WorldWideScience

Sample records for humidity increases yield

  1. Crop diversity for yield increase.

    Directory of Open Access Journals (Sweden)

    Chengyun Li

    2009-11-01

    Full Text Available Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean--either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand.

  2. Observational evidence for aerosols increasing upper tropospheric humidity

    Directory of Open Access Journals (Sweden)

    L. Riuttanen

    2016-11-01

    Full Text Available Aerosol–cloud interactions are the largest source of uncertainty in the radiative forcing of the global climate. A phenomenon not included in the estimates of the total net forcing is the potential increase in upper tropospheric humidity (UTH by anthropogenic aerosols via changes in the microphysics of deep convection. Using remote sensing data over the ocean east of China in summer, we show that increased aerosol loads are associated with an UTH increase of 2.2 ± 1.5 in units of relative humidity. We show that humidification of aerosols or other meteorological covariation is very unlikely to be the cause of this result, indicating relevance for the global climate. In tropical moist air such an UTH increase leads to a regional radiative effect of 0.5 ± 0.4 W m−2. We conclude that the effect of aerosols on UTH should be included in future studies of anthropogenic climate change and climate sensitivity.

  3. Temperature and humidity dependence of air fluorescence yield measured by AIRFLY

    International Nuclear Information System (INIS)

    Ave, M.; Bohacova, M.; Buonomo, B.; Busca, N.; Cazon, L.; Chemerisov, S.D.; Conde, M.E.; Crowell, R.A.; Di Carlo, P.; Di Giulio, C.; Doubrava, M.; Esposito, A.; Facal, P.; Franchini, F.J.; Hoerandel, J.; Hrabovsky, M.; Iarlori, M.; Kasprzyk, T.E.; Keilhauer, B.

    2008-01-01

    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6, 337.1, 353.7 and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20% for the temperature dependence in the 391.4 nm band) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.

  4. Interactive effects of pests increase seed yield.

    Science.gov (United States)

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  5. Whey cheese: membrane technology to increase yields.

    Science.gov (United States)

    Riera, Francisco; González, Pablo; Muro, Claudia

    2016-02-01

    Sweet cheese whey has been used to obtain whey cheese without the addition of milk. Pre-treated whey was concentrated by nanofiltration (NF) at different concentration ratios (2, 2.5 and 2.8) or by reverse osmosis (RO) (2-3 times). After the concentration, whey was acidified with lactic acid until a final pH of 4.6-4.8, and heated to temperatures between 85 and 90 °C. The coagulated fraction (supernatant) was collected and freely drained over 4 h. The cheese-whey yield and protein, fat, lactose and ash recoveries in the final product were calculated. The membrane pre-concentration step caused an increase in the whey-cheese yield. The final composition of products was compared with traditional cheese-whey manufacture products (without membrane concentration). Final cheese yields found were to be between 5 and 19.6%, which are higher than those achieved using the traditional 'Requesón' process.

  6. Yield and Yield Attributes Responses of Soybean (Glycine max L. Merrill to Elevated CO2 and Arbuscular Mycorrhizal Fungi Inoculation in the Humid Transitory Rainforest

    Directory of Open Access Journals (Sweden)

    Nurudeen ADEYEMI

    2017-06-01

    Full Text Available Variations in yield components and grain yield of arbuscular mycorrhizal fungi (AMF inoculated soybean varieties (Glycine max L. Merrill grown in CO2 enriched environment in the humid rainforest were tested.  A screen house trial was established with soybean varieties (‘TGx 1448-2E’, ‘TGx 1440-1E’ and ‘TGx 1740-2F’, AMF inoculation (with and without and CO2 enrichment (350±50 ppm and 550±50 ppm in open top chamber, arranged in completely randomised design, replicated three times. A field trial was also conducted; the treatments were arranged in a split-split plot configuration fitted into randomised complete block design. In the main plot the variant was CO2 enrichment, the sub-plot consisted of AMF inoculation (with and without, while the sub-sub plot consisted of soybean varieties, replicated three times. Both trials had significantly higher grain yield at elevated CO2 than ambient. This could be attributed to improved yield attributes, more spore count and root colonisation. In both trials, inoculated soybean had significantly higher dry pod weight than un-inoculated, which could suggest the increased grain yield observed on the field. AMF inoculated soybean varieties outperformed un-inoculated in both CO2 enriched and ambient concentrations. AMF inoculated soybean variety ‘TGx 1740-2F’ is most preferable in CO2 enriched environment, while variety ‘TGx 1448-2E’ had the most stable grain yield in all growth environments.

  7. Increasing alcohol yield in sugar fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Colin, P

    1962-02-20

    The yield of alcohol from yeast fermentations of sugar solutions is increased 1.5 to 5% by the addition of 0.1 to 0.5 parts by volume of a monohydric saturated aliphatic alcohol of at least 6 C atoms in a straight chain such as hexanol or heptanol, or branched chain, such as 2-ethylbutanol or 2-ethylhexanol, or a mixture consisting mostly of C/sub 7/, C/sub 8/, C/sub 9/, or C/sub 10/ alcohols.

  8. Sweet potato yields and nutrient dynamics after short-term fallows in the humid lowlands of Papua New Guinea

    NARCIS (Netherlands)

    Hartemink, A.E.

    2003-01-01

    Shifting cultivation is common in the humid lowlands of Papua New Guinea but little is known about the effect of different fallows on sweet potato (Ipomoea batatas) yield and nutrient flows and pools in these systems. An experiment was conducted in which two woody fallow species (Piper aduncum and

  9. Crop yield response to increasing biochar rates

    Science.gov (United States)

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  10. N-acetylcysteine increased rice yield

    OpenAIRE

    NOZULAIDI, MOHD; JAHAN, MD SARWAR; KHAIRI, MOHD; KHANDAKER, MOHAMMAD MONERUZZAMAN; NASHRIYAH, MAT; KHANIF, YUSOP MOHD

    2015-01-01

    N-acetylcysteine (NAC) biosynthesized reduced glutathione (GSH), which maintains redox homeostasis in plants under normal and stressful conditions. To justify the effects of NAC on rice production, we measured yield parameters, chlorophyll (Chl) content, minimum Chl fluorescence (Fo), maximum Chl fluorescence (Fm), quantum yield (Fv/Fm), net photosynthesis rate (Pn), photosynthetically active radiation (PAR), and relative water content (RWC). Four treatments, N1G0 (nitrogen (N) with no NAC), ...

  11. Cattle manure fertilization increases fig yield

    OpenAIRE

    Leonel,Sarita; Tecchio,Marco Antonio

    2009-01-01

    Fertilization using organic compounds is complementary to chemical fertilization, being essential to integrated fruit production. Reports on fig tree (Ficus carica L.) organic fertilization and mineral nutrition are worldwide scarce, especially in Brazil. This experiment aimed to evaluate the effects of cattle manure fertilization on the yield and productivity of the fig tree 'Roxo de Valinhos' in Botucatu, São Paulo State, Brazil, during the 2002/03, 2003/04, 2004/05 and 2005/06 crop cycles....

  12. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India

    Science.gov (United States)

    Jayakumar, M.; Rajavel, M.; Surendran, U.

    2016-12-01

    A study on the variability of coffee yield of both Coffea arabica and Coffea canephora as influenced by climate parameters (rainfall (RF), maximum temperature (Tmax), minimum temperature (Tmin), and mean relative humidity (RH)) was undertaken at Regional Coffee Research Station, Chundale, Wayanad, Kerala State, India. The result on the coffee yield data of 30 years (1980 to 2009) revealed that the yield of coffee is fluctuating with the variations in climatic parameters. Among the species, productivity was higher for C. canephora coffee than C. arabica in most of the years. Maximum yield of C. canephora (2040 kg ha-1) was recorded in 2003-2004 and there was declining trend of yield noticed in the recent years. Similarly, the maximum yield of C. arabica (1745 kg ha-1) was recorded in 1988-1989 and decreased yield was noticed in the subsequent years till 1997-1998 due to year to year variability in climate. The highest correlation coefficient was found between the yield of C. arabica coffee and maximum temperature during January (0.7) and between C. arabica coffee yield and RH during July (0.4). Yield of C. canephora coffee had highest correlation with maximum temperature, RH and rainfall during February. Statistical regression model between selected climatic parameters and yield of C. arabica and C. canephora coffee was developed to forecast the yield of coffee in Wayanad district in Kerala. The model was validated for years 2010, 2011, and 2012 with the coffee yield data obtained during the years and the prediction was found to be good.

  13. Increasing the yeast yield in alcohol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Pelc, A; Vamos, E; Varga, L; Gavalya, S; Dolanszky, F

    1964-02-01

    The yeast and ethanol yields (the latter being based on the substrate) are enhanced by adding the substrate (molasses) gradually to the suspension of inoculating yeast during the main fermentation period, passing air through the mash, ceasing both substrate addition and aeration at the end of the main period, and allowing the process to come to an end. This way 12 to 14 kg yeast (dry weight)/100 l ethanol could be obtained within 16 to 24 hours and the yeast obtained could be used as the inoculum for the next charge. For example: 11 to 16 kg yeast (or 18 to 25 l yeast suspension from the preceding charge, containing 18 to 20% dry matter) is kept in 30 to 35 l H/sub 2/SO/sub 4/ (0.74 g/100 ml) for 1 hour, diluted with H/sub 2/O and 30 kg sterile molasses to 300 l, kept at 30 to 32/sup 0/ with mild aeration for 2 hours, 1900 l 30/sup 0/ H/sub 2/O added, then 1 m/sup 3/ air/m/sup 2//hour is passed through the mixture, with the addition of 270 kg sterile molasses, and a solution of 8 kg superphosphate and 5 kg (NH/sub 4/)/sub 2/SO/sub 4/ in 100 l H/sub 2/O, the latter being added in 5 portions over 2 hours. Molasses (600 kg) is added during the main period, maintaining the pH at 5 (H/sub 2/SO/sub 4/), and the temperature at 30/sup 0/, then aeration is ceased and the mixture kept until fermentation proceeds. The 3000 l medium contains 9.6% ethanol and 1.38% yeast, respectively.

  14. Yield, Phenotypical Stability and Micronutrients Contents in the Biofortified Bean in the Colombian Sub-humid Caribbean

    Directory of Open Access Journals (Sweden)

    Adriana Patricia Tofiño-Rivera,

    2016-09-01

    Full Text Available The intake of protein and micronutrients in the Colombian sub-humid Caribbean has been a concern in recent years. About 57 % of the population in the sub-humid Caribbean region, has a deficit of amino acids —iron (Fe and zinc (Zn— in their diet. This study shows the results of the agronomic evaluation of the performance and quality of nine genotypes of biofortified bean and one local control in four environments of Cesar. The methodology included chemical and microbio-logical soil characterization, reaction evaluation to pests and diseases, multi-sited valuation by AMMI and selection of two varieties with better yield and nutritional content by ACP. In addition to these two prioritized genotypes, the Pearson correlation coefficient between seed micronutrient content for locations and years was determined. The biofortified genotypes surpassed the control group significantly in both yield and precocity. According to the ACP, the biofortified group differed from the control group in iron and zinc content in the seed, confirming its superior characteristics in nutritional quality, and resistance to pests and diseases. The AMMI showed that the genotype SMR43 reflected stability and predi-ctability between environments and SMR39 had specific adaptation in the best location for grain production. Both genotypes retained high levels of micronutrients between locations and years as according to the Pearson correlation.

  15. Decline in temperature and humidity increases the occurrence of influenza in cold climate

    Science.gov (United States)

    2014-01-01

    Background Both temperature and humidity may independently or jointly contribute to the risk of influenza infections. We examined the relations between the level and decrease of temperature, humidity and the risk of influenza A and B virus infections in a subarctic climate. Methods We conducted a case-crossover study among military conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training period and identified 66 influenza A and B cases by PCR or serology. Meteorological data such as measures of average and decline in ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods, prior and after the onset were obtained. Results The average temperature preceding the influenza onset was −6.8 ± 5.6°C and AH 3.1 ± 1.3 g/m3. A decrease in both temperature and AH during the hazard period increased the occurrence of influenza so that a 1°C decrease in temperature and 0.5 g decrease per m3 in AH increased the estimated risk by 11% [OR 1.11 (1.03 to 1.20)] and 58% [OR 1.58 (1.28 to 1.96)], respectively. The occurrence of influenza infections was positively associated with both the average temperature [OR 1.10 per 1°C (95% confidence interval 1.02 to 1.19)] and AH [OR 1.25 per g/m3 (1.05 to 1.49)] during the hazard period prior to onset. Conclusion Our results demonstrate that a decrease rather than low temperature and humidity per se during the preceding three days increase the risk of influenza episodes in a cold climate. PMID:24678699

  16. Small millet farmers increase yields through participatory varietal

    International Development Research Centre (IDRC) Digital Library (Canada)

    When farmers adopt a variety along with ones they already ... Increased access to quality seed of promising ... Figure 1: Potential increases in yield of small millet preferred varieties. 0. 200 ... terms of both product (farmers preferred varieties ...

  17. Does the increased air humidity affect soil respiration and carbon stocks?

    Science.gov (United States)

    Kukumägi, Mai; Celi, Luisella; Said-Pullicino, Daniel; Kupper, Priit; Sõber, Jaak; Lõhmus, Krista; Kutti, Sander; Ostonen, Ivika

    2013-04-01

    Climate manipulation experiments at ecosystem-scale enable us to simulate, investigate and predict changes in carbon balance of forest ecosystems. Considering the predicted increase in air humidity and precipitation for northern latitudes, this work aimed at investigating the effect of increased air humidity on soil respiration, distribution of soil organic matter (SOM) among pools having different turnover times, and microbial, fine root and rhizome biomass. The study was carried out in silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.) stands in a Free Air Humidity Manipulation (FAHM) experimental facility containing three humidified (H; on average 7% above current ambient levels since 2008) and three control (C) plots. Soil respiration rates were measured monthly during the growing season using a closed dynamic chamber method. Density fractionation was adopted to separate SOM into two light fractions (free and aggregate-occluded particulate organic matter, fPOM and oPOM respectively), and one heavy fraction (mineral-associated organic matter, MOM). The fine root and rhizome biomass and microbial data are presented for silver birch stands only. In 2011, after 4 growing seasons of humidity manipulation soil organic carbon contents were significantly higher in C plots than H plot (13.5 and 12.5 g C kg-1, respectively), while soil respiration tended to be higher in the latter. Microbial biomass and basal respiration were 13 and 14% higher in H plots than in the C plots, respectively. Twice more fine roots of trees were estimated in H plots, while the total fine root and rhizome biomass (tree + understory) was similar in C and H plots. Fine root turnover was higher for both silver birch and understory roots in H plots. Labile SOM light fractions (fPOM and oPOM) were significantly smaller in H plots with respect to C plots (silver birch and hybrid aspen stands together), whereas no differences were observed in the

  18. Increasing crop diversity mitigates weather variations and improves yield stability.

    Science.gov (United States)

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  19. Materials and methods to increase plant growth and yield

    Science.gov (United States)

    Kirst, Matias

    2017-05-16

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  20. Assessing the influence of NOx concentrations and relative humidity on secondary organic aerosol yields from α-pinene photo-oxidation through smog chamber experiments and modelling calculations

    Science.gov (United States)

    Stirnweis, Lisa; Marcolli, Claudia; Dommen, Josef; Barmet, Peter; Frege, Carla; Platt, Stephen M.; Bruns, Emily A.; Krapf, Manuel; Slowik, Jay G.; Wolf, Robert; Prévôt, Andre S. H.; Baltensperger, Urs; El-Haddad, Imad

    2017-04-01

    Secondary organic aerosol (SOA) yields from the photo-oxidation of α-pinene were investigated in smog chamber (SC) experiments at low (23-29 %) and high (60-69 %) relative humidity (RH), various NOx / VOC ratios (0.04-3.8) and with different aerosol seed chemical compositions (acidic to neutralized sulfate-containing or hydrophobic organic). A combination of a scanning mobility particle sizer and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer was used to determine SOA mass concentration and chemical composition. We used a Monte Carlo approach to parameterize smog chamber SOA yields as a function of the condensed phase absorptive mass, which includes the sum of OA and the corresponding bound liquid water content. High RH increased SOA yields by up to 6 times (1.5-6.4) compared to low RH. The yields at low NOx / VOC ratios were in general higher compared to yields at high NOx / VOC ratios. This NOx dependence follows the same trend as seen in previous studies for α-pinene SOA. A novel approach of data evaluation using volatility distributions derived from experimental data served as the basis for thermodynamic phase partitioning calculations of model mixtures in this study. These calculations predict liquid-liquid phase separation into organic-rich and electrolyte phases. At low NOx conditions, equilibrium partitioning between the gas and liquid phases can explain most of the increase in SOA yields observed at high RH, when in addition to the α-pinene photo-oxidation products described in the literature, fragmentation products are added to the model mixtures. This increase is driven by both the increase in the absorptive mass and the solution non-ideality described by the compounds' activity coefficients. In contrast, at high NOx, equilibrium partitioning alone could not explain the strong increase in the yields with RH. This suggests that other processes, e.g. reactive uptake of semi-volatile species into the liquid phase, may occur and be

  1. The increase in extraction yields of coals by water treatment

    Energy Technology Data Exchange (ETDEWEB)

    M. Iino; T. Takanohashi; C. Li; N. Kashimura; K. Masaki; T. Shishido; I. Saito; H. Kumagai [Institute for Energy Utilization, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan)

    2005-07-01

    We have reported that the water treatments of bituminous coals at 600 K for 1 h increased their extraction yields greatly (Energy Fuels, 2005, 18, 1414). In this paper the effect of coal rank on the extraction yields enhancement by the water treatment has been investigated using four Argonne Premium coals, i.e., Pocahontas No. 3 (PO), Upper Freeport (UF), Illinois No.6 (IL), and Beulah Zap (BZ) coals with C % (daf) in the range 67 - 90%. All the coals used show that the water treatments at 600 K increased the extraction yields greatly with a 1:1 carbon disulfide / N-methyl-2-pyrrolidinone mixed solvent (CS2 / NMP) at room temperature. While, the water treatments at 500 K or the heat treatments at 600 K without water gave little increase in the yields. Characterizations of the water-treated coals were carried out from ultimate and proximate compositions, FT-IR spectrum, solvent swelling, NMR relaxation time, and viscoelasticity behavior. The effect of extraction temperature on the extraction yield enhancement was also investigated using polar NMP or non-polar 1-MN solvent. From these results it is concluded that for high coal rank coals the loosening of non-covalent bonds is responsible for the extraction yields enhancement by the water treatment. The loosening non-covalent bonds may be {pi}-{pi} interactions between aromatic rings for PO, and both {pi}-{pi} interactions and hydrogen bonds for UF. While, for lower rank IL and BZ, which showed decrease in O% and hydrogen-bonded OH, the yield enhancements may be due to the loosening of hydrogen bonds and the removal of oxygen functional groups. 9 refs., 5 figs., 1 tab.

  2. Increase in extraction yields of coals by water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Iino; Toshimasa Takanohashi; Chunqi Li; Haruo Kumagai [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Institute for Energy Utilization

    2004-10-01

    The effect of water treatment at 500 and 600 K on solvent extractions of Pocahontas No. 3 (PO), Upper Freeport (UF), and Illinois No. 6 (IL) coals was investigated. All the coals used show that the water treatments at 600 K increased the extraction yields greatly in the extractions with a 1:1 carbon disulfide/N-methyl-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent, NMP, or 1-methylnaphthalene (1-MN). However, the water treatments at 500 K and the heat treatments at 600 K without water gave only a slight increase in the yields. Characterizations of the water-treated coals were performed using ultimate and proximate compositions, Fourier transform infrared analysis, solvent swelling, nuclear magnetic resonance relaxation time, and viscoelasticity behavior. The swelling degree in methanol and toluene was increased by the water treatment at 600 K, suggesting that crosslinks become loosened by the treatment. The results of infrared analysis and the extraction temperature dependency of the extraction yields with NMP and 1-MN suggest that the loosening of {pi} - interactions, and of both {pi} - interactions and hydrogen bonds, are responsible for the yield enhancements for PO and UF coals, respectively. However, for IL coal, which exhibited a decrease in oxygen content and the amount of hydrogen-bonded OH, suggesting the occurrence of some chemical reactions, the yield enhancements may be due to the relaxation of hydrogen bonds and the removal of oxygen functional groups, such as the breaking of ether bonds. 17 refs., 3 figs., 5 tabs.

  3. Bats and birds increase crop yield in tropical agroforestry landscapes.

    Science.gov (United States)

    Maas, Bea; Clough, Yann; Tscharntke, Teja

    2013-12-01

    Human welfare is significantly linked to ecosystem services such as the suppression of pest insects by birds and bats. However, effects of biocontrol services on tropical cash crop yield are still largely unknown. For the first time, we manipulated the access of birds and bats in an exclosure experiment (day, night and full exclosures compared to open controls in Indonesian cacao agroforestry) and quantified the arthropod communities, the fruit development and the final yield over a long time period (15 months). We found that bat and bird exclusion increased insect herbivore abundance, despite the concurrent release of mesopredators such as ants and spiders, and negatively affected fruit development, with final crop yield decreasing by 31% across local (shade cover) and landscape (distance to primary forest) gradients. Our results highlight the tremendous economic impact of common insectivorous birds and bats, which need to become an essential part of sustainable landscape management. © 2013 John Wiley & Sons Ltd/CNRS.

  4. Chemical intervention in plant sugar signalling increases yield and resilience

    Science.gov (United States)

    Griffiths, Cara A.; Sagar, Ram; Geng, Yiqun; Primavesi, Lucia F.; Patel, Mitul K.; Passarelli, Melissa K.; Gilmore, Ian S.; Steven, Rory T.; Bunch, Josephine; Paul, Matthew J.; Davis, Benjamin G.

    2016-12-01

    The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a ‘signalling-precursor’ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function.

  5. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    Science.gov (United States)

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Using Simulation to Increase Yields in Chemical Engineering

    Directory of Open Access Journals (Sweden)

    William C. Conley

    2003-06-01

    Full Text Available Trying to increase the yields or profit or efficiency (less pollution of chemical processes is a central goal of the chemical engineer in theory and practice. Certainly sound training in chemistry, business and pollution control help the engineer to set up optimal chemical processes. However, the ever changing demands of customers and business conditions, plus the multivariate complexity of the chemical business can make optimization challenging. Mathematical tools such as statistics and linear programming have certainly been useful to chemical engineers in their pursuit of optimal efficiency. However, some processes can be modeled linearly and some can not. Therefore, presented here will be an industrial chemical process with potentially five variables affecting the yield. Data from over one hundred runs of the process has been collected, but it is not known initially whether the yield relationship is linear or nonlinear. Therefore, the CTSP multivariate correlation coefficient will be calculated for the data to see if a relationship exists among the variables. Then once it is proven that there is a statistically significant relationship, an appropriate linear or nonlinear equation can be fitted to the data, and it can be optimized for use in the chemical plant.

  7. Unguided bronchoscopic biopsy: Does yield increase with operator experience

    Directory of Open Access Journals (Sweden)

    Tyagi Rahul

    2017-08-01

    Full Text Available Background Bronchoscopic Forceps biopsy (Endobronchial Biopsy (EBB and Trans Bronchial Lung Biopsy (TBLB are commonly performed for diagnosis in patients with endobronchial abnormalities or diffuse parenchymal involvement. As the operator gains experience his yield of various diagnostic bronchoscopic biopsies is expected to increase, however, no studies on the subject are available in literature. Aims To determine the effect of on- job experience on the yield of unguided bronchoscopic biopsies. Methods A total of 244 bronchoscopies were performed between Oct 2013 and Oct 2016. A retrospective analysis of all these bronchoscopies was undertaken. All patients who underwent biopsy were included in the study. Patients were divided into two groups with first group (Group A comprising of biopsies done between Oct 2013 to Apr 2015 and second group comprising biopsies done between May 2015 to Oct 2016 (Group B. The diagnostic yield in two groups was compared. Results Total 71 bronchoscopic biopsies were performed during Oct 2013 to Oct 2016. 36 patients were included in group A and 35 patients were included in group B. The groups were matched in demographic profile, clinical diagnosis, bronchoscopic findings and type of biopsy undertaken. The biopsy was diagnostic in 31 patient (43.6 per cent and nondiagnostic in 33 patients (46.4 per cent. There were 15 diagnostic biopsies in group A and 16 diagnostic biopsies in group B. The difference in the diagnostic biopsies between the two groups was not significant. Conclusion There was no significant impact of on job experience on diagnostic yield of biopsies. This may be due to adequate exposure during training leading to a diagnostic plateau being reached.

  8. Increase of alcohol yield per ton of pulp

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, B N

    1957-01-01

    Digestion processes of cellulose were studied under production conditions. When the digestion was carried out with acid having 5.2% total SO/sub 2/ and 0.92% CaO, the concentration of total sugars in the spent liquor was 1.8 to 2.5%. When the acidity was reduced to 4.8% total SO/sub 2/ and 0.82% CaO, all other conditions being the same, the sugar concentration in the spent liquor increased to 3.0 to 3.7%. The importance of the acid strength and CaO content of the cooking liquor was further demonstrated at the end of 1955. At that time the total SO/sub 2/ in the acid rose to 8% while the amount of CaO remained practically the same-0.85 to 0.90%. These conditions permitted an increase in the amount of ships by 25 to 30%, which further changed the ratio CaO: wood and created conditions favorable for an improved yield of sugar. The increase in the activity of the acid was reflected favorably in the degree of hydrolysis of the hemicelluloses and in the degree to which the oligosaccharides or polysaccharides were hydrolyzed to simple sugars. At that time the yield of alcohol reached 53 1/ton of unbleached pulp. The process was further improved in 1956 by the use of successive washings; at the end of the digestion period the concentrated spent liquor was piped to the alcohol unit. The yield of alcohol reached 59.4 1/ton of pulp. Sugar recovery from the tank was 92.5% of that theoretically possible. Further improvements resulted by saturating the wood chips with acid under variable pressures. As a result, the base of the cooking acid was reduced to 0.7 to 0.72% and, at the end of the process the liquor contained 0.03 to 0.06% CaO instead of 0.2 to 0.18%. The alcohol yield/ton of pulp then rose to 66.8 l.

  9. Resource-conserving agriculture increases yields in developing countries.

    Science.gov (United States)

    Pretty, J N; Noble, A D; Bossio, D; Dixon, J; Hine, R E; Penning De Vries, F W T; Morison, J I L

    2006-02-15

    Despite great recent progress, hunger and poverty remain widespread and agriculturally driven environmental damage is widely prevalent. The idea of agricultural sustainability centers on the need to develop technologies and practices that do not have adverse effects on environmental goods and services, and that lead to improvements in food productivity. Here we show the extent to which 286 recent interventions in 57 poor countries covering 37 M ha (3% of the cultivated area in developing countries) have increased productivity on 12.6 M farms while improving the supply of critical environmental services. The average crop yield increase was 79% (geometric mean 64%). All crops showed water use efficiency gains, with the highest improvement in rainfed crops. Potential carbon sequestered amounted to an average of 0.35 t C ha(-1) y(-1). If a quarter of the total area under these farming systems adopted sustainability enhancing practices, we estimate global sequestration could be 0.1 Gt C y(-1). Of projects with pesticide data, 77% resulted in a decline in pesticide use by 71% while yields grew by 42%. Although it is uncertain whether these approaches can meet future food needs, there are grounds for cautious optimism, particularly as poor farm households benefit more from their adoption.

  10. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    Science.gov (United States)

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. CONVERSION PRODUCT STRUCTURE AS TOOL TO INCREASE YIELD PROCESSING ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    A. I. Khorev

    2014-01-01

    Full Text Available The authors' analysis of the performance of organizations, processing raw materials of agricultural origin, in particular, dealing with meat processing, identified the need to develop tools to increase their profitability. Unlike common approaches to assessing the profitability of the processing organizations, taking into account only the interests of the organization's leadership and buyers of products, the authors proposed and implemented a concept based on the interests of participants in the triune balance business activities: owners of capital, management organizations and consumers. As one of the tools for improving the yield of processing organizations are invited to transform their product mix of economic evaluations of profitability of each product line positions. Russian researchers income from product sales are traditionally measured by indicators such as net income, income from sales, profit margins and profitability level - in terms of return on sales. The disadvantage of using these indicators, according to the authors, is their lack of objectivity in the evaluation of the effectiveness of investment business owners. In this work was used unconventional and non-proliferation in the Russian practice, the rate of economic value added (EVA, a built - in system of profitability assortment positions. As indicators, the production of a particular product line units proposed and used two quantitative indicators - EVA level per unit of production and profitability of production (for EVA, as well as a quality parameter - the level of demand. Developed by the evaluation program transformation product structure represented as a matrix management capabilities, allowing to achieve a balance of interests of the triune main participants in business activity.

  12. Carcass yield traits of kids from a complete diallel of Boer, Kiko, and Spanish meat goat breeds semi-intensively managed on humid subtropical pasture.

    Science.gov (United States)

    Browning, R; Phelps, O; Chisley, C; Getz, W R; Hollis, T; Leite-Browning, M L

    2012-03-01

    Bucklings (n = 275) from a complete diallel of Boer, Kiko, and Spanish meat goats were slaughtered at 7 mo of age (4 mo postweaning) to evaluate genetic effects on carcass yield. Breed of sire did not affect (P > 0.05) live, carcass, and primal weights. Conversely, breed of dam was a consistently significant source of variation for carcass weight traits. Kiko dams produced kids with heavier (P 0.05) from Boer or Kiko. Subjective conformation scores for muscularity were affected (P 0.05) by breeds of sire or dam. Direct effects of Boer were negative for carcass weight, dressing percent, and shoulder weight and positive for proportional leg weight. Direct effects of Kiko were positive for carcass weight and shoulder weight and negative for proportional leg weight. Direct effects of Spanish did not differ (P > 0.10) from 0 for any trait tested. Heterosis levels were similar among breed pairings. Heterosis was substantial (P ≤ 0.05) for live, carcass, and primal weights (5 to 9%) but not for dressing percent, proportional boneless meat yield, or primal weight proportions (genetic variation was observed among goat breeds for carcass yield traits. Dam breed was more influential than sire breed. Boer germplasm was not superior to Kiko or Spanish germplasm for carcass yield when semi-intensively managed on humid, subtropical pasture. Results emphasize the importance of comparative breed evaluations to provide industry with reliable information on carcass yield among goat genotypes.

  13. Small millet farmers increase yields through participatory varietal ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Small millets, despite being rich in micronutrients and dietary fibre and known for their low glycemic index and tolerance of water stress, are in decline in South Asia. Existing varieties suffer from low yield and farmers lack access to improved varieties. The Revalorising Small Millets in Rainfed Regions of South Asia ...

  14. Managing Southeastern US Forests for Increased Water Yield

    Science.gov (United States)

    Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.

    2017-12-01

    Forested lands influence watershed hydrology by affecting water quantity and quality in surface and groundwater systems, making them potentially effective tools for regional water resource planning. In this study, we quantified water use and water yield by pine forests under varying silvicultural management (e.g., high density plantation, thinning, and prescribed burning). Daily forest water use (evapotranspiration, ET) was estimated using continuously monitored soil-moisture in the root-zone at six sites across Florida (USA), each with six plots ranging in forest leaf-area index (LAI). Plots included stands with different rotational ages (from clear-cut to mature pine plantations) and those restored to more historical conditions. Estimated ET relative to potential ET (PET) was strongly associated with LAI, root-zone soil-moisture status, and site hydroclimate; these factors explained 85% of the variation in the ET:PET ratio. Annual water yield (Yw) calculated from these ET estimates and a simple water balance differed significantly among sites and plots (ranging from -0.12 cm/yr to > 100 cm/yr), demonstrating substantive influence of management regimes. LAI strongly influenced Yw in all sites, and a general linear model with forest attributes (LAI and groundcover), hydroclimate, and site characteristics explained >90% of variation in observed Yw. These results can be used to predict water yield changes under different management and climate scenarios and may be useful in the development of payment for ecosystem services approaches that identify water as an important product of forest best management practices.

  15. Manure placement method influenced growth, phenology and bunch yield of three Musagenotypes in a humid zone of Southern Nigeria

    OpenAIRE

    A. Tenkouano; O. O. Ndukwe; K. P. Baiyeri

    2013-01-01

    Manure placement methods earlier evaluated in a greenhouse using the banana cultivar PITA 14 as a test-crop significantly influenced root system development, vegetative growth, nutrient uptake, whole plant dry matter yield and distribution of the crop. These placement methods plus an additional treatment were re-evaluated in a field experiment over two cropping cycles using three Musa genotypes. The treatments were: a full dose of poultry manure placed on the soil surface – top dressing(T1),a...

  16. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    All matter is more or less hygroscopic. The moisture content varies with vapour concentration of the surrounding air and, as a consequence, most material properties change with humidity. Mechanical and thermal properties of many materials, such as the tensile strength of adhesives, stiffness of plastics, stoutness of building and packaging materials or the thermal resistivity of isolation materials, all decrease with increasing environmental humidity or cyclic humidity changes. The presence of water vapour may have a detrimental influence on many electrical constructions and systems exposed to humid air, from high-power systems to microcircuits. Water vapour penetrates through coatings, cable insulations and integrated-circuit packages, exerting a fatal influence on the performance of the enclosed systems. For these and many other applications, knowledge of the relationship between moisture content or humidity and material properties or system behaviour is indispensable. This requires hygrometers for process control or test and calibration chambers with high accuracy in the appropriate temperature and humidity range. Humidity measurement methods can roughly be categorized into four groups: water vapour removal (the mass before and after removal is measured); saturation (the air is brought to saturation and the `effort' to reach that state is measured); humidity-dependent parameters (measurement of properties of humid air with a known relation between a specific property and the vapour content, for instance the refractive index, electromagnetic spectrum and acoustic velocity); and absorption (based on the known relation between characteristic properties of non-hydrophobic materials and the amount of absorbed water from the gas to which these materials are exposed). The many basic principles to measure air humidity are described in, for instance, the extensive compilations by Wexler [1] and Sonntag [2]. Absorption-type hygrometers have small dimensions and can be

  17. The effect of increase in humidity on the size and activity distributions of radon progeny laden aerosols from hydrocarbon combustion

    International Nuclear Information System (INIS)

    Khan, Atika; Phillips, C.R.

    1988-01-01

    The effects of a humidity increase on the distributions of aerosol size and activity for hydrocarbon combustion aerosols laden with radon progeny were determined. Pre-humidification aerosol conditions were 20 0 C and 35% RH. Post-humidification aerosol conditions were 37 0 C and 100% RH, intended to simulate conditions in the human respiratory tract. Using kerosene combustion aerosols, a growth factor of 1.3 ± 0.2 (standard deviation) was found for both the aerosol median diameter and the activity median diameter. (author)

  18. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture.

    Science.gov (United States)

    Wan, Nian-Feng; Cai, You-Ming; Shen, Yan-Jun; Ji, Xiang-Yun; Wu, Xiang-Wen; Zheng, Xiang-Rong; Cheng, Wei; Li, Jun; Jiang, Yao-Pei; Chen, Xin; Weiner, Jacob; Jiang, Jie-Xian; Nie, Ming; Ju, Rui-Ting; Yuan, Tao; Tang, Jian-Jun; Tian, Wei-Dong; Zhang, Hao; Li, Bo

    2018-05-24

    Urban agriculture is making an increasing contribution to food security in large cities around the world. The potential contribution of biodiversity to ecological intensification in urban agricultural systems has not been investigated. We present monitoring data collected from rice fields in 34 community farms in mega-urban Shanghai, China, from 2001 to 2015, and show that the presence of a border crop of soybeans and neighboring crops (maize, eggplant and Chinese cabbage), both without weed control, increased invertebrate predator abundance, decreased the abundance of pests and dependence on insecticides, and increased grain yield and economic profits. Two 2 year randomized experiments with the low and high diversity practices in the same locations confirmed these results. Our study shows that diversifying farming practices can make an important contribution to ecological intensification and the sustainable use of associated ecosystem services in an urban ecosystem. © 2018, Wan et al.

  19. Cutting-edge gene editing techniques for increased vaccine yields ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-04-09

    Apr 9, 2018 ... Experiments show that reducing the level of IFITMs in chicken cells infected with influenza leads to increased levels of the virus in the ... Accelerating vaccine development for African swine fever virus through synthetic biology.

  20. Increase of Internal CO2 of Cotton Plants by Methanol Application to Increase Yield

    International Nuclear Information System (INIS)

    Badron Zakaria; Darmawan; Nurlina Kasim; Joseph Saepuddin

    2004-01-01

    A field experiment has been conducted to increase internal CO 2 and Rubisco activity detected by 14 C and to determinate which factors influence this activities. Plant material used was cotton plants which internal CO 2 concentrations and Rubisco activity was observed at 35, 50, 65, 80 days after planting (DAP). Treatments applied were methanol with concentrations of 0%, 10%,20% and 30% at available water (AW) at 25-50% AW, 50-75% AW, 75-100% AW. Results obtained showed that application of methanol at concentration of 20% at 75-100% AW, increase internal CO 2 from 266.60 ppm to 295.10 ppm (11 % increase) and this will also increase Rubisco activity from 3.81 to 14.28 (μmol. CO 2 menit -1 (μmol. Rubisco -1 ). This increase is expected to push photosynthesis rate and result in increase cotton yield. The use of 14 C was satisfactorily detected the amount of carbon. (author)

  1. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Science.gov (United States)

    Tran Trong, Than; Riera, Florence; Rinaldi, Kévin; Briki, Walid; Hue, Olivier

    2015-01-01

    A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions. Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol) beverage at three temperatures: Neutral (ambient temperature) (28.7°C±0. 5°C), Cold (3.1°C±0.6°C) or Ice-slurry (0.17°C±0.07°C). Trial time, core temperature (Tco), heart rate (HR), rate of perceived exertion (RPE), thermal sensation (TS) and thermal comfort (TC) were assessed. Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol. A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone). Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE) between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  2. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Directory of Open Access Journals (Sweden)

    Than Tran Trong

    Full Text Available A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions.Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol beverage at three temperatures: Neutral (ambient temperature (28.7°C±0. 5°C, Cold (3.1°C±0.6°C or Ice-slurry (0.17°C±0.07°C. Trial time, core temperature (Tco, heart rate (HR, rate of perceived exertion (RPE, thermal sensation (TS and thermal comfort (TC were assessed.Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol.A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone. Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  3. Conditions and prospects for increasing forest yield in northern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, R.; Mustonen, M.; Lundmark, T. [and others

    2013-09-01

    Forests will play a crucial role in the transformation from an economy based on fossil fuels to one relying on renewable resources. Hence, besides being a source of raw material for the forest industry, in the future, forests are expected to increasingly contribute to the production of energy as well as providing a wide range of environmental and social services. Thus, the objective of the present study is to assess the short-term and long-term potential for increasing sustainable wood supply in the EFINORD countries. Present practices and prospects for intensive forest management have been assessed using information from a questionnaire complemented by compilation and evaluating of national forest inventory (NFI) data and other forest sector relevant information. The study indicates a striking variation in the intensity of utilisation of the wood resources within the EFINORD region. For the region as a whole, there seems to be a substantial unused (biophysical) potential. However, recent NFI data from some countries indicate that annual felling rates can be underestimated. If felling rates are higher than currently recognised then, given the increased demand for wood-based energy, there appears to be a need to discuss strategies for large-scale implementation of more intensive forestry practices to ensure that the availability of wood resources in the future can meet an increasing demand in the EFINORD countries. (orig.)

  4. Acid-yield measurements of the gas-phase ozonolysis of ethene as a function of humidity using Chemical Ionisation Mass Spectrometry (CIMS

    Directory of Open Access Journals (Sweden)

    K. E. Leather

    2012-01-01

    Full Text Available Gas-phase ethene ozonolysis experiments were conducted at room temperature to determine formic acid yields as a function of relative humidity (RH using the integrated EXTreme RAnge chamber-Chemical Ionisation Mass Spectrometry technique, employing a CH3I ionisation scheme. RHs studied were <1, 11, 21, 27, 30 % and formic acid yields of (0.07±0.01 and (0.41±0.07 were determined at <1 % RH and 30 % RH respectively, showing a strong water dependence. It has been possible to estimate the ratio of the rate coefficient for the reaction of the Criegee biradical, CH2OO with water compared with decomposition. This analysis suggests that the rate of reaction with water ranges between 1×10−12–1×10−15 cm3 molecule−1 s−1 and will therefore dominate its loss with respect to bimolecular processes in the atmosphere. Global model integrations suggest that this reaction between CH2OO and water may dominate the production of HC(OOH in the atmosphere.

  5. Slaughterhouse fatty waste saponification to increase biogas yield.

    Science.gov (United States)

    Battimelli, A; Torrijos, M; Moletta, R; Delgenès, J P

    2010-05-01

    A thermochemical pretreatment, i.e. saponification, was optimised in order to improve anaerobic biodegradation of slaughterhouse wastes such as aeroflotation grease and flesh fats from cattle carcass. Anaerobic digestion of raw wastes, as well as of wastes saponified at different temperatures (60 degrees C, 120 degrees C and 150 degrees C) was conducted in fed-batch reactors under mesophilic condition and the effect of different saponification temperatures on anaerobic biodegradation and on the long-chain fatty acids (LCFAs) relative composition was assessed. Even after increasing loads over a long period of time, raw fatty wastes were biodegraded slowly and the biogas potentials were lower than those of theoretical estimations. In contrast, pretreated wastes exhibited improved batch biodegradation, indicating a better initial bio-availability, particularly obvious for carcass wastes. However, LCFA relative composition was not significantly altered by the pretreatment. Consequently, the enhanced biodegradation should be attributed to an increased initial bio-availability of fatty wastes without any modification of their long chain structure which remained slowly biodegradable. Finally, saponification at 120 degrees C achieved best performances during anaerobic digestion of slaughterhouse wastes. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Increased sbpase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions

    NARCIS (Netherlands)

    Driever, Steven M.; Simkin, Andrew J.; Alotaibi, Saqer; Fisk, Stuart J.; Madgwick, Pippa J.; Sparks, Caroline A.; Jones, Huw D.; Lawson, Tracy; Parry, Martin A.J.; Raines, Christine A.

    2017-01-01

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf

  7. Relative Humidity of 40% Inhibiting the Increase of Pulse Rate, Body Temperature, and Blood Lactic Acid During Exercise

    Directory of Open Access Journals (Sweden)

    Nengah Sandi

    2016-05-01

    Full Text Available Background: Excessive sweating of the body is a reaction to decrease the heat caused by prolonged exercise at high relative humidity (RH. This situation may cause an increase in pulse rate (PR, body temperature (BT, and blood lactic acid (BLA workout. Objective: This study aimed to prove that a RH of 40% better than a RH of 50% and 60% RH in inhibiting the increase of PR, BT, and BLA during exercise. Methods: The study was conducted on 54 samples randomly selected from the IKIP PGRI Bali students. The samples were divided into three groups, and each group was given cycling exercise with a load of 80 Watt for 2 x 30 minutes with rest between sets for five minutes. Group-1 of cycling at 40% of RH, Group-2 at a RH of 50%, and the Group-3 at a RH of 60%. Data PR, BT, and BLA taken before and during exercise. The mean difference between groups before and during exercise were analyzed by One-way Anova and a further test used Least Significant Difference (LSD. Significance used was α = 0.05. Results: The mean of PR during exercise was significantly different between groups with p = 0.045, the mean of BT during exercises was significantly different between groups with p = 0.006, and the mean of BLA during exercises was significantly different between groups with p = 0.005 (p <0.05. Also found that PR, BT, and BLA during exercise at 40% RH was lower than 50% RH and 60% RH (p <0.05. Conclusion: Thus, the RH of 40% was better than RH of 50% and 60 % in inhibiting the increase of PR, BT, and BLA during exercise. Therefore, when practiced in a closed room is expected at 40% relative humidity.

  8. Effect of increased plant density and fertilizer dose on the yield of rice variety IR-6

    International Nuclear Information System (INIS)

    Amin, M.; Khan, M.A.; Khan, E.A.; Ramazan, M.

    2004-01-01

    An experiment to evaluate the effect of increased plant density and fertilizer dose on yield of rice variety IR-6 was conducted at the farm of Faculty of Agriculture, Gomal University Dera Ismail Khan. Increase plant density significantly increase number of panicles per square meter, sterility and straw yield while increased fertilizer dose of NPK increase plant height, sterility, normal kernels, and 1000 grain weight. Interaction of increased plant density and fertilizer dose was found to be non significant except sterility percentage and straw yield. However efforts are required for increasing yield per unit area of rice. (author)

  9. Examining the roles that changing harvested areas, closing yield-gaps, and increasing yield ceilings have had on crop production

    Science.gov (United States)

    Johnston, M.; Ray, D. K.; Mueller, N. D.; Foley, J. A.

    2011-12-01

    With an increasing and increasingly affluent population, there has been tremendous effort to examine strategies for sustainably increasing agricultural production to meet this surging global demand. Before developing new solutions from scratch, though, we believe it is important to consult our recent agricultural history to see where and how agricultural production changes have already taken place. By utilizing the newly created temporal M3 cropland datasets, we can for the first time examine gridded agricultural yields and area, both spatially and temporally. This research explores the historical drivers of agricultural production changes, from 1965-2005. The results will be presented spatially at the global-level (5-min resolution), as well as at the individual country-level. The primary research components of this study are presented below, including the general methodology utilized in each phase and preliminary results for soybean where available. The complete assessment will cover maize, wheat, rice, soybean, and sugarcane, and will include country-specific analysis for over 200 countries, states, territories and protectorates. Phase 1: The first component of our research isolates changes in agricultural production due to variation in planting decisions (harvested area) from changes in production due to intensification efforts (yield). We examine area/yield changes at the pixel-level over 5-year time-steps to determine how much each component has contributed to overall changes in production. Our results include both spatial patterns of changes in production, as well as spatial maps illustrating to what degree the production change is attributed to area and/or yield. Together, these maps illustrate where, why, and by how much agricultural production has changed over time. Phase 2: In the second phase of our research we attempt to determine the impact that area and yield changes have had on agricultural production at the country-level. We calculate a production

  10. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.

    Science.gov (United States)

    Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A

    2017-09-26

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  11. Effect of Some Agronomic Practices to Increase Maize Yield in Ghana

    African Journals Online (AJOL)

    Effect of Some Agronomic Practices to Increase Maize Yield in Ghana. ... Journal of Science and Technology (Ghana) ... With the increasing population and consumption of maize in the country, research must be directed to solve this problem ...

  12. Do increases in cigarette prices lead to increases in sales of cigarettes with high tar and nicotine yields?

    Science.gov (United States)

    Farrelly, Matthew C; Loomis, Brett R; Mann, Nathan H

    2007-10-01

    We used scanner data on cigarette prices and sales collected from supermarkets across the United States from 1994 to 2004 to test the hypothesis that cigarette prices are positively correlated with sales of cigarettes with higher tar and nicotine content. During this period the average inflation-adjusted price for menthol cigarettes increased 55.8%. Price elasticities from multivariate regression models suggest that this price increase led to an increase of 1.73% in sales-weighted average tar yields and a 1.28% increase in sales-weighted average nicotine yields for menthol cigarettes. The 50.5% price increase of nonmenthol varieties over the same period yielded an estimated increase of 1% in tar per cigarette but no statistically significant increase in nicotine yields. An ordered probit model of the impact of cigarette prices on cigarette strength (ultra-light, light, full flavor, unfiltered) offers an explanation: As cigarette prices increase, the probability that stronger cigarette types will be sold increases. This effect is larger for menthol than for nonmenthol cigarettes. Our results are consistent with earlier population-based cross-sectional and longitudinal studies showing that higher cigarette prices and taxes are associated with increasing consumption of higher-yield cigarettes by smokers.

  13. Technological possibilities for increasing coarse coal yield in the Staszic mine

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Major, M

    1985-06-01

    Experiments carried out in the Staszic underground black coal mine in Upper Silesia showed that there is a correlation of coarse coal yield and yield strength of shield supports used at longwall faces. The faces were equipped with Pioma 25-45, Fazos 15-31 and Fazos 19-32 shield supports, KWB 3RDU shearer loaders and Rybnik chain conveyors. Pressure of oil in water emulsion used in the Pioma 25/45 shield supports was reduced from the recommended 30 MPa to 15 MPa or to 10 MPa. Reducing emulsion pressure (and support yield strength) caused an increase in coarse coal yield. Coarse coal yield was also increased by use of Fazos 19/32 shield supports with reduced yield strength. During the tests coarse coal yield increased 1.68% and 2.65%. Test results are shown in 3 diagrams. Investigations carried out in the Staszic mine in 1983 showed that by optimizing yield strength of shield supports coarse coal yield could be increased 2 to 8%. 6 references.

  14. Winter sowing of adapted lines as a potential yield increase strategy in lentil (Lens culinaris Medik.

    Directory of Open Access Journals (Sweden)

    Abel Barrios

    2016-06-01

    Full Text Available Lentil (Lens culinaris Medik. subsp. culinaris is a traditional crop in Spain although current grain yield in Spain is relatively low and unstable. The effect of an early sowing date (winter sowing on yield in the Spanish Central Plateau (meseta was analyzed comparing it to the traditional spring sowing. Yield from eleven cultivars currently available for sowing in Spain and two F6:7  populations of recombinant inbred lines (RIL, ´Precoz´ × ´WA8649041´ (89 lines and ´BGE016365´ × ´ILL1918´ (118 lines, was evaluated in winter and spring sowing dates for three seasons (2005/06, 2006/07 and 2007/08 and two localities. Yield and stability were assessed by the method of consistency of performance with some modifications. When comparing with the best currently available cultivars sown in the traditional spring sowing date, (with an estimated average yield of 43.9 g/m in our experimental conditions, winter sowing using adapted breeding lines proved to be a suitable strategy for increasing lentil yield and yield stability in the Spanish meseta, with an average yield increase of 111% (reaching an estimated yield of 92.8 g/m. Results point to that lentil production can greatly increase in the Spanish meseta if adequate plant materials, such as some of the lines analyzed, are sown at late fall.

  15. Winter sowing of adapted lines as a potential yield increase strategy in lentil (Lens culinaris Medik.)

    Energy Technology Data Exchange (ETDEWEB)

    Barrios, A.; Aparicio, T.; Rodríguez, M.J.; Pérez de la Vega, M.; Caminero, C.

    2016-11-01

    Lentil (Lens culinaris Medik. subsp. culinaris) is a traditional crop in Spain although current grain yield in Spain is relatively low and unstable. The effect of an early sowing date (winter sowing) on yield in the Spanish Central Plateau (meseta) was analyzed comparing it to the traditional spring sowing. Yield from eleven cultivars currently available for sowing in Spain and two F6:7 populations of recombinant inbred lines (RIL), ´Precoz´ × ´WA8649041´ (89 lines) and ´BGE016365´ × ´ILL1918´ (118 lines), was evaluated in winter and spring sowing dates for three seasons (2005/06, 2006/07 and 2007/08) and two localities. Yield and stability were assessed by the method of consistency of performance with some modifications. When comparing with the best currently available cultivars sown in the traditional spring sowing date, (with an estimated average yield of 43.9 g/m in our experimental conditions), winter sowing using adapted breeding lines proved to be a suitable strategy for increasing lentil yield and yield stability in the Spanish meseta, with an average yield increase of 111% (reaching an estimated yield of 92.8 g/m). Results point to that lentil production can greatly increase in the Spanish meseta if adequate plant materials, such as some of the lines analyzed, are sown at late fall. (Author)

  16. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  17. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption

    Science.gov (United States)

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep

    2014-05-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  18. IRRIGATION AND LIMING AS FACTORS OF MAIZE YIELD INCREASES IN EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    Monika MARKOVIĆ

    2015-08-01

    Full Text Available Maize is the main field crop on arable lands in Croatia. Climatic changes, particularly temperature regime and precipitation quantities and their distribution during growing season had often adverse effects on maize yield. Therefore, irrigation of maize crops in critical periods is useful considering the variations among annual yields caused by water stressed conditions. Acid soils are covering one-third of agricultural soils in Croatia (about 832.000 hectares and correction of pH by liming is also an important factor for increase and stabilization of annual yield values. The aim of this study was to review irrigation and liming effects on maize yield in eastern Croatia. Eastern Croatia covers an area of 12.454 km2 or 22.0% of the State territory. This region is termed as the “granary of Croatia” because 75% of wheat and 50% of maize harvested areas of the country are located in this region. Maize yields in the long-term (since 2000 irrigation experiments carried on since 2000 on Agricultural Institute Osijek increased by 20% in years with average climate conditions, while under drought conditions of three growing seasons in 2007, 2011 and 2012, yield increases were 32%, 36%, and 47%, respectively. Soil improvement by liming with increasing rates of carbocalk (by-product of sugar factory containing about 43% CaO and about 6% of organic matter up to 60 t ha-1 was also a useful management practice, because in two experiments maize yields increased up to 25% (4-year average. However, for satisfied yield increases for 16% in both experiments the lowest amount of carbocalk needed for application was 15 t ha-1.

  19. Future Warming Increases Global Maize Yield Variability with Implications for Food Markets

    Science.gov (United States)

    Tigchelaar, M.; Battisti, D. S.; Naylor, R. L.; Ray, D. K.

    2017-12-01

    If current trends in population growth and dietary shifts continue, the world will need to produce about 70% more food by 2050, while earth's climate is rapidly changing. Rising temperatures in particular are projected to negatively impact agricultural production, as the world's staple crops perform poorly in extreme heat. Theoretical models suggest that as temperatures rise above plants' optimal temperature for performance, not only will mean yields decline rapidly, but the variability of yields will increase, even as interannual variations in climate remain unchanged. Here we use global datasets of maize production and climate variability combined with CMIP5 temperature projections to quantify how yield variability will change in major maize producing countries under 2°C and 4°C of global warming. Maize is the world's most produced crop, and is linked to other staple crops through substitution in consumption and production. We find that in warmer climates - absent any breeding gains in heat tolerance - the Coefficient of Variation (CV) of maize yields increases almost everywhere, to values much larger than present-day. This increase in CV is due both to an increase in the standard deviation of yields, and a decrease in mean yields. In locations where crop failures become the norm under high (4°C) warming (mostly in tropical, low-yield environments), the standard deviation of yields ultimately decreases. The probability that in any given year the most productive areas in the top three maize producing countries (United States, China, Brazil) have simultaneous production losses greater than 10% is virtually zero under present-day climate conditions, but increases to 12% under 2°C warming, and 89% under 4°C warming. This has major implications for global food markets and staple crop prices, affecting especially the 2.5 billion people that comprise the world's poor, who already spend the majority of their disposable income on food and are particularly vulnerable

  20. Increase in extraction yields of coals by water treatment: Beulah-Zap lignite

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Iino; Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito; Haruo Kumagai [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2007-01-15

    In a previous paper, we have reported that water pretreatments of Argonne premium coals, Pocahontas No. 3 (PO), Upper Freeport (UF), and Illinois No. 6 (IL) at 600 K increased greatly the room-temperature extraction yields with a 1:1 carbon disulfide/N-methyl-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent. In this paper, the water treatment of Beulah-Zap (BZ) lignite has been carried out and the results obtained were compared with those for the three bituminous coals above. The extraction yields of BZ with CS{sub 2}/NMP increased from 5.5% for the raw coal to 21.7% by the water treatment at 600 K. Similar to the other three coals, the water treatments at 500 K gave little increase in the yields. The larger decrease in oxygen content and hydrogen-bonded OH and the increase in the methanol swelling ratio by the water treatment suggest that the yield enhancements for BZ are attributed to the removal of oxygen functional groups and the breaking of hydrogen bonds to a greater extent than that for IL. From the characterizations of the treated coals and the extraction temperature dependency of their extraction yields, it is suggested that, for high-coal-rank coals, PO and UF, the breaking of noncovalent bonds such as {pi}-{pi} interactions between aromatic layers and hydrogen bonds is responsible for the extraction yield enhancements. 14 refs., 3 figs., 2 tabs.

