OPV cells. We demonstrate the presence of weak interfaces in prototypical inverted polymer solar cells, either prepared by spin, spray or slot-die coating, including flexible and non flexible solar cells. In all cases, we observed adhesive failure at P3HT:PCBM/PEDOT:PSS interface, indicating the intrinsic material dependence of this mechanism. The impact of temperature, solar irradiation and humidity on the adhesion and cohesion properties of this particular interface is discussed. First, we have found that post-deposition annealing increases the adhesion significantly. Annealing changes the morphology in the photoactive layer and consequently alters the chemical properties at the interface. Second, solar irradiation on fully encapsulated solar cells has no damaging but in contrast an enhancing effect on the adhesion properties, due to the heat generated from IR radiation. Finally, the synergetic effect of stress and an environmental species like moisture greatly accelerates the decohesion rate in the weak hygroscopic PEDOT:PSS layer. This results in a loss of mechanical integrity and device performance. The insight into the mechanisms of delamination and decohesion yields general guidelines for the design of more reliable organic electronic devices. © 2012 IEEE.

  10. The use of ambient humidity conditions to improve influenza forecast.

    Science.gov (United States)

    Shaman, Jeffrey; Kandula, Sasikiran; Yang, Wan; Karspeck, Alicia

    2017-11-01

    Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1-4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast.

  11. Humidity dependence of adhesion for silane coated microcantilevers

    International Nuclear Information System (INIS)

    De Boer, Maarten P.; Mayer, Thomas M.; Carpick, Robert W.; Michalske, Terry A.; Srinivasan, U.; Maboudian, R.

    1999-01-01

    This study examines adhesion between silane-coated micromachined surfaces that are exposed to humid conditions. Our quantitative values for interfacial adhesion energies are determined from an in-situ optical measurement of deformations in partly-adhered cantilever beams. We coated micromachined cantilevers with either ODTS (C(sub 18)H(sub 37)SiCl(sub 3)) or FDTS (C(sub 8)F(sub 17)C(sub 2)H(sub 4)SiCl(sub 3)) with the objective of creating hydrophobic surfaces whose adhesion would be independent of humidity. In both cases, the adhesion energy is significantly lower than for uncoated, hydrophilic surfaces. For relative humidities (RH) less than 95% (ODTS) and 80% (FDTS) the adhesion energy was extremely low and constant. In fact, ODTS-coated beams exposed to saturated humidity conditions and long (48 hour) exposures showed only a factor of two increase in adhesion energy. Surprisingly, FDTS coated beams, which initially have a higher contact angle (115(degree)) with water than do ODTS coated beams (112(degree)), proved to be much more sensitive to humidity. The FDTS coated surfaces showed a factor of one hundred increase in adhesion energy after a seven hour exposure to 90% RH. Atomic force microscopy revealed agglomerated coating material after exposed to high RH, suggesting a redistribution of the monolayer film. This agglomeration was more prominent for FDTS than ODTS. These findings suggest a new mechanism for uptake of moisture under high humidity conditions. At high humidities, the silane coatings can reconfigure from a surface to a bulk phase leaving behind locally hydrophilic sites which increase the average measured adhesion energy. In order for the adhesion increase to be observed, a significant fraction of the monolayer must be converted from the surface to the bulk phase

  12. Climate change, humidity, and mortality in the United States

    Science.gov (United States)

    Barreca, Alan I.

    2014-01-01

    This paper estimates the effects of humidity and temperature on mortality rates in the United States (c. 1973–2002) in order to provide an insight into the potential health impacts of climate change. I find that humidity, like temperature, is an important determinant of mortality. Coupled with Hadley CM3 climate-change predictions, I project that mortality rates are likely to change little on the aggregate for the United States. However, distributional impacts matter: mortality rates are likely to decline in cold and dry areas, but increase in hot and humid areas. Further, accounting for humidity has important implications for evaluating these distributional effects. PMID:25328254

  13. Self-calibrated humidity sensor in CMOS without post-processing.

    Science.gov (United States)

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2012-01-01

    A 1.1 μW power dissipation, voltage-output humidity sensor with 10% relative humidity accuracy was developed in the LFoundry 0.15 μm CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a humidity-sensitive layer of Intervia Photodielectric 8023D-10, a CMOS capacitance to voltage converter, and the self-calibration circuitry.

  14. Self-Calibrated Humidity Sensor in CMOS without Post-Processing

    OpenAIRE

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    A 1.1 μW power dissipation, voltage-output humidity sensor with 10% relative humidity accuracy was developed in the LFoundry 0.15 μm CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a humidity-sensitive layer of Intervia Photodielectric 8023D-10, a CMOS capacitance to voltage converter, and the self-calibration circuitry.

  15. Effect of Relative Humidity on Adsorption Breakthrough of CO2 on Activated Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Yu-Chun Chiang

    2017-11-01

    Full Text Available Microporous activated carbon fibers (ACFs were developed for CO2 capture based on potassium hydroxide (KOH activation and tetraethylenepentamine (TEPA amination. The material properties of the modified ACFs were characterized using several techniques. The adsorption breakthrough curves of CO2 were measured and the effect of relative humidity in the carrier gas was determined. The KOH activation at high temperature generated additional pore networks and the intercalation of metallic K into the carbon matrix, leading to the production of mesopore and micropore volumes and providing access to the active sites in the micropores. However, this treatment also resulted in the loss of nitrogen functionalities. The TEPA amination has successfully introduced nitrogen functionalities onto the fiber surface, but its long-chain structure blocked parts of the micropores and, thus, made the available surface area and pore volume limited. Introduction of the power of time into the Wheeler equation was required to fit the data well. The relative humidity within the studied range had almost no effects on the breakthrough curves. It was expected that the concentration of CO2 was high enough so that the impact on CO2 adsorption capacity lessened due to increased relative humidity.

  16. High Humidity Aerodynamic Effects Study on Offshore Wind Turbine Airfoil/Blade Performance through CFD Analysis

    Directory of Open Access Journals (Sweden)

    Weipeng Yue

    2017-01-01

    Full Text Available Damp air with high humidity combined with foggy, rainy weather, and icing in winter weather often is found to cause turbine performance degradation, and it is more concerned with offshore wind farm development. To address and understand the high humidity effects on wind turbine performance, our study has been conducted with spread sheet analysis on damp air properties investigation for air density and viscosity; then CFD modeling study using Fluent was carried out on airfoil and blade aerodynamic performance effects due to water vapor partial pressure of mixing flow and water condensation around leading edge and trailing edge of airfoil. It is found that the high humidity effects with water vapor mixing flow and water condensation thin film around airfoil may have insignificant effect directly on airfoil/blade performance; however, the indirect effects such as blade contamination and icing due to the water condensation may have significant effects on turbine performance degradation. Also it is that found the foggy weather with microwater droplet (including rainy weather may cause higher drag that lead to turbine performance degradation. It is found that, at high temperature, the high humidity effect on air density cannot be ignored for annual energy production calculation. The blade contamination and icing phenomenon need to be further investigated in the next study.

  17. Deformation of high performance concrete plate under humid tropical weather

    Science.gov (United States)

    Niken, C.; Elly, T.; Supartono, FX; Laksmi, I.