  1. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  2. Low Humidity Characteristics of Polymer-Based Capacitive Humidity Sensors

    OpenAIRE

    Majewski Jacek

    2017-01-01

    Polymer-based capacitive humidity sensors emerged around 40 years ago; nevertheless, they currently constitute large part of sensors’ market within a range of medium (climatic and industrial) humidity 20−80%RH due to their linearity, stability and cost-effectiveness. However, for low humidity values (0−20%RH) that type of sensor exhibits increasingly nonlinear characteristics with decreasing of humidity values. This paper presents the results of some experimental trials of CMOS polymer-based ...

  3. Benefits of inoculation, P fertilizer and manure on yields of common bean and soybean also increase yield of subsequent maize

    NARCIS (Netherlands)

    Rurangwa, Edouard; Vanlauwe, Bernard; Giller, Ken E.

    2018-01-01

    Common bean and soybean yield poorly on smallholder farms in Rwanda. We evaluated the benefits of inoculation combined with P fertilizer and manure on yields of common bean and soybean in three agro-ecological zones (AEZs), and their residual effects on a subsequent maize crop. In the first season,

  4. Increasing plant density in eastern United States broccoli production systems to maximize marketable head yields

    Science.gov (United States)

    Increased demand for fresh market broccoli (Brassica oleracea L. var. italica) has led to increased production along the eastern seaboard of the United States. Maximizing broccoli yields is a primary concern for quickly expanding eastern commercial markets. Thus, a plant density study was carried ...

  5. Microwave Energy Increases Fatty Acid Methyl Ester Yield in Human Whole Blood Due to Increased Sphingomyelin Transesterification.

    Science.gov (United States)

    Metherel, Adam H; Aristizabal Henao, Juan J; Ciobanu, Flaviu; Taha, Ameer Y; Stark, Ken D

    2015-09-01

    Dried blood spots (DBS) by fingertip prick collection for fatty acid profiling are becoming increasingly popular due to ease of collection, minimal invasiveness and its amenability to high-throughput analyses. Herein, we assess a microwave-assisted direct transesterification method for the production of fatty acid methyl esters (FAME) from DBS. Technical replicates of human whole blood were collected and 25-μL aliquots were applied to chromatography strips prior to analysis by a standard 3-h transesterification method or microwave-assisted direct transesterification method under various power (variable vs constant), time (1-5 min) and reagent (1-10% H2SO4 in methanol) conditions. In addition, a standard method was compared to a 5-min, 30-W power microwave in 1% H2SO4 method for FAME yield from whole blood sphingomyelin, and sphingomyelin standards alone and spiked in whole blood. Microwave-assisted direct transesterification yielded no significant differences in both quantitative (nmol/100 µL) and qualitative (mol%) fatty acid assessments after as little as 1.5- and 1-min reaction times, respectively, using the variable power method and 5% H2SO4 in methanol. However, 30-W power for 5 min increased total FAME yield of the technical replicates by 14%. This increase appears largely due to higher sphingomyelin-derived FAME yield of up to 109 and 399% compared to the standard method when determined from whole blood or pure standards, respectively. In conclusion, microwave-assisted direct transesterification of DBS achieved in as little as 1-min, and 5-min reaction times increase total fatty acids primarily by significantly improving sphingomyelin-derived fatty acid yield.

  6. Grape yield, and must compounds of 'Cabernet Sauvignon' grapevine in sandy soil with potassium contents increasing

    Directory of Open Access Journals (Sweden)

    Marlise Nara Ciotta

    2016-08-01

    Full Text Available ABSTRACT: Content of exchangeable potassium (K in t soil may influence on its content in grapevines leaves, grape yield, as well as, in must composition. The study aimed to assess the interference of exchangeable K content in the soil on its leaf content, production and must composition of 'Cabernet Sauvignon' cultivar. In September 2011, in Santana do Livramento (RS five vineyards with increasing levels of exchangeable K in the soil were selected. In the 2012/13 and 2013/14 harvests, the grape yield, yield components, total K content in the leaves in full bloom and berries veraison were evaluated. Values of total soluble sugar (TSS, pH, total titratable acidity (TTA, total polyphenols and anthocyanins were evaluated in the must. Exchangeable K content increase in soil with sandy surface texture increased its content in leaves collected during full flowering and in berries and must pH; however, it did not affect production of the 'Cabernet Sauvignon'.

  7. An additive to well injection water for increasing the oil yield

    Energy Technology Data Exchange (ETDEWEB)

    Absov, M.T.; Abutalybov, M.G.; Aslanov, S.M.; Movruzov, E.N.; Musaev, R.A.; Tairov, N.D.

    1979-03-05

    This invention relates to oil production using flooding. The goal of this invention is to increase the oil yield of a producing formation. This is achieved by using a saponin solution as an additive to the water injected into the formation (with related organic substances which are complex organic nitrogen-free compounds from the glycoside group; these substances yield solution that foam easily with an agitation). The use of saponin facilitates good solubility in fresh, sea and formation (alkaline and hard) waters, as well as the absence of sediment formation during dissolution, low solid adsorption, and a significant decrease in the surface water tension on the oil-water boundary. The aqueous saponin solution makes it possible to decrease the production cost of oil, as well as to decrease the development time of the fields and the volume of water injected into the formation and to significantly increase the oil yield.

  8. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Blank, Lars Mathias; Solem, Christian

    2008-01-01

    (glucose/mannose-specific phosphotransferase system). Amino acid catabolism could be excluded as the source of the additional ATP. Since mutants without a functional H+-ATPase produced less ATP under sugar starvation and respiratory conditions, the additional ATP yield appears to come partly from energy......Lactococcus lactis is known to be capable of respiration under aerobic conditions in the presence of haemin. In the present study the effect of respiration on ATP production during growth on different sugars was examined. With glucose as the sole carbon source, respiratory conditions in L. lactis...... MG1363 resulted in only a minor increase, 21%, in biomass yield. Since ATP production through substrate-level phosphorylation was essentially identical with and without respiration, the increased biomass yield was a result of energy-saving under respiratory conditions estimated to be 0.4 mol of ATP...

  9. Mechanical Pretreatment to Increase the Bioenergy Yield for Full-scale Biogas Plants

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Angelidaki, Irini

    % compared to the untreated one. The digestion of meadow grass as an alternative co-substrate had positive impact on the energy yield of full-scale biogas reactors operating with cattle manure, pig manure or mixture of both. A preliminary analysis showed that the addition of meadow grass in a manure based...... biogas reactor was possible with biomass share of 10%, leading to energy production of 280 GJ/day. The digestion of pretreated meadow grass as alternative co-substrate had clearly positive impact in all the examined scenarios, leading to increased biogas production in the range of 10%-20%.......This study investigated the efficiency of commercially available harvesting machines for mechanical pretreatment of meadow grass, in order to enhance the energy yield per hectare. Excoriator was shown to be the most efficient mechanical pretreatment increasing the biogas yield of grass by 16...

  10. EARLY SPRING APPLICATION OF AMINOETHOXYVINILGLYCINE (AVG INCREASES FRUIT SET AND YIELD OF ‘ROCHA’ PEARS

    Directory of Open Access Journals (Sweden)

    MATEUS DA SILVEIRA PASA

    2017-10-01

    Full Text Available ABSTRACT The low fruit set is one of the main factors leading to poor yield of pear orchards in Brazil. Ethylene is associated with abscission of flowers and fruitlets. Then, the application of ethylene synthesis inhibitors, such as AVG, is a potential tool to increase fruit set of pears. The objective of this study was to evaluate the effect of AVG, sprayed at different rates and timings, on fruit set, yield and fruit quality of ‘Rocha’ pear. The study was performed in a commercial orchard located in the municipality of São Joaquim, SC, during the growing seasons of 2014/2015 and 2015/2016. Plant material consisted of ‘Rocha’ pear trees grafted on quince rootstock ‘BA29’. AVG was tested at different rates (60 mg L-1 and 80 mg L-1 and timings [full bloom, one week after full bloom (WAFB, and two WAFB, either alone or in combination. The experiment was arranged in a randomized block design, with at least five single-tree replications. The fruit set, number of fruit per tree, yield, estimated yield, fruit weight, return bloom, and fruit quality attributes were assessed. Fruit set and yield were consistently increased by single applications of AVG at 60 and 80 mg L-1 at both one and two weeks after full bloom, without negatively affecting fruit quality attributes and return bloom.

  11. Increasing production yield of tyrosine and mevalonate through inhibition of biomass formation

    DEFF Research Database (Denmark)

    Li, Songyuan; Jendresen, Christian Bille; Nielsen, Alex Toftgaard

    2016-01-01

    , in particular, resulted in an increase in mass yield of mevalonate and tyrosine by 80% and 50%, respectively. By tracking production and biomass concentrations, it was observed that the production was maintained for more than 10 h after inhibition of cell growth, despite cell maintenance requirements...

  12. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars.

    Science.gov (United States)

    Fujita, Daisuke; Trijatmiko, Kurniawan Rudi; Tagle, Analiza Grubanzo; Sapasap, Maria Veronica; Koide, Yohei; Sasaki, Kazuhiro; Tsakirpaloglou, Nikolaos; Gannaban, Ritchel Bueno; Nishimura, Takeshi; Yanagihara, Seiji; Fukuta, Yoshimichi; Koshiba, Tomokazu; Slamet-Loedin, Inez Hortense; Ishimaru, Tsutomu; Kobayashi, Nobuya

    2013-12-17

    Increasing crop production is essential for securing the future food supply in developing countries in Asia and Africa as economies and populations grow. However, although the Green Revolution led to increased grain production in the 1960s, no major advances have been made in increasing yield potential in rice since then. In this study, we identified a gene, SPIKELET NUMBER (SPIKE), from a tropical japonica rice landrace that enhances the grain productivity of indica cultivars through pleiotropic effects on plant architecture. Map-based cloning revealed that SPIKE was identical to NARROW LEAF1 (NAL1), which has been reported to control vein pattern in leaf. Phenotypic analyses of a near-isogenic line of a popular indica cultivar, IR64, and overexpressor lines revealed increases in spikelet number, leaf size, root system, and the number of vascular bundles, indicating the enhancement of source size and translocation capacity as well as sink size. The near-isogenic line achieved 13-36% yield increase without any negative effect on grain appearance. Expression analysis revealed that the gene was expressed in all cell types: panicles, leaves, roots, and culms supporting the pleiotropic effects on plant architecture. Furthermore, SPIKE increased grain yield by 18% in the recently released indica cultivar IRRI146, and increased spikelet number in the genetic background of other popular indica cultivars. The use of SPIKE in rice breeding could contribute to food security in indica-growing regions such as South and Southeast Asia.

  13. Light affects Varronia curassavica essential oil yield by increasing trichomes frequency

    Directory of Open Access Journals (Sweden)

    Emily V.R. da S. Feijó

    Full Text Available Light can act on essential oil yield directly on synthesis of secondary metabolites, or indirectly on plant growth. Varronia curassavica Jacq., Boraginaceae, is a native medicinal species from Brazil known as “erva-baleeira”, with anti-inflammatory activity related to its essential oil. Despite pharmacological evidences of this species and its economic importance for herbal medicine production, little is known about the effect of light on growth and essential oil production. This study aimed to analyze the influence of different irradiances on growth, frequency of trichomes, essential oil yield and composition of V. curassavica. The irradiance affected plant growth, but no significant alteration on leaf biomass was detected. The increase in essential oil content under higher irradiance reflected on essential oil yield, and is associated with higher frequency of glandular, globular trichomes. The essential oil composition, rich in caryophyllene derivatives was affected by irradiance, but α-humulene, the constituent of pharmaceutical interest, remained unchanged.

  14. Walker occupancy has an impact on changing airborne bacterial communities in an underground pedestrian space, as small-dust particles increased with raising both temperature and humidity.

    Science.gov (United States)

    Okubo, Torahiko; Osaki, Takako; Nozaki, Eriko; Uemura, Akira; Sakai, Kouhei; Matushita, Mizue; Matsuo, Junji; Nakamura, Shinji; Kamiya, Shigeru; Yamaguchi, Hiroyuki

    2017-01-01

    Although human occupancy is a source of airborne bacteria, the role of walkers on bacterial communities in built environments is poorly understood. Therefore, we visualized the impact of walker occupancy combined with other factors (temperature, humidity, atmospheric pressure, dust particles) on airborne bacterial features in the Sapporo underground pedestrian space in Sapporo, Japan. Air samples (n = 18; 4,800L/each sample) were collected at 8:00 h to 20:00 h on 3 days (regular sampling) and at early morning / late night (5:50 h to 7:50 h / 22:15 h to 24:45 h) on a day (baseline sampling), and the number of CFUs (colony forming units) OTUs (operational taxonomic units) and other factors were determined. The results revealed that temperature, humidity, and atmospheric pressure changed with weather. The number of walkers increased greatly in the morning and evening on each regular sampling day, although total walker numbers did not differ significantly among regular sampling days. A slight increase in small dust particles (0.3-0.5μm) was observed on the days with higher temperature regardless of regular or baseline sampling. At the period on regular sampling, CFU levels varied irregularly among days, and the OTUs of 22-phylum types were observed, with the majority being from Firmicutes or Proteobacteria (γ-), including Staphylococcus sp. derived from human individuals. The data obtained from regular samplings reveled that although no direct interaction of walker occupancy and airborne CFU and OTU features was observed upon Pearson's correlation analysis, cluster analysis indicated an obvious lineage consisting of walker occupancy, CFU numbers, OTU types, small dust particles, and seasonal factors (including temperature and humidity). Meanwhile, at the period on baseline sampling both walker and CFU numbers were similarly minimal. Taken together, the results revealed a positive correlation of walker occupancy with airborne bacteria that increased with increases in

  15. Increasing the biogas yield of manure by wet explosion of the digested fiber fraction

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    digested manure fibers from the effluent of an anaerobic digester for enhancing biogas production and exploring the untapped biomass potential. The increase in methane yield of the digested manure fibers was investigated by applying the WEx treatment under 5 different process conditions. The pretreatment......Increasing the biodegradability of the lignocellulosic fiber fraction of manure can ensure higher methane productivity in biogas plants, leading to process profitability and thus larger production of renewable energy. A new pretreatment method, wet explosion (WEx), was investigated to treat...... condition of 180 ºC and a retention time of 10 minutes without addition of chemicals was found to be optimal, resulting in 136% increase in methane yield as compared to the untreated digested manure fibers....

  16. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa.

    Science.gov (United States)

    Stein, Katharina; Coulibaly, Drissa; Stenchly, Kathrin; Goetze, Dethardt; Porembski, Stefan; Lindner, André; Konaté, Souleymane; Linsenmair, Eduard K

    2017-12-18

    Mutualistic biotic interactions as among flowering plants and their animal pollinators are a key component of biodiversity. Pollination, especially by insects, is a key element in ecosystem functioning, and hence constitutes an ecosystem service of global importance. Not only sexual reproduction of plants is ensured, but also yields are stabilized and genetic variability of crops is maintained, counteracting inbreeding depression and facilitating system resilience. While experiencing rapid environmental change, there is an increased demand for food and income security, especially in sub-Saharan communities, which are highly dependent on small scale agriculture. By combining exclusion experiments, pollinator surveys and field manipulations, this study for the first time quantifies the contribution of bee pollinators to smallholders' production of the major cash crops, cotton and sesame, in Burkina Faso. Pollination by honeybees and wild bees significantly increased yield quantity and quality on average up to 62%, while exclusion of pollinators caused an average yield gap of 37% in cotton and 59% in sesame. Self-pollination revealed inbreeding depression effects on fruit set and low germination rates in the F1-generation. Our results highlight potential negative consequences of any pollinator decline, provoking risks to agriculture and compromising crop yields in sub-Saharan West Africa.

  17. Estimating milk yield and value losses from increased somatic cell count on US dairy farms.

    Science.gov (United States)

    Hadrich, J C; Wolf, C A; Lombard, J; Dolak, T M

    2018-04-01

    Milk loss due to increased somatic cell counts (SCC) results in economic losses for dairy producers. This research uses 10 mo of consecutive dairy herd improvement data from 2013 and 2014 to estimate milk yield loss using SCC as a proxy for clinical and subclinical mastitis. A fixed effects regression was used to examine factors that affected milk yield while controlling for herd-level management. Breed, milking frequency, days in milk, seasonality, SCC, cumulative months with SCC greater than 100,000 cells/mL, lactation, and herd size were variables included in the regression analysis. The cumulative months with SCC above a threshold was included as a proxy for chronic mastitis. Milk yield loss increased as the number of test days with SCC ≥100,000 cells/mL increased. Results from the regression were used to estimate a monetary value of milk loss related to SCC as a function of cow and operation related explanatory variables for a representative dairy cow. The largest losses occurred from increased cumulative test days with a SCC ≥100,000 cells/mL, with daily losses of $1.20/cow per day in the first month to $2.06/cow per day in mo 10. Results demonstrate the importance of including the duration of months above a threshold SCC when estimating milk yield losses. Cows with chronic mastitis, measured by increased consecutive test days with SCC ≥100,000 cells/mL, resulted in higher milk losses than cows with a new infection. This provides farm managers with a method to evaluate the trade-off between treatment and culling decisions as it relates to mastitis control and early detection. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Combination of inoculation methods of Azospirilum brasilense with broadcasting of nitrogen fertilizer increases corn yield

    Directory of Open Access Journals (Sweden)

    Tânia Maria Müller

    2015-01-01

    Full Text Available Nitrogen (N is the most limiting nutrient for corn production. Thereby, the goal of the paper was to evaluate inoculation methods of Azospirillum brasilense in order to partially supply N required by the crop. The experiment was carried out in Guarapuava, PR, Brasil, in 2011/2012 growing season. Randomized blocks with factorial 3 inoculation methods (seed treatment, planting furrow and non-inoculated control x 5 doses of nitrogen (0, 75, 150, 225 and 300kg ha-1 x 8 replications was used as the experimental design. Leaf are index, foliar nitrogen content, total chlorophyll, grains per ear and yield were evaluated. There was significant interaction between inoculation methods and nitrogen fertilization to leaf area index, but not for yield. Inoculation with the diazotrophic bacteria provided yield increase of 702kg ha-1 for inoculation in seeding furrow and 432kg ha-1 for inoculation in seed treatment compared to the control, but both treatments did not differ between each other. Furthermore, total chlorophyll, grains per ear and yield were positively affected, with quadratic response, by the nitrogen fertilization in broadcasting

  19. Pistil Smut Infection Increases Ovary Production, Seed Yield Components, and Pseudosexual Reproductive Allocation in Buffalograss

    Directory of Open Access Journals (Sweden)

    Ambika Chandra

    2014-12-01

    Full Text Available Sex expression of dioecious buffalograss [Bouteloua dactyloides Columbus (syn. Buchloë dactyloides (Nutt. Engelm.] is known to be environmentally stable with approximate 1:1, male to female, sex ratios. Here we show that infection by the pistil smut fungus [Salmacisia buchloëana Huff & Chandra (syn. Tilletia buchloëana Kellerman and Swingle] shifts sex ratios of buffalograss to be nearly 100% phenotypically hermaphroditic. In addition, pistil smut infection decreased vegetative reproductive allocation, increased most seed yield components, and increased pseudosexual reproductive allocation in both sex forms compared to uninfected clones. In female sex forms, pistil smut infection resulted in a 26 fold increase in ovary production and a 35 fold increase in potential harvest index. In male sex forms, pistil smut infection resulted in 2.37 fold increase in floret number and over 95% of these florets contained a well-developed pistil. Although all ovaries of infected plants are filled with fungal teliospores and hence reproductively sterile, an average male-female pair of infected plants exhibited an 87 fold increase in potential harvest index compared to their uninfected clones. Acquiring an ability to mimic the effects of pistil smut infection would enhance our understanding of the flowering process in grasses and our efforts to increase seed yield of buffalograss and perhaps other grasses.

  20. Supplementary material from "Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions"

    NARCIS (Netherlands)

    Driever, S.M.; Simkin, Andrew J.; Alotaibi, Saqer; Fisk, Stuart J.; Madgwick, Pippa J.; Sparks, Caroline A.; Jones, Huw D.; Lawson, Tracy; Parry, Martin A.J.; Raines, Christine A.

    2017-01-01

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf

  1. Increase of onion yield through low dose of gamma irradiation of its seeds

    International Nuclear Information System (INIS)

    Wiendl, F.M.; Wiendl, F.W.; Wiendl, J.A.; Vedovatto, A.; Arthur, V.

    1995-01-01

    The increase of onions' yield could be achieved by the common farmer through the use of nuclear techniques. This report describes the results obtained with the irradiation of onion seeds, with low doses of gamma radiations (Cobalt-60), at doses of 0 (control), 150, 400 and 700 Gy. Beyond the proper onion's variety als use of low dose rates of 13.1, 39.2 and 52.3 Gy per hour were of the great importance during irradiation. The results showed to be promising both in laboratory studies and in the field, resulting in an increase of onions production: A greater number of seedlings, bulbs and a higher yield in weight per hectar were planted. In the field the most promising dose and dose rate to the variety ''Super-X'' were respectively 150 Gy and 13.1 Gy per hour, yielding an 24.9 percent heavier weight of onions than the control. The other tested variety was ''Granex-33'', which did not respond so favorable to irradiation. However, also with this variety we harvested a 2.1 percent heavier weight than its control, if the onion seeds were irradiated with the dose of 700 Gy at a dose rate of 13.1 Gy per hour. (Author)

  2. Reverse transcription using random pentadecamer primers increases yield and quality of resulting cDNA

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Dufva, I.H.; Dufva, Hans Martin

    2006-01-01

    oligonucleotides (pentadecamers) consistently, yielded at least 2 fold as much cDNA as did random hexamers using either-poly(A) RNA or an amplified version of messenger RNA (aRNA) as a template. The cDNA generated using pentadecamers did not differ in size distribution or the amount of incorporated label compared...... with cDNA generated with random hexamers. The increased efficiency of priming using random pentadecamers resulted in reverse transcription of > 80% of the template aRNA, while random hexamers induced reverse transcription of only 40% of the template aRNA. This suggests a better coverage...... that random pentadecamers can replace random hexamers in reverse transcription reactions on both poly(A) RNA and amplified RNA, resulting in higher cDNA yields and quality....

  3. Effect of dietary protein levels on rumen metabolism and milk yield in mid-lactating cows under hot and humid conditions

    NARCIS (Netherlands)

    Thiangtum, W.; Schonewille, J.T.; Yawongsa, A.; Rukkwamsuk, T.; Kanjanapruthipong, J.; Verstegen, M.W.A.; Hendriks, W.H.

    2014-01-01

    An experiment was conducted to investigate the effects of 2 levels of dietary Crude Protein (CP) in concentrates with similar proportions of Rumen Undegradable Protein (RUP) on rumen metabolism, milk yield and composition in mid lactating cows in Thailand. Eight 87.5% Holsteinx12.5% indigenous

  4. Effect of dietary protein levels on rumen metabolism and milk yield in mid-lactating cows under hot and humid conditions.

    NARCIS (Netherlands)

    Thiangtum, W; Schonewille, Thomas; Yawongsa, A; Rukkwamsuk, T; Kanjanapruthipon, J; Verstegen, M.W.A.; Hendriks, Wouter

    2014-01-01

    An experiment was conducted to investigate the effects of 2 levels of dietary Crude Protein (CP) in concentrates with similar proportions of Rumen Undegradable Protein (RUP) on rumen metabolism, milk yield and composition in mid lactating cows in Thailand. Eight 87.5% Holsteinx12.5% indigenous

  5. Yield-increasing additives in kraft pulping: Effect on carbohydrate retention, composition and handsheet properties

    Energy Technology Data Exchange (ETDEWEB)

    Vaaler, David Andre Grimsoeen

    2008-07-01

    In this thesis, increased hemicellulose retention during kraft pulping has been studied. The work has been divided into three parts: i) Development of an accessible and reliable method for determination of carbohydrate composition of kraft pulps ii) Investigation of the composition and molecular mass distributions of the carbohydrates in kraft pulps with increased hemicellulose content iii) Investigation of the effect of increased hemicellulose content on the sheet properties of kraft pulps with increased hemicellulose content. A method for carbohydrate determination was developed. In this method, enzymes are used to hydrolyse the pulp into monosaccharides. A relatively mild acid hydrolysis is performed prior to detection on an HPLC with an RI-detector. The pulp is not derivatized and no pre-treatment (mechanical or chemical) is needed to determine the carbohydrate composition using the method developed here. Peak deconvolution software is used to improve the accuracy. Polysulphide and H2S primarily increase the glucomannan yield, which can be boosted by up to 7 % on o.d. wood. However, the cellulose yield is more affected by the cooking time and the maximum yield increase of cellulose is approximately 2 % on o.d. wood compared to an ordinary kraft pulp. The cooking time is influenced by sulphide ion concentration, AQ addition and the final Kappa number. The xylan yield is remarkably stable, however the alkali profile during the cook may influence the xylan yield. Surface xylan content of the fibres depends on residual alkali concentration in the black liquor. The molecular mass distributions of cellulose and hemicellulose were determined for pulps with increased hemicellulose content using size exclusion chromatography. Deconvolution by peak separation software is used to gain information about the degree of polymerization for cellulose and hemicellulose. The average DP of glucomannan in the kraft fibre was found to be 350 +- 30 and the average DP of xylan in the

  6. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest.

    Science.gov (United States)

    Jin, Zhenong; Ainsworth, Elizabeth A; Leakey, Andrew D B; Lobell, David B

    2018-02-01

    Elevated atmospheric CO 2 concentrations ([CO 2 ]) are expected to increase C3 crop yield through the CO 2 fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is widely believed to lead to greater benefits in dry rather than wet conditions, although some recent experimental evidence challenges this view. Here we used a process-based crop model, the Agricultural Production Systems sIMulator (APSIM), to quantify the contemporary and future CFE on soybean in one of its primary production area of the US Midwest. APSIM accurately reproduced experimental data from the Soybean Free-Air CO 2 Enrichment site showing that the CFE declined with increasing drought stress. This resulted from greater radiation use efficiency (RUE) and above-ground biomass production at elevated [CO 2 ] that outpaced gains in transpiration efficiency (TE). Using an ensemble of eight climate model projections, we found that drought frequency in the US Midwest is projected to increase from once every 5 years currently to once every other year by 2050. In addition to directly driving yield loss, greater drought also significantly limited the benefit from rising [CO 2 ]. This study provides a link between localized experiments and regional-scale modeling to highlight that increased drought frequency and severity pose a formidable challenge to maintaining soybean yield progress that is not offset by rising [CO 2 ] as previously anticipated. Evaluating the relative sensitivity of RUE and TE to elevated [CO 2 ] will be an important target for future modeling and experimental studies of climate change impacts and adaptation in C3 crops. © 2017 John Wiley & Sons Ltd.

  7. Application of Bioorganic Fertilizer Significantly Increased Apple Yields and Shaped Bacterial Community Structure in Orchard Soil.

    Science.gov (United States)

    Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2017-02-01

    Application of bioorganic fertilizers has been reported to improve crop yields and change soil bacterial community structure; however, little work has been done in apple orchard soils where the biological properties of the soils are being degraded due to long-term application of chemical fertilizers. In this study, we used Illumina-based sequencing approach to characterize the bacterial community in the 0-60-cm soil profile under different fertilizer regimes in the Loess Plateau. The experiment includes three treatments: (1) control without fertilization (CK); (2) application of chemical fertilizer (CF); and (3) application of bioorganic fertilizer and organic-inorganic mixed fertilizer (BOF). The results showed that the treatment BOF increased the apple yields by 114 and 67 % compared to the CK and CF treatments, respectively. The treatment BOF also increased the soil organic matter (SOM) by 22 and 16 % compared to the CK and CF treatments, respectively. The Illumina-based sequencing showed that Acidobacteria and Proteobacteria were the predominant phyla and Alphaproteobacteria and Gammaproteobacteria were the most abundant classes in the soil profile. The bacterial richness for ACE was increased after the addition of BOF. Compared to CK and CF treatments, BOF-treated soil revealed higher abundance of Proteobacteria, Alphaproteobacteria and Gammaproteobacteria, Rhizobiales, and Xanthomonadales while Acidobacteria, Gp7, Gp17, and Sphaerobacter were found in lower abundance throughout the soil profile. Bacterial community structure varied with soil depth under different fertilizer treatments, e.g., the bacterial richness, diversity, and the relative abundance of Verruccomicrobia, Candidatus Brocadiales, and Skermanella were decreased with the soil depth in all three treatments. Permutational multivariate analysis showed that the fertilizer regime was the major factor than soil depth in the variations of the bacterial community composition. Two groups, Lysobacter

  8. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Directory of Open Access Journals (Sweden)

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  9. Impacts of Present and Future Climate Variability On Agriculture and Forestry in the Humid and Sub-Humid Tropics

    International Nuclear Information System (INIS)

    Zhao, Y.; Wang, C.; Wang, S.; Tibig, Lourdes V.

    2005-01-01

    Although there are different results from different studies, most assessments indicate that climate variability would have negative effects on agriculture and forestry in the humid and sub-humid tropics. Cereal crop yields would decrease generally with even minimal increases in temperature. For commercial crops, extreme events such as cyclones, droughts and floods lead to larger damages than only changes of mean climate. Impacts of climate variability on livestock mainly include two aspects; impacts on animals such as increase of heat and disease stress-related death, and impacts on pasture. As to forestry, climate variability would have negative as well as some positive impacts on forests of humid and sub-humid tropics. However, in most tropical regions, the impacts of human activities such as deforestation will be more important than climate variability and climate change in determining natural forest cover

  10. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics.

    Science.gov (United States)

    Touliatos, Dionysios; Dodd, Ian C; McAinsh, Martin

    2016-08-01

    Vertical farming systems (VFS) have been proposed as an engineering solution to increase productivity per unit area of cultivated land by extending crop production into the vertical dimension. To test whether this approach presents a viable alternative to horizontal crop production systems, a VFS (where plants were grown in upright cylindrical columns) was compared against a conventional horizontal hydroponic system (HHS) using lettuce ( Lactuca sativa L . cv. "Little Gem") as a model crop. Both systems had similar root zone volume and planting density. Half-strength Hoagland's solution was applied to plants grown in perlite in an indoor controlled environment room, with metal halide lamps providing artificial lighting. Light distribution (photosynthetic photon flux density, PPFD) and yield (shoot fresh weight) within each system were assessed. Although PPFD and shoot fresh weight decreased significantly in the VFS from top to base, the VFS produced more crop per unit of growing floor area when compared with the HHS. Our results clearly demonstrate that VFS presents an attractive alternative to horizontal hydroponic growth systems and suggest that further increases in yield could be achieved by incorporating artificial lighting in the VFS.

  11. Increasing yield and nitrogen use efficiency of rice through multiple-split fertilizer application

    International Nuclear Information System (INIS)

    Rallos, R.V.; Rivera, F.G.; Samar, E.D.; Rojales, J.S.; Anida, A.H.

    2015-01-01

    The low availability of nitrogen (N) is one of the most important limiting factors impeding the increase in rice yield among the various factors. Split N fertilizer applications can play an important role in nutrient management strategy that is productive, profitable and environmentally responsible. In this study, the recoveries and efficiencies of a multiple-split N fertilizer application of were determined using 15N labeled fertilizer, in order to provide science-based foundation for the nitrogen management in sustainable rice production. A lysimeter experiment with five treatments in four replications was set-up T0 (control). T1 (45 kg N ha“- “1), T2 (90 kg N ha“- “1), T3 (135 kg N ha“- “1) and T4 (180 kg N ha“- “1). 15N tracer analysis showed that, on average, only 30% of applied N is recovered by the crop following one time basal application. In contrast, higher fertilizer nitrogen use efficiencies (FNUE) (>50%) were observed following multiple-split N application. The result of FNUE also corroborates with the significant increase in rice grain yield. Many crops, however, have different nutrient requirements, therefore as in all fertilization strategies, it is highly recommended that source, rate, time and place of application should be considered in making split fertilization decisions. (author)

  12. Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus increase yield of soybean and cotton under field conditions

    Directory of Open Access Journals (Sweden)

    Martha Viviana Torres Cely

    2016-05-01

    Full Text Available Nutrient availability is an important factor in crop production, and regular addition of chemical fertilizers is the most common practice to improve yield in agrosystems for intensive crop production. The use of some groups of microorganisms that have specific activity providing nutrients to plants is a good alternative, and arbuscular mycorrhizal fungi (AMF enhance plant nutrition by providing especially phosphorus (P, improving plant growth and increasing crop production. Unfortunately, the use of AMF as an inoculant on a large scale is not yet widely used, because of several limitations in obtaining a large amount of inoculum due to several factors, such as low growth, the few species domesticated under in vitro conditions, and high competition with native AMF. The objective of this work was to test the infectivity of a Rhizophagus clarus inoculum and its effectiveness as an alternative for P supply in soybean (Glycine max L. and cotton (Gossypium hirsutum L.. The experiments were carried out in plots and the treatments were: Fertilizer; AMF, AMF + Fertilizer and AMF + ½ Fertilizer; non-inoculated and non-fertilized plants were considered the control. The parameters evaluated were AMF root colonization and effect of inoculation on plant growth and yield under a field conditions. The results showed that AMF inoculation increased the effect of fertilizer application in soybean, and that in cotton R. clarus was more effective than chemical fertilizer

  13. Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid.

    Science.gov (United States)

    Duncan, Shona; Jing, Qing; Katona, Adrian; Kazlauskas, Romas J; Schilling, Jonathan; Tschirner, Ulrike; Aldajani, Waleed Wafa

    2010-03-01

    The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.

  14. Duplication of an upstream silencer of FZP increases grain yield in rice.

    Science.gov (United States)

    Bai, Xufeng; Huang, Yong; Hu, Yong; Liu, Haiyang; Zhang, Bo; Smaczniak, Cezary; Hu, Gang; Han, Zhongmin; Xing, Yongzhong

    2017-11-01

    Transcriptional silencer and copy number variants (CNVs) are associated with gene expression. However, their roles in generating phenotypes have not been well studied. Here we identified a rice quantitative trait locus, SGDP7 (Small Grain and Dense Panicle 7). SGDP7 is identical to FZP (FRIZZY PANICLE), which represses the formation of axillary meristems. The causal mutation of SGDP7 is an 18-bp fragment, named CNV-18bp, which was inserted ~5.3 kb upstream of FZP and resulted in a tandem duplication in the cultivar Chuan 7. The CNV-18bp duplication repressed FZP expression, prolonged the panicle branching period and increased grain yield by more than 15% through substantially increasing the number of spikelets per panicle (SPP) and slightly decreasing the 1,000-grain weight (TGW). The transcription repressor OsBZR1 binds the CGTG motifs in CNV-18bp and thereby represses FZP expression, indicating that CNV-18bp is the upstream silencer of FZP. These findings showed that the silencer CNVs coordinate a trade-off between SPP and TGW by fine-tuning FZP expression, and balancing the trade-off could enhance yield potential.

  15. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    Science.gov (United States)

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  16. Carbon monoxide improves neuronal differentiation and yield by increasing the functioning and number of mitochondria.

    Science.gov (United States)

    Almeida, Ana S; Sonnewald, Ursula; Alves, Paula M; Vieira, Helena L A

    2016-08-01

    The process of cell differentiation goes hand-in-hand with metabolic adaptations, which are needed to provide energy and new metabolites. Carbon monoxide (CO) is an endogenous cytoprotective molecule able to inhibit cell death and improve mitochondrial metabolism. Neuronal differentiation processes were studied using the NT2 cell line, which is derived from human testicular embryonic teratocarcinoma and differentiates into post-mitotic neurons upon retinoic acid treatment. CO-releasing molecule A1 (CORM-A1) was used do deliver CO into cell culture. CO treatment improved NT2 neuronal differentiation and yield, since there were more neurons and the total cell number increased following the differentiation process. CO supplementation enhanced the mitochondrial population in post-mitotic neurons derived from NT2 cells, as indicated by an increase in mitochondrial DNA. CO treatment during neuronal differentiation increased the extent of the classical metabolic change that occurs during neuronal differentiation, from glycolytic to more oxidative metabolism, by decreasing the ratio of lactate production and glucose consumption. The expression of pyruvate and lactate dehydrogenases was higher, indicating an augmented oxidative metabolism. Moreover, these findings were corroborated by an increased percentage of (13) C incorporation from [U-(13) C]glucose into the tricarboxylic acid cycle metabolites malate and citrate, and also glutamate and aspartate in CO-treated cells. Finally, under low levels of oxygen (5%), which enhances glycolytic metabolism, some of the enhancing effects of CO on mitochondria were not observed. In conclusion, our data show that CO improves neuronal and mitochondrial yield by stimulation of tricarboxylic acid cycle activity, and thus oxidative metabolism of NT2 cells during the process of neuronal differentiation. The process of cell differentiation is coupled with metabolic adaptations. Carbon monoxide (CO) is an endogenous cytoprotective

  17. INCREASING YIELDS AND BROADENING MARKETS: PROCESS INNOVATIONS IN THE MANUFACTURING OF ENERGY-SAVING WINDOW GLAZINGS

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burdis; Neil Sbar

    2005-04-01

    The goal of this project was to develop and implement advanced thin film process technology which would significantly improve the manufacturability of both static and dynamic high performance energy saving coatings for windows. The work done has been aimed at improvements to the process that will result in increases in yield, and this was divided into four main areas, dealing with improvements in substrate preparation methods, reductions in the incidence of problems caused by particulate contamination, use of in-situ optical monitoring to improve process control, and overall system integration to enable simplified, and therefore lower cost operation. Significant progress has been made in each of the areas. In the area of substrate preparation, the enhanced washing techniques which have been developed, in combination with a new inspection technique, have resulted in significant reductions in the number of EC devices which are rejected because of substrate problems. Microscopic inspection of different defects in electrochromic devices showed that many were centered on particles. As a result, process improvements aimed at reducing the incidence of particles throughout the entire process have been implemented. As a result, the average number of defects occurring per unit area has been significantly reduced over the period of this project. The in-situ monitoring techniques developed during this project have become an indispensable part of the processing for EC devices. The deposition of several key layers is controlled as a result of in-situ monitoring, and this has facilitated significant improvements in uniformity and repeatability. Overall system integration has progressed to the stage where the goal of a closed-loop monitoring and control system in within reach, and it is anticipated that this will be achieved during the scale-up phase. There has been a clear increase in the yield occurring over the period of this project (Sept 1999 to September 2003), which is

  18. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s

    Science.gov (United States)

    Hawkins, Ed; Fricker, Thomas E; Challinor, Andrew J; Ferro, Christopher A T; Kit Ho, Chun; Osborne, Tom M

    2013-01-01

    Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target. PMID:23504849

  20. Does Integration Help Adapt to Climate Change? Case of Increased US Corn Yield Volatility

    Science.gov (United States)

    Verma, M.; Diffenbaugh, N. S.; Hertel, T. W.

    2012-12-01

    In absence of of new crop varieties or significant shifts in the geography of corn production, US national corn yields variation could double by the year 2040 as a result of climate change and without adaptation this could lead the variability in US corn prices to quadruple (Diffenbaugh et al. 2012). In addition to climate induced price changes, analysis of recent commodity price spikes suggests that interventionist trade policies are partly to blame. Assuming we cannot much influence the future climate outcome, what policies can we undertake to adapt better? Can we use markets to blunt this edge? Diffenbaugh et al. find that sale of corn- ethanol for use in liquid fuel, when governed by quotas such as US Renewable Fuel Standard (RFS), could make US corn prices even more variable; in contrast the same food-fuel market link (we refer to it as intersectoral link) may well dampen price volatility when the sale of corn to ethanol industry is driven by higher future oil prices. The latter however comes at the cost of exposing corn prices to the greater volatility in oil markets. Similarly intervention in corn trade can make US corn prices less or more volatile by distorting international corn price transmission. A negative US corn yield shock shows that domestic corn supply falls and domestic prices to go up irrespective of whether or not markets are integrated. How much the prices go up depends on how much demand adjusts to accommodate the supply shock. Based on the forgoing analysis, one should expect that demand would adjust more readily when markets are integrated and therefore reduce the resulting price fluctuation. Simulation results confirm this response of corn markets. In terms of relative comparisons however a policy driven intersectoral integration is least effective and prices rise much more. Similarly, a positive world oil price shock makes the US oil imports expensive and with oil being used to produce gasoline blends, it increases the price of gasoline

  1. Gas-exchange, water use efficiency and yield responses of elite potato (Solanum tuberosum L.) cultivars to changes in atmospheric carbon dioxide concentration, temperature and relative humidity

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Sørensen, Kirsten Kørup; Nielsen, Kåre Lehmann

    2014-01-01

    photosynthetic water use efficiency (pWUE) by stimulation in net photosynthesis rate (62% and 43% increase of An) with coincident decline in both stomatal conductance (21% and 43% decrease of gs) and leaf transpiration rate (19% and 40% decrease of E) resulting in pWUE increments of 89% and 147%. Furthermore...

  2. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes.

    Science.gov (United States)

    Tito, Richard; Vasconcelos, Heraldo L; Feeley, Kenneth J

    2018-02-01

    One of the greatest current challenges to human society is ensuring adequate food production and security for a rapidly growing population under changing climatic conditions. Climate change, and specifically rising temperatures, will alter the suitability of areas for specific crops and cultivation systems. In order to maintain yields, farmers may be forced to change cultivation practices, the timing of cultivation, or even the type of crops grown. Alternatively, farmers can change the location where crops are cultivated (e.g., to higher elevations) to track suitable climates (in which case the plants will have to grow in different soils), as cultivated plants will otherwise have to tolerate warmer temperatures and possibly face novel enemies. We simulated these two last possible scenarios (for temperature increases of 1.3°C and 2.6°C) in the Peruvian Andes through a field experiment in which several traditionally grown varieties of potato and maize were planted at different elevations (and thus temperatures) using either the local soil or soil translocated from higher elevations. Maize production declined by 21%-29% in response to new soil conditions. The production of maize and potatoes declined by >87% when plants were grown under warmer temperatures, mainly as a result of the greater incidence of novel pests. Crop quality and value also declined under simulated migration and warming scenarios. We estimated that local farmers may experience severe economic losses of up to 2,300 US$ ha -1  yr -1 . These findings reveal that climate change is a real and imminent threat to agriculture and that there is a pressing need to develop effective management strategies to reduce yield losses and prevent food insecurity. Importantly, such strategies should take into account the influences of non-climatic and/or biotic factors (e.g., novel pests) on plant development. © 2017 John Wiley & Sons Ltd.

  3. Co-Digestion of Sugar Beet Silage Increases Biogas Yield from Fibrous Substrates

    Science.gov (United States)

    Einfalt, Daniel; Kazda, Marian

    2016-01-01

    This study tested the hypothesis that the easily degradable carbohydrates of the sugar beet silage (S) will improve the anaerobic digestion of grass silage (G) more profoundly compared to co-digestion of sugar beet silage with maize silage (M). M : S and G : S mixtures were tested in two continuous laboratory-scale AD experiments at volatile solid ratios of 1 : 0, 6 : 1, 3 : 1, and 1 : 3 at organic loading rates of 1.5 kgVS m−3 day−1. While the sugar beet effects in mixtures with maize silage were negligible, co-digestion with grass silage showed a beneficial performance. There, the specific methane production rate was 0.27 lN kg−1VS h−1at G : S ratio of 6 : 1 compared to G : S 1 : 0 with 0.14 lN kg−1VS h−1. In comparison to G : S 1 : 0, about 44% and 62% higher biogas yields were obtained at G : S 6 : 1 and 3 : 1, respectively. Also, the highest methane concentration was found in G : S at ratio of 1 : 3. Synergistic increase of methane yield was found in co-digestion in both experiments, but higher effect was realized in G : S, independently of the amount of sugar beet silage. The findings of this study emphasize the improvement of AD of grass silage by even low addition of sugar beet silage. PMID:27807538

  4. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Directory of Open Access Journals (Sweden)

    Yanfang Xue

    Full Text Available The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn, iron (Fe, manganese (Mn and copper (Cu in maize (Zea mays L. were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain. Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60% and decreased Zn concentrations in straw (a 56% decrease and grain (decreased from 16.9 to 12.2 mg kg-1 rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively. The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  5. effect of some agronomic practices to increase maize yield in ghana

    African Journals Online (AJOL)

    User

    and the comparative effect of refilling with seed and seedling on the growth, optimum population density, and yield of ... and maintaining productivity (Ekboir et al.,. 2002). Due to the ... with seed maize, planting depth, insecticide and fungicide.

  6. Midkine Increases Diagnostic Yield in AFP Negative and NASH-Related Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Roslyn Vongsuvanh

    Full Text Available Robust biomarkers for population-level hepatocellular carcinoma (HCC surveillance are lacking. We compared serum midkine (MDK, dickkopf-1 (DKK1, osteopontin (OPN and AFP for HCC diagnosis in 86 HCC patients matched to 86 cirrhotics, 86 with chronic liver disease (CLD and 86 healthy controls (HC. Based on the performance of each biomarker, we assessed a separate longitudinal cohort of 28 HCC patients, at and before cancer diagnosis. Serum levels of MDK and OPN were higher in HCC patients compared to cirrhosis, CLD and HC groups. DKK1 was not different between cases and controls. More than half of HCC patients had normal AFP. In this AFP-negative HCC cohort, 59.18% (n = 29/49 had elevated MDK, applying the optimal cut-off of 0.44 ng/ml. Using AFP ≥ 20 IU/ml or MDK ≥ 0.44 ng/ml, a significantly greater number (76.7%; n = 66/86 of HCC cases were detected. The area under the receiver operating curve for MDK was superior to AFP and OPN in NASH-HCC diagnosis. In the longitudinal cohort, MDK was elevated in 15/28 (54% of HCC patients at diagnosis, of whom 67% had elevated MDK 6 months prior.AFP and MDK have a complementary role in HCC detection. MDK increases the diagnostic yield in AFP-negative HCC and has greater diagnostic performance than AFP, OPN and DKK-1 in the diagnosis of NASH-HCC. Additionally, MDK has a promising role in the pre-clinical diagnosis of HCC.

  7. Humidity and Buildings. Technical Paper No. 188.

    Science.gov (United States)

    Hutcheon, N. B.

    Modified and controlled relative humidity in buildings for certain occupancies is discussed. New criteria are used in determining the needs, desirability and problems associated with humidities in a building. Severe winter climate requires that special attention be given to the problems associated with increased indoor humidities during cold…

  8. Sequential ethanol fermentation and anaerobic digestion increases bioenergy yields from duckweed.

    Science.gov (United States)

    Calicioglu, O; Brennan, R A

    2018-06-01

    The potential for improving bioenergy yields from duckweed, a fast-growing, simple, floating aquatic plant, was evaluated by subjecting the dried biomass directly to anaerobic digestion, or sequentially to ethanol fermentation and then anaerobic digestion, after evaporating ethanol from the fermentation broth. Bioethanol yields of 0.41 ± 0.03 g/g and 0.50 ± 0.01 g/g (glucose) were achieved for duckweed harvested from the Penn State Living-Filter (Lemna obscura) and Eco-Machine™ (Lemna minor/japonica and Wolffia columbiana), respectively. The highest biomethane yield, 390 ± 0.1 ml CH 4 /g volatile solids added, was achieved in a reactor containing fermented duckweed from the Living-Filter at a substrate-to-inoculum (S/I) ratio (i.e., duckweed to microorganism ratio) of 1.0. This value was 51.2% higher than the biomethane yield of a replicate reactor with raw (non-fermented) duckweed. The combined bioethanol-biomethane process yielded 70.4% more bioenergy from duckweed, than if anaerobic digestion had been run alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Use of Temperature, Humidity, and Slaughter Condemnation Data to Predict Increases in Transport Losses in Three Classes of Swine and Resulting Foregone Revenue.

    Science.gov (United States)

    Peterson, Erik; Remmenga, Marta; Hagerman, Amy D; Akkina, Judy E

    2017-01-01

    The United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) conducts weekly surveillance of slaughter condemnation rates to provide early warning for emerging diseases and to monitor health trends in swine. Swine deaths in-transit are an animal welfare concern and represent lost revenue for the swine industry. This retrospective observational study used ambient temperature and humidity data from weather stations near United States slaughter plants collected from 2010 to 2015 to predict the incidence and risk of death among swine in-transit and just prior to slaughter. The risk of death for market swine at a heat index (HI), which combines the effects of temperature and humidity, indicating moderately hot weather conditions between 85 and 92°F was 1.37 times greater than that of the baseline temperature range of 54-79°F. The risk of death for cull sows at an HI between 85 and 92°F was 1.93 times greater than that of average temperatures ranging from 54 to 79°F. Roaster swine (weigh temperature of 54-79°F. The risk of death for roaster swine at a minimum temperature between 40 and 50°F was 1.21 times greater than that of average temperatures ranging from 54 to 79°F. The risk of death for market swine at a minimum temperature range of 40-50°F was 0.97 times that of average temperatures ranging from 54 to 79°F. And for cull sows, the risk of death at a minimum temperature range of 40-50°F was 0.81 times the risk at the average temperature ranging from 54 to 79°F. Across the study period, cumulative foregone revenue, or revenue not realized due to swine condemnations, for all swine was $18.6 million and $4.3 million for cold temperatures and high HI ranges above the baseline, respectively. Marginal foregone revenue per hog in hotter months is higher due to seasonal peaks in swine prices. As a result of this study, the USDA-APHIS swine condemnation surveillance can incorporate weekly estimated HI values and ambient

  10. Grain yield increase in cereal variety mixtures: A meta-analysis of field trials

    DEFF Research Database (Denmark)

    Kiær, Lars Pødenphant; Skovgaard, Ib; Østergård, Hanne

    2009-01-01

    on grain yield. To investigate the prevalence and preconditions for positive mixing effects, reported grain yields of variety mixtures and pure variety stands were obtained from previously published variety trials, converted into relative mixing effects and combined using meta-analysis. Furthermore...... as meeting the criteria for inclusion in the meta-analysis; on the other hand, nearly 200 studies were discarded. The accepted studies reported results on both winter and spring types of each crop species. Relative mixing effects ranged from 30% to 100% with an overall meta-estimate of at least 2.7% (p

  11. Narrow rows reduce biomass and seed production of weeds and increase maize yield

    NARCIS (Netherlands)

    Mashingaidze, A.B.; Werf, van der W.; Lotz, L.A.P.; Chipomho, J.; Kropff, M.J.

    2009-01-01

    Smallholder farmers in southern African countries rely primarily on cultural control and hoe weeding to combat weeds, but often times, they are unable to keep up with the weeding requirements of the crop because of its laboriousness, causing them to incur major yield losses. Optimisation of crop

  12. Attribution of maize yield increase in China to climate change and technological advancement between 1980 and 2010

    Science.gov (United States)

    Guo, Jianping; Zhao, Junfang; Wu, Dingrong; Mu, Jia; Xu, Yanhong

    2014-12-01

    Crop yields are affected by climate change and technological advancement. Objectively and quantitatively evaluating the attribution of crop yield change to climate change and technological advancement will ensure sustainable development of agriculture under climate change. In this study, daily climate variables obtained from 553 meteorological stations in China for the period 1961-2010, detailed observations of maize from 653 agricultural meteorological stations for the period 1981-2010, and results using an Agro-Ecological Zones (AEZ) model, are used to explore the attribution of maize (Zea mays L.) yield change to climate change and technological advancement. In the AEZ model, the climatic potential productivity is examined through three step-by-step levels: photosynthetic potential productivity, photosynthetic thermal potential productivity, and climatic potential productivity. The relative impacts of different climate variables on climatic potential productivity of maize from 1961 to 2010 in China are then evaluated. Combined with the observations of maize, the contributions of climate change and technological advancement to maize yield from 1981 to 2010 in China are separated. The results show that, from 1961 to 2010, climate change had a significant adverse impact on the climatic potential productivity of maize in China. Decreased radiation and increased temperature were the main factors leading to the decrease of climatic potential productivity. However, changes in precipitation had only a small effect. The maize yields of the 14 main planting provinces in China increased obviously over the past 30 years, which was opposite to the decreasing trends of climatic potential productivity. This suggests that technological advancement has offset the negative effects of climate change on maize yield. Technological advancement contributed to maize yield increases by 99.6%-141.6%, while climate change contribution was from -41.4% to 0.4%. In particular, the actual

  13. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980.

    Directory of Open Access Journals (Sweden)

    Mingsheng Fan

    Full Text Available OBJECTIVE: China's food production has increased 6-fold during the past half-century, thanks to increased yields resulting from the management intensification, accomplished through greater inputs of fertilizer, water, new crop strains, and other Green Revolution's technologies. Yet, changes in underlying quality of soils and their effects on yield increase remain to be determined. Here, we provide a first attempt to quantify historical changes in inherent soil productivity and their contributions to the increase in yield. METHODS: The assessment was conducted based on data-set derived from 7410 on-farm trials, 8 long-term experiments and an inventory of soil organic matter concentrations of arable land. RESULTS: Results show that even without organic and inorganic fertilizer addition crop yield from on-farm trials conducted in the 2000s was significantly higher compared with those in the 1980s - the increase ranged from 0.73 to 1.76 Mg/ha for China's major irrigated cereal-based cropping systems. The increase in on-farm yield in control plot since 1980s was due primarily to the enhancement of soil-related factors, and reflected inherent soil productivity improvement. The latter led to higher and stable yield with adoption of improved management practices, and contributed 43% to the increase in yield for wheat and 22% for maize in the north China, and, 31%, 35% and 22% for early and late rice in south China and for single rice crop in the Yangtze River Basin since 1980. CONCLUSIONS: Thus, without an improvement in inherent soil productivity, the 'Agricultural Miracle in China' would not have happened. A comprehensive strategy of inherent soil productivity improvement in China, accomplished through combining engineering-based measures with biological-approaches, may be an important lesson for the developing world. We propose that advancing food security in 21st century for both China and other parts of world will depend on continuously improving

  14. Testing the effect of different enzyme blends on increasing the biogas yield of straw and digested manure fibers

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Jurado, Esperanza; Malmgren-Hansen, Bjørn

    In this study, enzymatic treatment was tested to increase the biogas yield of wheat straw (WS) and digested manure fibers (DMF) in the Re-Injection Loop Concept, which combines anaerobic digestion with solid separation to enhance the biogas yield per ton of manure by: 1. Digestion of the easily d...... degradable fraction of manure in the biogas process. 2. Separation of the residual recalcitrant digested fiber fraction project. 3. Ultrasound and/or enzymatic treatment of the digested fiber fraction. 4. Recirculation of the treated fiber fraction into the reactor.......In this study, enzymatic treatment was tested to increase the biogas yield of wheat straw (WS) and digested manure fibers (DMF) in the Re-Injection Loop Concept, which combines anaerobic digestion with solid separation to enhance the biogas yield per ton of manure by: 1. Digestion of the easily...

  15. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change.

    Science.gov (United States)

    Chen, Xiaochao; Chen, Fanjun; Chen, Yanling; Gao, Qiang; Yang, Xiaoli; Yuan, Lixing; Zhang, Fusuo; Mi, Guohua

    2013-03-01

    The impact of global changes on food security is of serious concern. Breeding novel crop cultivars adaptable to climate change is one potential solution, but this approach requires an understanding of complex adaptive traits for climate-change conditions. In this study, plant growth, nitrogen (N) uptake, and yield in relation to climatic resource use efficiency of nine representative maize cultivars released between 1973 and 2000 in China were investigated in a 2-year field experiment under three N applications. The Hybrid-Maize model was used to simulate maize yield potential in the period from 1973 to 2011. During the past four decades, the total thermal time (growing degree days) increased whereas the total precipitation and sunshine hours decreased. This climate change led to a reduction of maize potential yield by an average of 12.9% across different hybrids. However, the potential yield of individual hybrids increased by 118.5 kg ha(-1)  yr(-1) with increasing year of release. From 1973 to 2000, the use efficiency of sunshine hours, thermal time, and precipitation resources increased by 37%, 40%, and 41%, respectively. The late developed hybrids showed less reduction in yield potential in current climate conditions than old cultivars, indicating some adaptation to new conditions. Since the mid-1990s, however, the yield impact of climate change exhibited little change, and even a slight worsening for new cultivars. Modern breeding increased ear fertility and grain-filling rate, and delayed leaf senescence without modification in net photosynthetic rate. The trade-off associated with delayed leaf senescence was decreased grain N concentration rather than increased plant N uptake, therefore N agronomic efficiency increased simultaneously. It is concluded that modern maize hybrids tolerate the climatic changes mainly by constitutively optimizing plant productivity. Maize breeding programs in the future should pay more attention to cope with the limiting

  16. Whole Genome Sequencing Increases Molecular Diagnostic Yield Compared with Current Diagnostic Testing for Inherited Retinal Disease.

    Science.gov (United States)

    Ellingford, Jamie M; Barton, Stephanie; Bhaskar, Sanjeev; Williams, Simon G; Sergouniotis, Panagiotis I; O'Sullivan, James; Lamb, Janine A; Perveen, Rahat; Hall, Georgina; Newman, William G; Bishop, Paul N; Roberts, Stephen A; Leach, Rick; Tearle, Rick; Bayliss, Stuart; Ramsden, Simon C; Nemeth, Andrea H; Black, Graeme C M

    2016-05-01

    To compare the efficacy of whole genome sequencing (WGS) with targeted next-generation sequencing (NGS) in the diagnosis of inherited retinal disease (IRD). Case series. A total of 562 patients diagnosed with IRD. We performed a direct comparative analysis of current molecular diagnostics with WGS. We retrospectively reviewed the findings from a diagnostic NGS DNA test for 562 patients with IRD. A subset of 46 of 562 patients (encompassing potential clinical outcomes of diagnostic analysis) also underwent WGS, and we compared mutation detection rates and molecular diagnostic yields. In addition, we compared the sensitivity and specificity of the 2 techniques to identify known single nucleotide variants (SNVs) using 6 control samples with publically available genotype data. Diagnostic yield of genomic testing. Across known disease-causing genes, targeted NGS and WGS achieved similar levels of sensitivity and specificity for SNV detection. However, WGS also identified 14 clinically relevant genetic variants through WGS that had not been identified by NGS diagnostic testing for the 46 individuals with IRD. These variants included large deletions and variants in noncoding regions of the genome. Identification of these variants confirmed a molecular diagnosis of IRD for 11 of the 33 individuals referred for WGS who had not obtained a molecular diagnosis through targeted NGS testing. Weighted estimates, accounting for population structure, suggest that WGS methods could result in an overall 29% (95% confidence interval, 15-45) uplift in diagnostic yield. We show that WGS methods can detect disease-causing genetic variants missed by current NGS diagnostic methodologies for IRD and thereby demonstrate the clinical utility and additional value of WGS. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  17. Shotgun Approach to Increasing Enzymatic Saccharification Yields of Ammonia Fiber Expansion Pretreated Cellulosic Biomass

    International Nuclear Information System (INIS)

    Chundawat, Shishir P. S.; Uppugundla, Nirmal; Gao, Dahai; Curran, Paul G.; Balan, Venkatesh; Dale, Bruce E.

    2017-01-01

    Most cellulolytic enzyme blends, either procured from a commercial vendor or isolated from a single cellulolytic microbial secretome, do not efficiently hydrolyze ammonia-pretreated (e.g., ammonia fiber expansion, AFEX) lignocellulosic agricultural crop residues like corn stover to fermentable sugars. Typically reported commercial enzyme loading (30–100 mg protein/g glucan) necessary to achieve >90% total hydrolysis yield (to monosaccharides) for AFEX-treated biomass, within a short saccharification time frame (24–48 h), is economically unviable. Unlike acid-based pretreatments, AFEX retains most of the hemicelluloses in the biomass and therefore requires a more complex suite of enzymes for efficient hydrolysis of cellulose and hemicellulose at industrially relevant high solids loadings. One strategy to reduce enzyme dosage while improving cocktail effectiveness for AFEX-treated biomass has been to use individually purified enzymes to determine optimal enzyme combinations to maximize hydrolysis yields. However, this approach is limited by the selection of heterologous enzymes available or the labor required for isolating low-abundance enzymes directly from the microbial secretomes. Here, we show that directly blending crude cellulolytic and hemicellulolytic enzymes-rich microbial secretomes can maximize specific activity on AFEX-treated biomass without having to isolate individual enzymes. Fourteen commercially available cellulolytic and hemicellulolytic enzymes were procured from leading enzyme companies (Novozymes ® , Genencor ® , and Biocatalysts ® ) and were mixed together to generate several hundred unique cocktail combinations. The mixtures were assayed for activity on AFEX-treated corn stover (AFEX-CS) using a previously established high-throughput methodology. The optimal enzyme blend combinations identified from these screening assays were enriched in various low-abundance hemicellulases and accessory enzymes typically absent in most commercial

  18. Optimising yield and resource utilisation of summer maize under the conditions of increasing density and reducing nitrogen fertilization

    Science.gov (United States)

    Wei, Shanshan; Wang, Xiangyu; Zhu, Qicen; Jiang, Dong; Dong, Shuting

    2017-12-01

    The inefficient use of resources always poses risks of maize ( Zea mays L.) yield reduction in China. We performed this research to monitor the effects of increasing plant density and reducing nitrogen (N) rate on radiation-use efficiency (RUE), N efficiency traits, grain yield (GY) and their inter-relationships. Besides, whether GY and resource-use efficiency can both be maximized was examined. Hence, a 2-year field experiment was conducted using a widely grown variety "Denghai 618" in Shandong, China. Treatments contained two different plant densities [67,500 (D1) and 97,500 (D2) plant ha-1] and three N levels [0 (N-2), 180 (N-1), 360 (Nck) kg ha-1], set D1Nck as control. Significant increases in grain yield, biomass, RUE, above-ground N uptake (AGN) and N efficiency were observed when density increased from D1 to D2. Declining N application was accompanied by reductions in yield, RUE and AGN especially under high density, yet an obvious improvement in N recovery efficiency (NRE), agronomic N efficiency and N partial factor productivity. The increased GY was positive related with population biomass ( r = 0.895**), RUE ( r = 0.769**) and AGN ( r = 0.923**), whereas it has no significant correlation with N efficiency. In this study, D2Nck obtained 18.8, 17.9, 24.8 and 29.7% higher grain yield, RUE, AGN and NRE respectively, compared to control, optimizing both yield and the efficiencies of radiation and N use. Furthermore, higher yield and RUE with more desirable N efficiency may be possible via optimizing density and N rate combination.

  19. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions

    Science.gov (United States)

    Séry, D. Jean-Marc; Kouadjo, Z. G. Claude; Voko, B. R. Rodrigue; Zézé, Adolphe

    2016-01-01

    The use of arbuscular mycorrhizal fungal (AMF) inoculation in sustainable agriculture is now widespread worldwide. Although the use of inoculants consisting of native AMF is highly recommended as an alternative to commercial ones, there is no strategy to allow the selection of efficient fungal species from natural communities. The objective of this study was (i) to select efficient native AMF species (ii) evaluate their impact on nematode and water stresses, and (iii) evaluate their impact on cassava yield, an important food security crop in tropical and subtropical regions. Firstly, native AMF communities associated with cassava rhizospheres in fields were collected from different areas and 7 AMF species were selected, based upon their ubiquity and abundance. Using these criteria, two morphotypes (LBVM01 and LBVM02) out of the seven AMF species selected were persistently dominant when cassava was used as a trap plant. LBVM01 and LBVM02 were identified as Acaulospora colombiana (most abundant) and Ambispora appendicula, respectively, after phylogenetic analyses of LSU-ITS-SSU PCR amplified products. Secondly, the potential of these two native AMF species to promote growth and enhance tolerance to root-knot nematode and water stresses of cassava (Yavo variety) was evaluated using single and dual inoculation in greenhouse conditions. Of the two AMF species, it was shown that A. colombiana significantly improved the growth of the cassava and enhanced tolerance to water stress. However, both A. colombiana and A. appendicula conferred bioprotective effects to cassava plants against the nematode Meloidogyne spp., ranging from resistance (suppression or reduction of the nematode reproduction) or tolerance (low or no suppression in cassava growth). Thirdly, the potential of these selected native AMF to improve cassava growth and yield was evaluated under field conditions, compared to a commercial inoculant. In these conditions, the A. colombiana single inoculation and the

  20. Large particles increase viscosity and yield stress of pig cecal contents without changing basic viscoelastic properties.

    Science.gov (United States)

    Takahashi, Toru; Sakata, Takashi

    2002-05-01

    The viscosity of gut contents should influence digestion and absorption. Earlier investigators measured the viscosity of intestinal contents after the removal of solid particles. However, we previously found that removal of solid particles from pig cecal contents dramatically lowered the viscosity of the contents. Accordingly, we examined the contribution of large solid particles to viscoelastic parameters of gut contents in the present study. We removed large particles from pig cecal contents by filtration through surgical gauze. Then, we reconstructed the cecal contents by returning all, one half or none of the original amount of the large particles to the filtrate. We measured the viscosity, shear stress and shear rate of these reconstructed cecal contents using a tube-flow viscometer. The coefficient of viscosity was larger when the large-particle content was higher (P Bingham plastic nature irrespective of large-particle content. We calculated the yield stress of these fluids assuming that the fluids behave as Bingham plastic. The yield stress of the cecal contents was greater (P Bingham plastic characteristics to pig cecal contents.

  1. Shotgun Approach to Increasing Enzymatic Saccharification Yields of Ammonia Fiber Expansion Pretreated Cellulosic Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Chundawat, Shishir P. S., E-mail: shishir.chundawat@rutgers.edu [Department of Chemical and Biochemical Engineering, Rutgers-State University of New Jersey, Piscataway, NJ (United States); Uppugundla, Nirmal; Gao, Dahai [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI (United States); Curran, Paul G. [Center for Statistical Training and Consulting (CSTAT), Michigan State University, East Lansing, MI (United States); Balan, Venkatesh; Dale, Bruce E. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI (United States)

    2017-05-10

    Most cellulolytic enzyme blends, either procured from a commercial vendor or isolated from a single cellulolytic microbial secretome, do not efficiently hydrolyze ammonia-pretreated (e.g., ammonia fiber expansion, AFEX) lignocellulosic agricultural crop residues like corn stover to fermentable sugars. Typically reported commercial enzyme loading (30–100 mg protein/g glucan) necessary to achieve >90% total hydrolysis yield (to monosaccharides) for AFEX-treated biomass, within a short saccharification time frame (24–48 h), is economically unviable. Unlike acid-based pretreatments, AFEX retains most of the hemicelluloses in the biomass and therefore requires a more complex suite of enzymes for efficient hydrolysis of cellulose and hemicellulose at industrially relevant high solids loadings. One strategy to reduce enzyme dosage while improving cocktail effectiveness for AFEX-treated biomass has been to use individually purified enzymes to determine optimal enzyme combinations to maximize hydrolysis yields. However, this approach is limited by the selection of heterologous enzymes available or the labor required for isolating low-abundance enzymes directly from the microbial secretomes. Here, we show that directly blending crude cellulolytic and hemicellulolytic enzymes-rich microbial secretomes can maximize specific activity on AFEX-treated biomass without having to isolate individual enzymes. Fourteen commercially available cellulolytic and hemicellulolytic enzymes were procured from leading enzyme companies (Novozymes{sup ®}, Genencor{sup ®}, and Biocatalysts{sup ®}) and were mixed together to generate several hundred unique cocktail combinations. The mixtures were assayed for activity on AFEX-treated corn stover (AFEX-CS) using a previously established high-throughput methodology. The optimal enzyme blend combinations identified from these screening assays were enriched in various low-abundance hemicellulases and accessory enzymes typically absent in most

  2. Effect of Increase in Plant Density on Stem Yield and Sucrose Content in Two Sweet Sorghum Cultivars

    Directory of Open Access Journals (Sweden)

    A Soleymani

    2011-01-01

    Full Text Available Abstract In order to evaluate the effect of increase plant density on stalk yield and sucrose content in two sweet sorghum cultivars, an experiment was conducted at Research Farm of Isfahan University located at Zaghmar village. A split plot layout within a randomized complete block design with tree replication was used. Main plots were plant densities (100, 200, 300, 400, 500 and 600 thousand plant/ha and subplots were cultivars (Rio and Keller. The effect of plant density at hard dough harvest stage on plant height, stem diameter, number of tillers, stem fresh weight and juice yield were significant but had no significant effect on brix, sucrose percentage and purity. The highest juice yield and purity were produced by 400 thousand plants/ha. Keller was significantly superior for plant height, stem diameter, stem fresh weight, juice yield and brix at hard dough harvest stage as compared to Rio. Number of tiller per plant of Rio was significantly more than Keller. There were no significant difference between two cultivars for sucrose percentage and purity but sucrose percentage in Keller had highest as compared to Rio. Maximum stem fresh weight, juice yield, sucrose percentage and purity were obtained at hard dough harvest stag. On the basis of the results obtained, 400 thousand plant/ha plant density, Keller cultivar and hard dough harvest stage might be suitable for sweet sorghum production under the condition similar to the present study. Keywords: Sweet sorghum, Stem yield, Sucrose percentage, Harvesting stages

  3. Increasing production, the sustained yield method, and reserve structure of agrisilvicultural ecosystems in the moist tropics

    Energy Technology Data Exchange (ETDEWEB)

    Bruenig, E F

    1980-09-01

    While substantial improvements first of all require a profound change of political attitudes and the replacement of irrational ideological creeds, improvements of the food situation in addition needs the application of ecologically adapted and economically sound land use techniques. This in turn requires scientific knowledge of the interrelationships between site factors and the structure and functions of crop types. The principles of the structural design of tropical virgin forest ecosystems can be usefully adapted for the development of agroforestry crop types. Such crop types should be capable of producing a sustained yield of food, timber, fuel, medicinal substances, spices and other useful products and, in addition, produce favourable, stabilizing effects on the local, regional and finally global biosphere.

  4. Significant yield increases from control of leaf diseases in maize - an overlooked problem?!

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup

    2012-01-01

    The area of maize has increased in several European countries in recent years. In Denmark, the area has increased from 10,000 ha in 1980 to 185,000 ha in 2011. Initially only silage maize was cultivated in Denmark, but in more recent years the area of grain maize has also increased. Farms growing...

  5. Combined use of Azolla and loach suppressed paddy weeds and increased organic rice yield: second season results

    Directory of Open Access Journals (Sweden)

    Weiguo Cheng

    2015-01-01

    Full Text Available Organic farming uses alternatives to agricultural chemicals such as synthetic fertilizers and pesticides. The primary challenge in organic rice farming is controlling weeds without using herbicides and improving rice yield without chemical fertilizers. In our previous paper entitled as combined use of Azolla and loach suppressed weed Monochoria vaginalis and increased rice yield without agrochemicals, we reported the first year rice growth season results from an in situ container experiment. The experiment was designed with 4 treatments—control (with neither Azolla nor loach, Azolla (Azolla alone, loach (loach alone, and Az+Lo (combined Azolla and loach—with 3 replications each. The first year results showed that combined use of Azolla and loach was successful in weed suppression and increase in rice yield in 2012. In this paper, we report the second year results from the continuous container experiment in 2013. M.vaginalis emergences were very low in second year rice growth season on all treatments. Compared first year, the rice yields decreased in second year on all treatments due to different weather condition and with or without organic soybean oil cake application between two rice growth seasons. The second year results also showed the raising loach had a stronger effect to increase tiller and panicle numbers, and spikelet number per panicle, then improve rice yields to 2.3 times than control. The Azolla residues left from first year have weaker effect on rice growth and yield, but increase soil organic matter accumulation at second year. The two years study indicated that combined use of Azolla and loach can meet two of the greatest challenges in organic rice production: providing effective weed control and improving rice nutrition without agrochemicals.

  6. SOIL N, P AND K CONCENTRATIONS AND RICE YIELD INCREASED DUE TO THE APPLICATION OF Azolla pinnata

    Directory of Open Access Journals (Sweden)

    A. Arivin Rivaie*

    2014-01-01

    Full Text Available Many studies showed that application of Azolla pinnata as biofertilizer improved soil fertility some agricultural crops, including rice, whereas farmers in Lampung consider that A. pinnata suppresses growth of rice seedlings, so they throw it field by raising irrigation water surface. Information on effects A. pinnata application on changes in nutrient availability and rice yield obtained from paddy fields of regions still rare. A study was carried out to investigate effects of different rates of A. pinnata on changes in N, P, K concentrations in paddy soils, N uptake, and rice yield. A well-irrigated paddy field was incorporated with A. pinnata, and then rice seedlings of Ciherang variety had been grown from June up to December 2009. Results: application of A. pinnata at dose of five t per ha increased concentration of N, P and K as well as rice yield. A. pinnata had a relatively high N content, ie 2.43 percent. Application of A. pinnata of 7.5 t per ha increased significantly available soil P, indicated that A. pinnata requires a fairly high P to grow optimally. Application of A. pinnata of 7.5 t per ha gave highest dry grain yield, suggests that application A. pinnata did not suppress rice yield, even use of A. pinnata as organic matter source will help to conserve fossil fuels and foreign exchange as well as will allow more paddy fields that can be fertilized by N.

  7. Cropping Systems and Climate Change in Humid Subtropical Environments

    Directory of Open Access Journals (Sweden)

    Ixchel M. Hernandez-Ochoa

    2018-02-01

    Full Text Available In the future, climate change will challenge food security by threatening crop production. Humid subtropical regions play an important role in global food security, with crop rotations often including wheat (winter crop and soybean and maize (summer crops. Over the last 30 years, the humid subtropics in the Northern Hemisphere have experienced a stronger warming trend than in the Southern Hemisphere, and the trend is projected to continue throughout the mid- and end of century. Past rainfall trends range, from increases up to 4% per decade in Southeast China to −3% decadal decline in East Australia; a similar trend is projected in the future. Climate change impact studies suggest that by the middle and end of the century, wheat yields may not change, or they will increase up to 17%. Soybean yields will increase between 3% and 41%, while maize yields will increase by 30% or decline by −40%. These wide-ranging climate change impacts are partly due to the region-specific projections, but also due to different global climate models, climate change scenarios, single-model uncertainties, and cropping system assumptions, making it difficult to make conclusions from these impact studies and develop adaptation strategies. Additionally, most of the crop models used in these studies do not include major common stresses in this environment, such as heat, frost, excess water, pests, and diseases. Standard protocols and impact assessments across the humid subtropical regions are needed to understand climate change impacts and prepare for adaptation strategies.

  8. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Science.gov (United States)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  9. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Directory of Open Access Journals (Sweden)

    Q. Cai

    2017-08-01

    Full Text Available A large yield gap exists in rain-fed maize (Zea mays L. production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU and water use efficiency (WUE. Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root ∕ shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season and to mitigate drought risk in dry-land agriculture.

  10. Exclusion of soil macrofauna did not affect soil quality but increases crop yields in a sub-humid tropical maize-based system

    NARCIS (Netherlands)

    Paul, B.K.; Vanlauwe, B.; Hoogmoed, M.; Hurisso, T.T.; Ndabamenye, T.; Terano, Y.; Ayuke, F.O.; Pulleman, M.M.

    2015-01-01

    Soil macrofauna such as earthworms and termites are involved in key ecosystem functions and thus considered important for sustainable intensification of crop production. However, their contribution to tropical soil and crop performance, as well as relations with agricultural management (e.g.

  11. Increased yield of heterologous viral glycoprotein in the seeds of homozygous transgenic tobacco plants cultivated underground.

    Science.gov (United States)

    Tackaberry, Eilleen S; Prior, Fiona; Bell, Margaret; Tocchi, Monika; Porter, Suzanne; Mehic, Jelica; Ganz, Peter R; Sardana, Ravinder; Altosaar, Illimar; Dudani, Anil

    2003-06-01

    The use of transgenic plants in the production of recombinant proteins for human therapy, including subunit vaccines, is being investigated to evaluate the efficacy and safety of these emerging biopharmaceutical products. We have previously shown that synthesis of recombinant glycoprotein B (gB) of human cytomegalovirus can be targeted to seeds of transgenic tobacco when directed by the rice glutelin 3 promoter, with gB retaining critical features of immunological reactivity (E.S. Tackaberry et al. 1999. Vaccine, 17: 3020-3029). Here, we report development of second generation transgenic plant lines (T1) homozygous for the transgene. Twenty progeny plants from two lines (A23T(1)-2 and A24T(1)-3) were grown underground in an environmentally contained mine shaft. Based on yields of gB in their seeds, the A23T(1)-2 line was then selected for scale-up in the same facility. Analyses of mature seeds by ELISA showedthat gB specific activity in A23T(1)-2 seeds was over 30-fold greater than the best T0 plants from the same transformation series, representing 1.07% total seed protein. These data demonstrate stable inheritance, an absence of transgene inactivation, and enhanced levels of gB expression in a homozygous second generation plant line. They also provide evidence for the suitability of using this environmentally secure facility to grow transgenic plants producing therapeutic biopharmaceuticals.

  12. Simultaneous recording of EEG and electromyographic polygraphy increases the diagnostic yield of video-EEG monitoring.

    Science.gov (United States)

    Hill, Aron T; Briggs, Belinda A; Seneviratne, Udaya

    2014-06-01

    To investigate the usefulness of adjunctive electromyographic (EMG) polygraphy in the diagnosis of clinical events captured during long-term video-EEG monitoring. A total of 40 patients (21 women, 19 men) aged between 19 and 72 years (mean 43) investigated using video-EEG monitoring were studied. Electromyographic activity was simultaneously recorded with EEG in four patients selected on clinical grounds. In these patients, surface EMG electrodes were placed over muscles suspected to be activated during a typical clinical event. Of the 40 patients investigated, 24 (60%) were given a diagnosis, whereas 16 (40%) remained undiagnosed. All four patients receiving adjunctive EMG polygraphy obtained a diagnosis, with three of these diagnoses being exclusively reliant on the EMG recordings. Specifically, one patient was diagnosed with propriospinal myoclonus, another patient was diagnosed with facio-mandibular myoclonus, and a third patient was found to have bruxism and periodic leg movements of sleep. The information obtained from surface EMG recordings aided the diagnosis of clinical events captured during video-EEG monitoring in 7.5% of the total cohort. This study suggests that EEG-EMG polygraphy may be used as a technique of improving the diagnostic yield of video-EEG monitoring in selected cases.

  13. Increasing polyhydroxyalkanoate (PHA) yields from Cupriavidus necator by using filtered digestate liquors.

    Science.gov (United States)

    Passanha, Pearl; Esteves, Sandra R; Kedia, Gopal; Dinsdale, Richard M; Guwy, Alan J

    2013-11-01

    The production of polyhydroxyalkanoates (PHAs) using digestate liquor as culture media is a novel application to extend the existing uses of digestates. In this study, two micro-filtered digestates (0.22 μm) were evaluated as a source of complex culture media for the production of PHA by Cupriavidus necator as compared to a conventional media. Culture media using a mixture of micro-filtered liquors from food waste and from wheat feed digesters showed a maximum PHA accumulation of 12.29 g/l PHA, with 90% cell dry weight and a yield of 0.48 g PHA/g VFA consumed, the highest reported to date for C. necator studies. From the analysis of the starting and residual media, it was concluded that ammonia, potassium, magnesium, sulfate and phosphate provided in the digestate liquors were vital for the initial growth of C. necator whereas copper, iron and nickel may have played a significant role in PHA accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Increasing Hematopoietic Stem Cell Yield to Develop Mice with Human Immune Systems

    Directory of Open Access Journals (Sweden)

    Juan-Carlos Biancotti

    2013-01-01

    Full Text Available Hematopoietic stem cells (HSCs are unique in their capacity to give rise to all mature cells of the immune system. For years, HSC transplantation has been used for treatment of genetic and neoplastic diseases of the hematopoietic and immune systems. The sourcing of HSCs from human umbilical cord blood has salient advantages over isolation from mobilized peripheral blood. However, poor sample yield has prompted development of methodologies to expand HSCs ex vivo. Cytokines, trophic factors, and small molecules have been variously used to promote survival and proliferation of HSCs in culture, whilst strategies to lower the concentration of inhibitors in the culture media have recently been applied to promote HSC expansion. In this paper, we outline strategies to expand HSCs in vitro, and to improve engraftment and reconstitution of human immune systems in immunocompromised mice. To the extent that these “humanized” mice are representative of the endogenous human immune system, they will be invaluable tools for both basic science and translational medicine.

  15. Increasing the production yield of recombinant protein in transgenic seeds by expanding the deposition space within the intracellular compartment

    OpenAIRE

    Takaiwa, Fumio

    2013-01-01

    Seeds must maintain a constant level of nitrogen in order to germinate. When recombinant proteins are produced while endogenous seed protein expression is suppressed, the production levels of the foreign proteins increase to compensate for the decreased synthesis of endogenous proteins. Thus, exchanging the production of endogenous seed proteins for that of foreign proteins is a promising approach to increase the yield of foreign recombinant proteins. Providing a space for the deposition of r...

  16. Increased aeolian activity during humidity shifts as recorded in a raised bog in south-west Sweden during the past 1700 years

    Directory of Open Access Journals (Sweden)

    R. de Jong

    2007-07-01

    Full Text Available Analyses of testate amoebae and aeolian sediment influx (ASI were used to reconstruct effective humidity changes and aeolian activity in the coastal zone of south-west Sweden. Cores were taken from an ombrotrophic peat sequence from the Undarsmosse bog. Since both types of analysis were carried out on the same core, a direct comparison between humidity fluctuations in the bog and aeolian activity was possible, potentially providing detailed information on atmospheric circulation changes in this region. Relatively wet bog surface conditions occurred from around 1500 to 1230 and 770 to 380 cal. yrs BP, whereas dry conditions dominated from ca. 1630 to 1530, 1160 to 830 and 300 to 50 cal. yrs BP. The transitions between these phases occurred within 60–100 years and are characterised by a major change in the testate amoebae assemblages. A watertable reconstruction was used to study the hydrological changes at the bog surface in more detail. ASI peak events were reconstructed around 1450, 1150, 850 and after 370 cal. yrs BP. Most interestingly, these aeolian activity peaks started during the recorded hydrological transitions, regardless of the direction of these shifts. Our results therefore suggest that humidity shifts in this region were associated with temporary intensifications of atmospheric circulation during the past 1700 years. Several ASI peaks apparently coincide with reduced solar activity, possibly suggesting a solar related cause for some of the observed events.

  17. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, {sup 1}H-NMR and {sup 13}C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.

  18. Increasing Growth and Yield of Upland Rice by Application of Vesicular Arbuscular Mycorrhizae and Potassium Fertilizer

    Directory of Open Access Journals (Sweden)

    Dedi Natawijaya

    2012-01-01

    Full Text Available Field experiment with a split plot design has been carried out in order to assess the growth characteristics andyields, and effectiveness of MVA upland rice which were given potassium fertilizer in two growing seasons. MVAinoculation consisted of three treatments (without MVA, Glomus sp. and Gigaspora sp. while potassium fertilizerconsisted of five levels (0, 12.5, 25, 37.5, and 50 kg ha-1 K. The results showed that plant growth variable which wasinoculated by MVA at any levels of K fertilizer was higher in the dry season than that in the wet season, whereas theopposite occurred for net assimilation rate. Potassium content of leaf tissue, shoot/root ratio, and grain weight perhill was determined and mutually dependent on genus MVA, dosages of K fertilizer, and growing season. Harvestindex and grain dry weight per hill were influenced by the growing season and the genus MVA but the effect did notdepend on each other. At all dosages of K fertilizer and any MVA genera, Gigaspora sp. inoculation was better thanthat of Glomus sp. Dry weight of grains per hill was affected by the contribution of grain content per hill, weight of1000 grains and number of productive seedlings per hill. The optimum dosage of K fertilizer in the dry season was32.4 kg ha-1 K with grain yield 3.12 Mg ha-1 for inoculation of Gigaspora sp., whereas the optimum dosage in the wetseason was 34.2 kg ha-1 K for the treatment Glomus sp. inoculation with Gigaspora sp. in the wet season did notreach dosages of optimum K fertilizer.

  19. Biological nitrogen (N) fixation - The source of N nutrient to increase yield

    International Nuclear Information System (INIS)

    Heiling, M.; Hardarson, G.

    2006-01-01

    Nitrogen is an essential plant nutrient. It is the nutrient that is most commonly deficient, contributing to reduced agricultural yields throughout the world. Developing countries used more than 85 million metric tones of nitrogenous fertilizer in 2003, worth billions of US dollars. Such fertilizer expenditure can be significantly reduced by incorporating biological nitrogen fixed leguminous crops into a growing rotation. In leguminous crops, a symbiotic relationship between a bacterium called Rhizobium and legumes can provide large amounts of nitrogen to the plant and subsequently to soils where they are grown. In this process the bacteria form nodules on the root system and convert the nitrogen coming from air into molecules that can be absorbed by the plants. Beside their fertilizing properties, legumes are rich in protein and constitute a very important role in the human and animal nutrition. In the Soil Science Unit (SSU) of the FAO/IAEA Agriculture and Biotechnology Laboratory fellows from all over the world receive training in the use of 15 N stable isotope techniques to optimise the nitrogen fixation. Several parameters such as the placement of the nodules on the legume root system, the amount of soil mineral nitrogen and phosphorus fertilizer applied and the temperature have an impact on the amount of nitrogen fixed by the plant. It is therefore important to identify relative importance of these parameters on biological N fixation. The 15 N isotope dilution method is an appropriate technique to test the biological nitrogen fixation in the laboratory first. This useful knowledge can then be communicated to the farmers and can be tested under field conditions

  20. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.

    Directory of Open Access Journals (Sweden)

    Ayako Okuno

    Full Text Available Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing grain yield, it is desirable to further improve grain production and also to breed for high biomass. In this study, we re-examined the effect of GA on rice lodging resistance and biomass yield using several GA-deficient mutants (e.g. having defects in the biosynthesis or perception of GA, and high-GA producing line or mutant. GA-deficient mutants displayed improved bending-type lodging resistance due to their short stature; however they showed reduced breaking-type lodging resistance and reduced total biomass. In plants producing high amounts of GA, the bending-type lodging resistance was inferior to the original cultivars. The breaking-type lodging resistance was improved due to increased lignin accumulation and/or larger culm diameters. Further, these lines had an increase in total biomass weight. These results show that the use of rice cultivars producing high levels of GA would be a novel approach to create higher lodging resistance and biomass.

  1. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.

    Science.gov (United States)

    Okuno, Ayako; Hirano, Ko; Asano, Kenji; Takase, Wakana; Masuda, Reiko; Morinaka, Yoichi; Ueguchi-Tanaka, Miyako; Kitano, Hidemi; Matsuoka, Makoto

    2014-01-01

    Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA)-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing grain yield, it is desirable to further improve grain production and also to breed for high biomass. In this study, we re-examined the effect of GA on rice lodging resistance and biomass yield using several GA-deficient mutants (e.g. having defects in the biosynthesis or perception of GA), and high-GA producing line or mutant. GA-deficient mutants displayed improved bending-type lodging resistance due to their short stature; however they showed reduced breaking-type lodging resistance and reduced total biomass. In plants producing high amounts of GA, the bending-type lodging resistance was inferior to the original cultivars. The breaking-type lodging resistance was improved due to increased lignin accumulation and/or larger culm diameters. Further, these lines had an increase in total biomass weight. These results show that the use of rice cultivars producing high levels of GA would be a novel approach to create higher lodging resistance and biomass.

  2. Melatonin implantation during the non-growing period of cashmere increases the cashmere yield of female Inner Mongolian cashmere goats by increasing fiber length and density

    International Nuclear Information System (INIS)

    Wu, Z.; Duan, C.; Li, Y.; Duan, T.; Mo, F.; Zhang, W.

    2018-01-01

    This study aimed to evaluate if melatonin implantation at the end of April and June was able to increase cashmere production in female Inner Mongolian cashmere goats and to search for contributing factors accounting for the melatonin increasing in cashmere production. One hundred and fifty female Inner Mongolian cashmere goats (initial body weight 37.2 ± 3.3 kg) were randomly assigned to either a control (n=75) or a treatment (n=75) group. Goats in the treatment group were implanted with melatonin (2 mg/kg of body weight) on April 30 and June 30, 2014 while goats in the control received no treatment. Melatonin implantation increased cashmere yield by 23.4% while increasing the length and density of the cashmere fiber by 19.8% and 11.4%, whereas it decreased cashmere fiber diameter by 4.4%. Melatonin treatment had no effect on doe growth, litter size or birth and weaning weights of kid. Melatonin implantation promoted cashmere yield by increasing fiber length and density without impacting the performance of goats and their offspring. Therefore, melatonin implantation during the cashmere non-growing period (late April and June) is an effective way to increase cashmere yield and improve cashmere characteristics of goats.

  3. Elevated CO2 Increases Nitrogen Fixation at the Reproductive Phase Contributing to Various Yield Responses of Soybean Cultivars

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2017-09-01

    Full Text Available Nitrogen deficiency limits crop performance under elevated CO2 (eCO2, depending on the ability of plant N uptake. However, the dynamics and redistribution of N2 fixation, and fertilizer and soil N use in legumes under eCO2 have been little studied. Such an investigation is essential to improve the adaptability of legumes to climate change. We took advantage of genotype-specific responses of soybean to increased CO2 to test which N-uptake phenotypes are most strongly related to enhanced yield. Eight soybean cultivars were grown in open-top chambers with either 390 ppm (aCO2 or 550 ppm CO2 (eCO2. The plants were supplied with 100 mg N kg−1 soil as 15N-labeled calcium nitrate, and harvested at the initial seed-filling (R5 and full-mature (R8 stages. Increased yield in response to eCO2 correlated highly (r = 0.95 with an increase in symbiotically fixed N during the R5 to R8 stage. In contrast, eCO2 only led to small increases in the uptake of fertilizer-derived and soil-derived N during R5 to R8, and these increases did not correlate with enhanced yield. Elevated CO2 also decreased the proportion of seed N redistributed from shoot to seeds, and this decrease strongly correlated with increased yield. Moreover, the total N uptake was associated with increases in fixed-N per nodule in response to eCO2, but not with changes in nodule biomass, nodule density, or root length.

  4. Upper limits for air humidity based on human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole; Jørgensen, Anette S.

    1998-01-01

    respiratory cooling. Human subjects perceived the condition of their skin to be less acceptable with increasing skin humidity. Inhaled air was rated warmer, more stuffy and less acceptable with increasing air humidity and temperature. Based on the subjects' comfort responses, new upper limits for air humidity......The purpose of this study was to verify the hypothesis that insufficient respiratory cooling and a high level of skin humidity are two reasons for thermal discomfort at high air humidities, and to prescribe upper limits for humidity based on discomfort due to elevated skin humidity and insufficient...

  5. Plant mortality and natural selection may increase biomass yield in switchgrass swards

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is an important candidate for bioenergy feedstock production, prompting significant efforts to increase the number of breeding programs and the output of those programs. The objective of this experiment was to determine the potential utility of natural selection for...

  6. Residue management increases fallow water conservation and yield deficit irrigated crops grown in rotation with wheat

    Science.gov (United States)

    No-tillage (NT) residue management provides cover to increase precipitation capture compared with disk tillage (DT) or in the absence of a cover crop. Therefore, NT has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. In a 4-year study, we quantified DT and NT effe...

  7. Biodiesel Reactor Design with Glycerol Separation to Increase Biodiesel Production Yield

    Directory of Open Access Journals (Sweden)

    Budy Rahmat

    2013-09-01

    Full Text Available The study consisted of reactor design used for transesterification process, effect of glycerol separation ontransesterification reaction, determination of biodiesel quality, and mass balance analysis. The reactor was designed byintegrating circulated pump/stirrer, static mixer, and sprayer that intensify the reaction in the outer tank reactor. The objective was to reduce the use of methanol in excess and to shorten the processing time. The results showed that thereactor that applied the glycerol separation was able to compensate for the decreased use of the reactant methanol from 6:1 to 5:1 molar ratio, and changed the mass balance in the product, including: (i the increase of biodiesel productionfrom 42.37% to 49.34%, and (ii the reduction of methanol in excess from 42.37% to 32.89%. The results suggested that the efficiency of biodiesel production could be increased with the glycerol separation engineering.

  8. Stabilization of apoglobin by low temperature increases yield of soluble recombinant hemoglobin in Escherichia coli.

    Science.gov (United States)

    Weickert, M J; Pagratis, M; Curry, S R; Blackmore, R

    1997-01-01

    Accumulation of soluble recombinant hemoglobin (rHb1.1) in Escherichia coli requires proper protein folding, prosthetic group (heme) addition, and subunit assembly. This served as a new model system for the study of the effects of temperature, protein synthesis rates, and protein accumulation rates on protein solubility in E. coli. Fermentation expression of rHb1.1 at 30 degrees C from cultures containing a medium or high globin gene dosage (pBR-based or pUC-based plasmids with rHb1.1 genes under the control of the tac promoter) was compared. A medium gene dosage resulted in rHb1.1 accumulating to approximately 7% of the soluble cell protein, of which 78% was soluble. A high globin gene dosage resulted in a > or = 3-fold increase in total globin to 23 to 24% of the soluble cell protein, but 70% was insoluble. Accumulation of insoluble rHb1.1 began immediately upon induction. The proportion of rHb1.1 from the high globin gene dosage that accumulated as insoluble globin was affected by reducing (i) the inducer concentration and (ii) the temperature. Reducing the inducer concentration reduced globin synthesis up to eightfold but increased the proportion of soluble rHb1.1 to 93%. In contrast, total globin protein synthesis was barely affected by reducing the temperature from 30 to 26 degrees C, while soluble globin accumulation increased > 2-fold to approximately 15% of the soluble cell protein. The contrast between the effects of reducing rates of protein synthesis and accumulation and those of reducing temperature suggests that lower temperature stabilizes one or more folding intermediates. We propose a simplified physical model which integrates protein synthesis, folding, and heme association. This model shows that temperature-dependent apoglobin stability is the most critical factor in soluble rHb1.1 accumulation. PMID:9361418

  9. Increasing Crop Yields in Water Stressed Countries by Combining Operations of Freshwater Reservoir and Wastewater Reclamation Plant

    Science.gov (United States)

    Bhushan, R.; Ng, T. L.

    2015-12-01

    Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.

  10. Use of isotopes for increasing biological nitrogen fixation and yield of pastures

    International Nuclear Information System (INIS)

    Yao Yunyin

    1992-05-01

    The N-15 natural abundance and N-15 isotope dilution (ID) methods for measuring dinitrogen fixation and nitrogen transfer in alfalfa and alfalfa intercropped with meadow fescue were compared in three experiments. Although both methods gave essentially the same estimates the precision of the values obtained differed, and values obtained by the isotope dilution method were more precise. Similarly, the N-15 natural abundance method was not very suitable for detecting N transfer from legume to non-legume. Greater amounts of N transfer were detected by the ID method, and with a greater precision. Mixed cropping sometimes gave slight to high increases in % nitrogen fixation compared to alfalfa cropped alone. On the whole alfalfa was found to be a high nitrogen fixer, with fixation values from the second harvest onwards almost always greater than 80% and often close to 100%. 23 refs, 30 tabs

  11. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones.

    Science.gov (United States)

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.

  12. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular

  13. New ways enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation

    International Nuclear Information System (INIS)

    Goncharova, N. V; Zebrakova, I. V.; Matsko, V. P.; Kislushko, P. M.

    1994-01-01

    After Chernobyl nuclear accident it has become very important to seek new ways of enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation. It is found that by optimizing the vital activity processes in plants, is possible to reduce radionuclide uptake. A great number of biologically active compounds have been tested, which increased the disease resistance of plants and simultaneously activated the physiological and biochemical processes that control the transport of micro- and macroelements (radionuclide included) and their 'soil-root-stem-leaf' redistribution. (author)

  14. Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    King, Zachary A.; Feist, Adam

    2014-01-01

    Maintaining cofactor balance is a critical function in microorganisms, but often the native cofactor balance does not match the needs of an engineered metabolic flux state. Here, an optimization procedure is utilized to identify optimal cofactor-specificity "swaps" for oxidoreductase enzymes...... specificity of central metabolic enzymes (especially GAPD and ALCD2x) is shown to increase NADPH production and increase theoretical yields for native products in E. coli and yeast-including l-aspartate, l-lysine, l-isoleucine, l-proline, l-serine, and putrescine-and non-native products in E. coli-including 1...

  15. CO₂ enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations.

    Science.gov (United States)

    Becker, Christine; Kläring, Hans-Peter

    2016-05-15

    Carbon dioxide (CO2) enrichment is a common practice in greenhouses to increase crop yields up to 30%. Yet, reports on the effect on foliar phenolic compounds vary. We studied the effect on two red leaf lettuce cultivars, grown for 25 days in growth chambers at CO2 concentrations of 200 or 1,000 ppm, with some plants exchanged between treatments after 11 days. As expected, head mass increased with higher CO2 concentration. Regression analysis, corrected for head mass, showed increased concentrations of most flavonoid glycosides at high CO2 concentrations while only some caffeic acid derivatives were increased, and not uniformly in both cultivars. Sugar concentrations increased with CO2 concentration. Generally, conditions in the 10 days before harvest determined concentrations. We suspect that phenolic compounds were mainly accumulated because plenty of precursors were available. The results indicate that CO2 enrichment can result in high yields of red leaf lettuce rich in phenolic compounds. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Repeated applications of CPPU on highbush blueberry cv. Duke increase yield and enhance fruit quality at harvest and during postharvest

    Directory of Open Access Journals (Sweden)

    Jorge B Retamales

    2014-04-01

    Full Text Available Applications of N-(2-chloro-4-pyridyl-N'-phenylurea (CPPU can increase blueberry (Vaccinium corymbosum L. yield and fruit size, but their impact on postharvest is unknown. We studied repeated CPPU applications effects on yield and quality (harvest, postharvest, over 2 yr on mature 'Duke' plants in South-Central Chile. The first year, 5 or 10 mL L-1 CPPU was applied at 3, 10, and/or 17 d after full bloom (DAFB plus a non-sprayed control. The second year, 5 or 10 mL L-1 CPPU were sprayed 10 and 17 DAFB plus a control. The first year, only 10 mL L-1 CPPU sprayed 3+17 DAFB increased yield (32.5% > control; 10 mL L-1 CPPU applied 10 or 3+17 DAFB had highest fruit diameter; and 10 mL L-1 CPPU at 17 DAFB or at 3+10+17 DAFB had highest soluble solids. Overall, 10 mL L-1 CPPU applied 3+17 DAFB, was the best treatment for year one, since it increased fruit yield and diameter, while soluble solids and postharvest weight loss were similar to control. The second year, 10 mL L-1 CPPU reduced fruit coloration (blue color coverage index: BCCI and soluble solids, but not firmness at harvest. This rate increased berry weight (24.2% and fruit wax (59% > wax coverage index: WCI at harvest. Harvest and postharvest WCI increased consistently as CPPU rate increased. CPPU reduced fruit rotting (15% at 45+5 evaluation. During storage, CPPU-treated-fruit had a slower decrease in firmness (30.5% < control at 30+1, but no difference at 30+5. CPPU-treated-fruit usually had higher post harvest soluble solids. Ten mL L-1 CPPU retarded color evolution at harvest and at 30+1, but not at 30+5, 40+1 or 40+5.

  17. Fast humidity sensors based on CeO2 nanowires

    International Nuclear Information System (INIS)

    Fu, X Q; Wang, C; Yu, H C; Wang, Y G; Wang, T H

    2007-01-01

    Fast humidity sensors are reported that are based on CeO 2 nanowires synthesized by a hydrothermal method. Both the response and recovery time are about 3 s, and are independent of the humidity. The sensitivity increases gradually as the humidity increases, and is up to 85 at 97% RH. The resistance decreases exponentially with increasing humidity, implying ion-type conductivity as the humidity sensing mechanism. A model based on the morphology and surface energy of the nanowires is given to explain these results further. Our experimental results indicate a pathway to improving the performance of humidity sensors

  18. Transgenic tobacco overexpressing Brassica juncea HMG-CoA synthase 1 shows increased plant growth, pod size and seed yield.

    Directory of Open Access Journals (Sweden)

    Pan Liao

    Full Text Available Seeds are very important not only in the life cycle of the plant but they represent food sources for man and animals. We report herein a mutant of 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS, the second enzyme in the mevalonate (MVA pathway that can improve seed yield when overexpressed in a phylogenetically distant species. In Brassica juncea, the characterisation of four isogenes encoding HMGS has been previously reported. Enzyme kinetics on recombinant wild-type (wt and mutant BjHMGS1 had revealed that S359A displayed a 10-fold higher enzyme activity. The overexpression of wt and mutant (S359A BjHMGS1 in Arabidopsis had up-regulated several genes in sterol biosynthesis, increasing sterol content. To quickly assess the effects of BjHMGS1 overexpression in a phylogenetically more distant species beyond the Brassicaceae, wt and mutant (S359A BjHMGS1 were expressed in tobacco (Nicotiana tabacum L. cv. Xanthi of the family Solanaceae. New observations on tobacco OEs not previously reported for Arabidopsis OEs included: (i phenotypic changes in enhanced plant growth, pod size and seed yield (more significant in OE-S359A than OE-wtBjHMGS1 in comparison to vector-transformed tobacco, (ii higher NtSQS expression and sterol content in OE-S359A than OE-wtBjHMGS1 corresponding to greater increase in growth and seed yield, and (iii induction of NtIPPI2 and NtGGPPS2 and downregulation of NtIPPI1, NtGGPPS1, NtGGPPS3 and NtGGPPS4. Resembling Arabidopsis HMGS-OEs, tobacco HMGS-OEs displayed an enhanced expression of NtHMGR1, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Overall, increased growth, pod size and seed yield in tobacco HMGS-OEs were attributed to the up-regulation of native NtHMGR1, NtIPPI2, NtSQS, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Hence, S359A has potential in agriculture not only in improving phytosterol content but also seed yield, which may be desirable in food crops. This work further demonstrates HMGS function in plant

  19. Humidity detection using chitosan film based sensor

    Science.gov (United States)

    Nasution, T. I.; Nainggolan, I.; Dalimunthe, D.; Balyan, M.; Cuana, R.; Khanifah, S.

    2018-02-01

    A humidity sensor made of the natural polymer chitosan has been successfully fabricated in the film form by a solution casting method. Humidity testing was performed by placing a chitosan film sensor in a cooling machine room, model KT-2000 Ahu. The testing results showed that the output voltage values of chitosan film sensor increased with the increase in humidity percentage. For the increase in humidity percentage from 30 to 90% showed that the output voltage of chitosan film sensor increased from 32.19 to 138.75 mV. It was also found that the sensor evidenced good repeatability and stability during the testing. Therefore, chitosan has a great potential to be used as new sensing material for the humidity detection of which was cheaper and environmentally friendly.

  20. Inoculation of Schizolobium parahyba with mycorrhizal fungi and plant growth-promoting rhizobacteria increases wood yield under field conditions

    Directory of Open Access Journals (Sweden)

    Martha Viviana Torres Cely

    2016-11-01

    Full Text Available Schizolobium parahyba var. amazonicum (Huber ex Ducke occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF and plant growth-promoting rhizobacteria (PGPR on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce and Acaulospora sp. (Ac; two native strains of Rhizobium sp. (Rh1 and Rh2; and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2 in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1 were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  1. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions.

    Science.gov (United States)

    Cely, Martha V T; Siviero, Marco A; Emiliano, Janaina; Spago, Flávia R; Freitas, Vanessa F; Barazetti, André R; Goya, Erika T; Lamberti, Gustavo de Souza; Dos Santos, Igor M O; De Oliveira, Admilton G; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  2. Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor

    Directory of Open Access Journals (Sweden)

    Frank R. Bengelsdorf

    2015-08-01

    Full Text Available Biogas from biowaste can be an important source of renewable energy, but the fermentation process of low-structure waste is often unstable. The present study uses a full-scale biogas reactor to test the hypothesis that straw as an additional biofilm carrier will increase methane yield; and this effect is mirrored in a specific microbial community attached to the straw. Better reactor performance after addition of straw, at simultaneously higher organic loading rate and specific methane yield confirmed the hypothesis. The microbial communities on straw as a biofilm carrier and of the liquid reactor content were investigated using 16S rDNA amplicon sequencing by means of 454 pyrosequencing technology. The results revealed high diversity of the bacterial communities in the liquid reactor content as well as the biofilms on the straw. The most abundant archaea in all samples belonged to the genera Methanoculleus and Methanosarcina. Addition of straw resulted in a significantly different microbial community attached to the biofilm carrier. The bacterium Candidatus Cloacamonas acidaminovorans and methanogenic archaea of the genus Methanoculleus dominated the biofilm on straw. Syntrophic interactions between the hydrogenotrophic Methanoculleus sp. and members of the hydrogen-producing bacterial community within biofilms may explain the improved methane yield. Thus, straw addition can be used to improve and to stabilize the anaerobic process in substrates lacking biofilm-supporting structures.

  3. Humidity Sensing in Drosophila.

    Science.gov (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C

    2016-05-23

    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin Activity in Rice Panicle Meristems.

    Science.gov (United States)

    Wu, Yuan; Wang, Yun; Mi, Xue-Fei; Shan, Jun-Xiang; Li, Xin-Min; Xu, Jian-Long; Lin, Hong-Xuan

    2016-10-01

    Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem. However, little is known about the crosstalk among cytokinin and GA regulators together with KNOX proteins and how KNOX-mediated dynamic balancing of hormonal activity functions. Through map-based cloning of QTLs, we cloned a GA biosynthesis gene, Grain Number per Panicle1 (GNP1), which encodes rice GA20ox1. The grain number and yield of NIL-GNP1TQ were significantly higher than those of isogenic control (Lemont). Sequence variations in its promoter region increased the levels of GNP1 transcripts, which were enriched in the apical regions of inflorescence meristems in NIL-GNP1TQ. We propose that cytokinin activity increased due to a KNOX-mediated transcriptional feedback loop resulting from the higher GNP1 transcript levels, in turn leading to increased expression of the GA catabolism genes GA2oxs and reduced GA1 and GA3 accumulation. This rebalancing process increased cytokinin activity, thereby increasing grain number and grain yield in rice. These findings uncover important, novel roles of GAs in rice florescence meristem development and provide new insights into the crosstalk between cytokinin and GA underlying development process.

  5. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate

    Science.gov (United States)

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity. PMID:23985993

  6. [Nutrient use efficiency and yield-increasing effect of single basal application of rice specific controlled release fertilizer].

    Science.gov (United States)

    Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng

    2005-10-01

    A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.

  7. Nitrogen Fertilizer Deep Placement for Increased Grain Yield and Nitrogen Recovery Efficiency in Rice Grown in Subtropical China

    Directory of Open Access Journals (Sweden)

    Meng Wu

    2017-07-01

    Full Text Available Field plot experiments were conducted over 3 years (from April 2014 to November 2016 in a double-rice (Oryza sativa L. cropping system in subtropical China to evaluate the effects of N fertilizer placement on grain yield and N recovery efficiency (NRE. Different N application methods included: no N application (CK; N broadcast application (NBP; N and NPK deep placement (NDP and NPKDP, respectively. Results showed that grain yield and apparent NRE significantly increased for NDP and NPKDP as compared to NBP. The main reason was that N deep placement (NDP increased the number of productive panicle per m-2. To further evaluate the increase, a pot experiment was conducted to understand the N supply in different soil layers in NDP during the whole rice growing stage and a 15N tracing technique was used in a field experiment to investigate the fate of urea-15N in the rice–soil system during rice growth and at maturity. The pot experiment indicated that NDP could maintain a higher N supply in deep soil layers than N broadcast for 52 days during rice growth. The 15N tracing study showed that NDP could maintain much higher fertilizer N in the 5–20 cm soil layer during rice growth and could induce plant to absorb more N from fertilizer and soil than NBP, which led to higher NRE. One important finding was that NDP and NPKDP significantly increased fertilizer NRE but did not lead to N declined in soil compared to NBP. Compared to NPK, NPKDP induced rice plants to absorb more fertilizer N rather than soil N.

  8. Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress.

    Directory of Open Access Journals (Sweden)

    Dongqing Yang

    Full Text Available Stay-green, a key trait of wheat, can not only increase the yield of wheat but also its resistance to heat stress during active photosynthesis. Cytokinins are the most potent general coordinator between the stay-green trait and senescence. The objectives of the present study were to identify and assess the effects of cytokinins on the photosynthetic organ and heat resistance in wheat. Two winter wheat cultivars, Wennong 6 (a stay-green cultivar and Jimai 20 (a control cultivar, were subjected to heat stress treatment from 1 to 5 days after anthesis (DAA. The two cultivars were sprayed daily with 10 mg L-1 of 6-benzylaminopurine (6-BA between 1 and 3 DAA under ambient and elevated temperature conditions. We found that the heat stress significantly decreased the number of kernels per spike and the grain yield (P < 0.05. Heat stress also decreased the zeatin riboside (ZR content, but increased the gibberellin (GA3, indole-3-acetic acid (IAA, and abscisic acid (ABA contents at 3 to 15 DAA. Application of 6-BA significantly (P < 0.05 increased the grain-filling rate, endosperm cell division rate, endosperm cell number, and 1,000-grain weight under heated condition. 6-BA application increased ZR and IAA contents at 3 to 28 DAA, but decreased GA3 and ABA contents. The contents of ZR, ABA, and IAA in kernels were positively and significantly correlated with the grain-filling rate (P < 0.05, whereas GA3 was counter-productive at 3 to 15 DAA. These results suggest that the decrease in grain yield under heat stress was due to a lower ZR content and a higher GA3 content compared to that at elevated temperature during the early development of the kernels, which resulted in less kernel number and lower grain-filling rate. The results also provide essential information for further utilization of the cytokinin substances in the cultivation of heat-resistant wheat.

  9. Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming.

    Science.gov (United States)

    Ágreda, Teresa; Águeda, Beatriz; Olano, José M; Vicente-Serrano, Sergio M; Fernández-Toirán, Marina

    2015-09-01

    Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15-year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021-2080 period by means of regional climate change models. Simple models based on early spring temperature and summer-autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15-year period. However, their predictions for the 2021-2080 period diverged. Rainfall-based models predicted a maintenance of fungal yield, whereas water balance-based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer-autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century. © 2015 John Wiley & Sons Ltd.

  10. Ncl Synchronously Regulates Na+, K+, and Cl- in Soybean and Greatly Increases the Grain Yield in Saline Field Conditions.