    2018-03-01

    This paper presents the relationship between surrounding relative humidity and temperature on deformation behavior of one sample concrete plate with compressive strength of 60MPa. This research was done in Indonesia that is in humid tropical weather. A specimens measuring 3000 mm × 1600 mm × 150 mm were used. The behavior was obtained by using four embedded vibrating wire strain gauges (VWESG). As a result there is a very strong relationship between humidity and deformation at the age range of 7 until 21 days. The largest deformation occurs in the corner and the fluctuation of deformation in side position is larger than in the corner and in the middle. The peaks of surrounding relative humidity were fully followed by the deepest valley of deformation on time in the corner, while in another position the range delay time was 8 - 11 hours. There is a strong relationship between surrounding temperature and deformation at the range of 7 until 14 days. The influenced of surrounding relative humidity to concrete behavior is faster and longer than surrounding temperature. The influence of surrounding temperature in humid tropical weather was shorter than in non-humid tropical weather.

  18. Temperature and Humidity Effects on Hospital Morbidity in Darwin, Australia.

    Science.gov (United States)

    Goldie, James; Sherwood, Steven C; Green, Donna; Alexander, Lisa

    2015-01-01

    Many studies have explored the relationship between temperature and health in the context of a changing climate, but few have considered the effects of humidity, particularly in tropical locations, on human health and well-being. To investigate this potential relationship, this study assessed the main and interacting effects of daily temperature and humidity on hospital admission rates for selected heat-relevant diagnoses in Darwin, Australia. Univariate and bivariate Poisson generalized linear models were used to find statistically significant predictors and the admission rates within bins of predictors were compared to explore nonlinear effects. The analysis indicated that nighttime humidity was the most statistically significant predictor (P < 0.001), followed by daytime temperature and average daily humidity (P < 0.05). There was no evidence of a significant interaction between them or other predictors. The nighttime humidity effect appeared to be strongly nonlinear: Hot days appeared to have higher admission rates when they were preceded by high nighttime humidity. From this analysis, we suggest that heat-health policies in tropical regions similar to Darwin need to accommodate the effects of temperature and humidity at different times of day. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Overview of humidity driven reliability issues of electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2017-01-01

    Electronic control units, power modules, and consumer electronics are used today in a wide variety of varying climatic conditions. Varying external climatic conditions of temperature and humidity can cause an uncontrolled local climate inside the device enclosure. Uncontrolled humidity together w...

  20. Sensing Properties of Multiwalled Carbon Nanotubes Grown in MW Plasma Torch: Electronic and Electrochemical Behavior, Gas Sensing, Field Emission, IR Absorption

    Directory of Open Access Journals (Sweden)

    Petra Majzlíková

    2015-01-01

    Full Text Available Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 µm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‑modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures.

  1. Ozone Production With Dielectric Barrier Discharge: Effects of Power Source and Humidity

    KAUST Repository

    Zhang, Xuming

    2016-08-24

    Ozone synthesis in air dielectric barrier discharge (DBD) was studied with an emphasis on the effects of power sources and humidity. Discharge characteristics were investigated to understand the physical properties of plasma and corresponding system performance. It was found that 10-ns pulsed DBD produced a homogeneous discharge mode, while ac DBD yielded an inhomogeneous pattern with many microdischarge channels. At a similar level of the energy density (ED), decreasing the flowrate is more effective in the production of ozone for the cases of the ac DBD, while increased voltage is more effective for the pulsed DBD. Note that the maximum ozone production efficiency (110 g/kWh) was achieved with the pulsed DBD. At the ED of ∼ 85 J/L, the ozone concentrations with dry air were over three times higher than those with the relative humidity of 100% for both the ac DBD and pulsed DBD cases. A numerical simulation was conducted using a global model to understand a detailed chemical role of water vapor to ozone production. It was found HO and OH radicals from water vapor significantly consumed O atoms, resulting in a reduction in ozone production. The global model qualitatively captured the experimental trends, providing further evidence that the primary effect of humidity on ozone production is chemical in nature.

  2. Core-shell microstructured nanocomposites for synergistic adjustment of environmental temperature and humidity

    Science.gov (United States)

    Zhang, Haiquan; Yuan, Yanping; Zhang, Nan; Sun, Qingrong; Cao, Xiaoling

    2016-11-01

    The adjustment of temperature and humidity is of great importance in a variety of fields. Composites that can perform both functions are prepared by mixing phase change materials (PCMs) with hygroscopic materials. However, the contact area between the adsorbent and humid air is inevitably decreased in such structures, which reduces the number of mass transfer channels for water vapor. An approach entailing the increase in the mass ratio of the adsorbent is presented here to improve the adsorption capacity. A core-shell CuSO4/polyethylene glycol (PEG) nanomaterial was developed to satisfy the conflicting requirements of temperature control and dehumidification. The results show that the equilibrium adsorption capacity of the PEG coating layer was enhanced by a factor of 188 compared with that of the pure PEG powder. The coating layer easily concentrates vapor, providing better adsorption properties for the composite. Furthermore, the volume modification of the CuSO4 matrix was reduced by 80% by the PEG coated layer, a factor that increases the stability of the composite. For the phase change process, the crystallization temperature of the coating layer was adjusted between 37.2 and 46.3 °C by interfacial tension. The core-shell CuSO4/PEG composite reported here provides a new general approach for the simultaneous control of temperature and humidity.

  3. The use of ambient humidity conditions to improve influenza forecast.

    Directory of Open Access Journals (Sweden)

    Jeffrey Shaman

    2017-11-01

    Full Text Available Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1-4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast.

  4. Temperature, humidity and time. Combined effects on radiochromic film dosimeters

    DEFF Research Database (Denmark)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 degrees C for irradiation by Co-60 photons and 10-Me......V electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is +0.......25 +/- 0.1% per degrees C for the FWT-60-00 dosimeters and +0.5 +/- 0.1% per degrees C For Riso B3 dosimeters at temperatures between 20 and 50 degrees C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger...

  5. The anthropogenic influence on heat and humidity in the US Midwest

    Science.gov (United States)

    Inda Diaz, H. A.; O'Brien, T. A.; Stone, D. A.

    2016-12-01

    Heatwaves, and extreme temperatures in general, have a wide range of negative impacts on society, and particularly on human health. In addition to temperature, humidity plays a key role in regulating human body temperature, with higher humidities tending to reduce the effectiveness of perspiration. There is recent theoretical and observational evidence that co-occurring extreme heat and humidity can potentially have a much more dramatic impact on human health than either extreme in isolation. There is an abundance of observational evidence indicating that anthropogenic increases in greenhouse gas (GHG) forcing have contributed to an increase in the intensity and frequency of temperature extremes on a global scale. However, aside from purely thermodynamically-driven increases in near-surface humidity, there is a paucity of similar evidence for anthropogenic impacts on humidity. Thermodynamic scaling would suggest that air masses originating from the ocean would be associated with higher specific humidity in a warmer world, and transpiration from irrigated crops could further increase humidity in warm air masses. In order to explore the role of anthropogenic GHG forcing on the co-occurrence of temperature and humidity extremes in the Midwestern United States (US), we evaluate a large ensemble of global climate model simulations with and without anthropogenic GHG forcing. In particular, we examine differences between the probability distributions of near-surface temperature, humidity, wet-bulb temperature, and the joint distribution of temperature and humidity in this ensemble. Finally, we explore augmenting this experimental framework with additional simulations to explore the role of anthropogenic changes in the land surface, and in particular irrigated crops, on co-occurring extreme heat and humidity.