    Science.gov (United States)

    Do, Tuyen Duc; Chen, Huatao; Hien, Vu Thi Thu; Hamwieh, Aladdin; Yamada, Tetsuya; Sato, Tadashi; Yan, Yongliang; Cong, Hua; Shono, Mariko; Suenaga, Kazuhiro; Xu, Donghe

    2016-01-08

    Salt stress inhibits soybean growth and reduces gain yield. Genetic improvement of salt tolerance is essential for sustainable soybean production in saline areas. In this study, we isolated a gene (Ncl) that could synchronously regulate the transport and accumulation of Na(+), K(+), and Cl(-) from a Brazilian soybean cultivar FT-Abyara using map-based cloning strategy. Higher expression of the salt tolerance gene Ncl in the root resulted in lower accumulations of Na(+), K(+), and Cl(-) in the shoot under salt stress. Transfer of Ncl with the Agrobacterium-mediated transformation method into a soybean cultivar Kariyutaka significantly enhanced its salt tolerance. Introgression of the tolerance allele into soybean cultivar Jackson, using DNA marker-assisted selection (MAS), produced an improved salt tolerance line. Ncl could increase soybean grain yield by 3.6-5.5 times in saline field conditions. Using Ncl in soybean breeding through gene transfer or MAS would contribute to sustainable soybean production in saline-prone areas.

  11. Combining Urease and Nitrification Inhibitors with Incorporation Reduces Ammonia and Nitrous Oxide Emissions and Increases Corn Yields.

    Science.gov (United States)

    Drury, Craig F; Yang, Xueming; Reynolds, W Dan; Calder, Wayne; Oloya, Tom O; Woodley, Alex L

    2017-09-01

    Less than 50% of applied nitrogen (N) fertilizer is typically recovered by corn ( L.) due to climatic constraints, soil degradation, overapplication, and losses to air and water. Two application methods, two N sources, and two inhibitors were evaluated to reduce N losses and enhance crop uptake. The treatments included broadcast urea (BrUrea), BrUrea with a urease inhibitor (BrUrea+UI), BrUrea with a urease and a nitrification inhibitor (BrUrea+UI+NI), injection of urea ammonium nitrate (InjUAN), and injected with one or both inhibitors (InjUAN+UI, InjUAN+UI+NI), and a control. The BrUrea treatment lost 50% (64.4 kg N ha) of the applied N due to ammonia volatilization, but losses were reduced by 64% with BrUrea+UI+NI (23.0 kg N ha) and by 60% with InjUAN (26.1 kg N ha). Ammonia losses were lower and crop yields were greater in 2014 than 2013 as a result of the more favorable weather when N was applied in 2014. When ammonia volatilization was reduced by adding a urease inhibitor, NO emissions were increased by 30 to 31% with BrUrea+UI and InjUAN+UI compared with BrUrea and InjUAN, respectively. Pollution swapping was avoided when both inhibitors were used (BrUrea+UI+NI, InjUAN+UI+NI) as both ammonia volatilization and NO emissions were reduced, and corn grain yields increased by 5% with BrUrea+UI+NI and by 7% with InjUAN+UI+NI compared with BrUrea and InjUAN, respectively. The combination of two N management strategies (InjUAN+UI+NI) increased yields by 19% (12.9 t ha) compared with BrUrea (10.8 t ha). Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Educational strategies used in increasing fluid intake and enhancing hydration status in field hockey players preparing for competition in a hot and humid environment: a case study.

    Science.gov (United States)

    Dabinett, J A; Reid, K; James, N

    2001-09-01

    The purpose of the present study was to develop a hydration strategy for use by female English field hockey players at the 1998 Commonwealth Games in Malaysia. An additional aim was to initiate the process of acclimation. Fifteen elite players, mean age (+/-SEM) 24.1 +/- 1.19 years, height 1.67 +/- 0.01 m, and body mass 62.8 +/- 1.76 kg, took part in a 5-day training camp immediately prior to departure for the Games. In order to develop the hydration strategy, training took place under similar environmental conditions to those to be experienced in Malaysia (i.e., 32 degrees C, 80% humidity). Acclimation training consisted of 30-50 min of either continuous, low intensity cycling or high intensity intermittent cycling, which more closely replicated the pattern of activity in field hockey. Body mass measures taken each morning, and pre and post training, together with urine color measures, were used to assess hydration status. Pre-loading with up to 1 L of a 3% carbohydrate-electrolyte solution or water immediately prior to acclimation training, as well as regular drinks throughout, ensured that players avoided significant dehydration, with percent body mass changes ranging from -0.34% to +4.24% post training. Furthermore, the protocol used was sufficient to initiate the process of acclimation as demonstrated by a significant reduction in exercising heart rate and core temperature at all time points by days 4 and 5. In conclusion, although labor intensive and time consuming, the camp was successful in developing a hydration strategy that players were able to utilize once at the Games.

  13. Development of a Team-Based On-Farm Learning Program While Challenging Soybean Growers to Increase Yield

    Science.gov (United States)

    Davis, Vince M.; Kull, Linda S.; Nelson, James A.

    2012-01-01

    Illinois soybean growers have not been satisfied with recent lagging yield trends. A yield "challenge" was created to blend the motivation and creativity of a yield contest with the learning power of teamwork and on-farm demonstration. In the initial year (2010), 123 on-farm side-by-side demonstration plots were located throughout the…

  14. Controlled humidity gas circulators

    International Nuclear Information System (INIS)

    Gruner, S.M.

    1981-01-01

    A programmable circulator capable of regulating the humidity of a gas stream over a wide range of humidity is described. An optical dew-point hygrometer is used as a feedback element to control the addition or removal of water vapor. Typical regulation of the gas is to a dew-point temperature of +- 0.2 0 C and to an accuracy limited by the dew-point hygrometer

  15. Caffeine-mediated release of alpha-radiation-induced G2 arrest increases the yield of chromosome aberrations

    International Nuclear Information System (INIS)

    Luecke-Huhle, C.; Hieber, L.; Wegner, R.D.

    1983-01-01

    Severe and partly irreversible G2 arrest caused by americium-241 alpha-particles in Chinese hamster V79 cells acted as a competing process to the yield of detectable aberrant mitoses at metaphase. With increasing dose of alpha-radiation an increasing fraction of cells was irreversibly arrested in G2 with the consequence of interphase death before the first post-irradiation mitosis. This irreversible G2 arrest (demonstrated by flow cytofluorometry and mitotic indices) could be overcome by adding caffeine 8 hours after irradiation, the time point of maximum G2 arrest (80-90 per cent of all cells). Within 3.5 hours the number of aberrant mitoses increased by this treatment from 54 to 96 per cent and from 65 to 99.9 per cent for doses of 1.75 and 4.38 Gy of alpha-particles, respectively. The aberration frequency per mitotic cell, scored as chromatid and isochromatid breaks, rings, interchanges and dicentrics increased by a factor of about 3 after releasing G2 arrested cells. The frequency distribution of aberrations per cell revealed that, after 4.38 Gy, 58 per cent of the formerly G2-arrested cells had more than five aberrations per cell compared to only 8 per cent without the interaction of caffeine. (author)

  16. Increasing quantum yield of sodium salicylate above 80 eV photon energy: Implications for photoemission cross sections

    International Nuclear Information System (INIS)

    Lindle, D.W.; Ferrett, T.A.; Heimann, P.A.; Shirley, D.A.

    1986-01-01

    The quantum yield of the visible scintillator sodium salicylate is found to increase in the incident photon-energy range 80--270 eV. Because of its use as a photon-flux monitor in recent gas-phase photoelectron spectroscopy measurements, previously reported partial cross sections for Hg (4f, 5p, and 5d subshells) and CH 3 I (I 4d subshell) in this energy range are corrected, and new values are reported. For Hg, the correction brings the experimental data into better overall agreement with theory. However, considerable uncertainty remains in the absolute scale derived from previous Hg photoabsorption measurements, and no single rescaling of the subshell cross sections could simultaneously bring all three into agreement with available theoretical calculations

  17. Brown midrib corn silage fed during the peripartal period increased intake and resulted in a persistent increase in milk solids yield of Holstein cows.

    Science.gov (United States)

    Stone, W C; Chase, L E; Overton, T R; Nestor, K E

    2012-11-01

    The objective of this study was to evaluate transition cow performance when brown midrib corn silage (BMRCS; Mycogen F2F444) was included in the diet during the transition period, and to determine if any production response occurring during the first 3 wk of lactation would persist from wk 4 to 15 when a common diet was fed. Seventy Holstein dairy cows were blocked by parity (either second or third and greater) and calving date and randomly assigned to the CCS (a mixture of varieties of conventional corn silage) or BMRCS treatment. Diets were formulated with the objective of keeping all ration parameters the same, with the exception of neutral detergent fiber digestibility. Neutral detergent fiber digestibility values (30 h) for CCS and BMRCS averaged 56.8 and 73.8%, respectively. Prepartum rations contained 47% corn silage, 18% wheat straw, 7% alfalfa haylage, and 28% concentrate, and averaged 45% neutral detergent fiber (DM basis). Postpartum rations contained 40% corn silage, 15% alfalfa haylage, 1% straw, and 44% concentrate. Milk weights (3×/d) and dry matter intake were recorded daily, and milk composition was measured weekly. Cows fed BMRCS had higher dry matter intake during the 2-wk period before calving (14.3 vs. 13.2 kg/d) and the 3-wk period after calving (20.1 vs. 18.1 kg/d) than did cows fed CCS. Yields of milk, solids, and lactose were increased, whereas a trend was observed for a reduction in somatic cell counts and linear scores in the postpartum period for cows receiving BMRCS during the transition. A significant carryover effect of BMRCS was observed on production from wk 4 to 15 when the common diet was fed, with yields of protein (1.36 vs. 1.30 kg/d), lactose (2.24 vs. 2.12 kg/d), and solids (5.82 vs. 5.51 kg/d) increasing significantly, and yields of fat-corrected milk, energy-corrected milk, and fat tending to increase during this period for cows that had been fed BMRCS. The increased intakes during the last 2 wk of the prepartum period in

  18. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.

    Science.gov (United States)

    Li, Yajun; Zhang, Jiachang; Zhang, Juan; Hao, Ling; Hua, Jinping; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-08-01

    LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up-regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress-up-regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide-type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress-up-regulated genes and cause a series of physiological and biochemical resistant responses. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Application of Bokashi Botom Ash for Increasing Upland Rice Yield and Decreasing Grain Pb Content in Vitric Hapludans

    Directory of Open Access Journals (Sweden)

    Nunung Sondari

    2012-05-01

    Full Text Available Greenhouse experiment was conducted at Agricultural Faculty of Winaya Mukti University Tanjungsari SumedangRegency, from May to October 2009. The objective of this experiment was to study the effect of bokashi bottom ashon the growth, yield, and Pb content of upland rice. The experiment used a Randomized completely Block Design(RBD which consisted of five treatments and five replications. The treatments were level of bokashi bottom ash i.e.0, 5, 10, 15, and 20 Mg ha-1. The results showed that the application of bokashi bottom ash increased the growth andyield of upland rice of Situbagendit variety except plant height at age of 21 days after seedling (DAS. Application15 Mg ha -1 of bokashi bottom ash gave the best effect to the plant height, number of leaves, number of tillers andshoot/root ratio, while applications of 10, 15 and 20 Mg ha -1 increased number of productive tillers, amount of filledgrains, and weight of grains. Bokashi bottom ash did not affect the heavy metal content of upland rice grain ofSitubagendit variety.

  20. Evolution of increased competitiveness in cows trades off with reduced milk yield, fertility and more masculine morphology.

    Science.gov (United States)

    Sartori, Cristina; Mazza, Serena; Guzzo, Nadia; Mantovani, Roberto

    2015-08-01

    In some species females compete for food, foraging territories, mating, and nesting sites. Competing females can exhibit morphological, physiological, and behavioral adaptations typical of males, which are commonly considered as secondary sexual traits. Competition and the development of traits increasing competitiveness require much energy and may exert adverse effects on fecundity and survival. From an evolutionary perspective, positive selection for increased competitiveness would then result in evolution of reduced values for traits related to fitness such as fecundity and survival. There is recent evidence for such evolutionary trade-offs involving male competition, but no study has considered competing females so far. Using data from competitions for dominance in cows (Bos taurus), we found negative genetic correlations between traits providing success in competition, that is, fighting ability and fitness traits related to milk production and with fertility (the inverse of parity-conception interval). Fighting ability also showed low but positive genetic correlations with "masculine" morphological traits, and negative correlations with "feminine" traits. A genetic change in traits over time has occurred due to selection on competitiveness, corresponding to an evolutionary process of "masculinization" counteracting the official selection for milk yield. Similar evolutionary trade-off between success in competition and fitness components may be present in various species experiencing female competition. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  1. Humid Heat Waves at different warming levels

    Science.gov (United States)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  2. Nitrogen fertilization of switchgrass increases biomass yield and improves net greenhouse gas balance in northern Michigan, U.S.A

    International Nuclear Information System (INIS)

    Nikiema, Paligwende; Rothstein, David E.; Min, Doo-Hong; Kapp, Christian J.

    2011-01-01

    Nitrogen (N) fertilization can increase bioenergy crop production; however, fertilizer production and application can contribute to greenhouse gas (GHG) emissions, potentially undermining the GHG benefits of bioenergy crops. The objective of this study was to evaluate the effects of N fertilization on GHG emissions and biomass production of switchgrass bioenergy crop, in northern Michigan. Nitrogen fertilization treatments included 0 kg ha -1 (control), 56 kg ha -1 (low) and 112 kg ha -1 (high) of N applied as urea. Soil fluxes of CO 2 , N 2 O and CH 4 were measured every two weeks using static chambers. Indirect GHG emissions associated with field activities, manufacturing and transport of fertilizer and pesticides were derived from the literature. Switchgrass aboveground biomass yield was evaluated at the end of the growing season. Nitrogen fertilization contributed little to soil GHG emissions; relative to the control, there were additional global warming potential of 0.7 Mg ha -1 y -1 and 1.5 Mg ha -1 y -1 as CO 2 equivalents (CO 2 eq), calculated using the IPCC values, in the low and high N fertilization treatments, respectively. However, N fertilization greatly stimulated CO 2 uptake by switchgrass, resulting in 1.5- and 2.5-fold increases in biomass yield in the low and high N fertilization treatments, respectively. Nitrogen amendments improved the net GHG benefits by 2.6 Mg ha -1 y -1 and 9.4 Mg ha -1 y -1 as CO 2 eq relative to the control. Results suggest that N fertilization of switchgrass in this region could reduce (15-50%) the land base needed for bioenergy production and decrease pressure on land for food and forage crop production. -- Highlights: → We examine the effects of N fertilization of switchgrass on GHG emissions. → Effects of N fertilization on biomass production of switchgrass bioenergy crop. → N fertilization contributed little to greenhouse gas emissions. → N fertilization greatly stimulated CO 2 uptake by the switchgrass. → N

  3. Comparative proteomic analysis of the thermotolerant plant Portulaca oleracea acclimation to combined high temperature and humidity stress.

    Science.gov (United States)

    Yang, Yunqiang; Chen, Jinhui; Liu, Qi; Ben, Cécile; Todd, Christopher D; Shi, Jisen; Yang, Yongping; Hu, Xiangyang

    2012-07-06

    Elevated temperature and humidity are major environmental factors limiting crop yield and distribution. An understanding of the mechanisms underlying plant tolerance to high temperature and humidity may facilitate the development of cultivars adaptable to warm or humid regions. Under conditions of 90% humidity and 35 °C, the thermotolerant plant Portulaca oleracea exhibits excellent photosynthetic capability and relatively little oxidative damage. To determine the proteomic response that occurs in leaves of P. oleracea following exposure to high temperature and high humidity, a proteomic approach was performed to identify protein changes. A total of 51 differentially expressed proteins were detected and characterized functionally and structurally; these identified proteins were involved in various functional categories, mainly including material and energy metabolism, the antioxidant defense responses, protein destination and storage, and transcriptional regulation. The subset of antioxidant defense-related proteins demonstrated marked increases in activity with exposure to heat and humidity, which led to lower accumulations of H(2)O(2) and O(2)(-) in P. oleracea compared with the thermosensitive plant Arabidopsis thaliana. The quickly accumulations of proline content and heat-shock proteins, and depleting abscisic acid (ABA) via increasing ABA-8'-hydroxylase were also found in P. oleracea under stress conditions, that resulted into greater stomata conductance and respiration rates. On the basis of these findings, we propose that P. oleracea employs multiple strategies to enhance its adaptation to high-temperature and high-humidity conditions.

  4. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis.

    Science.gov (United States)

    Yin, Xinyou; Belay, Daniel W; van der Putten, Peter E L; Struik, Paul C

    2014-12-01

    Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.

  5. Increase in the yield of mung bean (Vigna radiata [L.] R. Wilczek) with storage of radiation-modified kappa-carrageenan

    International Nuclear Information System (INIS)

    Aurigue, F.B.; Montefalcon, D.R.V.; Dela Cruz, R.M.M.; Abad, L.V.

    2015-01-01

    Kappa-carrageenan is a sulphated polysaccharide naturally present in seaweeds. Upon gamma radiation, radiolysis produces low molecular weight κ-carrageenan with the cleavage of some of its sulphate groups. Consequently, the acidic solution may further hydrolyze κ-carrageenan. The study aims to determine the effects of application by foliar spraying of freshly prepared irradiated κ-carrageenan solution and those which has been stored for 3 months on the yield of potted mungbean (Vigna radiata) plants. Foliar application of radiation-modified κ-carrageenan solution on the Kulabo variety two weeks after sowing, at flower initiation, and at fruit formation stage resulted in 30.8% increase in pod yield and 50.2% increase in seed yield compared to plants similarly treated with NitroPlus inoculants only. Pod yield and seed yield advantage over the control plants (no inoculants and no fertilizer) were 57.2% and 83% respectively no fertilizer was used in all treatments. These result confirm the previous finding that irradiated κ-carrageenan solution sprayed every two weeks inoculants only. There was 200% yield advantage over the negative control. The increase in yield is attributed to the longer length of pod, higher number of seed per pod, heavier 100-seed weight. Interestingly, the 3 months-old solution gave better result compared to a freshly irradiated one. There was 26.5% and 26.8% difference in pod yield and seed yield, respectively. Compared with the Control plants of the Kulabo variety, those sprayed with stored κ-carrageenan solution had 105% advantage in seed yield. It was proposed that the degradation process of the oligo-κ-carrageenan continue during storage because of the acidic nature of the solution. Undoubtedly, irradiated κ-carrageenan solution has plant growth promoting activity that increase yield mung bean by spraying on the leaves at least three times before fruit development.(author)

  6. Humidity control device in a reactor container

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo; Osumi, Katsumi; Kimura, Takashi.

    1986-01-01

    Purpose: To provide a device capable of maintaining the inside of a container under high humidity circumstantial conditions causing less atmospheric corrosions, in order to prevent injuries due to atmospheric corrosions to smaller diameter stainless steel pipeways in the reactor container. Constitution: Stress corrosion cracks (SCC) to the smaller diameter stainless steel pipeways are caused dependent on the relative humidity and it is effective as the countermeasure against SCC to maintain the relative humidity at a low level less than 30 % or high level greater than 60 %. Based on the above findings, a humidity control device is disposed so as to maintain the relative humidity for the atmosphere within a reactor core on a higher humidity region. The device is adapted such that recycling gas in the dry-well coolant circuit is passed through an orifice to atomize the water introduced from feedwater pipe and introduce into a reactor core or such that the recycling gases in the dry-well cooling circuit are bubbled into water to remove chlorine gas in the reactor container gas thereby increasing the humidity in the reactor container. (Kamimura, M.)

  7. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength.

    Science.gov (United States)

    Penella, Consuelo; Landi, Marco; Guidi, Lucia; Nebauer, Sergio G; Pellegrini, Elisa; San Bautista, Alberto; Remorini, Damiano; Nali, Cristina; López-Galarza, Salvador; Calatayud, Angeles

    2016-04-01

    the lack of negative effects on photosynthesis that support the maintained plant growth and increased marketable yield of the grafted plants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. VAB Temperature and Humidity Study

    Science.gov (United States)

    Lane, John E.; Youngquist, Robert C.; Muktarian, Edward; Nurge, Mark A.

    2014-01-01

    In 2012, 17 data loggers were placed in the VAB to measure temperature and humidity at 10-minute intervals over a one-year period. In 2013, the data loggers were replaced with an upgraded model and slight adjustments to their locations were made to reduce direct solar heating effects. The data acquired by the data loggers was compared to temperature data provided by three wind towers located around the building. It was found that the VAB acts as a large thermal filter, delaying and reducing the thermal oscillations occurring outside of the building. This filtering is typically more pronounced at higher locations in the building, probably because these locations have less thermal connection with the outside. We surmise that the lower elevations respond more to outside temperature variations because of air flow through the doors. Temperatures inside the VAB rarely exceed outdoor temperatures, only doing so when measurements are made directly on a surface with connection to the outside (such as a door or wall) or when solar radiation falls directly on the sensor. A thermal model is presented to yield approximate filter response times for various locations in the building. Appendix A contains historical thermal and humidity data from 1994 to 2009.

  9. Arbuscular mycorrhizal inoculant increases yield of spice pepper and affects the indigenous fungal community in the field

    Czech Academy of Sciences Publication Activity Database

    Hernádi, I.; Sasvári, Z.; Albrechtová, Jana; Vosátka, Miroslav; Posta, K.

    2012-01-01

    Roč. 47, č. 5 (2012), s. 603-606 ISSN 0018-5345 Institutional support: RVO:67985939 Keywords : yield of pepper * diversity of fungi * AMS inoculation Subject RIV: EF - Botanics Impact factor: 0.938, year: 2012

  10. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer

    Directory of Open Access Journals (Sweden)

    Ukkonen Kaisa

    2011-12-01

    Full Text Available Abstract This report describes the combined use of an enzyme-based glucose release system (EnBase® and high-aeration shake flask (Ultra Yield Flask™. The benefit of this combination is demonstrated by over 100-fold improvement in the active yield of recombinant alcohol dehydrogenase expressed in E. coli. Compared to Terrific Broth and ZYM-5052 autoinduction medium, the EnBase system improved yield mainly through increased productivity per cell. Four-fold increase in oxygen transfer by the Ultra Yield Flask contributed to higher cell density with EnBase but not with the other tested media, and consequently the product yield per ml of EnBase culture was further improved.

  11. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones

    OpenAIRE

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 ...

  12. Effect of relative humidity on growth of sodium oxide aerosols

    International Nuclear Information System (INIS)

    Sundarajan, A.R.; Mitragotri, D.S.; Mukunda Rao, S.R.

    1982-01-01

    Behavior of aerosol resulting from sodium fires in a closed vessel is investigated and the changes in the particle size distribution of the aerosol due to coagulation and humidity have been studied. The initial mass concentration is in the range of 80 -- 500 mg/m 3 and the relative humidity is varied between 50 to 98%. The initial size of the released aerosol is found to be 0.9 μm. Equilibrium diameters of particles growing in humid air have been computed for various humidity levels using water activity of sodium hydroxide. Both theoretical and experimental results have yielded growth ratios of about 3 at about 95% relative humidity. It is recommended that the computer codes dealing with aerosol coagulation behavior in reactor containment should include an appropriate humidity-growth function. (author)

  13. Hands-on Humidity.

    Science.gov (United States)

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  14. The influence of relative humidity on the dust measurement with the FH 62 I-N [1 m3.h-1

    International Nuclear Information System (INIS)

    Krasenbrink, A.

    1990-01-01

    The influence of relative humidity (rh) can be noticed evidently at continuous dust measurements if humidity increases rapidly up to more than 90%. This work investigated the possibilities to reduce the resulting error of taking up humidity by using two different types of glass fibre filters, the usual GF10 and its hydrophobic version GF10 HY. Compared with the results of the GF10 it could be shown that the GF10 HY takes up only 63% of humidity per time, yielding a concentration peak with an amount of 66% of the GF10 value. The total amount of absorbed humidity in mass units of the dust monitor differed between 30 μg and 50 μg for the GF10, and between 20 μg and 40 μg for the GF10 HY filter. (orig.) [de

  15. Alteration in sample preparation to increase the yield of multiplex Polymerase Chain Reaction assay for diagnosis of genital ulcer disease

    Directory of Open Access Journals (Sweden)

    G Rao

    2013-01-01

    Full Text Available Purpose: Genital Ulcer Disease (GUD is common sexually transmitted infection (STI. Multiple studies have shown that GUDs are strongly associated with the transmission and the acquisition of HIV infection. An accurate diagnosis of common etiology of GUD namely Herpes, syphilis and Chancroid is possible using Multiplex PCR (M-PCR. However, frequent presence of Polymerase Chain Reaction inhibitors in the ulcer swab specimen limits the performance of the assay. In order to overcome this problem, alternative specimen preparation method was used. Materials and Methods: To determine the common etiology, GUD specimens obtained under an STI operations research study were tested with M-PCR after the samples were prepared using Roche Amplicor specimen preparation kit. PCR inhibiting samples were identified from that, which showed negative results. These samples were subjected to phenol-chloroform extraction and ethanol precipitation before the conduct of M-PCR on them. Results: Of the 237 GUD specimens tested, in 145 etiologies could be detected, whereas 92 samples were found negative. Further spiking with one of the target DNA, 128 of the negative samples were found to contain the inhibitors. These 126 samples were then subjected to phenol chloroform extraction and ethanol precipitation followed by M-PCR. Using this method for sample preparation, etiology could be determined in 46 (23% additional samples. This success rate of altered sample preparation method has been lower than that has reported. Conclusion: The results indicate that sample preparation using phenol chloroform extraction and ethanol precipitation, prior to M-PCR helps to eliminate the inhibitors and increase the yield of the assay. However, being a laborious procedure, it may be used for samples giving negative results after the screening by Roche Amplicor specimen preparation kit.

  16. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Hamilton, Choo Yieng [ORNL; Rodriguez, Jr., Miguel [ORNL; Liao, James C [ORNL; Schadt, Christopher Warren [ORNL; Guss, Adam M [ORNL; Yang, Yunfeng [ORNL; Graham, David E [ORNL

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to

  17. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River

    Science.gov (United States)

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  18. Increase in the Hydrophilicity and Lewis Acid-Base Properties of Solid Surfaces Achieved by Electric Gliding Discharge in Humid Air: Effects on Bacterial Adherence

    International Nuclear Information System (INIS)

    Kamgang, J. O.; Brisset, J.-L.; Naitali, M.; Herry, J.-M.; Bellon-Fontaine, M.-N.; Briandet, R.

    2009-01-01

    This study addressed the effects of treatment with gliding discharge plasma on the surface properties of solid materials, as well as the consequences concerning adherence of a model bacterium. As evaluated by contact angles with selected liquids, plasma treatment caused an increase in surface hydrophilicity and in the Lewis acid-base components of the surface energy of all materials tested. These modifications were more marked for low density polyethylene and stainless steel than for polytetrafluoroethylene. After treatment, the hydrophilicity of the materials remained relatively stable for at least 20 days. Moreover, analysis of the topography of the materials by atomic force microscopy revealed that the roughness of both polymers was reduced by glidarc plasma treatment. As a result of all these modifications, solid substrates were activated towards micro-organisms and the adherence of S. epidermidis, a negatively charged Lewis-base and mildly hydrophilic strain selected as the model, was increased in almost all the cases tested. (plasma technology)

  19. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast-famine mechanism in cereals for better source-sink optimization.

    Science.gov (United States)

    Paul, Matthew J; Oszvald, Maria; Jesus, Claudia; Rajulu, Charukesi; Griffiths, Cara A

    2017-07-20

    Food security is a pressing global issue. New approaches are required to break through a yield ceiling that has developed in recent years for the major crops. As important as increasing yield potential is the protection of yield from abiotic stresses in an increasingly variable and unpredictable climate. Current strategies to improve yield include conventional breeding, marker-assisted breeding, quantitative trait loci (QTLs), mutagenesis, creation of hybrids, genetic modification (GM), emerging genome-editing technologies, and chemical approaches. A regulatory mechanism amenable to three of these approaches has great promise for large yield improvements. Trehalose 6-phosphate (T6P) synthesized in the low-flux trehalose biosynthetic pathway signals the availability of sucrose in plant cells as part of a whole-plant sucrose homeostatic mechanism. Modifying T6P content by GM, marker-assisted selection, and novel chemistry has improved yield in three major cereals under a range of water availabilities from severe drought through to flooding. Yield improvements have been achieved by altering carbon allocation and how carbon is used. Targeting T6P both temporally and spatially offers great promise for large yield improvements in productive (up to 20%) and marginal environments (up to 120%). This opinion paper highlights this important breakthrough in fundamental science for crop improvement. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Systematic selection for increased fruit yield in populations derived from hybridization only, F1 irradiation, and hybridization following parental irradiation in peanuts (Arachis hypogaea L.)

    International Nuclear Information System (INIS)

    Emery, D.A.; Wynne, J.C.

    1976-01-01

    Three hybrid peanut populations involving a single pair of high yielding parents were developed to determine the effects of irradiation prior to and after hybridization on the response to selection for fruit yield. The control-hybrid population was produced by making reciprocal crosses between the two parents. The pre-hybrid-irradiated population was initiated by making reciprocal crosses between the M 1 plants of the two parents irradiated as seeds. The post-hybrid-irradiated population was developed by irradiating the mature F 1 embryos of crosses between the same parents. Each of the three original populations consisted of 55 F 1 plants. Ten F 2 plants were grown from each F 1 and one F 3 plant from each F 2 was used to initiate the yield tests. Selection for increased yield was practiced systematically and uniformly in each population over the F 3 to F 5 generations until the number of lines derived from single F 1 plants was reduced to five and the number of sublines descended from particular F 2 plants to three per line for yield trials in the F 6 generation. The mean yields of the F 1 derived lines of the irradiated populations were considerably below that of the control hybrid population when selection began but they reached 99% of the control mean in the F 6 generation. Selection gains in the irradiated populations appeared to result from the removal of inferior yielding sublines since greatest progress was made by raising the lower extremities of mean F 2 derived subline ranges rather than by extending the upper extremities of the ranges. The three highest yielding lines in the F6 generation occurred in the irradiated populations while the three highest yielding sublines were found in the hybrid-control population. No incidental association between size and yield of fruit was noted and a wide range of fruit sizes was found among the high yielding lines and sublines in all populations. (author)

  1. Methods of humidity determination Part II: Determination of material humidity

    OpenAIRE

    Rübner, Katrin; Balköse, Devrim; Robens, E.

    2008-01-01

    Part II covers the most common methods of measuring the humidity of solid material. State of water near solid surfaces, gravimetric measurement of material humidity, measurement of water sorption isotherms, chemical methods for determination of water content, measurement of material humidity via the gas phase, standardisation, cosmonautical observations are reviewed.

  2. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Directory of Open Access Journals (Sweden)

    Li Yongchao

    2012-01-01

    Full Text Available Abstract Background The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering. Results The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh and L-malate dehydrogenase (Ccel_0137; mdh genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway. Conclusions The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox

  3. Further study on different dopings into PbWO.sub.4./sub. single crystals to increase the scintillation light yield

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, M.; Usuki, Y.; Ishii, M.; Itoh, M.; Nikl, Martin

    2005-01-01

    Roč. 540, - (2005), s. 381-394 ISSN 0168-9002 R&D Projects: GA AV ČR(CZ) KSK1010104 Institutional research plan: CEZ:AV0Z10100521 Keywords : lead tungstate * scintillator * light yield * doping, PET Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.224, year: 2005

  4. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    NARCIS (Netherlands)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Yang, Liu; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem; Zhang, Lizhen

    2017-01-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region

  5. Strategies for humidity control

    Energy Technology Data Exchange (ETDEWEB)

    Baumgarth, S

    1987-01-01

    Humidity and temperature control in air-conditioning systems mostly involves coupled closed-loop control circuits. The author discusses their uncoupling and resulting consequences as well as energy-optimized control of recirculation air flaps or enthalpy recovering systems (h-x control) in detail. Special reference is made of the application of the DDC technology and its scope, limits and preconditions. In conclusions, the author presents pertinent measurement results. (orig.).

  6. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    Science.gov (United States)

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  7. The use of alternative fertilizers to increase soil fertility and yield of sunflower in North-Eastern Kazakhstan

    Directory of Open Access Journals (Sweden)

    Kulzhanova S.M.

    2018-01-01

    Full Text Available the article contains data from studies conducted in 2015–2016 in the North-Еastern part of Kazakhstan. In the experiments the effect of various doses of non-traditional fertilizer together with mineral fertilizer on the yield of sunflower was investigated. Various doses and ratios of mineral fertilizers have been applied, which can affect the yield of sunflower. As a source material, varieties of sunflower of Russian breeding Zarya and a hybrid of Fortimi USA breeding and non-traditional fertilizers – zeolite are taken. In order to determine the effect on the fertility of soils, the agrochemical characteristics of soils in land areas and the content of mobile forms of nutrients were studied. The main agrochemical characteristics and content of mobile forms of nutrients for soil of land plots are investigated in the article.

  8. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.

    Science.gov (United States)

    Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan

    2018-06-01

    The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.

  9. Early sowing increases nitrogen uptake and yields of winter wheat grown with cattle slurry or mineral fertilizers

    DEFF Research Database (Denmark)

    Suarez, Alfonso; Rasmussen, Jim; Thomsen, Ingrid Kaag

    2018-01-01

    of the two cultivars did not differ consistently with respect to the effect of early sowing on crop yield, N concentration and offtake, or ANR. Within the north-west European climatic region, moving the sowing time of winter wheat from mid-September to mid-August provides a significant yield and N offtake......The current study evaluated the effect of sowing date (early, mid-August or timely, mid-September) on two winter wheat (Triticum aestivum L.) cultivars (Hereford, Mariboss) with different rates of nitrogen (N) (0–225 kg total N/ha) applied as animal manure (AM; cattle slurry) or mineral fertilizers...... (N: phosphorus: potassium; NPK). Overwinter plant N uptake and soil mineral N content were determined during 2014/15, while harvest yields (grain, straw, N content) were determined during 2014/15 and 2015/16. Overwinter uptake of N was 14 kg N/ha higher in early than in timely-sown wheat. Despite...

  10. Ambient humidity and the skin: the impact of air humidity in healthy and diseased states.

    Science.gov (United States)

    Goad, N; Gawkrodger, D J

    2016-08-01

    Humidity, along with other climatic factors such as temperature and ultraviolet radiation, can have an important impact on the skin. Limited data suggest that external humidity influences the water content of the stratum corneum. An online literature search was conducted through Pub-Med using combinations of the following keywords: skin, skin disease, humidity, dermatoses, dermatitis, eczema, and mist. Publications included in this review were limited to (i) studies in humans or animals, (ii) publications showing relevance to the field of dermatology, (iii) studies published in English and (iv) publications discussing humidity as an independent influence on skin function. Studies examining environmental factors as composite influences on skin health are only included where the impact of humidity on the skin is also explored in isolation of other environmental factors. A formal systematic review was not feasible for this topic due to the heterogeneity of the available research. Epidemiological studies indicated an increase in eczema with low internal (indoors) humidity and an increase in eczema with external high humidity. Other studies suggest that symptoms of dry skin appear with low humidity internal air-conditioned environments. Murine studies determined that low humidity caused a number of changes in the skin, including the impairment of the desquamation process. Studies in humans demonstrated a reduction in transepidermal water loss (TEWL) (a measure of the integrity of the skin's barrier function) with low humidity, alterations in the water content in the stratum corneum, decreased skin elasticity and increased roughness. Intervention with a humidifying mist increased the water content of the stratum corneum. Conversely, there is some evidence that low humidity conditions can actually improve the barrier function of the skin. Ambient relative humidity has an impact on a range of parameters involved in skin health but the literature is inconclusive. Further

  11. Implantable loop recorders for assessment of syncope: increased diagnostic yield and less adverse outcomes with the latest generation devices.

    Science.gov (United States)

    Bartoletti, A; Bocconcelli, P; De Santo, T; Ghidini Ottonelli, A; Giuli, S; Massa, R; Svetlich, C; Tarsi, G; Corbucci, G; Tronconi, F; Vitale, E

    2013-08-01

    Aim of the study was to compare the diagnostic yield of implantable loop recorders (ILR) of two successive generations for the assessment of syncope. Data on patients who had undergone ILR implantation for unexplained syncope in four Italian public hospitals were retrospectively acquired from the Medtronic Clinical Service database. After implantation, routine follow-up examinations were performed every 90 days, while urgent examinations were carried out in the event of syncope recurrence. The following findings were regarded as diagnostic: ECG documentation of a syncope recurrence; documentation of any of the arrhythmias listed by the current guidelines as diagnostic findings even if asymptomatic. Between November 2002 and March 2010, 107 patients received an ILR (40 Medtronic Reveal® Plus; 67 Medtronic Reveal® DX/XT) and underwent at least one follow-up examination. Diagnoses were made in 7 (17.5%) and 24 (35.8%) (P=0.043) patients, with a median time of 228 and 65 days, respectively. Three (42.9%) and 21 (87.5%) (P=0.029) diagnoses were based on automatically detected events, while adverse outcomes occurred in 6 and in 1 (P=0.01) patients, respectively. Our results show that the new-generation device offer a higher diagnostic yield, mainly as a result of its improved automatic detection function, and is associated with fewer adverse outcomes.

  12. The novel sRNA s015 improves nisin yield by increasing acid tolerance of Lactococcus lactis F44.

    Science.gov (United States)

    Qi, Jiakun; Caiyin, Qinggele; Wu, Hao; Tian, Kairen; Wang, Binbin; Li, Yanni; Qiao, Jianjun

    2017-08-01

    Nisin, a polycyclic antibacterial peptide produced by Lactococcus lactis, is stable at low pH. Improving the acid tolerance of L. lactis could thus enhance nisin yield. Small non-coding RNAs (sRNAs) play essential roles in acid tolerance by regulating their target mRNAs at the post-transcriptional level. In this study, a novel sRNA, s015, was identified in L. lactis F44 via the use of RNA sequencing, qRT-PCR analysis, and Northern blotting. s015 improved the acid tolerance of L. lactis and boosted nisin yield at low pH. In silico predictions enabled us to construct a library of possible s015 target mRNAs. Statistical analysis and validation suggested that s015 contains a highly conserved region (5'-GAAAAAAAC-3') that likely encompasses the regulatory core of the sRNA. atpG, busAB, cysD, ilvB, tcsR, ung, yudD, and ywdA were verified as direct targets of s015, and the interactions between s015 and its target genes were elucidated. This work provided new insight into the adaptation mechanism of L. lactis under acid stress.

  13. Attribution of observed surface humidity changes to human influence.

    Science.gov (United States)

    Willett, Katharine M; Gillett, Nathan P; Jones, Philip D; Thorne, Peter W

    2007-10-11

    Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.

  14. The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava

    Science.gov (United States)

    Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo

    2013-01-01

    The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975

  15. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava.

    Directory of Open Access Journals (Sweden)

    Isabel Ceballos

    Full Text Available The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF and plant roots. The fungi provide the plant with inorganic phosphate (P. The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.

  16. Increased [CO2] does not compensate for negative effects on yield caused by higher temperature and [O3] in Brassica napus L

    DEFF Research Database (Denmark)

    Frenck, Georg; van der Linden, Leon Gareth; Mikkelsen, Teis Nørgaard

    2011-01-01

    in existing genotypes is vital. In this study, the responses in yield and biomass production of four different cultivars of oilseed rape (Brassica napus L.) were tested under five different combinations of increased [CO2] (700 ppm), temperature (+5 °C) and [O3] (+40 ppb). Especially the multifactor treatments...

  17. Evaluation of the prospects of using new methods of increasing the oil yields of beds in the Chechen-Ingush Autonomous SSR

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, V.A.

    1979-03-01

    An examination is made of priority sites for the development of oil fields in the Chechen-Ingush ASSR. Basic factors are presented concerning the testing and introduction of various methods of increasing oil yield in those fields: pumping gas under high pressure, steam heat treatment, and alkaline flooding.

  18. A RAPID Method for Blood Processing to Increase the Yield of Plasma Peptide Levels in Human Blood.

    Science.gov (United States)

    Teuffel, Pauline; Goebel-Stengel, Miriam; Hofmann, Tobias; Prinz, Philip; Scharner, Sophie; Körner, Jan L; Grötzinger, Carsten; Rose, Matthias; Klapp, Burghard F; Stengel, Andreas

    2016-04-28

    Research in the field of food intake regulation is gaining importance. This often includes the measurement of peptides regulating food intake. For the correct determination of a peptide's concentration, it should be stable during blood processing. However, this is not the case for several peptides which are quickly degraded by endogenous peptidases. Recently, we developed a blood processing method employing Reduced temperatures, Acidification, Protease inhibition, Isotopic exogenous controls and Dilution (RAPID) for the use in rats. Here, we have established this technique for the use in humans and investigated recovery, molecular form and circulating concentration of food intake regulatory hormones. The RAPID method significantly improved the recovery for (125)I-labeled somatostatin-28 (+39%), glucagon-like peptide-1 (+35%), acyl ghrelin and glucagon (+32%), insulin and kisspeptin (+29%), nesfatin-1 (+28%), leptin (+21%) and peptide YY3-36 (+19%) compared to standard processing (EDTA blood on ice, p processing, while after standard processing 62% of acyl ghrelin were degraded resulting in an earlier peak likely representing desacyl ghrelin. After RAPID processing the acyl/desacyl ghrelin ratio in blood of normal weight subjects was 1:3 compared to 1:23 following standard processing (p = 0.03). Also endogenous kisspeptin levels were higher after RAPID compared to standard processing (+99%, p = 0.02). The RAPID blood processing method can be used in humans, yields higher peptide levels and allows for assessment of the correct molecular form.

  19. Matching the laser wavelength to the absorption properties of matrices increases the ion yield in UV-MALDI mass spectrometry.

    Science.gov (United States)

    Wiegelmann, Marcel; Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus

    2013-09-01

    A high analytical sensitivity in ultraviolet matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is only achieved if the laser wavelength corresponds to a high optical absorption of the matrix. Laser fluence and the physicochemical properties of the compounds, e.g., the proton affinity, also influence analytical sensitivity significantly. In combination, these parameters determine the amount of material ejected per laser pulse and the ion yield, i.e., the fraction of ionized biomolecules. Here, we recorded peptide ion signal intensities as a function of these parameters. Three cinnamic acid matrices were investigated: α-cyano-4-hydroxycinnamic acid, α-cyano-4-chlorocinnamic acid, and α-cyano-2,4-difluorocinnamic acid. In addition, 2,5-dihydroxybenzoic acid was used in comparison experiments. Ion signal intensities "per laser shot" and integrated ion signal intensities were acquired over 900 consecutive laser pulses applied on distinct positions on the dried-droplet sample preparations. With respect to laser wavelength, the two standard MALDI wavelengths of 337/355 nm were investigated. Also, 305 or 320 nm was selected to account for the blue-shifted absorption profiles of the halogenated derivatives. Maximal peptide ion intensities were obtained if the laser wavelength fell within the peak of the absorption profile of the compound and for fluences two to three times the corresponding ion detection threshold. The results indicate ways for improving the analytical sensitivity in MALDI-MS, and in particular for MALDI-MS imaging applications where a limited amount of material is available per irradiated pixel.

  20. Increased kilo-electron-volt x-ray yields from Z-pinch plasmas by mixing elements of similar atomic numbers

    International Nuclear Information System (INIS)

    Deeney, C.; LePell, P.D.; Failor, B.H.; Wong, S.L.; Apruzese, J.P.; Whitney, K.G.; Thornhill, J.W.; Davis, J.; Yadlowsky, E.; Hazelton, R.C.; Moschella, J.J.; Nash, T.; Loter, N.

    1995-01-01

    Magnesium-coated aluminum wire array Z pinch plasmas have been tested on a 4-MA, 6-TW pulsed electrical generator. A mixture of 80% aluminum and 20% magnesium is observed to maximize the radiated kilovolt x-ray yield at ≥50 kJ, which is 50% higher than that obtained with pure aluminum. Spectroscopic analysis and collisional radiative equilbrium models with radiation transport are employed to show that the aluminum-magnesium mixture reduces the opacity of the strongest emission lines, thus increasing the yield by increasing the probability of photon escape. Furthermore, the spectroscopic data also point to the presence of a strong temperature gradient in the pinched plasma that results in the outer magnesium coating of the wires having a higher electron temperature in the pinch. This temperature difference also plays a role in enhancing the kilovolt x-ray yield. The observation of a higher magnesium electron temperature offers evidence that the magnesium reaches the axis first, forming a core that is compressed and heated by the imploding mass of aluminum. Since the emissions from the core are not absorbed by the outer aluminum, the yields are increased. By comparison, aluminum-magnesium alloys imploded on a different but similar generator do not show a temperature difference

  1. China’s High-yield Pulp Sector and Its Carbon Dioxide Emission: Considering the Saved Standing Wood as an Increase of Carbon Storage

    Directory of Open Access Journals (Sweden)

    Yanhong Gao

    2014-11-01

    Full Text Available The production of high-yield pulp in China has increased significantly in recent years. The well-known advantages of this type of pulp include low production cost, high opacity, and good paper formation. In the context of state-of-the-art technologies, China’s high-yield pulping, which is dominated by the PRC-APMP (preconditioning refiner chemical treatment-alkaline peroxide mechanical pulping process, has a much higher energy input but a significantly lower wood consumption in comparison with the kraft pulping process. If the saved wood in the forest or plantation is considered as an increment of carbon storage, then the carbon dioxide emission from the production of high-yield pulp can be regarded as much lower than that of kraft pulp.

  2. All-Optical Graphene Oxide Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Weng Hong Lim

    2014-12-01

    Full Text Available The optical characteristics of graphene oxide (GO were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  3. All-optical graphene oxide humidity sensors.

    Science.gov (United States)

    Lim, Weng Hong; Yap, Yuen Kiat; Chong, Wu Yi; Ahmad, Harith

    2014-12-17

    The optical characteristics of graphene oxide (GO) were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s) to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  4. Climate change, humidity, and mortality in the United States

    Science.gov (United States)

    Barreca, Alan I.

    2014-01-01

    This paper estimates the effects of humidity and temperature on mortality rates in the United States (c. 1973–2002) in order to provide an insight into the potential health impacts of climate change. I find that humidity, like temperature, is an important determinant of mortality. Coupled with Hadley CM3 climate-change predictions, I project that mortality rates are likely to change little on the aggregate for the United States. However, distributional impacts matter: mortality rates are likely to decline in cold and dry areas, but increase in hot and humid areas. Further, accounting for humidity has important implications for evaluating these distributional effects. PMID:25328254

  5. Influence of air humidity on polymeric microresonators

    International Nuclear Information System (INIS)

    Schmid, S; Kühne, S; Hierold, C

    2009-01-01

    The influence of air humidity on polymeric microresonators is investigated by means of three different resonator types. SU-8 microbeams, SU-8 microstrings and a silicon micromirror with SU-8 hinges are exposed to relative humidities between 3% and 60%. The shifts of the resonant frequencies as a function of the relative humidity (RH) are explained based on mechanical models which are extended with water absorption models in polymer materials. The dominant effect causing the resonant frequency change is evaluated for each structure type. The eigenfrequency of the microstrings and the micromirror in the out-of-plane mode, which both mainly are defined by the pre-stress of the polymeric structures, are found to be highly sensitive to changes of air humidity. The humidity-induced (hygrometric) volume expansion reversibly reduces the pre-stress which results in relative frequency changes of up to 0.78%/%RH for the microstrings. A maximum coefficient of humidity-induced volume expansion for SU-8 of α hyg = 52.3 ppm/%RH is evaluated by fitting the data with the analytical model. It was found that microstrings that were stored at 150 °C over 150 h are more moisture sensitive compared to structures that were stored at room temperature. For the SU-8 microbeams and the micromirror in the tilt mode, the eigenfrequency is mainly defined by the modulus of the polymer material. The measured relative resonant frequency changes were below 1% for the given RH range. For low RH values, antiplasticization is observed (the modulus increases) followed by a plasticization for increasing RH values

  6. Study of initial stage in coal liquefaction. Increase in oil yield with suppression of retrogressive reaction during initial stage; Ekika hanno no shoki katei ni kansuru kenkyu. 1.

    Energy Technology Data Exchange (ETDEWEB)

    Uesugi, K.; Kanaji, M.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    For the coal liquefaction, improvement of liquefaction conditions and increase of liquefied oil yield are expected by suppressing the recombination through rapid stabilization of pyrolytic radicals which are formed at the initial stage of liquefaction. Two-stage liquefaction combining prethermal treatment and liquefaction was performed under various conditions, to investigate the effects of reaction conditions on the yields and properties of products as well as to increase liquefied oil yield. Consequently, it was found that the catalyst contributes greatly to the hydrogen transfer to coal at the prethermal treatment. High yield of n-hexane soluble fraction with products having low condensation degree could be obtained by combining the prethermal treatment in the presence of hydrogen and catalyst with the concentration of slurry after the treatment. This was considered to be caused by the synergetic effect between the improvement of liquefaction by suppressing polymerization/condensation at the initial stage of reaction through the prethermal treatment and the effective hydrogen transfer accompanied with the improvement of contact efficiency of coal/catalyst by the concentration of slurry at the stage of liquefaction. 4 refs., 8 figs.

  7. Effect of different methods of soil fertility increasing via application of organic, chemical and biological fertilizers on grain yield and quality of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    K. Mohammadi

    2016-05-01

    Full Text Available Different resource of fertilizers had an effect on grain yield, oil and grain quality. Information regarding the effect of simultaneous application of organic, chemical and biological fertilizers on canola (Brassica napus L. traits is not available. In order to study the effect of different systems of soil fertility on grain yield and quality of canola (Talayeh cultivar, an experiment was conducted at experimental farm of Agricultural Research Center of Sanandaj, Iran, during two growing seasons of 2007-2008 and 2008-2009. The experimental units were arranged as split plots based on randomized complete blocks design with three replications. Main plots consisted of five methods for obtaining the basal fertilizers requirement including (N1: farm yard manure; (N2: compost; (N3: chemical fertilizers; (N4: farm yard manure + compost and (N5: farm yard manure + compost + chemical fertilizers; and control (N6. Sub plots consisted four levels of biofertilizers were (B1: Bacillus lentus and Pseudomonas putida; (B2: Trichoderma harzianum; (B3: Bacillus lentus and Pseudomonas putida and Trichoderma harzianum; and (B4: control, (without biofertilizers. Results showed that basal fertilizers and biofertilizers have a significant effect on grain yield. The highest grain yield was obtained from N5 treatment in which organic and chemical fertilizers were applied simultaneously applied. Basal fertilizers, biofertilizers have a significant effect on leaf chlorophyll. The highest nitrogen content (42.85 mg.g-1 and least amount of (N/S were obtained from N5 treatment. The highest oil percent was obtained from N1 and N2 treatments and highest oil yield was obtained from N5 treatment. Finally, application of organic manure and biofertilizers with chemical fertilizer led to an increase in yield and quality of canola grain.

  8. Humidity Graphs for All Seasons.

    Science.gov (United States)

    Esmael, F.

    1982-01-01

    In a previous article in this journal (Vol. 17, p358, 1979), a wet-bulb depression table was recommended for two simple experiments to determine relative humidity. However, the use of a graph is suggested because it gives the relative humidity directly from the wet and dry bulb readings. (JN)

  9. Humidity requirements in WSCF Laboratories

    International Nuclear Information System (INIS)

    Evans, R.A.

    1994-01-01

    The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment

  10. Tat proteins as novel thylakoid membrane anchors organize a biosynthetic pathway in chloroplasts and increase product yield 5-fold

    DEFF Research Database (Denmark)

    Henriques de Jesus, Maria Perestrello Ramos; Nielsen, Agnieszka Janina Zygadlo; Mellor, Silas Busck

    2017-01-01

    to their complex structures. Some of the crucial enzymes catalyzing their biosynthesis are the cytochromes P450 (P450s) situated in the endoplasmic reticulum (ER), powered by electron transfers from NADPH. Dhurrin is a cyanogenic glucoside and its biosynthesis involves a dynamic metabolon formed by two P450s....... Nevertheless, translocation of the pathway from the ER to the chloroplast creates other difficulties, such as the loss of metabolon formation and intermediate diversion into other metabolic pathways. We show here that co-localization of these enzymes in the thylakoid membrane leads to a significant increase...... in product formation, with a concomitant decrease in off-pathway intermediates. This was achieved by exchanging the membrane anchors of the dhurrin pathway enzymes to components of the Twin-arginine translocation pathway, TatB and TatC, which have self-assembly properties. Consequently, we show 5-fold...

  11. Activin Signals through SMAD2/3 to Increase Photoreceptor Precursor Yield during Embryonic Stem Cell Differentiation.

    Science.gov (United States)

    Lu, Amy Q; Popova, Evgenya Y; Barnstable, Colin J

    2017-09-12

    In vitro differentiation of mouse embryonic stem cells (ESCs) into retinal fates can be used to study the roles of exogenous factors acting through multiple signaling pathways during retina development. Application of activin A during a specific time frame that corresponds to early embryonic retinogenesis caused increased generation of CRX + photoreceptor precursors and decreased PAX6 + retinal progenitor cells (RPCs). Following activin A treatment, SMAD2/3 was activated in RPCs and bound to promoter regions of key RPC and photoreceptor genes. The effect of activin on CRX expression was repressed by pharmacological inhibition of SMAD2/3 phosphorylation. Activin signaling through SMAD2/3 in RPCs regulates expression of transcription factors involved in cell type determination and promotes photoreceptor lineage specification. Our findings can contribute to the production of photoreceptors for cell replacement therapy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Shallow Land Burial Technology - Humid

    International Nuclear Information System (INIS)

    Davis, E.C.; Spalding, B.P.; Lee, S.Y.

    1983-01-01

    The Shallow Land Burial Technology - Humid Project is being conducted for the Department of Energy Low-Level Waste Management Program with the objective of identifying and demonstrating improved technology for disposing of low-level solid waste in humid environments. Two improved disposal techniques are currently being evaluated using nine demonstration trenches at the Engineered Test Facility (ETF). The first is use of a cement-bentonite grout applied as a waste backfill material prior to trench closure and covering. The second is complete hydrologic isolation of waste by emplacement in a trench that is lined on all four sides, top and bottom using synthetic impermeable lining material. An economic analysis of the trench grouting and lining demonstration favored the trench lining operation ($1055/demonstration trench) over trench grouting ($1585/demonstration trench), with the cost differential becoming even greater (as much as a factor of 6 in favor of lining for typical ORNL trenches) as trench dimensions increase and trench volumes exceed those of the demonstration trenches. In addition to the evaluation of trench grouting and lining, major effort has centered on characterization of the ETF site. Though only a part of the overall study, characterization is an extremely important component of the site selection process; it is during these activities that potential problems, which may obviate the site from further consideration, are found. Characterization of the ETF has included studies of regional and site-specific geology, the physical and chemical properties of the soils in which the demonstration trenches are located, and hydrology of the small watershed of which the ETF is a part. 12 references, 6 figures, 2 tables

  13. Loss of the precise control of photosynthesis and increased yield of non-radiative dissipation of exitation energy after mild heat treatment of barley leaves

    International Nuclear Information System (INIS)

    Bukhov, N.G.; Boucher, N.; Carpentier, R.

    1998-01-01

    The after effects of a short exposure of intact barley leaves to moderately elevated temperature (40°C, 5 min) on the induction transients and the irradiance dependencies of photosynthesis and chlorophyll fluorescence are presented. This mild heat treatment strongly reduced the oscillations in the rate of photosynthesis and in the yield of chlorophyll fluorescence. However, only a 25% irreversible inhibition of maximum photosynthetic capacity of photosystem II (PSII) measured by oxygen evolution was produced and the intrinsic quantum yield of PSII measured by the chlorophyll fluorescence ratio (F m - F o )/Fm decreased by only 15%. In contrast, the above treatment increased radiationless dissipation processes in PSII by a factor of two. In heat-treated leaves, photosynthesis was not saturated even by strong light. Both ΔpH-dependent quenching of excitons in PSII (including formation of zeaxanthin) and state 1/state 2 transition were found to be stimulated. Heat exposure enhanced the control of PSII activity by PSI, as evidenced by a significant increase in the quenching effect of far-red light on the maximum yield of chlorophyll fluorescence. It was deduced that after mild heat treatment, the photosynthetic apparatus in leaves lacks the precise coordinating control of electron transport and carbon metabolism owing to the inability of PSII to support electron transport at a level adequate for carbon metabolism. This effect was not related to the small irreversible thermal damage to PSII, but was rather due to a significant increase in non-photochemical quenching of excitation energy. (author)

  14. Effects of increased CO[sub 2] concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.A.C.; Mitchell, V.J.; Driscoll, S.P.; Franklin, J.; Lawlor, D.W. (Institute of Arable Crops Research, Harpenden (United Kingdom). Dept. of Biochemistry and Physiology)

    1993-06-01

    Winter wheat was grown in chambers under light and temperature conditions similar to the UK field environment for the 1990/1991 growing season at two levels each of atmospheric CO[sub 2] concentration (seasonal means: 361 nd 692 [mu]mol mol[sup -1]), temperature (tracking ambient and ambient +4[degree]C) and nitrogen application (equivalent to 87 and 489 kg ha[sub -1] total N applied). Total dry matter productivity through the season, the maximum number of shoots and final ear number were stimulated by CO[sub 2] enrichment at both levels of the temperature and N treatments. At high N, there was a CO[sub 2]-induced stimulation of grain yield (+15%) similar to that for total crop dry mass (+12%), and there was no significant interaction with temperature. Temperature had a direct, negative effect on yield at both levels of the N and CO[sub 2] treatments. This could be explained by the temperature-dependent shortening of the phenological stages, and therefore, the time available for accumulating resources for grain formation. At high N, there was also a reduction in grain set at ambient +4[degree]C temperature, but the overall negative effect of warmer temperature was greater on the number of grains (-37%) than on yield (-18%), due to a compensating increase in average grain mass. At low N, despite increasing total crop dry mass and the number of ears, elevated CO[sub 2] did not increase grain yield and caused a significant decrease under ambient temperature conditions. This can be explained in terms of a stimulation of early vegetative growth by CO[sub 2] enrichment leading to a reduction in the amount of N available later for the formation and filling of grain.

  15. Effects of the Soil Incorporation of Increasing Amounts of Non-Fermented Wet Pomace on the Oil Yield and Acid Profile of Sunflower Seeds

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2007-12-01

    Full Text Available The agricultural use of olive processing waste is a strategic resource in the integrated management of the agricultural system as it satisfies the two objectives of evacuating the olive-processing residue and using it beneficially for agricultural purposes. For such aims, a research was conducted in Bari (South of Italy to study the effects of the incorporation into the soil of increasing amounts of non-fermented wet pomace (WP (0, 17.5, 35, 70, 105, 140, 175, 210 Mg ha-1 on the oil yield and acid profile of sunflower seeds. The results obtained point out that the seed yield was negatively affected by the application of WP starting from 70 Mg ha-1; an opposite trend was observed for the seed oil yield. The incorporation of WP has also affected the oil fatty acids’ composition. Oleic and linoleic acids, the principal fatty acids (beyond 90% of total fatty acids, showed significant variations: from the control treatment to the one receiving the maximum application of waste, oleic acid decreased (-5.4%, linoleic acid increased (+ 6.6%, and the saturated fatty acids fraction decreased (-7.6%.

  16. Humidity Sensor Based on Multi-Walled Carbon Nanotube Thin Films

    International Nuclear Information System (INIS)

    Cao, C.L.; Hu, C.G.; Fang, L.; Wang, S.X.; Cao, C.L.; Tian, Y.S.; Pan, C.Y.

    2009-01-01

    The properties of the humidity sensors made of chemically treated and untreated multi-walled carbon nano tube (MWCNT) thin films are investigated systematically. It shows that both the chemically treated and untreated MWCNT thin films demonstrate humidity sensitive properties, but the former have stronger sensitivity than the latter. In the range of 11%-98% relative humidity (RH), the resistances of the chemically treated and untreated MWCNT humidity sensors increase 120% and 28%, respectively. Moreover, the treated humidity sensors showed higher sensitivity and better stability. In addition, the response and recover properties, and stabilization of the humidity sensors are measured, and the humidity sensitive mechanisms of the sensors are analyzed. The humidity sensitivity of carbon nano tube thin films indicates it promise as a kind of humidity sensitive material

  17. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.

    2013-11-22

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.; Marschner, Petra; Shavrukov, Yuri N.; Berger, Bettina; Tester, Mark A.; Roy, Stuart John; Plett, Darren Craig

    2013-01-01

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Oilseed rape grain yield productivity increases with hybrid varietal types: a first balance sheet with post registration tests in France and in Europe

    Directory of Open Access Journals (Sweden)

    Pinochet Xavier

    2000-01-01

    Full Text Available Since 1994 several oilseed rape hybrid types were proposed to farmers. Following registration experiments, Cetiom and different equivalent institutions in European Union have tested them in different post registration national networks. Grain yield productivity increases were demonstrated and a first synthesis could be done to check avantages and difficulties which had occurred. For winter types, Hybrid Composits were widely used, mainly in France and in the United Kingdom. Grain yield increases were important in the South and West part of France where their market shares increased up to 50-80%. Nevertheless, many fecondation problems occurred in several places all over Europe. Reasons of such problems were difficult to identify. Several factors, as cold temperatures, nutritionnal competitions, pollen avaibility may be involved to explain low seed sets. Restored Hybrids made with the NPZ hybridation system were successfully tested widely, and has reached significative market shares during 1999-2000 season. Less experiments were carried out with others hybrid types (Ogu-INRA Restored Hybrids, Mixed Hybrids. Ogu-INRA Restored Hybrids reached the highest grain yield levels but users are waiting for lower glucosinolates seed content hybrids which would come in the next future. Performances comparisons among countries have to be done carefully. Productivity increases with hybrid types could have been over estimated depending of pollinic environments or plot size and possible neighbouring effects. For France, results from field trials networks are coherent with results coming from postal surveys. For spring varieties, Polima restored hybrids and varietal associations have demonstrated a significative advantage compared to classical lines.

  20. Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film.

    Science.gov (United States)

    Chi, Hong; Liu, Yan Jun; Wang, FuKe; He, Chaobin

    2015-09-16

    Uniform graphene oxide (GO) film for optical humidity sensing was fabricated by dip-coating technique. The resulting GO thin film shows linear optical shifts in the visible range with increase of humidity in the whole relative humidity range (from dry state to 98%). Moreover, GO films exhibit ultrafast sensing to moisture within 250 ms because of the unique atomic thinness and superpermeability of GO sheets. The humidity sensing mechanism was investigated using XRD and computer simulation. The ultrasensitive humidity colorimetric properties of GOs film may enable many potential applications such as disposable humidity sensors for packaging, health, and environmental monitoring.

  1. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    Directory of Open Access Journals (Sweden)

    X. Han

    2018-04-01

    Full Text Available Loss of soil organic carbon (SOC from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR, SI significantly sequestered SOC (0–20 cm depth at the rate of 0.35 (95 % CI, 0.31–0.40 Mg C ha−1 yr−1, increased crop grain yield by 13.4 % (9.3–18.4 % and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha−1 yr−1 with mineral fertilizer of 200–400 kg N ha−1 yr−1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9–56.4 % and SOC sequestrated by the rate of 0.85 (0.54–1.15 Mg C ha−1 yr−1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28–62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11–15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with

  2. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    Science.gov (United States)

    Han, Xiao; Xu, Cong; Dungait, Jennifer A. J.; Bol, Roland; Wang, Xiaojie; Wu, Wenliang; Meng, Fanqiao

    2018-04-01

    Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR), SI significantly sequestered SOC (0-20 cm depth) at the rate of 0.35 (95 % CI, 0.31-0.40) Mg C ha-1 yr-1, increased crop grain yield by 13.4 % (9.3-18.4 %) and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha-1 yr-1 with mineral fertilizer of 200-400 kg N ha-1 yr-1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9-56.4 %) and SOC sequestrated by the rate of 0.85 (0.54-1.15) Mg C ha-1 yr-1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28-62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11-15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with increased crop production, and this is of great practical importance to straw management as agriculture

  3. Structured syncope care pathways based on lean six sigma methodology optimises resource use with shorter time to diagnosis and increased diagnostic yield.

    Science.gov (United States)

    Martens, Leon; Goode, Grahame; Wold, Johan F H; Beck, Lionel; Martin, Georgina; Perings, Christian; Stolt, Pelle; Baggerman, Lucas

    2014-01-01

    To conduct a pilot study on the potential to optimise care pathways in syncope/Transient Loss of Consciousness management by using Lean Six Sigma methodology while maintaining compliance with ESC and/or NICE guidelines. Five hospitals in four European countries took part. The Lean Six Sigma methodology consisted of 3 phases: 1) Assessment phase, in which baseline performance was mapped in each centre, processes were evaluated and a new operational model was developed with an improvement plan that included best practices and change management; 2) Improvement phase, in which optimisation pathways and standardised best practice tools and forms were developed and implemented. Staff were trained on new processes and change-management support provided; 3) Sustaining phase, which included support, refinement of tools and metrics. The impact of the implementation of new pathways was evaluated on number of tests performed, diagnostic yield, time to diagnosis and compliance with guidelines. One hospital with focus on geriatric populations was analysed separately from the other four. With the new pathways, there was a 59% reduction in the average time to diagnosis (p = 0.048) and a 75% increase in diagnostic yield (p = 0.007). There was a marked reduction in repetitions of diagnostic tests and improved prioritisation of indicated tests. Applying a structured Lean Six Sigma based methodology to pathways for syncope management has the potential to improve time to diagnosis and diagnostic yield.

  4. Structured syncope care pathways based on lean six sigma methodology optimises resource use with shorter time to diagnosis and increased diagnostic yield.

    Directory of Open Access Journals (Sweden)

    Leon Martens

    Full Text Available To conduct a pilot study on the potential to optimise care pathways in syncope/Transient Loss of Consciousness management by using Lean Six Sigma methodology while maintaining compliance with ESC and/or NICE guidelines.Five hospitals in four European countries took part. The Lean Six Sigma methodology consisted of 3 phases: 1 Assessment phase, in which baseline performance was mapped in each centre, processes were evaluated and a new operational model was developed with an improvement plan that included best practices and change management; 2 Improvement phase, in which optimisation pathways and standardised best practice tools and forms were developed and implemented. Staff were trained on new processes and change-management support provided; 3 Sustaining phase, which included support, refinement of tools and metrics. The impact of the implementation of new pathways was evaluated on number of tests performed, diagnostic yield, time to diagnosis and compliance with guidelines. One hospital with focus on geriatric populations was analysed separately from the other four.With the new pathways, there was a 59% reduction in the average time to diagnosis (p = 0.048 and a 75% increase in diagnostic yield (p = 0.007. There was a marked reduction in repetitions of diagnostic tests and improved prioritisation of indicated tests.Applying a structured Lean Six Sigma based methodology to pathways for syncope management has the potential to improve time to diagnosis and diagnostic yield.

  5. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance

    Directory of Open Access Journals (Sweden)

    Jose A. Polania

    2016-05-01

    Full Text Available Common bean (Phaseolus vulgaris L. is the most important food legume in the diet of poor people in the tropics. Drought causes severe yield loss in this crop. Identification of traits associated with drought resistance contributes to improving the process of generating bean genotypes adapted to these conditions. Field studies were conducted at the International Center for Tropical Agriculture (CIAT, Palmira, Colombia, to determine the relationship between grain yield and different parameters such as effective use of water (EUW, canopy biomass and dry partitioning indices (pod partitioning index, harvest index and pod harvest index in elite lines selected for drought resistance over the past decade. Carbon isotope discrimination (CID was used for estimation of water use efficiency (WUE. The main objectives were: (i to identify specific morpho-physiological traits that contribute to improved resistance to drought in lines developed over several cycles of breeding and that could be useful as selection criteria in breeding; and (ii to identify genotypes with desirable traits that could serve as parents in the corresponding breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool were evaluated under field conditions with two levels of water supply (irrigated and drought over two seasons. Eight bean lines (NCB 280, NCB 226, SEN 56, SCR 2, SCR 16, SMC 141, RCB 593 and BFS 67 were identified as resistant to drought stress. Resistance to terminal drought stress was positively associated with EUW combined with increased dry matter partitioned to pod and seed production and negatively associated with days to flowering and days to physiological maturity. Differences in genotypic response were observed between grain CID and grain yield under irrigated and drought stress. Based on phenotypic differences in CID, leaf stomatal conductance, canopy biomass and grain yield under drought stress, the lines tested were classified into

  6. On the distribution of relative humidity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2004-01-01

    Full Text Available We have analysed relative humidity statistics from measurements in cirrus clouds taken unintentionally during the Measurement of OZone by Airbus In-service airCraft project (MOZAIC. The shapes of the in-cloud humidity distributions change from nearly symmetric in relatively warm cirrus (warmer than −40°C to considerably positively skew (i.e. towards high humidities in colder clouds. These results are in agreement to findings obtained recently from the INterhemispheric differences in Cirrus properties from Anthropogenic emissions (INCA campaign (Ovarlez et al., 2002. We interprete the temperature dependence of the shapes of the humidity distributions as an effect of the length of time a cirrus cloud needs from formation to a mature equilibrium stage, where the humidity is close to saturation. The duration of this transitional period increases with decreasing temperature. Hence cold cirrus clouds are more often met in the transitional stage than warm clouds.

  7. Effect of humidity on thoron adsorption in activated charcoal bed

    International Nuclear Information System (INIS)

    Sudeep Kumara, K.; Karunakara, N.; Yashodhara, I.; Sapra, B.K.; Sahoo, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2014-01-01

    Activated charcoal is a well-known adsorber of 222 Rn and 220 Rn gases. This property can be effectively used for remediation of these gases in the workplaces of uranium and thorium processing facilities. However, the adsorption on charcoal is sensitive to variation in temperature and humidity. The successful designing and characterization of adsorption systems require an adequate understanding of these sensitivities. The study has been carried out towards this end, to delineate the effect of relative humidity on the efficacy of 220 Rn mitigations in a charcoal bed. Air carrying 220 Rn from a Pylon source was passed through a column filled with coconut shell-based granular activated charcoal. The relative humidity of the air was controlled, and the transmission characteristics were examined at relative humidity varying from 45% to 60%. The mitigation factor was found to decrease significantly with an increase of humidity in the air. (author)

  8. The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses

    International Nuclear Information System (INIS)

    Mazza, C.A.; Battista, D.; Zima, A.M.; Szwarcberg-Bracchitta, M.; Giordano, C.V.; Acevedo, A.; Scopel, A.L.; Ballare, C.L.

    1999-01-01

    There is limited information on the impacts of present-day solar ultraviolet-B radiation (UV-B) on biomass and grain yield of field crops and on the mechanisms that confer tolerance to UV-B radiation under field conditions. We investigated the effects of solar UV-B on aspects of the biochemistry, growth and yield of barley crops using replicated field plots and two barley strains, a catalase (CAT)-deficient mutant (RPr 79/4) and its wild-type mother line (Maris Mink). Solar UV-B reduced biomass accumulation and grain yield in both strains. The effects on crop biomass accumulation tended to be more severe in RPr 79/4 (≈ 32% reduction) than in the mother line (≈ 20% reduction). Solar UV-B caused measurable DNA damage in leaf tissue, in spite of inducing a significant increase in UV-absorbing sunscreens in the two lines. Maris Mink responded to solar UV-B with increased CAT and ascorbate peroxidase (APx) activity. No effects of UV-B on total superoxide dismutase (SOD) activity were detected. Compared with the wild type, RPr 79/4 had lower CAT activity, as expected, but higher APx activity. Neither of these activities increased in response to UV-B in RPr 79/4. These results suggest that growth inhibition by solar UV-B involves DNA damage and oxidative stress, and that constitutive and UV-B-induced antioxidant capacity may play an important role in UV-B tolerance. (author)

  9. Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation

    Directory of Open Access Journals (Sweden)

    Hongzhi Zhang

    2017-05-01

    Full Text Available There is a need to optimize water-nitrogen (N applications to increase seed cotton yield and water use efficiency (WUE under a mulch drip irrigation system. This study evaluated the effects of four water regimes [moderate drip irrigation from the third-leaf to the boll-opening stage (W1, deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W2, pre-sowing and moderate drip irrigation from the third-leaf to the boll-opening stage (W3, pre-sowing and deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W4] and N fertilizer at a rate of 520 kg ha-1 in two dressing ratios [7:3 (N1, 2:8 (N2] on cotton root morpho-physiological attributes, yield, WUE and the relationship between root distribution and dry matter production. Previous investigations have shown a strong correlation between root activity and water consumption in the 40–120 cm soil layer. The W3 and especially W4 treatments significantly increased root length density (RLD, root volume density (RVD, root mass density (RMD, and root activity in the 40–120 cm soil layer. Cotton RLD, RVD, RMD was decreased by 13.1, 13.3, and 20.8%, respectively, in N2 compared with N1 at 70 days after planting (DAP in the 0–40 cm soil layer. However, root activity in the 40–120 cm soil layer at 140 DAP was 31.6% higher in N2 than that in N1. Total RMD, RLD and root activity in the 40–120 cm soil were significantly and positively correlated with shoot dry weight. RLD and root activity in the 40–120 cm soil layer was highest in the W4N2 treatments. Therefore increased water consumption in the deep soil layers resulted in increased shoot dry weight, seed cotton yield and WUE. Our data can be used to develop a water-N management strategy for optimal cotton yield and high WUE.

  10. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants.

    Directory of Open Access Journals (Sweden)

    Yongchao Wang

    Full Text Available DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether and CCC (2-chloroethyltrimethyl- ammonium chloride have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012, using maize hybrid, Zhengdan 958 (ZD 958 at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68% from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69% and thousand kernel weight (TKW (by 8.57% and 6.55% from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs. In PCH-treated plants, bending strength and puncture strength were greater than other

  11. Increased yield of PCR products by addition of T4 gene 32 protein to the SMART PCR cDNA synthesis system.

    Science.gov (United States)

    Villalva, C; Touriol, C; Seurat, P; Trempat, P; Delsol, G; Brousset, P

    2001-07-01

    Under certain conditions, T4 gene 32 protein is known to increase the efficiency of different enzymes, such as Taq DNA polymerase, reverse transcriptase, and telomerase. In this study, we compared the efficiency of the SMART PCR cDNA synthesis kit with and without the T4 gene 32 protein. The use of this cDNA synthesis procedure, in combination with T4 gene 32 protein, increases the yield of RT-PCR products from approximately 90% to 150%. This effect is even observed for long mRNA templates and low concentrations of total RNA (25 ng). Therefore, we suggest the addition of T4 gene 32 protein in the RT-PCR mixture to increase the efficiency of cDNA synthesis, particularly in cases when low amounts of tissue are used.

  12. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    Science.gov (United States)

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  13. Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet.

    Science.gov (United States)

    Lee, C; Hristov, A N; Cassidy, T W; Heyler, K S; Lapierre, H; Varga, G A; de Veth, M J; Patton, R A; Parys, C

    2012-10-01

    The objective of this experiment was to evaluate the effect of supplementing a metabolizable protein (MP)-deficient diet with rumen-protected (RP) Lys, Met, and specifically His on dairy cow performance. The experiment was conducted for 12 wk with 48 Holstein cows. Following a 2-wk covariate period, cows were blocked by DIM and milk yield and randomly assigned to 1 of 4 diets, based on corn silage and alfalfa haylage: control, MP-adequate diet (ADMP; MP balance: +9 g/d); MP-deficient diet (DMP; MP balance: -317 g/d); DMP supplemented with RPLys (AminoShure-L, Balchem Corp., New Hampton, NY) and RPMet (Mepron; Evonik Industries AG, Hanau, Germany; DMPLM); and DMPLM supplemented with an experimental RPHis preparation (DMPLMH). The analyzed crude protein content of the ADMP and DMP diets was 15.7 and 13.5 to 13.6%, respectively. The apparent total-tract digestibility of all measured nutrients, plasma urea-N, and urinary N excretion were decreased by the DMP diets compared with ADMP. Milk N secretion as a proportion of N intake was greater for the DMP diets compared with ADMP. Compared with ADMP, dry matter intake (DMI) tended to be lower for DMP, but was similar for DMPLM and DMPLMH (24.5, 23.0, 23.7, and 24.3 kg/d, respectively). Milk yield was decreased by DMP (35.2 kg/d), but was similar to ADMP (38.8 kg/d) for DMPLM and DMPLMH (36.9 and 38.5kg/d, respectively), paralleling the trend in DMI. The National Research Council 2001model underpredicted milk yield of the DMP cows by an average (±SE) of 10.3 ± 0.75 kg/d. Milk fat and true protein content did not differ among treatments, but milk protein yield was increased by DMPLM and DMPLMH compared with DMP and was not different from ADMP. Plasma essential amino acids (AA), Lys, and His were lower for DMP compared with ADMP. Supplementation of the DMP diets with RP AA increased plasma Lys, Met, and His. In conclusion, MP deficiency, approximately 15% below the National Research Council requirements from 2001, decreased

  14. Decreasing methane yield with increasing food intake keeps daily methane emissions constant in two foregut fermenting marsupials, the western grey kangaroo and red kangaroo.

    Science.gov (United States)

    Vendl, Catharina; Clauss, Marcus; Stewart, Mathew; Leggett, Keith; Hummel, Jürgen; Kreuzer, Michael; Munn, Adam

    2015-11-01

    Fundamental differences in methane (CH4) production between macropods (kangaroos) and ruminants have been suggested and linked to differences in the composition of the forestomach microbiome. Using six western grey kangaroos (Macropus fuliginosus) and four red kangaroos (Macropus rufus), we measured daily absolute CH4 production in vivo as well as CH4 yield (CH4 per unit of intake of dry matter, gross energy or digestible fibre) by open-circuit respirometry. Two food intake levels were tested using a chopped lucerne hay (alfalfa) diet. Body mass-specific absolute CH4 production resembled values previously reported in wallabies and non-ruminant herbivores such as horses, and did not differ with food intake level, although there was no concomitant proportionate decrease in fibre digestibility with higher food intake. In contrast, CH4 yield decreased with increasing intake, and was intermediate between values reported for ruminants and non-ruminant herbivores. These results correspond to those in ruminants and other non-ruminant species where increased intake (and hence a shorter digesta retention in the gut) leads to a lower CH4 yield. We hypothesize that rather than harbouring a fundamentally different microbiome in their foregut, the microbiome of macropods is in a particular metabolic state more tuned towards growth (i.e. biomass production) rather than CH4 production. This is due to the short digesta retention time in macropods and the known distinct 'digesta washing' in the gut of macropods, where fluids move faster than particles and hence most likely wash out microbes from the forestomach. Although our data suggest that kangaroos only produce about 27% of the body mass-specific volume of CH4 of ruminants, it remains to be modelled with species-specific growth rates and production conditions whether or not significantly lower CH4 amounts are emitted per kg of meat in kangaroo than in beef or mutton production. © 2015. Published by The Company of Biologists Ltd.

  15. Roles of inter-SWCNT junctions in resistive humidity response

    International Nuclear Information System (INIS)

    Zhang, Kang; Zou, Jianping; Zhang, Qing

    2015-01-01

    As a promising chemiresistor for gas sensing, the single-walled carbon nanotube (SWCNT) network has not yet been fully utilized for humidity detection. In this work, it is found that as humidity increases from 10% to 85%, the resistance of as-grown SWCNT networks first decreases and then increases. This non-monotonic resistive response to humidity limits their sensing capabilities. The competition between SWCNT resistance and inter-tube junction resistance changes is then found to be responsible for the non-monotonic resistive humidity responses. Moreover, creating sp"3 scattering centers on the SWCNT sidewall by monovalent functionalization of four-bromobenzene diazonium tetrafluoroborate is shown to be capable of eliminating the influence from the inter-tube junctions, resulting in a continuous resistance drop as humidity increases from 10% to 85%. Our results revealed the competing resistive humidity sensing process in as-grown SWCNT networks, which could also be helpful in designing and optimizing as-grown SWCNT networks for humidity sensors and other gas sensors. (paper)

  16. Mars Science Laboratory (MSL) - First Results of Relative Humidity Observations

    Science.gov (United States)

    Genzer, Maria; Harri, Ari-Matti; Kemppinen, Osku; Gómez-Elvira, Javier; Renno, Nilton; Savijärvi, Hannu; Schmidt, Walter; Polkko, Jouni; Rodríquez-Manfredi, Jose Antonio; de la Torre Juárez, Manuel; Mischna, Michael; Martín-Torres, Javier; Haukka, Harri; Paz Zorzano-Mier, Maria; Rafkin, Scott; Paton, Mark; MSL Science Team

    2013-04-01

    The Mars Science laboratory (MSL) called Curiosity made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity, and UV measurements. The REMS instrument suite is described at length in [1]. We concentrate on describing the first results from the REMS relative humidity observations and comparison of the measurements with modeling results. The REMS humidity device is provided by the Finnish Meteorological Institute. It is based on polymeric capacitive humidity sensors developed by Vaisala Inc. The humidity device makes use of one transducer electronics section placed in the vicinity of the three (3) humidity sensor heads. The humidity device is mounted on the REMS boom 2 providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The absolute accuracy of the humidity device is temperature dependent, and is of the order of 2% at the temperature range of -30 to -10 °C, and of the order of 10% at the temperature range of -80 to -60 °C. This enables the investigations of atmospheric humidity variations of both diurnal and seasonal scale. The humidity device measurements will have a lag, when a step-wise change in humidity is taking place. This lag effect is increasing with decreasing temperature, and it is of the order of a few hours at the temperature of -75 °C. To compensate for the lag effect we used an algorithm developed by Mäkinen [2]. The humidity observations were validated after tedious efforts. This was needed to compensate for the artifacts of the transducer electronics. The compensation process includes an assumption that the relative humidity at Mars in the temperature range of 0 to -30 °C is about zero. The

  17. Increased Yield of Biotransformation of Androsta-1, 4-Dien-3, 17-Dione from Β-Sitosterol by Using Sulfobutyl Ether-Β-Cyclodextrin Complexation Technique

    Directory of Open Access Journals (Sweden)

    Wang Jingwen

    2016-01-01

    Full Text Available Substrate solubility in steroid biotransformation is critical for enhancing the biotransformation of hydrophobic compounds. In this study, the sulfobutyl ether-β-cyclodextrin (SBE-β-CD complexation technique was used for the biotransformation of β-sitosterol to androsta-1, 4-diene-3, 17-dione with Mycobacterium ATCC25795. The production yield was increased by 26.72%, and the biotransformation course was shortened by 24h using β-sitosterol/SBE-β-CD inclusion complexes as substrates (1.0 g/L. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated that an inclusion complex was formed between SBE-β-CD and β-sitosterol. The complex significantly increased the solubility of β-sitosterol and improved the biotransformation efficiency of the substrate.

  18. Effect of plant extracts and an essential oil on the control of brown spot disease, tillering, number of panicles and yield increase in rice

    DEFF Research Database (Denmark)

    Nguefack, Julienne; Wulff, Ednar Gadelha; Dongmo, J. Blaise Lekagne

    2013-01-01

    disease, the tillering, the number of panicles and the yield increase in rice were evaluated under laboratory and field conditions. In vitro, the growth of both fungi was completely inhibited by the EO of C. citrinus and C. citratus at 4,520 mu g/ml and 452 mu g/ml, respectively. For solvent extracts...... in the non-treated and treated samples with a low incidence (0-4 of B. oryzae. Under field conditions, the combined use of the essential oil of C. citrinus as a seed treatment and spraying the plants with 2 % ethanol followed by 2 % (w/v) aqueous extracts of C. citrinus or C. citratus increased the emergence......, we concluded that the EO and solvent extracts of C. citrinus and C. citratus have potential as control agents against brown spot and other seed-borne fungal diseases in rice under both conventional and organic farming....

  19. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death.

    Science.gov (United States)

    Almeida, Ana S; Soares, Nuno L; Vieira, Melissa; Gramsbergen, Jan Bert; Vieira, Helena L A

    2016-01-01

    Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO's improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO

  20. Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed Mediterranean conditions.

    Science.gov (United States)

    Badagliacca, Giuseppe; Benítez, Emilio; Amato, Gaetano; Badalucco, Luigi; Giambalvo, Dario; Laudicina, Vito Armando; Ruisi, Paolo

    2018-05-20

    The introduction of legumes into crop sequences and the reduction of tillage intensity are both proposed as agronomic practices to mitigate the soil degradation and negative impact of agriculture on the environment. However, the joint effects of these practices on nitrous oxide (N 2 O) and ammonia (NH 3 ) emissions from soil remain unclear, particularly concerning semiarid Mediterranean areas. In the frame of a long-term field experiment (23 years), a 2-year study was performed on the faba bean (Vicia faba L.) to evaluate the effects of the long-term use of no tillage (NT) compared to conventional tillage (CT) on yield and N 2 O and NH 3 emissions from a Vertisol in a semiarid Mediterranean environment. Changes induced by the tillage system in soil bulk density, water filled pore space (WFPS), organic carbon (TOC) and total nitrogen (TN), denitrifying enzyme activity (DEA), and bacterial gene (16S, amoA, and nosZ) abundance were measured as parameters potentially affecting N gas emissions. No tillage, compared with CT, significantly increased the faba bean grain yield by 23%. The tillage system had no significant effect on soil NH 3 emissions. Total N 2 O emissions, averaged over two cropping seasons, were higher in NT than those in CT plots (2.58 vs 1.71 kg N 2 O-N ha -1 , respectively; P emissions in NT plots were ascribed to the increase of soil bulk density and WFPS, bacteria (16S abundance was 96% higher in NT than that in CT) and N cycle genes (amoA and nosZ abundances were respectively 154% and 84% higher in NT than that in CT). The total N 2 O emissions in faba bean were similar to those measured in other N-fertilized crops. In conclusion, a full evaluation of NT technique, besides the benefits on soil characteristics (e.g. TOC increase) and crop yield, must take into account some criticisms related to the increase of N 2 O emissions compared to CT. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Temporal changes in climatic variables and their impact on crop yields in southwestern China.

    Science.gov (United States)

    Liu, Hong-Bin; Gou, Yu; Wang, Hong-Ye; Li, Hong-Mei; Wu, Wei

    2014-08-01

    Knowledge of variability in climatic variables changes and its impact on crop yields is important for farmers and policy makers, especially in southwestern China where rainfed agriculture is dominant. In the current study, six climatic parameters (mean temperature, rainfall, relative humidity, sunshine hours, temperature difference, and rainy days) and aggregated yields of three main crops (rice: Oryza sativa L., oilseed rape: Brassica napus L., and tobacco: Nicotiana tabacum L.) during 1985-2010 were collected and analyzed for Chongqing-a large agricultural municipality of China. Climatic variables changes were detected by Mann-Kendall test. Increased mean temperature and temperature difference and decreased relative humidity were found in annual and oilseed rape growth time series (Pchanges in climatic variables in this region. Yield of rice increased with rainfall (Pclimatic variables to crop yields. Temperature difference and sunshine hours had higher direct and indirect effects via other climatic variables on yields of rice and tobacco. Mean temperature, relative humidity, rainy days, and temperature difference had higher direct and indirect effects via others on yield of oilseed rape.

  2. Effects of temperature and relative humidity on DNA methylation.

    Science.gov (United States)

    Bind, Marie-Abele; Zanobetti, Antonella; Gasparrini, Antonio; Peters, Annette; Coull, Brent; Baccarelli, Andrea; Tarantini, Letizia; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2014-07-01

    Previous studies have found relationships between DNA methylation and various environmental contaminant exposures. Associations with weather have not been examined. Because temperature and humidity are related to mortality even on non-extreme days, we hypothesized that temperature and relative humidity may affect methylation. We repeatedly measured methylation on long interspersed nuclear elements (LINE-1), Alu, and 9 candidate genes in blood samples from 777 elderly men participating in the Normative Aging Study (1999-2009). We assessed whether ambient temperature and relative humidity are related to methylation on LINE-1 and Alu, as well as on genes controlling coagulation, inflammation, cortisol, DNA repair, and metabolic pathway. We examined intermediate-term associations of temperature, relative humidity, and their interaction with methylation, using distributed lag models. Temperature or relative humidity levels were associated with methylation on tissue factor (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like receptor 2 (TRL-2), carnitine O-acetyltransferase (CRAT), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and glucocorticoid receptor, LINE-1, and Alu. For instance, a 5°C increase in 3-week average temperature in ICAM-1 methylation was associated with a 9% increase (95% confidence interval: 3% to 15%), whereas a 10% increase in 3-week average relative humidity was associated with a 5% decrease (-8% to -1%). The relative humidity association with ICAM-1 methylation was stronger on hot days than mild days. DNA methylation in blood cells may reflect biological effects of temperature and relative humidity. Temperature and relative humidity may also interact to produce stronger effects.

  3. A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells.

    Science.gov (United States)

    Gulce Iz, Sultan; Inevi, Muge Anil; Metiner, Pelin Saglam; Tamis, Duygu Ayyildiz; Kisbet, Nazli

    2018-01-01

    Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNF-α production. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid

  4. Ultrahigh humidity sensitivity of graphene oxide.

    Science.gov (United States)

    Bi, Hengchang; Yin, Kuibo; Xie, Xiao; Ji, Jing; Wan, Shu; Sun, Litao; Terrones, Mauricio; Dresselhaus, Mildred S

    2013-01-01

    Humidity sensors have been extensively used in various fields, and numerous problems are encountered when using humidity sensors, including low sensitivity, long response and recovery times, and narrow humidity detection ranges. Using graphene oxide (G-O) films as humidity sensing materials, we fabricate here a microscale capacitive humidity sensor. Compared with conventional capacitive humidity sensors, the G-O based humidity sensor has a sensitivity of up to 37800% which is more than 10 times higher than that of the best one among conventional sensors at 15%-95% relative humidity. Moreover, our humidity sensor shows a fast response time (less than 1/4 of that of the conventional one) and recovery time (less than 1/2 of that of the conventional one). Therefore, G-O appears to be an ideal material for constructing humidity sensors with ultrahigh sensitivity for widespread applications.

  5. Behavior of HEPA filters under high humidity airflows

    International Nuclear Information System (INIS)

    Ricketts, C.I.

    1992-10-01

    To help determine and improve the safety margins of High Efficiency Particulate Air (HEPA) filter units in nuclear facilities under possible accident conditions, the structural limits and failure mechanisms of filter in high-humidity airflows were established and the fundamental physical phenomena underlying filter failure or malfunction in humid air were identified. Empirical models for increases in filter pressure drop with time in terms of the relevant airstream parameters were also developed. The weaknesses of currently employed humidity countermeasures used in filter protection are discussed and fundamental explanations for reported filter failures in normal service are given. (orig./DG) [de

  6. Dynamics of electrostatically driven granular media: Effects of humidity

    International Nuclear Information System (INIS)

    Howell, D. W.; Aronson, Igor S.; Crabtree, G. W.

    2001-01-01

    We performed experimental studies of the effect of humidity on the dynamics of electrostatically driven granular materials. Both conducting and dielectric particles undergo a phase transition from an immobile state (granular solid) to a fluidized state (granular gas) with increasing applied field. Spontaneous precipitation of solid clusters from the gas phase occurs as the external driving is decreased. The clustering dynamics in conducting particles is primarily controlled by screening of the electric field but is aided by cohesion due to humidity. It is shown that humidity effects dominate the clustering process with dielectric particles

  7. Potential of Genomic Selection in Mass Selection Breeding of an Allogamous Crop: An Empirical Study to Increase Yield of Common Buckwheat

    Directory of Open Access Journals (Sweden)

    Shiori Yabe

    2018-03-01

    Full Text Available To evaluate the potential of genomic selection (GS, a selection experiment with GS and phenotypic selection (PS was performed in an allogamous crop, common buckwheat (Fagopyrum esculentum Moench. To indirectly select for seed yield per unit area, which cannot be measured on a single-plant basis, a selection index was constructed from seven agro-morphological traits measurable on a single plant basis. Over 3 years, we performed two GS and one PS cycles per year for improvement in the selection index. In GS, a prediction model was updated every year on the basis of genotypes of 14,598–50,000 markers and phenotypes. Plants grown from seeds derived from a series of generations of GS and PS populations were evaluated for the traits in the selection index and other yield-related traits. GS resulted in a 20.9% increase and PS in a 15.0% increase in the selection index in comparison with the initial population. Although the level of linkage disequilibrium in the breeding population was low, the target trait was improved with GS. Traits with higher weights in the selection index were improved more than those with lower weights, especially when prediction accuracy was high. No trait changed in an unintended direction in either GS or PS. The accuracy of genomic prediction models built in the first cycle decreased in the later cycles because the genetic bottleneck through the selection cycles changed linkage disequilibrium patterns in the breeding population. The present study emphasizes the importance of updating models in GS and demonstrates the potential of GS in mass selection of allogamous crop species, and provided a pilot example of successful application of GS to plant breeding.

  8. Potential of Genomic Selection in Mass Selection Breeding of an Allogamous Crop: An Empirical Study to Increase Yield of Common Buckwheat.

    Science.gov (United States)

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2018-01-01

    To evaluate the potential of genomic selection (GS), a selection experiment with GS and phenotypic selection (PS) was performed in an allogamous crop, common buckwheat ( Fagopyrum esculentum Moench). To indirectly select for seed yield per unit area, which cannot be measured on a single-plant basis, a selection index was constructed from seven agro-morphological traits measurable on a single plant basis. Over 3 years, we performed two GS and one PS cycles per year for improvement in the selection index. In GS, a prediction model was updated every year on the basis of genotypes of 14,598-50,000 markers and phenotypes. Plants grown from seeds derived from a series of generations of GS and PS populations were evaluated for the traits in the selection index and other yield-related traits. GS resulted in a 20.9% increase and PS in a 15.0% increase in the selection index in comparison with the initial population. Although the level of linkage disequilibrium in the breeding population was low, the target trait was improved with GS. Traits with higher weights in the selection index were improved more than those with lower weights, especially when prediction accuracy was high. No trait changed in an unintended direction in either GS or PS. The accuracy of genomic prediction models built in the first cycle decreased in the later cycles because the genetic bottleneck through the selection cycles changed linkage disequilibrium patterns in the breeding population. The present study emphasizes the importance of updating models in GS and demonstrates the potential of GS in mass selection of allogamous crop species, and provided a pilot example of successful application of GS to plant breeding.

  9. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    Science.gov (United States)

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  10. Equity yields

    NARCIS (Netherlands)

    Vrugt, E.; van Binsbergen, J.H.; Koijen, R.S.J.; Hueskes, W.

    2013-01-01

    We study a new data set of dividend futures with maturities up to ten years across three world regions: the US, Europe, and Japan. We use these asset prices to construct equity yields, analogous to bond yields. We decompose the equity yields to obtain a term structure of expected dividend growth

  11. Relative Humidity in the Tropopause Saturation Layer

    Science.gov (United States)

    Selkirk, H. B.; Schoeberl, M. R.; Pfister, L.; Thornberry, T. D.; Bui, T. V.

    2017-12-01

    The tropical tropopause separates two very different atmospheric regimes: the stable lower stratosphere where the air is both extremely dry and nearly always so, and a transition layer in the uppermost tropical troposphere, where humidity on average increases rapidly downward but can undergo substantial temporal fluctuations. The processes that control the humidity in this layer below the tropopause include convective detrainment (which can result in either a net hydration or dehydration), slow ascent, wave motions and advection. Together these determine the humidity of the air that eventually passes through the tropopause and into the stratosphere, and we refer to this layer as the tropopause saturation layer or TSL. We know from in situ water vapor observations such as Ticosonde's 12-year balloonsonde record at Costa Rica that layers of supersaturation are frequently observed in the TSL. While their frequency is greatest during the local rainy season from June through October, supersaturation is also observed in the boreal winter dry season when deep convection is well south of Costa Rica. In other words, local convection is not a necessary condition for the presence of supersaturation. Furthermore, there are indications from airborne measurements during the recent POSIDON campaign at Guam that if anything deep convection tends to `reset' the TSL locally to a state of just-saturation. Conversely, it may be that layers of supersaturation are the result of slow ascent. To explore these ideas we take Ticosonde water vapor observations from the TSL, stratify them on the basis of relative humidity and report on the differences in the the history of upstream convective influence between supersaturated parcels and those that are not.

  12. Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments

    Science.gov (United States)

    Hurt, Richard A.; Robeson, Michael S.; Shakya, Migun; Moberly, James G.; Vishnivetskaya, Tatiana A.; Gu, Baohua; Elias, Dwayne A.

    2014-01-01

    Despite over three decades of progress, extraction of high molecular weight (HMW) DNA from high clay soils or iron oxide cemented clay has remained challenging. HMW DNA is desirable for next generation sequencing as it yields the most comprehensive coverage. Several DNA extraction procedures were compared from samples that exhibit strong nucleic acid adsorption. pH manipulation or use of alternative ion solutions offered no improvement in nucleic acid recovery. Lysis by liquid N2 grinding in concentrated guanidine followed by concentrated sodium phosphate extraction supported HMW DNA recovery from clays high in iron oxides. DNA recovered using 1 M sodium phosphate buffer (PB) as a competitive desorptive wash was 15.22±2.33 µg DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 µg DNA/g clay with the Powerlyzer system (MoBio). Increasing PB concentration in the lysis reagent coincided with increasing DNA fragment length during initial extraction. Rarefaction plots of 16S rRNA (V1–V3 region) pyrosequencing from A-horizon and clay soils showed an ∼80% and ∼400% larger accessed diversity compared to the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more operational taxonomic units (OTU) recovered. PMID:25033199

  13. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    Science.gov (United States)

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Humidity level In psychrometric processes

    International Nuclear Information System (INIS)

    Mojsovski, Filip

    2008-01-01

    When a thermal engineer needs to control, rather than merely moderate humidity, he must focus on the moisture level as a separate variable - not simply an addition of temperature control. Controlling humidity generally demands a correct psychrometric approach dedicated to that purpose [1].Analysis of the humidity level in psychrometric thermal processes leads to relevant data for theory and practice [2]. This paper presents: (1) the summer climatic curve for the Skopje region, (2) selected results of investigation on farm dryers made outside laboratories. The first purpose of such activity was to examine relations between weather conditions and drying conditions. The estimation of weather condition for the warmest season of the year was realized by a summer climatic curve. In the science of drying, basic drying conditions are temperature, relative humidity and velocity of air, thickness of dried product and dryer construction. The second purpose was to realize correct prediction of drying rates for various psychrometrics drying processes and local products. Test runs with the dryer were carried out over a period of 24 h, using fruits and vegetables as experimental material. Air flow rate through the dryer of 150 m3/h, overall drying rate of 0.04 kg/h and air temperature of 65 oC were reached. Three types of solar dryers, were exploited in the research.

  15. Low-cost personal cooling in hot humid offices

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Santos, A.

    This report presents a low cost solution to avoid heat stress in a hot and humid environment based on a solar powered drying of supply air. The air drying facilities and a validation of the benefits through comprehensive human exposure studies are described. The study represents an example...... of applied participative research performed in a developing country. The report may be used as a background for the improvement of the indoor climate in poor, hot and humid regions without increased use of electricity....

  16. Air humidity requirements for human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole

    1999-01-01

    level near 100% rh. For respiratory comfort are the requirements much more stringent and results in lower permissible indoor air humidities. Compared with the upper humidity limit specified in existing thermal comfort standards, e.g. ASHRAE Addendum 55a, the humidity limit based on skin humidity......Upper humidity limits for the comfort zone determined from two recently presented models for predicting discomfort due to skin humidity and insufficient respiratory cooling are proposed. The proposed limits are compared with the maximum permissible humidity level prescribed in existing standards...... for the thermal indoor environment. The skin humidity model predicts discomfort as a function of the relative humidity of the skin, which is determined by existing models for human heat and moisture transfer based on environmental parameters, clothing characteristics and activity level. The respiratory model...

  17. Mixed fertilizers incorporated in organic polimer matrix and pressed in tablets as means of enhancing the nutrients productive use in increased crop yields

    International Nuclear Information System (INIS)

    Gavriluta, I.; Borlan, Z.; Alexandrescu, A; Budoi, G.; Bireescu, L.; Bireescu, G.

    1999-01-01

    In view of increasing productive use of fertilizer nutrients in crops an admixture of brown coal dust containing up to 40 % carbon ammonia lignosulfonate with 50 % lignoles dry matter as binding agent were used to press water soluble fertilizer sources with a total of N+P 2 O 5 +K 2 O content of up to 26 % in tablets. These may be manufactured at different N:P 2 O 5 :K 2 O ratios as for instance 1:1:1; 1:0.75:0.50 etc. Brown coal and coal refuse dust were used as matrix for inclusion while lignosulfonates served for binding the ingredients when pressing them in tablets of 15-20 g dry mass each. These were tested in accurate field experiments to compare the agronomic effectiveness of equal amounts of NPK in tablets with equivalent rates of powdered sources of nutrients in the same chemical forms. NPK pressed in tablets were applied locally along the plant row, while the powdered mixed fertilizer have been thoroughly mixed in the ploughed layer. Accurate field experiments have pointed out the higher agronomical effectiveness of NPK pressed in tablets as compared to equal amounts of NPK powdered and thoroughly mixed into the ploughed layer of soil. Indicators were higher yield increases per nutrient unit and higher degrees of apparent productive use of nutrients in crops. Refs. 4 (author)

  18. Autogenous Deformation and Change of the Relative Humidity in Silica Fume-Modified Cement Paste

    DEFF Research Database (Denmark)

    Jensen, Ole mejlhede; Hansen, Per Freiesleben

    1996-01-01

    Even during sealed curing and at a constant temperature a hardening cement paste will deform and the relative humidity within its pores will lower. This autogenous deformation and autogenous relative humidity change may be so significant that the cement paste cracks if the deformation is restrained....... This article focuses on the influence of silica fume addition on autogenous deformation and autogenous relative humidity change. Continuous measurement of autogenous deformation and autogenous relative humidity change for more than 1 year and 1« years, respectively, was performed. The investigations show...... thatsilica fume addition markedly increases the autogenous shrinkage as well as the autogenous relative humidity change....

  19. Effect of fabric texture and material on perceived discomfort at high humidity

    DEFF Research Database (Denmark)

    Toftum, Jørn; Rasmussen, Leif W.; Mackeprang, Jørgen

    1999-01-01

    This study investigated the effect of material (cotton/polyester) and texture (woven/knitted) of the inner layer of a clothing ensemble on human discomfort at high skin humidity. No clear effect on discomfort of material and texture could be detected. However, acceptability of skin humidity de......-crea-sed with increasing relative skin humidity. A model was developed that predicts the percentage of persons dissatisfied due to humid skin as a function of relative skin humidity. The model applies for woven and knitted cot-ton and polyester materials and for activity levels typical for office work. Even at very high...

  20. Fabrication and Characterization of Polyaniline/PVA Humidity Microsensors

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    2011-08-01

    Full Text Available This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm2. The sensitive film is polyaniline doping polyvinyl alcohol (PVA that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction. The commercial 0.35 mm Complimentary Metal Oxide Semiconductor (CMOS process is used to fabricate the humidity microsensor. The sensor needs a post-CMOS process to etch the sacrificial layer and to coat the sensitive film on the interdigitated electrodes. The sensor produces a change in resistance as the polyaniline/PVA film absorbs or desorbs vapor. Experimental results show that the sensitivity of the humidity sensor is about 12.6 kΩ/%RH at 25 °C.

  1. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor

    Science.gov (United States)

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-01-01

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly

  2. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor.

    Science.gov (United States)

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-07-10

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly

  3. Holographic sol-gel monoliths: optical properties and application for humidity sensing

    Science.gov (United States)

    Ilatovskii, Daniil A.; Milichko, Valentin; Vinogradov, Alexander V.; Vinogradov, Vladimir V.

    2018-05-01

    Sol-gel monoliths based on SiO2, TiO2 and ZrO2 with holographic colourful diffraction on their surfaces were obtained via a sol-gel synthesis and soft lithography combined method. The production was carried out without any additional equipment at near room temperature and atmospheric pressure. The accurately replicated wavy structure with nanoscale size of material particles yields holographic effect and its visibility strongly depends on refractive index (RI) of materials. Addition of multi-walled carbon nanotubes (MWCNTs) in systems increases their RI and lends absorbing properties due to extremely high light absorption constant. Further prospective and intriguing applications based on the most successful samples, MWCNTs-doped titania, were investigated as reversible optical humidity sensor. Owing to such property as reversible resuspension of TiO2 nanoparticles while interacting with water, it was proved that holographic xerogels can repeatedly act as humidity sensors. Materials which can be applied as humidity sensors in dependence on holographic response were discovered for the first time.

  4. Holographic sol–gel monoliths: optical properties and application for humidity sensing

    Science.gov (United States)

    Milichko, Valentin; Vinogradov, Alexander V.; Vinogradov, Vladimir V.

    2018-01-01

    Sol–gel monoliths based on SiO2, TiO2 and ZrO2 with holographic colourful diffraction on their surfaces were obtained via a sol–gel synthesis and soft lithography combined method. The production was carried out without any additional equipment at near room temperature and atmospheric pressure. The accurately replicated wavy structure with nanoscale size of material particles yields holographic effect and its visibility strongly depends on refractive index (RI) of materials. Addition of multi-walled carbon nanotubes (MWCNTs) in systems increases their RI and lends absorbing properties due to extremely high light absorption constant. Further prospective and intriguing applications based on the most successful samples, MWCNTs-doped titania, were investigated as reversible optical humidity sensor. Owing to such property as reversible resuspension of TiO2 nanoparticles while interacting with water, it was proved that holographic xerogels can repeatedly act as humidity sensors. Materials which can be applied as humidity sensors in dependence on holographic response were discovered for the first time.

  5. Ozone Production With Dielectric Barrier Discharge: Effects of Power Source and Humidity

    KAUST Repository

    Zhang, Xuming

    2016-08-24

    Ozone synthesis in air dielectric barrier discharge (DBD) was studied with an emphasis on the effects of power sources and humidity. Discharge characteristics were investigated to understand the physical properties of plasma and corresponding system performance. It was found that 10-ns pulsed DBD produced a homogeneous discharge mode, while ac DBD yielded an inhomogeneous pattern with many microdischarge channels. At a similar level of the energy density (ED), decreasing the flowrate is more effective in the production of ozone for the cases of the ac DBD, while increased voltage is more effective for the pulsed DBD. Note that the maximum ozone production efficiency (110 g/kWh) was achieved with the pulsed DBD. At the ED of ∼ 85 J/L, the ozone concentrations with dry air were over three times higher than those with the relative humidity of 100% for both the ac DBD and pulsed DBD cases. A numerical simulation was conducted using a global model to understand a detailed chemical role of water vapor to ozone production. It was found HO and OH radicals from water vapor significantly consumed O atoms, resulting in a reduction in ozone production. The global model qualitatively captured the experimental trends, providing further evidence that the primary effect of humidity on ozone production is chemical in nature.

  6. The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield1[OPEN

    Science.gov (United States)

    He, Xue; Qu, Baoyuan; Li, Wenjing; Zhao, Xueqiang; Teng, Wan; Ma, Wenying; Ren, Yongzhe; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-01-01

    Nitrate is a major nitrogen resource for cereal crops; thus, understanding nitrate signaling in cereal crops is valuable for engineering crops with improved nitrogen use efficiency. Although several regulators have been identified in nitrate sensing and signaling in Arabidopsis (Arabidopsis thaliana), the equivalent information in cereals is missing. Here, we isolated a nitrate-inducible and cereal-specific NAM, ATAF, and CUC (NAC) transcription factor, TaNAC2-5A, from wheat (Triticum aestivum). A chromatin immunoprecipitation assay showed that TaNAC2-5A could directly bind to the promoter regions of the genes encoding nitrate transporter and glutamine synthetase. Overexpression of TaNAC2-5A in wheat enhanced root growth and nitrate influx rate and, hence, increased the root’s ability to acquire nitrogen. Furthermore, we found that TaNAC2-5A-overexpressing transgenic wheat lines had higher grain yield and higher nitrogen accumulation in aerial parts and allocated more nitrogen in grains in a field experiment. These results suggest that TaNAC2-5A is involved in nitrate signaling and show that it is an exciting gene resource for breeding crops with more efficient use of fertilizer. PMID:26371233

  7. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests.

    Science.gov (United States)

    Helman, David; Lensky, Itamar M; Yakir, Dan; Osem, Yagil

    2017-07-01

    More frequent and intense droughts are projected during the next century, potentially changing the hydrological balances in many forested catchments. Although the impacts of droughts on forest functionality have been vastly studied, little attention has been given to studying the effect of droughts on forest hydrology. Here, we use the Budyko framework and two recently introduced Budyko metrics (deviation and elasticity) to study the changes in the water yields (rainfall minus evapotranspiration) of forested catchments following a climatic drought (2006-2010) in pine forests distributed along a rainfall gradient (P = 280-820 mm yr -1 ) in the Eastern Mediterranean (aridity factor = 0.17-0.56). We use a satellite-based model and meteorological information to calculate the Budyko metrics. The relative water yield ranged from 48% to 8% (from the rainfall) in humid to dry forests and was mainly associated with rainfall amount (increasing with increased rainfall amount) and bedrock type (higher on hard bedrocks). Forest elasticity was larger in forests growing under drier conditions, implying that drier forests have more predictable responses to drought, according to the Budyko framework, compared to forests growing under more humid conditions. In this context, younger forests were shown more elastic than older forests. Dynamic deviation, which is defined as the water yield departure from the Budyko curve, was positive in all forests (i.e., less-than-expected water yields according to Budyko's curve), increasing with drought severity, suggesting lower hydrological resistance to drought in forests suffering from larger rainfall reductions. However, the dynamic deviation significantly decreased in forests that experienced relatively cooler conditions during the drought period. Our results suggest that forests growing under permanent dry conditions might develop a range of hydrological and eco-physiological adjustments to drought leading to higher hydrological

  8. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System.

    Science.gov (United States)

    Chen, Ling-Hsi; Chen, Chiachung

    2018-02-21

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories.

  9. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System

    Science.gov (United States)

    Chen, Ling-Hsi

    2018-01-01

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories. PMID:29466313

  10. High transpiration efficiency increases pod yield under intermittent drought in dry and hot atmospheric conditions but less so under wetter and cooler conditions in groundnut (Arachis hypogaea (L.)).

    Science.gov (United States)

    Vadez, Vincent; Ratnakumar, Pasala

    2016-07-01

    Water limitation is a major yield limiting factor in groundnut and transpiration efficiency (TE) is considered the main target for improvement, but TE being difficult to measure it has mostly been screened with surrogates. The paper re-explore the contribution of TE to grain yield in peanut by using a novel experimental approach in which TE is measured gravimetrically throughout the crop life cycle, in addition to measurement of TE surrogates. Experimentation was carried out with the groundnut reference collection (n = 288), across seasons varying for the evaporative demand (vapor pressure deficit, VPD) and across both fully irrigated and intermittent water stress conditions. There was large genotypic variation for TE under water stress in both low and high VPD season but the range was larger (5-fold) in the high- than in the low-VPD season (2-fold). Under water stress in both seasons, yield was closely related to the harvest index (HI) while TE related directly to yield only in the high VPD season. After discounting the direct HI effect on yield, TE explained a large portion of the remaining yield variations in both seasons, although marginally in the low VPD season. By contrast, the total water extracted from the soil profile, which varied between genotypes, did not relate directly to pod yield and neither to the yield residuals unexplained by HI. Surrogates for TE (specific leaf area, SLA, and SPAD chlorophyll meter readings, SCMR) never showed any significant correlation to TE measurements. Therefore, TE is an important factor explaining yield differences in groundnut under high VPD environments, suggesting that stomatal regulation under high VPD, rather than high photosynthetic rate as proposed earlier, may have a key role to play in the large TE differences found, which open new opportunities to breed improved groundnut for high VPD.