  6. On the Humidity Sensitivity of Hot-Wire Measurements

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Busch, N. E.

    1980-01-01

    The influence of humidity changes on hot-wire measurements is discussed. Indications are that the humidity sensitivity parameters obtained by the authors in an earlier paper should be changed. This means, however, that the agreement between predicted and measured sensitivities ceases to exist...

  7. Down-conversion luminescence and its temperature-sensing properties from Er3+-doped sodium bismuth titanate ferroelectric thin films

    Science.gov (United States)

    Wang, Shanshan; Zheng, Shanshan; Zhou, Hong; Pan, Anlian; Wu, Guangheng; Liu, Jun-ming

    2015-11-01

    Here, we demonstrate outstanding temperature-sensing properties from Na0.5Bi0.49Er0.01TiO3 (NBT:Er) thin films. The perovskite phase for them is stable in the temperature range from 80 to 440 K. Interestingly, the Er doping enhances the ferroelectric polarization and introduces local dipolar, which are positive for temperature sensing. Pumped by a 488-nm laser, the NBT:Er thin films show strong green luminescence with two bands around 525 and 548 nm. The intensity ratio I 525/ I 548 can be used for temperature sensing, and the maximum sensitivity is about 2.3 × 10-3 K-1, higher than that from Er-doped silicon oxide. These suggest NBT:Er thin film is a promising candidate for temperature sensor.

  8. Effects of Thermal and Humidity Aging on the Interfacial Adhesion of Polyketone Fiber Reinforced Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Han Ki Lee

    2016-01-01

    Full Text Available Polyketone fiber is considered as a reinforcement of the mechanical rubber goods (MRG such as tires, automobile hoses, and belts because of its high strength and modulus. In order to apply it to those purposes, the high adhesion of fiber/rubber interface and good sustainability to aging conditions are very important. In this study, polyketone fiber reinforced natural rubber composites were prepared and they were subjected to thermal and humidity aging, to assess the changes of the interfacial adhesion and material properties. Also, the effect of adhesive primer treatment, based on the resorcinol formaldehyde resin and latex (RFL, of polyketone fiber for high interfacial adhesion was evaluated. Morphological and property changes of the rubber composites were analyzed by using various instrumental analyses. As a result, the rubber composite was aged largely by thermal aging at high temperature rather than humidity aging condition. Interfacial adhesion of the polyketone/NR composites was improved by the primer treatment and its effect was maintained in aging conditions.

  9. Rheological behaviors of edible casein-based packaging films under extreme environmental conditions, using humidity-controlled dynamic mechanical analysis

    Science.gov (United States)

    Thin casein films for food packaging applications possess good strength and low oxygen permeability but low water-resistance and elasticity. Customizing the mechanical properties of the films to target specific behaviors depending on temperature and humidity changes would enable a variety of commerc...

  10. MnWO{sub 4} nanocapsules: Synthesis, characterization and its electrochemical sensing property

    Energy Technology Data Exchange (ETDEWEB)

    Muthamizh, Selvamani; Suresh, Ranganathan; Giribabu, Krishnamoorthy; Manigandan, Ramadoss; Praveen Kumar, Sivakumar; Munusamy, Settu; Narayanan, Vengidusamy, E-mail: vnnara@yahoo.co.in

    2015-01-15

    Highlights: • Synthesis of MnWO{sub 4} nanocapsules without use of any other external reagent. • High crystalline MnWO{sub 4} was obtained with phase purity. • Electrochemical sensing platform based on MnWO{sub 4} for sensing quercetin. • Micromolar detection ability of MnWO{sub 4} modified GCE. - Abstract: Manganese tungstate (MnWO{sub 4}) was synthesized by surfactant free precipitation method. MnWO{sub 4} was characterized by using various spectroscopic techniques. The phase, crystalline nature and the morphological analysis were carried out using XRD, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HR-TEM). Further, FT-IR, Raman, and DRS-UV–Vis spectral analysis were carried out in order to ascertain the optical property and the presence of functional groups. From the analysis, the morphology of the MnWO{sub 4} was observed to be in capsules with breadth and thickness were in nm range. The oxidation state of tungsten (W), and manganese (Mn) were investigated using X-ray photo electron spectroscopy (XPS) and electron paramagnetic resonance spectroscopy (EPR). The synthesized MnWO{sub 4} nanocapsules were used to modify glassy carbon electrode (GCE) to detect quercetin.

  11. Synthesis of WO3 flower-like hierarchical architectures and their sensing properties

    International Nuclear Information System (INIS)

    Meng, Dan; Wang, Guosheng; San, Xiaoguang; Song, Yinmin; Shen, Yanbai; Zhang, Yajing; Wang, Kangjun; Meng, Fanli

    2015-01-01

    WO 3 flower-like hierarchical architectures were synthesized by hydrothermal process using sodium tungstate (Na 2 WO 4 ·2H 2 O) as tungsten source and citric acid (CA) as an assistant agent. The morphology and crystal structure were investigated using scanning electron microscope and X-ray diffractometer. It is found that CA played a significant role in governing morphologies of product during hydrothermal process. The obtained products were identified as triclinic crystal WO 3 structure. The ethanol gas sensing measurements showed that well-defined WO 3 flower-like structures synthesized at CA/W molar ratio of 1 with large specific surface area exhibited the higher responses compared with others at all operating temperatures. Moreover, the reversible and fast response to ethanol gas at various gas concentrations and good selectivity were obtained. The results indicated that the WO 3 flower-like hierarchical architectures are promising materials for gas sensors. - Highlights: • WO 3 flower-like structures were successfully synthesized by hydrothermal method. • The effect of citric acid amount on morphologies was investigated. • Good ethanol gas sensing properties of WO 3 flower-like structures were obtained

  12. A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles

    Directory of Open Access Journals (Sweden)

    M. I. Cotterell

    2017-08-01

    Full Text Available Calculations of aerosol radiative forcing require knowledge of wavelength-dependent aerosol optical properties, such as single-scattering albedo. These aerosol optical properties can be calculated using Mie theory from knowledge of the key microphysical properties of particle size and refractive index, assuming that atmospheric particles are well-approximated to be spherical and homogeneous. We provide refractive index determinations for aqueous aerosol particles containing the key atmospherically relevant inorganic solutes of NaCl, NaNO3, (NH42SO4, NH4HSO4 and Na2SO4, reporting the refractive index variation with both wavelength (400–650 nm and relative humidity (from 100 % to the efflorescence value of the salt. The accurate and precise retrieval of refractive index is performed using single-particle cavity ring-down spectroscopy. This approach involves probing a single aerosol particle confined in a Bessel laser beam optical trap through a combination of extinction measurements using cavity ring-down spectroscopy and elastic light-scattering measurements. Further, we assess the accuracy of these refractive index measurements, comparing our data with previously reported data sets from different measurement techniques but at a single wavelength. Finally, we provide a Cauchy dispersion model that parameterises refractive index measurements in terms of both wavelength and relative humidity. Our parameterisations should provide useful information to researchers requiring an accurate and comprehensive treatment of the wavelength and relative humidity dependence of refractive index for the inorganic component of atmospheric aerosol.

  13. The gas-sensing properties of thick film sensors based on nano-ZnFe2O4 prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Chu Xiangfeng; Jiang Dongli; Zheng Chenmou

    2006-01-01

    ZnFe 2 O 4 sensors were fabricated from nano-ZnFe 2 O 4 powders prepared by hydrothermal method and their gas-sensing properties were investigated. It was found that the phase composition of the product and the gas-sensing properties greatly depend on the reaction pH value and the reaction temperature. Nano-ZnFe 2 O 4 powders could be obtained at a pH of 8-10 and the sensor based on the nano-ZnFe 2 O 4 powder prepared at 220 deg. C exhibited the best performance, characterized by high sensitivity to low concentrations of C 2 H 5 OH at 180 deg. C, especially, the sensitivity to 100 ppm C 2 H 5 OH was as high as 76

  14. The effects of porosity, electrode and barrier materials on the conductivity of piezoelectric ceramics in high humidity and dc electric field

    International Nuclear Information System (INIS)

    Weaver, P M; Cain, M G; Stewart, M; Anson, A; Franks, J; Lipscomb, I P; McBride, J W; Zheng, D; Swingler, J

    2012-01-01

    Prolonged operation of piezoelectric ceramic devices under high dc electric fields promotes leakage currents between the electrodes. This paper investigates the effects of ceramic porosity, edge conduction and electrode materials and geometry in the development of low resistance conduction paths through the ceramic. Localized changes in the ceramic structure and corresponding microscopic breakdown sites are shown to be associated with leakage currents and breakdown processes resulting from prolonged operation in harsh environments. The role of barrier coatings in mitigating the effects of humidity is studied, and results are presented on improved performance using composite diamond-like carbon/polymer coatings. In contrast to the changes in the electrical properties of the ceramic, the measurements of the piezoelectric properties showed no significant effect of humidity. (paper)

  15. Behavior of HEPA filters under high humidity airflows

    International Nuclear Information System (INIS)

    Ricketts, C.I.

    1992-10-01

    To help determine and improve the safety margins of High Efficiency Particulate Air (HEPA) filter units in nuclear facilities under possible accident conditions, the structural limits and failure mechanisms of filter in high-humidity airflows were established and the fundamental physical phenomena underlying filter failure or malfunction in humid air were identified. Empirical models for increases in filter pressure drop with time in terms of the relevant airstream parameters were also developed. The weaknesses of currently employed humidity countermeasures used in filter protection are discussed and fundamental explanations for reported filter failures in normal service are given. (orig./DG) [de

  16. Temperature, humidity and time., Combined effects on radiochromic film dosimeters

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 o C for irradiation by 60 Co photons and 10-MeV electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is + 0.25 ± 0.1% per o C for the FWT-60-00 dosimeters and +0.5 ± 0.1% per o C for Riso B3 dosimeters at temperatures between 20 and 50 o C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger dependences. Whenever possible one should use dosimeters sealed in pouches under controlled intermediate humidity conditions (30-50%) or, if that is impractical, one should maintain conditions of calibration as close as possible to the conditions of use. Without that precaution, severe dosimetry errors may result. (author)

  17. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    Science.gov (United States)

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  18. Effect of Relative Humidity on the Tribological Properties of Self-Lubricating H3BO3 Films Formed on the Surface of Steel Suitable for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    E. Hernández-Sanchez

    2015-01-01

    Full Text Available The effect of environmental humidity on the self-lubricating properties of a thin film of boric acid (H3BO3 was evaluated. H3BO4 films were successfully formed on the surface of AISI 316L steel. The study was conducted on AISI 316L steel because of its use in biomedical applications. First, the samples were exposed to boriding to generate a continuous surface layer of iron borides. The samples were then exposed to a short annealing process (SAP at 1023 K for 5 min and cooled to room temperature while controlling the relative humidity (RH. Five different RH conditions were tested. The purpose of SAP was to promote the formation of a surface film of boric acid from the boron atoms present in the iron boride layers. The presence of the boric acid at the surface of the borided layer was confirmed by Raman spectroscopy and X-ray diffraction (XRD. The self-lubricating capability of the films was demonstrated using the pin-on-disk technique. The influence of RH was reflected by the friction coefficient (FC, as the samples cooled with 20% of RH exhibited FC values of 0.16, whereas the samples cooled at 60% RH showed FC values of 0.02.

  19. Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Withers, Jr., Charles R. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-12-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split on seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.

  20. Investigations of microelectronic humidity sensors made of composite oxides thin films

    International Nuclear Information System (INIS)

    Pogossyan, A.S.; Arutyunyan, V.M.

    1996-01-01

    Basic characteristics (the moisture sensitivity, lag, hysteresis and stability) of humidity sensors made of Fe 2 O 3 thin films with different K 2 content, as well as CaSiO 3 and NaBiTi 2 O 6 films,-new materials for the humidity sensors, are investigated. A composition Fe 2 O 3 (K) is found to be optimal with respect to high moisture sensitivity, speed of response, and a linearity in a wide range of the relative humidity. A mechanism of the moisture-sensitivity of films investigated is discussed. Criteria for the design parameters of the high-impedance humidity sensors are defined with the aim to broadening of the working range of the relative humidity in a side way of low values of the humidity.10 refs

  1. Relationship between relative humidity and the dew point ...

    African Journals Online (AJOL)

    This research was aimed at determining the relationship between relative humidity and the dew point temperature in Benin City, Edo State, Nigeria. The dew point temperature was approximated from the measured air temperature and relative humidity with the aid of a currently self-designed weather monitoring system.

  2. The effect of humidity on annealing of polymer optical fibre bragg gratings

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Nielsen, Kristian; Bang, Ole

    2015-01-01

    The effect of humidity on annealing of PMMA based microstructured polymer optical fiber (mPOF) Bragg gratings is studied. Polymer optical fibers (POFs) are annealed in order to release stress formed during the fabrication process. Un-annealed fibers will have high hysteresis and low sensitivity...... to humidity, particularly when operated at high temperature. Typically annealing of PMMA POFs is done at 80oC in an oven with no humidity control and therefor at low humidity. The response to humidity of PMMA FBGs annealed at different levels of humidity at the same temperature has also been studied. PMMA...

  3. Humidity Induces Changes in the Dimensions of Hydrogel-Coated Wool Yarns

    Directory of Open Access Journals (Sweden)

    Lanlan Wang

    2018-03-01

    Full Text Available Polymeric hydrogel based on acrylic acid (AA and N,N-dimethylacrylamide (DMAA was prepared by photopolymerization reaction, using nano-alumina as the inorganic crosslinker. Hydrogel-coated wool yarns determine their dimensional changes under humidity conditions. Surface morphology of the hydrogel-coated wool yarns was carried out using SEM microscopy. The hydrogel was further characterized by Fourier transformer infrared spectrum (FTIR, gel permeation chromatography (GPC, differential scanning calorimetry (DSC, thermogravimetry (TG and differential thermogravimetry (DTG. This contribution showed that UV-initiated polymerization coating wool yarns can change the functional properties of wool fibers.

  4. Humidity : a review and primer on atmospheric moisture and human health.

    OpenAIRE

    David, R.E.; McGregor, G.R.; Enfield, K.B.

    2016-01-01

    Research examining associations between weather and human health frequently includes the effects of atmospheric humidity. A large number of humidity variables have been developed for numerous purposes, but little guidance is available to health researchers regarding appropriate variable selection. We examine a suite of commonly used humidity variables and summarize both the medical and biometeorological literature on associations between humidity and human health. As an example of the importa...