  11. Increased biomass, seed yield and stress tolerance is conferred in Arabidopsis by a novel enzyme from the resurrection grass Sporobolus stapfianus that glycosylates the strigolactone analogue GR24.

    Directory of Open Access Journals (Sweden)

    Sharmin Islam

    Full Text Available Isolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT. Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance. We hypothesise that expression of SDG8i in Arabidopsis negatively affects the bioactivity of metabolite/s that mediate/s environmentally-induced repression of cell division and expansion, both during normal development and in response to stress. The phenotype of transgenic plants over-expressing SDG8i suggests modulation in activities of both growth- and stress-related hormones. Plants overexpressing the UGT show evidence of elevated auxin levels, with the enzyme acting downstream of ABA to reduce drought-induced senescence. Analysis of the in vitro activity of the UGT recombinant protein product demonstrates that SDG8i can glycosylate the synthetic strigolactone analogue GR24, evoking a link with strigolactone-related processes in vivo. The large improvements observed in survival of transgenic Arabidopsis plants under cold-, salt- and drought-stress, as well as the substantial increases in growth rate and seed yield under non-stress conditions, indicates that overexpression of SDG8i in crop plants may provide a novel means of increasing plant productivity.

  12. Pretreatment of Cr(VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum.

    Science.gov (United States)

    Soni, Sumit K; Singh, Rakshapal; Singh, Mangal; Awasthi, Ashutosh; Wasnik, Kundan; Kalra, Alok

    2014-05-01

    Pot culture experiments were performed under controlled greenhouse conditions to investigate whether four Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) were able to decrease Cr toxicity to Pisum sativum plants in artificially Cr(VI)-contaminated soil. The effect of pretreatment of soil with chromate-reducing bacteria on plant growth, chromate uptake, bioaccumulation, nodulation, and population of Rhizobium was found to be directly influenced by the time interval between bacterial treatment and seed sowing. Pretreatment of soil with SUCR140 (Microbacterium sp.) 15 days before sowing (T+15) showed a maximum increase in growth and biomass in terms of root length (93 %), plant height (94 %), dry root biomass (99 %), and dry shoot biomass (99 %). Coinoculation of Rhizobium with SUCR140 further improved the aforementioned parameter. Compared with the control, coinoculation of SUCR140+R showed a 117, 116, 136, and 128 % increase, respectively, in root length, plant height, dry root biomass, and dry shoot biomass. The bioavailability of Cr(VI) decreased significantly in soil (61 %) and in uptake (36 %) in SUCR140-treated plants; the effects of Rhizobium, however, either alone or in the presence of SUCR140, were not significant. The populations of Rhizobium (126 %) in soil and nodulation (146 %) in P. sativum improved in the presence of SUCR140 resulting in greater nitrogen (54 %) concentration in the plants. This study shows the usefulness of efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through decreased Cr toxicity and improved symbiotic relationship of the plants with Rhizobium. Further decrease in the translocation of Cr(VI) through improved nodulation by Rhizobium in the presence of efficient Cr-reducing bacterial strains could also decrease the accumulation of Cr in shoots.

  13. Cattle manure fertilization increases fig yield Adubação com esterco de curral na produção da figueira

    Directory of Open Access Journals (Sweden)

    Sarita Leonel

    2009-12-01

    Full Text Available Fertilization using organic compounds is complementary to chemical fertilization, being essential to integrated fruit production. Reports on fig tree (Ficus carica L. organic fertilization and mineral nutrition are worldwide scarce, especially in Brazil. This experiment aimed to evaluate the effects of cattle manure fertilization on the yield and productivity of the fig tree 'Roxo de Valinhos' in Botucatu, São Paulo State, Brazil, during the 2002/03, 2003/04, 2004/05 and 2005/06 crop cycles. Plants aged one, two, three and four year olds received the following cattle manure treatments: control (no fertilizer, 25%, 50%, 75%, 100%, 125% and 150% of the recommended N level for this crop. The evaluated variables were: fruit number, weight and mean diameter, plant yield and productivity. The application of cattle manure increased productivity, yield and fruit number, slightly affecting fruit dimensions. After four years of cattle manure application, the best results were obtained with 76 to 124% of the N level recommended for the fig crop.A adubação com compostos orgânicos é complementar à adubação química e especialmente necessária para a produção integrada de frutas. Trabalhos de pesquisa com adubação orgânica e nutrição mineral da figueira (Ficus carica L. são escassos em todo o mundo e particularmente, no Brasil. O experimento teve como objetivo avaliar os efeitos da adubação orgânica com esterco de curral na produção e produtividade da figueira 'Roxo de Valinhos' em Botucatu-SP, nos ciclos de produção de 2002/03, 2003/04, 2004/05 e 2005/06. As plantas com idade de um, dois, três e quatro anos receberam os tratamentos com doses de esterco de curral correspondentes a: testemunha (sem adubação, 25%, 50%, 75%, 100%, 125% e 150% da dose recomendada de N para a cultura. As variáveis avaliadas foram número, peso e diâmetro médio dos frutos, produção por planta e produtividade. A aplicação de esterco de curral

  14. Evaluation of simulated corn yields and associated uncertainty in different climate zones of China using Daycent Model

    Science.gov (United States)

    Fu, A.; Xue, Y.

    2017-12-01

    Corn is one of most important agricultural production in China. Research on the simulation of corn yields and the impacts of climate change and agricultural management practices on corn yields is important in maintaining the stable corn production. After climatic data including daily temperature, precipitation, solar radiation, relative humidity, and wind speed from 1948 to 2010, soil properties, observed corn yields, and farmland management information were collected, corn yields grown in humidity and hot environment (Sichuang province) and cold and dry environment (Hebei province) in China in the past 63 years were simulated by Daycent, and the results was evaluated based on published yield record. The relationship between regional climate change, global warming and corn yield were analyzed, the uncertainties of simulation derived from agricultural management practices by changing fertilization levels, land fertilizer maintenance and tillage methods were reported. The results showed that: (1) Daycent model is capable to simulate corn yields under the different climatic background in China. (2) When studying the relationship between regional climate change and corn yields, it has been found that observed and simulated corn yields increased along with total regional climate change. (3) When studying the relationship between the global warming and corn yields, It was discovered that newly-simulated corn yields after removing the global warming trend of original temperature data were lower than before.

  15. Study on radon concentration monitoring using activated charcoal canisters in high humidity environments

    International Nuclear Information System (INIS)

    Wang Yuexing; Wang Haijun; Yang Yifang; Qin Sichang; Wang Zhentao; Zhang Zhenjiang

    2009-01-01

    The effects of humidity on the sensitivity using activated charcoal canisters for measuring radon concentrations in high humidity environments were studied. Every canister filled with 80 g of activated charcoal, and they were exposed to 48 h or 72 h in the relative humidity of 68%, 80%, 88% and 96% (28 degree C), respectively. The amount of radon absorbed in the canisters was determined by counting the gamma rays from 214 Pb and 214 Bi (radon progeny). The results showed that counts decreased with the increase of relative humidity. There was a negative linear relationship between count and humidity. In the relative humidity range of 68%-96%, the sensitivity of radon absorption decreased about 2.4% for every 1% (degree)rise in humidity. The results also showed that the exposure time of the activated charcoal canisters should be less than 3 days. (authors)

  16. A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Khasan S. Karimov

    2013-03-01

    Full Text Available In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O-based humidity sensor. Silver thin films (thickness ~200 nm were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.

  17. Humidity dependence of adhesion for silane coated microcantilevers

    International Nuclear Information System (INIS)

    De Boer, Maarten P.; Mayer, Thomas M.; Carpick, Robert W.; Michalske, Terry A.; Srinivasan, U.; Maboudian, R.

    1999-01-01

    This study examines adhesion between silane-coated micromachined surfaces that are exposed to humid conditions. Our quantitative values for interfacial adhesion energies are determined from an in-situ optical measurement of deformations in partly-adhered cantilever beams. We coated micromachined cantilevers with either ODTS (C(sub 18)H(sub 37)SiCl(sub 3)) or FDTS (C(sub 8)F(sub 17)C(sub 2)H(sub 4)SiCl(sub 3)) with the objective of creating hydrophobic surfaces whose adhesion would be independent of humidity. In both cases, the adhesion energy is significantly lower than for uncoated, hydrophilic surfaces. For relative humidities (RH) less than 95% (ODTS) and 80% (FDTS) the adhesion energy was extremely low and constant. In fact, ODTS-coated beams exposed to saturated humidity conditions and long (48 hour) exposures showed only a factor of two increase in adhesion energy. Surprisingly, FDTS coated beams, which initially have a higher contact angle (115(degree)) with water than do ODTS coated beams (112(degree)), proved to be much more sensitive to humidity. The FDTS coated surfaces showed a factor of one hundred increase in adhesion energy after a seven hour exposure to 90% RH. Atomic force microscopy revealed agglomerated coating material after exposed to high RH, suggesting a redistribution of the monolayer film. This agglomeration was more prominent for FDTS than ODTS. These findings suggest a new mechanism for uptake of moisture under high humidity conditions. At high humidities, the silane coatings can reconfigure from a surface to a bulk phase leaving behind locally hydrophilic sites which increase the average measured adhesion energy. In order for the adhesion increase to be observed, a significant fraction of the monolayer must be converted from the surface to the bulk phase

  18. Influence of fine water droplets to temperature and humidity

    Science.gov (United States)

    Hafidzal, M. H. M.; Hamzah, A.; Manaf, M. Z. A.; Saadun, M. N. A.; Zakaria, M. S.; Roslizar, A.; Jumaidin, R.

    2015-05-01

    Excessively dry air can cause dry skin, dry eyes and exacerbation of medical conditions. Therefore, many researches have been done in order to increase humidity in our environment. One of the ways is by using water droplets. Nowadays, it is well known in market stand fan equipped with water mister in order to increase the humidity of certain area. In this study, the same concept is applied to the ceiling fan. This study uses a model that combines a humidifier which functions as cooler, ceiling fan and scaled down model of house. The objective of this study is to analyze the influence of ceiling fan humidifier to the temperature and humidity in a house. The mechanism of this small model uses batteries as the power source, connected to the fan and the humidifier. The small water tank's function is to store and supply water to the humidifier. The humidifier is used to cool the room by changing water phase to fine water droplets. Fine water droplets are created from mechanism of the humidifier, which is by increasing the kinetic energy of water molecule using high frequency vibration that overcome the holding force between water molecules. Thus, the molecule of water will change to state of gas or mist. The fan is used to spread out the mist of water to surrounding of the room in order to enhance the humidity. Thermocouple and humidity meter are used to measure temperature and humidity in some period of times. The result shows that humidity increases and temperature decreases with time. This application of water droplet can be applied in the vehicles and engine in order to decrease the temperature.

  19. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid U.S. Climates

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ticci, Sara [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    Past field research and simulation studies have shown that high performance homes experience elevated indoor humidity levels for substantial portions of the year in humid climates. This is largely the result of lower sensible cooling loads, which reduces the moisture removed by the cooling system. These elevated humidity levels lead to concerns about occupant comfort, health and building durability. Use of mechanical ventilation at rates specified in ASHRAE Standard 62.2-2013 are often cited as an additional contributor to humidity problems in these homes. Past research has explored solutions, including supplemental dehumidification, cooling system operational enhancements and ventilation system design (e.g., ERV, supply, exhaust, etc.). This project’s goal is to develop and demonstrate (through simulations) smart ventilation strategies that can contribute to humidity control in high performance homes. These strategies must maintain IAQ via equivalence with ASHRAE Standard 62.2-2013. To be acceptable they must not result in excessive energy use. Smart controls will be compared with dehumidifier energy and moisture performance. This work explores the development and performance of smart algorithms for control of mechanical ventilation systems, with the objective of reducing high humidity in modern high performance residences. Simulations of DOE Zero-Energy Ready homes were performed using the REGCAP simulation tool. Control strategies were developed and tested using the Residential Integrated Ventilation (RIVEC) controller, which tracks pollutant exposure in real-time and controls ventilation to provide an equivalent exposure on an annual basis to homes meeting ASHRAE 62.2-2013. RIVEC is used to increase or decrease the real-time ventilation rate to reduce moisture transport into the home or increase moisture removal. This approach was implemented for no-, one- and two-sensor strategies, paired with a variety of control approaches in six humid climates (Miami

  20. Assessment of optimum thermal humidity index for crossbred dairy cows in Dehradun district, Uttarakhand, India

    Directory of Open Access Journals (Sweden)

    Shweta Kohli

    2014-11-01

    Full Text Available Aim: Uttarakhand is a relatively new state and many cross bred cattle were introduced to boost the milk yield of the state. Despite all efforts the milk yield of dairy in Uttarakhand is comparatively low. In our study, we assessed the effect of heat stress on milk production, using thermal humidity index (THI in high (cross bred cattle and low milk producing (LMP cows (native cows in Dehradun district of Uttarakhand, India. Materials and Methods: Effect of heat stress was measured on high and LMP cross bred cows using THI maintained on standard feeding and nutritional value. Daily ambient temperature and relative humidity were recorded to calculate the THI. Daily milk production was noted to verify the effect of heat stress. Furthermore, profile the thyroid hormones using enzyme-linked immunosorbent assay. Results: Low yielding cows did not show any significant change when the THI was above 72 from month June to October during stress condition. But high yielding cows shows a significant decrease (p<0.05 in milk yield when THI was above 80 (severe stress zone in the month of June to October and milk production decrease from an average of 18±1.4 to 10.9±0.92 L whereas in November-December when THI declines in the zone of comfort the milk yield did not show significant rise. The thyroid hormones (T3 and T4 level were found lower in summer heat stress condition for a high yielding cattle. Conclusion: Summer heat stress significantly decreased milk yield in high milk producing (HMP crossbred cows. As THI rises from comfort zone to stress zone milk yield decreased by 30-40% and this loss in milk production is irreversible. Management strategies should be needed as environmental control housing is suggested for the HMP crossbred cattle to minimize the heat stress. If all the dairies with cross bred cattle implement these small modifications in housing of cattle, there would be a huge increase in milk production.

  1. Studies on the effect of the relative humidity of the atmosphere on the growth and physiology of rice [Oryza sativa] plants, 10: Effect of ambient humidity on the translocation of assimilated 13C in leaves

    International Nuclear Information System (INIS)

    Hirai, G.; Okumura, T.; Takeuchi, S.; Tanaka, O.; Chujo, H.; Tanaka, N.

    1996-01-01

    13C-labeled CO2 was fed to rice seedlings for 60 min in the light under low (60%) or high (90%) humidity. The amount of 13C assimilated by the leaves under high humidity was much greater than that by the plants under low humidity. The 13C-labeled CO2 was fed to the plants for 60 min at 75% humidity and then the plants were kept at 60 or 90% humidity under illumination. In 10 hours after the end of 13C feeding, the amount of 13C and 13C content increased in the roots of the plants kept under high humidity. On the other hand, they increased in the sixth leaf and the transfer of 13C to the roots was very low in the plants kept under low humidity. These results support our previous observations that dry matter production of the plants grown under high humidity was higher than that of the plants grown under low humidity, that the dry matter increase of roots in the plants grown under high humidity was higher than that of the plants grown under low humidity and that the stress caused by low humidity increased the partition of dry matter to the top of plants

  2. Hydration behaviour of synthetic saponite at variable relative humidity

    Indian Academy of Sciences (India)

    Hydration behaviour of synthetic saponite was examined by X-ray powder diffraction simulation at various relative humidities (RH). The basal spacing of the Ca-saponite increased stepwise with increase in RH. The (00) reflections observed reflect single or dual hydration states of smectite. Quasi-rational, intermediate, or ...

  3. Characterization of spacecraft humidity condensate

    Science.gov (United States)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  4. Ridge and furrow systems with film cover increase maize yields and mitigate climate risks of cold and drought stress in continental climates

    NARCIS (Netherlands)

    Dong, Wanlin; Zhang, Lizhen; Duan, Yu; Sun, Li; Zhao, Peiyi; Werf, van der Wopke; Evers, Jochem B.; Wang, Qi; Wang, Ruonan; Sun, Zhigang

    2017-01-01

    Ridge-furrow tillage and plastic film cover are widely applied in China to mitigate climate risks, e.g. cool temperature and low rainfall. This study aimed to quantify the effects of ridge-furrow tillage and film cover on maize growth and yield in an environment with frequent seasonal drought and

  5. Investigation of optimal conditions for production of highly crystalline nanocellulose with increased yield via novel Cr(III)-catalyzed hydrolysis: Response surface methodology.

    Science.gov (United States)

    Chen, You Wei; Lee, Hwei Voon; Abd Hamid, Sharifah Bee

    2017-12-15

    For the first time, a highly efficient Cr(NO 3 ) 3 catalysis system was proposed for optimization the yield and crystallinity of nanocellulose end product. A five-level three-factor central composite design coupled with response surface methodology was employed to elucidate parameters interactions between three design factors, namely reaction temperature (x 1 ), reaction time (x 2 ) and concentration of Cr(NO 3 ) 3 (x 3 ) over a broad range of process conditions and determine the effect on crystallinity index and product yield. The developed models predicted the maximum nanocellulose yield of 87% at optimum process conditions of 70.6°C, 1.48h, and 0.48M Cr(NO 3 ) 3 . At these conditions, the obtained nanocellulose presented high crystallinity index (75.3%), spider-web-like interconnected network morphology with the average width of 31.2±14.3nm. In addition, the yielded nanocellulose rendered a higher thermal stability than that of original cellulosic source and expected to be widely used as reinforcement agent in bio-nanocomposites materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of harvesting techniques on cumulative yields of huckleberry ...

    African Journals Online (AJOL)

    ... of huckleberry (Solanum scabrum) in the humid forest region of Cameroon. ... However, despite their relative importance, information on their management is ... first harvest on the subsequent fresh and dry shoot yields of Solanum scabrum.

  7. The impact of temperature and humidity on perception and emission of indoor air pollutants

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1996-01-01

    Sensory response to air polluted by five building materials under different combinations of temperature and humidity in the ranges 18°C-28°C and 30%-70% was studied in the laboratory. The experiments were designed to study separately the impact of temperature and humidity on the perception of air...... polluted by materials, and on the emission of pollutants from the materials. At all tested pollution levels of the five materials, the air was perceived significantly less acceptable with increasing temperature and humidity, and the impact of temperature and humidity on perception decreased with increasing...... pollution level. A significant linear correlation between acceptability and enthalpy of the air was found to describe the influence of temperature and humidity on perception. The impact of temperature and humidity on sensory emission was less significant than the impact on perception; however, the sensory...

  8. Short term change in relative humidity during the festival of Diwali in India

    Science.gov (United States)

    Ganguly, Nandita D.

    2015-07-01

    The changes in humidity levels during the Diwali festivities have been examined over a period of 13 years at three Indian metro cities: Ahmedabad, New Delhi and Kolkata. A small short term increase in relative humidity even in the absence of transport of humid air from Arabian Sea and Bay of Bengal has been observed. The relative humidity levels were found to be exceeding the ambient levels during night and lying below the ambient levels during morning hours, indicating an increase in the survival rates of viruses responsible for the transmission of viral infections, as well as triggering immune-mediated illnesses such as asthma during Diwali.

  9. Calculation of humidity parameters and uncertainties using different formulations and softwares

    OpenAIRE

    Orlando, Alcir de Faro; Brionizio, Júlio Dutra; Lima, L. A.

    2004-01-01

    The increase of importance of humidity instruments in the last 10 years brought their applications to several parts of industry, like automotive, pharmaceutical, food and laboratories to comply with regulations and quality requirements. As consequence, there has been a growing interest of manufacturers and secondary laboratories in having more accurate humidity measurements. That was the moment to consider performance evaluation and calibration issues. A humidity calibration laboratory sho...

  10. The Use of Radiation-Induced Degradation in Controlling Molecular Weights of Polysaccharides : The Effect of Humidity

    International Nuclear Information System (INIS)

    Sen, M.

    2006-01-01

    Better understanding of chemistry of radiation-induced degradation is becoming of increasing importance on account of the utilization of polymeric materials in a variety of radiation environments as well as beneficial uses of degraded polymers. It is very well known that polysaccharides in dry form or in solution degrade when exposed to ionizing radiation. In this study degrading effect of radiation has been considered from the point of view of controlling the molecular weights of kappa- and iota-carrageenans and sodium alginate irradiated under varying environmental conditions. The humidity equilibrated polymer samples kept over saturated aqueous salt solutions of NaCl, NaNO 3 and MgCl 2 were irradiated in a Gammacell 220 at room temperature. The degradation was investigated in detail by a careful Gel Permeation Chromatographic analysis of their respective molecular weights before and after irradiation Alexander-Charlesby-Ross equation was used in determining their radiation-chemical yields. Degradation yield is the highest for dry irradiated kappa- (G(S) = 0.73) and iota-carrageenans (G(S) = 2.43) and with small amount of water taken up from surrounding humidity degradation becomes less pronounced and G(S) values show a decrease down to G(S) = 0.16 and 0.87 at 75 % relative humidity, respectively. At very high water contents degradation effect again becomes more effective. Sodium alginate has fount to be less sensitive to the effect of humidity. When there is small amount of water in the polysaccharide structure, it is unlikely to expect an indirect effect of radiation. The water located in between the polymer chains however can give enough mobility to kappa and iota karrageenans chains, plastifying effect, which may enhance the radical-radical combinations thus lowering the rate of degradation hence reducing G(S) values

  11. Efeitos da precipitação pluvial, da umidade relativa do ar e de excesso e déficit hídrico do solo no peso do hectolitro, no peso de mil grãos e no rendimento de grãos de trigo Effects of rainfall, relative humidity and water excess and deficit on test weight, thousand kernel weight, and grain yield of wheat

    Directory of Open Access Journals (Sweden)

    Eliana Maria Guarienti

    2005-09-01

    Full Text Available Cerca de 90% da produção de trigo no Brasil está localizada nos estados do Paraná, do Rio Grande do Sul e de Santa Catarina. Nesses estados, a variabilidade climática é muito expressiva, tornando a produção tritícola uma atividade de risco e fazendo com que o decréscimo da produção e da produtividade de trigo seja objeto de questionamento de grande número de investigadores. Este trabalho teve por objetivo verificar a influência da precipitação pluvial, da umidade relativa do ar e de excesso e déficit hídrico do solo no peso do hectolitro, peso de mil grãos e rendimento de grãos. Foram usados dados de experimentos com a cultivar de trigo Embrapa 16, conduzidos durante os anos de 1990 a 1998, em sete locais do Rio Grande do Sul e em quatro locais de Santa Catarina. A análise estatística realizada foi correlação múltipla. Verificou-se que: a a precipitação pluvial e o excesso hídrico do solo afetaram negativamente o peso do hectolitro, peso de mil grãos e rendimento de grãos, e a umidade relativa do ar influenciou tanto positiva quanto negativamente essas variáveis; b o déficit hídrico do solo afetou positivamente o peso do hectolitro, peso de mil grãos e rendimento de grãos após a maturação fisiológica, isto é, nos dez primeiros dias anteriores à colheita, e negativamente nos demais períodos.About 90% of the wheat production in Brazil is located in Paraná, Rio Grande do Sul and Santa Catarina states. In these states there is a considerable climatic variability and consequently wheat production becomes a risky activity. Therefore, the decrease of wheat production and grain yield has been analyzed by a great number of investigators. This work aimed to verify the influence of rainfall, relative humidity, and water excess and deficit on test weight, thousand kernel weight, and grain yield of wheat. Data of Embrapa 16 wheat cultivar, obtained during the 1990-98 period, in seven Rio Grande do Sul state

  12. Opposing effects of humidity on rhodochrosite surface oxidation.

    Science.gov (United States)

    Na, Chongzheng; Tang, Yuanzhi; Wang, Haitao; Martin, Scot T

    2015-03-03

    Rhodochrosite (MnCO3) is a model mineral representing carbonate aerosol particles containing redox-active elements that can influence particle surface reconstruction in humid air, thereby affecting the heterogeneous transformation of important atmospheric constituents such as nitric oxides, sulfur dioxides, and organic acids. Using in situ atomic force microscopy, we show that the surface reconstruction of rhodochrosite in humid oxygen leads to the formation and growth of oxide nanostructures. The oxidative reconstruction consists of two consecutive processes with distinctive time scales, including a long waiting period corresponding to slow nucleation and a rapid expansion phase corresponding to fast growth. By varying the relative humidity from 55 to 78%, we further show that increasing humidity has opposing effects on the two processes, accelerating nucleation from 2.8(±0.2) × 10(-3) to 3.0(±0.2) × 10(-2) h(-1) but decelerating growth from 7.5(±0.3) × 10(-3) to 3.1(±0.1) × 10(-3) μm(2) h(-1). Through quantitative analysis, we propose that nanostructure nucleation is controlled by rhodochrosite surface dissolution, similar to the dissolution-precipitation mechanism proposed for carbonate mineral surface reconstruction in aqueous solution. To explain nanostructure growth in humid oxygen, a new Cabrera-Mott mechanism involving electron tunneling and solid-state diffusion is proposed.

  13. Effect of humidity on the filter pressure drop

    International Nuclear Information System (INIS)

    Vendel, J.; Letourneau, P.

    1995-01-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO 2 ). Cesium hydroxyde (CsOH) of size of 2 μ M AMMD has been generated by an ultrasonic generator and the 0.7 μm AMMD titanium oxyde has been dispersed by a open-quotes turn-tableclose quotes generator. As it is noted in the BISWAS'publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced

  14. Fabrication of Porous Silicon Based Humidity Sensing Elements on Paper

    Directory of Open Access Journals (Sweden)

    Tero Jalkanen

    2015-01-01

    Full Text Available A roll-to-roll compatible fabrication process of porous silicon (pSi based sensing elements for a real-time humidity monitoring is described. The sensing elements, consisting of printed interdigitated silver electrodes and a spray-coated pSi layer, were fabricated on a coated paper substrate by a two-step process. Capacitive and resistive responses of the sensing elements were examined under different concentrations of humidity. More than a three orders of magnitude reproducible decrease in resistance was measured when the relative humidity (RH was increased from 0% to 90%. A relatively fast recovery without the need of any refreshing methods was observed with a change in RH. Humidity background signal and hysteresis arising from the paper substrate were dependent on the thickness of sensing pSi layer. Hysteresis in most optimal sensing element setup (a thick pSi layer was still noticeable but not detrimental for the sensing. In addition to electrical characterization of sensing elements, thermal degradation and moisture adsorption properties of the paper substrate were examined in connection to the fabrication process of the silver electrodes and the moisture sensitivity of the paper. The results pave the way towards the development of low-cost humidity sensors which could be utilized, for example, in smart packaging applications or in smart cities to monitor the environment.

  15. Effect of humidity on the filter pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Letourneau, P. [Institut de Protection et de Surete Nucleaire, Gif-sur-Yvette (France)

    1995-02-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO{sub 2}). Cesium hydroxyde (CsOH) of size of 2 {mu} M AMMD has been generated by an ultrasonic generator and the 0.7 {mu}m AMMD titanium oxyde has been dispersed by a {open_quotes}turn-table{close_quotes} generator. As it is noted in the BISWAS`publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced.

  16. Passive Wireless SAW Humidity Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the preliminary development of passive wireless surface acoustic wave (SAW) based humidity sensors for NASA application to distributed...

  17. Study on absolute humidity influence of NRL-1 measuring apparatus for radon

    International Nuclear Information System (INIS)

    Shan Jian; Xiao Detao; Zhao Guizhi; Zhou Qingzhi; Liu Yan; Qiu Shoukang; Meng Yecheng; Xiong Xinming; Liu Xiaosong; Ma Wenrong

    2014-01-01

    The absolute humidity and temperature's effects on the NRL-1 measuring apparatus for radon were studied in this paper. By controlling the radon activity concentration of the radon laboratory in University of South China and improving the temperature and humidity adjust strategy, different correction factor values under different absolute humidities were obtained. Moreover, a correction curve between 1.90 and 14.91 g/m"3 was also attained. The results show that in the case of absolute humidity, when it is less than 2.4 g/m"3, collection efficiency of the NRL-1 measuring apparatus for radon tends to be constant, and the correction factor of the absolute humidity closes to 1. However, the correction factor increases nonlinearly along with the absolute humidity. (authors)

  18. Development of La3+ Doped CeO2 Thick Film Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Chunjie Wang

    2014-01-01

    Full Text Available The humidity sensitive characteristics of the sensor fabricated from 10 mol% La2O3 doped CeO2 nanopowders with particle size 17.26 nm synthesized via hydrothermal method were investigated at different frequencies. It was found that the sensor shows high humidity sensitivity, rapid response-recovery characteristics, and narrow hysteresis loop at 100 Hz in the relative humidity range from 11% to 95%. The impedance of the sensor decreases by about five orders of magnitude as relative humidity increases. The maximum humidity hysteresis is about 6% RH, and the response and recovery time is 12 and 13 s, respectively. These results indicate that the nanosized La2O3 doped CeO2 powder has potential application as high-performance humidity sensor.

  19. Neutron diffraction for studying the influence of the relative humidity on the carbonation process of cement pastes

    International Nuclear Information System (INIS)

    Galan, I; Andrade, C; Castellote, M; Rebolledo, N; Sanchez, J; Toro, L; Puente, I; Campo, J; Fabelo, O

    2011-01-01

    The effect of humidity on hydrated cement carbonation has been studied by means of in-situ neutron diffraction measurements. The evolution of the main crystalline phases in the bulk of the sample, portlandite and calcite, has been monitored during the process. Data obtained from neutron diffraction allow the quantification of the phases involved. The results highlight the great influence of humidity on carbonation. At very low humidity there are almost no changes. Between 53 and 75% relative humidity, portlandite decrease and calcite increase data can be fitted to exponential decay functions. At very high humidity portlandite remains nearly constant while calcite increases slightly with time, almost linearly.

  20. Effects of air humidity on ionization chamber response

    International Nuclear Information System (INIS)

    Meger, C.; DeLuca, P.M. Jr.; Pearson, D.W.; Venci, R.

    1983-01-01

    A study of the effect of air humidity on four different ionization chamber cap materials verified earlier studies (Kristensen and Sundbom, 1981; Mijnheer et al., 1983) and extended our understanding of the problem. We found nylon and A-150 plastic caps swell as they absorb water from the air. This accounts for as much as 2.5% increase in ionization response. Graphite chambers readily absorb and desorb water from the air. This creates a problem in maintaining dry air in a wet graphite chamber. Humid air has a different density and W value than dry air (Niatel, 1969, 1975). This decreases the charge collected in a wet graphite chamber. We observe a decrease in response of approximately 2%, a value greater than can be accounted for by these effects alone. Polyethylene chambers are unaffected by humid air. 4 refs., 9 figs

  1. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    Science.gov (United States)

    Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    factors that affected in the eastern and western Inner Mongolia. Furthermore, the effect of the average minimum temperature on yield was greater than that of the average maximum temperature. The increase of temperature in the western and middle regions would reduce the spring wheat yield, while in the eastern region due to the rising temperature, the spring wheat yield increased. The increase of solar radiation in the eastern and central regions would increase the yield of spring wheat. The increased air relative humidity would make the western spring wheat yield increased and the eastern spring wheat yield decreased. Finally, the models describing combined effects of these dominant climatic factors on the maturity and yield in different regions of Inner Mongolia were used to establish geographical differences. Our findings have important implications for improving climate change impact studies and for local agricultural production to cope with ongoing climate change.

  2. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Junfang Zhao

    meteorological factors that affected in the eastern and western Inner Mongolia. Furthermore, the effect of the average minimum temperature on yield was greater than that of the average maximum temperature. The increase of temperature in the western and middle regions would reduce the spring wheat yield, while in the eastern region due to the rising temperature, the spring wheat yield increased. The increase of solar radiation in the eastern and central regions would increase the yield of spring wheat. The increased air relative humidity would make the western spring wheat yield increased and the eastern spring wheat yield decreased. Finally, the models describing combined effects of these dominant climatic factors on the maturity and yield in different regions of Inner Mongolia were used to establish geographical differences. Our findings have important implications for improving climate change impact studies and for local agricultural production to cope with ongoing climate change.

  3. Humidity sensing behaviour of polyaniline/magnesium chromate

    Indian Academy of Sciences (India)

    The decrease in electrical resistance was observed when the polymer composites were exposed to the broad range of relative humidity (ranging between 20 and 95% RH). This decrease is due to increase in surface electrical conductivity resulting from moisture absorption and due to capillary condensation of water causing ...

  4. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 2 HvSLAC1 with grain yield for increasing salinity tolerance in barley

    Directory of Open Access Journals (Sweden)

    Xiaohui eLiu

    2014-11-01

    Full Text Available Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological and molecular techniques (stomata assay, gas exchange, phylogenetic analysis, QTL analysis, and gene expression to investigate stomatal behaviour and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterisation of stomatal behaviour of large numbers of varieties and genetic lines. Furthermore, we have found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant CM72 showed significantly larger stomatal aperture in 200 mM NaCl treatment than that of salt-sensitive Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield in salt treatment. Phenotypic characterisation and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to high barley grain yield in the field.

  5. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase

    Directory of Open Access Journals (Sweden)

    Ayalew Ligaba-Osena

    2018-02-01

    Full Text Available To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta, which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.

  6. Surface-type humidity sensor based on cellulose-PEPC for telemetry systems

    International Nuclear Information System (INIS)

    Karimov, Kh. S.; Saleem, M.; Qasuria, T. A.; Farooq, M.

    2011-01-01

    Au/cellulose-PEPC/Au surface-type humidity sensors were fabricated by drop-casting cellulose and poly-N-epoxypropylcarbazole (PEPC) blend thin films. A blend of 2wt% of each cellulose and PEPC in benzol was used for the deposition of humidity sensing films. Blend films were deposited on glass substrates with preliminary deposited surface-type gold electrodes. Films of different thicknesses of cellulose and PEPC composite were deposited by drop-casting technique. A change in electrical resistance and capacitance of the fabricated devices was observed by increasing the relative humidity in the range of 0-95% RH. It was observed that the capacitances of the sensors increase, while their resistances decrease with increasing the relative humidity. The sensors were connected to op-amp square wave oscillators. It was observed that with increasing the relative humidity, the oscillator's frequencies were also increased in the range of 4.2-12.0 kHz for 65 μm thick film sample, 4.1-9.0 kHz for 88 μm thick film sample, and 4.2-9.0 kHz for 210 μm sample. Effects of film thickness on the oscillator's frequency with respect to humidity were also investigated. This polymer humidity sensor controlled oscillator can be used for short-range and long-range remote systems at environmental monitoring and assessment of the humidity level. (semiconductor integrated circuits)

  7. The anthropogenic influence on heat and humidity in the US Midwest

    Science.gov (United States)

    Inda Diaz, H. A.; O'Brien, T. A.; Stone, D. A.

    2016-12-01

    Heatwaves, and extreme temperatures in general, have a wide range of negative impacts on society, and particularly on human health. In addition to temperature, humidity plays a key role in regulating human body temperature, with higher humidities tending to reduce the effectiveness of perspiration. There is recent theoretical and observational evidence that co-occurring extreme heat and humidity can potentially have a much more dramatic impact on human health than either extreme in isolation. There is an abundance of observational evidence indicating that anthropogenic increases in greenhouse gas (GHG) forcing have contributed to an increase in the intensity and frequency of temperature extremes on a global scale. However, aside from purely thermodynamically-driven increases in near-surface humidity, there is a paucity of similar evidence for anthropogenic impacts on humidity. Thermodynamic scaling would suggest that air masses originating from the ocean would be associated with higher specific humidity in a warmer world, and transpiration from irrigated crops could further increase humidity in warm air masses. In order to explore the role of anthropogenic GHG forcing on the co-occurrence of temperature and humidity extremes in the Midwestern United States (US), we evaluate a large ensemble of global climate model simulations with and without anthropogenic GHG forcing. In particular, we examine differences between the probability distributions of near-surface temperature, humidity, wet-bulb temperature, and the joint distribution of temperature and humidity in this ensemble. Finally, we explore augmenting this experimental framework with additional simulations to explore the role of anthropogenic changes in the land surface, and in particular irrigated crops, on co-occurring extreme heat and humidity.

  8. Graphene based humidity-insensitive films

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2017-01-01

    A humidity nonsensitive material based on reduced-graphene oxide (r-GO) and methods of making the same are provided, in an embodiment, the materia! has a resistance/humidity variation of about -15% to 15% based on different sintering time

  9. Temperature and Humidity Control in Livestock Stables

    DEFF Research Database (Denmark)

    Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.

    2010-01-01

    The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...

  10. Graphene based humidity-insensitive films

    KAUST Repository

    Tai, Yanlong

    2017-09-08

    A humidity nonsensitive material based on reduced-graphene oxide (r-GO) and methods of making the same are provided, in an embodiment, the materia! has a resistance/humidity variation of about -15% to 15% based on different sintering time or temperature. In an aspect, the resistance variation to humidity can be close to zero or -0.5% to 0.5%, showing a humidity non sensitivity property. In an embodiment, a humidity nonsensitive material based on the r-GO and carbon nanotube (CNT) composites is provided, wherein the ratio of CNT to r-GO is adjusted. The ratio can be adjusted based on the combined contribution of carbon nanotube (positive resistance variation) and reduced- graphene oxide (negative resistance variation) behaviors.

  11. The impact of relative humidity and atmospheric pressure on mortality in Guangzhou, China.

    Science.gov (United States)

    Ou, Chun Quan; Yang, Jun; Ou, Qiao Qun; Liu, Hua Zhang; Lin, Guo Zhen; Chen, Ping Yan; Qian, Jun; Guo, Yu Ming

    2014-12-01

    Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impacts of atmospheric pressure and relative humidity on mortality in Guangzhou, China. This study included 213,737 registered deaths during 2003-2011 in Guangzhou, China. A quasi-Poisson regression with a distributed lag non-linear model was used to assess the effects of atmospheric pressure/relative humidity. We found significant effect of low atmospheric pressure/relative humidity on mortality. There was a 1.79% (95% confidence interval: 0.38%-3.22%) increase in non-accidental mortality and a 2.27% (0.07%-4.51%) increase in cardiovascular mortality comparing the 5th and 25th percentile of atmospheric pressure. A 3.97% (0.67%-7.39%) increase in cardiovascular mortality was also observed comparing the 5th and 25th percentile of relative humidity. Women were more vulnerable to decrease in atmospheric pressure and relative humidity than men. Age and education attainment were also potential effect modifiers. Furthermore, low atmospheric pressure and relative humidity increased temperature-related mortality. Both low atmospheric pressure and relative humidity are important risk factors of mortality. Our findings would be helpful to develop health risk assessment and climate policy interventions that would better protect vulnerable subgroups of the population. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  12. Human-Finger Electronics Based on Opposing Humidity-Resistance Responses in Carbon Nanofilms

    KAUST Repository

    Tai, Yanlong

    2017-01-09

    Carbon nanomaterials have excellent humidity sensing properties. Here, it is demonstrated that multiwalled carbon-nanotube (MWCNT)- and reduced-graphene-oxide (rGO)-based conductive films have opposite humidity/electrical resistance responses: MWCNTs increase their electrical resistance (positive response) and rGOs decrease their electrical resistance (negative response). The authors propose a new phenomenology that describes a

  13. Effects of humidity and interlayer cations on the frictional strength of montmorillonite

    Science.gov (United States)

    Tetsuka, Hiroshi; Katayama, Ikuo; Sakuma, Hiroshi; Tamura, Kenji

    2018-04-01

    We developed a humidity control system in a biaxial friction testing machine to investigate the effect of relative humidity and interlayer cations on the frictional strength of montmorillonite. We carried out the frictional experiments on Na- and Ca-montmorillonite under controlled relative humidities (ca. 10, 30, 50, 70, and 90%) and at a constant temperature (95 °C). Our experimental results show that frictional strengths of both Na- and Ca-montmorillonite decrease systematically with increasing relative humidity. The friction coefficients of Na-montmorillonite decrease from 0.33 (at relative humidity of 10%) to 0.06 (at relative humidity of 93%) and those of Ca-montmorillonite decrease from 0.22 (at relative humidity of 11%) to 0.04 (at relative humidity of 91%). Our results also show that the frictional strength of Na-montmorillonite is higher than that of Ca-montmorillonite at a given relative humidity. These results reveal that the frictional strength of montmorillonite is sensitive to hydration state and interlayer cation species, suggesting that the strength of faults containing these clay minerals depends on the physical and chemical environment.[Figure not available: see fulltext.

  14. Trends in continental temperature and humidity directly linked to ocean warming.

    Science.gov (United States)

    Byrne, Michael P; O'Gorman, Paul A

    2018-05-08

    In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

  15. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    International Nuclear Information System (INIS)

    Hongbin Zhao, H.; Yue, P.; Cao, L.

    2009-01-01

    A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT), and solar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  16. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    Directory of Open Access Journals (Sweden)

    Hongbin Zhao

    2009-01-01

    Full Text Available A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT, and sollar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  17. Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    T. B. Nguyen

    2011-07-01

    Full Text Available The effect of relative humidity (RH on the composition and concentrations of gas-phase products and secondary organic aerosol (SOA generated from the photooxidation of isoprene under high-NOx conditions was investigated. Experiments were performed with hydrogen peroxide as the OH precursor and in the absence of seed aerosol. The relative yields of most gas-phase products were the same regardless of initial water vapor concentration with exception of hydroxyacetone and glycolaldehyde, which were considerably affected by RH. A significant change was observed in the SOA composition, with many unique condensed-phase products formed under humid (90 % RH vs. dry (<2 % RH conditions, without any detectable effect on the rate and extent of the SOA mass growth. There is a 40 % reduction in the number and relative abundance of distinct particle-phase nitrogen-containing organic compounds (NOC detected by high resolution mass spectrometry. The suppression of condensation reactions, which produce water as a product, is the most important chemical effect of the increased RH. For example, the total signal from oligomeric esters of 2-methylglyceric acid was reduced by about 60 % under humid conditions and the maximum oligomer chain lengths were reduced by 7–11 carbons. Oligomers formed by addition mechanisms, without direct involvement of water, also decreased at elevated RH but to a much smaller extent. The observed reduction in the extent of condensation-type oligomerization at high RH may have substantial impact on the phase characteristics and hygroscopicity of the isoprene aerosol. The reduction in the amount of organic nitrates in the particle phase has implications for understanding the budget of NOC compounds.

  18. [Telomerase in lung cancer. Testing the activity of the "immortaligy enzyme" bronchial biopsies increases the diagnostic yield in cases of suspected peripheral bronchogenic carcinomas].

    Science.gov (United States)

    Freitag, L; Litterst, P; Obertrifter, B; Velehorschi, V; Kemmer, H P; Linder, A; Brightman, I

    2000-11-01

    The proliferative capability is time-limited in normal somatic cells by the shortening of their chromosomal ends, the telomeres (Hayflick limit). An important feature of malignant cells is their immortality. The probably most common mechanism of tumour cells to achieve unlimited replicability is the activation of the enzyme telomerase. The reverse transcriptase can compensate the loss of telomeres. Using a PCR-based TRAP assay we found telomerase activity in tumour biopsies, exsudates and bronchial washings in various thoracic malignancies. In 38 of 47 patients with suspected peripheral lung cancer eventually surgery or invasive procedures proved a malignancy. In fluoroscopically guided bronchial brushings from 25 of these 38 patients (66%) the TRAP assay revealed telomerase activity. There was a single false positive case (tuberculosis) and with a single exception, the simultaneously taken brushes of the contralateral lobes were all telomerase negative. In 23 patients (61%) tumour cells were found in the cytological examination. In 33 patients at least one marker was positive. Thus the combination of cytology and telomerase test in bronchial brush biopsies attained a diagnostic yield of 87%.

  19. Use of low doses of cobalt 60 gamma radiation on beet (Beta vulgaris L.), carrot (Daucus carota L.) and radish (Raphanus sativus L.) seed to stimulate increase yield

    International Nuclear Information System (INIS)

    Bovi, Jose Eduardo

    2000-01-01

    The research had the aim of evaluating the effects of low doses of Cobalt-60 gamma radiation on seeds of radish (Raphanus sativus L.) cultiva Champion, cultivars Nantes Forto (european origin) and Brasilia (Rio Grande do Sul origin) carrot (Daucus carota L. var. sativus (Hoffm.) Thell), and red beet (Beta vulgaris L.) cultivar Tall Top Early Wonder before sowing, its effects on plant growth, on the yield and roots storage of two tillages: with sowing in the same day of radiation and six days after radiation seeds. The data showed that the seeds radiation did not interfered negatively on plants growth, and the species presented differences as roots production and doses on both plantation: radish with 5,0 Gy and 2,5 Gy doses respectively to the first and the second sowings, Brasilia carrot with 2,5 Gy dose to both sowings. Nantes carrot with 2,5 Gy and 5,0 Gy respectively to the first and the second sowings, and beet with 7,5 Gy and 5,0 Gy respectively to the first and the second plantations. There is not statistics difference by Tukey test (5% and 1%) and none relation between seeds radiation and loss weight on roots storage. (author)

  20. Mutations in durum wheat SBEII genes conferring increased amylose and resistant starch affect grain yield components, semolina and pasta quality and fermentation responses in rats

    Science.gov (United States)

    Increased amylose in wheat (Triticum spp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that provide human health benefits. Since wheat foods are an important component of t...

  1. Radon measurements with charcoal canisters temperature and humidity considerations

    Directory of Open Access Journals (Sweden)

    Živanović Miloš Z.

    2016-01-01

    Full Text Available Radon testing by using open-faced charcoal canisters is a cheap and fast screening method. Many laboratories perform the sampling and measurements according to the United States Environmental Protection Agency method - EPA 520. According to this method, no corrections for temperature are applied and corrections for humidity are based on canister mass gain. The EPA method is practiced in the Vinča Institute of Nuclear Sciences with recycled canisters. In the course of measurements, it was established that the mass gain of the recycled canisters differs from mass gain measured by Environmental Protection Agency in an active atmosphere. In order to quantify and correct these discrepancies, in the laboratory, canisters were exposed for periods of 3 and 4 days between February 2015 and December 2015. Temperature and humidity were monitored continuously and mass gain measured. No significant correlation between mass gain and temperature was found. Based on Environmental Protection Agency calibration data, functional dependence of mass gain on humidity was determined, yielding Environmental Protection Agency mass gain curves. The results of mass gain measurements of recycled canisters were plotted against these curves and a discrepancy confirmed. After correcting the independent variable in the curve equation and calculating the corrected mass gain for recycled canisters, the agreement between measured mass gain and Environmental Protection Agency mass gain curves was attained. [Projekat Ministarstva nauke Republike Srbije, br. III43009: New Technologies for Monitoring and Protection of Environment from Harmful Chemical Substances and Radiation Impact

  2. The Effects of the Heat and Moisture Exchanger on Humidity, Airway Temperature, and Core Body Temperature

    National Research Council Canada - National Science Library

    Delventhal, Mary

    1999-01-01

    Findings from several studies have demonstrated that the use of a heat and moisture exchanger increases airway humidity, which in turn increases mean airway temperature and prevents decreases in core body temperature...

  3. The question about increasing of thermoelectrical Q and percent of the yield of the semiconductor material on the basis of chalcogenides of the bismuth and antimony under conditions of experimental-industrial production

    International Nuclear Information System (INIS)

    Magerramov, A.A.; Barkhalov, B.S.

    2005-01-01

    Full text : Different methods of the receiving of monocrystalline ingots of the semiconductor materials for thermo electrical inverter of energy have been considered. On the basis of the analyses of theoretical and experimental data generated series of recommendations, directed to increase thermo electrical Q receiving from thermo electrical materials and increasing percent of yield of semiconductor materials on the basis of chalcogenides of the bismuth and antimony on the basis of industrial production

  4. Absolute humidity and the seasonal onset of influenza in the continental United States.

    Directory of Open Access Journals (Sweden)

    Jeffrey Shaman

    2010-02-01

    Full Text Available Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent reanalysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here, we extend these findings to the human population level, showing that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions.

  5. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Directory of Open Access Journals (Sweden)

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  6. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  7. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  8. Effects of Plant Density on Sweet and Baby Corn (Hybrid KSC 403 Yield and Yield Components

    Directory of Open Access Journals (Sweden)

    H Bavi

    2016-07-01

    Full Text Available Introduction Sweet corn is the one of the most important types of corn. There is a high amount of sugar in the endosperm of sweet corn than dent corn. Baby corn is the ear of corn that is being harvested in the silking stage before the end of pollination. This crop has an interesting using methods as salad, conserve production and vegetative consumption. Both two sweet and baby corn is obtained from one plant in different growth stages and could be harvested from one corn hybrid. Best yield and quality of baby corn is obtained from sweet corn hybrids, because of high amounts of sugar in the grains and ears. Sweet corn and baby corn could be harvested at early dough stage (with about 30 % of humidity and early silking stage before the pollination is completed, respectively. Plant density is the most important factor in growing corn, especially in sweet and baby corn. Khuzestan province is one of the main regions of corn production in Iran. In Khuzestan, forage and silage corn have the most production among the summer crops. Corn is planted in two planting date in Khuzestan: early spring and early summer. Spring corn planting produces little grain yield due to Simultaneity of silking stage with hot early summer days. Because of little production and little research about sweet and baby corn, this study was performed and designed. Materials and Methods In order to investigate the effects of plant density and harvesting method on sweet corn and baby corn yield, an experiment was performed during 2012-13, in research farm of Ramin Agriculture and Natural Resources University of Khuzestan, located in southwest of Iran. In this experiment, four plant densities (7, 9, 11 and 13 plants.m-2 and two harvesting methods (baby corn and sweet corn were investigated in an RCB statistical design with four replications. The KSC 403 hybrid was used and investigated in the experiment, as a sweet corn hybrid. Statistical analysis was performed using SAS 9.1 through

  9. Improvement of liquefaction solvent. Increase of light oil yield with a reduction in catalyst addition; Ekika yozai no kairyo kenkyu. Sekitan ekikayu no keishitsuka to shokubai tenkaryo no teigen

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, N.; Yasumuro, M.; Sato, K.; Komatsu, N.; Okui, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    For developing coal liquefaction processes, it is an important problem to improve the light oil yield with increased oil yield. It was previously reported that distillate mainly containing lighter fraction can be produced with high oil yield by reducing the iron/sulfur catalyst addition in slurry, by recycling gas in the process operation, by utilizing these effects, and by using heavy oil as recycling solvent. In this study, the maximum distillate yield of Victorian brown coal was investigated through continuous liquefaction using a bench scale unit. In addition, operation conditions for obtaining sufficient oil yield were investigated under the reduced catalyst addition into one-third. Consequently, it was confirmed that the maximum content of lighter fraction in distillate product was obtained with reduced catalyst addition by using heavy oil as recycling solvent, by adopting new catalyst, and by utilizing effects of CLB recycling and gas recycling in maximum. It was also revealed that lighter distillate can be produced compared with the oil product obtained by recycling conventional solvent. 3 refs., 6 figs., 2 tabs.

  10. Studies of initial stage in coal liquefaction. Effect of prethermal treatment condition with process solvent to increase oil yields; Ekika hanno no shoki katei ni kansuru kenkyu. Sekitan no maeshori joken to yozai koka

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, T.; Komatsu, N.; Kishimoto, M.; Okui, T.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. ltd., Tokyo (Japan)

    1996-10-28

    Process solvent was hydrogenated in the brown coal liquefaction, to investigate the influence of it on the prethermal treatment and liquefaction. Consequently, it was found that the n-hexane soluble (HS) yield was improved. In this study, capacity of hydrogen transfer from solvent during prethermal treatment and effects of catalyst were investigated. Since prethermal treatment in oil was effective for improving the oil yield in the presence of hydrogen/catalyst or high hydrogen-donor solvent, influence of hydrogen-donor performance of solvent or addition of catalyst on the hydrogenation behavior of coal and the characteristics of products during prethermal treatment were investigated in relation to successive liquefaction results. As a result, it was found that the increase of HS yield was due to the acceleration of conversion of THF-insoluble using high hydrogen-donor solvent and/or by adding catalyst. It was also found that the use of high hydrogen-donor solvent and highly active catalyst at the stage of prethermal treatment before the successive liquefaction was effective for improving the HS yield, i.e., liquefied oil yield. 2 refs., 5 figs., 1 tab.

  11. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  12. Laboratory setup for temperature and humidity measurements

    CERN Document Server

    Eimre, Kristjan

    2015-01-01

    In active particle detectors, the temperature and humidity conditions must be under constant monitoring and control, as even small deviations from the norm cause changes to detector characteristics and result in a loss of precision. To monitor the temperature and humidity, different kinds of sensors are used, which must be calibrated beforehand to ensure their accuracy. To calibrate the large number of sensors that are needed for the particle detectors and other laboratory work, a calibration system is needed. The purpose of the current work was to develop a laboratory setup for temperature and humidity sensor measurements and calibration.

  13. Thermal Effectiveness of Wall Indoor Fountain in Warm Humid Climate

    Science.gov (United States)

    Seputra, J. A. P.

    2018-03-01

    Nowadays, many buildings wield indoor water features such as waterfalls, fountains, and water curtains to improve their aesthetical value. Despite the provision of air cooling due to water evaporation, this feature also has adverse effect if applied in warm humid climate since evaporation might increase air humidity beyond the comfort level. Yet, there are no specific researches intended to measure water feature’s effect upon its thermal condition. In response, this research examines the influence of evaporative cooling on indoor wall fountain toward occupant’s thermal comfort in warm humid climate. To achieve this goal, case study is established in Waroeng Steak Restaurant’s dining room in Surakarta-Indonesia. In addition, SNI 03-6572-2001 with comfort range of 20.5–27.1°C and 40-60% of relative humidity is utilized as thermal criterion. Furthermore, Computational Fluid Dynamics (CFD) is employed to process the data and derive conclusions. Research variables are; feature’s height, obstructions, and fan types. As results, Two Bumps Model (ToB) is appropriate when employs natural ventilation. However, if the room is mechanically ventilated, Three Bumps Model (TeB) becomes the best choice. Moreover, application of adaptive ventilation is required to maintain thermal balance.

  14. Stable and Selective Humidity Sensing Using Stacked Black Phosphorus Flakes.

    Science.gov (United States)

    Yasaei, Poya; Behranginia, Amirhossein; Foroozan, Tara; Asadi, Mohammad; Kim, Kibum; Khalili-Araghi, Fatemeh; Salehi-Khojin, Amin

    2015-10-27

    Black phosphorus (BP) atomic layers are known to undergo chemical degradation in humid air. Yet in more robust configurations such as films, composites, and embedded structures, BP can potentially be utilized in a large number of practical applications. In this study, we explored the sensing characteristics of BP films and observed an ultrasensitive and selective response toward humid air with a trace-level detection capability and a very minor drift over time. Our experiments show that the drain current of the BP sensor increases by ∼4 orders of magnitude as the relative humidity (RH) varies from 10% to 85%, which ranks it among the highest ever reported values for humidity detection. The mechanistic studies indicate that the operation principle of the BP film sensors is based on the modulation in the leakage ionic current caused by autoionization of water molecules and ionic solvation of the phosphorus oxoacids produced on moist BP surfaces. Our stability tests reveal that the response of the BP film sensors remains nearly unchanged after prolonged exposures (up to 3 months) to ambient conditions. This study opens up the route for utilizing BP stacked films in many potential applications such as energy generation/storage systems, electrocatalysis, and chemical/biosensing.

  15. Cubic mesoporous Ag@CN: a high performance humidity sensor.

    Science.gov (United States)

    Tomer, Vijay K; Thangaraj, Nishanthi; Gahlot, Sweta; Kailasam, Kamalakannan

    2016-12-01

    The fabrication of highly responsive, rapid response/recovery and durable relative humidity (%RH) sensors that can precisely monitor humidity levels still remains a considerable challenge for realizing the next generation humidity sensing applications. Herein, we report a remarkably sensitive and rapid %RH sensor having a reversible response using a nanocasting route for synthesizing mesoporous g-CN (commonly known as g-C 3 N 4 ). The 3D replicated cubic mesostructure provides a high surface area thereby increasing the adsorption, transmission of charge carriers and desorption of water molecules across the sensor surfaces. Owing to its unique structure, the mesoporous g-CN functionalized with well dispersed catalytic Ag nanoparticles exhibits excellent sensitivity in the 11-98% RH range while retaining high stability, negligible hysteresis and superior real time %RH detection performances. Compared to conventional resistive sensors based on metal oxides, a rapid response time (3 s) and recovery time (1.4 s) were observed in the 11-98% RH range. Such impressive features originate from the planar morphology of g-CN as well as unique physical affinity and favourable electronic band positions of this material that facilitate water adsorption and charge transportation. Mesoporous g-CN with Ag nanoparticles is demonstrated to provide an effective strategy in designing high performance %RH sensors and show great promise for utilization of mesoporous 2D layered materials in the Internet of Things and next generation humidity sensing applications.

  16. Compartmentalized self-replication under fast PCR cycling conditions yields Taq DNA polymerase mutants with increased DNA-binding affinity and blood resistance.

    Science.gov (United States)

    Arezi, Bahram; McKinney, Nancy; Hansen, Connie; Cayouette, Michelle; Fox, Jeffrey; Chen, Keith; Lapira, Jennifer; Hamilton, Sarah; Hogrefe, Holly

    2014-01-01

    Faster-cycling PCR formulations, protocols, and instruments have been developed to address the need for increased throughput and shorter turn-around times for PCR-based assays. Although run times can be cut by up to 50%, shorter cycle times have been correlated with lower detection sensitivity and increased variability. To address these concerns, we applied Compartmentalized Self Replication (CSR) to evolve faster-cycling mutants of Taq DNA polymerase. After five rounds of selection using progressively shorter PCR extension times, individual mutations identified in the fastest-cycling clones were randomly combined using ligation-based multi-site mutagenesis. The best-performing combinatorial mutants exhibit 35- to 90-fold higher affinity (lower Kd ) for primed template and a moderate (2-fold) increase in extension rate compared to wild-type Taq. Further characterization revealed that CSR-selected mutations provide increased resistance to inhibitors, and most notably, enable direct amplification from up to 65% whole blood. We discuss the contribution of individual mutations to fast-cycling and blood-resistant phenotypes.

  17. Heterogeneous nucleation for synthesis of sub-20nm ZnO nanopods and their application to optical humidity sensing.

    Science.gov (United States)

    Majithia, R; Ritter, S; Meissner, K E

    2014-02-17

    We present a novel method for colloidal synthesis of one-dimensional ZnO nanopods by heterogeneous nucleation on zero-dimensional ZnO nanoparticle 'seeds'. Ultra-small ZnO nanopods, multi-legged structures with sub-20 nm individual leg diameters, can be synthesized by hydrolysis of a Zn2+ precursor growth solution in presence of ∼4 nm ZnO seeds under hydrothermal conditions via microwave-assisted heating in as little as 20 min of reaction time. One-dimensional ZnO nanorods are initially generated in the reaction mixture by heterogeneous nucleation and growth along the [0001] direction of the ZnO crystal. Growth of one-dimensional nanorods subsequently yields to an 'attachment' and size-focusing phase where individual nanorods fuse together to form multi-legged nanopods having diameters ∼15 nm. ZnO nanopods exhibit broad orange-red defect-related photoluminescence in addition to a near-band edge emission at 373 nm when excited above the band-gap at 350 nm. The defect-related photoluminescence of the ZnO nanopods has been applied towards reversible optical humidity sensing at room temperature. The sensors demonstrated a linear response between 22% and 70% relative humidity with a 0.4% increase in optical intensity per % change in relative humidity. Due to their ultra-small dimensions, ZnO nanopods exhibit a large dynamic range and enhanced sensitivity to changes in ambient humidity, thus showcasing their ability as a platform for optical environmental sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Heterogeneous global crop yield response to biochar: a meta-regression analysis

    International Nuclear Information System (INIS)

    Crane-Droesch, Andrew; Torn, Margaret S; Abiven, Samuel; Jeffery, Simon

    2013-01-01

    Biochar may contribute to climate change mitigation at negative cost by sequestering photosynthetically fixed carbon in soil while increasing crop yields. The magnitude of biochar’s potential in this regard will depend on crop yield benefits, which have not been well-characterized across different soils and biochars. Using data from 84 studies, we employ meta-analytical, missing data, and semiparametric statistical methods to explain heterogeneity in crop yield responses across different soils, biochars, and agricultural management factors, and then estimate potential changes in yield across different soil environments globally. We find that soil cation exchange capacity and organic carbon were strong predictors of yield response, with low cation exchange and low carbon associated with positive response. We also find that yield response increases over time since initial application, compared to non-biochar controls. High reported soil clay content and low soil pH were weaker predictors of higher yield response. No biochar parameters in our dataset—biochar pH, percentage carbon content, or temperature of pyrolysis—were significant predictors of yield impacts. Projecting our fitted model onto a global soil database, we find the largest potential increases in areas with highly weathered soils, such as those characterizing much of the humid tropics. Richer soils characterizing much of the world’s important agricultural areas appear to be less likely to benefit from biochar. (letter)

  19. Effects of atmospheric humidity on uptake of elemental iodine by plants

    International Nuclear Information System (INIS)

    Angeletti, L.; Guenot, J.; Caput, C.

    1983-01-01

    A laboratory study was performed under controlled experimental conditions in order to evaluate the effects of the relative humidity and the exposure time on the velocity of deposition of vapour iodine onto aerials parts of plants. The results show that: - the deposition velocity increases by a factor of 2 for each increase of relative humidity of 25%, - the deposition velocity is independent of the exposure time. The foliar uptake of vapour iodine seems to be related both to stomatal opening and cuticular sorption. The importance of cuticular sorption increases rapidly with the relative humidity [fr

  20. Sweet pepper greenhouse production under different depletion levels in substrate humidity

    Directory of Open Access Journals (Sweden)

    Gustavo Quesada Roldán

    2015-06-01

    Full Text Available The effect of 3 substrate humidity levels on the growth and yield of 2 sweet pepper hybrids, established under greenhouse conditions, was evaluated. The experiment was held in the industrial greenhouse of the Fabio Baudrit Moreno Experimental Research Station, in La Garita (Alajuela, and the materials evaluated were the hybrids Villaplants Americano (square yellow fruit, bell type and FBM-9 (triangular red fruit type, both national origin genotypes. The first treatment was to supply water at container capacity (CC to the plant, while the second and third ones were reducing 15 and 30%, respectively, of the plant original water supply. It was demonstrated that there is no effect due to the amount of water supply on the plant´s growth, although it was observed that hydric- stressed plants were the first to begin the flowering and fruiting phase. In both hybrids, a reduction in the amount of first and second one amount quality fruit and an increasing of fruit rejected as the watering was limited. Blossom-end rot was the main rejection cause due to the water loss, associated with low calcium availability. The highest commercial yield was obtained with the Villaplants Americano hibryd (31,8 ton.ha-1, although without statistical difference between substrates at CC and CC–15%, despite a fruit quality reduction with the later treatment. The same was observed with the FBM-9 hybrid. With the CC–30% treatment, both commercial yield and fruit quality were affected, in both hybrids.

  1. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    OpenAIRE

    Han, Xiao; Xu, Cong; Dungait, Jennifer A. J.; Bol, Roland; Wang, Xiaojie; Wu, Wenliang; Meng, Fanqiao

    2018-01-01

    Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural liveliho...

  2. Introducing nests of the oil-collecting bee Centris analis (Hymenoptera: Apidae: Centridini) for pollination of acerola (Malpighia emarginata) increases yield

    OpenAIRE

    Magalhães , Celso; Freitas , Breno

    2013-01-01

    International audience; This study aimed to test the feasibility and effectiveness of introducing trap nests inhabited by the oil-collecting bee Centris (Heterocentris) analis on increasing productivity of organic orchards of acerola (Malpighia emarginata). Trap nest blocks containing 242 nests of C. analis were placed on the border of 22 orchards of four acerola varieties and monitored over the blooming season. Results were compared to other 22 orchards without bee introduction and showed an...

  3. Humidity Response of Polyaniline Based Sensor

    Directory of Open Access Journals (Sweden)

    Mamta PANDEY

    2010-02-01

    Full Text Available Abstract: This paper presents hitherto unreported humidity sensing capacity of emeraldine salt form of polyaniline. Humidity plays a major role in different processes in industries ranging from food to electronic goods besides human comfort and therefore its monitoring is an essential requirement during various processes. Polyaniline has a wide use for making sensors as it can be easily synthesized and has long stability. Polyaniline is synthesized here by chemical route and is found to sense humidity as it shows variation in electrical resistance with variation in relative humidity. Results are presented here for a range of 15 to 90 RH%. The resistance falls from 5.8 to 0.72 Giga ohms as RH varies from 15 to 65 % and then falls to 13.9 Mega ohms as RH approaches 90 %. The response and recovery times are also measured.

  4. Humidity measurements in the precast concrete

    International Nuclear Information System (INIS)

    Hurez, M.

    1986-01-01

    The precast concrete industry manufactures requires a good knowledge and control of the humidity factor: during the manufacturing process, in order to regulate the water content of aggregates, or the fresh concrete workability: during the quality control of the product characteristics. The principles of measurements: conductivity, dielectric characteristics and neutron moisture meters are compared for cost, humidity range, accuracy, temperature dependence, interfering elements, density dependence, grain size and shape [fr

  5. Relative Humidity Sensing Properties Of Cu2O Doped ZnO Nanocomposite

    International Nuclear Information System (INIS)

    Pandey, N. K.; Tiwari, K.; Tripathi, A.; Roy, A.; Rai, A.; Awasthi, P.

    2009-01-01

    In this paper we report application of Cu 2 O doped ZnO composite prepared by solid state reaction route as humidity sensor. Pellet samples of ZnO-Cu 2 O nanocrystalline powders with 2, 5 and 10 weight% of Cu 2 O in ZnO have been prepared. Pellets have been annealed at temperatures of 200-500 deg. C and exposed to humidity. It is observed that as relative humidity increases, resistance of the pellet decreases for the humidity from 10% to 90%. Sample with 5% of Cu 2 O doped in ZnO and annealed at 500 deg. C shows best results with sensitivity of 1.50 MΩ/%RH. In this case the hysteresis is low and the reproducibility high, making it the suitable candidate for humidity sensing.

  6. The influence of humidity on the kinetics of local anodic oxidation

    International Nuclear Information System (INIS)

    BartosIk, M; Skoda, D; Tomanec, O; Kalousek, R; Jansky, P; Zlamal, J; Spousta, J; Sikola, T

    2007-01-01

    In this paper the influence of relative humidity on fabrication of nanostructures at GaAs (100) surfaces by local anodic oxidation (LAO) is reported. The attention was paid both to the dimensions of oxide nanolines prepared at different relative humidities for tip-surface voltages of 6 - 9 V and tip speeds of 10 - 200 nm/s, and to the profiles corresponding to line trenches (etched in HCl after the nanoxidation). Contrary to the expectations the height and the half-width of oxide nanolines did not increase with relative humidity in the whole interval from 35% to 90%, but for lower relative humidities (< 50%) the lines were comparable in size to those prepared at 90%. However, this was accompanied with instabilities in the oxidation process resulting most probably from enhanced size variations of the water meniscus between the tip and the surface at these low humidities

  7. Repeatability and Reversibility of the Humidity Sensor Based on Photonic Crystal Fiber Interferometer

    Science.gov (United States)

    Hindal, S. S.; Taher, H. J.

    2018-05-01

    The RH sensor operation based on water vapor adsorption and desorption at the silica-air interface within the PCF. Sensor fabrication is simple; it includes splicing and cleaving the PCF with SMF only. PCF (LMA-10) with a certain length spliced to SMF (Corning-28). The PCFI spectrum exhibits good sensitivity to the variations of humidity. The PCFI response is observed for range of relative humidity values from (27% RH to 85% RH), the interference peaks position is found to be shifted to longer wavelength as the humidity increases. In this work, a 6cm length of PCFs is used, and it shows a sensitivity of (2.41pm / %RH), good repeatability, and reversible in nature. This humidity sensor has distinguished features as that the sensor does not require the use of a hygroscopic material, robust, compact size, immunity to electromagnetic interference, and it has potential applications for high humidity environments.

  8. Study on the Correlation between Humidity and Material Strains in Separable Micro Humidity Sensor Design

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Chang

    2017-05-01

    Full Text Available Incidents of injuries caused by tiles falling from building exterior walls are frequently reported in Taiwan. Humidity is an influential factor in tile deterioration but it is more difficult to measure the humidity inside a building structure than the humidity in an indoor environment. Therefore, a separable microsensor was developed in this study to measure the humidity of the cement mortar layer with a thickness of 1.5–2 cm inside the external wall of a building. 3D printing technology is used to produce an encapsulation box that can protect the sensor from damage caused by the concrete and cement mortar. The sensor is proven in this study to be capable of measuring temperature and humidity simultaneously and the measurement results are then used to analyze the influence of humidity on external wall tile deterioration.

  9. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    Science.gov (United States)

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here.

  10. Cross Linking Polymers (PVA & PEG with TiO2 Nanoparticles for Humidity Sensing

    Directory of Open Access Journals (Sweden)

    Monika Joshi

    2009-11-01

    Full Text Available Humidity Sensors of different types are being used for various applications. Resistive Humidity Sensor has advantage over others for being small, low cost, interchangeable and long term stable. This makes them suitable for industrial, commercial and residential applications. In the present investigation humidity sensing behavior of various composite films made of Polyvinyl Alcohol (PVA, Polyethylene glycol (PEG, alkalies and oxide nanoparticles has been studied. It was found that relationship of resistance v/s relative humidity (RH was linear from 40 RH to 60 RH for a composite film made of PVA + PEG+ alkalies .The film can work with reliable efficiency for more than 100 days for the above range of humidity at room temperature. In order to improve the efficiency of composite polymer film TiO2 nanoparticles were added in the film and studied for resistance vs. RH responses. It was found that humidity range expands from 30 RH to 65 RH indicating the proportional decrease in resistance with increase in humidity at both ends as a result of the presence of TiO2 nanoparticles. The composite film with TiO2 nanoparticles can thus be used for wider range of humidity with reasonable stability and consistency. The observed behavior of the film has been attributed to the transportation of charge through TiO2 nanoparticles enhancing the conduction with the cross linked polymers.

  11. Effect of Humid Aging on the Oxygen Adsorption in SnO₂ Gas Sensors.

    Science.gov (United States)

    Suematsu, Koichi; Ma, Nan; Watanabe, Ken; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2018-01-16

    To investigate the effect of aging at 580 °C in wet air (humid aging) on the oxygen adsorption on the surface of SnO₂ particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO₂ resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants ( K ₁; for O - adsorption, K ₂; for O 2- adsorption) were estimated on the basis of the theoretical model of oxygen adsorption. The K ₁ and K ₂ in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O - and O 2- . These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO₂ resistive-type gas sensors in dry and wet atmospheres.

  12. Ozone generation in positive and negative corona discharge fed by humid oxygen and carbon dioxide

    International Nuclear Information System (INIS)

    Skalny, J D; Orszagh, J; MatejcIk, S; Mason, N J

    2008-01-01

    The effect of humidity on ozone generation of positive and negative corona discharges fed by O 2 and CO 2 has been studied in the humidity range of 100-20 000 ppm. The experiments were carried out at an ambient temperature and pressure of 100 kPa. The increase in humidity of CO 2 conspicuously suppressed the ozone generation in negative corona discharge at all values of the input energy densities into the discharge. The effect was less pronounced in oxygen. In contrast to decrease of ozone concentration observed in negative corona discharge, the presence of water both in O 2 and CO 2 acts catalytically. The ozone concentration has been found to increase remarkably (approximately 10 times) in oxygen, if the humidity was increased from 100 to 20 000 ppm. The dependence of ozone concentration on the gas humidity exhibited an extreme. The increase observed at humidity up to approximately 5000 ppm was followed by the marginal reduction in ozone concentration. Anyway, the values of this were considerably higher than those found in dry CO 2 . The effect of humidity on ozone concentration will be discussed in relation to plasma chemical processes in studied discharges and their macroscopic parameters.

  13. Effect of Humid Aging on the Oxygen Adsorption in SnO2 Gas Sensors

    Directory of Open Access Journals (Sweden)

    Koichi Suematsu

    2018-01-01

    Full Text Available To investigate the effect of aging at 580 °C in wet air (humid aging on the oxygen adsorption on the surface of SnO2 particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO2 resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants (K1; for O− adsorption, K2; for O2− adsorption were estimated on the basis of the theoretical model of oxygen adsorption. The K1 and K2 in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O− and O2−. These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO2 resistive-type gas sensors in dry and wet atmospheres.

  14. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro

    International Nuclear Information System (INIS)

    Dykens, James A.; Jamieson, Joseph; Marroquin, Lisa; Nadanaciva, Sashi; Billis, Puja A.; Will, Yvonne

    2008-01-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction

  15. Combined exposure of ELF magnetic fields and X-rays increased mutant yields compared with X-rays alone in pTN89 plasmids

    International Nuclear Information System (INIS)

    Koyama, Shin; Nakahara, Takehisa; Sakurai, Tomonori; Komatsubara, Yoshiki; Miyakoshi, Junji; Isozumi, Yasuhito

    2005-01-01

    We have examined mutations in the supF gene carried by pTN89 plasmids in Escherichia coli (E. coli) to examine the effects of extremely low frequency magnetic fields (ELFMFs) and/or X-rays to the plasmids. The plasmids were subjected to sham exposure or exposed to an ELFMF (5 mT), with or without X-ray irradiation (10 Gy). For the combined treatments, exposure to the ELFMF was immediately before or after X-ray irradiation. The mutant fractions were 0.94 x 10 -5 for X-rays alone, 1.58 x 10 -5 for an ELFMF followed by X-rays, and 3.64 x 10 -5 for X-rays followed by an ELFMF. Increased mutant fraction was not detected following exposure to a magnetic field alone, or after sham exposure. The mutant fraction for X-rays followed by an ELFMF was significantly higher than those of other treatments. Sequence analysis of the supF mutant plasmids revealed that base substitutions were dominant on exposure to X-rays alone and X-rays plus an ELFMF. Several types of deletions were detected in only the combined treatments, but not with X-rays alone. We could not find any mutant colonies in sham irradiated and an ELFMF alone treatment, but exposure to ELFMFs immediately before or after X-ray irradiation may enhance the mutations. Our results indicate that an ELFMF increases mutation and alters the spectrum of mutations. (author)

  16. Analysis of humidity effects on growth and production of glasshouse fruit vegetables

    NARCIS (Netherlands)

    Bakker, J.C.

    1991-01-01

    Air humidity is a climate factor that can modify final yield and quality of crops through its impact on processes with a short as well as with a long response time. This thesis primarily deals with the long term responses of growth and production of glasshouse cucumber, tomato, sweet pepper and

  17. Projected climate change impacts upon dew yield in the Mediterranean basin

    Energy Technology Data Exchange (ETDEWEB)

    Tomaszkiewicz, M. [Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Beirut (Lebanon); Abou Najm, M., E-mail: majdian@aub.edu.lb [Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Beirut (Lebanon); Beysens, D. [Physique et Mecanique des Milieux Heterogenes, UMR 7636 CNRS — ESPCI, Universite Pierre et Marie Curie — Universite Paris Diderot, 10 rue Vauquelin, 75005 Paris (France); Service des Basses Temperatures, CEA-Grenoble & Universite Joseph Fourier, Grenoble (France); OPUR, 60 rue Emeriau, 75015 Paris (France); Alameddine, I. [Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Beirut (Lebanon); Bou Zeid, E. [Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08540 (United States); El-Fadel, M. [Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Beirut (Lebanon)

    2016-10-01

    Water scarcity is increasingly raising the need for non-conventional water resources, particularly in arid and semi-arid regions. In this context, atmospheric moisture can potentially be harvested in the form of dew, which is commonly disregarded from the water budget, although its impact may be significant when compared to rainfall during the dry season. In this study, a dew atlas for the Mediterranean region is presented illustrating dew yields using the yield data collected for the 2013 dry season. The results indicate that cumulative monthly dew yield in the region can exceed 2.8 mm at the end of the dry season and 1.5 mm during the driest months, compared to < 1 mm of rainfall during the same period in some areas. Dew yields were compared with potential evapotranspiration (PET) and actual evapotranspiration (ET) during summer months thus highlighting the role of dew to many native plants in the region. Furthermore, forecasted trends in temperature and relative humidity were used to estimate dew yields under future climatic scenarios. The results showed a 27% decline in dew yield during the critical summer months at the end of the century (2080). - Highlights: • Dew atlas for Mediterranean region is presented. • Cumulative dew yields can exceed 2.8 mm at the end of the dry season. • Dew yields compared with PET and ET show the role of dew to many native plants. • Forecasted trends under future climatic scenarios show a 27% decline in dew yield.

  18. Improved running performance in hot humid conditions following whole body precooling.

    Science.gov (United States)

    Booth, J; Marino, F; Ward, J J

    1997-07-01

    On two separate occasions, eight subjects controlled speed to run the greatest distance possible in 30 min in a hot, humid environment (ambient temperature 32 degrees C, relative humidity 60%). For the experimental test (precooling), exercise was preceeded by cold-water immersion. Precooling increased the distance run by 304 +/- 166 m (P body temperature decreased from 36.5 +/- 0.1 degrees C to 33.8 +/- 0.2 degrees C following precooling (P body sweating are not different between tests. In conclusion, water immersion precooling increased exercise endurance in hot, humid conditions with an enhanced rate of heat storage and decreased thermoregulatory strain.

  19. Estimation of evaporation from equilibrium diurnal boundary layer humidity

    Science.gov (United States)

    Salvucci, G.; Rigden, A. J.; Li, D.; Gentine, P.

    2017-12-01

    Simplified conceptual models of the convective boundary layer as a well mixed profile of potential temperature (theta) and specific humidity (q) impinging on an initially stably stratified linear potential temperature profile have a long history in atmospheric sciences. These one dimensional representations of complex mixing are useful for gaining insights into land-atmosphere interactions and for prediction when state of the art LES approaches are infeasible. As previously shown (e.g. Betts), if one neglects the role of q in bouyancy, the framework yields a unique relation between mixed layer Theta, mixed layer height (h), and cumulative sensible heat flux (SH) throughout the day. Similarly assuming an initially q profile yields a simple relation between q, h, and cumulative latent heat flux (LH). The diurnal dynamics of theta and q are strongly dependent on SH and the initial lapse rates of theta (gamma_thet) and q (gamma q). In the estimation method proposed here, we further constrain these relations with two more assumptions: 1) The specific humidity is the same at the start of the period of boundary layer growth and at the collapse; and 2) Once the mixed layer reaches the LCL, further drying occurs proportionally to the deardorff convective velocity scale (omega) multiplied by q. Assumption (1) is based on the idea that below the cloud layer, there are no sinks of moisture within the mixed layer (neglecting lateral humidity divergence). Thus the net mixing of dry air aloft with evaporation from the surface must balance. Inclusion of the simple model of moisture loss above the LCL into the bulk-CBL model allows definition of an equilibrium humidity (q) condition at which the diurnal cycle of q repeats (i.e. additions of q from surface balance entrainment of dry air from above). Surprisingly, this framework allows estimation of LH from q, theta, and estimated net radiation by solving for the value of Evaporative Fraction (EF) for which the diurnal cycle of q

  20. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  1. Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yajing, E-mail: shen@robo.mein.nagoya-u.ac.jp [Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan); Nakajima, Masahiro [Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ridzuan Ahmad, Mohd [Department of Mechatronics and Robotics, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310 (Malaysia); Kojima, Seiji; Homma, Michio [Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Fukuda, Toshio [Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2011-07-15

    A novel method for measuring an adhesion force of single yeast cell is proposed based on a nanorobotic manipulation system inside an environmental scanning electron microscope (ESEM). The effect of ambient humidity on a single yeast cell adhesion force was studied. Ambient humidity was controlled by adjusting the chamber pressure and temperature inside the ESEM. It has been demonstrated that a thicker water film was formed at a higher humidity condition. The adhesion force between an atomic force microscopy (AFM) cantilever and a tungsten probe which later on known as a substrate was evaluated at various humidity conditions. A micro-puller was fabricated from an AFM cantilever by use of focused ion beam (FIB) etching. The adhesion force of a single yeast cell (W303) to the substrate was measured using the micro-puller at the three humidity conditions: 100%, 70%, and 40%. The results showed that the adhesion force between the single yeast cell and the substrate is much smaller at higher humidity condition. The yeast cells were still alive after being observed and manipulated inside ESEM based on the result obtained from the re-culturing of the single yeast cell. The results from this work would help us to understand the ESEM system better and its potential benefit to the single cell analysis research. -- Research highlights: {yields} A nanorobotic manipulation system was developed inside an ESEM. {yields} A micro-puller was designed for single yeast cell adhesion force measurement. {yields} Yeast cells were still alive after being observed and manipulated inside ESEM. {yields} Yeast cell adhesion force to substrate is smaller at high humidity condition than at low humidity condition.

  2. 40 CFR 89.326 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air... type of intake air supply, the humidity measurements must be made within the intake air supply system...

  3. 40 CFR 91.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply. Air...

  4. 40 CFR 90.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a) Humidity...

  5. Comparison of land surface humidity between observations and CMIP5 models

    Science.gov (United States)

    Dunn, Robert J. H.; Willett, Kate M.; Ciavarella, Andrew; Stott, Peter A.

    2017-08-01

    We compare the latest observational land surface humidity dataset, HadISDH, with the latest generation of climate models extracted from the CMIP5 archive and the ERA-Interim reanalysis over the period 1973 to present. The globally averaged behaviour of HadISDH and ERA-Interim are very similar in both humidity measures and air temperature, on decadal and interannual timescales. The global average relative humidity shows a gradual increase from 1973 to 2000, followed by a steep decline in recent years. The observed specific humidity shows a steady increase in the global average during the early period but in the later period it remains approximately constant. None of the CMIP5 models or experiments capture the observed behaviour of the relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed climatologies with those from historical model runs shows that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra-tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends is relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the tropics and very little at high latitudes. The observed drying in mid-latitudes is present at a much lower magnitude in the CMIP5 models. Relationships between temperature and humidity anomalies (T-q and T-rh) show good agreement for specific humidity between models and observations, and between the models themselves, but much poorer for relative humidity. The T-q correlation from the models is more steeply positive than

  6. Applying photosynthesis research to increase crop yields

    Science.gov (United States)

    Clayton C. Black; Shi-Jean S. Sung; Kristina Toderich; Pavel Yu Voronin

    2010-01-01

    This account is dedicated to Dr. Guivi Sanadze for his career long devotion to science and in recognition of his discovery of isoprene emission by trees during photosynthesis. Investigations on the emission of isoprene and other monoterpenes now have been extended globally to encompass other terrestrial vegetation, algae, waters, and marine life in the world's...

  7. Imazapyr (herbicide) seed dressing increases yield, suppresses ...

    African Journals Online (AJOL)

    from damage. In 1998/99 season, a trial was initiated at Chitedze Research Station under artificial infection, to evaluate the effects of seed dressing with imazapyr (an acetolactate synthase {ALS} inhibiting herbicide) using three seed treatment methods (coating, priming or drenching) and three herbicide rates (15, 30 and 45 ...

  8. Herbaceous energy crops in humid lower South USA

    Energy Technology Data Exchange (ETDEWEB)

    Prine, G.M.; Woodard, K.R. [Univ. of Florida, Gainesville, FL (United States)

    1993-12-31

    The humid lower South has the long warm growing season and high rainfall conditions needed for producing high-yielding perennial herbaceous grasses and shrubs. Many potential biomass plants were evaluated during a ten-year period. Perennial tall grasses such as elephantgrass (Pennisetum purpureum), sugarcane and energycane (Saccharum spp.) and the leguminous shrub Leucaena leucocephala were the highest in biomass production. These perennial crops often have top growth killed by winter freezes and regenerate from underground parts. The tall grasses have high yields because of linear crop growth rates of 18 to 27 g m{sup 2} d{sup {minus}1} for long periods (140 to 196 d) each season. Tall grasses must be planted vegetatively, which is more costly than seed propagation, however, once established, they may persist for many seasons. Oven dry biomass yields have varied from 20 to 45 Mg ha{sup {minus}1} yr{sup {minus}1} in colder subtropical to mild temperate locations to over 60 Mg ha{sup {minus}1} yr{sup {minus}1} in the lower portion of the Florida peninsular. Highest biomass yields have been produced when irrigated with sewage effluent or when grown on phosphatic clay and muck soils in south Florida. The energy content of 1 Mg of oven dry tall grass and leucaena is equivalent to that of about 112 and 123 gallons of number 2 diesel fuel, respectively.

  9. Development of ceramic humidity sensor for the Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Na Young; Hwang, Il Soon; Yoo, Han Ill; Song, Chang Rock; Park, Sang Duk; Yang, Jun Seog

    1997-01-01

    For the Korean Next Generation Reactor(KNGR) development, LBB is considered for the Main Steam Line(MSL) piping inside its containment to achieve cost and safety improvement. To apply LBB concept to MSL, leak sensors highly sensitive to humidity is required. In this paper, a ceramic material, MgCr 2 O 4 -TiO 2 has been developed as a humidity sensor for MSL applications. Experiments performed to characterize the electrical conductivity shows that the conductivity of MgCr 2 O 4 -TiO 2 responds sensitively to both temperature and humidity changes. At a constant temperature below 100 .deg. C, the conductivity increases as the relative humidity increases, which makes the sensor favorable for application to the outside of MSL insulation layer. But as temperature increases beyond 100 .deg. C, the sensor composition should be adjusted for the application to KNGR is to be made at temperature above 100 .deg. C

  10. Enhancement of HHG yield

    International Nuclear Information System (INIS)

    Serrat, C.; Biegert, J.

    2011-01-01

    A static electric field periodically distributed in space controls and enhances the yield in high harmonic generation. The method is relatively simple to implement and allows tuning from the extreme-ultraviolet to soft X-ray. The radiation yield is selectively enhanced due to symmetry breaking induced by a static electric field on the interaction between the driving laser and the medium. The enhanced spectral region is tuned by varying the periodicity of the static electric field. Simulations predict an increase of more than two orders of magnitude for harmonics in the water window spectral range.

  11. SAW Humidity Sensor Sensitivity Enhancement via Electrospraying of Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Farid Sayar Irani

    2016-11-01

    Full Text Available In this research, we investigated the influence of the surface coatings of silver nanowires on the sensitivity of surface acoustic wave (SAW humidity sensors. Silver nanowires, with poly(vinylpyrrolidone (PVP, which is a hydrophilic capping agent, were chemically synthesized, with an average length of 15 µm and an average diameter of 60 nm. Humidity sensors, with 433 MHz frequency dual-port resonator Rayleigh-SAW devices, were coated by silver nanowires (AgNWs using the electrospray coating method. It was demonstrated that increasing thickness of coated AgNW on the surfaces of SAW devices results in increased sensitivity. The highest frequency shift (262 kHz in these SAW devices was obtained with an injection of 0.5 mL of the AgNW solution with a concentration of 0.5 mg/mL at an injection rate of 1 mL/h. It also showed the highest humidity sensitivity among the other prepared SAW devices.

  12. 7755 EFFECT OF NPK FERTILIZER ON FRUIT YIELD AND YIELD ...

    African Journals Online (AJOL)

    Win7Ent

    2013-06-03

    Jun 3, 2013 ... peasant farmers in Nigeria. With the increased ... did not significantly (p=0.05) increase the fruit yield nor the seed yield. Key words: NPK fertilizer, Fruit ..... SAS (Statistical Analysis System) Version 9.1. SAS Institute Inc., Cary, ...

  13. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae)

    International Nuclear Information System (INIS)

    Costa, Ethiene Arruda Pedrosa de Almeida; Santos, Eloina Maria de Mendonca; Correia, Juliana Cavalcanti; Albuquerque, Cleide Maria Ribeiro de

    2010-01-01

    In short space of time increase in temperature and rainfall can affect vector populations and, consequently, the diseases for them transmitted. The present study analyzed the effect of small temperature and humidity variations on the fecundity, fertility and survival of Aedes aegypti. These parameters were analyzed using individual females at temperatures ranging from 23 to 27 deg C (mean 25 deg C); 28 to 32 deg C (mean 30 deg C) and 33 to 37 deg C (mean 35 deg C) associated to 60 +- 8% and 80 +- 6% relative humidity. Females responded to an increase in temperature by reducing egg production, oviposition time and changing oviposition patterns. At 25 deg C and 80% relative humidity, females survived two-fold more and produced 40% more eggs when compared to those kept at 35 deg C and 80% relative humidity. However, in 45% of females kept at 35 deg C and 60% relative humidity oviposition was inhibited and only 15% females laid more than 100 eggs, suggesting that the intensity of the temperature effect was influenced by humidity. Gradual reductions in egg fertility at 60% relative humidity were observed with the increase in temperature, although such effect was not found in the 80% relative humidity at 25 deg C and 30 deg C. These results suggest that the reduction in population densities recorded in tropical areas during seasons when temperatures reach over 35 deg C is likely to be strongly influenced by temperature and humidity, with a negative effect on several aspects of mosquito biology. (author)

  14. Sol-gel zinc oxide humidity sensors integrated with a ring oscillator circuit on-a-chip.

    Science.gov (United States)

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2014-10-28

    The study develops an integrated humidity microsensor fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor changes when the sensitive film adsorbs water vapor. The circuit is used to convert the capacitance of the humidity sensor into the oscillation frequency output. Experimental results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at 30 °C as the humidity increases 40 to 90%RH.

  15. Sol-Gel Zinc Oxide Humidity Sensors Integrated with a Ring Oscillator Circuit On-a-Chip

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    2014-10-01

    Full Text Available The study develops an integrated humidity microsensor fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS process. The integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor changes when the sensitive film adsorbs water vapor. The circuit is used to convert the capacitance of the humidity sensor into the oscillation frequency output. Experimental results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at 30 °C as the humidity increases 40 to 90%RH.

  16. Humidity fluctuations in the marine boundary layer measured at a coastal site with an infrared humidity sensor

    DEFF Research Database (Denmark)

    Sempreviva, A.M.; Gryning, Sven-Erik

    1996-01-01

    An extensive set of humidity turbulence data has been analyzed from 22-m height in the marine boundary layer. Fluctuations of humidity were measured by an ''OPHIR'', an infrared humidity sensor with a 10 Hz scanning frequency and humidity spectra were produced. The shapes of the normalized spectra...... follow the established similarity functions. However the 10-min time averaged measurements underestimate the value of the absolute humidity. The importance of the humidity flux contribution in a marine environment in calculating the Obukhov stability length has been studied. Deviations from Monin......-Obukhov similarity theory seem to be connected to a low correlation between humidity and temperature....

  17. Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene

    Directory of Open Access Journals (Sweden)

    M. L. Hinks

    2018-02-01

    Full Text Available The effect of relative humidity (RH on the chemical composition of secondary organic aerosol (SOA formed from low-NOx toluene oxidation in the absence of seed particles was investigated. SOA samples were prepared in an aerosol smog chamber at < 2 % RH and 75 % RH, collected on Teflon filters, and analyzed with nanospray desorption electrospray ionization high-resolution mass spectrometry (nano-DESI–HRMS. Measurements revealed a significant reduction in the fraction of oligomers present in the SOA generated at 75 % RH compared to SOA generated under dry conditions. In a separate set of experiments, the particle mass concentrations were measured with a scanning mobility particle sizer (SMPS at RHs ranging from < 2 to 90 %. It was found that the particle mass loading decreased by nearly an order of magnitude when RH increased from < 2 to 75–90 % for low-NOx toluene SOA. The volatility distributions of the SOA compounds, estimated from the distribution of molecular formulas using the molecular corridor approach, confirmed that low-NOx toluene SOA became more volatile on average under high-RH conditions. In contrast, the effect of RH on SOA mass loading was found to be much smaller for high-NOx toluene SOA. The observed increase in the oligomer fraction and particle mass loading under dry conditions were attributed to the enhancement of condensation reactions, which produce water and oligomers from smaller compounds in low-NOx toluene SOA. The reduction in the fraction of oligomeric compounds under humid conditions is predicted to partly counteract the previously observed enhancement in the toluene SOA yield driven by the aerosol liquid water chemistry in deliquesced inorganic seed particles.

  18. Nitrogen rate and plant population effects on yield and yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Gan et al., 2003). Nitrogen increases yield by influencing a variety of agronomic and quality parameters. In general, there was an increase in plant height and dry matter accumulation per plant in soybean (Manral and Saxena, ...

  19. Effect of humidity and interlayer cation on frictional strength of montmorillonite

    Science.gov (United States)

    Tetsuka, H.; Katayama, I.; Sakuma, H.; Tamura, K.

    2016-12-01

    Smectite has been ubiquitously seen in fault gouge (Schleicher et al., 2006; Kuo et al., 2009; Si et al., 2014; Kameda, 2015) and is characteristic by low frictional coefficient (Saffer et al., 2001; Ikari et al., 2007); consequently, it has a key role in fault dynamics. The frictional strength of montmorillonite (a typical type of smectite) is affected by mainly two factors, 1) hydration state and 2) interlayer cation. Previous laboratory experiments have shown that the frictional strength of montmorillonite changes with hydration state (Ikari et al., 2007) and with interlayer cation (Behnsen and Faulkner, 2013). However, experimental study for frictional strengths of interlayer cation-exchanged montmorillonite under controlled hydration state has not been reported. We are developing humidity control system in biaxial friction testing machine and try to investigate the effect of relative humidity and interlayer cation on frictional strength of montmorillonite. The humidity control system consists of two units, 1) the pressure vessel (core holder) unit controlled by a constant temperature and 2) the vapor generating unit controlled by variable temperature. We control relative humidity around sample, which is calculated from the temperature around sample and the vapor pressure at vapor generating unit. Preliminary experiments under controlled humidity show frictional coefficient of montmorillonite decrease with increasing relative humidity. In the meeting, we will report the systematic study of frictional coefficient as function of relative humidity and interlayer cation species.

  20. Crystallization speed of salbutamol as a function of relative humidity and temperature.

    Science.gov (United States)

    Zellnitz, Sarah; Narygina, Olga; Resch, Christian; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2015-07-15

    Spray dried salbutamol sulphate and salbutamol base particles are amorphous as a result of spray drying. As there is always the risk of recrystallization of amorphous material, the aim of this work is the evaluation of the temperature and humidity dependent recrystallization of spray dried salbutamol sulphate and base. Therefore in-situ Powder X-ray Diffraction (PXRD) studies of the crystallization process at various temperature (25 and 35 °C) and humidity (60%, 70%, 80%, 90% relative humidity) conditions were performed. It was shown that the crystallization speed of salbutamol sulphate and base is a non-linear function of both temperature and relative humidity. The higher the relative humidity the higher is the crystallization speed. At 60% relative humidity salbutamol base as well as salbutamol sulphate were found to be amorphous even after 12 h, however samples changed optically. At 70% and 90% RH recrystallization of salbutamol base is completed after 3 h and 30 min and recrystallization of salbutamol sulphate after 4h and 1h, respectively. Higher temperature (35 °C) also leads to increased crystallization speeds at all tested values of relative humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Mask humidity during CPAP: influence of ambient temperature, heated humidification and heated tubing.

    Science.gov (United States)

    Nilius, Georg; Domanski, Ulrike; Schroeder, Maik; Woehrle, Holger; Graml, Andrea; Franke, Karl-Josef

    2018-01-01

    Mucosal drying during continuous positive airway pressure (CPAP) therapy is problematic for many patients. This study assessed the influence of ambient relative humidity (rH) and air temperature (T) in winter and summer on mask humidity during CPAP, with and without mask leak, and with or without heated humidification ± heated tubing. CPAP (8 and 12 cmH 2 O) without humidification (no humidity [nH]), with heated humidification controlled by ambient temperature and humidity (heated humidity [HH]) and HH plus heated tubing climate line (CL), with and without leakage, were compared in 18 subjects with OSA during summer and winter. The absolute humidity (aH) and the T inside the mask during CPAP were significantly lower in winter versus summer under all applied conditions. Overall, absolute humidity differences between summer and winter were statistically significant in both HH and CL vs. nH ( p humidification or with standard HH. Clinically-relevant reductions in aH were documented during CPAP given under winter conditions. The addition of heated humidification, using a heated tube to avoid condensation is recommended to increase aH, which could be useful in CPAP users complaining of nose and throat symptoms.

  2. Tapered Fiber Coated with Hydroxyethyl Cellulose/Polyvinylidene Fluoride Composite for Relative Humidity Sensor

    Directory of Open Access Journals (Sweden)

    M. Z. Muhammad

    2013-01-01

    Full Text Available A simple relative humidity (RH sensor is demonstrated using a tapered fiber coated with hydroxyethyl cellulose/polyvinylidene fluoride (HEC/PVDF composite as a probe. This coating acts as an inner cladding whose refractive index decreases with the rise in humidity and thus allows more light to be transmitted in humid state. A difference of up to 0.89 dB of the transmitted optical power is observed when RH changes from 50% to 80% in case of the silica fiber probe. The proposed sensor has a sensitivity of about 0.0228 dB/%RH with a slope linearity of more than 99.91%. In case of the plastic optical fiber (POF probe, the output voltage of the sensor increases linearly with a sensitivity of 0.0231 mV/%RH and a linearity of more than 99.65% as the relative humidity increases from 55% to 80%.

  3. Influence of humidity on the thermal behavior of aluminum nanopowders

    International Nuclear Information System (INIS)

    Li Ying; Song Wulin; Xie Changsheng; Zeng Dawen; Wang Aihua; Hu Mulin

    2006-01-01

    Aluminum (Al) nanopowders have increasingly gained attention because of their potential incorporation in explosive and propellant mixtures. This paper reports on a qualitative study on influence of humidity on the thermal behavior of Al nanopowders and the oxidation of aluminum nanoparticles containing a passivating oxide coating. The thermal behaviors were identified by DSC-TG, and Al nanopowders were examined using high-resolution transmission electron microscopy (HRTEM) to understand the stability of the oxide coating in aluminum nanoparticles. It was found that the diameter of Al nanoparticles was in range of 10-100 nm. The original Al nanoparticles were covered by a 3 nm thick compact amorphous oxide layer. After stored for 8 weeks, the oxide layer grew up to 5 nm thick, and the oxidation diffused to the interior of Al nanoparticles. The results indicate that the reactivity of Al nanopowders is deeply influenced by the environment, especially the humidity. The higher relative humidity would accelerate the aging of the Al nanopowders. The DSC-TG results show the oxidation of Al nanoparticles occurs at least in two steps

  4. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    The electrical conductivity of the films is observed to vary with humidity and selectively show high sensitivity to moisture at room temperature. In order to understand the mechanism of sensing, the films were examined by X-ray diffraction at elevated temperatures and in controlled atmospheres. Based on these observations ...

  5. Soil erosion in humid regions: a review

    Science.gov (United States)

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  6. Biochars as Innovative Humidity Sensing Materials

    Directory of Open Access Journals (Sweden)

    Daniele Ziegler

    2017-12-01

    Full Text Available In this work, biochar-based humidity sensors were prepared by drop-coating technique. Polyvinylpyrrolidone (PVP was added as an organic binder to improve the adhesion of the sensing material onto ceramic substrates having platinum electrodes. Two biochars obtained from different precursors were used. The sensors were tested toward relative humidity (RH at room temperature and showed a response starting around 5 RH%, varying the impedance of 2 orders of magnitude after exposure to almost 100% relative humidity. In both cases, biochar materials are behaving as p-type semiconductors under low amounts of humidity. On the contrary, for higher RH values, the impedance decreased due to water molecules adsorption. When PVP is added to SWP700 biochar, n-p heterojunctions are formed between the two semiconductors, leading to a higher sensitivity at low RH values for the sensors SWP700-10% PVP and SWP700-20% PVP with respect to pure SWP700 sensor. Finally, response and recovery times were both reasonably fast (in the order of 1 min.

  7. Recent Developments in Fiber Optics Humidity Sensors.

    Science.gov (United States)

    Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R

    2017-04-19

    A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution.

  8. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths

    Science.gov (United States)

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A.

    2012-01-01

    Most research on plant–pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue—transient humidity gradients—using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12–24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator. PMID:22645365

  9. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths.

    Science.gov (United States)

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A

    2012-06-12

    Most research on plant-pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue--transient humidity gradients--using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12-24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator.

  10. Effects of humidity on the mechanical properties of gecko setae.

    Science.gov (United States)

    Prowse, Michael S; Wilkinson, Matt; Puthoff, Jonathan B; Mayer, George; Autumn, Kellar

    2011-02-01

    We tested the hypothesis that an increase in relative humidity (RH) causes changes in the mechanical properties of the keratin of adhesive gecko foot hairs (setae). We measured the effect of RH on the tensile deformation properties, fracture, and dynamic mechanical response of single isolated tokay gecko setae and strips of the smooth lamellar epidermal layer. The mechanical properties of gecko setae were strongly affected by RH. The complex elastic modulus (measured at 5 Hz) of a single seta at 80% RH was 1.2 GPa, only 39% of the value when dry. An increase in RH reduced the stiffness and increased the strain to failure. The loss tangent increased significantly with humidity, suggesting that water absorption produces a transition to a more viscous type of deformation. The influence of RH on the properties of the smooth epidermal layer was comparable with that of isolated seta, with the exception of stress at rupture. These values were two to four times greater for the setae than for the smooth layer. The changes in mechanical properties of setal keratin were consistent with previously reported increases in contact forces, supporting the hypothesis that an increase in RH softens setal keratin, which increases adhesion and friction. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Model, Proxy and Isotopic Perspectives on the East African Humid Period

    Science.gov (United States)

    Tierney, Jessica E.; Lewis, Sophie C.; Cook, Benjamin I.; LeGrande, Allegra N.; Schmidt, Gavin A.

    2011-01-01

    Both North and East Africa experienced more humid conditions during the early and mid-Holocene epoch (11,000-5000yr BP; 11-5 ka) relative to today. The North African Humid Period has been a major focus of paleoclimatic study, and represents a response of the hydrological cycle to the increase in boreal summer insolation and associated ocean, atmosphere and land surface feedbacks. Meanwhile, the mechanisms that caused the coeval East African Humid Period are poorly understood. Here, we use results from isotopeenabled coupled climate modeling experiments to investigate the cause of the East African Humid Period. The modeling results are interpreted alongside proxy records of both water balance and the isotopic composition of rainfall. Our simulations show that the orbitally-induced increase in dry season precipitation and the subsequent reduction in precipitation seasonality can explain the East African Humid Period, and this scenario agrees well with regional lake level and pollen paleoclimate data. Changes in zonal moisture flux from both the Atlantic and Indian Ocean account for the simulated increase in precipitation from June through November. Isotopic paleoclimate data and simulated changes in moisture source demonstrate that the western East African Rift Valley in particular experienced more humid conditions due to the influx of Atlantic moisture and enhanced convergence along the Congo Air Boundary. Our study demonstrates that zonal changes in moisture advection are an important determinant of climate variability in the East African region.

  12. The influence of humidity fluxes on offshore wind speed profiles

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Sempreviva, Anna Maria; Pryor, Sara

    2010-01-01

    extrapolation from lower measurements. With humid conditions and low mechanical turbulence offshore, deviations from the traditional logarithmic wind speed profile become significant and stability corrections are required. This research focuses on quantifying the effect of humidity fluxes on stability corrected...... wind speed profiles. The effect on wind speed profiles is found to be important in stable conditions where including humidity fluxes forces conditions towards neutral. Our results show that excluding humidity fluxes leads to average predicted wind speeds at 150 m from 10 m which are up to 4% higher...... than if humidity fluxes are included, and the results are not very sensitive to the method selected to estimate humidity fluxes....

  13. Mycotoxin production in wheat grains by different Aspergilli in relation to different relative humidities and storage periods.

    Science.gov (United States)

    Atalla, Mohamed Mabrouk; Hassanein, Naziha Mohamed; El-Beih, Ahmed Atef; Youssef, Youssef Abdel-ghany

    2003-02-01

    Four different Aspergilli (Aspergillus oryzae, A. parasiticus, A. terreus and A. versicolor) were grown on wheat grains underdifferent degrees of relative humidity 14, 50, 74, 80 and 90%. Samples of wheat grains were taken monthly for a period of six months and examined for mycotoxin production. A. oryzae was found to produce aflatoxins B1, B2, zearalenone, DON and T-2 toxins under elevated degrees of humidity and prolonged periods of storage. A. parasiticus produced aflatoxins B1, G1, NIV, DON and T-2 toxins in high concentrations during a period of not more than three months storage at 14% relative humidity; at an increased level of relative humidity of 74% ochratoxin A, zearalenone and sterigmatocystin were also produced at high levels. The isolate was drastic in toxin production. A. terrus produced toxins at 14% relative humidity (aflatoxin G2 and DON) at levels much higher than any other prevalent degrees of humidity. A. versicolor is highly sensitive to relative humidity and grain moisture content It produced aflatoxins B1, G1, NIV and DON at a relative humidity of 50% and another toxins (aflatoxin G2, ochratoxins A, B and zearalenone) at 74%. The microorganism can be considered a trichothecene producer under suitable relative humidity.

  14. The Influence Of Switching-Off The Big Lamps On The Humidity Operation Hall

    International Nuclear Information System (INIS)

    Wiranto, Slamet; Sriawan

    2001-01-01

    When there is no activity in the Operation Hall, the big lamps in this are switched off. Due to the water trap of ventilation system is not in good function, the humidity of the Operation Hall increases. In any point of time the humidity rise over the permitted limit value. To avoid this problem it is needed to investigate the characteristic by measuring the humidity of the Operation Hall at various condition and situation. From the characteristic, it can be determined that for normal condition, the Operation Hall big lamps should be switched off, and 2 days before start-up reactor, the all operation building lamps should be switched on for about 5 days as the operation building humidity back to normal value

  15. Room temperature humidity sensor based on polyaniline-tungsten disulfide composite

    Science.gov (United States)

    Manjunatha, S.; Chethan, B.; Ravikiran, Y. T.; Machappa, T.

    2018-05-01

    Polyaniline-tungsten disulfide (PANI-WS2) composite was synthesized using in situ polymerization technique by adding finely grinded powder of WS2 during the polymerization of aniline. Field emission scanning electron microscopy (FESEM) images showed the granular morphology with porous nature. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of carbon, nitrogen, chlorine of PANI, tungsten and sulfur elements of WS2. Humidity sensing property of the composite was investigated by plotting change in its resistance with different relative humidity environments ranging from 10 to 97% RH. Decrease in resistance of the composite was observed with increase in relative humidity. Maximum sensing response of the composite was found to be 88.46%. Response and recovery times of the composite at 97%RH were fair enough to fabricate a sensor based on it. Stability of the composite with respect to the humidity sensing behavior was observed to be unchanged even after two months.

  16. Direct versus indirect effects of tropospheric humidity changes on the hydrologic cycle

    International Nuclear Information System (INIS)

    Sherwood, S C

    2010-01-01

    Abundant evidence indicates that tropospheric specific humidity increases in a warmer atmosphere, at rates roughly comparable to those at constant relative humidity. While the implications for the planetary energy budget and global warming are well recognized, it is the net atmospheric cooling (or surface heating) that controls the hydrologic cycle. Relative humidity influences this directly through gas-phase radiative transfer, and indirectly by affecting cloud cover (and its radiative effects) and convective heating. Simple calculations show that the two indirect impacts are larger than the direct impact by roughly one and two orders of magnitude respectively. Global or regional relative humidity changes could therefore have significant indirect impacts on energy and water cycles, especially by altering deep convection, even if they are too small to significantly affect global temperature. Studies of climate change should place greater emphasis on these indirect links, which may not be adequately represented in models.

  17. The response of poly (vinyl alcohol) to humidity

    International Nuclear Information System (INIS)

    Spindura, J.

    2000-01-01

    This thesis aims to investigate the effects of heat treatments, humidity and hydrogen bonding on thin film and fibre samples of poly (vinyl alcohol). A number of different techniques are utilised in order to analyse samples that have undergone a number of different treatments. The techniques include X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). From the XRD and DSC work the increase in crystallisation due to annealing time and temperature has been investigated and for dry samples the crystallinity was found to be dependant on both the temperature and also the heating method. For samples exposed to varying humidities and annealed in this wet environment two stages of crystallisation have been proposed. The crystals formed are of two types, those with small unit cell parameters and low melting points, and a second class of crystals with bigger unit cell parameters which, perhaps surprisingly, were found to have the higher melting points. The melting temperature was also not found to be significantly dependant on the amount of water take up or the degree of crystallinity. These changes have been explained in terms of the hydrogen bonding between the polymer chains and between the polymer and water molecules. Solubility and swelling experiments showed that as the crystallinity of the sample increases the amount of water the sample is able to absorb is reduced. This is because it is the amorphous region of the material that swells, although it has been shown that not all the amorphous material swells to the same extent. The glass transition temperature (T g ) could not be followed with DSC as the semicrystalline nature of the samples masked this transition and hence DMA was used to follow the changes in T g with both annealing and moisture content. A decrease in T g with increasing humidity was clearly observed. An interesting observation was the increase in T g for films exposed to humidity and then dried

  18. Pine seeds radiosensitivity as depended upon their humidity and the term of storage after radiation exposure

    International Nuclear Information System (INIS)

    Porozova, O.A.

    1983-01-01

    The seeds of pine (Pinus silvestris L.) have been used to study the effect of average and so called ''low doses'' of ionizing radiation at different levels of seed humidity (3-4%-dried a little, 6-7%-aerially-dry and 9-10%-humid). The Seeds of every humidity level are irradiated in May in a rather wide dose range 0.5, 1, 2, 5, 10, 20, 30 Gy from a gamma source of 137 Cs at the dose rate of 0.96 Gy/min. After irradiation part of seeds was sown. It is shown that seeds with relatively high water content are more stable to the effect of gamma-radiation. The first indices of radiation injury in humid seeds (9-10% humidity) in the criteria of laboratory growing-out are noticed at the dose of 20 Gy while in dried seeds (3-4% hymidity) - at the dose of 2 Gy. Radiation injury of aerially-dried and dried seeds increases with the increase of radiation dose and periods of their storage. In humid seeds this effect depends on radiation dose alone; their storage for eight months did not produce a noticeable effect on growing-out

  19. The Importance of Humidity in the Relationship between Heat and Population Mental Health: Evidence from Australia.

    Science.gov (United States)

    Ding, Ning; Berry, Helen L; Bennett, Charmian M

    2016-01-01

    Despite many studies on the effects of heat on mental health, few studies have examined humidity. In order to investigate the relationship among heat, humidity and mental health, we matched data from the Social, Economic and Environmental Factors (SEEF) project with gridded daily temperature and water vapour pressure data from the Australian Bureau of Meteorology. Logit models were employed to describe the associations among heat (assessed using temperature, °C), humidity (assessed using vapour pressure, hPa) and two measures of mental health, (i) high or very high distress (assessed using K10 scores ≥ 22) and (ii) having been treated for depression or anxiety. We found a one-unit increase in temperature and vapour pressure was associated with an increase in the occurrence of high or very high distress by 0.2% (p humidity rose to the 99th percentile of the sample, the estimated marginal effect of heat was more than doubled (0.5%, p humidity was related to having been treated for depression or anxiety in the last month. Humidity compounds the negative association between hot weather and mental health and thus should be taken into account when reforming the health care system to respond to the challenge of climate change.

  20. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2010-01-01

    The effect of humidity on the vibrational relaxation of O 2 (v) and N 2 (v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O 2 (v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O 2 , N 2 and H 2 O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O 2 -H 2 O and N 2 -H 2 O and the subsequent rapid V-T process of H 2 O-H 2 O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O 2 -O.

  1. Follicular synchronization using transdermal estradiol patch and GnRH antagonists in the luteal phase; does it increase oocyte yield in poor responders to gonadotropin stimulation for in vitro fertilization (IVF)? A comparative study with microdose flare-up protocol.

    Science.gov (United States)

    Ata, Baris; Zeng, Xing; Son, Weon Y; Holzer, Hananel; Tan, Seang L

    2011-11-01

    The aim of this retrospective study was to compare the oocyte yield with the luteal estradiol patch (LPA) - GnRH antagonist and microdose (MD) flare-up protocols in anticipated poor responders. Fifty-seven women who underwent IVF treatment following stimulation with LPA or MD protocols at McGill Reproductive Centre were matched for age and markers of ovarian reserve. Numbers of oocytes collected (6 vs 7), mature oocytes collected (5 vs 5), and oocyte maturation rates (72% vs 74%) were similar. The numbers of good quality embryos available (2 vs 1) and embryos transferred (3 vs 3) were likewise similar. Embryo implantation rate of 16.7% and clinical pregnancy rate of 38.9% achieved in the LPA group were almost 50% higher than the corresponding figures at 10.3% and 22.2% in the MD group; however, the differences were not statistically significant (p > 0.05 for all comparisons). Although the results do not suggest an increased oocyte yield or follicular synchronization with the LPA protocol, the observed trend toward higher embryo implantation and clinical pregnancy rates requires further research.

  2. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua

    International Nuclear Information System (INIS)

    Zhang, Weigang; Zhang, Gangsheng

    2015-01-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures

  3. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weigang, E-mail: abczwg15@163.com [College of Materials and Chemical Engineering, Chuzhou University, Chuzhou 239000 (China); Zhang, Gangsheng [College of Material Science and Technology, Guangxi University, Nanning 530004 (China)

    2015-07-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures.

  4. Wireless sensor for temperature and humidity measurement

    Science.gov (United States)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  5. Calibration of Relative Humidity Sensors using a Dew Point Generator

    OpenAIRE

    Brooks, Milo

    2010-01-01

    A relative humidity sensor can be calibrated using a dew point generator to continuously supply an air stream of known constant humidity and a temperature chamber to control the dew point and ambient temperature.

  6. Humidity Detection Using Metal Organic Framework Coated on QCM

    KAUST Repository

    Kosuru, Lakshmoji; Bouchaala, Adam M.; Jaber, Nizar; Younis, Mohammad I.

    2016-01-01

    of a quartz crystal microbalance. The resonance frequencies of these sensors with varying relative humidity (RH) from 22% RH to 69% RH are measured using impedance analysis method. The sensitivity, humidity hysteresis, response, and recovery times

  7. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  8. Effect of relative humidity on solar potential

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2005-01-01

    In this study, the effect of relative humidity on solar potential is investigated using artificial neural-networks. Two different models are used to train the neural networks. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network (Model 1). But, relative humidity values are added to one network in model (Model 2). In other words, the only difference between the models is relative humidity. New formulae based on meteorological and geographical data, have been developed to determine the solar energy potential in Turkey using the networks' weights for both models. Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer-function were used in the network. The best approach was obtained by the SCG algorithm with nine neurons for both models. Meteorological data for the four years, 2000-2003, for 18 cities (Artvin, Cesme, Bozkurt, Malkara, Florya, Tosya, Kizilcahamam, Yenisehir, Edremit, Gediz, Kangal, Solhan, Ergani, Selcuk, Milas, Seydisehir, Siverek and Kilis) spread over Turkey have been used as data in order to train the neural network. Solar radiation is in output layer. One month for each city was used as test data, and these months have not been used for training. The maximum mean absolute percentage errors (MAPEs) for Tosya are 2.770394% and 2.8597% for Models 1 and 2, respectively. The minimum MAPEs for Seydisehir are 1.055205% and 1.041% with R 2 (99.9862%, 99.9842%) for Models 1 and 2, respectively, in the SCG algorithm with nine neurons. The best value of R 2 for Models 1 and 2 are for Seydisehir. The minimum value of R 2 for Model 1 is 99.8855% for Tosya, and the value for Model 2 is 99.9001% for Yenisehir. Results show that the humidity has only a negligible effect upon the prediction of solar potential using artificial neural-networks

  9. Procedure for drying humidity-containing bodies

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1976-01-01

    The invention concerns a decontamination process for extracting impurities, in particular humidity and gases, from nuclear fuel rods before they are sealed and inserted into the reactor. The fuel rod, which has a small drilling hole, is placed in a low pressure container. The container is filled with a liquid drying agent which washes out the impurities. A dry inert gas (nitrogen, noble gases) is used for rinsing. Alcohols, ketones, methanol, acetone are named as drying agents. (UWI) [de

  10. Improving stomatal functioning at elevated growth air humidity: A review.

    Science.gov (United States)

    Fanourakis, Dimitrios; Bouranis, Dimitrios; Giday, Habtamu; Carvalho, Dália R A; Rezaei Nejad, Abdolhossein; Ottosen, Carl-Otto

    2016-12-01

    Plants grown at high relative air humidity (RH≥85%) are prone to lethal wilting upon transfer to conditions of high evaporative demand. The reduced survival of these plants is related to (i) increased cuticular permeability, (ii) changed anatomical features (i.e., longer pore length and higher stomatal density), (iii) reduced rehydration ability, (iv) impaired water potential sensitivity to leaf dehydration and, most importantly, (v) compromised stomatal closing ability. This review presents a critical analysis of the strategies which stimulate stomatal functioning during plant development at high RH. These include (a) breeding for tolerant cultivars, (b) interventions with respect to the belowground environment (i.e., water deficit, increased salinity, nutrient culture and grafting) as well as (c) manipulation of the aerial environment [i.e., increased proportion of blue light, increased air movement, temporal temperature rise, and spraying with abscisic acid (ABA)]. Root hypoxia, mechanical disturbance, as well as spraying with compounds mimicking ABA, lessening its inactivation or stimulating its within-leaf redistribution are also expected to improve stomatal functioning of leaves expanded in humid air. Available evidence leaves little doubt that genotypic and phenotypic differences in stomatal functioning following cultivation at high RH are realized through the intermediacy of ABA. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Electrospinning onto Insulating Substrates by Controlling Surface Wettability and Humidity

    Science.gov (United States)

    Choi, WooSeok; Kim, Geon Hwee; Shin, Jung Hwal; Lim, Geunbae; An, Taechang

    2017-11-01

    We report a simple method for electrospinning polymers onto flexible, insulating substrates by controlling the wettability of the substrate surface. Water molecules were adsorbed onto the surface of a hydrophilic polymer substrate by increasing the local humidity around the substrate. The adsorbed water was used as the ground electrode for electrospinning. The electrospun fibers were deposited only onto hydrophilic areas of the substrate, allowing for patterning through wettability control. Direct writing of polymer fiber was also possible through near-field electrospinning onto a hydrophilic surface.

  12. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  13. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold.

    Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  14. Humidity effects on hydrophilic film dosimeter systems

    International Nuclear Information System (INIS)

    Gehringer, P.; Eschweiler, H.; Proksch, E.

    1979-11-01

    At dose-rates typical for 60 Co-gamma irradiation sources the radiation response of hexahydroxyethyl pararosanilin cyanide/50μm nylon radachromic films is dependent upon dose-rate as well as upon the moisture content of the film. Under equilibrium moisture conditions, the response measured at 606 nm 24 hours after end of irradiation shows its highest dose-rate dependence at about 32 % r.h. A decrease in dose-rate from 2.8 to 0.039 Gy.s -1 results in decrease in response by 17%. At higher humidities, the sensitivity of the film as well as the rate dependence decreases and at 86% r.h. no discernible dose-rate effect could be found. At nominal 0 % r.h. a second absorption band at 412 nm appears which is converted completely to an additional 606 nm absorption by exposure to a humid atmosphere. After that procedure the resultant response is somewhat lower but shows almost the same dose-rate dependence as at 32% r.h. Preliminary results concerning the influence of humidity on the response of Blue Cellophane are given, too. (author)

  15. Lead Oxide- PbO Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Sk. Khadeer Pasha

    2010-11-01

    Full Text Available Alcohol thermal route has been used to synthesize nanocrystalline PbO at a low temperature of 75 oC using lead acetate. The synthesized PbO (P75 was annealed in the temperatures ranging from 200-500 oC for 2 h to study the effect of crystal structure and phase changes and were labeled as P200, P300, P400 and P500, respectively. X-Ray diffraction and FT-IR spectroscopy were carried out to identify the structural phases and vibrational stretching frequencies respectively. The TEM images revealed the porous nature of P75 sample which is an important criterion for the humidity sensor. The dc resistance measurements were carried out in the relative humidity (RH range 5-98 %. Among the different prepared, P75 possessed the highest humidity sensitivity of 6250, while the heat treated sample P500 have a low sensitivity of 330. The response and recovery characteristics of the maximum sensitivity sample P75 were 170 s and 40 s respectively.

  16. Nitrogen rate and plant population effects on yield and yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... density and nitrogen rate increased plant height, lowest pod height, harvest index and seed yield. ... since some combine harvester heads are unable to pick ..... as effected by population density and plant distribution.

  17. Growth, assimilate partitioning and grain yield response of soybean ...

    African Journals Online (AJOL)

    This investigation tested variation in the growth components, assimilate partitioning and grain yield of soybean (Glycine max L. Merrrill) varieties established in CO2 enriched atmosphere when inoculated with mixtures of Arbuscular mycorrhizal fungi (AMF) species in the humid rainforest of Nigeria. A pot and a field ...

  18. Aging Impairs Whole-Body Heat Loss in Women under Both Dry and Humid Heat Stress.

    Science.gov (United States)

    Notley, Sean R; Poirier, Martin P; Hardcastle, Stephen G; Flouris, Andreas D; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2017-11-01

    This study was designed to determine whether age-related impairments in whole-body heat loss, which are known to exist in dry heat, also occur in humid heat in women. To evaluate this possibility, 10 young (25 ± 4 yr) and 10 older (51 ± 7 yr) women matched for body surface area (young, 1.69 ± 0.11; older, 1.76 ± 0.14 m, P = 0.21) and peak oxygen consumption (V˙O2peak) (young, 38.6 ± 4.6; older, 34.8 ± 6.6 mL·kg·min, P = 0.15) performed four 15-min bouts of cycling at a fixed metabolic heat production rate (300 W; equivalent to ~45% V˙O2peak), each separated by a 15-min recovery, in dry (35°C, 20% relative humidity) and humid heat (35°C, 60% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and loss. Total heat loss was lower in humid conditions compared with dry conditions during all exercise bouts in both groups (all P body heat storage in young and older women, respectively (both P body heat storage was 29% and 16% greater in older women compared with young women in dry and humid conditions, respectively (both P < 0.05). Increasing ambient humidity reduces heat loss capacity in young and older women. However, older women display impaired heat loss relative to young women in both dry and humid heat, and may therefore be at greater risk of heat-related injury during light-to-moderate activity.

  19. The interaction effects of temperature and humidity on emergency room visits for respiratory diseases in Beijing, China.

    Science.gov (United States)

    Su, Qin; Liu, Hongsheng; Yuan, Xiaoling; Xiao, Yan; Zhang, Xian; Sun, Rongju; Dang, Wei; Zhang, Jianbo; Qin, Yuhong; Men, Baozhong; Zhao, Xiaodong

    2014-11-01

    Few epidemiological studies have been reported as to whether there was any interactive effect between temperature and humidity on respiratory morbidity, especially in Asian countries. The present study used time-series analysis to explore the modification effects of humidity on the association between temperature and emergency room (ER) visits for respiratory, upper respiratory tract infection (URI), pneumonia, and bronchitis in Beijing between 2009 and 2011. Results showed that an obvious joint effect of temperature and humidity was revealed on ER visits for respiratory, URI, pneumonia, and bronchitis. Below temperature threshold, the temperature effect was stronger in low humidity level and presented a trend fall with humidity level increase. The effect estimates per 1 °C increase in temperature in low humidity level were -2.88 % (95 % confidence interval (CI) -3.08, -2.67) for all respiratory, -3.24 % (-3.59, -2.88) for URI, -1.48 % (-1.93, -1.03) for pneumonia, and -3.79 % (-4.37, -3.21) for bronchitis ER visits, respectively. However, above temperature threshold, temperature effect was greater in high humidity level and trending upward with humidity level increasing. In high humidity level, a 1 °C increase in temperature, the effect estimates were 1.84 % (1.55, 2.13) for all respiratory, 1.76 % (1.41, 2.11) for URI, and 7.48 % (4.41, 10.65) for bronchitis ER visits. But, there was no statistically significant for pneumonia. This suggests that the modifying effects of the humidity should be considered when analyzing health impacts of temperature.

  20. Bond Strength of Resin Composite to Dentin with Different Adhesive Systems: Influence of Relative Humidity and Application Time.

    Science.gov (United States)

    Amsler, Fabienne; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2015-06-01

    To investigate the influence of relative humidity and application time on bond strength to dentin of different classes of adhesive systems. A total of 360 extracted human molars were ground to mid-coronal dentin. The dentin specimens were treated with one of six adhesive systems (Syntac Classic, OptiBond FL, Clearfil SE Bond, AdheSE, Xeno Select, or Scotchbond Universal), and resin composite (Filtek Z250) was applied to the treated dentin surface under four experimental conditions (45% relative humidity/application time according to manufacturers' instructions; 45% relative humidity/reduced application time; 85% relative humidity/application time according to manufacturers' instructions; 85% relative humidity/reduced application time). After storage (37°C, 100% humidity, 24 h), shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Kruskal-Wallis tests and Mann-Whitney U-tests with Bonferroni-Holm correction for multiple testing (level of significance: α = 0.05). Increased relative humidity and reduced application time had no effect on SBS for Clearfil SE Bond and Scotchbond Universal (p = 1.00). For Syntac Classic, OptiBond FL, AdheSE, and Xeno Select there was no effect on SBS of reduced application time of the adhesive system (p ≥ 0.403). However, increased relative humidity significantly reduced SBS for Syntac Classic, OptiBond FL, and Xeno Select irrespective of application time (p ≤ 0.003), whereas for AdheSE, increased relative humidity significantly reduced SBS at recommended application time only (p = 0.002). Generally, increased relative humidity had a detrimental effect on SBS to dentin, but reduced application time had no effect.

  1. 7 CFR 28.301 - Measurement: humidity; temperature.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F. ...

  2. A Standard CMOS Humidity Sensor without Post-Processing

    OpenAIRE

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    A 2 ?W power dissipation, voltage-output, humidity sensor accurate to 5% relative humidity was developed using the LFoundry 0.15 ?m CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a Intervia Photodielectric 8023?10 humidity-sensitive layer, and a CMOS capacitance to voltage converter.

  3. Effect of vulcanization temperature and humidity on the properties of RTV silicone rubber

    Science.gov (United States)

    Wu, Xutao; Li, Xiuguang; Hao, Lu; Wen, Xishan; Lan, Lei; Yuan, Xiaoqing; Zhang, Qingping

    2017-06-01

    In order to study the difference in performance of room temperature vulcanized (RTV) silicone rubber in vulcanization environment with different temperature and humidity, static contact angle method, FTIR and TG is utilized to depict the properties of hydrophobicity, transfer of hydrophobicity, functional groups and thermal stability of RTV silicone rubber. It is found that different vulcanization conditions have effects on the characteristics of RTV silicone rubber, which shows that the hydrophobicity of RTV silicone rubber changes little with the vulcanization temperature but a slight increase with the vulcanization humidity. Temperature and humidity have obvious effects on the hydrophobicity transfer ability of RTV silicone rubber, which is better when vulcanization temperature is 5°C or vulcanization humidity is 95%. From the Fourier transform infrared spectroscopy, it can be concluded that humidity and temperature of vulcanization conditions have great effect on the functional groups of silicone rubber, and vulcanization conditions also have effect on thermal stability of RTV silicone rubber. When vulcanization temperature is 5°C or vulcanization humidity is 15% or 95%, the thermal stability of silicone rubber becomes worse.

  4. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Coupled effects of the temperature and the relative humidity on gecko adhesion

    International Nuclear Information System (INIS)

    Peng, Zhilong; Yang, Yazheng; Chen, Shaohua

    2017-01-01

    To explain the inconsistent results of experiments on temperature-dependent gecko adhesion, a theoretical peeling model is established wherein a nano-thin film is adopted to simulate a gecko spatula. The model considers not only the respective effects of temperature and environmental humidity on the peel-off force but also the coupled effect of both factors. Increasing temperature is found to lead to a decreasing peel-off force if the environmental humidity is uncontrolled. However, if the environmental humidity is constant, the peel-off force is insensitive to the temperature and remains almost constant. The synthetic theoretical analysis demonstrates that the seemingly contradictory results of temperature-dependent gecko adhesion experiments are actually consistent under their respective experimental conditions. This inconsistency is mainly due to the environmental humidity, which varies with the changing temperature if it is not artificially controlled. The results cannot only reasonably explain the different experimental results for the effect of temperature on gecko adhesion but can also facilitate the design of temperature-controlled or humidity-controlled adhesion sensors by tuning the environmental humidity or temperature. (paper)

  6. Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events

    Science.gov (United States)

    Ballard, T.; Diffenbaugh, N. S.

    2016-12-01

    Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.

  7. Ambient temperature, humidity and hand, foot, and mouth disease: A systematic review and meta-analysis.

    Science.gov (United States)

    Cheng, Qiang; Bai, Lijun; Zhang, Yanwu; Zhang, Heng; Wang, Shusi; Xie, Mingyu; Zhao, Desheng; Su, Hong

    2018-06-01

    The relationship between ambient temperature, humidity and hand, foot, and mouth disease (HFMD) has been highlighted in East and Southeast Asia, which showed multiple different results. Therefore, our goal is to conduct a meta-analysis to further clarify this relationship and to quantify the size of these effects as well as the susceptible populations. PubMed, Web of science, and Cochrane library were searched up to November 22, 2017 for articles analyzing the relationships between ambient temperature, humidity and incidence of HFMD. We assessed sources of heterogeneity by study design (temperature measure and exposed time resolution), population vulnerability (national income level and regional climate) and evaluated pooled effect estimates for the subgroups identified in the heterogeneity analysis. We identified 11 studies with 19 estimates of the relationship between ambient temperature, humidity and incidence of HFMD. It was found that per 1°C increase in the temperature and per 1% increase in the relative humidity were both significantly associated with increased incidence of HFMD (temperature: IRR, 1.05; 95% CI, 1.02-1.08; relative humidity: IRR, 1.01; 95% CI, 1.00-1.02). Subgroup analysis showed that people living in subtropical and middle income areas had a higher risk of incidence of HFMD. Ambient temperature and humidity may increase the incidence of HFMD in Asia-Pacific regions. Further studies are needed to clarify the relationship between ambient temperature, humidity and incidence of HFMD in various settings with distinct climate, socioeconomic, and demographic features. Copyright © 2018. Published by Elsevier B.V.

  8. Determination of equilibrium humidities using temperature and humidity controlled X-ray diffraction (RH-XRD)

    International Nuclear Information System (INIS)

    Linnow, Kirsten; Steiger, Michael

    2007-01-01

    Confined growth of crystals in porous building materials is generally considered to be a major cause of damage. We report on the use of X-ray diffraction under controlled conditions of temperature and relative humidity (RH-XRD) for the investigation of potentially deleterious phase transition reactions. An improved procedure based on rate measurements is used for the accurate and reproducible determination of equilibrium humidities of deliquescence and hydration reactions. The deliquescence humidities of NaCl (75.4 ± 0.5% RH) and Ca(NO 3 ) 2 .4H 2 O (50.8 ± 0.7% RH) at 25 deg. C determined with this improved RH-XRD technique are in excellent agreement with available literature data. Measurement of the hydration of anhydrous Ca(NO 3 ) 2 to form Ca(NO 3 ) 2 .2H 2 O revealed an equilibrium humidity of 10.2 ± 0.3%, which is also in reasonable agreement with available data. In conclusion, dynamic X-ray diffraction measurements are an appropriate method for the accurate and precise determination of equilibrium humidities with a number of interesting future applications

  9. Influence of cover crop treatments on the performance of a vineyard in a humid region

    Energy Technology Data Exchange (ETDEWEB)

    Trigo-Córdoba, E.; Bouzas-Cid, Y.; Orriols-Fernández, I.; Díaz-Losada, E.; Mirás-Avalos, J.M.

    2015-07-01

    Vineyards are usually managed by tilling the inter-rows to avoid competition from other plants for soil water and nutrients. However, in humid and sub-humid climates, such as that of NW Spain, cover crops may be an advantage for controlling vine vegetative growth and improving berry composition, while reducing management costs. The current study was conducted over three consecutive growing seasons (2012-2014) to assess the effects of establishing three permanent cover crop treatments on water relations, vine physiology, yield and berry composition of a vineyard of the red cultivar ‘Mencía’ (Vitis vinifera L.) located in Leiro, Ourense. Treatments consisted of four different soil management systems: ST, soil tillage; NV, native vegetation; ER, English ryegrass (Lolium perenne L.); and SC, subterranean clover (Trifolium subterraneum L.). Midday stem water potential was more negative in the native vegetation treatment, causing significant reductions in leaf stomatal conductance on certain dates. Total vine leaf area and pruning weight was reduced in the cover crop treatments in the last year of the experiment. Yield was unaffected by the presence of a cover crop. No significant differences among treatments were observed for berry composition; however, wines were positively affected by the SC treatment (higher tannin content and colour intensity and lower malic acid concentration when compared with ST). Wines from the cover crop treatments were preferred by taste panelists. These results indicate that in humid climates cover crop treatments can be useful for reducing vine vegetative growth without compromising yield and berry quality. (Author)

  10. Influence of Ambient Humidity on the Voltage Response of Ionic Polymer-Metal Composite Sensor.

    Science.gov (United States)

    Zhu, Zicai; Horiuchi, Tetsuya; Kruusamäe, Karl; Chang, Longfei; Asaka, Kinji

    2016-03-31

    Electrical potential based on ion migration exists not only in natural systems but also in ionic polymer materials. In order to investigate the influence of ambient humidity on voltage response, classical Au-Nafion IPMC was chosen as the reference sample. Voltage response under a bending deformation was measured in two ways: first, continuous measurement of voltage response in the process of absorption and desorption of water to study the tendency of voltage variation at all water states; second, measurements at multiple fixed ambient humidity levels to characterize the process of voltage response quantitatively. Ambient humidity influences the voltage response mainly by varying water content in ionic polymer. Under a step bending, the amplitude of initial voltage peak first increases and then decreases as the ambient humidity and the inherent water content decrease. This tendency is explained semiquantitatively by mass storage capacity related to the stretchable state of the Nafion polymer network. Following the initial peak, the voltage shows a slow decay to a steady state, which is first characterized in this paper. The relative voltage decay during the steady state always decreases as the ambient humidity is lowered. It is ascribed to progressive increase of the ratio between the water molecules in the cation hydration shell to the free water. Under sinusoidal mechanical bending excitation in the range of 0.1-10 Hz, the voltage magnitude increases with frequency at high ambient humidity but decreases with frequency at low ambient humidity. The relationship is mainly controlled by the voltage decay effect and the response speed.

  11. Humidity Sensing Behavior of Polyaniline / Strontium Arsenate Composites

    Directory of Open Access Journals (Sweden)

    Machappa T.

    2009-08-01

    Full Text Available The response of conducting Polyaniline (PANI / Ceramic (Sr3(AsO42 composites system to air moisture environment is studied. The conducting PANI and its composites are prepared by in situ polymerization technique. These prepared samples were characterized by XRD, FTIR & SEM, which confirms crystallinity, composite formation and porosity of the samples. The temperature dependent conductivity measurement shows the thermally activated behavior, where the conductivity increases with increase in temperature. The decrease in electrical resistance with change in relative humidity (RH over broad range (ranging between 20 to 95 % is due to the increase in surface electrical conductivity resulting from moisture absorption and due to capillary condensation of water causing increase in conductivity within the sensing materials.

  12. Novel Non-Stoichiometric Manganese – Cobalt – Nickel – Oxide Composite as Humidity Sensor Through Solid-State Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    R. Sundaram

    2006-08-01

    Full Text Available Equimolar amounts of manganese(II chloride, cobalt(III nitrate and nickel(II chloride in aqueous solution were reacted with ammonia and the resulting precipitate of hydroxides was heated to 7500 C in 6h to yield a non stoichiometric oxides having a composition of Mn0.06Co0.6Ni0.6O2.5 as analyzed by atomic absorption spectroscopy to a pellet and sintered at 6000 C. Characterization of the material has been made with AAS, Far-IR, TG-DTA, XRD, SEM, VSM and electrical conductance measurement. The far-IR spectra indicated the presence of metal-oxygen bonds and the discrete nature of the oxide was established from power X-ray diffraction pattern recorded at room temperature. The thermogravimetric data indicated the successive loss and gain of fraction of oxygen atoms, a specific feature of non-stoichiometric metal oxides. It was subjected to solid-state DC electrical conductivity measurements at room temperature. The current increases linearly with applied field and exponentially with increase in temperature showing conformance to ohmic law and semiconducting nature. The scanning electron microscopy (SEM studies were carried out to study the surface and pores structure of the sensor materials. The Brunauer-Emmett-Teller (BET surface adsorption studies showed that the radiuses of the pore sizes were found to be distributed from 10-45A with the pore specific volume being 0.01 cm3 g-1. As the composites having micropores are preferred for humidity sensing properties, the material was subjected to water vapour of different humidity achieved by various water buffers at room temperature and the electrical conductivity was measured as a function of relative humidity (RH. The electrical resistivity drastically decreases with increase in humidity, proving the material to be a good water vapour sensor. The sensitivity factor (Sf was 55000 in the range 5–98% RH, meaning the resistivity falls by a factor of 5.5 x 104 when the atmospheric RH increases from 5

  13. Effect of humidity on radon exhalation rate from concrete

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Obayashi, Haruo; Tsuji, Naruhito; Nakayoshi, Hisao

    1998-01-01

    The objective of the present study is evaluation of seasonal humidity effect on radon exhalation rate from concrete. Three concrete pieces have been placed in three different fixed humidity circumstances for about a year. The three fixed humidities are selected 3, 10, 25 g m -3 in absolute humidity, those correspond to dry condition as control, winter and summer, respectively. Radon exhalation rate from each concrete piece is measured every one month during humidity exposure. Under the lower humidity, radon exhalation rate from concrete is small. On the contrary, radon exhalation rate is large in the higher humidity circumstance. This trend is consistent with the seasonal variation of indoor air radon concentration in low air-exchange-rate room. (author)

  14. The Use of Ambient Humidity Conditions to Improve Influenza Forecast

    Science.gov (United States)

    Shaman, J. L.; Kandula, S.; Yang, W.; Karspeck, A. R.

    2017-12-01

    Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast and provide further evidence that humidity modulates rates of influenza transmission.

  15. Sensitivity of honeybee hygroreceptors to slow humidity changes and temporal humidity variation detected in high resolution by mobile measurements.

    Science.gov (United States)

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between -1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  16. Anomalous water expulsion from carbon-based rods at high humidity

    Science.gov (United States)

    Nune, Satish K.; Lao, David B.; Heldebrant, David J.; Liu, Jian; Olszta, Matthew J.; Kukkadapu, Ravi K.; Gordon, Lyle M.; Nandasiri, Manjula I.; Whyatt, Greg; Clayton, Chris; Gotthold, David W.; Engelhard, Mark H.; Schaef, Herbert T.

    2016-09-01

    Three water adsorption-desorption mechanisms are common in inorganic materials: chemisorption, which can lead to the modification of the first coordination sphere; simple adsorption, which is reversible; and condensation, which is irreversible. Regardless of the sorption mechanism, all known materials exhibit an isotherm in which the quantity of water adsorbed increases with an increase in relative humidity. Here, we show that carbon-based rods can adsorb water at low humidity and spontaneously expel about half of the adsorbed water when the relative humidity exceeds a 50-80% threshold. The water expulsion is reversible, and is attributed to the interfacial forces between the confined rod surfaces. At wide rod spacings, a monolayer of water can form on the surface of the carbon-based rods, which subsequently leads to condensation in the confined space between adjacent rods. As the relative humidity increases, adjacent rods (confining surfaces) in the bundles are drawn closer together via capillary forces. At high relative humidity, and once the size of the confining surfaces has decreased to a critical length, a surface-induced evaporation phenomenon known as solvent cavitation occurs and water that had condensed inside the confined area is released as a vapour.

  17. Breeding for Grass Seed Yield

    DEFF Research Database (Denmark)

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected...... by agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  18. Humidity Sensing Properties of Surface Modified Polyaniline Metal Oxide Composites

    Directory of Open Access Journals (Sweden)

    S. C. Nagaraju

    2014-01-01

    Full Text Available Polyaniline- (PANI praseodymium Oxide (Pr2O3 composites have been synthesized by in situ polymerization method with different weight percentages. The synthesized composites have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The temperature dependent conductivity shows that the conductivity is due to the hopping of polarons and bipolarons. These composites show negative thermal coefficient (α behavior as a function of temperature, which is characteristic behavior of semiconducting materials. Sensor studies have been carried out by two-probe method and found that the sensitivity increases with increase in % RH. It is noticed that stability increase is due to the presence of Pr2O3 in polyaniline up to 30 wt%. A fast recovery and response time along with high sensitivity make these composites suitable for humidity sensors.

  19. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China.

    Science.gov (United States)

    Zeng, Jie; Zhang, Xuehai; Yang, Jun; Bao, Junzhe; Xiang, Hao; Dear, Keith; Liu, Qiyong; Lin, Shao; Lawrence, Wayne R; Lin, Aihua; Huang, Cunrui

    2017-11-14

    Background : The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD) mortality in Zhejiang Province, China. Methods : We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010-2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF). The analyses were further stratified by gender, age group, education level, and location of cities. Results : In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0-21 days with a significant AF of 31.36% (95% eCI: 14.79-38.41%), while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44). The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions : The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications for developing CVD

  20. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China

    Science.gov (United States)

    Zeng, Jie; Zhang, Xuehai; Yang, Jun; Bao, Junzhe; Dear, Keith; Liu, Qiyong; Lin, Shao; Lin, Aihua; Huang, Cunrui

    2017-01-01

    Background: The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD) mortality in Zhejiang Province, China. Methods: We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010–2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF). The analyses were further stratified by gender, age group, education level, and location of cities. Results: In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0–21 days with a significant AF of 31.36% (95% eCI: 14.79–38.41%), while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44). The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions: The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications for developing CVD

  1. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China

    Directory of Open Access Journals (Sweden)

    Jie Zeng

    2017-11-01

    Full Text Available Background: The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD mortality in Zhejiang Province, China. Methods: We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010–2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF. The analyses were further stratified by gender, age group, education level, and location of cities. Results: In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0–21 days with a significant AF of 31.36% (95% eCI: 14.79–38.41%, while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44. The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions: The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications

  2. Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing.

    Science.gov (United States)

    Zhang, Dongzhi; Sun, Yan'e; Li, Peng; Zhang, Yong

    2016-06-08

    An ultrasensitive humidity sensor based on molybdenum-disulfide- (MoS2)-modified tin oxide (SnO2) nanocomposite has been demonstrated in this work. The nanostructural, morphological, and compositional properties of an as-prepared MoS2/SnO2 nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), nitrogen sorption analysis, and Raman spectroscopy, which confirmed its successful preparation and rationality. The sensing characteristics of the MoS2/SnO2 hybrid film device against relative humidity (RH) were investigated at room temperature. The RH sensing results revealed an unprecedented response, ultrafast response/recovery behaviors, and outstanding repeatability. To our knowledge, the sensor response yielded in this work was tens of times higher than that of the existing humidity sensors. Moreover, the MoS2/SnO2 hybrid nanocomposite film sensor exhibited great enhancement in humidity sensing performances as compared to the pure MoS2, SnO2, and graphene counterparts. Furthermore, complex impedance spectroscopy and bode plots were employed to understand the underlying sensing mechanisms of the MoS2/SnO2 nanocomposite toward humidity. The synthesized MoS2/SnO2 hybrid composite was proved to be an excellent candidate for constructing ultrahigh-performance humidity sensor toward various applications.

  3. Changes in materials properties explain the effects of humidity on gecko adhesion.

    Science.gov (United States)

    Puthoff, Jonathan B; Prowse, Michael S; Wilkinson, Matt; Autumn, Kellar

    2010-11-01

    Geckos owe their remarkable stickiness to millions of dry setae on their toes, and the mechanism of adhesion in gecko setae has been the topic of scientific scrutiny for over two centuries. Previously, we demonstrated that van der Waals forces are sufficient for strong adhesion and friction in gecko setae, and that water-based capillary adhesion is not required. However, recent studies demonstrated that adhesion increases with relative humidity (RH) and proposed that surface hydration and capillary water bridge formation is important or even necessary. In this study, we confirmed a significant effect of RH on gecko adhesion, but rejected the capillary adhesion hypothesis. While contact forces of isolated tokay gecko setal arrays increased with humidity, the increase was similar on hydrophobic and hydrophilic surfaces, inconsistent with a capillary mechanism. Contact forces increased with RH even at high shear rates, where capillary bridge formation is too slow to affect adhesion. How then can a humidity-related increase in adhesion and friction be explained? The effect of RH on the mechanical properties of setal β-keratin has escaped consideration until now. We discovered that an increase in RH softens setae and increases viscoelastic damping, which increases adhesion. Changes in setal materials properties, not capillary forces, fully explain humidity-enhanced adhesion, and van der Waals forces remain the only empirically supported mechanism of adhesion in geckos.

  4. Humidity Testing for Human Rated Spacecraft

    Science.gov (United States)

    Johnson, Gary B.

    2009-01-01

    Determination that equipment can operate in and survive exposure to the humidity environments unique to human rated spacecraft presents widely varying challenges. Equipment may need to operate in habitable volumes where the atmosphere contains perspiration, exhalation, and residual moisture. Equipment located outside the pressurized volumes may be exposed to repetitive diurnal cycles that may result in moisture absorption and/or condensation. Equipment may be thermally affected by conduction to coldplate or structure, by forced or ambient air convection (hot/cold or wet/dry), or by radiation to space through windows or hatches. The equipment s on/off state also contributes to the equipment s susceptibility to humidity. Like-equipment is sometimes used in more than one location and under varying operational modes. Due to these challenges, developing a test scenario that bounds all physical, environmental and operational modes for both pressurized and unpressurized volumes requires an integrated assessment to determine the "worst-case combined conditions." Such an assessment was performed for the Constellation program, considering all of the aforementioned variables; and a test profile was developed based on approximately 300 variable combinations. The test profile has been vetted by several subject matter experts and partially validated by testing. Final testing to determine the efficacy of the test profile on actual space hardware is in the planning stages. When validation is completed, the test profile will be formally incorporated into NASA document CxP 30036, "Constellation Environmental Qualification and Acceptance Testing Requirements (CEQATR)."

  5. Effect of Firing Temperature on Humidity Sensing Properties of SnO2 Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    R. Y. Borse

    2009-12-01

    Full Text Available Thick films of SnO2 were prepared using standard screen printing technique. The films were dried and fired at different temperatures. Tin-oxide is an n-type wide band gap semiconductor, whose resistance is described as a function of relative humidity. An increasing firing temperature on SnO2 film increases the sensitivity to humidity. The parameters such as sensitivity, response times and hysteresis of the SnO2 film sensors have been evaluated. The thick films were characterized by XRD, SEM and EDAX and grain size, composition of elements, relative phases are obtained.

  6. Influence of Curing Humidity on the Compressive Strength of Gypsum-Cemented Similar Materials

    Directory of Open Access Journals (Sweden)

    Weiming Guan

    2016-01-01

    Full Text Available The analogous simulation experiment is widely used in geotechnical and mining engineering. However, systematic errors derived from unified standard curing procedure have been underestimated to some extent. In this study, 140 gypsum-cemented similar material specimens were chosen to study their curing procedure with different relative humidity, which is 10%–15%, 40%, 60%, and 80%, respectively. SEM microstructures and XRD spectra were adopted to detect the correlation between microstructures and macroscopic mechanical strength during curing. Our results indicated that the needle-like phases of similar materials began to develop in the early stage of the hydration process through intersecting with each other and eventually transformed into mat-like phases. Increase of humidity may inhibit the development of needle-like phases; thus the compressive strength changes more smoothly, and the time required for the material strength to reach the peak value will be prolonged. The peak strength decreases along with the increase of humidity while the humidity is higher than 40%; however, the reverse tendency was observed if the humidity was lower than 40%. Finally, we noticed that the material strength usually reaches the peak value when the water content continuously reduces and tends towards stability. Based on the above observation, a curing method determination model and experimental strength predication method for gypsum-cemented similar materials were proposed.

  7. Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality.

    Directory of Open Access Journals (Sweden)

    Wan Yang

    Full Text Available Humidity has been associated with influenza's seasonality, but the mechanisms underlying the relationship remain unclear. There is no consistent explanation for influenza's transmission patterns that applies to both temperate and tropical regions. This study aimed to determine the relationship between ambient humidity and viability of the influenza A virus (IAV during transmission between hosts and to explain the mechanisms underlying it. We measured the viability of IAV in droplets consisting of various model media, chosen to isolate effects of salts and proteins found in respiratory fluid, and in human mucus, at relative humidities (RH ranging from 17% to 100%. In all media and mucus, viability was highest when RH was either close to 100% or below ∼50%. When RH decreased from 84% to 50%, the relationship between viability and RH depended on droplet composition: viability decreased in saline solutions, did not change significantly in solutions supplemented with proteins, and increased dramatically in mucus. Additionally, viral decay increased linearly with salt concentration in saline solutions but not when they were supplemented with proteins. There appear to be three regimes of IAV viability in droplets, defined by humidity: physiological conditions (∼100% RH with high viability, concentrated conditions (50% to near 100% RH with lower viability depending on the composition of media, and dry conditions (<50% RH with high viability. This paradigm could help resolve conflicting findings in the literature on the relationship between IAV viability in aerosols and humidity, and results in human mucus could help explain influenza's seasonality in different regions.

  8. Limiting criteria for human exposure to low humidity indoors

    DEFF Research Database (Denmark)

    Wyon, David; Fang, Lei; Meyer, H.

    2002-01-01

    Thirty subjects (17 female) were exposed for 5 hours to clean air at 5%, 15%, 25% and 35% RH at 22 deg.C. Another 30 subjects (15 female) were similarly exposed to air polluted by carpet and linoleum at 18, 22 and 26 deg.C with humidity 2.4 g/kg dry air (=15% RH at 22 deg.C), and at 22 deg.C, 35......% RH. The subjects performed simulated office work throughout each exposure. Building Related Symptom (BRS) intensity was reported on visual-analogue scales. Tests of eye, nose and skin function were applied. In these short exposures subjective discomfort, though significantly increased by low humidity......, was very moderate even at 5% RH. However, tear film quality as indicated by the Mucous Ferning Test deteriorated significantly at RH22 deg.C, significantly more rapid blink rates were observed at 5% than at 35% RH, and skin became significantly more dry at 15% than at 35% RH....

  9. A Trial Intercomparison of Humidity Generators at Extremes of Range Using Relative Humidity Transmitters

    Science.gov (United States)

    Stevens, M.; Benyon, R.; Bell, S. A.; Vicente, T.

    2008-10-01

    In order to effectively implement the Mutual Recognition Arrangement (MRA) of the International Committee for Weights and Measures (CIPM), national metrology institutes (NMIs) are required to support their claims of calibration and measurement capability (CMC) with a quality system compliant with ISO/IEC 17025, and with suitable evidence of participation in key or supplementary comparisons. The CMC review process, both at regional and inter-regional levels, uses criteria that combine the provisions mentioned above, together with additional evidence demonstrating scientific and technical competence of the institutes. For dew-point temperatures, there are key comparisons in progress under the Consultative Committee for Thermometry (CCT) and under the European regional metrology organisation (EUROMET), together with information available on past regional supplementary comparisons. However, for relative humidity there are, to date, no such comparisons available to support CMC entries. This paper presents and discusses the results of a preliminary investigation of the use of relative humidity and temperature transmitters in order to determine their suitability for the intercomparison of standard humidity generators in support of CMC claims for the calibration of relative humidity instruments. The results of a recent bilateral comparison between 2 NMIs at the extremes of the range up to 98%rh at 70 °C, and down to 1%rh at -40 °C are reported. Specific precautions and recommendations on the use of the devices as transfer standards are presented.

  10. Variability in soybean yield in Brazil stemming from the interaction of heterogeneous management and climate variability

    Science.gov (United States)

    Cohn, A.; Bragança, A.; Jeffries, G. R.

    2017-12-01

    An increasing share of global agricultural production can be found in the humid tropics. Therefore, an improved understanding of the mechanisms governing variability in the output of tropical agricultural systems is of increasing importance for food security including through climate change adaptation. Yet, the long window over which many tropical crops can be sown, the diversity of crop varieties and management practices combine to challenge inference into climate risk to cropping output in analyses of tropical crop-climate sensitivity employing administrative data. In this paper, we leverage a newly developed spatially explicit dataset of soybean yields in Brazil to combat this problem. The dataset was built by training a model of remotely-sensed vegetation index data and land cover classification data using a rich in situ dataset of soybean yield and management variables collected over the period 2006 to 2016. The dataset contains soybean yields by plant date, cropping frequency, and maturity group for each 5km grid cell in Brazil. We model variation in these yields using an approach enabling the estimation of the influence of management factors on the sensitivity of soybean yields to variability in: cumulative solar radiation, extreme degree days, growing degree days, flooding rain in the harvest period, and dry spells in the rainy season. We find strong variation in climate sensitivity by management class. Planting date and maturity group each explained a great deal more variation in yield sensitivity than did cropping frequency. Brazil collects comparatively fine spatial resolution yield data. But, our attempt to replicate our results using administrative soy yield data revealed substantially lesser crop-climate sensitivity; suggesting that previous analyses employing administrative data may have underestimated climate risk to tropical soy production.

  11. Inspired gas humidity and temperature during mechanical ventilation with the Stephanie ventilator.

    Science.gov (United States)

    Preo, Bianca L; Shadbolt, Bruce; Todd, David A

    2013-11-01

    To measure inspired gas humidity and temperature delivered by a Stephanie neonatal ventilator with variations in (i) circuit length; (ii) circuit insulation; (iii) proximal airway temperature probe (pATP) position; (iv) inspiratory temperature (offset); and (v) incubator temperatures. Using the Stephanie neonatal ventilator, inspired gas humidity and temperature were measured during mechanical ventilation at the distal inspiratory limb and 3 cm down the endotracheal tube. Measurements were made with a long or short circuit; with or without insulation of the inspiratory limb; proximal ATP (pATP) either within or external to the incubator; at two different inspiratory temperature (offset) of 37(-0.5) and 39(-2.0)°C; and at three different incubator temperatures of 32, 34.5, and 37°C. Long circuits produced significantly higher inspired humidity than short circuits at all incubator settings, while only at 32°C was the inspired temperature higher. In the long circuits, insulation further improved the inspired humidity especially at 39(-2.0)°C, while only at incubator temperatures of 32 and 37°C did insulation significantly improve inspired temperature. Positioning the pATP outside the incubator did not result in higher inspired humidity but did significantly improve inspired temperature. An inspiratory temperature (offset) of 39(-2.0)°C delivered significantly higher inspired humidity and temperature than the 37(-0.5)°C especially when insulated. Long insulated Stephanie circuits should be used for neonatal ventilation when the infant is nursed in an incubator. The recommended inspiratory temperature (offset) of 37(-0.5)°C produced inspired humidity and temperature below international standards, and we suggest an increase to 39(-2.0)°C. © 2013 John Wiley & Sons Ltd.

  12. Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition

    Science.gov (United States)

    Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi

    2018-04-01

    Experiments are performed using dry and humid air to clarify the effects of water vapour on the characteristics of surface dielectric barrier discharge (SDBD) and investigate its impact on the performance of the SDBD for decomposition of gaseous naphthalene in air stream. The current characteristics, including the discharge and the capacitive currents, are deeply analyzed and the discharge mechanism is explored. The results confirmed that the humidity affected the microdischarge distribution without affecting the discharge mode. Interestingly, it is found that the water vapour had a significant influence on the capacitance of the reactor due to its deposition on the discharge electrode and the dielectric, which, in turn, affects the power loss in the dielectric and the total power consumed in the reactor. Thus, the factor of the humidity effect on the power loss in the dielectric should be considered in addition to its effect on the attachment coefficient. Additionally, there was an optimum level of the humidity for the decomposition of naphthalene in the SDBD, and its value depended on the gas composition, where the maximum naphthalene decomposition efficiency in O2/H2O is achieved at the humidity level ˜10%, which was lower than that obtained in air/H2O (˜28%). The results also revealed that the role of the humidity in the decomposition efficiency was not significant in the humidified O2 at high power level. This was attributed to the significant increase in oxygen-derived species (such as O atoms and O3) at high power, which was enough to overcome the negative effects of the humidity.

  13. Increased mobilization and yield of stem cells using plerixafor in combination with granulocyte-colony stimulating factor for the treatment of non-Hodgkin’s lymphoma and multiple myeloma

    Directory of Open Access Journals (Sweden)

    Louis M Pelus

    2011-02-01

    Full Text Available Louis M Pelus1, Sherif S Farag21Department of Microbiology and Immunology, 2Division of Hematology and Oncology, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IndianaAbstract: Multiple myeloma and non-Hodgkin’s lymphoma remain the most common indications for high-dose chemotherapy and autologous peripheral blood stem cell rescue. While a CD34+ cell dose of 1 × 106/kg is considered the minimum required for engraftment, higher CD34+ doses correlate with improved outcome. Numerous studies, however, support targeting a minimum CD34+ cell dose of 2.0 × 106/kg, and an “optimal” dose of 4 to 6 × 106/kg for a single transplant. Unfortunately, up to 40% of patients fail to mobilize an optimal CD34+ cell dose using myeloid growth factors alone. Plerixafor is a novel reversible inhibitor of CXCR4 that significantly increases the mobilization and collection of higher numbers of hematopoietic progenitor cells. Two randomized multi-center clinical trials in patients with non-Hodgkin’s lymphoma and multiple myeloma have demonstrated that the addition of plerixafor to granulocyte-colony stimulating factor increases the mobilization and yield of CD34+ cells in fewer apheresis days, which results in durable engraftment. This review summarizes the pharmacology and evidence for the clinical efficacy of plerixafor in mobilizing hematopoietic stem and progenitor cells, and discusses potential ways to utilize plerixafor in a cost-effective manner in patients with these diseases.Keywords: plerixafor, mobilization, stem cells, lymphoma, myeloma

  14. Prediction of yield losses in wheat (triticum aestivum l.) caused by yellow rust in relation to epidemiological factors in Faisalabad

    International Nuclear Information System (INIS)

    Ahmad, S.; Afzal, M.; Noorka, I.R.; Iqbal, Z.; Akhtar, N.; Iiftikhar, Y.; Kamran, M.

    2010-01-01

    Thirty six genotypes were screened against yellow rust to check their level of susceptibility or resistance. Among 36 genotypes screened against yellow rust, 18 were susceptible, 6 were moderately susceptible to susceptible, 7 were moderately resistant to moderately susceptible and 5 genotypes remained resistant. Yield losses were predicted in wheat on the basis of varying level of yellow rust severities. It was observed that susceptible genotypes showed higher yield losses as compared to resistant genotypes. Maximum severity of 90% of yellow rust resulted in 54% to 55% calculated and predicted losses, respectively. While 40, 50, 60 and 70% disease severity of yellow rust caused 35-34%, 38-37%, 42-40% and 46-47% calculated and predicted losses, respectively. However, the decline in losses was observed as the genotypes changed their reaction from susceptible to moderate susceptible. Similarly, losses were diminished as the varieties/lines showed moderate resistant reaction from moderate susceptible. Minimum temperature and relative humidity remained positively correlated while the maximum temperature showed negative correlation with stripe rust severity. With the increase of minimum temperature and relative humidity a rise up in stripe rust infection was seen while as the maximum temperature increased stripe rust infection decreased on different genotypes. It may be concluded from the study that environmental factors played major role in the spread of the disease which result in yield losses. (author)

  15. The yield of eggplant depending on climate conditions and mulching

    Directory of Open Access Journals (Sweden)

    Adamczewska-Sowińska Katarzyna

    2016-06-01

    Full Text Available The field production of eggplant in moderate climates is difficult as it depends heavily on thermal conditions. Eggplant is a species that is sensitive to low temperatures, and temperatures below 16°C constrain the growth of young plants. Other disadvantageous factors include: temperatures that are too high, water shortage and excessive soil humidity. The growth conditions for eggplant can be improved by using mulches. The purpose of the experiment was the assessment of eggplant cropping while using synthetic mulches of polyethylene foil and polypropylene textile. The research took five years (2008-2012 and on the basis of the obtained results it was possible to determine the influence of weather conditions on the yielding of this species. It was proven that eggplant cropping significantly depended on the air temperature and the amount of rainfall during the vegetation period. The highest yield was observed when the average air temperature was high and at the same time rainfall was evenly distributed throughout the vegetation season. It also turned out that the agro-technical procedure which significantly increased eggplant fruit cropping was mulching the soil with polyethylene black foil, or transparent foil, previously having applied a herbicide.

  16. 6 Grain Yield

    African Journals Online (AJOL)

    create a favourable environment for rice ... developing lines adaptable to many ... have stable, not too short crop duration with ..... Analysis of variance of the effect of site and season on maturity, grain yield and plant ..... and yield components.

  17. Decomposing global crop yield variability

    Science.gov (United States)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  18. Analysis of heat stress in UK dairy cattle and impact on milk yields

    International Nuclear Information System (INIS)

    Dunn, Robert J H; Mead, Naomi E; Willett, Kate M; Parker, David E

    2014-01-01

    Much as humans suffer from heat-stress during periods of high temperature and humidity, so do dairy cattle. Using a temperature-humidity index (THI), we investigate the effect of past heatwaves in the UK on heat-stress in dairy herds. Daily THI data derived from routine meteorological observations show that during the summer, there has been an average of typically 1 day per year per station over the past 40 years when the THI has exceeded the threshold for the onset of mild heat-stress in dairy cattle. However, during the heatwaves of 2003 and 2006, this threshold was exceeded on typically 5 days on average in the Midlands, south and east of England. Most dairy cattle are in the west and north of the country and so did not experience the severest heat. Milk yield data in the south-west of England show that a few herds experienced decreases in yields during 2003 and 2006. We used the 11-member regional climate model ensemble with the A1B scenario from UKCP09 to investigate the possible future change in days exceeding the THI threshold for the onset of mild heat-stress. The number of days where the THI exceeds this threshold could increase to over 20 days yr −1 in southern parts of England by the end of the century. (letters)

  19. Suppression of Frost Nucleation Achieved Using the Nanoengineered Integral Humidity Sink Effect.

    Science.gov (United States)

    Sun, Xiaoda; Rykaczewski, Konrad

    2017-01-24

    Inhibition of frost formation is important for increasing efficiency of refrigeration systems and heat exchangers, as well as for preventing the rapid icing over of water-repellant coatings that are designed to prevent accumulation of rime and glaze. From a thermodynamic point of view, this task can be achieved by either increasing hydrophobicity of the surface or decreasing the concentration of water vapor above it. The first approach has been studied in depth, but so far has not yielded a robust solution to the problem of frost formation. In this work, we systematically explore how frost growth can be inhibited by controlling water vapor concentration using bilayer coatings with a porous exterior covering a hygroscopic liquid-infused layer. We lay the theoretical foundation and provide experimental validation of the mass transport mechanism that governs the integral humidity sink effect based on this coating platform as well as reveal intriguing sizing effects about this system. We show that the concentration profile above periodically spaced pores is governed by the sink and source concentrations and two geometrical parameters: the nondimensional pore size and the ratio of the pore spacing to the boundary layer thickness. We demonstrate that when the ratio of the pore spacing to the boundary layer thickness vanishes, as for the nanoporous bilayer coatings, the entire surface concentration becomes uniform and equal to the concentration set by the hygroscopic liquid. In other words, the surface concentration becomes completely independent of the nanopore size. We identified the threshold geometrical parameters for this condition and show that it can lead to a 65 K decrease in the nucleation onset surface temperature below the dew point. With this fundamental insight, we use bilayer coatings to nanoengineer the integral humidity sink effect to provide extreme antifrosting performance with up to a 2 h delay in nucleation onset at 263 K. The nanoporous bilayer

  20. The use of ambient humidity conditions to improve influenza forecast.

    Directory of Open Access Journals (Sweden)

    Jeffrey Shaman

    2017-11-01

    Full Text Available Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1-4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast.

  1. The sensitivity to humidity of radon monitoring instruments

    International Nuclear Information System (INIS)

    Schmied, H.

    1984-01-01

    In a project funded by the Swedish Building Research Council (BFR) a continuous radon monitoring instrument (RGA-400 EDA Instr. Inc.) with electrostatic field collection has been calibrated. The original calibration factor gave no reliable radon readings and was therefore corrected for relative humidity by EDA. From four calibrations in the radon chamber at the Swedish Radiation Protection Board (SSI) it was clear that the instrument was sensitive to absolute humidity, which gave better agreement than relative humidity or temperature. Sensitivity to humidity for this principle of measure ment has been presented in various papers without presenting any combined influence with temperature, which can lead to the wrong conclusions, especially when the temperature levels differ. Some laboratories use humidity absorbants to overcome this humidity dependence. In this paper the calibration results for the FGA-400 radon readings only, are presented. (Author)

  2. Temperature, humidity and time. Combined effects on radiochromic film dosimeters

    DEFF Research Database (Denmark)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 degrees C for irradiation by Co-60 photons and 10-Me......V electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is +0.......25 +/- 0.1% per degrees C for the FWT-60-00 dosimeters and +0.5 +/- 0.1% per degrees C For Riso B3 dosimeters at temperatures between 20 and 50 degrees C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger...

  3. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    Science.gov (United States)

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  4. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    Directory of Open Access Journals (Sweden)

    Fangming Deng

    2014-05-01

    Full Text Available This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  5. A CMOS humidity sensor for passive RFID sensing applications.

    Science.gov (United States)

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  6. The use of ambient humidity conditions to improve influenza forecast.

    Science.gov (United States)

    Shaman, Jeffrey; Kandula, Sasikiran; Yang, Wan; Karspeck, Alicia

    2017-11-01

    Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that