  5. Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    Science.gov (United States)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; Gonzalez-Ramos, Y.; Schneider, M.

    2015-05-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H2O) as a means to validate the remote sensing humidity and δD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed.

  6. Crack Growth Properties of Sealing Glasses

    Science.gov (United States)

    Salem, Jonathan A.; Tandon, R.

    2008-01-01

    The crack growth properties of several sealing glasses were measured using constant stress rate testing in 2% and 95% RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and velocities for dry environments are approx. 100x lower than for wet environments. The crack velocity is very sensitivity to small changes in RH at low RH. Confidence intervals on parameters that were estimated from propagation of errors were comparable to those from Monte Carlo simulation.

  7. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre...

  8. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors

    Science.gov (United States)

    Grimes, C. A.; Kouzoudis, D.

    2000-01-01

    Free-standing magnetoelastic thick-film sensors have a characteristic resonant frequency that can be determined by monitoring the magnetic flux emitted from the sensor in response to a time varying magnetic field. This property allows the sensors to be monitored remotely without the use of direct physical connections, such as wires, enabling measurement of environmental parameters from within sealed, opaque containers. In this work, we report on application of magnetoelastic sensors to measurement of atmospheric pressure, fluid-flow velocity, temperature, and mass load. Mass loading effects are demonstrated by fabrication of a remote query humidity sensor, made by coating the magnetoelastic thick film with a thin layer of solgel deposited Al2O3 that reversibly changes mass in response to humidity. c2000 Elsevier Science S.A. All rights reserved.

  9. Effects of humidity and interlayer cations on the frictional strength of montmorillonite

    Science.gov (United States)

    Tetsuka, Hiroshi; Katayama, Ikuo; Sakuma, Hiroshi; Tamura, Kenji

    2018-04-01

    We developed a humidity control system in a biaxial friction testing machine to investigate the effect of relative humidity and interlayer cations on the frictional strength of montmorillonite. We carried out the frictional experiments on Na- and Ca-montmorillonite under controlled relative humidities (ca. 10, 30, 50, 70, and 90%) and at a constant temperature (95 °C). Our experimental results show that frictional strengths of both Na- and Ca-montmorillonite decrease systematically with increasing relative humidity. The friction coefficients of Na-montmorillonite decrease from 0.33 (at relative humidity of 10%) to 0.06 (at relative humidity of 93%) and those of Ca-montmorillonite decrease from 0.22 (at relative humidity of 11%) to 0.04 (at relative humidity of 91%). Our results also show that the frictional strength of Na-montmorillonite is higher than that of Ca-montmorillonite at a given relative humidity. These results reveal that the frictional strength of montmorillonite is sensitive to hydration state and interlayer cation species, suggesting that the strength of faults containing these clay minerals depends on the physical and chemical environment.[Figure not available: see fulltext.

  10. A Three-Dimensional Porous Conducting Polymer Composite with Ultralow Density and Highly Sensitive Pressure Sensing Properties

    International Nuclear Information System (INIS)

    Su, J. D.; Sun, J.L.; Chen, J.H.; Jia, X.Sh.; Li, J.T.; Yan, X.; Long, Y.Z.; Lou, T.; Yan, X.; Long, Y.Z.

    2016-01-01

    An ultra light conducting poly aniline/Si C/polyacrylonitrile (PANI/Si C/PAN) composite was fabricated by in situ polymerization of aniline monomer on the surface of fibers in Si C/PAN aerogel. The Si C/PAN aerogel was obtained by electro spinning, freeze-drying, and heat treatment. The ingredient, morphology, structure, and electrical properties of the aerogel before and after in situ polymerization were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and voltage-current characteristic measurement. The thermostability of PANI/Si C/PAN composite was investigated by thermogravimetric analysis (TGA) and electrical resistance measured at different temperatures. The density of the PANI/SiC/PAN composite was approximately 0.211gcm - 3, the porosity was 76.44%, and the conductivity was 0.013Sm - 1. The pressure sensing properties were evaluated at room temperature. The electrical resistance of as-prepared sample decreased gradually with the increase of pressure. Furthermore, the pressure sensing process was reversible and the response time was short (about 1s). This composite may have application in pressure sensor field

  11. A Three-Dimensional Porous Conducting Polymer Composite with Ultralow Density and Highly Sensitive Pressure Sensing Properties

    Directory of Open Access Journals (Sweden)

    Jin-Dong Su

    2016-01-01

    Full Text Available An ultralight conducting polyaniline/SiC/polyacrylonitrile (PANI/SiC/PAN composite was fabricated by in situ polymerization of aniline monomer on the surface of fibers in SiC/PAN aerogel. The SiC/PAN aerogel was obtained by electrospinning, freeze-drying, and heat treatment. The ingredient, morphology, structure, and electrical properties of the aerogel before and after in situ polymerization were investigated by X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, scanning electron microscope (SEM, and voltage-current characteristic measurement. The thermostability of PANI/SiC/PAN composite was investigated by thermogravimetric analysis (TGA and electrical resistance measured at different temperatures. The density of the PANI/SiC/PAN composite was approximately 0.211 g cm−3, the porosity was 76.44%, and the conductivity was 0.013 S m−1. The pressure sensing properties were evaluated at room temperature. The electrical resistance of as-prepared sample decreased gradually with the increase of pressure. Furthermore, the pressure sensing process was reversible and the response time was short (about 1 s. This composite may have application in pressure sensor field.

  12. Influence of fine water droplets to temperature and humidity

    Science.gov (United States)

    Hafidzal, M. H. M.; Hamzah, A.; Manaf, M. Z. A.; Saadun, M. N. A.; Zakaria, M. S.; Roslizar, A.; Jumaidin, R.

    2015-05-01

    Excessively dry air can cause dry skin, dry eyes and exacerbation of medical conditions. Therefore, many researches have been done in order to increase humidity in our environment. One of the ways is by using water droplets. Nowadays, it is well known in market stand fan equipped with water mister in order to increase the humidity of certain area. In this study, the same concept is applied to the ceiling fan. This study uses a model that combines a humidifier which functions as cooler, ceiling fan and scaled down model of house. The objective of this study is to analyze the influence of ceiling fan humidifier to the temperature and humidity in a house. The mechanism of this small model uses batteries as the power source, connected to the fan and the humidifier. The small water tank's function is to store and supply water to the humidifier. The humidifier is used to cool the room by changing water phase to fine water droplets. Fine water droplets are created from mechanism of the humidifier, which is by increasing the kinetic energy of water molecule using high frequency vibration that overcome the holding force between water molecules. Thus, the molecule of water will change to state of gas or mist. The fan is used to spread out the mist of water to surrounding of the room in order to enhance the humidity. Thermocouple and humidity meter are used to measure temperature and humidity in some period of times. The result shows that humidity increases and temperature decreases with time. This application of water droplet can be applied in the vehicles and engine in order to decrease the temperature.

  13. Effects of different petal thickness on gas sensing properties of flower-like WO3·H2O hierarchical architectures

    International Nuclear Information System (INIS)

    Zeng, Wen; Zhang, He; Wang, Zhongchang

    2015-01-01

    Graphical abstract: In this work, we prepare four different petal thicknesses of hierarchical WO 3 ·H 2 O architectures via a simple hydrothermal process, and systematically report their formation mechanisms and gas-sensing properties. - Highlights: • Flower-like WO 3 ·H 2 O architectures with different petal thickness were reported. • The WO 3 ·H 2 O sheet-flower sensor shows a significantly enhanced gas response. • A possible growth mechanism for the flower-like architectures is proposed. - Abstract: Hierarchical architectures consisting of two-dimensional (2D) nanostructures are of great interest for potential use in recent year. Here, we report the successful synthesis of four hierarchical tungsten oxide flower-like architectures via a simple yet facile hydrothermal method. The as-prepared WO 3 ·H 2 O hierarchical architectures are in fact assembled with numerous nanosheets or nanoplates. Through a comprehensive characterization of microstructures and morphologies of the as-prepared products, we find that petal thickness is a key factor for affecting gas-sensing performances. We further propose a possible growth mechanism for the four flower-like architectures. Moreover, gas-sensing measurements showed that the well-defined sheet-flower WO 3 ·H 2 O hierarchical architectures exhibited the excellent gas-sensing properties to ethanol owing to their largest amount of thin petal structures and pores

  14. Quality as Sense-Making

    Science.gov (United States)

    Marshall, Stephen

    2016-01-01

    Sense-making is a process of engaging with complex and dynamic environments that provides organisations and their leaders with a flexible and agile model of the world. The seven key properties of sense-making describe a process that is social and that respects the range of different stakeholders in an organisation. It also addresses the need to…

  15. Searching for new solutions Humidity measurements in the environments

    Directory of Open Access Journals (Sweden)

    Gianina Creţu

    2008-05-01

    Full Text Available More attention is nowadays being paid to thequality of the air we breathe, resulting in an increasingneed for humidity measurements in the home and officeenvironments. Maintaining the proper level of relativehumidity is also necessary to avoid conditions of extremehumidity condensation in buildings.The facts that construction problems and excessive waterand humidity often go together is well-known around theworld today. Moisture and water damage is a wellknown problem in construction in many countries.Problems of all construction are caused by humidity and50 per cent of all buildings have some kind of moisturerelatedproblems. Growing awareness of percentages suchas these has led to greater attention being paid toconstruction humidity and its measurement throughoutthe world in recent years.This paper presents a condensed review of nowadayshumidity sensors technology, problem implicated andsome modern tendencies.

  16. Opposing effects of humidity on rhodochrosite surface oxidation.

    Science.gov (United States)

    Na, Chongzheng; Tang, Yuanzhi; Wang, Haitao; Martin, Scot T

    2015-03-03

    Rhodochrosite (MnCO3) is a model mineral representing carbonate aerosol particles containing redox-active elements that can influence particle surface reconstruction in humid air, thereby affecting the heterogeneous transformation of important atmospheric constituents such as nitric oxides, sulfur dioxides, and organic acids. Using in situ atomic force microscopy, we show that the surface reconstruction of rhodochrosite in humid oxygen leads to the formation and growth of oxide nanostructures. The oxidative reconstruction consists of two consecutive processes with distinctive time scales, including a long waiting period corresponding to slow nucleation and a rapid expansion phase corresponding to fast growth. By varying the relative humidity from 55 to 78%, we further show that increasing humidity has opposing effects on the two processes, accelerating nucleation from 2.8(±0.2) × 10(-3) to 3.0(±0.2) × 10(-2) h(-1) but decelerating growth from 7.5(±0.3) × 10(-3) to 3.1(±0.1) × 10(-3) μm(2) h(-1). Through quantitative analysis, we propose that nanostructure nucleation is controlled by rhodochrosite surface dissolution, similar to the dissolution-precipitation mechanism proposed for carbonate mineral surface reconstruction in aqueous solution. To explain nanostructure growth in humid oxygen, a new Cabrera-Mott mechanism involving electron tunneling and solid-state diffusion is proposed.

  17. Humidity-insensitive water evaporation from molecular complex fluids.

    Science.gov (United States)

    Salmon, Jean-Baptiste; Doumenc, Frédéric; Guerrier, Béatrice

    2017-09-01

    We investigated theoretically water evaporation from concentrated supramolecular mixtures, such as solutions of polymers or amphiphilic molecules, using numerical resolutions of a one-dimensional model based on mass transport equations. Solvent evaporation leads to the formation of a concentrated solute layer at the drying interface, which slows down evaporation in a long-time-scale regime. In this regime, often referred to as the falling rate period, evaporation is dominated by diffusive mass transport within the solution, as already known. However, we demonstrate that, in this regime, the rate of evaporation does not also depend on the ambient humidity for many molecular complex fluids. Using analytical solutions in some limiting cases, we first demonstrate that a sharp decrease of the water chemical activity at high solute concentration leads to evaporation rates which depend weakly on the humidity, as the solute concentration at the drying interface slightly depends on the humidity. However, we also show that a strong decrease of the mutual diffusion coefficient of the solution enhances considerably this effect, leading to nearly independent evaporation rates over a wide range of humidity. The decrease of the mutual diffusion coefficient indeed induces strong concentration gradients at the drying interface, which shield the concentration profiles from humidity variations, except in a very thin region close to the drying interface.

  18. Comparison of land surface humidity between observations and CMIP5 models

    Science.gov (United States)

    Dunn, Robert J. H.; Willett, Kate M.; Ciavarella, Andrew; Stott, Peter A.

    2017-08-01

    We compare the latest observational land surface humidity dataset, HadISDH, with the latest generation of climate models extracted from the CMIP5 archive and the ERA-Interim reanalysis over the period 1973 to present. The globally averaged behaviour of HadISDH and ERA-Interim are very similar in both humidity measures and air temperature, on decadal and interannual timescales. The global average relative humidity shows a gradual increase from 1973 to 2000, followed by a steep decline in recent years. The observed specific humidity shows a steady increase in the global average during the early period but in the later period it remains approximately constant. None of the CMIP5 models or experiments capture the observed behaviour of the relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed climatologies with those from historical model runs shows that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra-tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends is relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the tropics and very little at high latitudes. The observed drying in mid-latitudes is present at a much lower magnitude in the CMIP5 models. Relationships between temperature and humidity anomalies (T-q and T-rh) show good agreement for specific humidity between models and observations, and between the models themselves, but much poorer for relative humidity. The T-q correlation from the models is more steeply positive than

  19. Gas sensing properties of indium–gallium–zinc–oxide gas sensors in different light intensity

    Directory of Open Access Journals (Sweden)

    Kuen-Lin Chen

    2015-06-01

    Full Text Available We have successfully observed the change in indium–gallium–zinc–oxide (IGZO gas sensor sensitivity by controlling the light emitting diode (LED power under the same gas concentrations. The light intensity dependence of sensor properties is discussed. Different LED intensities obviously affected the gas sensor sensitivity, which decays with increasing LED intensity. High LED intensity decreases not only gas sensor sensitivity but also the response time (T90, response time constant (τres and the absorption rate per second. Low intensity irradiated to sensor causes high sensitivity, but it needs larger response time. Similar results were also observed in other kinds of materials such as TiO2. According to the results, the sensing properties of gas sensors can be modulated by controlling the light intensity.

  20. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  1. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold.

    Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  2. Lead Oxide- PbO Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Sk. Khadeer Pasha

    2010-11-01

    Full Text Available Alcohol thermal route has been used to synthesize nanocrystalline PbO at a low temperature of 75 oC using lead acetate. The synthesized PbO (P75 was annealed in the temperatures ranging from 200-500 oC for 2 h to study the effect of crystal structure and phase changes and were labeled as P200, P300, P400 and P500, respectively. X-Ray diffraction and FT-IR spectroscopy were carried out to identify the structural phases and vibrational stretching frequencies respectively. The TEM images revealed the porous nature of P75 sample which is an important criterion for the humidity sensor. The dc resistance measurements were carried out in the relative humidity (RH range 5-98 %. Among the different prepared, P75 possessed the highest humidity sensitivity of 6250, while the heat treated sample P500 have a low sensitivity of 330. The response and recovery characteristics of the maximum sensitivity sample P75 were 170 s and 40 s respectively.

  3. The Enhanced Formaldehyde-Sensing Properties of P3HT-ZnO Hybrid Thin Film OTFT Sensor and Further Insight into Its Stability

    Directory of Open Access Journals (Sweden)

    Huiling Tai

    2015-01-01

    Full Text Available A thin-film transistor (TFT having an organic–inorganic hybrid thin film combines the advantage of TFT sensors and the enhanced sensing performance of hybrid materials. In this work, poly(3-hexylthiophene (P3HT-zinc oxide (ZnO nanoparticles’ hybrid thin film was fabricated by a spraying process as the active layer of TFT for the employment of a room temperature operated formaldehyde (HCHO gas sensor. The effects of ZnO nanoparticles on morphological and compositional features, electronic and HCHO-sensing properties of P3HT-ZnO thin film were systematically investigated. The results showed that P3HT-ZnO hybrid thin film sensor exhibited considerable improvement of sensing response (more than two times and reversibility compared to the pristine P3HT film sensor. An accumulation p-n heterojunction mechanism model was developed to understand the mechanism of enhanced sensing properties by incorporation of ZnO nanoparticles. X-ray photoelectron spectroscope (XPS and atomic force microscopy (AFM characterizations were used to investigate the stability of the sensor in-depth, which reveals the performance deterioration was due to the changes of element composition and the chemical state of hybrid thin film surface induced by light and oxygen. Our study demonstrated that P3HT-ZnO hybrid thin film TFT sensor is beneficial in the advancement of novel room temperature HCHO sensing technology.

  4. Density of loose-fill insulation material exposed to cyclic humidity conditions

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    the granulated loose-fill material is exposed to a climate that is characterised as cyclic humidity conditions (a constant temperature and a relative humidity alternating between two predetermined constant relative humidity levels). A better understanding of the behaviour of granulated loose-fill material...

  5. Humidity Detection Using Metal Organic Framework Coated on QCM

    KAUST Repository

    Kosuru, Lakshmoji; Bouchaala, Adam M.; Jaber, Nizar; Younis, Mohammad I.

    2016-01-01

    of a quartz crystal microbalance. The resonance frequencies of these sensors with varying relative humidity (RH) from 22% RH to 69% RH are measured using impedance analysis method. The sensitivity, humidity hysteresis, response, and recovery times

  6. Study of some Mg-based ferrites as humidity sensors

    International Nuclear Information System (INIS)

    Rezlescu, N; Rezlescu, E; Doroftei, C; Popa, P D

    2005-01-01

    The micostructure and humidity sensitivity of MgFe 2 O 4 + CaO, Mg 0.5 Cu 0.5 Fe 1.8 Ga 0.2 O 4 , Mg 0.5 Zn 0.5 Fe 2 O 4 + KCl and MgMn 0.2 Fe 1.8 O 4 ferrites were investigated. We have found that the humidity sensitivity largely depends on composition, crystallite size, surface area and porosity. The best results concerning humidity sensitivity were obtained for MgMn 0.2 Fe 1.8 O 4 ferrite

  7. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    Science.gov (United States)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from

  8. Investigating Into Sensing Properties of Fiber Optic Thermo-Hygrometers for CMS

    CERN Document Server

    Wallangen, Veronica

    2013-01-01

    A set of optical fiber sensors based on FBG-technology are to be installed in the CMS experiment for the first time. These sensors consists of coupled pairs of temperature and relative humidity sensors and this report outlines the calibration performed primarily on the temperature sensors in preparation of the installation.

  9. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination

    OpenAIRE

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-01-01

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prep...

  10. Standardization, Calibration, and Evaluation of Tantalum-Nano rGO-SnO2 Composite as a Possible Candidate Material in Humidity Sensors

    Science.gov (United States)

    Karthick, Subbiah; Lee, Han-Seung; Kwon, Seung-Jun; Natarajan, Rethinam; Saraswathy, Velu

    2016-01-01

    The present study focuses the development and the evaluation of humidity sensors based on reduced graphene oxide—tin oxide (rGO-SnO2) nanocomposites, synthesized by a simple redox reaction between GO and SnCl2. The physico-chemical characteristics of the nanocomposites were analyzed by XRD, TEM, FTIR, and Raman spectroscopy. The formation of SnO2 crystal phase was observed through XRD. The SnO2 crystal phase anchoring to the graphene sheet was confirmed through TEM images. For the preparation of the sensors, tantalum substrates were coated with the sensing material. The sensitivity of the fabricated sensor was studied by varying the relative humidity (RH) from 11% to 95% over a period of 30 days. The dependence of the impedance and of the capacitance with RH of the sensor was measured with varying frequency ranging from 1 kHz to 100 Hz. The long-term stability of the sensor was measured at 95% RH over a period of 30 days. The results proved that rGO-SnO2 nanocomposites are an ideal conducting material for humidity sensors due to their high sensitivity, rapid response and recovery times, as well as their good long-term stability. PMID:27941598

  11. Standardization, Calibration, and Evaluation of Tantalum-Nano rGO-SnO2 Composite as a Possible Candidate Material in Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Subbiah Karthick

    2016-12-01

    Full Text Available The present study focuses the development and the evaluation of humidity sensors based on reduced graphene oxide—tin oxide (rGO-SnO2 nanocomposites, synthesized by a simple redox reaction between GO and SnCl2. The physico-chemical characteristics of the nanocomposites were analyzed by XRD, TEM, FTIR, and Raman spectroscopy. The formation of SnO2 crystal phase was observed through XRD. The SnO2 crystal phase anchoring to the graphene sheet was confirmed through TEM images. For the preparation of the sensors, tantalum substrates were coated with the sensing material. The sensitivity of the fabricated sensor was studied by varying the relative humidity (RH from 11% to 95% over a period of 30 days. The dependence of the impedance and of the capacitance with RH of the sensor was measured with varying frequency ranging from 1 kHz to 100 Hz. The long-term stability of the sensor was measured at 95% RH over a period of 30 days. The results proved that rGO-SnO2 nanocomposites are an ideal conducting material for humidity sensors due to their high sensitivity, rapid response and recovery times, as well as their good long-term stability.

  12. Physical vapor deposited thin films of lignins extracted from sugar cane bagasse: morphology, electrical properties, and sensing applications.

    Science.gov (United States)

    Volpati, Diogo; Machado, Aislan D; Olivati, Clarissa A; Alves, Neri; Curvelo, Antonio A S; Pasquini, Daniel; Constantino, Carlos J L

    2011-09-12

    The concern related to the environmental degradation and to the exhaustion of natural resources has induced the research on biodegradable materials obtained from renewable sources, which involves fundamental properties and general application. In this context, we have fabricated thin films of lignins, which were extracted from sugar cane bagasse via modified organosolv process using ethanol as organic solvent. The films were made using the vacuum thermal evaporation technique (PVD, physical vapor deposition) grown up to 120 nm. The main objective was to explore basic properties such as electrical and surface morphology and the sensing performance of these lignins as transducers. The PVD film growth was monitored via ultraviolet-visible (UV-vis) absorption spectroscopy and quartz crystal microbalance, revealing a linear relationship between absorbance and film thickness. The 120 nm lignin PVD film morphology presented small aggregates spread all over the film surface on the nanometer scale (atomic force microscopy, AFM) and homogeneous on the micrometer scale (optical microscopy). The PVD films were deposited onto Au interdigitated electrode (IDE) for both electrical characterization and sensing experiments. In the case of electrical characterization, current versus voltage (I vs V) dc measurements were carried out for the Au IDE coated with 120 nm lignin PVD film, leading to a conductivity of 3.6 × 10(-10) S/m. Using impedance spectroscopy, also for the Au IDE coated with the 120 nm lignin PVD film, dielectric constant of 8.0, tan δ of 3.9 × 10(-3), and conductivity of 1.75 × 10(-9) S/m were calculated at 1 kHz. As a proof-of-principle, the application of these lignins as transducers in sensing devices was monitored by both impedance spectroscopy (capacitance vs frequency) and I versus time dc measurements toward aniline vapor (saturated atmosphere). The electrical responses showed that the sensing units are sensible to aniline vapor with the process being

  13. Dynamics of electrostatically driven granular media: Effects of humidity

    International Nuclear Information System (INIS)

    Howell, D. W.; Aronson, Igor S.; Crabtree, G. W.

    2001-01-01

    We performed experimental studies of the effect of humidity on the dynamics of electrostatically driven granular materials. Both conducting and dielectric particles undergo a phase transition from an immobile state (granular solid) to a fluidized state (granular gas) with increasing applied field. Spontaneous precipitation of solid clusters from the gas phase occurs as the external driving is decreased. The clustering dynamics in conducting particles is primarily controlled by screening of the electric field but is aided by cohesion due to humidity. It is shown that humidity effects dominate the clustering process with dielectric particles

  14. Study on absolute humidity influence of NRL-1 measuring apparatus for radon

    International Nuclear Information System (INIS)

    Shan Jian; Xiao Detao; Zhao Guizhi; Zhou Qingzhi; Liu Yan; Qiu Shoukang; Meng Yecheng; Xiong Xinming; Liu Xiaosong; Ma Wenrong

    2014-01-01

    The absolute humidity and temperature's effects on the NRL-1 measuring apparatus for radon were studied in this paper. By controlling the radon activity concentration of the radon laboratory in University of South China and improving the temperature and humidity adjust strategy, different correction factor values under different absolute humidities were obtained. Moreover, a correction curve between 1.90 and 14.91 g/m"3 was also attained. The results show that in the case of absolute humidity, when it is less than 2.4 g/m"3, collection efficiency of the NRL-1 measuring apparatus for radon tends to be constant, and the correction factor of the absolute humidity closes to 1. However, the correction factor increases nonlinearly along with the absolute humidity. (authors)

  15. Migration of heavy natural radionuclides in a humid climatic zone

    International Nuclear Information System (INIS)

    Titaeva, N.A.; Alexakhin, R.M.; Taskaev, A.I.; Maslov, V.I.

    1980-01-01

    Regularities and biochemical peculiarities of the migrations of heavy natural radionuclides in the environment are examined, with special reference to two regions in a humid climatic zone representing natural patterns of radionuclide distribution and to four plots artificially contaminated with high levels of natural radioactivity more than 20 years previously. It was determined that the migration of thorium, uranium, and radium isotopes through the rock-water-soil-plant system is dependent on many physiochemical properties of these radionuclides, their compounds, and the local environment. Isotopic activity ratios provide a useful tool for studying the direction of radionuclide migration and its influence on observed distribution patterns

  16. Modeling of humidity-related reliability in enclosures with electronics

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Popok, Vladimir

    2015-01-01

    Reliability of electronics that operate outdoor is strongly affected by environmental factors such as temperature and humidity. Fluctuations of these parameters can lead to water condensation inside enclosures. Therefore, modelling of humidity distribution in a container with air and freely exposed...

  17. Effect of humidity on the filter pressure drop

    International Nuclear Information System (INIS)

    Vendel, J.; Letourneau, P.

    1995-01-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO 2 ). Cesium hydroxyde (CsOH) of size of 2 μ M AMMD has been generated by an ultrasonic generator and the 0.7 μm AMMD titanium oxyde has been dispersed by a open-quotes turn-tableclose quotes generator. As it is noted in the BISWAS'publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced

  18. Effect of humidity on the filter pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Letourneau, P. [Institut de Protection et de Surete Nucleaire, Gif-sur-Yvette (France)

    1995-02-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO{sub 2}). Cesium hydroxyde (CsOH) of size of 2 {mu} M AMMD has been generated by an ultrasonic generator and the 0.7 {mu}m AMMD titanium oxyde has been dispersed by a {open_quotes}turn-table{close_quotes} generator. As it is noted in the BISWAS`publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced.

  19. Synergistic effects of temperature and humidity on the symptoms of COPD patients

    Science.gov (United States)

    Mu, Zhe; Chen, Pei-Li; Geng, Fu-Hai; Ren, Lei; Gu, Wen-Chao; Ma, Jia-Yun; Peng, Li; Li, Qing-Yun

    2017-11-01

    This panel study investigates how temperature, humidity, and their interaction affect chronic obstructive pulmonary disease (COPD) patients' self-reported symptoms. One hundred and six COPD patients from Shanghai, China, were enrolled, and age, smoking status, St. George Respiratory Questionnaire (SGRQ) score, and lung function index were recorded at baseline. The participants were asked to record their indoor temperature, humidity, and symptoms on diary cards between January 2011 and June 2012. Altogether, 82 patients finished the study. There was a significant interactive effect between temperature and humidity ( p COPD patients. When the indoor humidity was low, moderate, and high, the indoor temperature ORs were 0.969 (95% CI 0.922 to 1.017), 0.977 (0.962 to 0.999), and 0.920 (95% CI 0.908 to 0.933), respectively. Low temperature was a risk factor for COPD patients, and high humidity enhanced its risk on COPD. The indoor temperature should be kept at least on average at 18.2 °C, while the humidity should be less than 70%. This study demonstrates that temperature and humidity were associated with COPD patients' symptoms, and high humidity would enhance the risk of COPD due to low temperature.

  20. Improvement of humidity resistance of water soluble core by precipitation method

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2011-05-01

    Full Text Available Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels; however, the soluble core can absorb water easily from the air at room temperature. To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core, a precipitation method and a two-level-three-full factorial central composite design were used, respectively. The properties of the cores treated by the precipitation method were compared with that without any treatment. Through a systematical study by means of both an environmental scanning electron microscope (ESEM and an energy dispersive X-ray (EDX analyzer, the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration, 4% water concentration and 0 min ignition time. The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity.