WorldWideScience

Sample records for humid air effects

  1. Effects of air humidity on ionization chamber response

    International Nuclear Information System (INIS)

    Meger, C.; DeLuca, P.M. Jr.; Pearson, D.W.; Venci, R.

    1983-01-01

    A study of the effect of air humidity on four different ionization chamber cap materials verified earlier studies (Kristensen and Sundbom, 1981; Mijnheer et al., 1983) and extended our understanding of the problem. We found nylon and A-150 plastic caps swell as they absorb water from the air. This accounts for as much as 2.5% increase in ionization response. Graphite chambers readily absorb and desorb water from the air. This creates a problem in maintaining dry air in a wet graphite chamber. Humid air has a different density and W value than dry air (Niatel, 1969, 1975). This decreases the charge collected in a wet graphite chamber. We observe a decrease in response of approximately 2%, a value greater than can be accounted for by these effects alone. Polyethylene chambers are unaffected by humid air. 4 refs., 9 figs

  2. Indoor air humidity, air quality, and health - An overview.

    Science.gov (United States)

    Wolkoff, Peder

    2018-04-01

    There is a long-standing dispute about indoor air humidity and perceived indoor air quality (IAQ) and associated health effects. Complaints about sensory irritation in eyes and upper airways are generally among top-two symptoms together with the perception "dry air" in office environments. This calls for an integrated analysis of indoor air humidity and eye and airway health effects. This overview has reviewed the literature about the effects of extended exposure to low humidity on perceived IAQ, sensory irritation symptoms in eyes and airways, work performance, sleep quality, virus survival, and voice disruption. Elevation of the indoor air humidity may positively impact perceived IAQ, eye symptomatology, and possibly work performance in the office environment; however, mice inhalation studies do not show exacerbation of sensory irritation in the airways by low humidity. Elevated humidified indoor air appears to reduce nasal symptoms in patients suffering from obstructive apnea syndrome, while no clear improvement on voice production has been identified, except for those with vocal fatigue. Both low and high RH, and perhaps even better absolute humidity (water vapor), favors transmission and survival of influenza virus in many studies, but the relationship between temperature, humidity, and the virus and aerosol dynamics is complex, which in the end depends on the individual virus type and its physical/chemical properties. Dry and humid air perception continues to be reported in offices and in residential areas, despite the IAQ parameter "dry air" (or "wet/humid air") is semantically misleading, because a sensory organ for humidity is non-existing in humans. This IAQ parameter appears to reflect different perceptions among other odor, dustiness, and possibly exacerbated by desiccation effect of low air humidity. It is salient to distinguish between indoor air humidity (relative or absolute) near the breathing and ocular zone and phenomena caused by moisture

  3. New calculation method for thermodynamic properties of humid air in humid air turbine cycle – The general model and solutions for saturated humid air

    International Nuclear Information System (INIS)

    Wang, Zidong; Chen, Hanping; Weng, Shilie

    2013-01-01

    The article proposes a new calculation method for thermodynamic properties (i.e. specific enthalpy, specific entropy and specific volume) of humid air in humid air turbine cycle. The research pressure range is from 0.1 MPa to 5 MPa. The fundamental behaviors of dry air and water vapor in saturated humid air are explored in depth. The new model proposes and verifies the relationship between total gas mixture pressure and gas component pressures. This provides a good explanation of the fundamental behaviors of gas components in gas mixture from a new perspective. Another discovery is that the water vapor component pressure of saturated humid air equals P S , always smaller than its partial pressure (f·P S ) which was believed in the past researches. In the new model, “Local Gas Constant” describes the interaction between similar molecules. “Improvement Factor” is proposed for the first time by this article, and it quantitatively describes the magnitude of interaction between dissimilar molecules. They are combined to fully describe the real thermodynamic properties of humid air. The average error of Revised Dalton's Method is within 0.1% compared to experimentally-based data. - Highlights: • Our new model is suitable to calculate thermodynamic properties of humid air in HAT cycle. • Fundamental behaviors of dry air and water vapor in saturated humid air are explored in depth. • Local-Gas-Constant describes existing alone component and Improvement Factor describes interaction between different components. • The new model proposes and verifies the relationship between total gas mixture pressure and component pressures. • It solves saturated humid air thoroughly and deviates from experimental data less than 0.1%

  4. Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

    DEFF Research Database (Denmark)

    Hagen, Anke; Neufeld, Kai; Liu, Yi-Lin

    2010-01-01

    Anode-supported solid oxide fuel cells (SOFCs) based on Ni–yttria-stabilized zirconia (YSZ) anodes, YSZ electrolytes, and lanthanum strontium manganite (LSM)–YSZ cathodes were studied with respect to durability in humid air (~4%) typically over 1500 h. Operating temperature and current density were...... varied between 750 and 850°C and 0.25–0.75 A/cm2, respectively. The introduction of humidity affected the cell voltage under polarization of the cell, and this effect was (at least partly) reversible upon switching off the humidity. Generally, the studied cells were operated in humid air under...... technologically relevant conditions over more than 1500 h. Improvements at the cathode/electrolyte interface made it possible to obtain highly stable cells, which can be operated under high current density and at 750°C in humid air, conditions that cause significant cell voltage degradation in dry air on cells...

  5. Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

    DEFF Research Database (Denmark)

    Hagen, Anke; Chen, Ming; Neufeld, Kai

    2009-01-01

    Anode supported SOFCs based on Ni-YSZ anodes, YSZ electrolytes, and LSM-YSZ cathodes were studied with respect to durability in humid air (~4%) over typically 1500 hours. Operating temperature and current density were varied between 750 and 850 oC and 0.25-0.75 A/cm2, respectively. It was found...... that the introduction of humidity affected the cell voltage under polarization of the cell and that this effect was (at least partly) reversible upon switching off the humidity, probably related to a segregation of impurities towards the three phase boundary in the presence of humidity. Generally, the studied cells...... were successfully operated in humid air under technologically relevant conditions. Improvements at the cathode/electrolyte interface made it possible to obtain highly stable cells, which can be operated under high current density and at 750 oC in humid air - conditions that are known to cause...

  6. Comments on 'The effects of air humidity on ionisation chamber response'; and reply

    International Nuclear Information System (INIS)

    Ross, C.K.; Rogers, D.W.O.; Meger, C.M.; DeLuca, P.M. Jr.; Pearson, D.W.; Attix, F.H.; Venci, R.

    1988-01-01

    A criticism of recent work on the effect of air humidity on ionization chamber response in 60 Co beams is given. A supplementary comment by the authors admits to an error in the calculation of the linear stopping power for humid air. Other differences between the recent work and previous studies are argued to be reasonably consistent within the very difficult experimental measurements involved. (U.K.)

  7. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    Energy Technology Data Exchange (ETDEWEB)

    Skwarczynski, M.A. [Faculty of Environmental Engineering, Institute of Environmental Protection Engineering, Department of Indoor Environment Engineering, Lublin University of Technology, Lublin (Poland); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Melikov, A.K.; Lyubenova, V. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Kaczmarczyk, J. [Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Gliwice (Poland)

    2010-10-15

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 C and relative humidity of 70%. (author)

  8. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    Science.gov (United States)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.

  9. Effect of air humidity on microstructure and phase composition of lithium deuteride corrosion products

    International Nuclear Information System (INIS)

    Liu, Xiaobo; Liu, Jiping

    2017-01-01

    Highlights: • Lithium deuteride samples are corroded by air with different relative humidity. • Show the structure and composition of fracture surface of corrosion particle. • The lithium carbonate formation is related to air humidity. • The lithium carbonate only exists in the surface of lithium hydroxide layer. • There is a concentration gradient of H 2 O across the lithium hydroxide layer. - Abstract: Lithium deuteride (LiD) was exposed to air for 600 min to determine the effect of air humidity on its microstructure and phase composition. XRD and XPS results revealed that LiOH and Li 2 CO 3 formed at relative humidity values of >30%, whereas only LiOH formed at values <20%. SEM and EDS images showed a clear LiOH layer; Li 2 CO 3 was confined to the surface of this layer. The schematic illustration revealed that the concentration gradient of H 2 O across the LiOH layer resulted in little Li 2 CO 3 formed in the layer. This work will contribute to increase understanding of LiD corrosion in air.

  10. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity and... NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you may correct NOX emissions for the effects of intake-air humidity or temperature. Use the NOX intake...

  11. 40 CFR 89.326 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air... type of intake air supply, the humidity measurements must be made within the intake air supply system...

  12. 40 CFR 91.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply. Air...

  13. Upper limits for air humidity based on human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole; Jørgensen, Anette S.

    1998-01-01

    respiratory cooling. Human subjects perceived the condition of their skin to be less acceptable with increasing skin humidity. Inhaled air was rated warmer, more stuffy and less acceptable with increasing air humidity and temperature. Based on the subjects' comfort responses, new upper limits for air humidity......The purpose of this study was to verify the hypothesis that insufficient respiratory cooling and a high level of skin humidity are two reasons for thermal discomfort at high air humidities, and to prescribe upper limits for humidity based on discomfort due to elevated skin humidity and insufficient...

  14. 40 CFR 90.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a) Humidity...

  15. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    DEFF Research Database (Denmark)

    Skwarczynski, Mariusz; Melikov, Arsen Krikor; Kaczmarczyk, J.

    2010-01-01

    and local air velocity under a constant air temperature of 26 degrees C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front...

  16. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    Science.gov (United States)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  17. Air humidity requirements for human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole

    1999-01-01

    level near 100% rh. For respiratory comfort are the requirements much more stringent and results in lower permissible indoor air humidities. Compared with the upper humidity limit specified in existing thermal comfort standards, e.g. ASHRAE Addendum 55a, the humidity limit based on skin humidity......Upper humidity limits for the comfort zone determined from two recently presented models for predicting discomfort due to skin humidity and insufficient respiratory cooling are proposed. The proposed limits are compared with the maximum permissible humidity level prescribed in existing standards...... for the thermal indoor environment. The skin humidity model predicts discomfort as a function of the relative humidity of the skin, which is determined by existing models for human heat and moisture transfer based on environmental parameters, clothing characteristics and activity level. The respiratory model...

  18. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m -2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation. © 2013 Elsevier B.V. All rights reserved.

  19. Influence of air humidity on polymeric microresonators

    International Nuclear Information System (INIS)

    Schmid, S; Kühne, S; Hierold, C

    2009-01-01

    The influence of air humidity on polymeric microresonators is investigated by means of three different resonator types. SU-8 microbeams, SU-8 microstrings and a silicon micromirror with SU-8 hinges are exposed to relative humidities between 3% and 60%. The shifts of the resonant frequencies as a function of the relative humidity (RH) are explained based on mechanical models which are extended with water absorption models in polymer materials. The dominant effect causing the resonant frequency change is evaluated for each structure type. The eigenfrequency of the microstrings and the micromirror in the out-of-plane mode, which both mainly are defined by the pre-stress of the polymeric structures, are found to be highly sensitive to changes of air humidity. The humidity-induced (hygrometric) volume expansion reversibly reduces the pre-stress which results in relative frequency changes of up to 0.78%/%RH for the microstrings. A maximum coefficient of humidity-induced volume expansion for SU-8 of α hyg = 52.3 ppm/%RH is evaluated by fitting the data with the analytical model. It was found that microstrings that were stored at 150 °C over 150 h are more moisture sensitive compared to structures that were stored at room temperature. For the SU-8 microbeams and the micromirror in the tilt mode, the eigenfrequency is mainly defined by the modulus of the polymer material. The measured relative resonant frequency changes were below 1% for the given RH range. For low RH values, antiplasticization is observed (the modulus increases) followed by a plasticization for increasing RH values

  20. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry

  1. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1998-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  2. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  3. Humid-air and aqueous corrosion models for corrosion-allowance barrier material

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; Andrews, R.W.

    1995-01-01

    Humid-air and aqueous general and pitting corrosion models (including their uncertainties) for the carbon steel outer containment barrier were developed using the corrosion data from literature for a suite of cast irons and carbon steels which have similar corrosion behaviors to the outer barrier material. The corrosion data include the potential effects of various chemical species present in the testing environments. The atmospheric corrosion data also embed any effects of cyclic wetting and drying and salts that may form on the corroding specimen surface. The humid-air and aqueous general corrosion models are consistent in that the predicted humid-air general corrosion rates at relative humidities between 85 and 100% RH are close to the predicted aqueous general corrosion rates. Using the expected values of the model parameters, the model predicts that aqueous pitting corrosion is the most likely failure mode for the carbon steel outer barrier, and an earliest failure (or initial pit penetration) of the 100-mm thick barrier may occur as early as about 500 years if it is exposed continuously to an aqueous condition at between 60 and 70 degrees C

  4. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  5. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  6. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    International Nuclear Information System (INIS)

    Hongbin Zhao, H.; Yue, P.; Cao, L.

    2009-01-01

    A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT), and solar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  7. Study on heat and mass transfer characteristics of humid air-flow in a fin bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hwi [Air-Conditioner Research Laboratory, LG Electronics, Seoul 153-082 (Korea); Koyama, Shigeru; Kuwahara, Ken [Department of Energy and Environmental Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Kwon, Jeong-Tae [Department of Mechanical Engineering, Hoseo University, Asan, Chungnam 336-795 (Korea); Park, Byung-Duck [School of Mechanical and Automotive Engineering, Kyungpook National University, Sangju, Gyeongbuk 742-711 (Korea)

    2010-11-15

    This paper deals with the heat and mass transfer characteristics of humid air-flow under frosting conditions. A slit fin bundle was used for the simulation of fins of a heat exchanger. The effects of the cooling block temperature, air humidity and air velocity on the frosting characteristics were experimentally investigated. The frosted mass was affected considerably by the cooling block temperature and air humidity. However, the effect of air velocity on it was not so large. The pressure drop was affected remarkably by all experimental parameters in this study. Local heat flux distribution and frost thickness distribution on each fin were predicted from the measured fin temperatures and the mass and energy conservation equations on the frost surface and inside the frost layer. (author)

  8. Significance of air humidity and air velocity for fungal spore release into the air

    Science.gov (United States)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  9. Effect of humidity on radon exhalation rate from concrete

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Obayashi, Haruo; Tsuji, Naruhito; Nakayoshi, Hisao

    1998-01-01

    The objective of the present study is evaluation of seasonal humidity effect on radon exhalation rate from concrete. Three concrete pieces have been placed in three different fixed humidity circumstances for about a year. The three fixed humidities are selected 3, 10, 25 g m -3 in absolute humidity, those correspond to dry condition as control, winter and summer, respectively. Radon exhalation rate from each concrete piece is measured every one month during humidity exposure. Under the lower humidity, radon exhalation rate from concrete is small. On the contrary, radon exhalation rate is large in the higher humidity circumstance. This trend is consistent with the seasonal variation of indoor air radon concentration in low air-exchange-rate room. (author)

  10. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    Directory of Open Access Journals (Sweden)

    Hongbin Zhao

    2009-01-01

    Full Text Available A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT, and sollar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  11. Numerical Modelling Of Humid Air Flow Around A Porous Body

    Directory of Open Access Journals (Sweden)

    Bohojło-Wiśniewska Aneta

    2015-09-01

    Full Text Available This paper presents an example of humid air flow around a single head of Chinese cabbage under conditions of complex heat transfer. This kind of numerical simulation allows us to create a heat and humidity transfer model between the Chinese cabbage and the flowing humid air. The calculations utilize the heat transfer model in porous medium, which includes the temperature difference between the solid (vegetable tissue and fluid (air phases of the porous medium. Modelling and calculations were performed in ANSYS Fluent 14.5 software.

  12. Effect of humidity on thoron adsorption in activated charcoal bed

    International Nuclear Information System (INIS)

    Sudeep Kumara, K.; Karunakara, N.; Yashodhara, I.; Sapra, B.K.; Sahoo, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2014-01-01

    Activated charcoal is a well-known adsorber of 222 Rn and 220 Rn gases. This property can be effectively used for remediation of these gases in the workplaces of uranium and thorium processing facilities. However, the adsorption on charcoal is sensitive to variation in temperature and humidity. The successful designing and characterization of adsorption systems require an adequate understanding of these sensitivities. The study has been carried out towards this end, to delineate the effect of relative humidity on the efficacy of 220 Rn mitigations in a charcoal bed. Air carrying 220 Rn from a Pylon source was passed through a column filled with coconut shell-based granular activated charcoal. The relative humidity of the air was controlled, and the transmission characteristics were examined at relative humidity varying from 45% to 60%. The mitigation factor was found to decrease significantly with an increase of humidity in the air. (author)

  13. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  14. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2010-01-01

    The effect of humidity on the vibrational relaxation of O 2 (v) and N 2 (v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O 2 (v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O 2 , N 2 and H 2 O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O 2 -H 2 O and N 2 -H 2 O and the subsequent rapid V-T process of H 2 O-H 2 O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O 2 -O.

  15. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  16. The humidity effect on the breakdown voltage characteristics and the transport parameters of air

    International Nuclear Information System (INIS)

    Radmilović-Radjenović, M.; Radjenović, B.; Nikitović, Ž.; Matejčik, Š.; Klas, M.

    2012-01-01

    This paper contains experimental results for the direct current (DC) breakdown voltages and calculated transport parameters for dry, synthetic and ambient air. The breakdown voltage curves for dry, ambient and synthetic air at the gap size of 100μm are very similar. The differences between them are much more pronounced at the interelectrode separation of 20μm, especially at the right hand branch of the breakdown voltage curves. On the other hand, the effective yields γ for dry and synthetic air are in disagreement at lower values of the E/p. Results of calculations based on the Two Term Approximation indicate that the humidity has no a great influence on the transport parameters at all range of the reduce field E/N.

  17. Season and humidity dependence of the effects of air pollution on COPD hospitalizations in Hong Kong

    Science.gov (United States)

    Qiu, Hong; Yu, Ignatius Tak Sun; Wang, Xiaorong; Tian, Linwei; Tse, Lap Ah; Wong, Tze Wai

    2013-09-01

    Associations between ambient pollution and respiratory morbidity including chronic obstructive pulmonary disease (COPD) have been confirmed. Weather factors, such as temperature, season and relative humidity (RH), may modify the effects of air pollution. This time series study was conducted to examine whether the effects of air pollution on emergency COPD hospital admissions in Hong Kong varied across seasons and RH levels, and explore the possible joint modification of season and RH on the effects of pollution. Data of daily air pollution concentrations mean temperature and RH, and COPD hospital admissions from 1998 to 2007 were collected. Generalized additive Poisson models with interaction terms were used to estimate the effects of pollution across seasons and RH levels. We observed an increase in the detrimental effects of air pollution in the cool season and on low humidity days. On the cool and dry days, a 10 μg m-3 increment of lag03 exposure was associated with an increase in emergency COPD admissions by 1.76% (95%CI: 1.19-2.34%), 3.43% (95%CI: 2.80-4.07%), and 1.99% (95%CI: 0.90-3.09%) for nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2), respectively, all of which were statistically significantly higher than those on the other days. No consistent modification of weather factors was found for the effects of particles with an aerodynamic diameter less than 10 μm (PM10). The results suggested that season and RH jointly modified the effects of gaseous pollutants, resulting in increased emergency COPD hospitalizations on the cool and dry days.

  18. Cyclic crack resistance of magnesium alloys in vacuum, humid an highly desiccated air

    International Nuclear Information System (INIS)

    Yarema, S.Ya.; Zinyuk, O.D.

    1986-01-01

    Investigation results on cyclic crack resistance of four structural magnesium alloys in vacuum, humid and highly desiccated air are presented. The regularities obtained are discussed at the background of the known data, using the data on crack closing and hydrogen concenration near its vertex. Diagrams of fatigue fracture of magnesium alloys MA2-1, MA15, MA8 and MA18, produced in vacuum, dry and humid air, on the whole obey the previously established regularities for aluminium alloys and steels. The diagrams of fatigue fracture plotted taking into account crack closing (v-ΔK eff ) for dry and humid air are quite similar. An increase in cyclic crack resistance of the materials in vacuum can not be explained by the change in the crack closing and is evidently conditioned by the absence of hydrogen absorption as the main factor accelerating the crack growth. Effect of vacuum on the threshold K th increases with the increase in σ 0.2 , which testifies to a strong effect of medium on the rate of fatigue crack growth in near the threshold region

  19. Differential effects of elevated air humidity on stomatal closing ability of Kalanchoë blossfeldiana between the C

    NARCIS (Netherlands)

    Fanourakis, Dimitrios; Hyldgaard, Benita; Gebraegziabher, Habtamu; Bouranis, Dimitris; Körner, Oliver; Nielsen, Kai Lønne; Ottosen, Carl-Otto

    2017-01-01

    High relative air humidity (RH ≥ 85%) impairs stomatal functionality, attenuating plant capacity to cope with abiotic stress. Previous studies were limited to C3 species, so the RH effect on stomatal physiology of CAM plants remains unexplored. We addressed the topic through

  20. Humidification tower for humid air gas turbine cycles: Experimental analysis

    International Nuclear Information System (INIS)

    Traverso, A.

    2010-01-01

    In the HAT (humid air turbine) cycle, the humidification of compressed air can be provided by a pressurised saturator (i.e. humidification tower or saturation tower), this solution being known to offer several attractive features. This work is focused on an experimental study of a pressurised humidification tower, with structured packing. After a description of the test rig employed to carry out the measuring campaign, the results relating to the thermodynamic process are presented and discussed. The experimental campaign was carried out over 162 working points, covering a relatively wide range of possible operating conditions. It is shown that the saturator behaviour, in terms of air outlet humidity and temperature, is primarily driven by, in decreasing order of relevance, the inlet water temperature, the inlet water over inlet dry air mass flow ratio and the inlet air temperature. The exit relative humidity is consistently over 100%, which may be explained partially by measurement accuracy and droplet entrainment, and partially by the non-ideal behaviour of air-steam mixtures close to saturation. Experimental results have been successfully correlated using a set of new non-dimensional groups: such a correlation is able to capture the air outlet temperature with a standard deviation σ = 2.8 K.

  1. The impact of temperature and humidity on perception and emission of indoor air pollutants

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1996-01-01

    Sensory response to air polluted by five building materials under different combinations of temperature and humidity in the ranges 18°C-28°C and 30%-70% was studied in the laboratory. The experiments were designed to study separately the impact of temperature and humidity on the perception of air...... polluted by materials, and on the emission of pollutants from the materials. At all tested pollution levels of the five materials, the air was perceived significantly less acceptable with increasing temperature and humidity, and the impact of temperature and humidity on perception decreased with increasing...... pollution level. A significant linear correlation between acceptability and enthalpy of the air was found to describe the influence of temperature and humidity on perception. The impact of temperature and humidity on sensory emission was less significant than the impact on perception; however, the sensory...

  2. Analysis of air temperature and relative humidity: study of microclimates

    OpenAIRE

    Elis Dener Lima Alves; Marcelo Sacardi Biudes

    2012-01-01

    Understanding the variability of climate elements in time and space is fundamental to the knowledge of the dynamics of microclimate. Thus, the objective was to analyze the variability of air temperature and relative humidity on the Cuiabá campus of the Federal University of Mato Grosso, and, through the clustering technique, to analyze the formation of groups to propose a zoning microclimate in the area study. To this end, collection data of air temperature and relative humidity at 15 points ...

  3. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  4. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    Science.gov (United States)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  5. Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition

    Science.gov (United States)

    Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi

    2018-04-01

    Experiments are performed using dry and humid air to clarify the effects of water vapour on the characteristics of surface dielectric barrier discharge (SDBD) and investigate its impact on the performance of the SDBD for decomposition of gaseous naphthalene in air stream. The current characteristics, including the discharge and the capacitive currents, are deeply analyzed and the discharge mechanism is explored. The results confirmed that the humidity affected the microdischarge distribution without affecting the discharge mode. Interestingly, it is found that the water vapour had a significant influence on the capacitance of the reactor due to its deposition on the discharge electrode and the dielectric, which, in turn, affects the power loss in the dielectric and the total power consumed in the reactor. Thus, the factor of the humidity effect on the power loss in the dielectric should be considered in addition to its effect on the attachment coefficient. Additionally, there was an optimum level of the humidity for the decomposition of naphthalene in the SDBD, and its value depended on the gas composition, where the maximum naphthalene decomposition efficiency in O2/H2O is achieved at the humidity level ˜10%, which was lower than that obtained in air/H2O (˜28%). The results also revealed that the role of the humidity in the decomposition efficiency was not significant in the humidified O2 at high power level. This was attributed to the significant increase in oxygen-derived species (such as O atoms and O3) at high power, which was enough to overcome the negative effects of the humidity.

  6. Does the increased air humidity affect soil respiration and carbon stocks?

    Science.gov (United States)

    Kukumägi, Mai; Celi, Luisella; Said-Pullicino, Daniel; Kupper, Priit; Sõber, Jaak; Lõhmus, Krista; Kutti, Sander; Ostonen, Ivika

    2013-04-01

    Climate manipulation experiments at ecosystem-scale enable us to simulate, investigate and predict changes in carbon balance of forest ecosystems. Considering the predicted increase in air humidity and precipitation for northern latitudes, this work aimed at investigating the effect of increased air humidity on soil respiration, distribution of soil organic matter (SOM) among pools having different turnover times, and microbial, fine root and rhizome biomass. The study was carried out in silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.) stands in a Free Air Humidity Manipulation (FAHM) experimental facility containing three humidified (H; on average 7% above current ambient levels since 2008) and three control (C) plots. Soil respiration rates were measured monthly during the growing season using a closed dynamic chamber method. Density fractionation was adopted to separate SOM into two light fractions (free and aggregate-occluded particulate organic matter, fPOM and oPOM respectively), and one heavy fraction (mineral-associated organic matter, MOM). The fine root and rhizome biomass and microbial data are presented for silver birch stands only. In 2011, after 4 growing seasons of humidity manipulation soil organic carbon contents were significantly higher in C plots than H plot (13.5 and 12.5 g C kg-1, respectively), while soil respiration tended to be higher in the latter. Microbial biomass and basal respiration were 13 and 14% higher in H plots than in the C plots, respectively. Twice more fine roots of trees were estimated in H plots, while the total fine root and rhizome biomass (tree + understory) was similar in C and H plots. Fine root turnover was higher for both silver birch and understory roots in H plots. Labile SOM light fractions (fPOM and oPOM) were significantly smaller in H plots with respect to C plots (silver birch and hybrid aspen stands together), whereas no differences were observed in the

  7. The influence of air humidity on an unsealed ionization chamber in a linear accelerator

    International Nuclear Information System (INIS)

    Blad, B.; Nilsson, P.; Knoeoes, T.

    1996-01-01

    The safe and accurate delivery of the prescribed absorbed dose is the central function of the dose monitoring and beam stabilization system in a medical linear accelerator. The absorbed dose delivered to the patient during radiotherapy is often monitored by a transmission ionization chamber. Therefore it is of utmost importance that the chamber behaves correctly. We have noticed that the sensitivity of an unsealed chamber in a Philips SL linear accelerator changes significantly, especially during and after the summer season. The reason for this is probably a corrosion effect of the conductive plates in the chamber due to the increased relative humidity during hot periods. We have found that the responses of the different ion chamber plates change with variations in air humidity and that they do not return to their original values when the air humidity is returned to ambient conditions. (author)

  8. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    Science.gov (United States)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  9. Effect of environmental dust particles on laser textured yttria-stabilized zirconia surface in humid air ambient

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.

    2018-05-01

    Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.

  10. Ambient humidity and the skin: the impact of air humidity in healthy and diseased states.

    Science.gov (United States)

    Goad, N; Gawkrodger, D J

    2016-08-01

    Humidity, along with other climatic factors such as temperature and ultraviolet radiation, can have an important impact on the skin. Limited data suggest that external humidity influences the water content of the stratum corneum. An online literature search was conducted through Pub-Med using combinations of the following keywords: skin, skin disease, humidity, dermatoses, dermatitis, eczema, and mist. Publications included in this review were limited to (i) studies in humans or animals, (ii) publications showing relevance to the field of dermatology, (iii) studies published in English and (iv) publications discussing humidity as an independent influence on skin function. Studies examining environmental factors as composite influences on skin health are only included where the impact of humidity on the skin is also explored in isolation of other environmental factors. A formal systematic review was not feasible for this topic due to the heterogeneity of the available research. Epidemiological studies indicated an increase in eczema with low internal (indoors) humidity and an increase in eczema with external high humidity. Other studies suggest that symptoms of dry skin appear with low humidity internal air-conditioned environments. Murine studies determined that low humidity caused a number of changes in the skin, including the impairment of the desquamation process. Studies in humans demonstrated a reduction in transepidermal water loss (TEWL) (a measure of the integrity of the skin's barrier function) with low humidity, alterations in the water content in the stratum corneum, decreased skin elasticity and increased roughness. Intervention with a humidifying mist increased the water content of the stratum corneum. Conversely, there is some evidence that low humidity conditions can actually improve the barrier function of the skin. Ambient relative humidity has an impact on a range of parameters involved in skin health but the literature is inconclusive. Further

  11. A novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor humidity control

    International Nuclear Information System (INIS)

    Yan, Huaxia; Deng, Shiming; Chan, Ming-yin

    2016-01-01

    Highlights: • A novel capacity controller for TEAC systems for improved indoor humidity control is developed. • The novel controller was developed by integrating two previous control algorithms. • Experimental controllability tests were carried out. • Improved control over indoor humidity levels and higher energy efficiency can be achieved. - Abstract: Using a multi-evaporator air conditioning (MEAC) system to correctly control indoor air temperatures only in a multi-room application is already a challenging and difficult task, let alone the control of both indoor air temperature and humidity. This is because in an MEAC system, a number of indoor units are connected to a common condensing unit. Hence, the interferences among operation parameters of different indoor units would make the desired control of an MEAC system hard to realize. Limited capacity control algorithms for MEAC systems have been developed, with most of them focusing only on the control of indoor air temperature, and no previous studies involving control of indoor air humidity using MEAC systems can be identified. In this paper, the development of a novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor air humidity control is reported. The novel controller was developed by integrating two previous control algorithms for a dual-evaporator air conditioning system for temperature control and for a single-evaporator air conditioning system for improved indoor humidity control. Experimental controllability tests were carried out and the controllability test results showed that, with the novel controller, improved control over indoor humidity levels and better energy efficiency for a TEAC system could be obtained as compared to the traditional On–Off controllers extensively used by MEAC systems.

  12. INVESTIGATION OF THE HUMIDITY EFFECT ON THE FAC-IR-300 IONIZATION CHAMBER RESPONSE.

    Science.gov (United States)

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-02-01

    The free-air ionization chamber is communicating with the ambient air, therefore, the atmospheric parameters such as temperature, pressure and humidity effect on the ionization chamber performance. The free-air ionization chamber, entitled as FAC-IR-300, that design at the Atomic Energy Organization of Iran, AEOI, is required the atmospheric correction factors for correct the chamber reading. In this article, the effect of humidity on the ionization chamber response was investigated. For this reason, was introduced the humidity correction factor, kh. In this article, the Monte Carlo simulation was used to determine the kh factor. The simulation results show in relative humidities between 30% to 80%, the kh factor is equal 0.9970 at 20°C and 0.9975 at 22°C. From the simulation results, at low energy the energy dependence of the kh factor is significant and with increasing energy this dependence is negligible. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The influence of air temperature and relative humidity on dynamics of water potential in Betula pendula (Betulaceae trees

    Directory of Open Access Journals (Sweden)

    G. P. Тikhova

    2017-02-01

    Full Text Available Linear multiple models were developed to describe diurnal and seasonal dynamics of water potential (Ψ of the foliated shoots in the plants of Betula genus related to air temperature and relative humidity in the middle taiga (southern Karelia. The results of the study revealed unidirectional changes, but different effect strength of air temperature and relative humidity on Ψ of the foliated shoots of common silver birch (Betula pendula Roth and curly (Karelian birch (Betula pendula Roth var. carelica. It was shown that increasing air temperature 1°С results in similar decreasing of Ψ value equal to 0.037–0.038 MPa in both of the birches (p > 0.05. Since the diurnal air temperature range achieves 10–15 °С, the contribution of this factor may be up to 0.57 MPa. On the contrary, the contribution of relative air humidity to Ψ value differs significantly in distinct birch forms (p < 0.05. In this case the change range of Ψ value in silver birch and curly birch may be up to 0.46 (0.015 MPa/1 % RH and 0.52 МПа (0.017 MPa/1 % RH, respectively. The results indicate that curly birch responds to the increase of relative air humidity with higher magnification of Ψ in comparison with common silver birch.

  14. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    Science.gov (United States)

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here.

  15. Study and realization of a new humid air generator; towards the definition of a dew temperature reference; Etude et realisation d'un nouveau generateur d'air humide; vers la definition d'une reference en temperature de rosee

    Energy Technology Data Exchange (ETDEWEB)

    Blanquart, B.

    2001-03-01

    The air humidity is an important parameter for several biological and physico-chemical processes. The aim of this thesis is the direct determination of the dew temperature without any link with the gravimetric reference. This document presents the realization and adjusting of a new humid air generator for the -80 deg. C to +15 deg. C range and the uncertainty linked with the dew temperature of the humid air generated. The first chapter recalls the definitions of humid air related data and the principles of the apparatuses used for the measurement of air humidity. The second chapter deals with temperature measurements while chapter 3 describes the new humid air generator built around an 'ideal' cell based on the theoretical definition of the dew temperature. Technical constraints due to temperature measurement and to hygrometers calibration are progressively integrated and introduced and lead to the practical realization of the device. Differences between the ideal cell and the prototype are estimated using a theoretical approach of mass and heat exchanges coupled with experimental results obtained with a previous prototype. Chapter 4 presents a first status of the device uncertainties with some possibilities of reduction of these uncertainties. (J.S.)

  16. Experimental investigation on the off-design performance of a small-sized humid air turbine cycle

    International Nuclear Information System (INIS)

    Wei, Chenyu; Zang, Shusheng

    2013-01-01

    This research aimed to study the improvement of the gas turbine performance of a humid air turbine (HAT) cycle at low pressure ratio and at low turbine inlet temperature (TIT). To achieve this goal, an off-design performance test investigation was conducted on a small-sized, two-shaft gas turbine test rig. The test rig consisted of a centrifugal compressor, a centripetal turbine, an individual direct flow flame tube, a free power turbine, a dynamometer, and a saturator with structured packing. Two different conditions were considered for the test investigation: in Case I, the control system kept the fuel flow constant at 57 kg/h, and in Case II, the turbine inlet temperature was kept constant at 665 °C. In Case I, when the air humidity ratio increased from 30 g/kg dry air (DA) to 43 g/kg DA, the power output increased by 3 kW. At the same time, the turbine inlet temperature decreased by 19 °C, and the NO x emissions were reduced from 25 ppm to 16 ppm. In Case II, when the air humidity ratio increased from 48 g/kg DA to 57 g/kg DA, the power output increased by 9.5 kW. Based on the actual gas turbine parts, characteristics, and test conditions, the off-design performance of the HAT cycle was calculated. Upon comparing the measured and calculated results, the HAT cycle was found to perform better than the two-shaft cycle in terms of specific work, efficiency, and specific fuel consumption. The effect of performance improvement became more obvious as the air humidity ratio increased. Under the same inlet air flow, turbine inlet temperature, and power output, the surge margin on compressor curves became enlarged as the humidity ratio increased. The off-design performance of a HAT cycle with regenerator was also investigated. The results show that the highest efficiency can be increased by 3.1%, which will greatly improve the gas turbine performance. -- Highlights: ► We built a flexible small-size test rig of HAT cycle gas turbine and the real test data were

  17. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    All matter is more or less hygroscopic. The moisture content varies with vapour concentration of the surrounding air and, as a consequence, most material properties change with humidity. Mechanical and thermal properties of many materials, such as the tensile strength of adhesives, stiffness of plastics, stoutness of building and packaging materials or the thermal resistivity of isolation materials, all decrease with increasing environmental humidity or cyclic humidity changes. The presence of water vapour may have a detrimental influence on many electrical constructions and systems exposed to humid air, from high-power systems to microcircuits. Water vapour penetrates through coatings, cable insulations and integrated-circuit packages, exerting a fatal influence on the performance of the enclosed systems. For these and many other applications, knowledge of the relationship between moisture content or humidity and material properties or system behaviour is indispensable. This requires hygrometers for process control or test and calibration chambers with high accuracy in the appropriate temperature and humidity range. Humidity measurement methods can roughly be categorized into four groups: water vapour removal (the mass before and after removal is measured); saturation (the air is brought to saturation and the `effort' to reach that state is measured); humidity-dependent parameters (measurement of properties of humid air with a known relation between a specific property and the vapour content, for instance the refractive index, electromagnetic spectrum and acoustic velocity); and absorption (based on the known relation between characteristic properties of non-hydrophobic materials and the amount of absorbed water from the gas to which these materials are exposed). The many basic principles to measure air humidity are described in, for instance, the extensive compilations by Wexler [1] and Sonntag [2]. Absorption-type hygrometers have small dimensions and can be

  18. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  19. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters

    International Nuclear Information System (INIS)

    Gupta, A.; Biswas, P.; Monson, P.R.; Novick, V.J.

    1993-01-01

    The effect of humidity, particle hygroscopicity, and size on the mass loading capacity of glass fiber high efficiency particulate air filters was studied. Above the deliquescent point, the pressure drop across the filter increased nonlinearly with areal loading density (mass collected/filtration area) of a NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or nonhygroscopic particle mass loadings. The specific cake resistance K 2 was computed for different test conditions and used as a measure of the mass loading capacity. K 2 was found to decrease with increasing humidity for nonhygroscopic aluminum oxide particles and for hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K 2 for lognormally distributed aerosols (parameters obtained from impactor data) was derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the nonhygroscopic aluminum oxide, the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor. 17 refs., 6 figs., 3 tabs

  20. Experimental research on the indoor temperature and humidity fields in radiant ceiling air-conditioning system under natural ventilation

    Science.gov (United States)

    Huang, Tao; Xiang, Yutong; Wang, Yonghong

    2017-05-01

    In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.

  1. High Humidity Aerodynamic Effects Study on Offshore Wind Turbine Airfoil/Blade Performance through CFD Analysis

    Directory of Open Access Journals (Sweden)

    Weipeng Yue

    2017-01-01

    Full Text Available Damp air with high humidity combined with foggy, rainy weather, and icing in winter weather often is found to cause turbine performance degradation, and it is more concerned with offshore wind farm development. To address and understand the high humidity effects on wind turbine performance, our study has been conducted with spread sheet analysis on damp air properties investigation for air density and viscosity; then CFD modeling study using Fluent was carried out on airfoil and blade aerodynamic performance effects due to water vapor partial pressure of mixing flow and water condensation around leading edge and trailing edge of airfoil. It is found that the high humidity effects with water vapor mixing flow and water condensation thin film around airfoil may have insignificant effect directly on airfoil/blade performance; however, the indirect effects such as blade contamination and icing due to the water condensation may have significant effects on turbine performance degradation. Also it is that found the foggy weather with microwater droplet (including rainy weather may cause higher drag that lead to turbine performance degradation. It is found that, at high temperature, the high humidity effect on air density cannot be ignored for annual energy production calculation. The blade contamination and icing phenomenon need to be further investigated in the next study.

  2. Thermal Effectiveness of Wall Indoor Fountain in Warm Humid Climate

    Science.gov (United States)

    Seputra, J. A. P.

    2018-03-01

    Nowadays, many buildings wield indoor water features such as waterfalls, fountains, and water curtains to improve their aesthetical value. Despite the provision of air cooling due to water evaporation, this feature also has adverse effect if applied in warm humid climate since evaporation might increase air humidity beyond the comfort level. Yet, there are no specific researches intended to measure water feature’s effect upon its thermal condition. In response, this research examines the influence of evaporative cooling on indoor wall fountain toward occupant’s thermal comfort in warm humid climate. To achieve this goal, case study is established in Waroeng Steak Restaurant’s dining room in Surakarta-Indonesia. In addition, SNI 03-6572-2001 with comfort range of 20.5–27.1°C and 40-60% of relative humidity is utilized as thermal criterion. Furthermore, Computational Fluid Dynamics (CFD) is employed to process the data and derive conclusions. Research variables are; feature’s height, obstructions, and fan types. As results, Two Bumps Model (ToB) is appropriate when employs natural ventilation. However, if the room is mechanically ventilated, Three Bumps Model (TeB) becomes the best choice. Moreover, application of adaptive ventilation is required to maintain thermal balance.

  3. Temperature and humidity dependence of air fluorescence yield measured by AIRFLY

    International Nuclear Information System (INIS)

    Ave, M.; Bohacova, M.; Buonomo, B.; Busca, N.; Cazon, L.; Chemerisov, S.D.; Conde, M.E.; Crowell, R.A.; Di Carlo, P.; Di Giulio, C.; Doubrava, M.; Esposito, A.; Facal, P.; Franchini, F.J.; Hoerandel, J.; Hrabovsky, M.; Iarlori, M.; Kasprzyk, T.E.; Keilhauer, B.

    2008-01-01

    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6, 337.1, 353.7 and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20% for the temperature dependence in the 391.4 nm band) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.

  4. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Directory of Open Access Journals (Sweden)

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  5. Co3O4 as p-Type Material for CO Sensing in Humid Air

    Directory of Open Access Journals (Sweden)

    Svetlana Vladimirova

    2017-09-01

    Full Text Available Nanocrystalline cobalt oxide Co3O4 has been prepared by precipitation and subsequent thermal decomposition of a carbonate precursor, and has been characterized in detail using XRD, transmission electron microscopy, and FTIR spectroscopy. The sensory characteristics of the material towards carbon monoxide in the concentration range 6.7–20 ppm have been examined in both dry and humid air. A sensor signal is achieved in dry air at sufficiently low temperatures T = 80–120 °C, but the increase in relative humidity results in the disappearance of sensor signal in this temperature range. At temperatures above 200 °C the inversion of the sensor signal in dry air was observed. In the temperature interval 180–200 °C the sensor signal toward CO is nearly the same at 0, 20 and 60% r.h. The obtained results are discussed in relation with the specific features of the adsorption of CO, oxygen, and water molecules on the surface of Co3O4. The independence of the sensor signal from the air humidity combined with a sufficiently short response time at a moderate operating temperature makes Co3O4 a very promising material for CO detection in conditions of variable humidity.

  6. Humidity correction in the standard measurement of exposure

    International Nuclear Information System (INIS)

    Ibaraki, Yasuyuki; Katoh, Akira

    1980-01-01

    This paper deals with the humidity correction to be made in the standard measurement of the exposure to the measured ionization current in the humid air for the purpose of excluding the influence of the water vapour that is not included in the definition of the exposure. First, formulae giving the humidity correction factors for a parallel plate free air chamber and a cavity chamber have been derived respectively in the case where the contributions of air and water vapour to the ionization are independent. Next, in the case where the contributions are not independent, i.e., the Jesse effect is taken into account, a formula to obtain the W-value for humid air has been derived on the basis of the Niatel's experimental result. Using this formula, formulae to obtain the humidity correction factors for the free air chamber and the cavity chamber are derived. The humidity calculated by the latter formulae show good agreements with the results by Niatel and Guiho, respectively. (author)

  7. Particles and emissions from a diesel engine equipped with a humid air motor system

    Energy Technology Data Exchange (ETDEWEB)

    Nord, Kent; Zurita, Grover; Tingvall, Bror; Haupt, Dan [Luleaa Univ. of Technology (Sweden). Div. of Environmental Technology

    2002-02-01

    A system for reduction of NO{sub x}, humid air motor system (HAM), has been connected to an eleven liters diesel engine. Earlier studies have demonstrated the system's capacity to lower NO{sub x}-emissions from diesel engines. The present study is directed to investigate their influence of the system on the emissions of particles, aldehydes and noise while at the same time monitoring essential engine parameters, water consumption and verifying the NO{sub x} reducing ability. The system has been tested under the various conditions stated in 13-mode cycle ECE R-49. Additional tests have been necessary for sampling and measurements of particles and noise. The results show that HAM caused a large reduction of the NO{sub x} emissions while the engine performance was almost unaffected. Average reduction of NO{sub x} during the different modes of ECE R-49 was 51,1%. The reduction was directly related to the humidity of the inlet air and a further reduction can be anticipated with higher humidity. Samples have also been taken for acetaldehydes and formaldehyde. The results suggest a large reduction of aldehydes, in the range of 78 to 100%, when using HAM. Unfortunately it cannot be excluded that the results obtained are a result of a combination of high air humidity and the sampling technique used. The influence of the system on the emission of hydrocarbons was negligible while a moderate increase in the emission of carbon monoxide was noticed. No confident relationship between air humidity and the observed effects could be detected. Particle number concentrations and size distribution have also been measured. The measurements showed that the particle number concentrations was usually increased when HAM was coupled to the engine. The increase in particle number concentration, observed in five out of six running modes, varied between 46 and 148%. There was no trend indicating a shift in mean particle diameter when using HAM. Noise level and cylinder pressure have also

  8. Energy efficient air inlet humidity control; Energiezuinige inblaasvochtregeling

    Energy Technology Data Exchange (ETDEWEB)

    Gielen, J.H. [C Point, DLV Plant, Horst (Netherlands)

    2005-03-15

    This project report describes the results of research conducted on the control of the inlet, humidification and dehumidification, based on the air inlet humidity rate. The project was carried out at a mushroom cultivation business in Heijen, the Netherlands [Dutch] Deze projectrapportage geeft de resultaten van het onderzoek naar het regelen van de luchtklep, bevochtiging en ontvochtiging, op basis van het inblaasvochtgehalte. Het project werd uitgevoerd op een champignonkwekerij in Heijen.

  9. Air humidity as key determinant of morphogenesis and productivity of the rare temperate woodland fern Polystichum braunii.

    Science.gov (United States)

    Schwerbrock, R; Leuschner, C

    2016-07-01

    (1) Most ferns are restricted to moist and shady habitats, but it is not known whether soil moisture or atmospheric water status are decisive limiting factors, or if both are equally important. (2) Using the rare temperate woodland fern Polystichum braunii, we conducted a three-factorial climate chamber experiment (soil moisture (SM) × air humidity (RH) × air temperature (T)) to test the hypotheses that: (i) atmospheric water status (RH) exerts a similarly large influence on the fern's biology as soil moisture, and (ii) both a reduction in RH and an increase in air temperature reduce vigour and growth. (3) Nine of 11 morphological, physiological and growth-related traits were significantly influenced by an increase in RH from 65% to 95%, leading to higher leaf conductance, increased above- and belowground productivity, higher fertility, more epidermal trichomes and fewer leaf deformities under high air humidity. In contrast, soil moisture variation (from 66% to 70% in the moist to ca. 42% in the dry treatment) influenced only one trait (specific leaf area), and temperature variation (15 °C versus 19 °C during daytime) only three traits (leaf conductance, root/shoot ratio, specific leaf area); RH was the only factor affecting productivity. (4) This study is the first experimental proof for a soil moisture-independent air humidity effect on the growth of terrestrial woodland ferns. P. braunii appears to be an air humidity hygrophyte that, whithin the range of realistic environmental conditions set in this study, suffers more from a reduction in RH than in soil moisture. A climate warming-related increase in summer temperatures, however, seems not to directly threaten this endangered species. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  11. Humidity evolution (breathing effect) in enclosures with electronics

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Popok, Vladimir

    2015-01-01

    Packaging and enclosures used for protecting power electronics operating outdoors are designed to withstand the local climatic and environmental changes. Hermetic enclosures are expensive and therefore other solutions for protecting the electronics from a harsh environment are required. One...... of the dangerous parameters is high humidity of air. Moisture can inevitable reach the electronics either due to diffusion through the wall of an enclosure or small holes, which are designed for electrical or other connections. A driving force for humid air movement is the temperature difference between...... the operating electronics and the surrounding environment. This temperature, thus, gives rise to a natural convection, which we also refer to as breathing. Robust and intelligent enclosure designs must account for this breathing as it can significantly change the humidity distribution in the enclosure...

  12. System analysis of membrane facilitated water generation from air humidity

    NARCIS (Netherlands)

    Bergmair, D.; Metz, S.J.; Lange, de H.C.; Steenhoven, van A.A.

    2014-01-01

    The use of water vapor selective membranes can reduce the energy requirement for extracting water out of humid air by more than 50%. We performed a system analysis of a proposed unit, that uses membranes to separate water vapor from other atmospheric gases. This concentrated vapor can then be

  13. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    Science.gov (United States)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  14. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    Science.gov (United States)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  15. Improving stomatal functioning at elevated growth air humidity: A review.

    Science.gov (United States)

    Fanourakis, Dimitrios; Bouranis, Dimitrios; Giday, Habtamu; Carvalho, Dália R A; Rezaei Nejad, Abdolhossein; Ottosen, Carl-Otto

    2016-12-01

    Plants grown at high relative air humidity (RH≥85%) are prone to lethal wilting upon transfer to conditions of high evaporative demand. The reduced survival of these plants is related to (i) increased cuticular permeability, (ii) changed anatomical features (i.e., longer pore length and higher stomatal density), (iii) reduced rehydration ability, (iv) impaired water potential sensitivity to leaf dehydration and, most importantly, (v) compromised stomatal closing ability. This review presents a critical analysis of the strategies which stimulate stomatal functioning during plant development at high RH. These include (a) breeding for tolerant cultivars, (b) interventions with respect to the belowground environment (i.e., water deficit, increased salinity, nutrient culture and grafting) as well as (c) manipulation of the aerial environment [i.e., increased proportion of blue light, increased air movement, temporal temperature rise, and spraying with abscisic acid (ABA)]. Root hypoxia, mechanical disturbance, as well as spraying with compounds mimicking ABA, lessening its inactivation or stimulating its within-leaf redistribution are also expected to improve stomatal functioning of leaves expanded in humid air. Available evidence leaves little doubt that genotypic and phenotypic differences in stomatal functioning following cultivation at high RH are realized through the intermediacy of ABA. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. High accuracy acoustic relative humidity measurement in duct flow with air

    NARCIS (Netherlands)

    Schaik, van W.; Grooten, M.H.M.; Wernaart, T.; Geld, van der C.W.M.

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and

  17. The effect of ambient ozone and humidity on the performance of nylon and Teflon filters used in ambient air monitoring filter-pack systems

    Science.gov (United States)

    PE Padgett

    2010-01-01

    Nylon and Teflon filter media are frequently used for monitoring ambient air pollutants. These media are subject to many environmental factors that may influence adsorption and retention of particulate and gaseous nitrogenous pollutants. This study evaluated the effects of ozone and humidity on the efficacy of nylon and Teflon filters used in the US dry deposition...

  18. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    DEFF Research Database (Denmark)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael

    2012-01-01

    with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total...... inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor...... of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly...

  19. Estimating surface solar radiation from upper-air humidity

    Energy Technology Data Exchange (ETDEWEB)

    Kun Yang [Telecommunications Advancement Organization of Japan, Tokyo (Japan); Koike, Toshio [University of Tokyo (Japan). Dept. of Civil Engineering

    2002-07-01

    A numerical model is developed to estimate global solar irradiance from upper-air humidity. In this model, solar radiation under clear skies is calculated through a simple model with radiation-damping processes under consideration. A sky clearness indicator is parameterized from relative humidity profiles within three atmospheric sublayers, and the indicator is used to connect global solar radiation under clear skies and that under cloudy skies. Model inter-comparisons at 18 sites in Japan suggest (1) global solar radiation strongly depends on the sky clearness indicator, (2) the new model generally gives better estimation to hourly-mean solar irradiance than the other three methods used in numerical weather predictions, and (3) the new model may be applied to estimate long-term solar radiation. In addition, a study at one site in the Tibetan Plateau shows vigorous convective activities in the region may cause some uncertainties to radiation estimations due to the small-scale and short life of convective systems. (author)

  20. Investigation of Interfacial Phenomena During Condensation of Humid Air on a Horizontal Substrate

    Directory of Open Access Journals (Sweden)

    Tiwari Akhilesh

    2013-12-01

    Full Text Available The condensation phenomenon of humid air on solid substrates can occur in many applications, and it is known as one of the most difficult problem to deal with for the improvement of the quality of air in a closed environment. The present study was motivated by the investigation of the coupling between ventilation and condensation inside controlled ecological life support systems (CELSS, as it has an important role for higher plants growth in greenhouses and living conditions in manned spacecraft cabins, particularly in long duration space flights or in future space bases. It is well known that the enhancement of the gas exchange with leaves and the growth of plants are dependent on the organoleptic and/or the surrounding thermo-physical factors. Insufficient air movement around plants and condensation on plant leaves generally limit their growth by suppressing the gas diffusion in the leaf boundary-layer thereby decreasing photosynthetic and transpiration rates. Thus, the optimization of a CELSS will require the control of the airflow and concomitant gas/liquid transfer at the plant surfaces. The experimental and theoretical modeling of CELSS requires a comprehensive understanding of the micro to the macro levels of liquid gas phase transfer. Hence, an experimental set-up was developed at 1-g to evaluate the mass transfer coefficients due to condensation of humid air on specific geometries in well controlled environmental conditions. The goal was to establish correlations between the fluxes of mass and heat, the relative humidity and the mean flow for the development of theoretical models based on local transfer coefficients. The experiments were performed at ambient temperature, with a relative humidity between 35-70% and for a velocity range of 1.0-3.0 m.s−1.

  1. Adaptive Thermal Comfort in Japanese Houses during the Summer Season: Behavioral Adaptation and the Effect of Humidity

    Directory of Open Access Journals (Sweden)

    Hom B. Rijal

    2015-09-01

    Full Text Available In order to clarify effect of humidity on the room temperatures reported to be comfortable, an occupant thermal comfort and behavior survey was conducted for five summers in the living rooms and bedrooms of residences in the Kanto region of Japan. We have collected 13,525 thermal comfort votes from over 239 residents of 120 homes, together with corresponding measurements of room temperature and humidity of the air. The residents were generally well-satisfied with the thermal environment of their houses, with or without the use of air-conditioning, and thus were well-adapted to their thermal conditions. The humidity was found to have very little direct effect on the comfort temperature. However, the comfort temperature was strongly related to the reported skin moisture. Behavioral adaptation such as window opening and fan use increase air movement and improve thermal comfort.

  2. Opposing effects of humidity on rhodochrosite surface oxidation.

    Science.gov (United States)

    Na, Chongzheng; Tang, Yuanzhi; Wang, Haitao; Martin, Scot T

    2015-03-03

    Rhodochrosite (MnCO3) is a model mineral representing carbonate aerosol particles containing redox-active elements that can influence particle surface reconstruction in humid air, thereby affecting the heterogeneous transformation of important atmospheric constituents such as nitric oxides, sulfur dioxides, and organic acids. Using in situ atomic force microscopy, we show that the surface reconstruction of rhodochrosite in humid oxygen leads to the formation and growth of oxide nanostructures. The oxidative reconstruction consists of two consecutive processes with distinctive time scales, including a long waiting period corresponding to slow nucleation and a rapid expansion phase corresponding to fast growth. By varying the relative humidity from 55 to 78%, we further show that increasing humidity has opposing effects on the two processes, accelerating nucleation from 2.8(±0.2) × 10(-3) to 3.0(±0.2) × 10(-2) h(-1) but decelerating growth from 7.5(±0.3) × 10(-3) to 3.1(±0.1) × 10(-3) μm(2) h(-1). Through quantitative analysis, we propose that nanostructure nucleation is controlled by rhodochrosite surface dissolution, similar to the dissolution-precipitation mechanism proposed for carbonate mineral surface reconstruction in aqueous solution. To explain nanostructure growth in humid oxygen, a new Cabrera-Mott mechanism involving electron tunneling and solid-state diffusion is proposed.

  3. Analysis of heat transfer and frost layer formation on a cryogenic tank wall exposed to the humid atmospheric air

    International Nuclear Information System (INIS)

    Kim, Kyoung-Hoon; Ko, Hyung-Jong; Kim, Kyoungjin; Kim, Yong-Wook; Cho, Kie-Joo

    2009-01-01

    In this paper heat transfer characteristics and frost layer formation are investigated numerically on the surface of a cryogenic oxidizer tank for a liquid propulsion rocket, where a frost layer could be a significant factor in maintaining oxidizer temperature within a required range. Frost formation is modeled by considering mass diffusion of water vapor in the air into the frost layer and various heat transfer modes such as natural and forced convection, latent heat, solar radiation of short wavelength, and ambient radiation of long wavelength. Computational results are first compared with the available measurements and show favorable agreement on thickness and effective thermal conductivity of the frost layer. In the case of the cryogenic tank, a series of parametric studies is presented in order to examine the effects of important parameters such as temperature and wind speed of ambient air, air humidity, and tank wall temperature on the frost layer formation and the amount of heat transfer into the tank. It is found that the heat transfer by solar radiation is significant and also that heat transfer strongly depends on air humidity, ambient air temperature, and wind speed but not tank wall temperature.

  4. The Effect of Humidity on the Knock Behavior in a Medium BMEP Lean-Burn High-Speed Gas Engine

    NARCIS (Netherlands)

    van Essen, Vincent Martijn; Gersen, Sander; van Dijk, Gerco; Mundt, Torsten; Levinsky, Howard

    2016-01-01

    The effects of air humidity on the knock characteristics of fuels are investigated in a lean-burn, high-speed medium BMEP engine fueled with a CH4 + 4.7 mole% C3H8 gas mixture. Experiments are carried out with humidity ratios ranging from 4.3 to 11 g H2O/kg dry air. The measured pressure profiles at

  5. Influence of sample temperature and environmental humidity on measurements of benzene in ambient air by transportable GC-PID

    Directory of Open Access Journals (Sweden)

    C. Romero-Trigueros

    2017-10-01

    Full Text Available Calibration of in situ analysers of air pollutants is usually done with dry standards. In this paper, the influence of sample temperature and environmental humidity on benzene measurements by gas chromatography coupled with a photoionisation detector (GC-PID is studied. Two reference gas mixtures (40 and 5 µg m−3 nominal concentration benzene in air were subjected to two temperature cycles (20/5/20 °C and 20/35/20 °C and measured with two identical GC-PIDs. The change in sample temperature did not produce any significant change in readings. Regarding ambient humidity, the chromatographs were calibrated for benzene with dry gases and subjected to measure reference standards with humidity (20 and 80 % at 20 °C. When measuring a concentration of 0.5 µg m−3 benzene in air, the levels of humidity tested did not produce any significant interference in measurements taken with any of the analysers. However, when measuring a concentration of 40 µg m−3, biases in measurements of 18 and 21 % for each respective analyser were obtained when the relative humidity of the sample was 80 % at 20 °C. Further tests were carried out to study the nature of this interference. Results show that humidity interference depends on both the amount fractions of water vapour and benzene. If benzene concentrations in an area are close to its annual limit value (5 µg m−3, biases of 2.2 % can be expected when the absolute humidity is 8.6 g cm−3 – corresponding to a relative humidity of 50 % at 20 °C. This can be accounted for in the uncertainty budget of measurements with no need for corrections. If benzene concentrations are above the annual limit value, biases become higher. Thus, in these cases, actions should be taken to reduce the humidity interference, as an underestimation of benzene concentrations may cause a mismanagement of air quality in these situations.

  6. Experimental analysis of pressurised humidification tower for humid air gas turbine cycles. Part A: Experimental campaign

    International Nuclear Information System (INIS)

    Pedemonte, A.A.; Traverso, A.; Massardo, A.F.

    2008-01-01

    One of the most interesting methods of water introduction in a gas turbine circuit is represented by the humid air turbine cycle (HAT). In the HAT cycle, the humidification can be provided by a pressurised saturator (i.e. humidification tower or saturation tower), this solution being known to offer several attractive features. This part A is focused on an experimental study of a pressurised humidification tower, with structured packing inside. After a description of the test rig employed to carry out the measuring campaign, the results relating to the thermodynamic process are presented and discussed. The experimental campaign was carried out over 162 working points, covering a relatively wide range of possible operating conditions. Details about measured data are provided in the appendix. It is shown that the saturator's behaviour, in terms of air outlet humidity and temperature, is primarily driven by, in decreasing order of relevance, the inlet water temperature, the inlet water over inlet dry air mass flow ratio and the inlet air temperature. Finally, the exit relative humidity is shown to be consistently over 100%, which may be explained partially by measurement accuracy and droplet entrainment, and partially by the non-ideal behaviour of air-steam mixtures close to saturation

  7. Ozone Production With Dielectric Barrier Discharge: Effects of Power Source and Humidity

    KAUST Repository

    Zhang, Xuming

    2016-08-24

    Ozone synthesis in air dielectric barrier discharge (DBD) was studied with an emphasis on the effects of power sources and humidity. Discharge characteristics were investigated to understand the physical properties of plasma and corresponding system performance. It was found that 10-ns pulsed DBD produced a homogeneous discharge mode, while ac DBD yielded an inhomogeneous pattern with many microdischarge channels. At a similar level of the energy density (ED), decreasing the flowrate is more effective in the production of ozone for the cases of the ac DBD, while increased voltage is more effective for the pulsed DBD. Note that the maximum ozone production efficiency (110 g/kWh) was achieved with the pulsed DBD. At the ED of ∼ 85 J/L, the ozone concentrations with dry air were over three times higher than those with the relative humidity of 100% for both the ac DBD and pulsed DBD cases. A numerical simulation was conducted using a global model to understand a detailed chemical role of water vapor to ozone production. It was found HO and OH radicals from water vapor significantly consumed O atoms, resulting in a reduction in ozone production. The global model qualitatively captured the experimental trends, providing further evidence that the primary effect of humidity on ozone production is chemical in nature.

  8. The effect of changing ambient humidity on moisture condition in timber elements

    DEFF Research Database (Denmark)

    Hozjan, Tomaẑ; Turk, Goran; Srpĉiĉ, Stanislav

    2012-01-01

    a fully coupled transport model including a model for the influential sorption hysteresis of wood is used. The coupled model accounts for both vapor transport in pores and bound water transport in wood tissue. Moisture state history influences relationship between moisture state of wood and air humidity......This paper deals with the effect of the changing ambient humidity on moisture conditions in timber elements. The naturally varying humidity is possible to model as a relative combination of different harmonic cycles, with different periods and amplitudes. For the determination of the moisture field......, it must therefore be taken into account. In order to include history dependency, a hysteresis model is used here. Results from numerical calculations for timber specimen exposed to combined daily and annually cyclic variation of outside humidity are presented. Copyright © (2012) by WCTE 2012 Committee....

  9. Exploring the effects of symmetrical and asymmetrical relative humidity on the performance of H{sub 2}/air PEM fuel cell at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Mahmoud M.; Okajima, Takeoshi; Kitamura, Fusao; Ohsaka, Takeo [Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Hayase, Masahiko [Development Department, NF Co., 6-3-20 Tsunashima-higashi, Kohoku-ku, Yokohama 223-8508 (Japan)

    2007-02-10

    This article is dedicated to study the interlinked effects of symmetric relative humidity (RH), and asymmetric RH on the performance of H{sub 2}/air PEM fuel cell at different temperatures. The symmetric and asymmetric RH were achieved by setting the cathode relative humidity (RHC) and anode relative humidity (RHA) as equal and unequal values, respectively. The cell performance was evaluated by collecting polarization curves of the cell at different RH, RHC and RHA and at different cell temperatures (T{sub cell}). The polarization curves along with the measured internal cell resistance (membrane resistance) were discussed in the light of the present fuel cell theory. The results showed that symmetric relative humidity has different impacts depending on the cell temperature. While at RH of 35% the cell can show considerable performance at T{sub cell} = 70 C, it is not so at T{sub cell} = 90 C. At T{sub cell} = 70 C, the cell potential increases with RH at lower and medium current densities but decreases with RH at higher currents. This was attributed to the different controlling processes at higher and lower current densities. This trend at 70 C is completely destroyed at 90 C. Operating our PEM fuel cell at dry H{sub 2} gas conditions (RHA = 0%) is not detrimental as operating the cell at dry Air (O{sub 2}) conditions (RHC = 0%). At RHA = 0% and humidified air, water transport by back diffusion from the cathode to the anode at the employed experimental conditions can support reasonable rehydration of the membrane and catalysts. At RHA = 0, a possible minimum RHC for considerable cell operation is temperature dependent. At RHC = 0 conditions, the cell can operate only at RHA = 100% with a loss that depends on T{sub cell}. It was found that the internal cell resistance depends on RH, RHA, RHC and T{sub cell} and it is consistent with the observed cell performance. (author)

  10. Fran Bosnjakovic and his world of thermodynamic charts - demonstrated for selected processes with humid air

    International Nuclear Information System (INIS)

    Knoche, Karl-Friedrich T.

    2004-01-01

    Some examples of technical processes operating with humid air as a working fluid, such as air compression and evaporation cooling, are discussed using the Mollier diagrams for better understanding of their performance. Bosnjakovic's important contributions towards the development of graphical methods are illustrated

  11. Effect of relative humidity on growth of sodium oxide aerosols

    International Nuclear Information System (INIS)

    Sundarajan, A.R.; Mitragotri, D.S.; Mukunda Rao, S.R.

    1982-01-01

    Behavior of aerosol resulting from sodium fires in a closed vessel is investigated and the changes in the particle size distribution of the aerosol due to coagulation and humidity have been studied. The initial mass concentration is in the range of 80 -- 500 mg/m 3 and the relative humidity is varied between 50 to 98%. The initial size of the released aerosol is found to be 0.9 μm. Equilibrium diameters of particles growing in humid air have been computed for various humidity levels using water activity of sodium hydroxide. Both theoretical and experimental results have yielded growth ratios of about 3 at about 95% relative humidity. It is recommended that the computer codes dealing with aerosol coagulation behavior in reactor containment should include an appropriate humidity-growth function. (author)

  12. Long-term Effects of Relative Humidity on Properties of Microwave Hardened Moulding Sand with Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Stachowicz M.

    2017-09-01

    Full Text Available Moulding sands containing sodium silicate (water-glass belong to the group of porous mixture with low resistance to increased humidity. Thanks to hydrophilic properties of hardened or even overheated binder, possible is application of effective methods of hydrous reclamation consisting in its secondary hydration. For the same reason (hydrophilia of the binder, moulds and foundry cores made of high-silica moulding sands with sodium silicate are susceptible to the action of components of atmospheric air, including the contained steam. This paper presents results of a research on the effect of (relative humidity on mechanical and technological properties of microwave-hardened moulding mixtures. Specimens of the moulding sand containing 1.5 wt% of sodium water-glass with module 2.5 were subjected, in a laboratory climatic chamber, to long-term action of steam contained in the chamber atmosphere. Concentration of water in atmospheric air was stabilized for 28 days (672 h according to the relative humidity parameter that was ca. 40%, 60% and 80% at constant temperature 20 °C. In three cycles of the examinations, the specimens were taken out from the chamber every 7 days (168 h and their mechanical and technological parameters were determined. It was found on the grounds of laboratory measurements that moulds and cores hardened with microwaves are susceptible to action of atmospheric air and presence of water (as steam intensifies action of the air components on glassy film of sodium silicate. Microwave-hardened moulding sands containing sodium silicate may be stored on a long-term basis in strictly determined atmospheric conditions only, at reduced humidity. In spite of a negative effect of steam contained in the air, the examined moulding mixtures maintain a part of their mechanical and technological properties, so the moulds and foundry cores stored in specified, controlled conditions could be still used in manufacture.

  13. Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air

    International Nuclear Information System (INIS)

    Shirayama, Masaki; Kato, Masato; Fujiseki, Takemasa; Hara, Shota; Kadowaki, Hideyuki; Murata, Daisuke; Fujiwara, Hiroyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Chikamatsu, Masayuki

    2016-01-01

    Low stability of organic-inorganic perovskite (CH 3 NH 3 PbI 3 ) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH 3 NH 3 PbI 3 layers prepared by a laser evaporation technique is studied. We present evidence that the CH 3 NH 3 PbI 3 degradation in humid air proceeds by two competing reactions of (i) the PbI 2 formation by the desorption of CH 3 NH 3 I species and (ii) the generation of a CH 3 NH 3 PbI 3 hydrate phase by H 2 O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH 3 NH 3 PbI 3 layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH 3 NH 3 PbI 3 layer is converted completely to hexagonal platelet PbI 2 /hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH 3 NH 3 PbI 3 in humid air.

  14. Effect of Humid Aging on the Oxygen Adsorption in SnO₂ Gas Sensors.

    Science.gov (United States)

    Suematsu, Koichi; Ma, Nan; Watanabe, Ken; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2018-01-16

    To investigate the effect of aging at 580 °C in wet air (humid aging) on the oxygen adsorption on the surface of SnO₂ particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO₂ resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants ( K ₁; for O - adsorption, K ₂; for O 2- adsorption) were estimated on the basis of the theoretical model of oxygen adsorption. The K ₁ and K ₂ in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O - and O 2- . These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO₂ resistive-type gas sensors in dry and wet atmospheres.

  15. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  16. Air temperature and relative humidity in Dome Fuji Station buildings, East Antarctic ice sheet, in 2003

    Directory of Open Access Journals (Sweden)

    Takao Kameda

    2008-06-01

    Full Text Available In order to clarify the living condition in Dome Fuji Station in 2003, air temperature and relative humidity in the station were measured. Thermocouples with data logger and a ventilated psychrometer were used for the measurements. Average air temperature from February 11, 2003 to January 14, 2004 (missing period: July 19 to August 17 in the Dome Fuji Station buildings were as follows: Generator room 24.7℃, Dining room 23.5℃, Observation room 21.1℃, Dormitory room 18.2℃, Corridor 18.2℃, Food storage 8.2℃ and Old ice coring site -51.3℃. Average outside air temperature (1.5m height from the snow surface during the period was -54.4℃. A remarkable increase of outside air temperature (+30℃ at maximum due to a blocking high event was observed from October 31, 2003 to November 10, 2003 at Dome Fuji, during which increase of air temperature from 5 to 8°C in the station buildings was recorded. Snow on the station buildings was partly melted and some of the melted water penetrated into the station. This was the only time snow melted during the wintering over party's stay at the station. Average relative humidity in the station buildings obtained using a small humidifier was about 25%; the relative humidity without using the humidifier ranged from 9.0 to 22.9%.

  17. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo-Vazquez, F J [Instituto de Astrofisica de Andalucia (IAA), CSIC, PO Box 3004, 18080 Granada (Spain); Donko, Z [Research Institute for Solid State Physics and Optics, H-1525 Budapest, PO Box, 49 (Hungary)

    2009-08-15

    A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, {approx}215 K (at 11 km) and {approx}198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N {<=} 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas

  18. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature

    International Nuclear Information System (INIS)

    Gordillo-Vazquez, F J; Donko, Z

    2009-01-01

    A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, ∼215 K (at 11 km) and ∼198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N ≤ 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas temperature is only slightly

  19. Effects of some humidity and IBA hormone dose applicatýons on ...

    African Journals Online (AJOL)

    In this study, softwood cuttings were taken from M9 dwarf apple rootstocks in early June. Different indole-3-butyric acid (IBA) concentrations [0 (control), 500, 1500, 2500 and 3500 ppm], different air humidity levels (85 - 90%, 95-100%) and rooting media of perlite effects on rooting capability and root formation of M9 apple ...

  20. Effect of Humid Aging on the Oxygen Adsorption in SnO2 Gas Sensors

    Directory of Open Access Journals (Sweden)

    Koichi Suematsu

    2018-01-01

    Full Text Available To investigate the effect of aging at 580 °C in wet air (humid aging on the oxygen adsorption on the surface of SnO2 particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO2 resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants (K1; for O− adsorption, K2; for O2− adsorption were estimated on the basis of the theoretical model of oxygen adsorption. The K1 and K2 in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O− and O2−. These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO2 resistive-type gas sensors in dry and wet atmospheres.

  1. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity

    Science.gov (United States)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2017-04-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % ( p ≤ 0.001). Two-way ANOVA revealed significant differences ( p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  2. Effect of relative humidity and temperature control on in-cabin thermal comfort state: Thermodynamic and psychometric analyses

    International Nuclear Information System (INIS)

    Alahmer, A.; Omar, M.A.; Mayyas, A.; Dongri, Shan

    2011-01-01

    This manuscript discusses the effect of manipulating the Relative Humidity RH of in-cabin environment on the thermal comfort and human occupants' thermal sensation. The study uses thermodynamic and psychometric analyses, to incorporate the effect of changing RH along with the dry bulb temperature on human comfort. Specifically, the study computes the effect of changing the relative humidity on the amount of heat rejected from the passenger compartment and the effect of relative humidity on occupants comfort zone. A practical system implementation is also discussed in terms of an evaporative cooler design. The results show that changing the RH along with dry bulb temperature inside vehicular cabins can improve the air conditioning efficiency by reducing the heat removed while improving the Human comfort sensations as measured by the Predicted Mean Value PMV and the Predicted Percentage Dissatisfied PPD indices. - Highlights: → Investigates the effect of controlling the RH and dry bulb temperature on in-cabin thermal comfort and sensation. → Conducts the thermodynamic and psychometric analyses for changing the RH and temperature for in-cabin air conditioning. → Discusses a possible system implementation through an evaporative cooler design.

  3. Dependence of alpha radionuclide diffusion and deposition on relative air humidity

    International Nuclear Information System (INIS)

    Danis, A.; Ciubotariu, M.; Oncescu, M.; Mocsy, I.; Tomulescu, V.

    2000-01-01

    The diffusion and deposition of the gaseous and solid alpha radionuclides/aerosols depend strongly on the relative air humidity. This dependence gets a great significance in the case of radon and their genetically related alpha radionuclides monitoring in the dwelling and working places for radioprotection purposes, particularly in establishing the equilibrium factor. For the gaseous and solid alpha radionuclides genetically related, Rn-222 and its solid alpha descendants including their aerosols obtained by radionuclide attachments to different particles present in air, the vertical gradient of volume concentrations was experimentally determined. The experiments were performed in: an airtight tubular laboratory chamber, a house cellar (Cluj-Napoca) and the entrance gallery of an abandoned mine (Avram Iancu, Bihor), in which the relative humidity was ranging from 65% up to 96%. For the laboratory chamber, these radionuclides were generated by a calibrated Ra-226 source, prepared at the Radionuclide Production Centre, IPNE-HH, Bucharest. The source was included into an air tight device with a well known volume and it was used only after 40 days, when the Ra-226 and its alpha descendants were under radioactive equilibrium. For the diffusion/deposition studies, this source was coupled with the airtight laboratory chamber. In the mine gallery and house cellar, the radon and its descendants were naturally and continuously generated by radium sources in soil and building materials. The alpha volume concentration determinations required the use of a very accurate and sensitive alpha measurement method. These requirements were met by the alpha track method. This method was used by us in the following conditions: the CR-39 plastic track detector (Page, England) for the detection of the alpha particles and the optical microscopy for the study of alpha tracks (Wild stereomicroscope M7S and a Karl Zeiss Jena binocular microscope). The volume concentrations of radon and the

  4. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2017-11-01

    The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.

  5. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.

    Science.gov (United States)

    Georgii, Elisabeth; Jin, Ming; Zhao, Jin; Kanawati, Basem; Schmitt-Kopplin, Philippe; Albert, Andreas; Winkler, J Barbro; Schäffner, Anton R

    2017-07-10

    Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome

  6. Research on Using the Naturally Cold Air and the Snow for Data Center Air-conditioning, and Humidity Control

    Science.gov (United States)

    Tsuda, Kunikazu; Tano, Shunichi; Ichino, Junko

    To lower power consumption has becomes a worldwide concern. It is also becoming a bigger area in Computer Systems, such as reflected by the growing use of software-as-a-service and cloud computing whose market has increased since 2000, at the same time, the number of data centers that accumulates and manages the computer has increased rapidly. Power consumption at data centers is accounts for a big share of the entire IT power usage, and is still rapidly increasing. This research focuses on the air-conditioning that occupies accounts for the biggest portion of electric power consumption by data centers, and proposes to develop a technique to lower the power consumption by applying the natural cool air and the snow for control temperature and humidity. We verify those effectiveness of this approach by the experiment. Furthermore, we also examine the extent to which energy reduction is possible when a data center is located in Hokkaido.

  7. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    Directory of Open Access Journals (Sweden)

    S. Amos-Abanyie

    2013-01-01

    Full Text Available Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+ simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT. An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses.

  8. Impact of temperature and humidity on acceptability of indoor air quality during immediate and longer whole-body exposures

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1997-01-01

    Acceptability of clean air and air polluted by building materials was studied in climate chambers with different levels of air temperature and humidity in the ranges 18-28°C and 30-70%. The immediate acceptability after entering a chamber and the acceptability during a 20-minute whole-body exposu...

  9. Effect of air humidification on the sick building syndrome and perceived indoor air quality in hospitals: a four month longitudinal study.

    Science.gov (United States)

    Nordström, K; Norbäck, D; Akselsson, R

    1994-01-01

    The sensation of dryness and irritation is essential in the sick building syndrome (SBS), and such symptoms are common in both office and hospital employees. In Scandinavia, the indoor relative humidity in well ventilated buildings is usually in the range 10-35% in winter. The aim of this study was to evaluate the effect of steam air humidification on SBS and perceived air quality during the heating season. The study base consisted of a dynamic population of 104 hospital employees, working in four new and well ventilated geriatric hospital units in southern Sweden. Air humidification raised the relative air humidity to 40-45% in two units during a four months period, whereas the other two units served as controls with relative humidity from 25-35%. Symptoms and perceived indoor air quality were measured before and after the study period by a standardised self administered questionnaire. The technical measurements comprised room temperature, air humidity, static electricity, exhaust air flow, aerosols, microorganisms, and volatile organic compounds in the air. The most pronounced effect of the humidification was a significant decrease of the sensation of air dryness, static electricity, and airway symptoms. After four months of air humidification during the heating season, 24% reported a weekly sensation of dryness in humidified units, compared with 73% in controls. No significant changes in symptoms of SBS or perceived air quality over time were found in the control group. The room temperature in all units was between 21-23 degrees C, and no significant effect of air humidification on the air concentration of aerosols or volatile organic compounds was found. No growth of microorganisms was found in the supply air ducts, and no legionella bacteria were found in the supply water of the humidifier. Air humidification, however, significantly reduced the measured personal exposure to static electricity. It is concluded that air humidification during the heating season

  10. Porous ZrO_2-TiO_2 ceramics for applications as sensing elements in the air humidity monitoring

    International Nuclear Information System (INIS)

    Oliveira, Rodrigo de Matos; Nono, Maria do Carmo de Andrade

    2011-01-01

    The environmental monitoring requires versatile, reliable and lower cost instruments. The chemical superficial absorption/adsorption capability of water molecules by several ceramic oxides makes them excellent candidates for this application. In this way, many efforts have been made for the development of porous ceramics, manufactured from mechanical mixture of ZrO_2 and TiO_2 powders, for application as air humidity sensing elements. The sintered ceramics were characterized as for crystalline phases (X-ray diffraction) and pores structure (scanning electron microscopy and mercury porosimetry). The relative humidity curves for the ceramics were obtained from measurements with RLC bridge in climatic chamber. The behavior of these curves were comparatively analyzed with the aid of pores sizes distribution curves, obtained through mercury porosimetry. The results evidenced that the air humidity ceramic sensing elements are very promising ones. (author)

  11. A mathematical correlation between variations in solar radiation parameters. 2. Global radiation, air temperature and specific humidity

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-06-01

    We derive from first principles, an equation which expresses global radiation as a function of specific humidity and air temperature at screen height. The practical validity of this equation is tested by using humidity, air temperature and global radiation data from Tanzania. It is shown that global radiation values calculated on the basis of the derived equation agree with measured radiation values to within ± 8% as long as the prevalent (horizontal) winds are either calm or light. It is noted that the equation is equally valid at times of strong horizontal winds provided that the temperature and humidity measuring site is sufficiently shielded from the winds. This implies that meteorological stations that are (for some unavoidable reasons) unable to stock pyranometers can still procure reasonable estimates of local global radiation as long as they can, at least, stock the relatively cheaper barometers and wet- and dry-bulb psychrometers. (author). 12 refs, 1 fig., 4 tabs

  12. Screening of a dust particle charge in a humid air plasma created by an electron beam

    Science.gov (United States)

    Filippov, A. V.; Derbenev, I. N.; Kurkin, S. A.

    2018-01-01

    A kinetic model has been developed for charged particle reactions in a humid air plasma produced by a fast electron beam. The model includes over 550 reactions with electrons, 33 positive ion species and 14 negative ion species. The model has been tested by solving 48 non-steady state equations for number densities of charged particles in humid air electron beam plasma, and by comparing with the available experimental data. The system of 48 steady state equations has been solved by iterative method in order to define the main ion species of the humid air plasma. A reduced kinetic model has been developed to describe the processes with the main ions and electrons. Screening constants have been calculated on the basis of the reduced system by means of Leverrier-Fadeev method. The dependencies of screening constants on gas ionization rates have been found for the rates from 10 to 1018 cm-3s-1 and the fraction of water molecules from 0 to 2%. The analysis of the constants has revealed that one of them is close to the inverse Debye length, and the other constants are defined by the inverse diffusion lengths passed by ions in the characteristic times of the attachment, recombination, and ion conversion. Pure imaginary screening constants appear at low rates of gas ionization.

  13. Water Collection from Air Humidity in Bahrain

    Directory of Open Access Journals (Sweden)

    Dahman. Nidal A.

    2017-01-01

    Full Text Available The Kingdom of Bahrain falls geographically in one of the driest regions in the world. Conventional fresh surface water bodies, such as rivers and lakes, are nonexistent and for water consumption, Bahrain prominently relies on the desalination of sea water. This paper presents an ongoing project that is being pursued by a group of student and their advising professors to investigate the viability of extracting water from air humidity. Dehumidifiers have been utilized as water extraction devices. Those devices have been distributed on six areas that were selected based on a rigorous geospatial modeling of historical meteorological data. The areas fall in residential and industrial neighborhoods that are located in the main island and the island of Muharraq. Water samples have been collected three times every week since May of 2016 and the collection process will continue until May of 2017. The collected water samples have been analyzed against numerous variables individually and in combinations including: amount of water collected per hour versus geographical location, amount of water collected per hour versus meteorological factors, suitability of collected water for potable human consumption, detection of air pollution in the areas of collection and the economy of this method of water collection in comparison to other nonconventional methods. An overview of the completed analysis results is presented in this paper.

  14. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    Science.gov (United States)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  15. Laboratory study of SO2 dry deposition on limestone and marble: Effects of humidity and surface variables

    Science.gov (United States)

    Spiker, E. C.; Hosker, R.P.; Weintraub, V.C.; Sherwood, S.I.

    1995-01-01

    The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3

  16. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  17. Nanoscale mechanochemical wear of phosphate laser glass against a CeO{sub 2} particle in humid air

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiaxin, E-mail: yujiaxin@swust.edu.cn [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); He, Hongtu; Zhang, Yafeng [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); Hu, Hailong [Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-01-15

    Highlights: • Friction components of phosphate glass/CeO{sub 2} pair in humid air were quantified to understand the friction mechanism. • Severe nanoscale wear was directly observed by AFM topography on both phosphate glass and CeO{sub 2} particle in humid air. • The wearless behaviors of phosphate glass in vacuum were confirmed by the AFM phase image. • Capillary water bridge induced corrosion plays an important role in the mechanochemical wear of phosphate glass in air. - Abstract: Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO{sub 2} particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO{sub 2} pair in air was found to be 5–7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65–79%. The capillary water bridge further induced a serious material removal of glass and CeO{sub 2} particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Ce−O−P bond, accelerating the reaction between water and the glass/CeO{sub 2} pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  18. Temperature and Humidity Control in Livestock Stables

    DEFF Research Database (Denmark)

    Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.

    2010-01-01

    The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...

  19. Energy analysis of the personalized ventilation system in hot and humid climates

    DEFF Research Database (Denmark)

    Schiavon, S.; Melikov, Arsen Krikor; Sekhar, C.

    2010-01-01

    , inhaled air quality, thermal comfort, and self-estimated productivity. Little is known about its energy performance. In this study, the energy consumption of a personalized ventilation system introduced in an office building located in a hot and humid climate (Singapore) has been investigated by means...... effectiveness of PV; (b) increasing the maximum allowed room air temperature due to PV capacity to control the microclimate; (c) supplying the outdoor air only when the occupant is at the desk. The strategy to control the supply air temperature does not affect the energy consumption in a hot and humid climate....

  20. Effects of prenatal exposure to air pollution on preeclampsia in Shenzhen, China.

    Science.gov (United States)

    Wang, Qiong; Zhang, Huanhuan; Liang, Qianhong; Knibbs, Luke D; Ren, Meng; Li, Changchang; Bao, Junzhe; Wang, Suhan; He, Yiling; Zhu, Lei; Wang, Xuemei; Zhao, Qingguo; Huang, Cunrui

    2018-06-01

    The impact of ambient air pollution on pregnant women is a concern in China. However, little is known about the association between air pollution and preeclampsia and the potential modifying effects of meteorological conditions have not been assessed. This study aimed to assess the effects of prenatal exposure to air pollution on preeclampsia, and to explore whether temperature and humidity modify the effects. We performed a retrospective cohort study based on 1.21 million singleton births from the birth registration system in Shenzhen, China, between 2005 and 2012. Daily average measurements of particulate matter air temperature (T), and dew point (T d ) were collected. Logistic regression models were performed to estimate associations between air pollution and preeclampsia during the first and second trimesters, and during the entire pregnancy. In each time window, we observed a positive gradient of increasing preeclampsia risk with increasing quartiles of PM 10 and SO 2 exposure. When stratified by T and T d in three categories (95th percentile), we found a significant interaction between PM 10 and T d on preeclampsia; the adverse effects of PM 10 increased with T d . During the entire pregnancy, there was a null association between PM 10 and preeclampsia under T d   95th percentile. We also found that air pollution effects on preeclampsia in autumn/winter seasons were stronger than those in the spring/summer. This is the first study to address modifying effects of meteorological factors on the association between air pollution and preeclampsia. Findings indicate that prenatal exposure to PM 10 and SO 2 increase preeclampsia risk in Shenzhen, China, and the effects could be modified by humidity. Pregnant women should limit air pollution exposure, particularly during humid periods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A multi-channel humidity control system based on LabVIEW

    International Nuclear Information System (INIS)

    Zhang Aiwu; Xie Yuguang; Liu Hongbang; Liu Yingbiao; Cai Xiao; Yu Boxiang; Lu Junguang; Zhou Li

    2011-01-01

    A real time multi-channel humidity control system was designed based on LabVIEW, using the dry air branch of BESⅢ drying system. The hardware of this control system consist of mini humidity and temperature sensors, intelligent collection module, switch quantity controller and electromagnetic valves. The humidity can be controlled at arbitrary value from air humidity to 3% with accuracy better than 2%. Multi microenvironment with different humidity can be easily controlled and monitored in real time by this system. It can also be extended to hybrid control of multi channel humidity and temperature. (authors)

  2. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    Science.gov (United States)

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Degradation mechanism of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite materials upon exposure to humid air

    Energy Technology Data Exchange (ETDEWEB)

    Shirayama, Masaki; Kato, Masato; Fujiseki, Takemasa; Hara, Shota; Kadowaki, Hideyuki; Murata, Daisuke; Fujiwara, Hiroyuki, E-mail: fujiwara@gifu-u.ac.jp [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Miyadera, Tetsuhiko; Sugita, Takeshi; Chikamatsu, Masayuki [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-03-21

    Low stability of organic-inorganic perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH{sub 3}NH{sub 3}PbI{sub 3} layers prepared by a laser evaporation technique is studied. We present evidence that the CH{sub 3}NH{sub 3}PbI{sub 3} degradation in humid air proceeds by two competing reactions of (i) the PbI{sub 2} formation by the desorption of CH{sub 3}NH{sub 3}I species and (ii) the generation of a CH{sub 3}NH{sub 3}PbI{sub 3} hydrate phase by H{sub 2}O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH{sub 3}NH{sub 3}PbI{sub 3} layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH{sub 3}NH{sub 3}PbI{sub 3} layer is converted completely to hexagonal platelet PbI{sub 2}/hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH{sub 3}NH{sub 3}PbI{sub 3} in humid air.

  4. Effects of ambient air temperature, humidity and rainfall on annual survival of adult little penguins Eudyptula minor in southeastern Australia

    Science.gov (United States)

    Ganendran, L. B.; Sidhu, L. A.; Catchpole, E. A.; Chambers, L. E.; Dann, P.

    2016-08-01

    Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.

  5. Humidity affects the morphology of particles emitted from beclomethasone dipropionate pressurized metered dose inhalers.

    Science.gov (United States)

    Ivey, James W; Bhambri, Pallavi; Church, Tanya K; Lewis, David A; McDermott, Mark T; Elbayomy, Shereen; Finlay, Warren H; Vehring, Reinhard

    2017-03-30

    The effects of propellant type, cosolvent content, and air humidity on the morphology and solid phase of the particles produced from solution pressurized metered dose inhalers containing the corticosteroid beclomethasone dipropionate were investigated. The active ingredient was dissolved in the HFA propellants 134a and 227ea with varying levels of the cosolvent ethanol and filled into pressurized metered dose inhalers. Inhalers were actuated into an evaporation chamber under controlled temperature and humidity conditions and sampled using a single nozzle, single stage inertial impactor. Particle morphology was assessed qualitatively using field emission scanning electron microscopy and focused ion beam-helium ion microscopy. Drug solid phase was assessed using Raman microscopy. The relative humidity of the air during inhaler actuation was found to have a strong effect on the particle morphology, with solid spheroidal particles produced in dry air and highly porous particles produced at higher humidity levels. Air humidification was found to have no effect on the solid phase of the drug particles, which was predominantly amorphous for all tested formulations. A critical level of air relative humidity was required to generate porous particles for each tested formulation. This critical relative humidity was found to depend on the amount of ethanol used in the inhaler, but not on the type of propellant utilized. The results indicate that under the right circumstances water vapor saturation followed by nucleated water condensation or ice deposition occurs during particle formation from evaporating propellant-cosolvent-BDP droplets. This finding reveals the importance of condensed water or ice as a templating agent for porosity when particle formation occurs at saturated conditions, with possible implications on the pharmacokinetics of solution pMDIs and potential applications in particle engineering for drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Effect of Air Velocity on the Prevention of Heat Stress in Iranian Veiled Females

    Directory of Open Access Journals (Sweden)

    Habibi

    2016-09-01

    Full Text Available Background Some environmental factors such as the ambient temperature, radiant temperature, humidity and air velocity as well as clothing and activity level are effective to induce heat strain on the workers. Objectives The current study aimed to evaluate the effect of air velocity on Iranian veiled females at various exercise intensities and climatic conditions. Methods The current experimental study was conducted on 51 healthy veiled females with Islamic clothing (n = 30 in two hot-dry climatic chambers (wet-bulb globe temperature (WBGT = 32 ± 0.1°C and WBGT = 30 ± 0.1°C, 40% relative humidity (RH without air velocity and (n = 21 with air velocity 0.31 m/s in sitting and light workload conditions, respectively, for 60 minutes. The WBGT, oral temperature and heart rate were measured simultaneously every five minutes during the heat exposure and resting state. Data were analyzed using correlation and line regression by SPSS ver. 16. Results In both groups, oral temperature and heart rate increased during heat exposure. The increase of oral temperature and heart rate were larger in the group with air velocity (sitting position, 37.05 ± 0.20°C, 98.30 ± 7.79 bpm, light workload, 37.34 ± 0.24°C, 124.08 ± 6.09 bpm compared those of the group without air velocity (sitting position, 36.70 ± 0.36°C, 69.74 ± 0.98 bpm, light workload, 36.71 ± 0.27°C, 110.78 ± 17.9 bpm. The difference in physiological strain index (PSI between resting and low workload were higher in with air velocity group than those of the group without air velocity. Conclusions The results showed that the heat stress increased by increasing air velocity and humidity in both groups. The air velocity with high humidity can be considered as a positive factor in the occurrence of heat strain. Therefore, the incidence of heat stress decreases with the increase of humidity and reduction of air velocity or with increase of air velocity and reduction of humidity in Iranian veiled

  7. Comparisons of the tropospheric specific humidity from GPS radio occultations with ERA-Interim, NASA MERRA, and AIRS data

    Science.gov (United States)

    Vergados, Panagiotis; Mannucci, Anthony J.; Ao, Chi O.; Verkhoglyadova, Olga; Iijima, Byron

    2018-03-01

    We construct a 9-year data record (2007-2015) of the tropospheric specific humidity using Global Positioning System radio occultation (GPS RO) observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission. This record covers the ±40° latitude belt and includes estimates of the zonally averaged monthly mean specific humidity from 700 up to 400 hPa. It includes three major climate zones: (a) the deep tropics (±15°), (b) the trade winds belts (±15-30°), and (c) the subtropics (±30-40°). We find that the RO observations agree very well with the European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim), the Modern-Era Retrospective Analysis for Research and Applications (MERRA), and the Atmospheric Infrared Sounder (AIRS) by capturing similar magnitudes and patterns of variability in the monthly zonal mean specific humidity and interannual anomaly over annual and interannual timescales. The JPL and UCAR specific humidity climatologies differ by less than 15 % (depending on location and pressure level), primarily due to differences in the retrieved refractivity. In the middle-to-upper troposphere, in all climate zones, JPL is the wettest of all data sets, AIRS is the driest of all data sets, and UCAR, ERA-Interim, and MERRA are in very good agreement, lying between the JPL and AIRS climatologies. In the lower-to-middle troposphere, we present a complex behavior of discrepancies, and we speculate that this might be due to convection and entrainment. Conclusively, the RO observations could potentially be used as a climate variable, but more thorough analysis is required to assess the structural uncertainty between centers and its origin.

  8. Acute airway effects of airborne formaldehyde in sensitized and non-sensitized mice housed in a dry or humid environment

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Søren Thor, E-mail: stl@nrcwe.dk; Wolkoff, Peder, E-mail: pwo@nrcwe.dk; Hammer, Maria, E-mail: mha@nrcwe.dk; Kofoed-Sørensen, Vivi, E-mail: vks@nrcwe.dk; Clausen, Per Axel, E-mail: pac@nrcwe.dk; Nielsen, Gunnar Damgård, E-mail: gdn@nrcwe.dk

    2013-05-01

    We investigated the role of air humidity and allergic sensitization on the acute airway response to inhaled formaldehyde (FA) vapor. Mice were sensitized to the immunogen ovalbumin (OVA) by three intraperitoneal injections followed by two aerosol challenges, giving rise to allergic airway inflammation. Control mice were sham sensitized by saline injections and challenged by saline aerosols. Once sensitized, the mice were housed at high (85–89%) or low (< 10%) relative humidity, respectively for 48 h prior to a 60-min exposure to either 0.4, 1.8 or about 5 ppm FA. Before, during and after exposure, breathing parameters were monitored. These included the specific markers of nose and lung irritations as well as the expiratory flow rate, the latter being a marker of airflow limitation. The sensory irritation response in the upper airways was not affected by allergic inflammation or changes in humidity. At high relative humidity, the OVA-sensitized mice had a decreased expiratory airflow rate compared to the saline control mice after exposure to approximately 5 ppm FA. This is in accordance with the observations that asthmatics are more sensitive than non-asthmatics to higher concentrations of airway irritants including FA. In the dry environment, the opposite trend was seen; here, the saline control mice had a significantly decreased expiratory airflow rate compared to OVA-sensitized mice when exposed to 1.8 and 4 ppm FA. We speculate that increased mucus production in the OVA-sensitized mice has increased the “scrubber effect” in the nose, consequently protecting the conducting and lower airways. - Highlights: ► Role of air humidity and allergy on sensitivity to an airway irritant was studied. ► In the humid environment, allergy amplified the effects of formaldehyde. ► In the dry environment, allergy reduced the effect of formaldehyde. ► Neither allergy nor humidity changed the formaldehyde-induced nasal irritation.

  9. Acute airway effects of airborne formaldehyde in sensitized and non-sensitized mice housed in a dry or humid environment

    International Nuclear Information System (INIS)

    Larsen, Søren Thor; Wolkoff, Peder; Hammer, Maria; Kofoed-Sørensen, Vivi; Clausen, Per Axel; Nielsen, Gunnar Damgård

    2013-01-01

    We investigated the role of air humidity and allergic sensitization on the acute airway response to inhaled formaldehyde (FA) vapor. Mice were sensitized to the immunogen ovalbumin (OVA) by three intraperitoneal injections followed by two aerosol challenges, giving rise to allergic airway inflammation. Control mice were sham sensitized by saline injections and challenged by saline aerosols. Once sensitized, the mice were housed at high (85–89%) or low (< 10%) relative humidity, respectively for 48 h prior to a 60-min exposure to either 0.4, 1.8 or about 5 ppm FA. Before, during and after exposure, breathing parameters were monitored. These included the specific markers of nose and lung irritations as well as the expiratory flow rate, the latter being a marker of airflow limitation. The sensory irritation response in the upper airways was not affected by allergic inflammation or changes in humidity. At high relative humidity, the OVA-sensitized mice had a decreased expiratory airflow rate compared to the saline control mice after exposure to approximately 5 ppm FA. This is in accordance with the observations that asthmatics are more sensitive than non-asthmatics to higher concentrations of airway irritants including FA. In the dry environment, the opposite trend was seen; here, the saline control mice had a significantly decreased expiratory airflow rate compared to OVA-sensitized mice when exposed to 1.8 and 4 ppm FA. We speculate that increased mucus production in the OVA-sensitized mice has increased the “scrubber effect” in the nose, consequently protecting the conducting and lower airways. - Highlights: ► Role of air humidity and allergy on sensitivity to an airway irritant was studied. ► In the humid environment, allergy amplified the effects of formaldehyde. ► In the dry environment, allergy reduced the effect of formaldehyde. ► Neither allergy nor humidity changed the formaldehyde-induced nasal irritation

  10. Temperature and Humidity Effects on Hospital Morbidity in Darwin, Australia.

    Science.gov (United States)

    Goldie, James; Sherwood, Steven C; Green, Donna; Alexander, Lisa

    2015-01-01

    Many studies have explored the relationship between temperature and health in the context of a changing climate, but few have considered the effects of humidity, particularly in tropical locations, on human health and well-being. To investigate this potential relationship, this study assessed the main and interacting effects of daily temperature and humidity on hospital admission rates for selected heat-relevant diagnoses in Darwin, Australia. Univariate and bivariate Poisson generalized linear models were used to find statistically significant predictors and the admission rates within bins of predictors were compared to explore nonlinear effects. The analysis indicated that nighttime humidity was the most statistically significant predictor (P < 0.001), followed by daytime temperature and average daily humidity (P < 0.05). There was no evidence of a significant interaction between them or other predictors. The nighttime humidity effect appeared to be strongly nonlinear: Hot days appeared to have higher admission rates when they were preceded by high nighttime humidity. From this analysis, we suggest that heat-health policies in tropical regions similar to Darwin need to accommodate the effects of temperature and humidity at different times of day. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Diffusion through Pig Gastric Mucin: Effect of Relative Humidity.

    Directory of Open Access Journals (Sweden)

    Anna Runnsjö

    Full Text Available Mucus covers the epithelium found in all intestinal tracts, where it serves as an important protecting barrier, and pharmaceutical drugs administrated by the oral, rectal, vaginal, ocular, or nasal route need to penetrate the mucus in order to reach their targets. Furthermore, the diffusion in mucus as well as the viscosity of mucus in the eyes, nose and throat can change depending on the relative humidity of the surrounding air. In this study we have investigated how diffusion through gels of mucin, the main protein in mucus, is affected by changes in ambient relative humidity (i.e. water activity. Already a small decrease in water activity was found to give rise to a significant decrease in penetration rate through the mucin gel of the antibacterial drug metronidazole. We also show that a decrease in water activity leads to decreased diffusion rate in the mucin gel for the fluorophore fluorescein. This study shows that it is possible to alter transport rates of molecules through mucus by changing the water activity in the gel. It furthermore illustrates the importance of considering effects of the water activity in the mucosa during development of potential pharmaceuticals.

  12. Passenger evaluation of the optimum balance between fresh air supply and humidity from 7-h exposures in a simulated aircraft cabin

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wyon, David Peter; Lagercrantz, Love Per

    2007-01-01

    A 21-seat section of an aircraft cabin with realistic pollution sources was built inside a climate chamber capable of providing fresh outside air at very low humidity. Maintaining a constant 200 l/s rate of total air supply, i.e. recircu-lated and make-up air, to the cabin, experiments simulating 7...

  13. Inhibition between 350 and 500 deg. C of the corrosion of magnesium by damp air; Inhibition entre 350 et 500 deg. C de la corrosion du magnesium par l'air humide

    Energy Technology Data Exchange (ETDEWEB)

    Darras, Raymond; Caillat, Roger [Commissariat a l' energie atomique et aux energies alternatives - CEA (France)

    1960-07-01

    It has been demonstrated that the formation of a fluoride layer on the surface of magnesium by either dry or wet methods raises the temperature to which it resists corrosion in damp air from 350 to 490 deg. C. This protection effect could lead to a revision of the Pilling and Bedworth rule. Reprint of a paper published in 'Comptes Rendus des Seances de l'Academie des Sciences', tome 249, p. 1517-1519, sitting of 19 October 1959 [French] Il a ete montre que la formation d'une couche fluoree a la surface du magnesium, soit par voie seche, soit par voie humide, permet d'elever de 350 a 490 deg. C la temperature jusqu'a laquelle il resiste a la corrosion dans l'air humide. Cet effet protecteur pourrait conduire a revoir la regle de Pilling et Bedworth. Reproduction d'un article publie dans les 'Comptes Rendus des Seances de l'Academie des Sciences', tome 249, p. 1517-1519, seance du 19 octobre 1959.

  14. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    Science.gov (United States)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  15. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    Science.gov (United States)

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  16. Humidity level In psychrometric processes

    International Nuclear Information System (INIS)

    Mojsovski, Filip

    2008-01-01

    When a thermal engineer needs to control, rather than merely moderate humidity, he must focus on the moisture level as a separate variable - not simply an addition of temperature control. Controlling humidity generally demands a correct psychrometric approach dedicated to that purpose [1].Analysis of the humidity level in psychrometric thermal processes leads to relevant data for theory and practice [2]. This paper presents: (1) the summer climatic curve for the Skopje region, (2) selected results of investigation on farm dryers made outside laboratories. The first purpose of such activity was to examine relations between weather conditions and drying conditions. The estimation of weather condition for the warmest season of the year was realized by a summer climatic curve. In the science of drying, basic drying conditions are temperature, relative humidity and velocity of air, thickness of dried product and dryer construction. The second purpose was to realize correct prediction of drying rates for various psychrometrics drying processes and local products. Test runs with the dryer were carried out over a period of 24 h, using fruits and vegetables as experimental material. Air flow rate through the dryer of 150 m3/h, overall drying rate of 0.04 kg/h and air temperature of 65 oC were reached. Three types of solar dryers, were exploited in the research.

  17. Objective and Subjective Responses to Low Relative Humidity in an Office Intervention Study

    DEFF Research Database (Denmark)

    Lagercrantz, Love Per; Wyon, David; Meyer, H. W.

    2003-01-01

    and objective (clinical) measurements were applied. The following effects of increased humidity were significant, though small: the air was evaluated as less dry (though still on the dry side of neutral), eyes smarted less (by 10% of full scale) eye irritation decreased (by 11%), symptoms of dry throat, mouth......The impact of dry indoor air on comfort and health in winter was investigated in a crossover intervention study in two floors of an office building in northern Sweden. The indoor air humidity (normally 10-20% RH) was raised to 23-24% RH, one floor at a time, using steam humidifiers. Questionnaires...

  18. [The balance of harmful trace contaminants between the air humidity condensate and air in a simulator of the Mir orbit station moisture condensation unit].

    Science.gov (United States)

    Zlotopol'skiĭ, V M; Smolenskaia, T S

    2000-01-01

    Subject of the investigation was the balance of harmful trace contaminants (HTC) between the air moisture condensate and air in a simulator of the MIR moisture condensation unit. Experiments involved various classes of water-solvent compounds including alcohols (C1-C4), ketons (C1-C2), aldehydes (C1-C2), fatty acids (C2-C4), esters (acetates C4-C6), and ammonium. For most of the compounds, removal efficiency correlates with air humidity and virtually does not depend on the HTC concentration within the range of 0.25 to 59.1 mg/m3.

  19. The effect of humidity on the detection of radon

    International Nuclear Information System (INIS)

    Money, M.; Heaton, B.

    1976-01-01

    As part of the investigation into the performance of a radon monitoring system the effect of altering the humidity on the levels of radon detected by the system whilst attempting to keep other factors constant, has been investigated. The variations in the levels of radon detected in four experiments, as the humidity of the surrounding atmosphere was artificially raised, are shown graphically together with the variations in temperature and water vapour pressure, as calculated from the relative humidity and saturation vapour pressure. In each case a general rise and fall in radon detected follows a similar rise and fall in humidity, but temperature rise has only a small effect on the radon emanation rate. As the levels of humidity do not alter the rate of emanation it is assumed that the efficiency of collection is altered in some way. Mechanisms are discussed. (U.K.)

  20. Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity

    NARCIS (Netherlands)

    Rezaei Nejad, A.; Harbinson, J.; Meeteren, van U.

    2006-01-01

    The spatial heterogeneity of stomatal closure in response to rapid desiccation of excised well-watered Tradescantia virginiana leaves grown at moderate (55%) or high (90%) relative air humidity (RH) was studied using a chlorophyll fluorescence imaging system under non-photorespiratory conditions.

  1. Influence of Courtyard Ventilation on Thermal Performance of Office Building in Hot-Humid Climate: A Case Study

    Science.gov (United States)

    Abbaas, Esra'a. Sh.; Saif, Ala'eddin A.; Munaaim, MAC; Azree Othuman Mydin, Md.

    2018-03-01

    The influence of courtyard on the thermal performance of Development Department office building in University Malaysia Perlis (UniMAP, Pauh Putra campus) is investigated through simulation study for the effect of ventilation on indoor air temperature and relative humidity of the building. The study is carried out using EnergyPlus simulator interface within OpenStudio and SketchUp plug in software to measure both of air temperature and relative humidity hourly on 21 April 2017 as a design day. The results show that the ventilation through the windows facing the courtyard has sufficient effect on reducing the air temperature compared to the ventilation through external windows since natural ventilation is highly effective on driving the indoor warm air out to courtyard. In addition, the relative humidity is reduced due to ventilation since the courtyard has high ability to remove or dilute indoor airborne pollutants coming from indoor sources. This indicates that the presence of courtyard is highly influential on thermal performance of the building.

  2. Is the perception of clean, humid air indeed affected by cooling the respiratory tract?

    Science.gov (United States)

    Burek, Rudolf; Polednik, Bernard; Guz, Łukasz

    2017-07-01

    The study aims at determining exposure-response relationships after short exposure to clean air and long exposure to air polluted by people. The impact of water vapor content in the indoor air on its acceptability (ACC) was assessed by the occupants after a short exposure to clean air and an hour-long exposure to increasingly polluted air. The study presents a critical analysis pertaining to the stimulation of olfactory sensations by the air enthalpy suggested in previous models and proposes a new model based on the Weber-Fechner law. Our assumption was that water vapor is the stimulus of olfactory sensations. The model was calibrated and verified in field conditions, in a mechanically ventilated and air conditioned auditorium. Measurements of the air temperature, relative humidity, velocity and CO2 content were carried out; the acceptability of air quality was assessed by 162 untrained students. The subjective assessments and the measurements of the environmental qualities allowed for determining the Weber coefficients and the threshold concentrations of water vapor, as well as for establishing the limitations of the model at short and long exposure to polluted indoor air. The results are in agreement with previous studies. The standard error equals 0.07 for immediate assessments and 0.17 for assessments after adaptation. Based on the model one can predict the ACC assessments of trained and untrained participants.

  3. Humidity effects on the electrical properties of hexagonal boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, A. [Institut d' Electronique, de Microelectronique et de Nanotechnologie/CNRS UMR 8520, Cite Scientifique, Avenue Poincare, 59652 Villeneuve d' Ascq (France)]. E-mail: ali.soltani@iemn.univ-lille1.fr; Thevenin, P. [Laboratoire Materiaux Optiques Photonique et Systemes/CNRS FRE 2304, Universite de Metz and Supelec, 2 rue Edouard Belin, 57070 Metz (France); Bakhtiar, H. [Faculty of Science, Physics Department, Technology University of Malaysia, Karung Berkunci 791, 80990, Johor Bahru, Johor (Malaysia); Bath, A. [Laboratoire Materiaux Optiques Photonique et Systemes/CNRS FRE 2304, Universite de Metz and Supelec, 2 rue Edouard Belin, 57070 Metz (France)]. E-mail: bath@metz.supelec.fr

    2005-01-03

    Thin films of hexagonal boron nitride (h-BN) were grown by a plasma enhanced chemical vapour deposition (PECVD) technique. The quality of the films was assessed by infrared spectroscopy, microRaman spectroscopy as a function of annealing temperature and by X-ray photoelectron spectroscopy. The films proved to be thermally stable up to 1370 K. Current-voltage measurements were performed, as a function of humidity, using metal-insulator-semiconductor and metal-insulator-metal structures. Typical resistivities were found in the range 10{sup 13}-10{sup 14} {omega} cm in dry air and exhibit high sensitivity against humidity. The influence of the mean orientation of the c-axis of the BN films was considered. Sawtooth voltage pulse trains were also applied. Threshold switching phenomena were observed, but only in atmosphere containing humidity. The values of the switching voltages depend strongly on the relative humidity (RH), on the characteristics of the applied sawtooth voltage pulse trains, as well as on the nature of the metallic electrode.

  4. Effects of temperature and relative humidity on DNA methylation.

    Science.gov (United States)

    Bind, Marie-Abele; Zanobetti, Antonella; Gasparrini, Antonio; Peters, Annette; Coull, Brent; Baccarelli, Andrea; Tarantini, Letizia; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2014-07-01

    Previous studies have found relationships between DNA methylation and various environmental contaminant exposures. Associations with weather have not been examined. Because temperature and humidity are related to mortality even on non-extreme days, we hypothesized that temperature and relative humidity may affect methylation. We repeatedly measured methylation on long interspersed nuclear elements (LINE-1), Alu, and 9 candidate genes in blood samples from 777 elderly men participating in the Normative Aging Study (1999-2009). We assessed whether ambient temperature and relative humidity are related to methylation on LINE-1 and Alu, as well as on genes controlling coagulation, inflammation, cortisol, DNA repair, and metabolic pathway. We examined intermediate-term associations of temperature, relative humidity, and their interaction with methylation, using distributed lag models. Temperature or relative humidity levels were associated with methylation on tissue factor (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like receptor 2 (TRL-2), carnitine O-acetyltransferase (CRAT), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and glucocorticoid receptor, LINE-1, and Alu. For instance, a 5°C increase in 3-week average temperature in ICAM-1 methylation was associated with a 9% increase (95% confidence interval: 3% to 15%), whereas a 10% increase in 3-week average relative humidity was associated with a 5% decrease (-8% to -1%). The relative humidity association with ICAM-1 methylation was stronger on hot days than mild days. DNA methylation in blood cells may reflect biological effects of temperature and relative humidity. Temperature and relative humidity may also interact to produce stronger effects.

  5. Influence of relative humidity of air on the level of aqueous tritium in corn, wheat and sunflower

    International Nuclear Information System (INIS)

    Indeka, L.

    1981-01-01

    The short-term changes in level of aqueous tritium in the leaves in relation to the air humidity were studied. The experiments were carried out on corn in which the transpiration is relatively small, on sunflower with very high transpiration and on wheat with intermediate transpiration. (M.F.W.)

  6. Air movement and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2012-01-01

    The impact of air movement on perceived air quality (PAQ) and sick building syndrome (SBS) symptoms was studied. In total, 124 human subjects participated in four series of experiments performed in climate chambers at different combinations of room air temperature (20, 23, 26 and 28 °C), relative...... and the humidity of the room air. At a low humidity level of 30% an increased velocity could compensate for the decrease in perceived air quality due to an elevated temperature ranging from 20 °C to 26 °C. In a room with 26 °C, increased air movement was also able to compensate for an increase in humidity from 30...... humidity (30, 40 and 70%) and pollution level (low and high). Most of the experiments were performed with and without facially applied airflow at elevated velocity. The importance of the use of recirculated room air and clean, cool and dry outdoor air was studied. The exposures ranged from 60. min to 235...

  7. Performance evaluation of an indirect pre-cooling evaporative heat exchanger operating in hot and humid climate

    International Nuclear Information System (INIS)

    Cui, X.; Chua, K.J.; Islam, M.R.; Ng, K.C.

    2015-01-01

    Highlights: • An IEHX is introduced as a pre-cooling unit for humid tropical climate. • A computational model is developed to investigate the performance of IEHX. • The air treatment process with condensation from the product air is studied. • The hybrid system shows an appreciable energy saving potential. - Abstract: A hybrid system, that combines an indirect evaporative heat exchanger (IEHX) and a vapor compression system, is introduced for humid tropical climate application. The chief purpose of the IEHX is to pre-cool the incoming air for vapor compression system. In the IEHX unit, the outdoor humid air in the product channel may potentially condense when heat is exchanged with the room exhaust air. A computational model has been developed to theoretically investigate the performance of an IEHX with condensation from the product air by employing the room exhaust air as the working air. We validated the model by comparing its temperature distribution and predicted heat flux against experimental data acquired from literature sources. The numerical model showed good agreement with the experimental findings with maximum average discrepancy of 9.7%. The validated model was employed to investigate the performance of two types of IEHX in terms of the air treatment process, temperature and humidity distribution, cooling effectiveness, cooling capacity, and energy consumption. Simulation results have indicated that the IEHX unit is able to fulfill 47% of the cooling load for the outdoor humid air while incurring a small amount of fan power. Consequently, the hybrid system is able to realize significant energy savings

  8. Behavior of HEPA filters under high humidity airflows

    International Nuclear Information System (INIS)

    Ricketts, C.I.

    1992-10-01

    To help determine and improve the safety margins of High Efficiency Particulate Air (HEPA) filter units in nuclear facilities under possible accident conditions, the structural limits and failure mechanisms of filter in high-humidity airflows were established and the fundamental physical phenomena underlying filter failure or malfunction in humid air were identified. Empirical models for increases in filter pressure drop with time in terms of the relevant airstream parameters were also developed. The weaknesses of currently employed humidity countermeasures used in filter protection are discussed and fundamental explanations for reported filter failures in normal service are given. (orig./DG) [de

  9. On the distribution of relative humidity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2004-01-01

    Full Text Available We have analysed relative humidity statistics from measurements in cirrus clouds taken unintentionally during the Measurement of OZone by Airbus In-service airCraft project (MOZAIC. The shapes of the in-cloud humidity distributions change from nearly symmetric in relatively warm cirrus (warmer than −40°C to considerably positively skew (i.e. towards high humidities in colder clouds. These results are in agreement to findings obtained recently from the INterhemispheric differences in Cirrus properties from Anthropogenic emissions (INCA campaign (Ovarlez et al., 2002. We interprete the temperature dependence of the shapes of the humidity distributions as an effect of the length of time a cirrus cloud needs from formation to a mature equilibrium stage, where the humidity is close to saturation. The duration of this transitional period increases with decreasing temperature. Hence cold cirrus clouds are more often met in the transitional stage than warm clouds.

  10. The anthropogenic influence on heat and humidity in the US Midwest

    Science.gov (United States)

    Inda Diaz, H. A.; O'Brien, T. A.; Stone, D. A.

    2016-12-01

    Heatwaves, and extreme temperatures in general, have a wide range of negative impacts on society, and particularly on human health. In addition to temperature, humidity plays a key role in regulating human body temperature, with higher humidities tending to reduce the effectiveness of perspiration. There is recent theoretical and observational evidence that co-occurring extreme heat and humidity can potentially have a much more dramatic impact on human health than either extreme in isolation. There is an abundance of observational evidence indicating that anthropogenic increases in greenhouse gas (GHG) forcing have contributed to an increase in the intensity and frequency of temperature extremes on a global scale. However, aside from purely thermodynamically-driven increases in near-surface humidity, there is a paucity of similar evidence for anthropogenic impacts on humidity. Thermodynamic scaling would suggest that air masses originating from the ocean would be associated with higher specific humidity in a warmer world, and transpiration from irrigated crops could further increase humidity in warm air masses. In order to explore the role of anthropogenic GHG forcing on the co-occurrence of temperature and humidity extremes in the Midwestern United States (US), we evaluate a large ensemble of global climate model simulations with and without anthropogenic GHG forcing. In particular, we examine differences between the probability distributions of near-surface temperature, humidity, wet-bulb temperature, and the joint distribution of temperature and humidity in this ensemble. Finally, we explore augmenting this experimental framework with additional simulations to explore the role of anthropogenic changes in the land surface, and in particular irrigated crops, on co-occurring extreme heat and humidity.

  11. PSYCRODATA: a software which calculates the air humidity characteristics and relate its with the variations of the gamma environmental bottom

    International Nuclear Information System (INIS)

    Alonso A, D.; Dominguez L, O.; Ramos V, O.; Caveda R, C.A.; Capote F, E.; Dominguez G, A.; Valdes S, E.; Rodriguez V, E.

    2006-01-01

    The computer tool 'Psycrodata', able to calculate the values of those characteristics of the humidity of the air starting from the measurements carried out of humidity and temperature in the post of occident of the National Net of Environmental Radiological Surveillance was obtained. Among the facilities that 'Psycrodata' toasts it is the keeping the obtained information in a database facilitating the making of reports. For another part the possibility of selection of different approaches for the calculation and the introduction of the psicrometric coefficient to use, its make that each station can have the suitable psicrometric chart keeping in mind the instrumentation and the characteristics of the area of location of the same one. Also, can have facilities to import text files for later on to be plotted, it allowed to correlate the absorbed dose rate in air due to the environmental gamma radiation, besides of the temperature and the humidity, with the tension of the water steam, the temperature of the dew point and the saturation deficit. (Author)

  12. Dynamics of electrostatically driven granular media: Effects of humidity

    International Nuclear Information System (INIS)

    Howell, D. W.; Aronson, Igor S.; Crabtree, G. W.

    2001-01-01

    We performed experimental studies of the effect of humidity on the dynamics of electrostatically driven granular materials. Both conducting and dielectric particles undergo a phase transition from an immobile state (granular solid) to a fluidized state (granular gas) with increasing applied field. Spontaneous precipitation of solid clusters from the gas phase occurs as the external driving is decreased. The clustering dynamics in conducting particles is primarily controlled by screening of the electric field but is aided by cohesion due to humidity. It is shown that humidity effects dominate the clustering process with dielectric particles

  13. Compact Buried Ducts in a Hot-Humid Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, Dave [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  14. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    Science.gov (United States)

    Fatnassi, Hicham; Pizzol, Jeannine; Senoussi, Rachid; Biondi, Antonio; Desneux, Nicolas; Poncet, Christine; Boulard, Thierry

    2015-01-01

    Frankliniella occidentalis (Pergande) is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity) and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i) the air temperature and air humidity were very heterogeneously distributed within the crop, (ii) pest populations aggregated in the most favourable climatic areas and (iii) the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest.

  15. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    Directory of Open Access Journals (Sweden)

    Hicham Fatnassi

    Full Text Available Frankliniella occidentalis (Pergande is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i the air temperature and air humidity were very heterogeneously distributed within the crop, (ii pest populations aggregated in the most favourable climatic areas and (iii the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest.

  16. The effect of changes in humidity on the size of submicron aerosols

    International Nuclear Information System (INIS)

    Phillips, C.R.; Khan, A.

    1987-06-01

    The effect of humidity on inhaled aerosols in the respiratory tract is to cause an increase in particle size of up to several times if the aerosol particle is hygroscopic. The presence of ionizing radiation and air ions (for example, from uranium and radon/thoron) increases the tendency of water vapour to nucleate. The desposition of particles in the lung is enhanced by high charge density (>10 charges/particle). Radon has been reported to play an important role in the formation of sulphate and nitrate particles in the atmosphere. A detailed overview of the effect of humidity on aerosols is presented in the present work. Results of experimental measurements made on NaCl (hygroscopic) and kerosene combustion (hydrophobic) aerosols under ambient and humid conditions are reported. Initial aerosol conditions were 20 degrees C and 35% R.H. Final aerosol conditions were maintained at 37 degrees C and 100% R.H. in order to simulate the conditions inside the respiratory tract. An average growth factor of 1.9 ± 0.4 (standard deviation) was observed for the NaCl aerosol and 1.3 ± 0.2 (standard deviation) for the kerosene aerosol. For the activity size distribution, however, the NaCl aerosols were observed to grow by an average factor of only 1.2 ± 0.1 (standard deviation) whereas the kerosene aerosols grew by a factor of 1.3 ± 0.2 (standard deviation)

  17. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  18. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold.

    Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  19. Effect of inspired air conditions on exercise-induced bronchoconstriction and urinary CC16 levels in athletes.

    Science.gov (United States)

    Bolger, C; Tufvesson, E; Anderson, S D; Devereux, G; Ayres, J G; Bjermer, L; Sue-Chu, M; Kippelen, P

    2011-10-01

    Injury to the airway epithelium has been proposed as a key susceptibility factor for exercise-induced bronchoconstriction (EIB). Our goals were to establish whether airway epithelial cell injury occurs during EIB in athletes and whether inhalation of warm humid air inhibits this injury. Twenty-one young male athletes (10 with a history of EIB) performed two 8-min exercise tests near maximal aerobic capacity in cold dry (4°C, 37% relative humidity) and warm humid (25°C, 94% relative humidity) air on separate days. Postexercise changes in urinary CC16 were used as a biomarker of airway epithelial cell perturbation and injury. Bronchoconstriction occurred in eight athletes in the cold dry environment and was completely blocked by inhalation of warm humid air [maximal fall in forced expiratory volume in 1 s = 18.1 ± 2.1% (SD) in cold dry air and 1.7 ± 0.8% in warm humid air, P air [median CC16 increase pre- to postchallenge = 1.91 and 0.35 ng/μmol in cold dry and warm humid air, respectively, in athletes with EIB (P = 0.017) and 1.68 and 0.48 ng/μmol in cold dry and warm humid air, respectively, in athletes without EIB (P = 0.002)]. The results indicate that exercise hyperpnea transiently disrupts the airway epithelium of all athletes (not only in those with EIB) and that inhalation of warm moist air limits airway epithelial cell perturbation and injury.

  20. A calibration facility to provide traceable calibration to upper air humidity measuring sensors

    Science.gov (United States)

    Cuccaro, Rugiada; Rosso, Lucia; Smorgon, Denis; Beltramino, Giulio; Fernicola, Vito

    2017-04-01

    Accurate knowledge and high quality measurement of the upper air humidity and of its profile in atmosphere is essential in many areas of the atmospheric research, for example in weather forecasting, environmental pollution studies and research in meteorology and climatology. Moving from the troposphere to the stratosphere, the water vapour amount varies between some percent to few part per million. For this reason, through the years, several methods and instruments have been developed for the measurement of the humidity in atmosphere. Among the instruments used for atmospheric sounding, radiosondes, airborne and balloon-borne chilled mirror hygrometer (CMH) and tunable diode laser absorption spectrometers (TDLAS) play a key role. To avoid the presence of unknown biases and systematic errors and to obtain accurate and reliable humidity measurements, these instruments need a SI-traceable calibration, preferably carried out in conditions similar to those expected in the field. To satisfy such a need, a new calibration facility has been developed at INRIM. The facility is based on a thermodynamic-based frost-point generator designed to achieve a complete saturation of the carrier gas with a single passage through an isothermal saturator. The humidity generator covers the frost point temperature range between -98 °C and -20 °C and is able to work at any controlled pressure between 200 hPa and 1000 hPa (corresponding to a barometric altitude between ground level and approximately 12000 m). The paper reports the work carried out to test the generator performances, discusses the results and presents the evaluation of the measurement uncertainty. The present work was carried out within the European Joint Research Project "MeteoMet 2 - Metrology for Essential Climate Variables" co-funded by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

  1. Formaldehyde measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS: correction for humidity effects

    Directory of Open Access Journals (Sweden)

    A. Vlasenko

    2010-08-01

    Full Text Available Formaldehyde measurements can provide useful information about photochemical activity in ambient air, given that HCHO is formed via numerous oxidation processes. Proton transfer reaction mass spectrometry (PTR-MS is an online technique that allows measurement of VOCs at the sub-ppbv level with good time resolution. PTR-MS quantification of HCHO is hampered by the humidity dependence of the instrument sensitivity, with higher humidity leading to loss of PTR-MS signal. In this study we present an analytical, first principles approach to correct the PTR-MS HCHO signal according to the concentration of water vapor in sampled air. The results of the correction are validated by comparison of the PTR-MS results to those from a Hantzsch fluorescence monitor which does not have the same humidity dependence. Results are presented for an intercomparison made during a field campaign in rural Ontario at Environment Canada's Centre for Atmospheric Research Experiments.

  2. Diurnal Thermal Behavior of Pavements, Vegetation, and Water Pond in a Hot-Humid City

    Directory of Open Access Journals (Sweden)

    Xiaoshan Yang

    2015-12-01

    Full Text Available This study investigated the diurnal thermal behavior of several urban surfaces and landscape components, including pavements, vegetation, and a water pond. The field experiment was conducted in a university campus of Guangzhou, South China, which is characterized by a hot and humid summer. The temperature of ground surface and grass leaves and the air temperature and humidity from 0.1 to 1.5 m heights were measured for a period of 24 h under hot summer conditions. The results showed that the concrete and granite slab pavements elevated the temperature of the air above them throughout the day. In contrast, the trees and the pond lowered the air temperature near ground during the daytime but produced a slight warming effect during the nighttime. The influence of vegetation on air temperature and humidity is affected by the configurations of greenery. Compared to the open lawn, the grass shaded by trees was more effective in cooling and the mixture of shrub and grass created a stronger cooling effect during the nighttime. The knowledge of thermal behavior of various urban surfaces and landscape components is an important tool for planners and designers. If utilized properly, it can lead to climatic rehabilitation in urban areas and an improvement of the outdoor thermal environment.

  3. Air temperature and humidity diversity in the Hornsund fjord area (Spitsbergen) in the period 1 July 2014 - 30 June 2015

    Science.gov (United States)

    Przybylak, Rajmund; Araźny, Andrzej; Wyszyński, Przemysław; Budzik, Tomasz; Wawrzyniak, Tomasz

    2016-04-01

    The article presents preliminary results of studies into the spatial diversity of air temperature and relative humidity (overground layer, 2 m a.g.l.) in the area of the Hornsund fjord (S Spitsbergen, approx. 77°N), based on data collected between 1 July 2014 and 30 June 2015. The Hornsund fjord runs latitudinal along approx. 40 km and its average width is about 10 km. Numerous glaciers flow into the fjord and the mountain ridges around it often exceed 700 m a.s.l. Data series obtained from 11 sites equipped with automatic weather stations (Vaisala, Campbell, Davis) or HOBO temperature and humidity sensors were used. Two sites (Hornsund HOR and the Hans Glacier HG4) have been operating for years, whereas 9 new ones (Bogstranda BOG, Fugleberget FUG, Gnålodden GNA, Gåshamnoyra GAS, Hyttevika HYT, Lisbetdalen LIS, Ostrogradskijfjella OST, Treskelodden TRE and Wilczekodden WIL) were established within the Polish-Norwegian AWAKE-2 project. Three of the sites (BOG, GAS and OST) were damaged by polar bears, hence their measurement series are shorter. A substantial spatial diversity was found in the air temperature and relative humidity in the area, mostly influenced by elevation, type of surface and distance from the Greenland Sea's open water. During the year (July 2014 - June 2015), the areas of HYT (-1.1°C) and WIL (-1.9°C) were the warmest. Both sites are located on the west coast of the fjord. The HYT demonstrates the most favourable temperature conditions, being orographically sheltered from the east and its cold and dry air masses. The coldest sites were the mountain-top site of FUG (-5.9°C) and the glacier-located HG4 (-4.3°C). The low temperature at FUG resulted from its elevation (568 m a.s.l.), whereas at HG4 (184 m a.s.l) the glaciated surface also added up to the result. In the analysed period, the annual course of air temperature in the area had a clear minimum in February, when the lowest mean monthly values ranged from -9.4°C at HYT to -15.1°C at

  4. Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis

    Directory of Open Access Journals (Sweden)

    Paolo Maria Congedo

    2016-11-01

    Full Text Available Improving energy efficiency in buildings and promoting renewables are key objectives of European energy policies. Several technological measures are being developed to enhance the energy performance of buildings. Among these, geothermal systems present a huge potential to reduce energy consumption for mechanical ventilation and cooling, but their behavior depending on varying parameters, boundary and climatic conditions is not fully established. In this paper a horizontal air-ground heat exchanger (HAGHE system is studied by the development of a computational fluid dynamics (CFD model. Summer and winter conditions representative of the Mediterranean climate are analyzed to evaluate operation and thermal performance differences. A particular focus is given to humidity variations as this parameter has a major impact on indoor air quality and comfort. Results show the benefits that HAGHE systems can provide in reducing energy consumption in all seasons, in summer when free-cooling can be implemented avoiding post air treatment using heat pumps.

  5. Stomata of the CAM plant Tillandsia recurvata respond directly to humidity.

    Science.gov (United States)

    Lange, O L; Medina, E

    1979-01-01

    Under controlled conditions, CO 2 exchange of Tillandsia recurvata showed all characteristics of CAM. During the phase of nocturnal CO 2 fixation stomata of the plant responded sensitively to changes in ambient air humidity. Dry air resulted in an increase, moist air in a decrease of diffusion resistance. The evaporative demand of the air affected the level of stomatal resistance during the entire night period. Due to stomatal closure, the total nocturnal water loss of T. recurvata was less at low than at high humidity. It is concluded that stomata respond directly to humidity and not via bulk tissue water conditions of the leaves. Such control of transpiration may optimize water use efficiency for this almost rootless, extreme epiphyte.

  6. The effects of lithographic residues and humidity on graphene field ...

    Indian Academy of Sciences (India)

    humidity at graphene field effect transistors (GFETs). While the exact means of humidity interacting with hydropho- bic graphene remains unknown, this work examines pristine and lithographic-process-applied graphene surfaces with surface ... temperature quantum Hall effect, linear electron dispersion at the vicinity of the ...

  7. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    Science.gov (United States)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  8. Humidity effects on the electronic transport properties in carbon based nanoscale device

    International Nuclear Information System (INIS)

    He, Jun; Chen, Ke-Qiu

    2012-01-01

    By applying nonequilibrium Green's functions in combination with the density functional theory, we investigate the effect of humidity on the electronic transport properties in carbon based nanoscale device. The results show that different humidity may form varied localized potential barrier, which is a very important factor to affect the stability of electronic transport in the nanoscale system. A mechanism for the humidity effect is suggested. -- Highlights: ► Electronic transport in carbon based nanoscale device. ► Humidity affects the stability of electronic transport. ► Different humidity may form varied localized potential barrier.

  9. Effects of humidity and surfaces on the melt crystallization of ibuprofen.

    Science.gov (United States)

    Lee, Dong-Joo; Lee, Suyang; Kim, Il Won

    2012-01-01

    Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with -CH(3), -OH, and -COOH functional groups. Effects of the humidity were studied at room temperature (18-20 °C) with relative humidity 33%, 75%, and 100%. Effects of the surfaces were observed at -20 °C (relative humidity 36%) to enable close monitoring with slower crystal growth. The nucleation time of ibuprofen was faster at high humidity conditions probably due to the local formation of the unfavorable ibuprofen melt/water interface. The crystal morphologies of ibuprofen were governed by the nature of the surfaces, and they could be associated with the growth kinetics by the Avrami equation. The current study demonstrated the effective control of the melt crystallization of ibuprofen through the melt/atmosphere and melt/surface interfaces.

  10. Effects of suspension of air-conditioning on airtight-type racks.

    Science.gov (United States)

    Kanzaki, M; Fujieda, M; Furukawa, T

    2001-10-01

    Although isolation racks are superior to open-type racks in terms of securing breeding conditions for laboratory animals, the contingency-proofing capability of the former has yet to be determined. Therefore, from the view of risk management, we studied the environmental change in isolation racks by forcibly suspending ventilation and air-conditioning and confirming the maximal time length for complete recovery to the original condition after restarting their operations. The isolation racks were placed in a room that was equipped with an independent air-conditioning system. When the inside condition of the racks reached 22-24 degrees C and 59-64% of relative humidity, the air-conditioning and ventilation were forcibly suspended and the subsequent temperature, relative humidity, ammonium and CO2 concentrations in the racks were measured over time. We found that after suspending the air-conditioning and ventilation, it took 40-60 min for temperature, and about 10 min for relative humidity to exceed the maximum values (temperature and relative humidity) referred to in the Showa 58 Nenban Guideline Jikken Doubutsu Shisetsu no Kenchiku oyobi Setsubi (Guidelines of buildings and facilities for experimental animals in Japan; Year 1983 edition). After 17 hr 25 min of the suspension of air-conditioning and ventilation, two rats were found dead. Then, the air-conditioning and ventilation were restarted. It took about 2 hr for temperature, and 50 min for relative humidity to regain the guideline values. The ammonium concentration stayed within the guideline value with a maximum concentration of 2 ppm in the experimental period, whereas the CO2 concentration was found to exceed 9% at the time of animal death.

  11. Reaction velocity of sodium hydration in humid air and sodium carbonation in humid carbon dioxide atmosphere. Fundamental study on sodium carbonate process in FBR bulk sodium coolant disposal technology

    International Nuclear Information System (INIS)

    Tadokoro, Yutaka; Yoshida, Eiichi

    1999-11-01

    A sodium carbonate processing method, which changes sodium to sodium carbonate and/or sodium bicarbonate by humid carbon dioxide, has been examined and about to be applied to large test loops dismantling. However, that the basic data regarding the progress of the reaction is insufficient on the other hand, is a present condition. The present report therefore aims at presenting basic data regarding the reaction velocity of sodium hydration in humid air and sodium carbonation in humid carbon dioxide atmosphere, and observing the reaction progress, for the application to large test loops dismantling. The test result is summarized as follows. (1) Although the reaction velocity of sodium varied with sodium specimen sizes and velocity measurement methods, the reaction velocity of sodium hydration was in about 0.16 ∼ 0.34 mmh -1 (0.016 ∼ 0.033g cm -2 h -1 , 6.8x10 -4 ∼ 1.4x10 -3 mol cm -2 h -1 ) and that of sodium carbonation was in about 0.16 ∼ 0.27mmh -1 (0.016 ∼ 0.023g cm -2 h -1 , 6.8x10 -4 ∼ 1.1x10 -3 mol cm -2 h -1 ) (26 ∼ 31degC, RH 100%). (2) The reaction velocity of sodium in carbon dioxide atmosphere was greatly affected by vapor partial pressure (absolutely humidity). And the velocity was estimated in 0.08 ∼ 0.12mmh -1 (0.008 ∼ 0.012g cm -2 h -1 , 3.4x10 -4 ∼ 5.2x10 -4 mol cm -2 h -1 ) in the carbon dioxide atmosphere, whose temperature of 20degC and relative humidity of 80% are assumed real sodium carbonate process condition. (3) By the X-ray diffraction method, NaOH was found in humid air reaction product. Na 2 CO 3 , NaHCO 3 were found in carbon dioxide atmosphere reaction product. It was considered that Sodium changes to NaOH, and subsequently to NaHCO 3 through Na 2 CO 3 . (4) For the application to large test loops dismantling, it is considered possible to change sodium to a target amount of sodium carbonate (or sodium bicarbonate) by setting up gas supply quantity and also processing time appropriately according to the surface area

  12. Tribology of Si/SiO2 in humid air: transition from severe chemical wear to wearless behavior at nanoscale.

    Science.gov (United States)

    Chen, Lei; He, Hongtu; Wang, Xiaodong; Kim, Seong H; Qian, Linmao

    2015-01-13

    Wear at sliding interfaces of silicon is a main cause for material loss in nanomanufacturing and device failure in microelectromechanical system (MEMS) applications. However, a comprehensive understanding of the nanoscale wear mechanisms of silicon in ambient conditions is still lacking. Here, we report the chemical wear of single crystalline silicon, a material used for micro/nanoscale devices, in humid air under the contact pressure lower than the material hardness. A transmission electron microscopy (TEM) analysis of the wear track confirmed that the wear of silicon in humid conditions originates from surface reactions without significant subsurface damages such as plastic deformation or fracture. When rubbed with a SiO2 ball, the single crystalline silicon surface exhibited transitions from severe wear in intermediate humidity to nearly wearless states at two opposite extremes: (a) low humidity and high sliding speed conditions and (b) high humidity and low speed conditions. These transitions suggested that at the sliding interfaces of Si/SiO2 at least two different tribochemical reactions play important roles. One would be the formation of a strong "hydrogen bonding bridge" between hydroxyl groups of two sliding interfaces and the other the removal of hydroxyl groups from the SiO2 surface. The experimental data indicated that the dominance of each reaction varies with the ambient humidity and sliding speed.

  13. Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity.

    Science.gov (United States)

    Sellin, Arne; Niglas, Aigar; Õunapuu-Pikas, Eele; Kupper, Priit

    2014-03-24

    Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P water deficit (ΨLwater availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P water deficit in trees grown under increased air humidity. The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale.

  14. Strategies for humidity control

    Energy Technology Data Exchange (ETDEWEB)

    Baumgarth, S

    1987-01-01

    Humidity and temperature control in air-conditioning systems mostly involves coupled closed-loop control circuits. The author discusses their uncoupling and resulting consequences as well as energy-optimized control of recirculation air flaps or enthalpy recovering systems (h-x control) in detail. Special reference is made of the application of the DDC technology and its scope, limits and preconditions. In conclusions, the author presents pertinent measurement results. (orig.).

  15. Effects of Humidity and Surfaces on the Melt Crystallization of Ibuprofen

    OpenAIRE

    Lee, Dong-Joo; Lee, Suyang; Kim, Il Won

    2012-01-01

    Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with –CH3, –OH, and –COOH functional groups. Effects of the humidity were studied at room temperature (18–20 °C) with relative humidity 33%, 75%, and 100%. Effects of t...

  16. Effect of fabric texture and material on perceived discomfort at high humidity

    DEFF Research Database (Denmark)

    Toftum, Jørn; Rasmussen, Leif W.; Mackeprang, Jørgen

    1999-01-01

    This study investigated the effect of material (cotton/polyester) and texture (woven/knitted) of the inner layer of a clothing ensemble on human discomfort at high skin humidity. No clear effect on discomfort of material and texture could be detected. However, acceptability of skin humidity de......-crea-sed with increasing relative skin humidity. A model was developed that predicts the percentage of persons dissatisfied due to humid skin as a function of relative skin humidity. The model applies for woven and knitted cot-ton and polyester materials and for activity levels typical for office work. Even at very high...

  17. Effect of humidity on the filter pressure drop

    International Nuclear Information System (INIS)

    Vendel, J.; Letourneau, P.

    1995-01-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO 2 ). Cesium hydroxyde (CsOH) of size of 2 μ M AMMD has been generated by an ultrasonic generator and the 0.7 μm AMMD titanium oxyde has been dispersed by a open-quotes turn-tableclose quotes generator. As it is noted in the BISWAS'publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced

  18. Effect of humidity on the filter pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Letourneau, P. [Institut de Protection et de Surete Nucleaire, Gif-sur-Yvette (France)

    1995-02-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO{sub 2}). Cesium hydroxyde (CsOH) of size of 2 {mu} M AMMD has been generated by an ultrasonic generator and the 0.7 {mu}m AMMD titanium oxyde has been dispersed by a {open_quotes}turn-table{close_quotes} generator. As it is noted in the BISWAS`publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced.

  19. Low Humidity Characteristics of Polymer-Based Capacitive Humidity Sensors

    OpenAIRE

    Majewski Jacek

    2017-01-01

    Polymer-based capacitive humidity sensors emerged around 40 years ago; nevertheless, they currently constitute large part of sensors’ market within a range of medium (climatic and industrial) humidity 20−80%RH due to their linearity, stability and cost-effectiveness. However, for low humidity values (0−20%RH) that type of sensor exhibits increasingly nonlinear characteristics with decreasing of humidity values. This paper presents the results of some experimental trials of CMOS polymer-based ...

  20. Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency.

    Science.gov (United States)

    Pang, Xiaobing

    2015-06-01

    Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10 ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. Copyright © 2015. Published by Elsevier B.V.

  1. Low-cost personal cooling in hot humid offices

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Santos, A.

    This report presents a low cost solution to avoid heat stress in a hot and humid environment based on a solar powered drying of supply air. The air drying facilities and a validation of the benefits through comprehensive human exposure studies are described. The study represents an example...... of applied participative research performed in a developing country. The report may be used as a background for the improvement of the indoor climate in poor, hot and humid regions without increased use of electricity....

  2. Effects of Humidity and Surfaces on the Melt Crystallization of Ibuprofen

    Directory of Open Access Journals (Sweden)

    Il Won Kim

    2012-08-01

    Full Text Available Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with –CH3, –OH, and –COOH functional groups. Effects of the humidity were studied at room temperature (18–20 °C with relative humidity 33%, 75%, and 100%. Effects of the surfaces were observed at −20 °C (relative humidity 36% to enable close monitoring with slower crystal growth. The nucleation time of ibuprofen was faster at high humidity conditions probably due to the local formation of the unfavorable ibuprofen melt/water interface. The crystal morphologies of ibuprofen were governed by the nature of the surfaces, and they could be associated with the growth kinetics by the Avrami equation. The current study demonstrated the effective control of the melt crystallization of ibuprofen through the melt/atmosphere and melt/surface interfaces.

  3. Analysis of humidity effects on growth and production of glasshouse fruit vegetables

    NARCIS (Netherlands)

    Bakker, J.C.

    1991-01-01

    Air humidity is a climate factor that can modify final yield and quality of crops through its impact on processes with a short as well as with a long response time. This thesis primarily deals with the long term responses of growth and production of glasshouse cucumber, tomato, sweet pepper and

  4. Urban-Rural Humidity Contrasts in Mexico City

    Science.gov (United States)

    Jáuregui, E.; Tejeda, A.

    1997-02-01

    Data from one pair of urban-suburban (Tacubaya and Airport) andone pair of urban-rural (School of Mines and Plan Texcoco) temperature and humidity measuring stations were used to illustrate specific humidity(q) contrasts in Mexico City. Results show a marked seasonal variation of q from around 7.9 g kg-1 during the dry months to 10 g kg-1 in the wet season (May-October) on both urban and suburban sites. The mean monthly contrasts for this pair of stations, albeit small, show that the city air is somewhat drier during the first half of the year. Comparison of urban and rural q on an hourly basis shows that although urban air is more humid at night the reverse is true during the afternoon. Areal distribution of q shows two centres of maximum humidity over the city at night and a corresponding minimum during the afternoon. On average the urban-rural contrasts in q were found to be somewhat smaller than the estimated uncertainty. The above results are in agreement with mid-latitude experience.

  5. A vantage from space can detect earlier drought onset: an approach using relative humidity.

    Science.gov (United States)

    Farahmand, Alireza; AghaKouchak, Amir; Teixeira, Joao

    2015-02-25

    Each year, droughts cause significant economic and agricultural losses across the world. The early warning and onset detection of drought is of particular importance for effective agriculture and water resource management. Previous studies show that the Standard Precipitation Index (SPI), a measure of precipitation deficit, detects drought onset earlier than other indicators. Here we show that satellite-based near surface air relative humidity data can further improve drought onset detection and early warning. This paper introduces the Standardized Relative Humidity Index (SRHI) based on the NASA Atmospheric Infrared Sounder (AIRS) observations. The results indicate that the SRHI typically detects the drought onset earlier than the SPI. While the AIRS mission was not originally designed for drought monitoring, we show that its relative humidity data offers a new and unique avenue for drought monitoring and early warning. We conclude that the early warning aspects of SRHI may have merit for integration into current drought monitoring systems.

  6. Relationship between relative humidity and the dew point ...

    African Journals Online (AJOL)

    This research was aimed at determining the relationship between relative humidity and the dew point temperature in Benin City, Edo State, Nigeria. The dew point temperature was approximated from the measured air temperature and relative humidity with the aid of a currently self-designed weather monitoring system.

  7. Methodology for the characterization of the humidity behavior inside CPV modules

    Directory of Open Access Journals (Sweden)

    Carmine Cancro

    2015-10-01

    Full Text Available In this study the characterization of the humidity behavior inside concentrating photovoltaic (CPV modules is addressed. To this purpose, several experimental tests have been carried out by using two different CPV modules and three different breathers, collecting in each analyzed case the evolution of temperature, relative and specific humidity of the air volume contained inside the module for many days. Results indicates that, for each of the CPV modules analyzed, it is possible to construct a characteristic curve in the temperature-specific humidity psychrometric chart, that can be used for estimating the specific humidity of the air inside the CPV module as a function of the internal air temperature. The characteristic curve can be also used to estimate the saturation temperature of the air inside the CPV module, and consequently to detect the eventuality of moisture condensation during cloudy days or night-time, namely when the temperature of the air inside the module is low and reaches the external ambient one. This methodology can be used in CPV modules design for the choice of the breather and of the construction materials, in order to obtain a saturation temperature as low as possible.

  8. Sealed Attics Exposed to Two Years of Weathering in a Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Railkar, Sudhir [GAF; Shiao, Ming C [ORNL; Desjarlais, Andre Omer [ORNL

    2016-01-01

    Field studies in a hot, humid climate were conducted to investigate the thermal and hygrothermal performance of ventilated attics and non-ventilated semi-conditioned attics sealed with open-cell and with closed-cell spray polyurethane foam insulation. Moisture pin measurements made in the sheathing and absolute humidity sensor data from inside the foam and from the attic air show that moisture is being stored in the foam. The moisture in the foam diffuses to and from the sheathing dependent on the pressure gradient at the foam-sheathing interface which is driven by the irradiance and night-sky radiation. Ventilated attics in the same hot, humid climate showed less moisture movement in the sheathing than those sealed with either open- or closed-cell spray foam. In the ventilated attics the relative humidity drops as the attic air warms; however, the opposite was observed in the sealed attics. Peaks in measured relative humidity in excess of 80 90% and occasionally near saturation (i.e., 100%) were observed from solar noon till about 8 PM on hot, humid days. The conditioned space of the test facility is heated and cooled by an air-to-air heat pump. Therefore the partial pressure of the indoor air during peak irradiance is almost always less than that observed in the sealed attics. Field data will be presented to bring to light the critical humidity control issues in sealed attics exposed to hot, humid climates.

  9. Study of the morphology of corrosion features of natural graphite oxidised by dry and humid air

    International Nuclear Information System (INIS)

    Senevat, Jean

    1965-12-01

    The author reports a study which aimed at highlighting the morphology differences between corrosion features which affect flakes of natural graphite oxidised by dry air and by humid air. The study is based on observations made by optical and transmission electronic microscopy, this last one being performed on replicates. As the so-called 'Hennig' replicates did not result in a sufficient resolution of corrosion feature details, another method has been developed. Three classes of samples (in relationship with the rate of impurities present in samples) have been studied. Flakes have thus been sorted and each flake has then been oxidised at different wear rates. This highlights the influence of damages created by impurities in the lattice [fr

  10. Cool and dry weather enhances the effects of air pollution on emergency IHD hospital admissions.

    Science.gov (United States)

    Qiu, Hong; Yu, Ignatius Tak-Sun; Wang, Xiaorong; Tian, Linwei; Tse, Lap Ah; Wong, Tze Wai

    2013-09-20

    Associations between ambient pollution and cardiovascular morbidity including ischemic heart disease (IHD) have been confirmed. Weather factors such as temperature, season and relative humidity (RH) may modify the effects of pollution. We conducted this study to examine the effects of air pollution on emergency IHD hospital admissions varied across seasons and RH levels, and to explore the possible joint modification of weather factors on pollution effects. Daily time series of air pollution concentrations, mean temperature and RH were collected from IHD hospital admissions from 1998 to 2007 in Hong Kong. We used generalized additive Poisson models with interaction term to estimate the pollution effects varied across seasons and RH levels, after adjusting for time trends, weather conditions, and influenza outbreaks. An increase in the detrimental effects of air pollution in cool season and on low humidity days was observed. In the cool and dry season, a 10 μg/m(3) increment of lag03 exposure was associated with an increase of emergency IHD admissions by 1.82% (95% CI: 1.24-2.40%), 3.89% (95% CI: 3.08-4.70%), and 2.19% (95% CI: 1.33-3.06%) for particles with an aerodynamic diameter less than 10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3), respectively. The effects of pollutants decreased greatly and lost statistical significance in the warm and humid season. We found season and RH jointly modified the associations between ambient pollution and IHD admissions, resulting in increased IHD admissions in the cool and dry season and reduced admissions in the warm and humid season. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Air to air fixed plate enthalpy heat exchanger, performance variation and energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, Mohammad Shakir [Universiti Teknologi Petronas, Bandar Seri Iskandar (Malaysia); Alwaked, Rafat [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia); Behnia, Masud [University of Sydney, Sydney (Australia); Morrison, Graham [The University of New South Wales, Sydney (Australia)

    2013-11-15

    The thermal performance of a Z shape enthalpy heat exchanger utilising 70 gsm Kraft paper as the heat and moisture transfer surface has been investigated. Effects of different inlet air humidity ratio conditions on the heat exchanger effectiveness and on the energy recovered by the heat exchanger have been the main focus of this investigation. A typical air conditioning cooling coil which incorporates an enthalpy heat exchanger has been modelled for tropical climate. Under test conditions, results have shown that latent effectiveness and the moisture resistance coefficient have strong dependency on the inlet air humidity ratio. Moreover, the latent effectiveness has been found to be strongly dependent on the moisture resistance coefficient rather than the convective mass transfer coefficient. Finally, annual energy analysis for Singapore weather conditions have also shown that energy recovered under variable inlet air conditions is 15% less than that recovered under constant inlet air conditions for the same heat exchanger.

  12. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid U.S. Climates

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ticci, Sara [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    , Orlando, Houston, Charleston, Memphis and Baltimore). The control options were compared to a baseline system that supplies outdoor air to a central forced air cooling (and heating) system (CFIS) that is often used in hot humid climates. Simulations were performed with CFIS ventilation systems operating on a 33% duty-cycle, consistent with 62.2-2013. The CFIS outside airflow rates were set to 0%, 50% and 100% of 62.2-2013 requirements to explore effects of ventilation rate on indoor high humidity. These simulations were performed with and without a dehumidifier in the model. Ten control algorithms were developed and tested. Analysis of outdoor humidity patterns facilitated smart control development. It was found that outdoor humidity varies most strongly seasonally—by month of the year—and that all locations follow the similar pattern of much higher humidity during summer. Daily and hourly variations in outdoor humidity were found to be progressively smaller than the monthly seasonal variation. Patterns in hourly humidity are driven by diurnal daily patterns, so they were predictable but small, and were unlikely to provide much control benefit. Variation in outdoor humidity between days was larger, but unpredictable, except by much more complex climate models. We determined that no-sensor strategies might be able to take advantage of seasonal patterns in humidity, but that real-time smart controls were required to capture variation between days. Sensor-based approaches are also required to respond dynamically to indoor conditions and variations not considered in our analysis. All smart controls face trade-offs between sensor accuracy, cost, complexity and robustness.

  13. Effect of inhomogeneities on streamer propagation: II. Streamer dynamics in high pressure humid air with bubbles

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2009-01-01

    The branching of electric discharge streamers in atmospheric pressure air, dense gases and liquids is a common occurrence whose origins are likely found with many causes, both deterministic and stochastic. One mechanism for streamer branching may be inhomogeneities in the path of a streamer which either divert the streamer (typically a region of lower ionization) or produce a new branch (a region of higher ionization). The propagation and branching of streamers in liquids is likely aided by low density inhomogeneities, bubbles; however, modeling of streamers in liquids is made difficult by the lack of transport coefficients. As a first step towards understanding the propagation and branching of streamers in liquids, we investigated the consequences of random inhomogeneities in the form of low pressure bubbles on the propagation of streamers in high pressure humid air. By virtue of their lower density, bubbles have larger E/N (electric field/gas number density) than the ambient gas with larger rates of ionization. The intersection of a streamer with a bubble will focus the plasma into the bubble by virtue of that higher rate of ionization but the details of the interaction depend on the relative sizes of the bubble and streamer. When a streamer intersects a field of bubbles, the large E/N in the bubble avalanches seed electrons produced by photoionization from the streamer. Each bubble then launches both a negative and positive going streamer that may link with those from adjacent bubbles or the original streamer. The total process then appears as streamer branching.

  14. Humidity data for 9975 shipping packages with cane fiberboard

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-05-01

    The 9975 surveillance program is developing a technical basis to support extending the storage period of 9975 packages in K-Area Complex beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis. Direct measurements of humidity and fiberboard moisture content have been made on two test packages with cane fiberboard and varying internal heat levels from 0 up to 19W. With an internal heat load, a temperature gradient in the fiberboard assembly leads to varying relative humidity in the air around the fiberboard. However, the absolute humidity tends to remain approximately constant throughout the package. The moisture content of fiberboard varies under the influence of several phenomena. Changes in local fiberboard temperature (from an internal heat load) can cause fiberboard moisture changes through absorption or evaporation. Fiberboard degradation at elevated temperature will produce water as a byproduct. And the moisture level within the package is constantly seeking equilibrium with that of the surrounding room air, which varies on a daily and seasonal basis. One indicator of the moisture condition within a 9975 package might be obtained by measuring the relative humidity in the upper air space, by inserting a humidity probe through a caplug hole. However, the data indicate that for the higher internal heat loads (15 and 19 watts), a large variation in internal moisture conditions produces little or no variation in the air space relative humidity. Therefore, this approach does not appear to be sensitive to fiberboard moisture variations at the higher heat loads which are of most interest to maintaining fiberboard integrity.

  15. Modeling of humidity-related reliability in enclosures with electronics

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Popok, Vladimir

    2015-01-01

    Reliability of electronics that operate outdoor is strongly affected by environmental factors such as temperature and humidity. Fluctuations of these parameters can lead to water condensation inside enclosures. Therefore, modelling of humidity distribution in a container with air and freely exposed...

  16. Temperature, humidity and time. Combined effects on radiochromic film dosimeters

    DEFF Research Database (Denmark)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 degrees C for irradiation by Co-60 photons and 10-Me......V electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is +0.......25 +/- 0.1% per degrees C for the FWT-60-00 dosimeters and +0.5 +/- 0.1% per degrees C For Riso B3 dosimeters at temperatures between 20 and 50 degrees C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger...

  17. A study on the effects of system pressure on heat and mass transfer rates of an air cooler

    International Nuclear Information System (INIS)

    Jung, Hyung Ho

    2002-01-01

    In the present paper, the effects of inlet pressure on the heat and mass transfer rates of an air cooler are numerically predicted by a local analysis method. The pressures of the moist air vary from 2 to 4 bars. The psychometric properties such as dew point temperature, relative humidity and humidity ratio are employed to treat the condensing water vapor in the moist air when the surface temperatures are dropped below the dew point. The effects of the inlet pressures on the heat transfer rate, the dew point temperature, the rate of condensed water, the outlet temperature of air and cooling water are calculated. The condensation process of water vapor is discussed in detail. The results of present calculations are compared with the test data and shows good agreements

  18. Comparison of Single-Point and Continuous Sampling Methods for Estimating Residential Indoor Temperature and Humidity.

    Science.gov (United States)

    Johnston, James D; Magnusson, Brianna M; Eggett, Dennis; Collingwood, Scott C; Bernhardt, Scott A

    2015-01-01

    Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hr, and 12-days) in 9 northern Utah homes, from March-June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2-3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions.

  19. The effect of humidity on annealing of polymer optical fibre bragg gratings

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Nielsen, Kristian; Bang, Ole

    2015-01-01

    The effect of humidity on annealing of PMMA based microstructured polymer optical fiber (mPOF) Bragg gratings is studied. Polymer optical fibers (POFs) are annealed in order to release stress formed during the fabrication process. Un-annealed fibers will have high hysteresis and low sensitivity...... to humidity, particularly when operated at high temperature. Typically annealing of PMMA POFs is done at 80oC in an oven with no humidity control and therefor at low humidity. The response to humidity of PMMA FBGs annealed at different levels of humidity at the same temperature has also been studied. PMMA...

  20. Calibration of Relative Humidity Sensors using a Dew Point Generator

    OpenAIRE

    Brooks, Milo

    2010-01-01

    A relative humidity sensor can be calibrated using a dew point generator to continuously supply an air stream of known constant humidity and a temperature chamber to control the dew point and ambient temperature.

  1. Coupled effects of the temperature and the relative humidity on gecko adhesion

    International Nuclear Information System (INIS)

    Peng, Zhilong; Yang, Yazheng; Chen, Shaohua

    2017-01-01

    To explain the inconsistent results of experiments on temperature-dependent gecko adhesion, a theoretical peeling model is established wherein a nano-thin film is adopted to simulate a gecko spatula. The model considers not only the respective effects of temperature and environmental humidity on the peel-off force but also the coupled effect of both factors. Increasing temperature is found to lead to a decreasing peel-off force if the environmental humidity is uncontrolled. However, if the environmental humidity is constant, the peel-off force is insensitive to the temperature and remains almost constant. The synthetic theoretical analysis demonstrates that the seemingly contradictory results of temperature-dependent gecko adhesion experiments are actually consistent under their respective experimental conditions. This inconsistency is mainly due to the environmental humidity, which varies with the changing temperature if it is not artificially controlled. The results cannot only reasonably explain the different experimental results for the effect of temperature on gecko adhesion but can also facilitate the design of temperature-controlled or humidity-controlled adhesion sensors by tuning the environmental humidity or temperature. (paper)

  2. Exploitation of humid air latent heat by means of solar assisted heat pumps operating below the dew point

    International Nuclear Information System (INIS)

    Scarpa, Federico; Tagliafico, Luca A.

    2016-01-01

    Highlights: • The opportunity of humid air latent heat exploitation by DX-SAHP is investigated. • A set of experimental tests confirms this opportunity and quantifies it as relevant. • A parametric analysis is performed, via simulation, to deepen the subject. • The energy gain is relevant during both night and daytime. - Abstract: Nowadays, the exploitation of environmental exergy resources for heating purposes (solar energy, convection heat transfer from ambient air, moist air humidity condensation) by means of properly designed heat pump systems is a possible opportunity. In particular, the use of direct expansion solar assisted heat pumps (DX-SAHP) is investigated in this study, when a bare external plate (the solar collector) is kept at temperatures lower than the dew point temperature of ambient air, so that condensation takes place on it. The potential of this technology is settled and an instrumented prototype of a small DX-SAHP system is used to verify the actual performance of the system, in terms of specific thermal energy delivered to the user, efficiency and regulation capabilities. Results clearly show that the contribution of the condensation is significant (20%–30% of the total harvested energy) overnight or in cloudy days with very low or no solar irradiation, and must be taken into account in a system model devoted to describe the DX-SAHP behavior. During daytime, the percentage gain decreases but is still consistent. By investigating along these lines, the heat due to condensation harvested by the collector is found to be a function of the dew-point temperature alone.

  3. Adaptive observer-based control for an IPMC actuator under varying humidity conditions

    Science.gov (United States)

    Bernat, Jakub; Kolota, Jakub

    2018-05-01

    As ionic polymer metal composites (IPMC) are increasingly applied to mechatronic systems, many new IPMC modeling efforts have been reported in the literature. The demands of rapidly growing technology has generated interest in advancing the intrinsic actuation and sensing capabilities of IPMC. Classical IPMC applications need constant hydration to operate. On the other hand, for IPMCs operating in air, the water content of the polymer varies with the humidity level of the ambient environment, which leads to its strong humidity-dependent behavior. Furthermore, decreasing water content over time plays a crucial role in the effectiveness of IPMC. Therefore, the primary challenge of this work is to accurately model this phenomenon. The principal contribution of the paper is a new IPMC model, which considers the change of moisture content. A novel nonlinear adaptive observer is designed to determine the unknown electric potential and humidity level in the polymer membrane. This approach effectively determines the moisture content of the IPMC during long-term continuous operation in air. This subsequently allows us to develop an effective back-stepping control algorithm that considers varying moisture content. Data from experiments are presented to support the effectiveness of the observation process, which is shown in illustrative examples.

  4. Cultivar Differences in Plant Transpiration Rate at High Relative Air Humidity Are Not Related to Genotypic Variation in Stomatal Responsiveness

    DEFF Research Database (Denmark)

    Gebraegziabher, Habtamu Giday; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-01-01

    Plants grown at high relative air humidity (RH) often show disturbed water relations due to less responsive stomata. The attenuation of stomatal responsiveness as a result of high RH during leaf expansion depends on the cultivar. We hypothesized that tolerant cultivars to high RH experience a low...

  5. Statistical Modelling of Temperature and Moisture Uptake of Biochars Exposed to Selected Relative Humidity of Air

    Directory of Open Access Journals (Sweden)

    Luciane Bastistella

    2018-02-01

    Full Text Available New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens, Cyclobalanopsis glauca, Trigonostemon huangmosun, and Bambusa vulgaris, and involved five relative humidity conditions (22, 43, 75, 84, and 90%, two mass samples (0.1 and 1 g, and two particle sizes (powder and piece. Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.

  6. Performance analysis of humid air turbine cycle with solar energy for methanol decomposition

    International Nuclear Information System (INIS)

    Zhao, Hongbin; Yue, Pengxiu

    2011-01-01

    According to the physical and chemical energy cascade utilization and concept of synthesis integration of variety cycle systems, a new humid air turbine (HAT) cycle with solar energy for methanol decomposition has been proposed in this paper. The solar energy is utilized for methanol decomposing as a heat source in the HAT cycle. The low energy level of solar energy is supposed to convert the high energy level of chemical energy through methanol absorption, realizing the combination of clean energy and normal chemical fuels as compared to the normal chemical recuperative cycle. As a result, the performance of normal chemical fuel thermal cycle can be improved to some extent. Though the energy level of decomposed syngas from methanol is decreased, the cascade utilization of methanol is upgraded. The energy level and exergy losses in the system are graphically displayed with the energy utilization diagrams (EUD). The results show that the cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points under the same operating conditions. In addition, the cycle's thermal efficiency, exergy efficiency and solar thermal efficiency respond to an optimal methanol conversion. -- Highlights: → This paper proposed and studied the humid air turbine (HAT) cycle with methanol through decomposition with solar energy. → The cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points. → It is estimated that the solar heat-work conversion efficiency is about 39%, higher than usual. → There is an optimal methanol conversation for the cycle's thermal efficiency and exergy efficiency at given π and TIT. → Using EUD, the exergy loss is decreased by 8 percentage points compared with the conventional HAT cycle.

  7. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System

    Science.gov (United States)

    Chen, Ling-Hsi

    2018-01-01

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories. PMID:29466313

  8. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System.

    Science.gov (United States)

    Chen, Ling-Hsi; Chen, Chiachung

    2018-02-21

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories.

  9. Electrolysis Processes in D.C. Corona Discharges in Humid Air

    Science.gov (United States)

    Lelièvre, J.; Dubreuil, N.; Brisset, J.-L.

    1995-04-01

    Aqueous solutions exposed to the flux of the neutrals emitted in a d.c. point-to-plane corona discharge in air enriched with NO-3 and NO-2 anions as the matching counter-ions of the protons. The nitrate concentration continuously increases with the treatment time while that of the nitrites presents a maximum. Both concentrations are increasing functions of the current intensity and the exposure time. These results are examined in terms of successive electrochemical reactions and involve oxidation and reduction reactions at each electrode. L'exposition d'une solution aqueuse aux neutres d'une décharge couronne pointe-plan continue établie dans l'air humide fait apparaître en solution des ions nitrites et nitrates qui équilibrent la formation des protons. La concentration en nitrates croît continûment tandis que celle des nitrites présente un maximum. Un mécanisme d'oxydations successives est proposé; il implique des réactions électrochimiques à chaque électrode et rend compte que la décharge négative engendre des concentrations en nitrite supérieures à la décharge positive. Un développement du modèle concourt à expliquer la différence d'effets observés pour des décharges positives ou négatives selon la nature du gaz plasmagène.

  10. Effect of air condition on AP-1000 containment cooling performance in station black out accident

    International Nuclear Information System (INIS)

    Hendro Tjahjono

    2015-01-01

    AP1000 reactor is a nuclear power plant generation III+ 1000 MWe which apply passive cooling concept to anticipate accidents triggered by the extinction of the entire supply of electrical power or Station Black Out (SBO). In the AP1000 reactor, decay heat disposal mechanism conducted passively through the PRHR-IRWST and subsequently forwarded to the reactor containment. Containment externally cooled through natural convection in the air gap and through evaporation cooling water poured on the outer surface of the containment wall. The mechanism of evaporation of water into the air outside is strongly influenced by the conditions of humidity and air temperature. The purpose of this study was to determine the extent of the influence of the air condition on cooling capabilities of the AP1000 containment. The method used is to perform simulations using Matlab-based analytical calculation model capable of estimating the power of heat transferred. The simulation results showed a decrease in power up to 5% for relative humidity rose from 10% to 95%, while the variation of air temperature of 10°C to 40°C, the power will decrease up to 15%. It can be concluded that the effect of air temperature increase is much more significant in lowering the containment cooling ability compared with the increase of humidity. (author)

  11. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    International Nuclear Information System (INIS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-01-01

    The fabrication method and characterization results of a TiO 2 -TiO 2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO 2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO 2 crystallites embedded in a matrix of nanometric TiO 2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant. (paper)

  12. AC Response to Humidity and Propane of Sprayed Fe-Zn Oxide Films

    Directory of Open Access Journals (Sweden)

    Alejandro AVILA-GARCÍA

    2009-09-01

    Full Text Available Iron-zinc oxide films with different Zn contents were ultrasonically sprayed on glass substrates and inter-digital gold electrodes were evaporated upon them. Films were deposited from solutions containing 2, 10 and 30 at. % Zn. Hematite, amorphous and Franklinite structures turned out, respectively. They were assessed as humidity and propane detectors under alternating-current conditions for frequencies from 1 to 105 Hz and temperatures 30 and 250 oC. Their impedances in dry air, humid air and humid air plus propane were determined from voltage measurements with a Lock-In amplifier. Sensitivities to humidity (53 % RH. and 189, 500 and 786 ppm of propane from the response of the resistance, reactance and also the total impedance were determined as functions of frequency. The maximum sensitivity to humidity ranges from 24 % up to 308 %. For propane, the maximum sensitivity ranges from 45 % up to 711 %. The largest sensitivity values correspond in all cases to reactance. From the dynamical response, the response and recovery times are determined, along with the concentration-dependence of the sensitivity. The sensing mechanisms are commented.

  13. Turbulent transport across an interface between dry and humid air in a stratified environment

    Science.gov (United States)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  14. Effect of vulcanization temperature and humidity on the properties of RTV silicone rubber

    Science.gov (United States)

    Wu, Xutao; Li, Xiuguang; Hao, Lu; Wen, Xishan; Lan, Lei; Yuan, Xiaoqing; Zhang, Qingping

    2017-06-01

    In order to study the difference in performance of room temperature vulcanized (RTV) silicone rubber in vulcanization environment with different temperature and humidity, static contact angle method, FTIR and TG is utilized to depict the properties of hydrophobicity, transfer of hydrophobicity, functional groups and thermal stability of RTV silicone rubber. It is found that different vulcanization conditions have effects on the characteristics of RTV silicone rubber, which shows that the hydrophobicity of RTV silicone rubber changes little with the vulcanization temperature but a slight increase with the vulcanization humidity. Temperature and humidity have obvious effects on the hydrophobicity transfer ability of RTV silicone rubber, which is better when vulcanization temperature is 5°C or vulcanization humidity is 95%. From the Fourier transform infrared spectroscopy, it can be concluded that humidity and temperature of vulcanization conditions have great effect on the functional groups of silicone rubber, and vulcanization conditions also have effect on thermal stability of RTV silicone rubber. When vulcanization temperature is 5°C or vulcanization humidity is 15% or 95%, the thermal stability of silicone rubber becomes worse.

  15. Investigating the effect of gas flow rate, inlet ozone concentration and relative humidity on the efficacy of catalytic ozonation process in the removal of xylene from waste airstream

    Directory of Open Access Journals (Sweden)

    H.R. MokaramI

    2010-10-01

    Full Text Available Background and aimsThe catalytic ozonation is an efficient process for the degradation of volatile organic compounds from contaminated air stream. This study was aimed at investigating the efficacy of catalytic ozonation process in removal of xylene from the polluted air stream andthe influence of retention time (gas flow rate, inlet ozone dose and relative humidity on this performanceMethodsthe catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selectedoperational variables.ResultsThe results indicated that the efficiency of catalytic ozonation was greater than that of single adsorption in removal of xylene under similar inlet concentration and relative humidity. We found a significant catalytic effect for activated carbon when used in combination with ozonation process, leading to improvement of xylene removal percentage. In addition, the elimination capacity of the system improved with the increase of inlet ozone dose as well as gas flow rate. The relative humidity showed a positive effect of the xylene removal at the range of 5 to 50%, while the higher humidity (more than 50% resulted in reduction of the performance.ConclusionThe findings of the present work revealed that the catalytic ozonation process can be an efficient technique for treating the air streams containing industrial concentrations of xylene. Furthermore, there is a practical potential to retrofit the present adsorption systems intothe catalytic ozonation simply by coupling them with the ozonation system. the catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selected

  16. Discomfort due to skin humidity with different fabric textures and materials

    DEFF Research Database (Denmark)

    Toftum, Jørn; Rasmussen, Leif Winsnes; Mackeprang, Jørgen

    2000-01-01

    This study investigated the possible effects of material and texture of the inner clothing layer on human comfort. A highly hygroscopic material (cotton) and a material of low hygroscopicity (polyester) were tested. Also, it was tested whether fabric texture (knitted/woven) influenced the perceived...... due to humid skin or clothing for persons engaged in office work, wearing woven or knitted inner layers made of polyester or cotton. The model allows upper limits for air humidity to be determined for indoor environments. In the comfort zone of temperatures, the model predicts only a moderate...

  17. Temperature, humidity and time., Combined effects on radiochromic film dosimeters

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 o C for irradiation by 60 Co photons and 10-MeV electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is + 0.25 ± 0.1% per o C for the FWT-60-00 dosimeters and +0.5 ± 0.1% per o C for Riso B3 dosimeters at temperatures between 20 and 50 o C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger dependences. Whenever possible one should use dosimeters sealed in pouches under controlled intermediate humidity conditions (30-50%) or, if that is impractical, one should maintain conditions of calibration as close as possible to the conditions of use. Without that precaution, severe dosimetry errors may result. (author)

  18. Experimental study of humidity distribution inside electronic enclosure and effect of internal heating

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2016-01-01

    on the humidity and temperature profile inside typical electronic enclosures. Defined parameters include external temperature and humidity conditions, temperature and time of the internal heat cycle, thermal mass, and ports/openings size. The effect of the internal humidity on electronic reliability has been......Corrosion reliability of electronic products is a key factor for electronics industry, and today there is a large demand for performance reliability in a wide range of temperature and humidity during day and night time periods. Corrosion failures are still a challenge due to the combined effects...... of temperature, humidity and corrosion accelerating species in the atmosphere. Moreover the surface region of printed circuit board assemblies is often contaminated by various aggressive chemical species.This study describes the overall effect of the exposure to severe climate conditions and internal heat cycles...

  19. Humidity effects on hydrophilic film dosimeter systems

    International Nuclear Information System (INIS)

    Gehringer, P.; Eschweiler, H.; Proksch, E.

    1979-11-01

    At dose-rates typical for 60 Co-gamma irradiation sources the radiation response of hexahydroxyethyl pararosanilin cyanide/50μm nylon radachromic films is dependent upon dose-rate as well as upon the moisture content of the film. Under equilibrium moisture conditions, the response measured at 606 nm 24 hours after end of irradiation shows its highest dose-rate dependence at about 32 % r.h. A decrease in dose-rate from 2.8 to 0.039 Gy.s -1 results in decrease in response by 17%. At higher humidities, the sensitivity of the film as well as the rate dependence decreases and at 86% r.h. no discernible dose-rate effect could be found. At nominal 0 % r.h. a second absorption band at 412 nm appears which is converted completely to an additional 606 nm absorption by exposure to a humid atmosphere. After that procedure the resultant response is somewhat lower but shows almost the same dose-rate dependence as at 32% r.h. Preliminary results concerning the influence of humidity on the response of Blue Cellophane are given, too. (author)

  20. All-Optical Graphene Oxide Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Weng Hong Lim

    2014-12-01

    Full Text Available The optical characteristics of graphene oxide (GO were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  1. All-optical graphene oxide humidity sensors.

    Science.gov (United States)

    Lim, Weng Hong; Yap, Yuen Kiat; Chong, Wu Yi; Ahmad, Harith

    2014-12-17

    The optical characteristics of graphene oxide (GO) were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s) to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  2. Angle-tip Fiber Probe as Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Pabitra NATH

    2010-05-01

    Full Text Available In this paper, I present a simple fiber optic relative humidity sensor (FORHS using an angled-tip multimode optical fiber. The sensing region is fabricated by coating moisture sensitive Cobalt Chloride (CoCl2 doped polyvinyl alcohol (PVA film on the surface of fiber optic tip. Light signal introducing from flat-end of the fiber is back-reflected at the fiber tip-air interface by the effect of total internal refection. The change of relative humidity (RH in the outstanding medium affects of evanescent field absorption at the fiber tip-sensing film interface thus, modulates the back-reflected signal. With the present sensing investigation, RH ranging from 5 % to 95 % can be measured with high degree of repeatability and has a fast response time of about 2 seconds.

  3. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, P. [Building Science Corporation, Somerville, MA (United States)

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  4. The effect of environmental humidity and temperature on skin barrier function and dermatitis

    DEFF Research Database (Denmark)

    Engebretsen, K A; Johansen, J D; Kezic, S

    2016-01-01

    existing dermatoses. We searched the literature for studies that evaluated the mechanisms behind this phenomenon. Commonly used meteorological terms such as absolute humidity, relative humidity and dew point are explained. Furthermore, we review the negative effect of low humidity, low temperatures...

  5. Air temperature optimisation for humidity-controlled cold storage of the predatory mites Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae).

    Science.gov (United States)

    Ghazy, Noureldin Abuelfadl; Suzuki, Takeshi; Amano, Hiroshi; Ohyama, Katsumi

    2014-03-01

    Humidity-controlled cold storage, in which the water vapour pressure is saturated, can prolong the survival of the predatory mites Neoseiulus californicus (McGregor) and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). However, information on the optimum air temperature for long-term storage by this method is limited. The authors evaluated the survival of mated adult females of N. californicus and P. persimilis at 5.0, 7.5, 10.0 and 12.5 °C under saturated water vapour condition (vapour pressure deficit 0.0 kPa). N. californicus showed a longer survival time than P. persimilis at all the air temperatures. The longest mean survival time of N. californicus was 11 weeks at 7.5 °C, whereas that of P. persimilis was 8 weeks at 5.0 °C. After storage at 7.5 °C for 8 weeks, no negative effect on post-storage oviposition was observed in N. californicus, whereas the oviposition of P. persimilis stored at 5.0 °C for 8 weeks was significantly reduced. The interspecific variation in the response of these predators to low air temperature might be attributed to their natural habitat and energy requirements. These results may be useful for the long-term storage of these predators, which is required for cost-effective biological control. © 2013 Society of Chemical Industry.

  6. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    Science.gov (United States)

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  7. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique

    Science.gov (United States)

    Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.

    2013-04-01

    Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm and for reported H2O mole fractions between 0-4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  8. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS technique

    Directory of Open Access Journals (Sweden)

    H. Chen

    2013-04-01

    Full Text Available Accurate measurements of carbon monoxide (CO in humid air have been made using the cavity ring-down spectroscopy (CRDS technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm after removing interferences from adjacent carbon dioxide (CO2 and water vapor (H2O absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360–390 ppm and for reported H2O mole fractions between 0–4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately −0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of −0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012 indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  9. Selective Detection of Target Volatile Organic Compounds in Contaminated Humid Air Using a Sensor Array with Principal Component Analysis

    Science.gov (United States)

    Itoh, Toshio; Akamatsu, Takafumi; Tsuruta, Akihiro; Shin, Woosuck

    2017-01-01

    We investigated selective detection of the target volatile organic compounds (VOCs) nonanal, n-decane, and acetoin for lung cancer-related VOCs, and acetone and methyl i-butyl ketone for diabetes-related VOCs, in humid air with simulated VOC contamination (total concentration: 300 μg/m3). We used six “grain boundary-response type” sensors, including four commercially available sensors (TGS 2600, 2610, 2610, and 2620) and two Pt, Pd, and Au-loaded SnO2 sensors (Pt, Pd, Au/SnO2), and two “bulk-response type” sensors, including Zr-doped CeO2 (CeZr10), i.e., eight sensors in total. We then analyzed their sensor signals using principal component analysis (PCA). Although the six “grain boundary-response type” sensors were found to be insufficient for selective detection of the target gases in humid air, the addition of two “bulk-response type” sensors improved the selectivity, even with simulated VOC contamination. To further improve the discrimination, we selected appropriate sensors from the eight sensors based on the PCA results. The selectivity to each target gas was maintained and was not affected by contamination. PMID:28753948

  10. Effects of humidity and interlayer cations on the frictional strength of montmorillonite

    Science.gov (United States)

    Tetsuka, Hiroshi; Katayama, Ikuo; Sakuma, Hiroshi; Tamura, Kenji

    2018-04-01

    We developed a humidity control system in a biaxial friction testing machine to investigate the effect of relative humidity and interlayer cations on the frictional strength of montmorillonite. We carried out the frictional experiments on Na- and Ca-montmorillonite under controlled relative humidities (ca. 10, 30, 50, 70, and 90%) and at a constant temperature (95 °C). Our experimental results show that frictional strengths of both Na- and Ca-montmorillonite decrease systematically with increasing relative humidity. The friction coefficients of Na-montmorillonite decrease from 0.33 (at relative humidity of 10%) to 0.06 (at relative humidity of 93%) and those of Ca-montmorillonite decrease from 0.22 (at relative humidity of 11%) to 0.04 (at relative humidity of 91%). Our results also show that the frictional strength of Na-montmorillonite is higher than that of Ca-montmorillonite at a given relative humidity. These results reveal that the frictional strength of montmorillonite is sensitive to hydration state and interlayer cation species, suggesting that the strength of faults containing these clay minerals depends on the physical and chemical environment.[Figure not available: see fulltext.

  11. Occupant evaluation of 7-hour exposures in a simulated aircraft cabin - Part 1: Optimum balance between fresh air supply and humidity

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wyon, David Peter; Lagercrantz, Love Per

    2005-01-01

    Low humidity in the aircraft cabin environment has been identified as a possible cause of symptoms experienced during long flights. A mock-up of a 21-seat section of an aircraft cabin with realistic pollution sources was built inside a climate chamber, capable of providing fresh outside air at very...

  12. Effects of temperature and humidity during irradiation on the response of radiachromic film dosimeters

    International Nuclear Information System (INIS)

    Ningnoi, T.; Ehlermann, D.A.E.

    1994-01-01

    The effects of temperature and humidity during γ irradiation on the response of two types of film dosimeters (Far West radiochromic and GafChromic films) were studied in the dose range of 0.3-3 kGy. Both films show a significant effect of temperature and humidity and a simple correction function is proposed. This correction is usually between 5 and 10% for the range studied. For the GafChromic film, a colour change at temperatures above 50 o C was observed and, consequently, this system cannot be used at these temperatures. At lower temperatures down to -70 o C the sensitivity of both films is reduced and a simple correction is possible. In this study and for the dose ranges used, only a slight dependence on humidity was observed for both films from 0 to 60% r.h. Whereas the GafChromic film at humidities up to 90% r.h. shows only a moderate effect, the Far West film shows a considerable inconsistency for the dose range studied. A simple correction function may be applied for humidity effects, except for the Far West film above 60% r.h. where the effect of humidity is also dose dependent. (author)

  13. Formaldehyde Emissions from Urea-Formaldehyde- and no-added-formaldehyde-Bonded particleboard as Influenced by Temperature and Relative Humidity

    Science.gov (United States)

    Charles R. Frihart; James M. Wescott; Timothy L. Chaffee; Kyle M. Gonner

    2012-01-01

    It is well documented that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF)–type adhesives. This work investigates the effect of temperature and humidity on newer commercial California Air Resources Board (CARB) phase II–compliant particleboard produced with UF-type adhesives. These...

  14. Use of personalized ventilation for improving health, comfort, and performance at high room temperature and humidity

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Skwarczynski, Mariusz; Kaczmarczyk, J.

    2013-01-01

    in five 4-h experiments in a climate chamber. Under the conditions with PV, the subjects were able to control the rate and direction of the supplied personalized flow of clean air. Subjective responses were collected through questionnaires. During all exposures, the subjects were occupied with tasks used......The effect of personalized ventilation (PV) on people's health, comfort, and performance in a warm and humid environment (26 and 28°C at 70% relative humidity) was studied and compared with their responses in a comfortable environment (23°C and 40% relative humidity). Thirty subjects participated...... to assess their performance. Objective measures of tear film stability, concentration of stress biomarkers in saliva, and eye blinking rate were taken. Using PV significantly improved the perceived air quality (PAQ) and thermal sensation and decreased the intensity of Sick Building Syndrome (SBS) symptoms...

  15. Assessment of the thermal environment effects on human comfort and health for the development of novel air conditioning system in tropical regions

    Energy Technology Data Exchange (ETDEWEB)

    Sookchaiya, Thammanoon; Monyakul, Veerapol; Thepa, Sirichai [Division of Energy Technology, School of Energy Environment and Materials, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2010-10-15

    This research shows the result of a brainstorming by medical experts in the first ranking university medical school and hospital of Thailand. It was based on Delphi technique. The objective of this research was to study both direct and indirect effects of humidity and temperature on human health in air-conditioned buildings in Thailand. Afterwards, the result was used to design and develop split type air conditioner (conventional air conditioner) which could control relative humidity and temperature with precision air conditioning system to comply with the climate and the suitability of the people living in Thailand building. The result of operation with precision inverter air conditioning system showed that the temperature inside the room changed from the default value around {+-}0.2 C (Case 1) and around {+-}0.35 C (Case 2) and it could control relative humidity as a desired condition between 50-60% (both cases) which was the appropriate range for Thai climate. Moreover, energy consumption of precision inverter air conditioning system was still less than conventional air conditioning system for about 7.5%. This research could provide people living in Thailand air conditioned building with human thermal comfort and health. (author)

  16. Effect of relative humidity on solar potential

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2005-01-01

    In this study, the effect of relative humidity on solar potential is investigated using artificial neural-networks. Two different models are used to train the neural networks. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network (Model 1). But, relative humidity values are added to one network in model (Model 2). In other words, the only difference between the models is relative humidity. New formulae based on meteorological and geographical data, have been developed to determine the solar energy potential in Turkey using the networks' weights for both models. Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer-function were used in the network. The best approach was obtained by the SCG algorithm with nine neurons for both models. Meteorological data for the four years, 2000-2003, for 18 cities (Artvin, Cesme, Bozkurt, Malkara, Florya, Tosya, Kizilcahamam, Yenisehir, Edremit, Gediz, Kangal, Solhan, Ergani, Selcuk, Milas, Seydisehir, Siverek and Kilis) spread over Turkey have been used as data in order to train the neural network. Solar radiation is in output layer. One month for each city was used as test data, and these months have not been used for training. The maximum mean absolute percentage errors (MAPEs) for Tosya are 2.770394% and 2.8597% for Models 1 and 2, respectively. The minimum MAPEs for Seydisehir are 1.055205% and 1.041% with R 2 (99.9862%, 99.9842%) for Models 1 and 2, respectively, in the SCG algorithm with nine neurons. The best value of R 2 for Models 1 and 2 are for Seydisehir. The minimum value of R 2 for Model 1 is 99.8855% for Tosya, and the value for Model 2 is 99.9001% for Yenisehir. Results show that the humidity has only a negligible effect upon the prediction of solar potential using artificial neural-networks

  17. Synergistic effects of temperature and humidity on the symptoms of COPD patients

    Science.gov (United States)

    Mu, Zhe; Chen, Pei-Li; Geng, Fu-Hai; Ren, Lei; Gu, Wen-Chao; Ma, Jia-Yun; Peng, Li; Li, Qing-Yun

    2017-11-01

    This panel study investigates how temperature, humidity, and their interaction affect chronic obstructive pulmonary disease (COPD) patients' self-reported symptoms. One hundred and six COPD patients from Shanghai, China, were enrolled, and age, smoking status, St. George Respiratory Questionnaire (SGRQ) score, and lung function index were recorded at baseline. The participants were asked to record their indoor temperature, humidity, and symptoms on diary cards between January 2011 and June 2012. Altogether, 82 patients finished the study. There was a significant interactive effect between temperature and humidity ( p COPD patients. When the indoor humidity was low, moderate, and high, the indoor temperature ORs were 0.969 (95% CI 0.922 to 1.017), 0.977 (0.962 to 0.999), and 0.920 (95% CI 0.908 to 0.933), respectively. Low temperature was a risk factor for COPD patients, and high humidity enhanced its risk on COPD. The indoor temperature should be kept at least on average at 18.2 °C, while the humidity should be less than 70%. This study demonstrates that temperature and humidity were associated with COPD patients' symptoms, and high humidity would enhance the risk of COPD due to low temperature.

  18. Elevated air movement enhances stomatal sensitivity to abscisic acid in leaves developed at high relative air humidity

    Directory of Open Access Journals (Sweden)

    Dália R.A. Carvalho

    2015-05-01

    Full Text Available High relative air humidity (RH ≥ 85% during growth leads to stomata malfunctioning, resulting in water stress when plants are transferred to conditions of high evaporative demand. In this study, we hypothesized that an elevated air movement (MOV 24 h per day, during the whole period of leaf development would increase abscisic acid concentration ([ABA] enhancing stomatal functioning. Pot rose ‘Toril’ was grown at moderate (61% or high (92% RH combined with a negligible MOV or with a continuous MOV of 0.92 m s-1. High MOV reduced stomatal pore length and aperture in plants developed at high RH. Moreover, stomatal function improved when high MOV-treated plants were subjected to leaflet desiccation and ABA feeding. Endogenous concentration of ABA and its metabolites in the leaves was reduced by 35% in high RH, but contrary to our hypothesis this concentration was not significantly affected by high MOV. Interestingly, in detached leaflets grown at high RH, high MOV increased stomatal sensitivity to ABA since the amount of exogenous ABA required to decrease the transpiration rate was significantly reduced. This is the first study to show that high MOV increases stomatal functionality in leaves developed at high RH by reducing the stomatal pore length and aperture and enhancing stomatal sensitivity to ABA rather than increasing leaf [ABA].

  19. Effects of atmospheric humidity on uptake of elemental iodine by plants

    International Nuclear Information System (INIS)

    Angeletti, L.; Guenot, J.; Caput, C.

    1983-01-01

    A laboratory study was performed under controlled experimental conditions in order to evaluate the effects of the relative humidity and the exposure time on the velocity of deposition of vapour iodine onto aerials parts of plants. The results show that: - the deposition velocity increases by a factor of 2 for each increase of relative humidity of 25%, - the deposition velocity is independent of the exposure time. The foliar uptake of vapour iodine seems to be related both to stomatal opening and cuticular sorption. The importance of cuticular sorption increases rapidly with the relative humidity [fr

  20. The effect of environmental parameters to dust concentration in air-conditioned space

    Science.gov (United States)

    Ismail, A. M. M.; Manssor, N. A. S.; Nalisa, A.; Yahaya, N.

    2017-08-01

    Malaysia has a wet and hot climate, therefore most of the spaces are air conditioned. The environment might affect dust concentration inside a space and affect the indoor air quality (IAQ). The main objective of this study is to study the dust concentration collected inside enclosed air-conditioned space. The measurement was done physically at four selected offices and two classrooms using a number of equipment to measure the dust concentration and environmental parameters which are temperature and relative air humidity. It was found that the highest dust concentration produced in office (temperature of 24.7°C, relative humidity of 66.5%) is 0.075 mg/m3, as compared to classroom, the highest dust concentration produced is 0.060 mg/m3 office (temperature of 25.9°C, relative humidity of 64.0%). However, both measurements show that value still within the safety level set by DOSH Malaysia (2005-2010) and ASHRAE 62.2 2016. The office contained higher dust concentration compared to classroom because of frequent movement transpires daily due to the functional of the offices.

  1. Estimating relations between temperature, relative humidity as independed variables and selected water quality parameters in Lake Manzala, Egypt

    Directory of Open Access Journals (Sweden)

    Gehan A.H. Sallam

    2018-03-01

    Full Text Available In Egypt, Lake Manzala is the largest and the most productive lake of northern coastal lakes. In this study, the continuous measurements data of the Real Time Water Quality Monitoring stations in Lake Manzala were statistically analyzed to measure the regional and seasonal variations of the selected water quality parameters in relation to the change of air temperature and relative humidity. Simple formulas are elaborated using the DataFit software to predict the selected water quality parameters of the Lake including pH, Dissolved Oxygen (DO, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Turbidity, and Chlorophyll as a function of air temperature, relative humidity and quantities and qualities of the drainage water that discharge into the lake. An empirical positive relation was found between air temperature and the relative humidity and pH, EC and TDS and negative relation with DO. There is no significant effect on the other two parameters of turbidity and chlorophyll.

  2. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  3. Searching for the best modeling specification for assessing the effects of temperature and humidity on health: a time series analysis in three European cities.

    Science.gov (United States)

    Rodopoulou, Sophia; Samoli, Evangelia; Analitis, Antonis; Atkinson, Richard W; de'Donato, Francesca K; Katsouyanni, Klea

    2015-11-01

    Epidemiological time series studies suggest daily temperature and humidity are associated with adverse health effects including increased mortality and hospital admissions. However, there is no consensus over which metric or lag best describes the relationships. We investigated which temperature and humidity model specification most adequately predicted mortality in three large European cities. Daily counts of all-cause mortality, minimum, maximum and mean temperature and relative humidity and apparent temperature (a composite measure of ambient and dew point temperature) were assembled for Athens, London, and Rome for 6 years between 1999 and 2005. City-specific Poisson regression models were fitted separately for warm (April-September) and cold (October-March) periods adjusting for seasonality, air pollution, and public holidays. We investigated goodness of model fit for each metric for delayed effects up to 13 days using three model fit criteria: sum of the partial autocorrelation function, AIC, and GCV. No uniformly best index for all cities and seasonal periods was observed. The effects of temperature were uniformly shown to be more prolonged during cold periods and the majority of models suggested separate temperature and humidity variables performed better than apparent temperature in predicting mortality. Our study suggests that the nature of the effects of temperature and humidity on mortality vary between cities for unknown reasons which require further investigation but may relate to city-specific population, socioeconomic, and environmental characteristics. This may have consequences on epidemiological studies and local temperature-related warning systems.

  4. Effects of air pollution on meteorological parameters during Deepawali festival over an Indian urban metropolis

    Science.gov (United States)

    Saha, Upal; Talukdar, Shamitaksha; Jana, Soumyajyoti; Maitra, Animesh

    2014-12-01

    Atmospheric pollutants (NO2, SO2, PM10, BC, CO, surface O3), emitted during fireworks display, have significant effects on meteorological parameters like air temperature, relative humidity, lapse rate and visibility in air over Kolkata (22°65‧ N, 88°45‧ E), a metropolitan city near the land-ocean boundary, on the eve of Deepawali festival when extensive fireworks are burnt. Long-term trend (2005-2013), indicates that the yearly average concentrations of both primary and secondary air pollutants have increased, exceeding the National Ambient Air Quality Standard (NAAQS) limit, on the respective Deepawali days. Short-term study (2012-2013) during the festival shows that the average pollutant concentrations have increased too compared to normal days. This study also reveals the immediate effects of the increased air pollutants on the boundary layer meteorology. PM10 has been found to be the most dominant atmospheric pollutants during this period. As a result of an increase in atmospheric heat content with elevated surface air temperature, a significant increase in the environmental lapse rate bears a signature of the influence of pollutants on the boundary layer temperature profile. A change in the diurnal pattern of relative humidity as well as in the vertical temperature profile is due to the change of the lapse rate during the festival days. Thus, the atmospheric pollutants during this festival over the urban region have significant effect on the boundary layer meteorology with bearings on environmental hazards.

  5. Observational evidence for aerosols increasing upper tropospheric humidity

    Directory of Open Access Journals (Sweden)

    L. Riuttanen

    2016-11-01

    Full Text Available Aerosol–cloud interactions are the largest source of uncertainty in the radiative forcing of the global climate. A phenomenon not included in the estimates of the total net forcing is the potential increase in upper tropospheric humidity (UTH by anthropogenic aerosols via changes in the microphysics of deep convection. Using remote sensing data over the ocean east of China in summer, we show that increased aerosol loads are associated with an UTH increase of 2.2 ± 1.5 in units of relative humidity. We show that humidification of aerosols or other meteorological covariation is very unlikely to be the cause of this result, indicating relevance for the global climate. In tropical moist air such an UTH increase leads to a regional radiative effect of 0.5 ± 0.4 W m−2. We conclude that the effect of aerosols on UTH should be included in future studies of anthropogenic climate change and climate sensitivity.

  6. Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control

    International Nuclear Information System (INIS)

    Fan, Hongming; Shao, Shuangquan; Tian, Changqing

    2014-01-01

    Highlights: • A multi-unit heat pump is proposed for simultaneous temperature and humidity control. • Condensation heat is non, partly or fully recovered for temperature regulation. • Highly integrated heat pump for residential cooling, dehumidification and heating. • High energy saving potential for all-year-round operation in wet and warm regions. - Abstract: A multi-unit heat pump is presented for simultaneous humidity and temperature control to improve the energy efficiency and the thermal comfort. Two parallel connected condensers are employed in the system, locating at the back of the indoor evaporator and the outdoor unit, respectively. The heat pump can operate in four modes, including heating, cooling and dehumidification without and/or with partial or total condensing heat recovery. The experimental investigation shows that the temperature control capacity is from 3.5 kW for cooling to 3.8 kW for heating with the cooling and heating efficiency higher than 3.5 kW kW −1 , and the dehumidification rate is about 2.0 kg h −1 with the efficiency about 2.0 kg h −1 kW −1 . The supply air temperature and humidity can be simultaneously regulated with high accuracy and high efficiency by adjusting the indoor and/or outdoor air volumes. It provides an integrated and effective solution for simultaneous indoor air temperature and humidity control for all-year-round operation in residential buildings

  7. Effect of humidity and interlayer cation on frictional strength of montmorillonite

    Science.gov (United States)

    Tetsuka, H.; Katayama, I.; Sakuma, H.; Tamura, K.

    2016-12-01

    Smectite has been ubiquitously seen in fault gouge (Schleicher et al., 2006; Kuo et al., 2009; Si et al., 2014; Kameda, 2015) and is characteristic by low frictional coefficient (Saffer et al., 2001; Ikari et al., 2007); consequently, it has a key role in fault dynamics. The frictional strength of montmorillonite (a typical type of smectite) is affected by mainly two factors, 1) hydration state and 2) interlayer cation. Previous laboratory experiments have shown that the frictional strength of montmorillonite changes with hydration state (Ikari et al., 2007) and with interlayer cation (Behnsen and Faulkner, 2013). However, experimental study for frictional strengths of interlayer cation-exchanged montmorillonite under controlled hydration state has not been reported. We are developing humidity control system in biaxial friction testing machine and try to investigate the effect of relative humidity and interlayer cation on frictional strength of montmorillonite. The humidity control system consists of two units, 1) the pressure vessel (core holder) unit controlled by a constant temperature and 2) the vapor generating unit controlled by variable temperature. We control relative humidity around sample, which is calculated from the temperature around sample and the vapor pressure at vapor generating unit. Preliminary experiments under controlled humidity show frictional coefficient of montmorillonite decrease with increasing relative humidity. In the meeting, we will report the systematic study of frictional coefficient as function of relative humidity and interlayer cation species.

  8. 40 CFR 86.344-79 - Humidity calculations.

    Science.gov (United States)

    2010-07-01

    ... = Web-bulb temperature (°K) B = − 12.150799 F 0 = − 8.49922(10)3 F 1 = − 7.4231865(10)3 F 2 = 96.1635147...). ER06OC93.088 Figure D79-5—Saturation Vapor Pressure Over Water (pascals) Temperature °C 0.0 0.1 0.2 0.3 0.4... = barometric pressure (Pa) H = specific humidity, (gm H2O/gm of dry air) K = 0.6220 gm H2O/gm dry air M air...

  9. Effect of the irradiation temperature and relative humidity on PVG dosifilm

    International Nuclear Information System (INIS)

    Jia Haishun; Chen Wenxiu; Shen Yuxin

    1999-01-01

    The effect of environmental factors, such as irradiation temperature and relative humidity, on the PVG dosifilm irradiated by EB was tested. Experiments show that the temperature coefficient of irradiated PVG dosifilm was 0.008 deg. C -1 from 20 deg. C to 55 deg. C, and the humidity coefficient was 0.006 per r.h. (%) from r.h. 0% to 76%. The PVG dosifilm can be used as a routine dosimeter for dose measurement for low-energy EB processing. The absorbed dose values for various irradiation temperature and humidity can be corrected based on experimental data. (author)

  10. Apparatus for investigating the reactions of soft-bodied invertebrates to controlled humidity gradients.

    Science.gov (United States)

    Russell, Joshua; Pierce-Shimomura, Jonathan T

    2014-11-30

    While many studies have assayed behavioral responses of animals to chemical, temperature and light gradients, fewer studies have assayed how animals respond to humidity gradients. Our novel humidity chamber has allowed us to study the neuromolecular basis of humidity sensation in the nematode Caenorhabditis elegans (Russell et al., 2014). We describe an easy-to-construct, low-cost humidity chamber to assay the behavior of small animals, including soft-bodied invertebrates, in controlled humidity gradients. We show that our humidity-chamber design is amenable to soft-bodied invertebrates and can produce reliable gradients ranging 0.3-8% RH/cm across a 9-cm long × 7.5-cm wide gel-covered arena. Previous humidity chambers relied on circulating dry and moist air to produce a steep humidity gradient in a small arena (e.g. Sayeed and Benzer, 1996). To remove the confound of moving air that may elicit mechanical responses independent of humidity responses, our chamber controlled the humidity gradient using reservoirs of hygroscopic materials. Additionally, to better observe the behavioral mechanisms for humidity responses, our chamber provided a larger arena. Although similar chambers have been described previously, these approaches were not suitable for soft-bodied invertebrates or for easy imaging of behavior because they required that animals move across wire or fabric mesh. The general applicability of our humidity chamber overcomes limitations of previous designs and opens the door to observe the behavioral responses of soft-bodied invertebrates, including genetically powerful C. elegans and Drosophila larvae. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  12. In optics humidity compensation in NDIR exhaust gas measurements of NO2

    DEFF Research Database (Denmark)

    Stolberg-Rohr, Thomine Kirstine; Buchner, Rainer; Clausen, Sønnik

    2015-01-01

    NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band. © 2014 OSA.......NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band. © 2014 OSA....

  13. The interaction effects of temperature and humidity on emergency room visits for respiratory diseases in Beijing, China.

    Science.gov (United States)

    Su, Qin; Liu, Hongsheng; Yuan, Xiaoling; Xiao, Yan; Zhang, Xian; Sun, Rongju; Dang, Wei; Zhang, Jianbo; Qin, Yuhong; Men, Baozhong; Zhao, Xiaodong

    2014-11-01

    Few epidemiological studies have been reported as to whether there was any interactive effect between temperature and humidity on respiratory morbidity, especially in Asian countries. The present study used time-series analysis to explore the modification effects of humidity on the association between temperature and emergency room (ER) visits for respiratory, upper respiratory tract infection (URI), pneumonia, and bronchitis in Beijing between 2009 and 2011. Results showed that an obvious joint effect of temperature and humidity was revealed on ER visits for respiratory, URI, pneumonia, and bronchitis. Below temperature threshold, the temperature effect was stronger in low humidity level and presented a trend fall with humidity level increase. The effect estimates per 1 °C increase in temperature in low humidity level were -2.88 % (95 % confidence interval (CI) -3.08, -2.67) for all respiratory, -3.24 % (-3.59, -2.88) for URI, -1.48 % (-1.93, -1.03) for pneumonia, and -3.79 % (-4.37, -3.21) for bronchitis ER visits, respectively. However, above temperature threshold, temperature effect was greater in high humidity level and trending upward with humidity level increasing. In high humidity level, a 1 °C increase in temperature, the effect estimates were 1.84 % (1.55, 2.13) for all respiratory, 1.76 % (1.41, 2.11) for URI, and 7.48 % (4.41, 10.65) for bronchitis ER visits. But, there was no statistically significant for pneumonia. This suggests that the modifying effects of the humidity should be considered when analyzing health impacts of temperature.

  14. The minimum work required for air conditioning process

    International Nuclear Information System (INIS)

    Alhazmy, Majed M.

    2006-01-01

    This paper presents a theoretical analysis based on the second law of thermodynamics to estimate the minimum work required for the air conditioning process. The air conditioning process for hot and humid climates involves reducing air temperature and humidity. In the present analysis the inlet state is the state of the environment which has also been chosen as the dead state. The final state is the human thermal comfort fixed at 20 o C dry bulb temperature and 60% relative humidity. The general air conditioning process is represented by an equivalent path consisting of an isothermal dehumidification followed by a sensible cooling. An exergy analysis is performed on each process separately. Dehumidification is analyzed as a separation process of an ideal mixture of air and water vapor. The variations of the minimum work required for the air conditioning process with the ambient conditions is estimated and the ratio of the work needed for dehumidification to the total work needed to perform the entire process is presented. The effect of small variations in the final conditions on the minimum required work is evaluated. Tolerating a warmer or more humid final condition can be an easy solution to reduce the energy consumptions during critical load periods

  15. Decoupling dehumidification and cooling for energy saving and desirable space air conditions in hot and humid Hong Kong

    International Nuclear Information System (INIS)

    Lee, W.L.; Chen Hua; Leung, Y.C.; Zhang, Y.

    2012-01-01

    Highlights: ► The combined use of dedicated ventilation and dry cooling (DCDV) system was investigated. ► Investigations were based actual equipment performance data and realistic building and system characteristics. ► DCDV system could save 54% of the annual energy use for air-conditioning. ► DCDV system could better achieve the desired space air conditions. ► DCDV system could decouple dehumidification and cooling. - Abstract: The combined use of dedicated outdoor air ventilation (DV) and dry cooling (DC) air-conditioning system to decouple sensible and latent cooling for desirable space air conditions, better indoor air quality, and energy efficiency is proposed for hot and humid climates like Hong Kong. In this study, the performance and energy saving potential of DCDV system in comparison to conventional systems (constant air volume (CAV) system with and without reheat) for air conditioning of a typical office building in Hong Kong are evaluated. Through hour-by-hour simulations, using actual equipment performance data and realistic building and system characteristics, the cooling load profile, resultant indoor air conditions, condensation at the DC coil, and energy consumptions are calculated and analyzed. The results indicate that with the use of DCDV system, the desirable indoor conditions could be achieved and the annual energy use could be reduced by 54% over CAV system with reheat. The condensate-free characteristic at the DC coil to reduce risk of catching disease could also be realized.

  16. The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions

    International Nuclear Information System (INIS)

    Kim, Bosung; Cha, Dowon; Kim, Yongchan

    2015-01-01

    Highlights: • Effects of controlling parameters on the transient response of a PEMFC are studied. • The transient response is measured by varying air stoichiometry and air excess ratio. • Voltage drop, undershoot, and voltage fluctuation are analyzed under the load change. • Optimal air stoichiometry and air excess ratio are suggested for stable operation. - Abstract: The transient response of a proton exchange membrane fuel cell (PEMFC) is an important issue for transportation applications. The objective of this study is to investigate the effects of operating and controlling parameters on the transient response of a PEMFC for achieving more stable cell performance under load change conditions. The transient response of a PEMFC was measured and analyzed by varying air stoichiometry, air humidity, and air excess ratio (AER). The optimal air stoichiometry and AER were determined to minimize the voltage drop, undershoot, and voltage fluctuation under the load change, while maintaining high cell performance. Based on the present data, the optimal air stoichiometry was determined to be between 2.0 and 2.5, and the optimal AER was suggested to be between 1.65 and 2.0

  17. Low-cost personal cooling in hot humid offices. Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsen, L [Danish Building Research Inst., (Denmark); Santos, A [Univ. of the Philippines, Diliman (Philippines)

    1997-05-01

    A solution, based on low-cost solar-powered air drying, to heat stress in buildings located in developing countries with a hot and humid climate is presented. The air-drying facilities are described and a validation of the ensuing benefits through comprehensive human exposure studies is given. A prototype of a solar powered supply system for dried air was constructed and supply air was led to six personal units for ventilation and cooling placed in cubicles simulating office workplaces. 123 heat-acclimatized people were exposed for one hour in each of the cubicles. It is concluded that drying indoor air reduces heat stress among heat-adapted people in hot and humid offices and that the low-cost solar powered air drying system functioned satisfactorily , although some improvements are recommended. The drying power of the sun can be stored in recovered silica gel beads and used for other purposes. It is suggested that further research could explore the possibility of desiccant drying of agricultural products during the rainy season. (ARW) 30 refs.

  18. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-07-01

    Full Text Available A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10 was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127 on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS. Details of the implementation in the TEOS-10 SIA library are given in a companion paper.

  19. Odors and sensations of humidity and dryness in relation to sick building syndrome and home environment in Chongqing, China.

    Directory of Open Access Journals (Sweden)

    Juan Wang

    Full Text Available The prevalence of perceptions of odors and sensations of air humidity and sick building syndrome symptoms in domestic environments were studied using responses to a questionnaire on the home environment. Parents of 4530 1-8 year old children from randomly selected kindergartens in Chongqing, China participated. Stuffy odor, unpleasant odor, pungent odor, mold odor, tobacco smoke odor, humid air and dry air in the last three month (weekly or sometimes was reported by 31.4%, 26.5%, 16.1%, 10.6%, 33.0%, 32.1% and 37.2% of the parents, respectively. The prevalence of parents' SBS symptoms (weekly or sometimes were: 78.7% for general symptoms, 74.3% for mucosal symptoms and 47.5% for skin symptoms. Multi-nominal regression analyses for associations between odors/sensations of air humidity and SBS symptoms showed that the odds ratio for "weekly" SBS symptoms were consistently higher than for "sometimes" SBS symptoms. Living near a main road or highway, redecoration, and new furniture were risk factors for perceptions of odors and sensations of humid air and dry air. Dampness related problems (mold spots, damp stains, water damage and condensation were all risk factors for perceptions of odors and sensations of humid air and dry air, as was the presence of cockroaches, rats, and mosquitoes/flies, use of mosquito-repellent incense and incense. Protective factors included cleaning the child's bedroom every day and frequently exposing bedding to sunshine. In conclusion, adults' perceptions of odors and sensations of humid air and dry air are related to factors of the home environment and SBS symptoms are related to odor perceptions.

  20. Roller compaction: Effect of relative humidity of lactose powder.

    Science.gov (United States)

    Omar, Chalak S; Dhenge, Ranjit M; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2016-09-01

    The effect of storage at different relative humidity conditions, for various types of lactose, on roller compaction behaviour was investigated. Three types of lactose were used in this study: anhydrous lactose (SuperTab21AN), spray dried lactose (SuperTab11SD) and α-lactose monohydrate 200M. These powders differ in their amorphous contents, due to different manufacturing processes. The powders were stored in a climatic chamber at different relative humidity values ranging from 10% to 80% RH. It was found that the roller compaction behaviour and ribbon properties were different for powders conditioned to different relative humidities. The amount of fines produced, which is undesirable in roller compaction, was found to be different at different relative humidity. The minimum amount of fines produced was found to be for powders conditioned at 20-40% RH. The maximum amount of fines was produced for powders conditioned at 80% RH. This was attributed to the decrease in powder flowability, as indicated by the flow function coefficient ffc and the angle of repose. Particle Image Velocimetry (PIV) was also applied to determine the velocity of primary particles during ribbon production, and it was found that the velocity of the powder during the roller compaction decreased with powders stored at high RH. This resulted in less powder being present in the compaction zone at the edges of the rollers, which resulted in ribbons with a smaller overall width. The relative humidity for the storage of powders has shown to have minimal effect on the ribbon tensile strength at low RH conditions (10-20%). The lowest tensile strength of ribbons produced from lactose 200M and SD was for powders conditioned at 80% RH, whereas, ribbons produced from lactose 21AN at the same condition of 80% RH showed the highest tensile strength. The storage RH range 20-40% was found to be an optimum condition for roll compacting three lactose powders, as it resulted in a minimum amount of fines in the

  1. Influence of indoor air conditions on radon concentration in a detached house

    International Nuclear Information System (INIS)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-01-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50–60%. - Highlights: ► We use CFD to simulate indoor radon concentration and distribution. ► The effects of ventilation rate, temperature and moisture are investigated. ► Model validation is performed through analytical solution and measurement results. ► Results show that ventilation rate is inversely proportional to radon level. ► There is a range of temperature and relative humidity that minimize radon level.

  2. Mars Science Laboratory (MSL) - First Results of Relative Humidity Observations

    Science.gov (United States)

    Genzer, Maria; Harri, Ari-Matti; Kemppinen, Osku; Gómez-Elvira, Javier; Renno, Nilton; Savijärvi, Hannu; Schmidt, Walter; Polkko, Jouni; Rodríquez-Manfredi, Jose Antonio; de la Torre Juárez, Manuel; Mischna, Michael; Martín-Torres, Javier; Haukka, Harri; Paz Zorzano-Mier, Maria; Rafkin, Scott; Paton, Mark; MSL Science Team

    2013-04-01

    The Mars Science laboratory (MSL) called Curiosity made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity, and UV measurements. The REMS instrument suite is described at length in [1]. We concentrate on describing the first results from the REMS relative humidity observations and comparison of the measurements with modeling results. The REMS humidity device is provided by the Finnish Meteorological Institute. It is based on polymeric capacitive humidity sensors developed by Vaisala Inc. The humidity device makes use of one transducer electronics section placed in the vicinity of the three (3) humidity sensor heads. The humidity device is mounted on the REMS boom 2 providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The absolute accuracy of the humidity device is temperature dependent, and is of the order of 2% at the temperature range of -30 to -10 °C, and of the order of 10% at the temperature range of -80 to -60 °C. This enables the investigations of atmospheric humidity variations of both diurnal and seasonal scale. The humidity device measurements will have a lag, when a step-wise change in humidity is taking place. This lag effect is increasing with decreasing temperature, and it is of the order of a few hours at the temperature of -75 °C. To compensate for the lag effect we used an algorithm developed by Mäkinen [2]. The humidity observations were validated after tedious efforts. This was needed to compensate for the artifacts of the transducer electronics. The compensation process includes an assumption that the relative humidity at Mars in the temperature range of 0 to -30 °C is about zero. The

  3. Effects of High-Humidity Aging on Platinum, Palladium, and Gold Loaded Tin Oxide—Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Maiko Nishibori

    2010-07-01

    Full Text Available This study is an investigation of high-humidity aging effects on the total volatile organic compound (T–VOC gas-sensing properties of platinum, palladium, and gold-loaded tin oxide (Pt,Pd,Au/SnO2 thick films. The sensor responses of the high-humidity aged Pt,Pd,Au/SnO2, a non-aged Pt,Pd,Au/SnO2, and a high-humidity aged Pt/SnO2 to T–VOC test gas have been measured. The high-humidity aging is an effective treatment for resistance to humidity change for the Pt,Pd,Au/SnO2 but not effective for the Pt/SnO2. The mechanism of the high-humidity aging effects is discussed based on the change of surface state of the SnO2 particles.

  4. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    Science.gov (United States)

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  5. Corrosion inhibition of magnesium heated in wet air, by surface fluoridation; Inhibition de la corrosion du magnesium chauffe dans l'air humide, par fluoruration superficielle

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, R; Darras, R; Leclercq, D [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The maximum temperature (350 deg. C) of magnesium corrosion resistance in wet air may be raised to 490-500 deg. C by the formation of a superficial fluoride film. This can be obtained by two different ways: either by addition of hydrofluoric acid to the corroding medium in a very small proportion such as 0,003 mg/litre; at atmospheric pressure, or by dipping the magnesium in a dilute aqueous solution of nitric and hydrofluoric acids at room temperature before exposing it to the corroding atmosphere. In both cases the corrosion inhibition is effective over a very long time, even several thousand hours. (author) [French] La temperature limite (350 deg. C) de resistance du magnesium a la corrosion par l'air humide, peut etre elevee jusque 490-500 deg. C par la formation d'une couche fluoruree superficielle. Deux procedes permettent d'obtenir ce resultat: l'atmosphere corrodante peut etre additionnee d'acide fluorhydrique a une concentration aussi faible que 0,003 mg/litre, a la pression atmospherique, ou bien le magnesium peut etre traite a froid, avant exposition a la corrosion, dans une solution aqueuse diluee d'acides nitrique et fluorhydrique. Dans les deux cas, la protection est assuree, meme pour de tres longues durees d'exposition: plusieurs milliers d'heures. (auteur)

  6. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  7. Measurements of VOC/SVOC emission factors from burning incenses in an environmental test chamber: influence of temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Manoukian, A; Buiron, D; Temime-Roussel, B; Wortham, H; Quivet, E

    2016-04-01

    This study investigates the influence of three environmental indoor parameters (i.e., temperature, relative humidity, and air exchange rate) on the emission of 13 volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) during incense burning. Experiments have been carried out using an environmental test chamber. Statistical results from a classical two-level full factorial design highlight the predominant effect of ventilation on emission factors. The higher the ventilation, the higher the emission factor. Moreover, thanks to these results, an estimation of the concentration range for the compounds under study can be calculated and allows a quick look of indoor pollution induced by incense combustion. Carcinogenic substances (i.e., benzene, benzo(a)pyrene, and formaldehyde) produced from the incense combustion would be predicted in typical living indoors conditions to reach instantaneous concentration levels close to or higher than air quality exposure threshold values.

  8. Searching for new solutions Humidity measurements in the environments

    Directory of Open Access Journals (Sweden)

    Gianina Creţu

    2008-05-01

    Full Text Available More attention is nowadays being paid to thequality of the air we breathe, resulting in an increasingneed for humidity measurements in the home and officeenvironments. Maintaining the proper level of relativehumidity is also necessary to avoid conditions of extremehumidity condensation in buildings.The facts that construction problems and excessive waterand humidity often go together is well-known around theworld today. Moisture and water damage is a wellknown problem in construction in many countries.Problems of all construction are caused by humidity and50 per cent of all buildings have some kind of moisturerelatedproblems. Growing awareness of percentages suchas these has led to greater attention being paid toconstruction humidity and its measurement throughoutthe world in recent years.This paper presents a condensed review of nowadayshumidity sensors technology, problem implicated andsome modern tendencies.

  9. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    International Nuclear Information System (INIS)

    Seppä, Jeremias; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Lassila, Antti; Reischl, Bernhard; Raiteri, Paolo; Rohl, Andrew L; Nordlund, Kai

    2017-01-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation. (paper)

  10. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    Science.gov (United States)

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  11. Preferred Air Velocity and Local Cooling Effect of desk fans in warm environments

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2013-01-01

    to compensate for higher environmental temperatures at the expense of no or relatively low energy consumption. When using desk fans, local air movement is generated around the occupant and a certain cooling effect is perceived. The impact of the local air movement generated by different air flow patterns......Common experiences, standards, and laboratory studies show that increased air velocity helps to offset warm sensation due to high environmental temperatures. In warm climate regions the opening of windows and the use of desk or ceiling fans are the most common systems to generate increased airflows......, and the possibility to keep comfortable conditions for the occupants in warm environments were evaluated in studies with human subjects. In an office-like climatic chamber, the effect of higher air velocity was investigated at room temperatures between 26°C to 34°C and at constant absolute humidity of 12.2 g...

  12. Efficiency of producing anion and relative humidity of the indigenous woody plants in Jeju islands

    Science.gov (United States)

    Son, S.-G.; Kim, K.-J.; Kim, H.-J.; Kim, C.-M.; Byun, K.-O.

    2009-04-01

    This study is to evaluate the ability of interior plants to produce anion and relative humidity that can purify polluted indoor air. Four indigenous woody plants in Jeju islands such as Sarcandra glaber (Thunb.) Nakai, Illicium anisatum L, Cleyera japonica Thunb. and Ilex rotunda Thunb. were used. Sansevieria trifasciata cv. Laurentii was also used as a comparative plant. The amount of anion and increment of relative humidity produced by five species of indoor plants was assessed by anion measurement (ITC-201A)in a sealed acryl chamber (118Ã-118Ã-119.5cm). The highest amount of anion was 515 ea/cm3produced by I. rotunda. The amounts of anion were 293 ea/cm3, 273 ea/cm3, and 211 ea/cm3 in S. glaber, I. anisatum and C. japonica, respecively while it was 220 ea/cm3 in S. trifasciata. The increment of relative humidity was highest in I. anisatum as 27.4% while it was lowest in S. trifasciata as 14.0%. This result suggested that all four indigenous plants tested were more effective to purify the indoor polluted air than S. trifasciata. Key words: interior plant, S. glaber, I. anisatum, C. japonica, I. rotunda, indoor polluted air

  13. Performance study of desiccant coated heat exchanger air conditioning system in winter

    International Nuclear Information System (INIS)

    Ge, T.S.; Dai, Y.J.; Wang, R.Z.

    2016-01-01

    Highlights: • Performance of desiccant coated heat exchanger AC system is predicted. • Effects of main operation parameters and climatic conditions are discussed. • Regeneration temperature of 30 °C is recommended under simulation condition. • Higher ambient humidity ratio results in increased humidity ratio of supply air. • Temperature of ambient air has neglectable effect on supply air. - Abstract: Conventional air source heat pump system faces several challenges when adopted in winter season. Solid desiccant air conditioning system can provide humidification and heating power simultaneously and can be driven by low grade thermal energy; it provides a good alternative for air source heat pump systems. However, conventional solid desiccant air conditioning system adopts desiccant wheel with high cost as core component, which hinders the development of such system. Recently, desiccant coated heat exchanger (DCHE) with low initial cost and high efficiency was developed and this paper aims to investigate performance of DCHE air conditioning system adopted in Shanghai winter season. Performance of the system is predicted by a developed mathematical model where supply air states, mass of humidification and coefficient of performance (COP) are adopted as performance indices to evaluate the feasibility and energy utilization ratio of the system. Effects of regeneration water temperature on system performance are analyzed. It is found that under the simulation condition, relatively low regeneration temperature (such as 20 °C) cannot meet the designed standard and relatively high regeneration temperature (such as 40 °C) provides too much extra heating power, thus moderate regeneration temperature around 30 °C is recommended. Meanwhile, switch time is a crucial operation parameter for the system to obtain satisfied supply air, switch time from 40 s to 80 s and from 70 s to 240 s are recommended for transient and average supply air states, respectively. Both

  14. Resistance of HEPA filter separator materials to humid air--hydrogen fluoride--fluorine environments

    International Nuclear Information System (INIS)

    Weber, C.W.; Petit, G.S.; Woodfin, S.B.

    1977-01-01

    The U. S. Energy Research and Development Administration (ERDA) is interested in the development of a high-efficiency particulate air (HEPA) filter that is resistant to such corrosive reagents as hydrogen fluoride (HF) and fluorine (F 2 ) in air environments of normal relative humidity (about 50% RH). Several types of separator materials are used in the fabrication of commercial filters. The basic types of separator materials are asbestos, Kraft paper, plastic, and aluminum. At the request of the ERDA Division of Operational Safety, the different types of separator materials have been evaluated for their resistance to corrosive attack by HF and F 2 . The separator materials were dynamically tested in the 4-stage multiunit tester located in the Oak Ridge Gaseous Diffusion Plant laboratories. This is the system previously used in the evaluation of the Herty Foundation filter paper samples. Concurrent with the testing of filter media for its resistance to HF and F 2 , another component of the completed filter, the separator, was tested. All samples were exposed to a constant air flow (50% RH) of 32 liters/min, at 100 0 F, containing 900 ppM HF and 300 ppM F 2 . Exposure periods varied from 2 to 1000 h; however, the longer exposures were made only on the stronger candidates. Test results show the plastic and aluminum separator materials to be superior to the other types in resistance to HF and F 2 . The asbestos separators disintegrated after a relatively short exposure time; the Kraft paper types were the next weakest. The Clear Plastic S was the best performer of the plastics tested

  15. Air Conditioner/Dehumidifier

    Science.gov (United States)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  16. Thermal Comfort: An Index for Hot, Humid Asia. Educational Building Digest 12.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    The sensation of thermal comfort is determined by a combination of air temperature, humidity of the air, rate of movement of the air, and radiant heat. This digest is intended to assist architects to design educational facilities that are as thermally comfortable as is possible without recourse to mechanical air conditioning. A nomogram is…

  17. Implications of drying temperature and humidity on the drying kinetics of seaweed

    Science.gov (United States)

    Ali, Majid Khan Majahar; Fudholi, Ahmad; Muthuvalu, M. S.; Sulaiman, Jumat; Yasir, Suhaimi Md

    2017-11-01

    A Low Temperature and Humidity Chamber Test tested in the Solar Energy Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia. Experiments are attempted to study the effect of drying air temperature and humidity on the drying kinetics of seaweed Kappaphycus species Striatum besides to develop a model to estimate the drying curves. Simple method using a excel software is used in the analysis of raw data obtained from the drying experiment. The values of the parameters a, n and the constant k for the models are determined using a plot of curve drying models. Three different drying models are compared with experiment data seaweed drying at 30, 40, 50 and 60°C and relative humidity 20, 30 and 40% for seaweed. The higher drying temperatures and low relative humidity effects the moisture content that will be rapidly reduced. The most suitable model is selected to best describe the drying behavior of seaweed. The values of the coefficient of determination (R2), mean bias error (MBE) and root mean square error (RMSE) are used to determine the goodness or the quality of the fit. The Page model is showed a better fit to drying seaweed. The results from this study crucial for solar dryer development on pilot scale in Malaysia.

  18. Limiting criteria for human exposure to low humidity indoors

    DEFF Research Database (Denmark)

    Wyon, David; Fang, Lei; Meyer, H.

    2002-01-01

    Thirty subjects (17 female) were exposed for 5 hours to clean air at 5%, 15%, 25% and 35% RH at 22 deg.C. Another 30 subjects (15 female) were similarly exposed to air polluted by carpet and linoleum at 18, 22 and 26 deg.C with humidity 2.4 g/kg dry air (=15% RH at 22 deg.C), and at 22 deg.C, 35......% RH. The subjects performed simulated office work throughout each exposure. Building Related Symptom (BRS) intensity was reported on visual-analogue scales. Tests of eye, nose and skin function were applied. In these short exposures subjective discomfort, though significantly increased by low humidity......, was very moderate even at 5% RH. However, tear film quality as indicated by the Mucous Ferning Test deteriorated significantly at RH22 deg.C, significantly more rapid blink rates were observed at 5% than at 35% RH, and skin became significantly more dry at 15% than at 35% RH....

  19. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S., E-mail: sankha.deepp@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  20. PSYCRODATA: a software which calculates the air humidity characteristics and relate its with the variations of the gamma environmental bottom; PSYCRODATA: software que calcula las caracteristicas de la humedad del aire y las relaciona con las variaciones del fondo gamma ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Alonso A, D.; Dominguez L, O.; Ramos V, O.; Caveda R, C.A.; Capote F, E. [CPHR, Calle 20 No. 4113 e/41 y 47, Playa, C.P. 11300, A.P. 6195, C.P. 10600 La Habana (Cuba); Dominguez G, A.; Valdes S, E. [Instituto Superior de Ciencias y Tecnicas Aplicadas (INSTEC), La Habana (Cuba); Rodriguez V, E. [Instituto de Meteorologia (INSMET), La Habana (Cuba)]. e-mail: lola@cphr.edu.cu

    2006-07-01

    The computer tool 'Psycrodata', able to calculate the values of those characteristics of the humidity of the air starting from the measurements carried out of humidity and temperature in the post of occident of the National Net of Environmental Radiological Surveillance was obtained. Among the facilities that 'Psycrodata' toasts it is the keeping the obtained information in a database facilitating the making of reports. For another part the possibility of selection of different approaches for the calculation and the introduction of the psicrometric coefficient to use, its make that each station can have the suitable psicrometric chart keeping in mind the instrumentation and the characteristics of the area of location of the same one. Also, can have facilities to import text files for later on to be plotted, it allowed to correlate the absorbed dose rate in air due to the environmental gamma radiation, besides of the temperature and the humidity, with the tension of the water steam, the temperature of the dew point and the saturation deficit. (Author)

  1. Transferts de masse et de chaleur entre une gouttelette d'un liquide hygroscopique et l'air humide

    OpenAIRE

    Pelletret , R.; Sylvain , J.-D.

    1985-01-01

    Cette étude s'insère dans le cadre des interactions entre un liquide hygroscopique et l'air humide. Par définition, une goutte d'un tel liquide capte les molécules de vapeur d'eau et s'échauffe du fait de la chaleur libérée, à sa surface, par condensation. Des expérimentations, mesurant en régime transitoire la température de gouttelettes de chlorure de lithium et de soude, ont permis de valider, pour nos applications, la corrélation de Ranz et Marshall. Un modèle aux différences finies, de l...

  2. Humidity effects on scanning polarization force microscopy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue, E-mail: shenyue@isl.ac.cn [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, Yuan, E-mail: zhouy@isl.ac.cn [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Sun, Yanxia; Zhang, Lijuan [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Ying; Hu, Jun; Zhang, Yi [Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-08-01

    Highlights: • The humidity dramatically affects the contrast of scanning polarization force microscopy (SPFM) imaging on mica surface. • This influence roots in the sensitive dielectric constant of mica surface to the humidity change. • A strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM is proposed. - Abstract: Scanning polarization force microscopy (SPFM) is a useful surface characterization technique to visually characterize and distinguish nanomaterial with different local dielectric properties at nanometer scale. In this paper, taking the individual one-atom-thick graphene oxide (GO) and reduced graphene oxide (rGO) sheets on mica as examples, we described the influences of environmental humidity on SPFM imaging. We found that the apparent heights (AHs) or contrast of SPFM imaging was influenced significantly by relative humidity (RH) at a response time of a few seconds. And this influence rooted in the sensitive dielectric constant of mica surface to the RH change. While dielectric properties of GO and rGO sheets were almost immune to the humidity change. In addition, we gave the method to determine the critical humidity at which the contrast conversion happened under different conditions. And this is important to the contrast control and repeatable imaging of SPFM through RH adjusting. These findings suggest a strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM, which is critically important for further distinguishment, manipulation, electronic applications, etc.

  3. Relative Humidity in the Tropopause Saturation Layer

    Science.gov (United States)

    Selkirk, H. B.; Schoeberl, M. R.; Pfister, L.; Thornberry, T. D.; Bui, T. V.

    2017-12-01

    The tropical tropopause separates two very different atmospheric regimes: the stable lower stratosphere where the air is both extremely dry and nearly always so, and a transition layer in the uppermost tropical troposphere, where humidity on average increases rapidly downward but can undergo substantial temporal fluctuations. The processes that control the humidity in this layer below the tropopause include convective detrainment (which can result in either a net hydration or dehydration), slow ascent, wave motions and advection. Together these determine the humidity of the air that eventually passes through the tropopause and into the stratosphere, and we refer to this layer as the tropopause saturation layer or TSL. We know from in situ water vapor observations such as Ticosonde's 12-year balloonsonde record at Costa Rica that layers of supersaturation are frequently observed in the TSL. While their frequency is greatest during the local rainy season from June through October, supersaturation is also observed in the boreal winter dry season when deep convection is well south of Costa Rica. In other words, local convection is not a necessary condition for the presence of supersaturation. Furthermore, there are indications from airborne measurements during the recent POSIDON campaign at Guam that if anything deep convection tends to `reset' the TSL locally to a state of just-saturation. Conversely, it may be that layers of supersaturation are the result of slow ascent. To explore these ideas we take Ticosonde water vapor observations from the TSL, stratify them on the basis of relative humidity and report on the differences in the the history of upstream convective influence between supersaturated parcels and those that are not.

  4. Stable and Selective Humidity Sensing Using Stacked Black Phosphorus Flakes.

    Science.gov (United States)

    Yasaei, Poya; Behranginia, Amirhossein; Foroozan, Tara; Asadi, Mohammad; Kim, Kibum; Khalili-Araghi, Fatemeh; Salehi-Khojin, Amin

    2015-10-27

    Black phosphorus (BP) atomic layers are known to undergo chemical degradation in humid air. Yet in more robust configurations such as films, composites, and embedded structures, BP can potentially be utilized in a large number of practical applications. In this study, we explored the sensing characteristics of BP films and observed an ultrasensitive and selective response toward humid air with a trace-level detection capability and a very minor drift over time. Our experiments show that the drain current of the BP sensor increases by ∼4 orders of magnitude as the relative humidity (RH) varies from 10% to 85%, which ranks it among the highest ever reported values for humidity detection. The mechanistic studies indicate that the operation principle of the BP film sensors is based on the modulation in the leakage ionic current caused by autoionization of water molecules and ionic solvation of the phosphorus oxoacids produced on moist BP surfaces. Our stability tests reveal that the response of the BP film sensors remains nearly unchanged after prolonged exposures (up to 3 months) to ambient conditions. This study opens up the route for utilizing BP stacked films in many potential applications such as energy generation/storage systems, electrocatalysis, and chemical/biosensing.

  5. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    International Nuclear Information System (INIS)

    Poirier, Aurelie; Douysset, Guilhem

    2006-01-01

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a 192 Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A ±0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations

  6. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Aurelie; Douysset, Guilhem [Laboratoire National Henri Becquerel-LNE, CEA Saclay 91191 Gif-sur-Yvette (France)

    2006-10-07

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a {sup 192}Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A {+-}0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations.

  7. VAB Temperature and Humidity Study

    Science.gov (United States)

    Lane, John E.; Youngquist, Robert C.; Muktarian, Edward; Nurge, Mark A.

    2014-01-01

    In 2012, 17 data loggers were placed in the VAB to measure temperature and humidity at 10-minute intervals over a one-year period. In 2013, the data loggers were replaced with an upgraded model and slight adjustments to their locations were made to reduce direct solar heating effects. The data acquired by the data loggers was compared to temperature data provided by three wind towers located around the building. It was found that the VAB acts as a large thermal filter, delaying and reducing the thermal oscillations occurring outside of the building. This filtering is typically more pronounced at higher locations in the building, probably because these locations have less thermal connection with the outside. We surmise that the lower elevations respond more to outside temperature variations because of air flow through the doors. Temperatures inside the VAB rarely exceed outdoor temperatures, only doing so when measurements are made directly on a surface with connection to the outside (such as a door or wall) or when solar radiation falls directly on the sensor. A thermal model is presented to yield approximate filter response times for various locations in the building. Appendix A contains historical thermal and humidity data from 1994 to 2009.

  8. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    International Nuclear Information System (INIS)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection

  9. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi, E-mail: kumasaka@spring8.or.jp [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-09-01

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection.

  10. Direct versus indirect effects of tropospheric humidity changes on the hydrologic cycle

    International Nuclear Information System (INIS)

    Sherwood, S C

    2010-01-01

    Abundant evidence indicates that tropospheric specific humidity increases in a warmer atmosphere, at rates roughly comparable to those at constant relative humidity. While the implications for the planetary energy budget and global warming are well recognized, it is the net atmospheric cooling (or surface heating) that controls the hydrologic cycle. Relative humidity influences this directly through gas-phase radiative transfer, and indirectly by affecting cloud cover (and its radiative effects) and convective heating. Simple calculations show that the two indirect impacts are larger than the direct impact by roughly one and two orders of magnitude respectively. Global or regional relative humidity changes could therefore have significant indirect impacts on energy and water cycles, especially by altering deep convection, even if they are too small to significantly affect global temperature. Studies of climate change should place greater emphasis on these indirect links, which may not be adequately represented in models.

  11. The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Woloszyn, Monika [Universite de Lyon, Lyon F-69003 (France); Universite Lyon1, Villeurbanne F-69622 (France); INSA-Lyon, CETHIL UMR CNRS 5008, bat. Sadi Carnot, F-69621 Villeurbanne cedex (France); Kalamees, Targo [Chair of Building Physics and Architecture, Tallinn University of Technology, Ehiteja tee 5 19086 (Estonia); Olivier Abadie, Marc [Pontifical Catholic University of Parana - PUCPR/CCET-Thermal Systems Laboratory, Rua Imaculada Conceicao, 1155 Curitiba, PR 80215-901 (Brazil); LEPTIAB-University of La Rochelle, Avenue M. Crepeau, 17000 La Rochelle (France); Steeman, Marijke [Department of Architecture and Urban Planning, UGENT-Ghent University, J. Plateaustraat 22, 9000 Ghent (Belgium); Sasic Kalagasidis, Angela [Department of Building Technology, Chalmers University of Technology, Sven Hultins gata 8, 412 96 Gothenburg (Sweden)

    2009-03-15

    Indoor moisture management, which means keeping the indoor relative humidity (RH) at correct levels, is very important for whole building performance in terms of indoor air quality (IAQ), energy performance and durability of the building. In this study, the effect of combining a relative-humidity-sensitive (RHS) ventilation system with indoor moisture buffering materials was investigated. Four comprehensive heat-air-moisture (HAM) simulation tools were used to analyse the performance of different moisture management strategies in terms of IAQ and of energy efficiency. Despite some differences in results, a good agreement was found and similar trends were detected from the results, using the four different simulation tools. The results from simulations demonstrate that RHS ventilation reduces the spread between the minimum and maximum values of the RH in the indoor air and generates energy savings. Energy savings are achieved while keeping the RH at target level, not allowing for possible risk of condensations. The disadvantage of this type of demand controlled-ventilation is that other pollutants (such as CO{sub 2}) may exceed target values. This study also confirmed that the use of moisture-buffering materials is a very efficient way to reduce the amplitude of daily moisture variations. It was possible, by the combined effect of ventilation and wood as buffering material, to keep the indoor RH at a very stable level. (author)

  12. Mars Science Laboratory relative humidity observations: Initial results.

    Science.gov (United States)

    Harri, A-M; Genzer, M; Kemppinen, O; Gomez-Elvira, J; Haberle, R; Polkko, J; Savijärvi, H; Rennó, N; Rodriguez-Manfredi, J A; Schmidt, W; Richardson, M; Siili, T; Paton, M; Torre-Juarez, M De La; Mäkinen, T; Newman, C; Rafkin, S; Mischna, M; Merikallio, S; Haukka, H; Martin-Torres, J; Komu, M; Zorzano, M-P; Peinado, V; Vazquez, L; Urqui, R

    2014-09-01

    The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppmMSL relative humidity observation provides good dataHighest detected relative humidity reading during first MSL 100 sols is RH75.

  13. Relative humidity measurements with thermocouple psychrometer and capacitance sensors

    International Nuclear Information System (INIS)

    Mao, Naihsien.

    1991-01-01

    The relative humidity is one of the important hydrological parameters affecting waste package performance. Water potential of a system is defined as the amount of work required to reversibly and isothermally move an infinitesimal quantity of water from a pool of pure water to that system at the same elevation. The thermocouple psychrometer, which acts as a wet-dry bulb instrument based on the Peltier effect, is used to measure water potential. The thermocouple psychrometer works only for relative humidity greater than 94 percent. Other sensors must be used for drier conditions. Hence, the author also uses a Vaisala Humicap, which measures the capacitance change due to relative humidity change. The operation range of the Humicap (Model HMP 135Y) is from 0 to 100 percent relative humidity and up to 160C (320F) in temperature. A psychrometer has three thermocouple junctions. Two copper-constantan junctions serve as reference temperature junctions and the constantan-chromel junction is the sensing junction. Current is passed through the thermocouple causing cooling of the sensing junction by the Peltier effect. When the temperature of the junction is below the dew point, water will condense upon the junction from the air. The Peltier current is discontinued and the thermocouple output is recorded as the temperature of the thermocouple returns to ambient. The temperature changes rapidly toward the ambient temperature until it reaches the wet bulb depression temperature. At this point, evaporation of the water from the junction produces a cooling effect upon the junction that offsets the heat absorbed from the ambient surroundings. This continues until the water is depleted and the thermocouple temperature returns to the ambient temperature (Briscoe, 1984). The datalogger starts to take data roughly at the wet bulb depression temperature

  14. Post-exercise cooling techniques in hot, humid conditions.

    Science.gov (United States)

    Barwood, Martin James; Davey, Sarah; House, James R; Tipton, Michael J

    2009-11-01

    Major sporting events are often held in hot and humid environmental conditions. Cooling techniques have been used to reduce the risk of heat illness following exercise. This study compared the efficacy of five cooling techniques, hand immersion (HI), whole body fanning (WBF), an air cooled garment (ACG), a liquid cooled garment (LCG) and a phase change garment (PCG), against a natural cooling control condition (CON) over two periods between and following exercise bouts in 31 degrees C, 70%RH air. Nine males [age 22 (3) years; height 1.80 (0.04) m; mass 69.80 (7.10) kg] exercised on a treadmill at a maximal sustainable work intensity until rectal temperature (T (re)) reached 38.5 degrees C following which they underwent a resting recovery (0-15 min; COOL 1). They then recommenced exercise until T (re) again reached 38.5 degrees C and then undertook 30 min of cooling with (0-15 min; COOL 2A), and without face fanning (15-30 min; COOL 2B). Based on mean body temperature changes (COOL 1), WBF was most effective in extracting heat: CON 99 W; WBF: 235 W; PCG: 141 W; HI: 162 W; ACG: 101 W; LCG: 49 W) as a consequence of evaporating more sweat. Therefore, WBF represents a cheap and practical means of post-exercise cooling in hot, humid conditions in a sporting setting.

  15. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring.

    Science.gov (United States)

    Wei, Peng; Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K K

    2018-01-23

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO₂), and oxidants (O x ) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO₂ and ozone on a newly introduced oxidant sensor.

  16. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series for carbon monoxide (CO, nitric oxide (NO, nitrogen dioxide (NO2, and oxidants (Ox were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor.

  17. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Science.gov (United States)

    Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K. K.

    2018-01-01

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), and oxidants (Ox) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor. PMID:29360749

  18. The effects of building-related factors on classroom relative humidity among North Carolina schools participating in the 'Free to Breathe, Free to Teach' study.

    Science.gov (United States)

    Angelon-Gaetz, K A; Richardson, D B; Lipton, D M; Marshall, S W; Lamb, B; LoFrese, T

    2015-12-01

    Both high and low indoor relative humidity (RH) directly impact Indoor Air Quality (IAQ), an important school health concern. Prior school studies reported a high prevalence of mold, roaches, and water damage; however, few examined associations between modifiable classroom factors and RH, a quantitative indicator of dampness. We recorded RH longitudinally in 134 North Carolina classrooms (n = 9066 classroom-days) to quantify the relationships between modifiable classroom factors and average daily RH below, within, or above levels recommended to improve school IAQ (30-50% or 30-60% RH). The odds of having high RH (>60%) were 5.8 [95% Confidence Interval (CI): 2.9, 11.3] times higher in classrooms with annual compared to quarterly heating, ventilating, and air-conditioning (HVAC) system maintenance and 2.5 (95% CI: 1.5, 4.2) times higher in classrooms with HVAC economizers compared to those without economizers. Classrooms with direct-expansion split systems compared to chilled water systems had 2.7 (95% CI: 1.7, 4.4) times higher odds of low RH (60%) of those without setbacks. This research suggests actionable decision points for school design and maintenance to prevent high or low classroom RH. This study combines longitudinal measurements of classroom relative humidity with school inspection data from several schools to describe the problem of relative humidity control in schools. Our findings on how maintenance and mechanical factors affect classroom humidity provide suggestions on building operations policies and heating, ventilating, and air-conditioning (HVAC) design considerations that may improve classroom relative humidity control. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    Science.gov (United States)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from

  20. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate.

    Science.gov (United States)

    Johnston, James D; Tuttle, Steven C; Nelson, Morgan C; Bradshaw, Rebecca K; Hoybjerg, Taylor G; Johnson, Julene B; Kruman, Bryce A; Orton, Taylor S; Cook, Ryan B; Eggett, Dennis L; Weber, K Scott

    2016-01-01

    Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan-Apr) and summer (July-Sept), 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.

  1. Lichen flora of London: effects of air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Laundon, J R

    1967-01-01

    There is good, but not conclusive, evidence that sulfur dioxide is the pollutant which deleteriously affects lichens. The distribution of many lichens in London corresponds closely with the concentrations of sulfur dioxide. Low humidity is also a factor. Apart from actually killing lichens, increasing air pollution can render certain species incapable of colonizing new surfaces, although the old thalli themselves are able to survive as relicts. Until the early nineteenth century air pollution affected the lichen flora only in the small built-up area of London. The halting of building around London since 1938 has brought stability to the lichen vegetation of the area, and since then changes have been minor ones. Recent changes in pollution emissions have had little effect on the lichen flora between 1950 and 1967. This is to be expected as sulfur dioxide concentrations have remained fairly constant at ground level.

  2. Corrosion inhibition of magnesium heated in wet air, by surface fluoridation; Inhibition de la corrosion du magnesium chauffe dans l'air humide, par fluoruration superficielle

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, R.; Darras, R.; Leclercq, D. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The maximum temperature (350 deg. C) of magnesium corrosion resistance in wet air may be raised to 490-500 deg. C by the formation of a superficial fluoride film. This can be obtained by two different ways: either by addition of hydrofluoric acid to the corroding medium in a very small proportion such as 0,003 mg/litre; at atmospheric pressure, or by dipping the magnesium in a dilute aqueous solution of nitric and hydrofluoric acids at room temperature before exposing it to the corroding atmosphere. In both cases the corrosion inhibition is effective over a very long time, even several thousand hours. (author) [French] La temperature limite (350 deg. C) de resistance du magnesium a la corrosion par l'air humide, peut etre elevee jusque 490-500 deg. C par la formation d'une couche fluoruree superficielle. Deux procedes permettent d'obtenir ce resultat: l'atmosphere corrodante peut etre additionnee d'acide fluorhydrique a une concentration aussi faible que 0,003 mg/litre, a la pression atmospherique, ou bien le magnesium peut etre traite a froid, avant exposition a la corrosion, dans une solution aqueuse diluee d'acides nitrique et fluorhydrique. Dans les deux cas, la protection est assuree, meme pour de tres longues durees d'exposition: plusieurs milliers d'heures. (auteur)

  3. Indoor swimming pools. Humidity caused problems and suggested solutions

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Reports have been received from across Canada on premature deterioration and other problems of indoor swimming pool buildings. This technical paper has been prepared to assist pool managers to solve these problems, which typically include leaking roofs, condensation on inside walls, peeling paint, efflorescence, rusting of metal elements, deterioration of concrete block structures, and high costs for pool heating. An effective insulation and vapor barrier system for a swimming pool roof is described, and the high relative humidity of the typical pool building is discussed as the primary cause of most problems. Proper sealing to cut down air infiltration is recommended, along with proper maintenance and painting. High energy costs are often due to low insulation values and to excessive ventilation used for decreasing the humidity. By using dehumidifiers capable of heat recovery, and by placing an insulating blanket on the pool after operating hours, it is shown that substantial cost savings are possible. 10 figs.

  4. Effect of Temperature and Relative Humidity on the Growth of ...

    African Journals Online (AJOL)

    were used to determine the temperature effect on the growth of H. fulvum. Maximum growth of H. ... The fungus showed maximum growth at 92.5 and 100% relative humidity. .... recommended that fruits and vegetables should be stored at low ...

  5. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  6. Retrofit device and method to improve humidity control of vapor compression cooling systems

    Science.gov (United States)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2016-08-16

    A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.

  7. Short term change in relative humidity during the festival of Diwali in India

    Science.gov (United States)

    Ganguly, Nandita D.

    2015-07-01

    The changes in humidity levels during the Diwali festivities have been examined over a period of 13 years at three Indian metro cities: Ahmedabad, New Delhi and Kolkata. A small short term increase in relative humidity even in the absence of transport of humid air from Arabian Sea and Bay of Bengal has been observed. The relative humidity levels were found to be exceeding the ambient levels during night and lying below the ambient levels during morning hours, indicating an increase in the survival rates of viruses responsible for the transmission of viral infections, as well as triggering immune-mediated illnesses such as asthma during Diwali.

  8. Building America Case Study: Compact Buried Ducts in a Hot-Humid Climate House, Lady's Island, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences, 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs, and 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  9. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    Science.gov (United States)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection. PMID:23999307

  10. Hygroscopic slaking of lime with steam or humid air. New energy effective lime slaking technology in kraft pulping; Hygroskopisk slaeckning av kalk med aanga eller fuktig luft. Ny energieffektiv teknik foer slaeckning av mesakalk i sulfatmassaindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Roland

    2005-12-15

    Lime stone is widely used in chemical recovery for regeneration of white liquor in kraft pulping. Slaked (hydrated) lime is used to convert (causticize) sodium carbonate into sodium hydroxide, whereby lime mud (calcium carbonate) precipitates from the solution. Lime mud is dried and reburned in a lime kiln, where burned lime (calcium oxide) is formed. The circle is closed when lime is slaked (hydrated) in green liquor in an exotherm reaction. Problems with traditional slaking method is that heat is recovered at low temperatures. With the method described in this report there is potential to increase heat recovery in the causticizing plant. The forecasted method means that lime is slaked with steam or humid air, for example combined with a lime mud drier and a lime kiln. The task has included slaking of burned lime with steam or humid hot air, on purpose to test a specific machine equipment in pilote scale, and to investigate temperatures and hydratization rates able to reach. Also the lime slaked with steam/humid air should be compared with burned lime slaked in green liquor when green liquor is causticized, and to investigate the dewatering properties of formed lime mud. The target group is pulp and paper industry using the kraft process. The tests have been performed at SMA Svenska Mineral AB plant (lime burning) at Sandarne Sweden in years 2004-2005. Hydrated lime of varying slaking rates has been produced at temperatures up to 270 deg C. Caustizicing being performed show that dewatering properties of lime mud formed is quite up to the standard of lime mud from burned lime slaked in green liquor. The apprehension, that the hygroscopic slaked lime should result in lime mud difficult to dewater, has not become true. Important experiences have come out which could be used as a base in further investigations.

  11. Effects of air pollutants on epicuticular wax structure

    International Nuclear Information System (INIS)

    Huttunen, S.

    1994-01-01

    In xerophytes, like conifers, the epicuticular wax is well developed. Especially in and around stomatal entrances, a thick wax coating is present. Epicuticular waxes are modified by changes in plant growth conditions such as temperature, relative humidity, irradiance, and wind, or acid rain. The fine structure of epicuticular waxes, their chemistry, and ecophysiological function are modified, especially in evergreen, long-lived conifer needles with characteristic crystalline wax structures. During needle flushing and development, wax structure is easily modified. Acid rain-treated Scots pine needles had 50% less epicuticular waxes in early August. Pollution-induced delayed development, destruction, and disturbances have been identified in many plant species. The structural changes in wax crystals are known. Acid rain or polluted air can destroy the crystalloid epicuticular waxes in a few weeks. In Pinus sylvestris, the first sign of pollution effect is the fusion of wax tubes. In Picea abies and P. sitchensis, modifications of crystalloid wax structure are known. In Californian pine trees phenomena of recrystallization of wax tubes on second-year needles were observed after delayed epicuticular wax development in Pinus ponderosa and P. coulteri. Thus, the effects of air pollutants are modified by climate. Accelerated senescence of leaves and needles have been associated with natural and anthropogenic stresses. The accelerated erosion rate of epicuticular waxes has been measured under air pollution conditions. Many short-term air pollution experiments have failed to show any structural changes in epicuticular wax structures. The quantity and quality of needle waxes grown in open-top chambers, glass houses, or polluted air before treatment, differ from field conditions and make it difficult to detect effects of any treatment. (orig.)

  12. Changes in materials properties explain the effects of humidity on gecko adhesion.

    Science.gov (United States)

    Puthoff, Jonathan B; Prowse, Michael S; Wilkinson, Matt; Autumn, Kellar

    2010-11-01

    Geckos owe their remarkable stickiness to millions of dry setae on their toes, and the mechanism of adhesion in gecko setae has been the topic of scientific scrutiny for over two centuries. Previously, we demonstrated that van der Waals forces are sufficient for strong adhesion and friction in gecko setae, and that water-based capillary adhesion is not required. However, recent studies demonstrated that adhesion increases with relative humidity (RH) and proposed that surface hydration and capillary water bridge formation is important or even necessary. In this study, we confirmed a significant effect of RH on gecko adhesion, but rejected the capillary adhesion hypothesis. While contact forces of isolated tokay gecko setal arrays increased with humidity, the increase was similar on hydrophobic and hydrophilic surfaces, inconsistent with a capillary mechanism. Contact forces increased with RH even at high shear rates, where capillary bridge formation is too slow to affect adhesion. How then can a humidity-related increase in adhesion and friction be explained? The effect of RH on the mechanical properties of setal β-keratin has escaped consideration until now. We discovered that an increase in RH softens setae and increases viscoelastic damping, which increases adhesion. Changes in setal materials properties, not capillary forces, fully explain humidity-enhanced adhesion, and van der Waals forces remain the only empirically supported mechanism of adhesion in geckos.

  13. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate.

    Directory of Open Access Journals (Sweden)

    James D Johnston

    Full Text Available Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan-Apr and summer (July-Sept, 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.

  14. The Interaction Effects of Meteorological Factors and Air Pollution on the Development of Acute Coronary Syndrome.

    Science.gov (United States)

    Huang, Ching-Hui; Lin, Heng-Cheng; Tsai, Chen-Dao; Huang, Hung-Kai; Lian, Ie-Bin; Chang, Chia-Chu

    2017-03-09

    This study investigated the interaction effects of meteorological factors and air pollutants on the onset of acute coronary syndrome (ACS). Data of ACS patients were obtained from the Taiwan ACS Full Spectrum Registry and comprised 3164 patients with a definite onset date during the period October 2008 and January 2010 at 39 hospitals. Meteorological conditions and air pollutant concentrations at the 39 locations during the 488-day period were obtained. Time-lag Poisson and logistic regression were used to explore their association with ACS incidence. One-day lag atmospheric pressure (AP), humidity, particulate matter (PM 2.5 , and PM 10 ), and carbon monoxide (CO) all had significant interaction effects with temperature on ACS occurrence. Days on which high temperatures (>26 °C) and low AP (Typhoon Morakot was an example of high temperature with extremely low AP associated with higher ACS incidence than the daily average. Combinations of high concentrations of PM or CO with low temperatures (<21 °C) and high humidity levels with low temperatures were also associated with increased incidence of ACS. Atmospheric pollution and weather factors have synergistic effects on the incidence of ACS.

  15. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bergey, Daniel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  16. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Somerville, MA (United States); Bergey, Daniel [Building Science Corporation, Somerville, MA (United States)

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  17. Statistical analysis of the effects of relative humidity and temperature ...

    African Journals Online (AJOL)

    Meteorological data from the Department of Satellite Application Facility on Climate Monitoring (CMSAF), DWD Germany have been used to study and investigate the effect of relative humidity and temperature on refractivity in twenty six locations grouped into for climatic regions aloft Nigeria (Coastal, Guinea savannah, ...

  18. Effect of Temperature and Relative Humidity on the Growth of ...

    African Journals Online (AJOL)

    The effects of temperature and relative humidity on the growth of Helminthosporium fulvum were investigated. Various temperature regimes of 10oC, 15oC, 20oC, 25oC, 30oC, 35oC and 40¢ªC were used to determine the temperature effect on the growth of H. fulvum. Maximum growth of H. fulvum was obtained at 25¢ªC ...

  19. Enhancement of stack ventilation in hot and humid climate using a combination of roof solar collector and vertical stack

    Energy Technology Data Exchange (ETDEWEB)

    Yusoff, Wardah Fatimah Mohammad; Salleh, Elias [Department of Architecture, Faculty of Design and Architecture, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Adam, Nor Mariah [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sapian, Abdul Razak [Department of Architecture, Kulliyyah of Architecture and Environmental Design, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur (Malaysia); Yusof Sulaiman, Mohamad [Solar Energy Research Institute, 3rd Floor, Tun Sri Lanang Library Building, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2010-10-15

    In the hot and humid climate, stack ventilation is inefficient due to small temperature difference between the inside and outside of naturally ventilated buildings. Hence, solar induced ventilation is a feasible alternative in enhancing the stack ventilation. This paper aims to investigate the effectiveness of a proposed solar induced ventilation strategy, which combines a roof solar collector and a vertical stack, in enhancing the stack ventilation performance in the hot and humid climate. The methodology selected for the investigation is physical experimental modelling which was carried out in the actual environment. The results are presented and discussed in terms of two performance variables: air temperature and air velocity. The findings indicate that the proposed strategy is able to enhance the stack ventilation, both in semi-clear sky and overcast sky conditions. The highest air temperature difference between the air inside the stack and the ambient air (T{sub i}-T{sub o}) is achieved in the semi-clear sky condition, which is about 9.9 C (45.8 C-35.9 C). Meanwhile, in the overcast sky condition, the highest air temperature difference (T{sub i}-T{sub o}) is 6.2 C (39.3 C-33.1 C). The experimental results also indicate good agreement with the theoretical results for the glass temperature, the air temperature in the roof solar collector's channel and the absorber temperature. The findings also show that wind has significant effect to the induced air velocity by the proposed strategy. (author)

  20. Effects of cathode channel size and operating conditions on the performance of air-blowing PEMFCs

    International Nuclear Information System (INIS)

    Kim, Bosung; Lee, Yongtaek; Woo, Ahyoung; Kim, Yongchan

    2013-01-01

    Highlights: • Effect of cathode channel size on the air-blowing PEMFC is analyzed. • Performance and EIS tests of air-blowing PEMFCs are conducted. • Test conditions include the operating temperature, fan voltage, and anode humidity. • Flooding is a limiting factor for decreasing channel size at low temperature. • Water management is investigated by analyzing ohmic resistance. - Abstract: Air-blowing proton exchange membrane fuel cells (PEMFCs) have been developed as a potential new power source for portable electronic devices. However, air-blowing PEMFCs show lower performance than compressed-air PEMFCs because of their adverse operating conditions. In this study, the effects of the cathode channel size and operating conditions on the performance of the air-blowing PEMFC were analyzed. At the normal operating temperature, the performance of the air-blowing PEMFC improved with the decrease in the cathode channel size. However, at a low operating temperature and low fan voltage, massive flooding limits the decrease in the cathode channel size. In addition, water management in the air-blowing PEMFC was investigated by analyzing ohmic resistance. The transition current density between the humidification and the flooding region decreased with decreasing cathode channel size and operating temperature

  1. Effects of air psychrometrics on the exergetic efficiency of a wind farm at a coastal mountainous site – An experimental study

    DEFF Research Database (Denmark)

    Xydis, George

    2012-01-01

    In this paper, the most important energy and exergy characteristics of wind energy were examined. Atmospheric variables as air temperature, humidity and pressure and their effects on the wind turbine output were investigated toward wind energy exploitation. It was shown that these usually...

  2. Recommended values of the humidity correction factor k{sub n} for determining exposure in an X-ray beam with free-air chambers; Valores recomendados del factor de correccion por humedad, k{sub h} para la determinacion de la exposicion en un haz de rayos X usando camaras de paredes de aire

    Energy Technology Data Exchange (ETDEWEB)

    Los Arcos, J M; Brosed, A

    1983-07-01

    The experimental values stated by CCEMRI (Section I) concerning the humidity correction factor k{sub h} required for determining exposure in an X-ray beam with free-air chambers are commented and a method to estimate k{sub n} numerically, at any particular combination of relative humidity, pressure and temperature, la explained. A table of k{sub h}, calculated for relative humidity varying from 0% to 90%, for pressures in the range of 70 kPa to 104kPa and temperatures between 15 degree centigree and 30 degree centigree, is included. (Author) 10 refs.

  3. Testing the effects of temperature and humidity on printed passive UHF RFID tags on paper substrate

    Science.gov (United States)

    Linnea Merilampi, Sari; Virkki, Johanna; Ukkonen, Leena; Sydänheimo, Lauri

    2014-05-01

    This article is an interesting substrate material for environmental-friendly printable electronics. In this study, screen-printed RFID tags on paper substrate are examined. Their reliability was tested with low temperature, high temperature, slow temperature cycling, high temperature and high humidity and water dipping test. Environmental stresses affect the tag antenna impedance, losses and radiation characteristics due to their impact on the ink film and paper substrate. Low temperature, temperature cycling and high humidity did not have a radical effect on the measured parameters: threshold power, backscattered signal power or read range of the tags. However, the frequency response and the losses of the tags were slightly affected. Exposure to high temperature was found to even improve the tag performance due to the positive effect of high temperature on the ink film. The combined high humidity and high temperature had the most severe effect on the tag performance. The threshold power increased, backscattered power decreased and the read range was shortened. On the whole, the results showed that field use of these tags in high, low and changing temperature conditions and high humidity conditions is possible. Use of these tags in combined high-humidity and high-temperature conditions should be carefully considered.

  4. Humidity Control System In The Neutron Detector Of Guide Tube

    International Nuclear Information System (INIS)

    Alibasya Harahap, Sentot

    2001-01-01

    The probable symptom neutron detector damage as cause decrease resistivity and corrosion in the electrical terminal, further more occasion to voltage failure and leak current in the isolation. The prevent of voltage failure in detector a needed humidity controller's with dry air supply to guide tube with 2 kg/cm exp.2 air pressure and 7 l/min, air flow as soon as continuity dryer process in the guide tube. Reactor shutdown and operation condition of diffusion rate is 0,476 cm exp.3/year and 6,46 cm exp.3/year

  5. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    Directory of Open Access Journals (Sweden)

    Rong Chen

    2013-01-01

    Full Text Available A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1 measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2 implementing questionnaire survey analysis to explore people’s environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3 constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV, two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1~0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement.

  6. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    Science.gov (United States)

    Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou

    2013-01-01

    A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1 ~ 0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement. PMID:24311976

  7. Humidity Data for 9975 Shipping Packages with Softwood Fiberboard

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-12

    The 9975 surveillance program is developing a technical basis to support extending the storage period of 9975 packages in K-Area Complex beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis. Direct measurements of humidity and fiberboard moisture content have been made on two test packages with softwood fiberboard and varying internal heat levels from 0 up to 19W. Comparable measurements with cane fiberboard have been reported previously. With an internal heat load, a temperature gradient in the fiberboard assembly leads to varying relative humidity in the air around the fiberboard. However, the absolute humidity tends to remain approximately constant throughout the package, especially at lower heat loads.

  8. Annual variation in canopy openness, air temperature and humidity inthe understory of three forested sites in southern Bahia State, Brazil

    Directory of Open Access Journals (Sweden)

    Marayana Prado Pinheiro

    2013-01-01

    Full Text Available Aiming at contributing to the knowledge of physical factors affecting community structure in Atlantic Forest remnants of southern Bahia state, Brazil, we analyzed the annual variation in the understory microclimate of a hillside forest fragment in the ‘Reserva Particular do Patrimônio Natural Serra do Teimoso’ (RST and a rustic cacao agroforestry system (Cabruca, located nearby the RST. Canopy openness (CO, air temperature (Ta, air relative humidity (RH and vapor pressure deficit (VPD data were collected between April, 2005 and April, 2006 at the base (RSTB, 340 m and the top (RSTT, 640 m of the RST and at the Cabruca (CB, 250 m. Data of rainfall, Ta, RH and VPD were also collected in an open area (OA, 270 m. The highest rainfalls (> 100 mm occurred in November, 2005 and April, 2006, whereas October, 2005 was the driest month (< 20 mm. CO ranged between 2.5 % in the CB (April, 2006 and 7.7 % in the RST (October, 2005. Low rainfall in October, 2005 affected VPDmax in all sites. Those effects were more pronounced in OA, followed by CB, RSTB and RSTT. During the period of measurements, the values of Ta, RH and VPD in CB were closer to the values measured in OA than to the values measured inside the forest.

  9. Gases Emission From Surface Layers of Sand Moulds and Cores Stored Under the Humid Air Conditions

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2017-12-01

    Full Text Available A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.

  10. The Maintenance of Heating, Ventilating and Air-Conditioning Systems and Indoor Air Quality in Schools: A Guide for School Facility Managers. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.

    To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…

  11. Repeatability and Reversibility of the Humidity Sensor Based on Photonic Crystal Fiber Interferometer

    Science.gov (United States)

    Hindal, S. S.; Taher, H. J.

    2018-05-01

    The RH sensor operation based on water vapor adsorption and desorption at the silica-air interface within the PCF. Sensor fabrication is simple; it includes splicing and cleaving the PCF with SMF only. PCF (LMA-10) with a certain length spliced to SMF (Corning-28). The PCFI spectrum exhibits good sensitivity to the variations of humidity. The PCFI response is observed for range of relative humidity values from (27% RH to 85% RH), the interference peaks position is found to be shifted to longer wavelength as the humidity increases. In this work, a 6cm length of PCFs is used, and it shows a sensitivity of (2.41pm / %RH), good repeatability, and reversible in nature. This humidity sensor has distinguished features as that the sensor does not require the use of a hygroscopic material, robust, compact size, immunity to electromagnetic interference, and it has potential applications for high humidity environments.

  12. The Interaction Effects of Meteorological Factors and Air Pollution on the Development of Acute Coronary Syndrome

    Science.gov (United States)

    Huang, Ching-Hui; Lin, Heng-Cheng; Tsai, Chen-Dao; Huang, Hung-Kai; Lian, Ie-Bin; Chang, Chia-Chu

    2017-03-01

    This study investigated the interaction effects of meteorological factors and air pollutants on the onset of acute coronary syndrome (ACS). Data of ACS patients were obtained from the Taiwan ACS Full Spectrum Registry and comprised 3164 patients with a definite onset date during the period October 2008 and January 2010 at 39 hospitals. Meteorological conditions and air pollutant concentrations at the 39 locations during the 488-day period were obtained. Time-lag Poisson and logistic regression were used to explore their association with ACS incidence. One-day lag atmospheric pressure (AP), humidity, particulate matter (PM2.5, and PM10), and carbon monoxide (CO) all had significant interaction effects with temperature on ACS occurrence. Days on which high temperatures (>26 °C) and low AP (<1009 hPa) occurred the previous day were associated with a greater likelihood of increased incidence of developing ACS. Typhoon Morakot was an example of high temperature with extremely low AP associated with higher ACS incidence than the daily average. Combinations of high concentrations of PM or CO with low temperatures (<21 °C) and high humidity levels with low temperatures were also associated with increased incidence of ACS. Atmospheric pollution and weather factors have synergistic effects on the incidence of ACS.

  13. Revision to the humidity correction equation in the calculation formulae of the air refractive index based on a phase step interferometer with three frequency-stabilized lasers

    International Nuclear Information System (INIS)

    Chen, Qianghua; Zhang, Mengce; Liu, Shuaijie; He, Yongxi; Luo, Huifu; Luo, Jun; Lv, Weiwei

    2016-01-01

    At present the formulae proposed by G Boensch and E Potulski in 1998 (Boensch and Potulski 1998 Metrologia 35 133–9) are mostly used to calculate the air refractive index. However, the humidity correction equation in the formulae is derived by using the light source of a Cd lamp whose light frequency stability is poor and at a narrow temperature range, around 20 °C. So it is no longer suitable in present optical precision measurements. To solve this problem, we propose a refractive index measurement system based on phase step interferometer with three frequency stabilized lasers (532 nm, 633 nm, 780 nm), corrected coefficients of the humidity are measured and a corresponding revised humidity correction equation is acquired. Meanwhile, the application temperature range is extended from 14.6 °C to 25.0 °C. The experiment comparison results at the temperature of 22.2–23.2 °C show the accuracy by the presented equation is better than that of Boensch and Potulski. (paper)

  14. Effects of Surfactants on the Performance of CeO2 Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Chunjie Wang

    2014-01-01

    Full Text Available Nanosized CeO2 powders were synthesized via hydrothermal method with different types of surfactants (polyethylene glycol (PEG, cetyltrimethylammonium bromide (CTAB, and sodium dodecylbenzenesulfonate (SDBS. X-ray diffraction, Raman spectroscopy, and transmission electron microscopy were utilized to characterize the phase structures and morphologies of the products. The sample with CTAB as surfactant (CeO2-C has the largest specific surface area and the smallest particle size among these three samples. The humidity sensor fabricated by CeO2-C shows higher performance than those used CeO2-P and CeO2-S. The impedance of the CeO2-C sensor decreases by about five orders of magnitude with relative humidity (RH changing from 15.7 to 95%. The response and recovery time are 7 and 7 s, respectively. These results indicate that the performance of CeO2 humidity sensors can be improved effectively by the addition of cationic surfactant.

  15. Influence of fine water droplets to temperature and humidity

    Science.gov (United States)

    Hafidzal, M. H. M.; Hamzah, A.; Manaf, M. Z. A.; Saadun, M. N. A.; Zakaria, M. S.; Roslizar, A.; Jumaidin, R.

    2015-05-01

    Excessively dry air can cause dry skin, dry eyes and exacerbation of medical conditions. Therefore, many researches have been done in order to increase humidity in our environment. One of the ways is by using water droplets. Nowadays, it is well known in market stand fan equipped with water mister in order to increase the humidity of certain area. In this study, the same concept is applied to the ceiling fan. This study uses a model that combines a humidifier which functions as cooler, ceiling fan and scaled down model of house. The objective of this study is to analyze the influence of ceiling fan humidifier to the temperature and humidity in a house. The mechanism of this small model uses batteries as the power source, connected to the fan and the humidifier. The small water tank's function is to store and supply water to the humidifier. The humidifier is used to cool the room by changing water phase to fine water droplets. Fine water droplets are created from mechanism of the humidifier, which is by increasing the kinetic energy of water molecule using high frequency vibration that overcome the holding force between water molecules. Thus, the molecule of water will change to state of gas or mist. The fan is used to spread out the mist of water to surrounding of the room in order to enhance the humidity. Thermocouple and humidity meter are used to measure temperature and humidity in some period of times. The result shows that humidity increases and temperature decreases with time. This application of water droplet can be applied in the vehicles and engine in order to decrease the temperature.

  16. Investigation of humidity-dependent nanotribology behaviors of Si(1 0 0)/SiO2 pair moving from stick to slip

    International Nuclear Information System (INIS)

    Yu Jiaxin; Chen Lei; Qian Linmao; Song Danlu; Cai Yong

    2013-01-01

    Highlights: ► The effect of humidity on the motion behavior of Si(1 0 0)/SiO 2 pair was clarified. ► With increase in humidity, adhesion force increases slowly firstly, then sharply. ► With increase in humidity, friction force increases sharply firstly, then slowly. ► The wear degree of Si is relative to the physical state of absorbed water film. ► The tribochemical reaction of Si(1 0 0) in humid air was verified by ToF-SIMS. - Abstract: With an atomic force microscopy, the humidity-dependent nanotribology behaviors of Si(1 0 0) against SiO 2 microsphere were investigated while the relative movement translated from stick to slip. The relative humidity RH of air exhibits a strong effect on the motion behavior of Si(1 0 0)/SiO 2 pair. With the increase in RH, relative movement of Si(1 0 0)/SiO 2 pair is easier to keep into stick state, namely, the relative slip becomes more difficult to occur in a higher humidity range. The adhesion F a will increase with the increase in RH in the given humidity range. In the low RH range ( a increases very slowly. However, in relative higher RH range (>20%), F a increases very sharply once ‘liquid-like’ adsorbed water layer forms, because it increases the capillary force. The initial friction forces F t of Si(1 0 0)/SiO 2 pair also increase with the increase in RH in the given humidity range. However, different from F a , it increases sharply in the low RH range ( 30%). During the cyclic friction process, under the higher RH, relative stable tangential force is easier to be observed at higher displacement amplitude, here, the relative movement usually keeps into stick state. With the increase in RH, the surface damage of Si(1 0 0) transforms from mechanical deformation (forming hillock) to tribochemical wear (material removal). The tribochemical wear is sensitive to the absorbed water film with ‘solid-like’ structure, here, the wear volume increases drastically in this RH range (<20%); further increase of wear is

  17. In-situ Air Temperature and Relative Humidity in Greenbelt, MD, 2013-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set describes the temperature and relative humidity at 12 locations around Goddard Space Flight Center in Greenbelt MD at 15 minute intervals between...

  18. Potential of indirect evaporative passive cooling with embedded tubes in a humid tropical climate : applications in a typical hot humid climate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Chavez, J.R. [Univ. Autonoma Metropolitana-Azcapotzalco, Mexico City (Mexico). Dept. de Medio Ambiente, Laboratorio de Investigaciones en Arquitectura Bioclimatica; Givoni, B. [California Univ., Los Angeles, CA (United States); BGU, Beer Sheva (Israel); Viveros, O. [Cristobal Colon Univ., Veracruz (Mexico)

    2009-07-01

    The use of passive cooling techniques in buildings in hot and humid regions can reduce energy consumption while increasing thermal comfort for occupants. A study was conducted in the City of Veracruz, Mexico to investigate the performance of tubes embedded in the roof of the Gulf Meteorological Prevision Centre. Two identical insulated experimental cells were used, one serving as the control and the other one as the test unit, where the technique of embedded tubes in the roof was implemented and investigated during a typical overheating season. Results showed that this indirect evaporative cooling system is an effective strategy to reduce indoor temperatures without increasing the indoor humidity in buildings. The indoor maximum temperature was lowered by 2.72 K in the experimental test cell relative to the control unit. In addition, the resulting reduction of radiant temperatures in the test unit improved the thermal comfort of the occupants. It is expected that the implementation of this passive cooling technique will eventually contribute to reduced energy consumption and less use of air-conditioning systems in buildings, and thereby prevent emission of greenhouse gases to the atmosphere. 9 refs., 1 tab., 6 figs.

  19. Diffusion coefficients for unattached decay products of thoron - dependence on ventilation and relative humidity

    International Nuclear Information System (INIS)

    Kotrappa, P.; Bhanti, D.P.; Raghunath, B.

    1976-01-01

    The results of a study of the diffusivity of unattached decay products of thoron with respect to air changes using a recently developed diffusion sampler are reported. The dependence of diffusivity of radon/thoron decay products on relative humidity has also been investigated by measurement of diffusion coefficients in an atmosphere where relative humidities varied from 5 to 90%. Results are shown tabulated. (U.K.)

  20. Design of evaporative-cooling roof for decreasing air temperatures in buildings in the humid tropics

    Science.gov (United States)

    Kindangen, Jefrey I.; Umboh, Markus K.

    2017-03-01

    This subject points to assess the benefits of the evaporative-cooling roof, particularly for buildings with corrugated zinc roofs. In Manado, many buildings have roofed with corrugated zinc sheets; because this material is truly practical, easy and economical application. In general, to achieve thermal comfort in buildings in a humid tropical climate, people applying cross ventilation to cool the air in the room and avoid overheating. Cross ventilation is a very popular path to achieve thermal comfort; yet, at that place are other techniques that allow reducing the problem of excessive high temperature in the room in the constructions. This study emphasizes applications of the evaporative-cooling roof. Spraying water on the surface of the ceiling has been executed on the test cell and the reuse of water after being sprayed and cooled once more by applying a heat exchanger. Initial results indicate a reliable design and successfully meet the target as an effective evaporative-cooling roof technique. Application of water spraying automatic and cooling water installations can work optimally and can be an optimal model for the cooling roof as one of the green technologies. The role of heat exchangers can lower the temperature of the water from spraying the surface of the ceiling, which has become a hot, down an average of 0.77° C. The mass flow rate of the cooling water is approximately 1.106 kg/h and the rate of heat flow is around 515 Watt, depend on the site.

  1. Mask humidity during CPAP: influence of ambient temperature, heated humidification and heated tubing.

    Science.gov (United States)

    Nilius, Georg; Domanski, Ulrike; Schroeder, Maik; Woehrle, Holger; Graml, Andrea; Franke, Karl-Josef

    2018-01-01

    Mucosal drying during continuous positive airway pressure (CPAP) therapy is problematic for many patients. This study assessed the influence of ambient relative humidity (rH) and air temperature (T) in winter and summer on mask humidity during CPAP, with and without mask leak, and with or without heated humidification ± heated tubing. CPAP (8 and 12 cmH 2 O) without humidification (no humidity [nH]), with heated humidification controlled by ambient temperature and humidity (heated humidity [HH]) and HH plus heated tubing climate line (CL), with and without leakage, were compared in 18 subjects with OSA during summer and winter. The absolute humidity (aH) and the T inside the mask during CPAP were significantly lower in winter versus summer under all applied conditions. Overall, absolute humidity differences between summer and winter were statistically significant in both HH and CL vs. nH ( p humidification or with standard HH. Clinically-relevant reductions in aH were documented during CPAP given under winter conditions. The addition of heated humidification, using a heated tube to avoid condensation is recommended to increase aH, which could be useful in CPAP users complaining of nose and throat symptoms.

  2. Corrosion of well casings in compressed air energy storage environments

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, R.P.; Stottlemyre, J.A.

    1980-10-01

    The goal of this study was to determine corrosive effects of compressed air energy storage (CAES) environments on several well casing materials to aid in material selections. A literature search on corrosion behavior of well casing material in similar environments revealed that corrosion rates of 0.20 to 0.25 mm/y might be expected. This information was employed in designing the laboratory study. Unstressed electrically isolate samples of various carbon steels were autoclaved at varying humidities, temperatures, and exposure durations to simulate anticipated environments in the well bore during CAES operation. All compressed air tests were run at 12.1 MPa. Temperatures varied from 323/sup 0/K to 573/sup 0/K, and humidity varied from 100% to completely dry air. The effects of salts in the humidified air were also studied. Results indicated that typical well casings of carbon steel as used in oil, gas, and water production wells adequately withstand the anticipated CAES reservoir environment. An acceptable corrosion rate arrived at by these laboratory simulations was between 0.0015 and 0.15 mm/y. Corrosion was caused by metal oxidation that formed a protective scale of iron oxide. Higher temperatures, humidity rates, or salinity content of the humid air increased corrosion. Corrosion also increased on a metal coupon in contact with a sandstone sample, possibly due to crevice corrosion. For each of these factors either singularly or collectively, the increased corrosion rates were still acceptable with the maximum measured at 0.15 mm/y. When coupons were reused in an identical test, the corrosion rates increased beyond the anticipated values that had been determined by extrapolation from one-time runs. Fine cracking of the protective scale probably occurred due to thermal variations, resulting in increased corrosion rates and a greater potential for particulates, which could plug the reservoir.

  3. Energy performance and consumption for biogas heat pump air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenjun [Architectural Engineering College, Qingdao Agricultural University, 266109 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China); Wu, Huaizhi; Wu, Meiling [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China)

    2010-12-15

    Biogas engine-driven heat pump air conditioner is a new-style system which includes biogas engine-driven heat pump, primary heat exchanger, second heat exchanger, sprayed room and fans, pumps, etc. In summertime, the air can be reheated by the waste heat water from the biogas engine in the system, while the air can be reheated and humidified by the waste heat water in winter. Reducing or displacing electrical heating requirements can achieve the great opportunity for significant energy savings. This paper, therefore, aims to improve the energy performance of the AC system by using the waste heat from the biogas engine. The mathematic model was used to research the BHPAC. Explicitly, we investigated the influence of various factors including the outdoor air temperature and humidity in summer and winter. Results show that the biogas engine-driven heat pump air conditioner can save more energy than the electrical power heat pump. In summer, the minimum for percentage of primary energy saving for BHPAC is over 25%. With the outdoor air dry-bulb temperature and the relative humidity rises, the saving energy percentage rises. In winter, the minimum for percentage of primary energy saving for BHPAC is 37%. The more the outdoor air relative humidity of the outdoor air decreases, the more the BHPAC saves energy. It is proved that the system which is a highly actively fully utilizing energy technology has good partial load characteristic and good effects of energy saving. (author)

  4. Methods of humidity determination Part II: Determination of material humidity

    OpenAIRE

    Rübner, Katrin; Balköse, Devrim; Robens, E.

    2008-01-01

    Part II covers the most common methods of measuring the humidity of solid material. State of water near solid surfaces, gravimetric measurement of material humidity, measurement of water sorption isotherms, chemical methods for determination of water content, measurement of material humidity via the gas phase, standardisation, cosmonautical observations are reviewed.

  5. Stress response of Escherichia coli induced by surface streamer discharge in humid air

    International Nuclear Information System (INIS)

    Doležalová, Eva; Prukner, Václav; Lukeš, Petr; Šimek, Milan

    2016-01-01

    Inactivation of Escherichia coli by means of surface streamer discharge has been investigated to obtain new insights into the key mechanisms involved, with a particular emphasis placed on the microbial response to plasma-induced stress. The surface streamer discharge was produced in coplanar dielectric barrier discharge electrode geometry, and was driven by an amplitude-modulated ac high voltage in humid synthetic air at atmospheric pressure. The response to plasma-induced stress was evaluated by using conventional cultivation, sublethal injury and resazurin assay and the LIVE/DEAD ® BacLight ™ Bacterial Viability kit. Compared to conventional cultivation, the LIVE/DEAD ® test labels bacteria with damaged membranes, while resazurin assay tracks their metabolic activity. Our results clearly demonstrate that the treated bacteria partly lost their ability to grow properly, i.e. they became injured and culturable, or even viable but nonculturable (VBNC). The ability to develop colonies could have been lost due to damage of the bacterial membrane. Damage of the membranes was mainly caused by the lipid peroxidation, evidencing the key role of oxygen reactive species, in particular ozone. We conclude that the conventional cultivation method overestimates the decontamination efficiency of various plasma sources, and must therefore be complemented by alternative techniques capable of resolving viable but nonculturable bacteria. (paper)

  6. Humidity Build-Up in a Typical Electronic Enclosure Exposed to Cycling Conditions and Effect on Corrosion Reliability

    DEFF Research Database (Denmark)

    Conseil, Helene; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl

    2016-01-01

    The design of electronic device enclosures plays a major role in determining the humidity build-up inside the device as a response to the varying external humidity. Therefore, the corrosion reliability of electronic devices has direct connection to the enclosure design. This paper describes......, thermal mass, and port/opening size. The effect of the internal humidity build-up on corrosion reliability has been evaluated by measuring the leakage current (LC) on interdigitated test comb patterns, which are precontaminated with sodium chloride and placed inside the enclosure. The results showed...... that the exposure to cycling temperature causes significant change of internal water vapor concentration. The maximum value of humidity reached was a function of the opening size and the presence of thermal mass inside the enclosure. A pumping effect was observed due to cycling temperature, and the increase...

  7. NASA - Johnson Space Center's New Capabilities for Air Purification

    Science.gov (United States)

    Graf, John

    2015-01-01

    NASA has some unique and challenging air purification problems that cannot be adequately met with COTS technology: 1) ammonia removal from air, 2) hydrazine removal from air, 3) CO conversion to CO2 in low temperature, high humidity environments. NASA has sponsored the development of new sorbents and new catalysts. These new sorbents and catalysts work better than COTS technology for our application. If attendees have a need for an effective ammonia sorbent, an effective hydrazine sorbent, or an effective CO conversion catalyst, we should learn to see if NASA sponsored technology development can help.

  8. The influence of humidity fluxes on offshore wind speed profiles

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Sempreviva, Anna Maria; Pryor, Sara

    2010-01-01

    extrapolation from lower measurements. With humid conditions and low mechanical turbulence offshore, deviations from the traditional logarithmic wind speed profile become significant and stability corrections are required. This research focuses on quantifying the effect of humidity fluxes on stability corrected...... wind speed profiles. The effect on wind speed profiles is found to be important in stable conditions where including humidity fluxes forces conditions towards neutral. Our results show that excluding humidity fluxes leads to average predicted wind speeds at 150 m from 10 m which are up to 4% higher...... than if humidity fluxes are included, and the results are not very sensitive to the method selected to estimate humidity fluxes....

  9. Artificial Fruit: Postharvest Online Monitoring of Agricultural Food by Measuring Humidity and Temperature

    Science.gov (United States)

    Hübert, T.; Lang, C.

    2012-09-01

    An online monitoring of environmental and inherent product parameters is required during transportation and storage of fruit and vegetables to avoid quality degradation and spoilage. The control of transpiration losses is suggested as an indicator for fruit freshness by humidity measurements. For that purpose, an electronic sensor is surrounded by a wet porous fiber material which is in contact with the outer atmosphere. Transpiration reduces the water content of the porous material and thus also the internal water activity. The sensor system, known as "artificial fruit," measures the relative humidity and temperature inside the wet material. Humidity and temperature data are collected and transmitted on demand by a miniaturized radio communication unit. The decrease in the measured relative humidity has been calibrated against the mass loss of tomatoes under different external influencing parameters such as temperature, humidity, and air flow. Current battery life allows the sensor system, embedded in a fruit crate, to transmit data on transpiration losses via radio transmission for up to two weeks.

  10. Quantitative Ethylene Measurements with MOx Chemiresistive Sensors at Different Relative Air Humidities

    Directory of Open Access Journals (Sweden)

    Matic Krivec

    2015-11-01

    Full Text Available The sensitivity of two commercial metal oxide (MOx sensors to ethylene is tested at different relative humidities. One sensor (MiCS-5914 is based on tungsten oxide, the other (MQ-3 on tin oxide. Both sensors were found to be sensitive to ethylene concentrations down to 10 ppm. Both sensors have significant response times; however, the tungsten sensor is the faster one. Sensor models are developed that predict the concentration of ethylene given the sensor output and the relative humidity. The MQ-3 sensor model achieves an accuracy of ±9.2 ppm and the MiCS-5914 sensor model predicts concentration to ±7.0 ppm. Both sensors are more accurate for concentrations below 50 ppm, achieving ±6.7 ppm (MQ-3 and 5.7 ppm (MiCS-5914.

  11. Thermodynamic properties of sea air

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-02-01

    Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.

    In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.

    The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  12. Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta, China.

    Science.gov (United States)

    Lou, Cairong; Liu, Hongyu; Li, Yufeng; Peng, Yan; Wang, Juan; Dai, Lingjun

    2017-10-23

    Severe particulate matter (PM, including PM 2.5 and PM 10 ) pollution frequently impacts many cities in the Yangtze River Delta (YRD) in China, which has aroused growing concern. In this study, we examined the associations between relative humidity (RH) and PM pollution using the equal step-size statistical method. Our results revealed that RH had an inverted U-shaped relationship with PM 2.5 concentrations (peaking at RH = 45-70%), and an inverted V-shaped relationship (peaking at RH = 40 ± 5%) with PM 10 , SO 2 , and NO 2 . The trends of polluted-day number significantly changed at RH = 70%. The very-dry (RH humidity (RH = 60-70%) conditions positively affected PM 2.5 and exerted an accumulation effect, while the mid-humidity (RH = 70-80%), high-humidity (RH = 80-90%), and extreme-humidity (RH = 90-100%) conditions played a significant role in reducing particle concentrations. For PM 10 , the accumulation and reduction effects of RH were split at RH = 45%. Moreover, an upward slope in the PM 2.5 /PM 10 ratio indicated that the accumulation effects from increasing RH were more intense on PM 2.5 than on PM 10 , while the opposite was noticed for the reduction effects. Secondary transformations from SO 2 and NO 2 to sulfate and nitrate were mainly responsible for PM 2.5 pollution, and thus, controlling these precursors is effective in mitigating the PM pollution in the YRD, especially during winter. The conclusions in this study will be helpful for regional air-quality management.

  13. Experimental investigation of air relative humidity (RH) cycling tests on MEA/cell aging in PEMFC. Pt. I. Study of high RH cycling test with air RH at 62%/100%

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.T.; Chatillon, Y.; Bonnet, C.; Lapicque, F. [Laboratoire Reactions et Genie des Procedes, CNRS-Nancy University, Nancy (France); Leclerc, S. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, CNRS-Nancy University, Vandoeuvre-les-Nancy (France); Hinaje, M.; Rael, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, CNRS-Nancy University, Vandoeuvre-les-Nancy (France)

    2012-06-15

    The effect of high air relative humidity (RH) cycling (RH{sub C} 62%/100%) on the degradation mechanisms of a single (5 x 5 cm{sup 2}) proton exchange membrane fuel cells was investigated. The cell performance was compared to a cell operated at constant humidification (RH{sub C} = 62%). Runs were conducted over approximately 1,500 h at 0.3 A cm{sup -2}. The overall loss in cell performance for the high RH cycling test was 12 {mu}V h{sup -1} whereas it was at 3 {mu}V h{sup -1} under constant humidification. Impedance spectroscopy reveals that the ohmic and charge transfer resistances were little modified in both runs. H{sub 2} crossover measurement indicated that both high RH cycling and constant RH test did not promote serious effect on gas permeability. The electroactive surface loss for anode and cathode during high air RH cycling was more significant than at constant RH operation. The water uptake determined by {sup 1}H nuclear magnetic resonance within the membrane electrode assembly (MEA) after high RH cycling was reduced by 12% in comparison with a fresh MEA. Transmission electron microscopy showed bubbles and pinholes formation in the membrane, catalyst particles agglomeration (also observed by X-ray diffraction), catalyst particles migration in the membrane and thickness reduction of the catalytic layers. Scanning electron microscopy was conducted to observe the changes in morphology of gas diffusion layers after the runs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Physiological and subjective responses to low relative humidity.

    Science.gov (United States)

    Sunwoo, Yujin; Chou, Chinmei; Takeshita, Junko; Murakami, Motoko; Tochihara, Yutaka

    2006-01-01

    In order to investigate the influence of low relative humidity, we measured saccharin clearance time (SCT), frequency of blinking, heart rate (HR), blood pressure, hydration state of skin, transepidermal water loss (TEWL), recovery sebum level and skin temperature as physiological responses. We asked subjects to judge thermal, dryness and comfort sensations as subjective responses using a rating scale. Sixteen non-smoking healthy male students were selected. The pre-room conditions were maintained at an air temperature (Ta) of 25 degrees C and a relative humidity (RH) of 50%. The test room conditions were adjusted to provide a Ta of 25 degrees C and RH levels of 10%, 30% and 50%.RH had no effect on the activity of the sebaceous gland and on cardiovascular reactions like blood pressure and HR. However, it was obvious that low RH affects SCT, the dryness of the ocular mucosa and the stratum corneum of the skin and causes a decrease in mean skin temperature. Under 30% RH, the eyes and skin become dry, and under 10% RH the nasal mucous membrane becomes dry as well as the eyes and skin, and the mean skin temperature decreases. These findings suggested that to avoid dryness of the eyes and skin, it is necessary to maintain an RH greater than 30%, and to avoid dryness of the nasal mucous membrane, it is necessary to maintain an RH greater than 10%. Subjects felt cold immediately after a change in RH while they had only a slight perception of dryness at the change of humidity.

  15. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants.

    Science.gov (United States)

    Madsen, Anne Mette; Moslehi-Jenabian, Saloomeh; Islam, Md Zohorul; Frankel, Mika; Spilak, Michal; Frederiksen, Margit W

    2018-01-01

    The aim of this study was to obtain knowledge about concentrations of Staphylococcus aureus, MRSA (methicillin-resistant S. aureus), and other Staphylococcus species in indoor air in Greater Copenhagen and about factors affecting the concentrations. The effects of season, temperature, relative humidity, air change rate (ACR), other bacterial genera, area per occupant, and presence of S. aureus-positive occupants were studied. In samples from 67 living rooms, S. hominis, S. warneri, S. epidermidis, and S. capitis were found in 13-25%; S. saprophyticus, S. cohnii, and S. pasteuri in 5-10%; and S. lugdunensis, S. haemolyticus, S. caprae, S. equorum, S. kloosii, S. pettenkoferi, S. simulans, and S. xylosus in less than 3%. Staphylococcus aureus were found in two of 67 living rooms: spa type t034 (an MRSA) was recovered from a farmhouse, while spa type t509 was found in an urban home. Two species, S. equorum and S. kloosii, were found only in the farmhouse. Staphylococcus was significantly associated with season with lowest concentration and richness in winter. Genera composition was associated with ACR with smaller fractions of Staphylococcus at higher ACR, while richness was significantly and negatively associated with area per occupant. Concentration of Staphylococcus correlated positively with the total concentration of bacteria, but negatively with the total concentration of other bacteria. The concentration of Staphylococcus was not significantly associated with concentrations of the other abundant genera Bacillus, Kocuria, and Micrococcus. In offices with S. aureus-positive occupants, airborne S. aureus was not found. In conclusion, Staphylococcus species constitute a considerable proportion of the airborne bacteria in the studied homes and offices. However, both S. aureus and MRSA had very low prevalence during all seasons. Thus, transmission of S. aureus and MRSA through the air in living rooms in Copenhagen is expected to be limited. The negative associations

  16. Effect of Air Gap Entrapped in Firefighter Protective Clothing on Thermal Resistance and Evaporative Resistance

    Directory of Open Access Journals (Sweden)

    He Hualing

    2018-03-01

    Full Text Available Heat and water vapor transfer behavior of thermal protective clothing is greatly influenced by the air gap entrapped in multilayer fabric system. In this study, a sweating hot plate method was used to investigate the effect of air gap position and size on thermal resistance and evaporative resistance of firefighter clothing under a range of ambient temperature and humidity. Results indicated that the presence of air gap in multilayer fabric system decreased heat and water vapor transfer abilities under normal wear. Moreover, the air gap position slightly influenced the thermal and evaporative performances of the firefighter clothing. In this study, the multilayer fabric system obtained the highest thermal resistance, when the air space was located at position B. Furthermore, the effect of ambient temperature on heat and water vapor transfer properties of the multilayer fabric system was also investigated in the presence of a specific air gap. It was indicated that ambient temperature did not influence the evaporative resistance of thermal protective clothing. A thermographic image was used to test the surface temperature of multilayer fabric system when an air gap was incorporated. These results suggested that a certain air gap entrapped in thermal protective clothing system could affect wear comfort.

  17. U-shaped micro-groove fiber based on femtosecond laser processing for humidity sensing

    Science.gov (United States)

    Fu, Gui; Ma, Li-li; Su, Fu-fang; Shi, Meng

    2018-05-01

    A novel optical fiber sensor with a U-shaped micro-groove structure ablated by femtosecond laser on single-mode fiber for measuring air relative humidity (RH) is reported in this paper. In order to improve the accuracy of sensor, a graphene oxide (GO)/polyvinyl alcohol (PVA) composite film is coated on the surface of micro-groove structure. In the U-shaped micro-groove structure, the remaining core and micro-cavity in the micro-groove make up two major optical propagation paths, forming a Mach-Zehnder interferometer (MZI). The sensor has a good linear response within the RH range of 30%—85%, and the maximum sensitivity can reach 0.638 1 nm/%RH. The effect of temperature on the overall performance of the humidity sensor is also investigated. As a new type of all-fiber device, the sensor shows excellent sensitivity and stability.

  18. Effect of the temperature and relative humidity in dosemeters used for personnel monitoring

    International Nuclear Information System (INIS)

    Antonio Filho, J.

    1982-12-01

    The systematics of the combined effect of temperature and humidity on photographic dosimeters of the type Agfa-Gevaert, Kodak type II, III and the thermoluminescent dosimeters LiF:Mg,Ti (TLD-100, Harshaw), D-CaSO 4 :Dy-0,4 (Teledyne), e CaSO 4 :Dy+NaCl (IPEN), used in personal monitoring in Brazil was investigated, in the temperature range of 20 0 C to 50 0 C and relative humidity of 65% to 95%, in order to determine the best manner of utilization of these detectors in Brazilian climatic conditions. The dosimeters were studied in different forms of packing-sheet such as aluminezed paper and polyethylene. For the determination of the systematics, the dosimeters were irradiated in three conditions: before, during and after of storage in climatic chambers to a maximum period of 60 days. It was found that the dosimetric filmes and thermoluminescent dosimeter CaSO 4 :Dy+NaCl without protection, presented a high dependence to temperature and humidity, and when protected presented good results. Therefore, the best manner of utilization of these monitors in environments with relative humidity and temperature greater them 75% and 30 0 C respectively, is achieved with the protection of aluminized paper. The LiF:Mg,Ti and D+CaSO 4 :Dy-0,4 dosimeters can be utilized in their original form because they presented low dependence with humidity and temperature in the range studied. (Author) [pt

  19. Frosting and defrosting of air-coils - results from laboratory testing

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, P

    1997-12-31

    Frosting of air-coils is an important factor in the design and operation of air-source heat pumps, heat recovery ventilators, cooling and refrigeration equipment etc. This report presents results from laboratory testing of two brine-cooled air-coils under frosting conditions. The coils have the same number of plane, continuous fins, 4 tube rows with 12 tubes in each row, tube spacing of 50 mm and fin spacing of 3 and 6 mm respectively. The original purpose of the test program was to compare various possible indicators of coil frosting and to analyze the possible effects of different control strategies on coil capacity and the COP of the system (the analysis will be presented in a separate report). Tests involved inlet air temperatures of -7 and +2 degC, variation of humidity between 70 and 100% RH (including simulated rain), velocities in the range 1 to 4 m/s, and specific cooling loads from 50 to 150 W/m{sup 2}. Test results include variations due to frosting of e.g. cooling capacity, COP, air flow and pressure drop, fan power, air outlet temperature and humidity, coil temperature, frost mass, and frosting time. Results also include the subsequently required defrost time, defrost energy and collected mass of defrost water. The frosting process was interrupted when the air flow had decreased to 30% of the original value with a non-frosted coil. The results clearly show the advantage of demand controlled defrosting with variations in frosting time between 2 h with high humidity/high specific cooling load up to, for practical purposes, infinite frosting times with low humidity/low specific cooling load. The accumulated frost mass during one frosting cycle varied from less than 0.02 kg/m{sup 2} up to approximately 0.4 kg/m{sup 2}. 23 refs, 93 figs, 89 tabs

  20. Frosting and defrosting of air-coils - results from laboratory testing

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, P.

    1996-12-31

    Frosting of air-coils is an important factor in the design and operation of air-source heat pumps, heat recovery ventilators, cooling and refrigeration equipment etc. This report presents results from laboratory testing of two brine-cooled air-coils under frosting conditions. The coils have the same number of plane, continuous fins, 4 tube rows with 12 tubes in each row, tube spacing of 50 mm and fin spacing of 3 and 6 mm respectively. The original purpose of the test program was to compare various possible indicators of coil frosting and to analyze the possible effects of different control strategies on coil capacity and the COP of the system (the analysis will be presented in a separate report). Tests involved inlet air temperatures of -7 and +2 degC, variation of humidity between 70 and 100% RH (including simulated rain), velocities in the range 1 to 4 m/s, and specific cooling loads from 50 to 150 W/m{sup 2}. Test results include variations due to frosting of e.g. cooling capacity, COP, air flow and pressure drop, fan power, air outlet temperature and humidity, coil temperature, frost mass, and frosting time. Results also include the subsequently required defrost time, defrost energy and collected mass of defrost water. The frosting process was interrupted when the air flow had decreased to 30% of the original value with a non-frosted coil. The results clearly show the advantage of demand controlled defrosting with variations in frosting time between 2 h with high humidity/high specific cooling load up to, for practical purposes, infinite frosting times with low humidity/low specific cooling load. The accumulated frost mass during one frosting cycle varied from less than 0.02 kg/m{sup 2} up to approximately 0.4 kg/m{sup 2}. 23 refs, 93 figs, 89 tabs

  1. Effects of air-sea coupling on the boreal summer intraseasonal oscillations over the tropical Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ailan [CMA, Key Open Laboratory for Tropical Monsoon, Institute of Tropical and Marine Meteorology, Guangzhou (China); Li, Tim [CMA, Key Open Laboratory for Tropical Monsoon, Institute of Tropical and Marine Meteorology, Guangzhou (China); University of Hawaii, IPRC, Honolulu, Hawaii (United States); University of Hawaii, Department of Meteorology, Honolulu, Hawaii (United States); Fu, Xiouhua [University of Hawaii, IPRC, Honolulu, Hawaii (United States); Luo, Jing-Jia; Masumoto, Yukio [Research Institute for Global Change, JAMSTEC, Yokohama (Japan)

    2011-12-15

    The effects of air-sea coupling over the tropical Indian Ocean (TIO) on the eastward- and northward-propagating boreal summer intraseasonal oscillation (BSISO) are investigated by comparing a fully coupled (CTL) and a partially decoupled Indian Ocean (pdIO) experiment using SINTEX-F coupled GCM. Air-sea coupling over the TIO significantly enhances the intensity of both the eastward and northward propagations of the BSISO. The maximum spectrum differences of the northward- (eastward-) propagating BSISO between the CTL and pdIO reach 30% (25%) of their respective climatological values. The enhanced eastward (northward) propagation is related to the zonal (meridional) asymmetry of sea surface temperature anomaly (SSTA). A positive SSTA appears to the east (north) of the BSISO convection, which may positively feed back to the BSISO convection. In addition, air-sea coupling may enhance the northward propagation through the changes of the mean vertical wind shear and low-level specific humidity. The interannual variations of the TIO regulate the air-sea interaction effect. Air-sea coupling enhances (reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole (IOD) mode, positive Indian Ocean basin (IOB) mode and normal years (during positive IOD and negative IOB years). Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback. A climatological weak westerly in the equatorial Indian Ocean can be readily reversed by anomalous zonal SST gradients during the positive IOD and negative IOB events. Although the SSTA is always positive to the northeast of the BSISO convection for all interannual modes, air-sea coupling reduces the zonal asymmetry of the low-level specific humidity and thus the eastward propagation spectrum during the positive IOD and negative IOB modes, while strengthening them during the other modes. Air-sea coupling enhances the northward propagation under all

  2. High resolution dynamical downscaling of air temperature and relative humidity: performance assessment of WRF for Portugal

    Science.gov (United States)

    Menezes, Isilda; Pereira, Mário; Moreira, Demerval; Carvalheiro, Luís; Bugalho, Lourdes; Corte-Real, João

    2017-04-01

    Air temperature and relative humidity are two of the atmospheric variables with higher impact on human and natural systems, contributing to define the stress/comfortable conditions, affecting the productivity and health of the individuals as well as diminishing the resilience to other environmental hazards. Atmospheric regional models, driven by large scale forecasts from global circulation models, are the best way to reproduce such environmental conditions in high space-time resolution. This study is focused on the performance assessment of the WRF mesoscale model to perform high resolution dynamical downscaling for Portugal with three two-way nested grids, at 60 km, 20 km and 5 km horizontal resolution. The simulations of WRF models were produced with different initial and boundary forcing conditions. The NCEP-FNL Operational Global Analysis data available on 1-degree by 1-degree grid every six hours and ERA-Interim reanalyses dataset were used to drive the models. Two alternative configurations of the WRF model, including planetary boundary, layer schemes, microphysics, land-surface models, radiation schemes, were used and tested within the 5 km spatial resolution domain. Simulations of air temperature and relative humidity were produced for January and July of 2016 and compared with the observed datasets provided by the Instituto Português do Mar e da Atmosfera (IPMA) for 83 weather stations. Different performance measures of bias, precision, and accuracy were used, namely normalized bias, standard deviation, mean absolute error, root mean square error, bias of root mean square error as well as correlation based measures (e.g., coefficient of determination) and goodness of fit measures (index of agreement). Main conclusions from the obtained results reveal: (i) great similarity between the spatial patterns of the simulated and observed fields; (ii) only small differences between simulations produced with ERA-Interim and NCEP-FNL, in spite of some differences

  3. Microwave Determination of Water Mole Fraction in Humid Gas Mixtures

    Science.gov (United States)

    Cuccaro, R.; Gavioso, R. M.; Benedetto, G.; Madonna Ripa, D.; Fernicola, V.; Guianvarc'h, C.

    2012-09-01

    A small volume (65 cm3) gold-plated quasi-spherical microwave resonator has been used to measure the water vapor mole fraction x w of H2O/N2 and H2O/air mixtures. This experimental technique exploits the high precision achievable in the determination of the cavity microwave resonance frequencies and is particularly sensitive to the presence of small concentrations of water vapor as a result of the high polarizability of this substance. The mixtures were prepared using the INRIM standard humidity generator for frost-point temperatures T fp in the range between 241 K and 270 K and a commercial two-pressure humidity generator operated at a dew-point temperature between 272 K and 291 K. The experimental measurements compare favorably with the calculated molar fractions of the mixture supplied by the humidity generators, showing a normalized error lower than 0.8.

  4. The effect of flying and low humidity on the admittance of the tympanic membrane and middle ear system.

    Science.gov (United States)

    Morse, Robert Peter

    2013-10-01

    Many passengers experience discomfort during flight because of the effect of low humidity on the skin, eyes, throat, and nose. In this physiological study, we have investigated whether flight and low humidity also affect the tympanic membrane. From previous studies, a decrease in admittance of the tympanic membrane through drying might be expected to affect the buffering capacity of the middle ear and to disrupt automatic pressure regulation. This investigation involved an observational study onboard an aircraft combined with experiments in an environmental chamber, where the humidity could be controlled but could not be made to be as low as during flight. For the flight study, there was a linear relationship between the peak compensated static admittance of the tympanic membrane and relative humidity with a constant of proportionality of 0.00315 mmho/% relative humidity. The low humidity at cruise altitude (minimum 22.7 %) was associated with a mean decrease in admittance of about 20 % compared with measures in the airport. From the chamber study, we further found that a mean decrease in relative humidity of 23.4 % led to a significant decrease in mean admittance by 0.11 mmho [F(1,8) = 18.95, P = 0.002], a decrease of 9.4 %. The order of magnitude for the effect of humidity was similar for the flight and environmental chamber studies. We conclude that admittance changes during flight were likely to have been caused by the low humidity in the aircraft cabin and that these changes may affect the automatic pressure regulation of the middle ear during descent.

  5. Indoor ice arenas. Humidity caused problems and suggested solutions

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report was prepared to assist indoor ice arena managers in Canada to solve common problems related to humidity. These problems typically include leaking roofs, deterioration of roof and insulation, condensation on indoor walls, damages to exterior walls due to condensation on exterior metal parts, rusting metal elements, high energy bills, and long and costly ice-making periods. Recommendations are made for improved roof insulation systems, proper sealing, maintenance, and repair. High energy costs are seen as due to insufficient insulation, air leakage, and heat losses by radiation and convection. Convection can be controlled by dehumidification and shielding the ice from air currents. Radiation losses can be lowered by using a low-emmissivity suspended ceiling; this effectively breaks the flow of radiated heat from the roof toward the ice sheet, and has the additional benefit of lowering of lighting energy demand by acting as a reflector. It is shown that these measures can result in significant energy cost savings with favorable payback periods. 10 figs.

  6. Effects of relative humidity on the characterization of a photochemical smog chamber.

    Science.gov (United States)

    Hu, Gaoshuo; Xu, Yongfu; Jia, Long

    2011-01-01

    Water vapor plays an important role in many atmospheric chemical reactions. A self-made indoor environmental smog chamber was used to investigate the effects of relative humidity (RH) on its characterization, which included the wall effects of reactive species such as 03 and NOx, and the determination of chamber-dependent OH radicals in terms of CO-NOx irradiation experiments. Results showed that the rate constant of O3 wall losses increased with increasing RH, and that their relationship was linearly significant. Although RH affected the rate constant of NOx wall losses, their relationship was not statistically significant. Background air generated a small amount of ozone at both high and low RH. When RH varied from 5% to 79%, the apparent rate constant kNO2-->HONO for the conversion of NO2 into gas phase HONO was estimated in the range of 0.70 x 10(-3)-2.5 x 10(-3) min(-1). A linear relationship between kNO2-->HONO and RH was obtained as kNO2-->HONO (10(-3) min(-1)) = -0.0255RH + 2.64, with R2 and P value being 0.978 and < 0.01. To our knowledge, this is the first report on their relationship. The generation mechanism for HONO and OH was also discussed in this work.

  7. Climate Change and Air Pollution: Effects on Respiratory Allergy.

    Science.gov (United States)

    D'Amato, Gennaro; Pawankar, Ruby; Vitale, Carolina; Lanza, Maurizia; Molino, Antonio; Stanziola, Anna; Sanduzzi, Alessandro; Vatrella, Alessandro; D'Amato, Maria

    2016-09-01

    A body of evidence suggests that major changes involving the atmosphere and the climate, including global warming induced by anthropogenic factors, have impact on the biosphere and human environment. Studies on the effects of climate change on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between allergic respiratory diseases, asthma and environmental factors, such as meteorological variables, airborne allergens, and air pollution. Urbanization with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases and bronchial asthma observed over recent decades in most industrialized countries. However, it is not easy to evaluate the impact of climate changes and air pollution on the prevalence of asthma in the general population and on the timing of asthma exacerbations, although the global rise in asthma prevalence and severity could also be an effect of air pollution and climate change. Since airborne allergens and air pollutants are frequently increased contemporaneously in the atmosphere, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of respiratory allergy and asthma in atopic subjects in the last 5 decades. Pollen allergy is frequently used to study the relationship between air pollution and respiratory allergic diseases, such as rhinitis and bronchial asthma. Epidemiologic studies have demonstrated that urbanization, high levels of vehicle emissions, and westernized lifestyle are correlated with an increased frequency of respiratory allergy prevalently in people who live in urban areas in comparison with people living in rural areas. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc.) can affect both components (biological and chemical) of this interaction.

  8. Methodology to determine the appropriate amount of excess air for the operation of a gas turbine in a wet environment

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Leyte, R.; Zamora-Mata, J.M.; Torres-Aldaco, A. [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Ingenieria de Procesos e Hidraulica, San Rafael Atlixco 186, Col Vicentina 09340, Iztapalapa, Mexico, D.F. (Mexico); Toledo-Velazquez, M. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Mecanica y Electrica, Seccion de Estudios de Posgrado e Investigacion, Laboratorio de Ingenieria Termica e Hidraulica Aplicada, Unidad Profesional Adolfo Lopez Mateos, Edificio 5, 3er piso SEPI-ESIME, C.P. 07738, Col. Lindavista, Mexico D.F. (Mexico); Salazar-Pereyra, M. [Tecnologico de Estudios Superiores de Ecatepec, Division de Ingenieria Mecatronica e Industrial, Posgrado en Ciencias en Ingenieria Mecatronica, Av. Tecnologico s/n, Col. Valle de Anahuac, C.P. 55210, Ecatepec de Morelos, Estado de Mexico (Mexico)

    2010-02-15

    This paper addresses the impact of excess air on turbine inlet temperature, power, and thermal efficiency at different pressure ratios. An explicit relationship is developed to determine the turbine inlet temperature as a function of excess air, pressure ratio and relative humidity. The effect of humidity on the calculation of excess air to achieve a pre-established power output is analyzed and presented. Likewise it is demonstrated that dry air calculations provide a valid upper bound for the performance of a gas turbine under a wet environment. (author)

  9. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong

    International Nuclear Information System (INIS)

    Guo, H.; Lee, S.C.; Chan, L.Y.

    2004-01-01

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM 10 (particulate matters with aerodynamic diameter less than 10 μm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM 10 , TBC, CO and NO 2 at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM 10 and TBC. The elevated PM 10 concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM 10 concentration at poultry stalls was higher than the HKIAQO standard of 180 μg/m 3 , and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m 3 , which was above the HKIAQO standard of 1000 CFU/m 3 . The bacteria levels at other three stalls were all below the HKIAQO standard

  10. Combination of air-source heat pumps with liquid desiccant dehumidification of air

    International Nuclear Information System (INIS)

    Zhang Li; Hihara, Eiji; Saikawa, Michiyuki

    2012-01-01

    Highlights: ► We propose a frost-free air-source heat pump system with integrated desiccant. ► The system can provide heating load continuously and humidify room. ► The coefficient of performance of the system is 2.6 at T a = −7 °C and RH = 80%. ► The heating load of solution is 3–4 times larger than cooling load of solution. - Abstract: This paper proposes a frost-free air source heat pump system with integrated liquid desiccant dehumidification, in which frosting can be retarded by dehumidifying air before entering an outdoor heat exchanger. And the water removed from the air is used to humidify a room. Simulation is carried out at a dry-bulb temperature of −7 to 5.5 °C and a relative humidity of 80% depending on the frosting conditions. The results show that the coefficient of performance (COP) is in the range of 2.6–2.9, which is 30–40% higher than that of heat pump heating integrated with an electric heater humidifying system. And it is found that the optimum value of the concentration of lithium chloride aqueous solution is 37% for the frost-free operation mode. Experiments are conducted for liquid desiccant system under low air temperature and high relative humidity conditions. Experimental results show that the dew point of the dehumidified air is decreased by 8 °C and the humidity ratio of the humidified air is kept at 8.1 g kg −1 , which ensures the frost-free operation of the heat pump evaporator and the comfortable level of room humidity simultaneously. The heating load of solution is 3–4.5 times larger than cooling load of solution, which agrees with the assumption given at the part of the simulation. Furthermore, the deviations between the calculated COP LHRU and the experimental results are within 33%.

  11. High-precision diode-laser-based temperature measurement for air refractive index compensation

    International Nuclear Information System (INIS)

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

    2011-01-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

  12. Measurements of the effect of humidity on radio-aerosol penetration through ultrafine capillaries

    International Nuclear Information System (INIS)

    Cullen, C.

    1996-08-01

    The purpose of this research was to examine the effects of humidity on radio-aerosol penetration through ultrafine capillaries. A number of tests were conducted at relative humidities of 20%, 50%, and 80%, with sampling times of 20, 40, and 60 min. The radio-aerosol consisted of polystyrene particles with a diameter of 0.1 microm. The ultrafine capillaries had a diameter of 250 microm. The data from these tests varied significantly. These results made the identification of radio-aerosol penetration trends inconclusive. The standard deviation for all penetration data ranged from 3% to 30%. The results of this study suggest that a better control of the experimental parameters was needed to obtain more accurate data from experiments associated with radio-aerosol penetration in the presence of moisture. The experimental parameters that may have contributed to the wide variance of data, include aerosol flow, radio-aerosol generation, capillary characteristics, humidity control, and radiation measurements. It was the uncertainty of these parameters that contributed to the poor data which made conclusive deductions about radio-aerosol penetration dependence on humidity difficult. The application of this study is to ultrafine leaks resulting from stress fractures in high-level nuclear waste transportation casks under accident scenarios

  13. Controlling indoor climate. Passive cooling of residential buildings in hot-humid climates in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhiwu, Wang

    1996-10-01

    Overheating is a paramount problem in residential buildings in hot and humid climates in China during summer. This study aims to deal with the overheating problem and the problem of poor air quality in dwellings. The main objective is to improve indoor thermal conditions by passive cooling approaches, climatisation techniques in buildings without auxiliary cooling from air conditioning equipment. This thesis focuses on the study of cross-ventilation in apartments, which is one of the most effective ways of natural cooling in a hot humid climate, but is also one of the least understood parts in controlling indoor climate. The Computational Fluid Dynamics (CFD) technique is used, which is a new approach, since cross-ventilation studies have been conventionally made by wind tunnel tests. The validations of the CFD technique are examined by a comparison between wind tunnel tests and computer simulations. The factors influencing indoor air movement are investigated for a single room. Cross-ventilation in two apartments is studied, and the air change efficiency in a Chinese kitchen is calculated with CFD techniques. The thermal performance of ventilated roofs, a simple and widely used type of roof in the region, is specially addressed by means of a full-scale measurement, wind tunnel tests and computer simulations. An integrated study of passive cooling approaches and factors affecting indoor thermal comfort is carried out through a case study in a southern Chinese city, Guangzhou. This thesis demonstrates that passive cooling measure have a high potential in significantly improving indoor thermal conditions during summer. This study also gives discussions and conclusions on the evaluation of indoor thermal environment; effects influencing cross-ventilation in apartments; design guidelines for ventilated roofs and an integrated study of passive cooling. 111 refs, 83 figs, 65 tabs

  14. The Influence of Air Temperature on the Dew Point Temperature in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    done to determine the influence and effect of temperature on other climatic environmental ... Key words: Air Temperature, Dew point temperature, Weather, Climate, Influence. Weather ... humidity, clouds and atmospheric pressure. Its.

  15. The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2

    Science.gov (United States)

    Li, Zhong; Haidry, Azhar Ali; Gao, Bin; Wang, Tao; Yao, ZhengJun

    2017-08-01

    Monitoring of humidity is of utmost importance as it is essential part of almost every process in our life. Many commercial humidity sensors based on metal oxide semiconductors are available in the market, but there is still need to synthesize low-cost, fast and highly sensitive humidity sensors with no interference from background environment. The aim of this work was to fabricate the ordered mesoporous un-doped and Co-doped TiO2 (0.1-5 mol% Co) and to analyze its humidity sensing properties at room temperatures. The ordered mesoporous powders with high specific surface area (SSA) were prepared by multicomponent self-assembly procedure and then spray-coated onto the sensor substrates with interdigitated gold electrodes. The sensors exhibited excellent stability and reproducible resistance change under various relative humidity percentages (9-90% RH) with negligible effect of background environment. For instance, the response to 90% RH at room temperature was about five orders of magnitude (∼1.39 × 105) and the response time (Tres) was ∼24 s. The reaction/recovery times of the sensors were compared with commercial humidity sensor to show that the reaction times in this work are not given by the surface reaction of water vapor on the sensor surfaces, rather these are mainly influenced by the experimental setup. The sensor response increased up to 3 mol% Co-contents and then decreased for 5 mol% Co-contents. Based on the experimental results, the surface reaction of humidity is discussed related to specific surface area, average grain size and cobalt contents to understand the humidity sensing mechanism.

  16. Improvement of lithium chloride dew-point hygrometer for direct reading and controlling of relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.Z.; Chu, Y.

    1986-01-01

    The lithium chloride dew-point hygrometer has many advantages over other types of hygrometers. However, it only reads and controls the dew-point temperature of air instead of the relative humidity, which is more important in industry, agriculture, food storage, and hygiene. This paper describes a new hygrometer which is based on the same principle as the lithium chloride dew-point hygrometer, but it can read and control the relative humidity directly. The instrument is quick in response and the ranges of temperature and relative humidity are quite large. Its accuracy is normally within 3% RH and its precision is within 2% RH.

  17. 40 CFR 1065.125 - Engine intake air.

    Science.gov (United States)

    2010-07-01

    ... measurements at each intake, use an average value for verifying compliance to § 1065.520(b)(2). (2) Humidity. You may use a single shared humidity measurement for intake air as long as your equipment for handling... engines with multiple intakes with separate humidity measurements at each intake, use a flow-weighted...

  18. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    Science.gov (United States)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  19. Attribution of observed surface humidity changes to human influence.

    Science.gov (United States)

    Willett, Katharine M; Gillett, Nathan P; Jones, Philip D; Thorne, Peter W

    2007-10-11

    Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.

  20. Humidity control device in a reactor container

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo; Osumi, Katsumi; Kimura, Takashi.

    1986-01-01

    Purpose: To provide a device capable of maintaining the inside of a container under high humidity circumstantial conditions causing less atmospheric corrosions, in order to prevent injuries due to atmospheric corrosions to smaller diameter stainless steel pipeways in the reactor container. Constitution: Stress corrosion cracks (SCC) to the smaller diameter stainless steel pipeways are caused dependent on the relative humidity and it is effective as the countermeasure against SCC to maintain the relative humidity at a low level less than 30 % or high level greater than 60 %. Based on the above findings, a humidity control device is disposed so as to maintain the relative humidity for the atmosphere within a reactor core on a higher humidity region. The device is adapted such that recycling gas in the dry-well coolant circuit is passed through an orifice to atomize the water introduced from feedwater pipe and introduce into a reactor core or such that the recycling gases in the dry-well cooling circuit are bubbled into water to remove chlorine gas in the reactor container gas thereby increasing the humidity in the reactor container. (Kamimura, M.)

  1. Effect of humidity and temperature on the survival of Listeria monocytogenes on surfaces.

    Science.gov (United States)

    Redfern, J; Verran, J

    2017-04-01

    Listeria monocytogenes is a pathogenic bacterium, with human disease and infection linked to dairy products, seafood, ready-to-eat meat and raw & undercooked meats. Stainless steel is the most common food preparation surface and therefore, it is important to understand how food storage conditions such as surface materials, temperature and relative humidity can affect survival of L. monocytogenes. In this study, survival of L. monocytogenes on stainless steel was investigated at three temperatures (4, 10 and 21°C), each approx. 11, 50 and 85% humidity. Results indicate that the lower the temperature, the more cells were recovered in all three humidity environments, while medium humidity enhances survival, irrespective of temperature. Lower humidity decreases recovery at all temperatures. These data support the guidance noted above that humidity control is important, and that lower humidity environments are less likely to support retention of viable L. monocytogenes on a stainless steel surface. Understanding survival of potential food-borne pathogens is essential for the safe production and preparation of food. While it has long been 'common knowledge' that relative humidity can affect the growth and survival of micro-organisms, this study systematically describes the survival of L. monocytogenes on stainless steel under varying humidity and temperatures for the first time. The outcomes from this paper will allow those involved with food manufacture and preparation to make informed judgement on environmental conditions relating to humidity control, which is lacking in the food standards guidelines. © 2017 The Society for Applied Microbiology.

  2. The effects of topical diclofenac, topical flurbiprofen, and humidity on corneal sensitivity in normal dogs.

    Science.gov (United States)

    Dorbandt, Daniel M; Labelle, Amber L; Mitchell, Mark A; Hamor, Ralph E

    2017-03-01

    To determine the immediate and chronic effects of topical 0.1% diclofenac and 0.03% flurbiprofen on corneal sensitivity in normal canine eyes. Eighteen normal, nonbrachycephalic dogs. A prospective, randomized, masked, crossover study was performed. To determine the immediate effects associated with treatment, the study drug was instilled into the eye every 5 min for five doses, and corneal sensitivity of treated and untreated eyes was obtained prior to treatment and every 15 min post-treatment for 60 min. To determine the chronic effects, the study drug was instilled every 12 h for 30 days, and corneal sensitivity of treated and untreated eyes was obtained prior to treatment on days 0 and 30. A washout period of at least 30 days occurred between drug crossover. Ambient temperature and humidity were measured throughout the study. After multiple instillations, there was no difference in corneal sensitivity between eyes over time for diclofenac (P = 0.67) or flurbiprofen (P = 0.54), with a median sensitivity of 25 mm (1.8 g/mm 2 ). After chronic dosing, there was no difference in corneal sensitivity between eyes over time for diclofenac (P = 0.82) or flurbiprofen (P = 0.56), with a median sensitivity of 35 mm (1.0 g/mm 2 ). Decreasing ambient humidity was associated with an increase in sensitivity measurements (P = 0.0001). Neither diclofenac nor flurbiprofen had an effect on corneal sensitivity after multiple-drops or twice-daily dosing for 30 days. Ambient humidity may have an effect on corneal sensitivity measurements, with a longer filament length eliciting a blink response at lower humidity. © 2016 American College of Veterinary Ophthalmologists.

  3. Hygroscopic slaking of lime with steam or humid air. New energy effective lime slaking technology in kraft pulping; Hygroskopisk slaeckning av kalk med aanga eller fuktig luft. Ny energieffektiv teknik foer slaeckning av mesakalk i sulfatmassaindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Roland

    2003-07-15

    Lime stone is widely used in chemical recovery for regeneration of white liquor in kraft pulping. Slaked (hydrated) lime is used to convert (causticize) sodium carbonate into sodium hydroxide, whereby lime mud (calcium carbonate) precipitates from the solution. Lime mud is dried and reburned in a lime kiln, where burned lime (calcium oxide) is formed. The circle is closed when lime is slaked (hydrated) in green liquor in an exotherm reaction. Problems with traditional slaking method is that heat is recovered at low temperatures. With the method described in this report there is potential to increase heat recovery in the causticizing plant. The forecasted method means that lime is slaked with steam or humid air, for example combined with a lime mud drier and a lime kiln. The task has included slaking of burned lime with steam or humid hot air, on purpose to test a specific machine equipment in pilote scale, and to investigate temperatures and hydratization rates able to reach. Also the lime slaked with steam/humid air should be compared with burned lime slaked in green liquor when green liquor is causticized, and to investigate the dewatering properties of formed lime mud. The target group is pulp and paper industry using the kraft process. The tests have been performed at SMA Svenska Mineral AB plant (lime burning) at Sandarne Sweden in years 2004-2005. Project owner has been the Swedish company Torkapparater AB, and the project is performed inside the 'Vaermeforsk Program for Pulp and Paper Industry 2004-2005'. Other partners, besides SMA Svenska Mineral AB, has been Stora Enso Skoghalls Bruk, Carnot AB, AaF Process AB and KTH Energiprocesser. Hydrated lime of varying slaking rates has been produced at temperatures up to 270 deg C. Caustizicing being performed show that dewatering properties of lime mud formed is quite up to the standard of lime mud from burned lime slaked in green liquor. The apprehension, that the hygroscopic slaked lime should result

  4. Thermal Comfort and Optimum Humidity Part 1

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  5. Thermal Comfort and Optimum Humidity Part 2

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  6. Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons.

    Science.gov (United States)

    Schiavon, S; Yang, B; Donner, Y; Chang, V W-C; Nazaroff, W W

    2017-05-01

    In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty-six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant-controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant-controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air-conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Climate change, humidity, and mortality in the United States

    Science.gov (United States)

    Barreca, Alan I.

    2014-01-01

    This paper estimates the effects of humidity and temperature on mortality rates in the United States (c. 1973–2002) in order to provide an insight into the potential health impacts of climate change. I find that humidity, like temperature, is an important determinant of mortality. Coupled with Hadley CM3 climate-change predictions, I project that mortality rates are likely to change little on the aggregate for the United States. However, distributional impacts matter: mortality rates are likely to decline in cold and dry areas, but increase in hot and humid areas. Further, accounting for humidity has important implications for evaluating these distributional effects. PMID:25328254

  8. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes

    Energy Technology Data Exchange (ETDEWEB)

    Björklund, Sebastian, E-mail: sebastianbjorklund@gmail.com; Kocherbitov, Vitaly [Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden); Biofilms—Research Center for Biointerfaces, Malmö University, Malmö (Sweden)

    2015-05-15

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  9. The effect of relative humidity on output performance of inclined and ...

    African Journals Online (AJOL)

    The set-up of 70 Watts solar panel was inclined stationary at 150 for maximum solar reception while the set-up of 80 Watts solar panel had automatic solar tracker for effective capturing of solar radiation. For 70 Watts solar panel, the maximum power output of 59.99 Watt was obtained when the relative humidity was 30%.

  10. Air filtration and air cooling in dairies

    Energy Technology Data Exchange (ETDEWEB)

    Rubzov, J A

    1986-01-01

    In addition to the maintenance of optimum temperatures and relative humidities, a continuous cleaning of the circulating air by means of suspended matter filters and regular disinfection of the spaces and equipment are required in the maturing and storage room for cheese. This contribution presents solutions to the use of suspended matter filters in air cooling plant for dairies in the U.S.S.R.

  11. Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring.

    Science.gov (United States)

    Bhattacharjee, Mitradip; Nemade, Harshal B; Bandyopadhyay, Dipankar

    2017-08-15

    The frequency of breathing and peak flow rate of exhaled air are necessary parameters to detect chronic obstructive pulmonary diseases (COPDs) such as asthma, bronchitis, or pneumonia. We developed a lung function monitoring point-of-care-testing device (LFM-POCT) consisting of mouthpiece, paper-based humidity sensor, micro-heater, and real-time monitoring unit. Fabrication of a mouthpiece of optimal length ensured that the exhaled air was focused on the humidity-sensor. The resistive relative humidity sensor was developed using a filter paper coated with nanoparticles, which could easily follow the frequency and peak flow rate of the human breathing. Adsorption followed by condensation of the water molecules of the humid air on the paper-sensor during the forced exhalation reduced the electrical resistance of the sensor, which was converted to an electrical signal for sensing. A micro-heater composed of a copper-coil embedded in a polymer matrix helped in maintaining an optimal temperature on the sensor surface. Thus, water condensed on the sensor surface only during forcible breathing and the sensor recovered rapidly after the exhalation was complete by rapid desorption of water molecules from the sensor surface. Two types of real-time monitoring units were integrated into the device based on light emitting diodes (LEDs) and smart phones. The LED based unit displayed the diseased, critical, and fit conditions of the lungs by flashing LEDs of different colors. In comparison, for the mobile based monitoring unit, an application was developed employing an open source software, which established a wireless connectivity with the LFM-POCT device to perform the tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Advancements in accuracy of the alanine dosimetry system. Part 1. The effects of environmental humidity

    International Nuclear Information System (INIS)

    Sleptchonok, Olga F.; Nagy, Vitaly; Desrosiers, Marc F.

    2000-01-01

    A one-year study of the EPR signal of γ-irradiated ( 60 Co) L-α-alanine with simultaneous monitoring of the cavity Q-factor was undertaken. The widespread opinion that the EPR signal remains absolutely stable under normal laboratory storage conditions is inaccurate. At 0% humidity, the signal can be regarded as stable within ±1% of its initial value for 6 months for 1 and 10 kGy doses, but for only 3 months for 100 kGy. When stored at the same relative humidity values up to 60%, the fading rates for dosimeters irradiated to 1 and 10 kGy are similar, whereas signals of dosimeters irradiated to 100 kGy fade considerably faster for all humidities. The rates of fading increase with the relative humidity, especially above 60% R. H. Environmental humidity also deteriorates the accuracy of alanine dosimetry by changing the resonant cavity Q-factor. This is particularly important when irradiated alanine dosimeters are used as instrument calibration standards. Short-term changes in alanine EPR signal amplitudes were recorded upon removal of the irradiated dosimeters from their storage environments. The importance of an in situ standard to correct for measurement errors due to environmental effects is demonstrated. (author)

  13. Predicting Indian Summer Monsoon onset through variations of surface air temperature and relative humidity

    Science.gov (United States)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Indian Summer Monsoon (ISM) rainfall has an enormous effect on Indian agriculture, economy, and, as a consequence, life and prosperity of more than one billion people. Variability of the monsoonal rainfall and its onset have a huge influence on food production, agricultural planning and GDP of the country, which on 22% is determined by agriculture. Consequently, successful forecasting of the ISM onset is a big challenge and large efforts are being put into it. Here, we propose a novel approach for predictability of the ISM onset, based on critical transition theory. The ISM onset is defined as an abrupt transition from sporadious rainfall to spatially organized and temporally sustained rainfall. Taking this into account, we consider the ISM onset as is a critical transition from pre-monsoon to monsoon, which take place in time and also in space. It allows us to suggest that before the onset of ISM on the Indian subcontinent should be areas of critical behavior where indicators of the critical transitions can be detected through an analysis of observational data. First, we identify areas with such critical behavior. Second, we use detected areas as reference points for observation locations for the ISM onset prediction. Third, we derive a precursor for the ISM onset based on the analysis of surface air temperature and relative humidity variations in these reference points. Finally, we demonstrate the performance of this precursor on two observational data sets. The proposed approach allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. The ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In the anomalous years, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the

  14. Thermodynamic study of the effects of ambient air conditions on the thermal performance characteristics of a closed wet cooling tower

    International Nuclear Information System (INIS)

    Papaefthimiou, V.D.; Rogdakis, E.D.; Koronaki, I.P.; Zannis, T.C.

    2012-01-01

    A thermodynamic model was developed and used to assess the sensitivity of thermal performance characteristics of a closed wet cooling tower to inlet air conditions. In the present study, three cases of different ambient conditions are considered: In the first case, the average mid-winter and mid-summer conditions as well as the extreme case of high temperature and relative humidity, in Athens (Greece) during summer are considered according to the Greek Regulation for Buildings Energy Performance. In the second case, the varied inlet air relative humidity while the inlet air dry bulb temperature remains constant were taken into account. In the last case, the effects on cooling tower thermal behaviour when the inlet air wet bulb temperature remains constant were examined. The proposed model is capable of predicting the variation of air thermodynamic properties, sprayed water and serpentine water temperature inside the closed wet cooling tower along its height. The reliability of simulations was tested against experimental data, which were obtained from literature. Thus, the proposed model could be used for the design of industrial and domestic applications of conventional air-conditioning systems as well as for sorption cooling systems with solid and liquid desiccants where closed wet cooling towers are used for precooling the liquid solutions. The most important result of this theoretical investigation is that the highest fall of serpentine water temperature and losses of sprayed water are observed for the lowest value of inlet wet bulb temperature. Hence, the thermal effectiveness, which is associated with the temperature reduction of serpentine water as well as the operational cost, which is related to the sprayed water loss due to evaporation, of a closed wet cooling tower depend predominantly on the degree of saturation of inlet air.

  15. Humidity sensitive electrical responce of K2CrO4 doped ZnCr2O4 ceramic sensors

    International Nuclear Information System (INIS)

    Kavasoglu, N.

    2005-01-01

    The effects of the addition of various percentages of potassium chromate as a sintering aid on the response to air moisture of ZnCr 2 O 4 ceramic body along with its crystalline structure and surface morphology were studied. The fired ceramic body, which proved to be mainly constructed from about 1μm sized ZnCr 2 O 4 spinel grains, was porous. The humidity sensing behaviour of the sensors reveals that the electrical conduction is due mainly to protonic and is controlled through the thin layers of water, adsorbed on the surface of the grains, with charge transfer to the electrodes. Only the material containing 20% K 2 CrO 4 in ZnCr 2 O 4 exhibited an exponential behaviour to humidity, which shows about three orders change in the d.c. resistance over the relative humidity in the range between 25 and 90%. The addition of CuO resulted in an increase in the conductivity but had a deleterious effect on the humidity. Based on a.c. impedance measurements, an equivalent circuit associated with a net work of RC parallel circuit in series with constant phase elements (CPEs) has been suggested. It can be therefore assumed that such equivalent circuit model of the sensor under moderate moist condition indicates the charge transport processes mediated by proton hopping and diffusion. A homemade prototype of such a humidity sensor has also been successfully demonstrated in door

  16. Model, Proxy and Isotopic Perspectives on the East African Humid Period

    Science.gov (United States)

    Tierney, Jessica E.; Lewis, Sophie C.; Cook, Benjamin I.; LeGrande, Allegra N.; Schmidt, Gavin A.

    2011-01-01

    Both North and East Africa experienced more humid conditions during the early and mid-Holocene epoch (11,000-5000yr BP; 11-5 ka) relative to today. The North African Humid Period has been a major focus of paleoclimatic study, and represents a response of the hydrological cycle to the increase in boreal summer insolation and associated ocean, atmosphere and land surface feedbacks. Meanwhile, the mechanisms that caused the coeval East African Humid Period are poorly understood. Here, we use results from isotopeenabled coupled climate modeling experiments to investigate the cause of the East African Humid Period. The modeling results are interpreted alongside proxy records of both water balance and the isotopic composition of rainfall. Our simulations show that the orbitally-induced increase in dry season precipitation and the subsequent reduction in precipitation seasonality can explain the East African Humid Period, and this scenario agrees well with regional lake level and pollen paleoclimate data. Changes in zonal moisture flux from both the Atlantic and Indian Ocean account for the simulated increase in precipitation from June through November. Isotopic paleoclimate data and simulated changes in moisture source demonstrate that the western East African Rift Valley in particular experienced more humid conditions due to the influx of Atlantic moisture and enhanced convergence along the Congo Air Boundary. Our study demonstrates that zonal changes in moisture advection are an important determinant of climate variability in the East African region.

  17. Hands-on Humidity.

    Science.gov (United States)

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  18. Humid Heat Waves at different warming levels

    Science.gov (United States)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  19. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M.

    2011-01-01

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper.

  20. Energy efficient ventilation based on demand humidity control. Demonstration project with 49 apartments in Soenderborg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The aim of the project is to demonstrate how the overall energy consumption in apartment buildings can be reduced through a combination of: 1) Energy efficient ventilation based on demand humidity control; 2) Energy efficient design of the building shell including passive solar and seasonally flexible sunspaces; 3) Use of low temperature heating system. The 3 blocks in the project, each with 16 apartments, are furnished with 3 different ventilation systems: 1) Standard exhaust system according to building codes; 2) Ventilation system with humidity control. Each room is furnished with an air inlet valve controlled by a processor, which monitors the humidity; 3) Standard ventilation system with heat recovery. (au)

  1. Temperature and humidity effects on the response of radiochromic dye films

    International Nuclear Information System (INIS)

    Chappas, W.J.

    1981-01-01

    The radiochromic dye films developed by Chalkley and McLaughlin are quickly becoming one of the principal methods for secondary dosimetry. Their useful dose and dose rate ranges, long-term color stability, small and flexible size, and ease of reading make them ideal for spatial dose distribution measurements in the complex targets often encountered in research and industry. At room temperature, however, their response is slow, often requiring several hours after irradiation for full color development. This work examines the effect of humidity on the film's time response and describes two methods for accelerating the film's color development. By keeping the film in a controlled humidity environment or through a simple heating technique, the film can be read in minutes instead of hours after irradiation. The results are shown to be identical to those of films stored for 24 hours at room temperature. (author)

  2. Effect of ventilation rate on air cleanliness and energy consumption in operation rooms at rest.

    Science.gov (United States)

    Lee, Shih-Tseng; Liang, Ching-Chieh; Chien, Tsung-Yi; Wu, Feng-Jen; Fan, Kuang-Chung; Wan, Gwo-Hwa

    2018-02-27

    The interrelationships between ventilation rate, indoor air quality, and energy consumption in operation rooms at rest are yet to be understood. We investigate the effect of ventilation rate on indoor air quality indices and energy consumption in ORs at rest. The study investigates the air temperature, relative humidity, concentrations of carbon dioxide, particulate matter (PM), and airborne bacteria at different ventilation rates in operation rooms at rest of a medical center. The energy consumption and cost analysis of the heating, ventilating, and air conditioning (HVAC) system in the operation rooms at rest were also evaluated for all ventilation rates. No air-conditioned operation rooms had very highest PM and airborne bacterial concentrations in the operation areas. The bacterial concentration in the operation areas with 6-30 air changes per hour (ACH) was below the suggested level set by the United Kingdom (UK) for an empty operation room. A 70% of reduction in annual energy cost by reducing the ventilation rate from 30 to 6 ACH was found in the operation rooms at rest. Maintenance of operation rooms at ventilation rate of 6 ACH could save considerable amounts of energy and achieve the goal of air cleanliness.

  3. Effect of Relative Humidity on Adsorption Breakthrough of CO2 on Activated Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Yu-Chun Chiang

    2017-11-01

    Full Text Available Microporous activated carbon fibers (ACFs were developed for CO2 capture based on potassium hydroxide (KOH activation and tetraethylenepentamine (TEPA amination. The material properties of the modified ACFs were characterized using several techniques. The adsorption breakthrough curves of CO2 were measured and the effect of relative humidity in the carrier gas was determined. The KOH activation at high temperature generated additional pore networks and the intercalation of metallic K into the carbon matrix, leading to the production of mesopore and micropore volumes and providing access to the active sites in the micropores. However, this treatment also resulted in the loss of nitrogen functionalities. The TEPA amination has successfully introduced nitrogen functionalities onto the fiber surface, but its long-chain structure blocked parts of the micropores and, thus, made the available surface area and pore volume limited. Introduction of the power of time into the Wheeler equation was required to fit the data well. The relative humidity within the studied range had almost no effects on the breakthrough curves. It was expected that the concentration of CO2 was high enough so that the impact on CO2 adsorption capacity lessened due to increased relative humidity.

  4. Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    T. B. Nguyen

    2011-07-01

    Full Text Available The effect of relative humidity (RH on the composition and concentrations of gas-phase products and secondary organic aerosol (SOA generated from the photooxidation of isoprene under high-NOx conditions was investigated. Experiments were performed with hydrogen peroxide as the OH precursor and in the absence of seed aerosol. The relative yields of most gas-phase products were the same regardless of initial water vapor concentration with exception of hydroxyacetone and glycolaldehyde, which were considerably affected by RH. A significant change was observed in the SOA composition, with many unique condensed-phase products formed under humid (90 % RH vs. dry (<2 % RH conditions, without any detectable effect on the rate and extent of the SOA mass growth. There is a 40 % reduction in the number and relative abundance of distinct particle-phase nitrogen-containing organic compounds (NOC detected by high resolution mass spectrometry. The suppression of condensation reactions, which produce water as a product, is the most important chemical effect of the increased RH. For example, the total signal from oligomeric esters of 2-methylglyceric acid was reduced by about 60 % under humid conditions and the maximum oligomer chain lengths were reduced by 7–11 carbons. Oligomers formed by addition mechanisms, without direct involvement of water, also decreased at elevated RH but to a much smaller extent. The observed reduction in the extent of condensation-type oligomerization at high RH may have substantial impact on the phase characteristics and hygroscopicity of the isoprene aerosol. The reduction in the amount of organic nitrates in the particle phase has implications for understanding the budget of NOC compounds.

  5. Humidity Sensing in Drosophila.

    Science.gov (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C

    2016-05-23

    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Simulating the formation of Hurricane Isabel (2003) with AIRS data

    Science.gov (United States)

    Wu, Liguang; Braun, Scott A.; Qu, John J.; Hao, Xianjun

    2006-02-01

    Using the AIRS retrieved temperature and humidity profiles, the Saharan Air Layer (SAL) influence on the formation of Hurricane Isabel (2003) is simulated numerically with the MM5 model. The warmth and dryness of the SAL (the thermodynamic effect) is assimilated by use of the nudging technique, which enables the model thermodynamic state to be relaxed to the profiles of the AIRS retrieved data for the regions without cloud contamination. By incorporating the AIRS data, MM5 better simulates the large-scale flow patterns and the timing and location of the formation of Hurricane Isabel and its subsequent track. By comparing with an experiment without nudging of the AIRS data, it is shown that the SAL may have delayed the formation of Hurricane Isabel and inhibited the development of another tropical disturbance to the east. This case study confirms the argument by Dunion and Velden (2004) that the SAL can suppress Atlantic tropical cyclone activity by increasing the vertical wind shear, reducing the mean relative humidity, and stabilizing the environment at lower levels.

  7. Comparison of land surface humidity between observations and CMIP5 models

    Science.gov (United States)

    Dunn, Robert J. H.; Willett, Kate M.; Ciavarella, Andrew; Stott, Peter A.

    2017-08-01

    We compare the latest observational land surface humidity dataset, HadISDH, with the latest generation of climate models extracted from the CMIP5 archive and the ERA-Interim reanalysis over the period 1973 to present. The globally averaged behaviour of HadISDH and ERA-Interim are very similar in both humidity measures and air temperature, on decadal and interannual timescales. The global average relative humidity shows a gradual increase from 1973 to 2000, followed by a steep decline in recent years. The observed specific humidity shows a steady increase in the global average during the early period but in the later period it remains approximately constant. None of the CMIP5 models or experiments capture the observed behaviour of the relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed climatologies with those from historical model runs shows that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra-tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends is relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the tropics and very little at high latitudes. The observed drying in mid-latitudes is present at a much lower magnitude in the CMIP5 models. Relationships between temperature and humidity anomalies (T-q and T-rh) show good agreement for specific humidity between models and observations, and between the models themselves, but much poorer for relative humidity. The T-q correlation from the models is more steeply positive than

  8. Experimental determination of the effect of temperature and humidity on the development of colour in Pinus radiata

    Directory of Open Access Journals (Sweden)

    M. McCurdy

    2005-06-01

    Full Text Available Experiments were undertaken to determine the effects of drying conditions (temperature and humidity on the development of kiln brown stain in radiata pine during drying. Eight schedules were tested with temperatures ranging from 50°C to 120°C and relative humidity from 14% to 67%. The variables measured were moisture content, color expressed using the CIELab color space, and nitrogen content. The experiments have shown that the kiln brown stain is influenced by drying temperature and drying time. The recommendation is therefore that low-temperature and low-humidity schedules be developed for controlling color development.

  9. High-precision diode-laser-based temperature measurement for air refractive index compensation.

    Science.gov (United States)

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppä, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement. © 2011 Optical Society of America

  10. Studies on the effect of the relative humidity of the atmosphere on the growth and physiology of rice [Oryza sativa] plants, 10: Effect of ambient humidity on the translocation of assimilated 13C in leaves

    International Nuclear Information System (INIS)

    Hirai, G.; Okumura, T.; Takeuchi, S.; Tanaka, O.; Chujo, H.; Tanaka, N.

    1996-01-01

    13C-labeled CO2 was fed to rice seedlings for 60 min in the light under low (60%) or high (90%) humidity. The amount of 13C assimilated by the leaves under high humidity was much greater than that by the plants under low humidity. The 13C-labeled CO2 was fed to the plants for 60 min at 75% humidity and then the plants were kept at 60 or 90% humidity under illumination. In 10 hours after the end of 13C feeding, the amount of 13C and 13C content increased in the roots of the plants kept under high humidity. On the other hand, they increased in the sixth leaf and the transfer of 13C to the roots was very low in the plants kept under low humidity. These results support our previous observations that dry matter production of the plants grown under high humidity was higher than that of the plants grown under low humidity, that the dry matter increase of roots in the plants grown under high humidity was higher than that of the plants grown under low humidity and that the stress caused by low humidity increased the partition of dry matter to the top of plants

  11. Influence of the ambient humidity on the concentration of natural deposition-mode ice-nucleating particles

    Directory of Open Access Journals (Sweden)

    M. L. López

    2016-01-01

    Full Text Available This study reports measurements of deposition-mode ice-nucleating particle (INP concentrations at ground level during the period July–December 2014 in Córdoba, Argentina. Ambient air was sampled into a cloud chamber where the INP concentration was measured at a temperature of −25 °C and a 15 % supersaturation over ice. Measurements were performed on days with different thermodynamic conditions, including rainy days. The effect of the relative humidity at ground level (RHamb on the INP concentration was analyzed. The number of INPs activated varied from 1 L−1 at RHamb of 25 % to 30 L−1 at RHamb of 90 %. In general, a linear trend between the INP concentration and the RHamb was found, suggesting that this variability must be related to the effectiveness of the aerosols acting as INPs. From the backward trajectories analysis, it was found that the link between INP concentration and RHamb is independent of the origin of the air masses. The role of biological INPs and nucleation occurring in pores and cavities was discussed as a possible mechanism to explain the increase of the INP concentration during high ambient relative humidity events. This work provides valuable measurements of deposition-mode INP concentrations from the Southern Hemisphere where INP data are sparse so far.

  12. Experimental studies on improvement of coefficient of performance of window air conditioning unit

    Directory of Open Access Journals (Sweden)

    Tharves Mohideen Sheik Ismail

    2017-01-01

    Full Text Available This paper presents the performance analysis of a window air conditioner unit incorporated with wick less loop heat pipes (WLHP. The WLHP are located on the evaporator side of the air conditioning unit. The working medium for the WLHP is R134a refrigerant gas, an alternate refrigerant. The supply and return humidity of room air, the heat removal rat, and the coefficient of performance of the unit are analyzed for various ambient and room temperatures before and after incorporation of WLHP. The performance curves are drawn by comparing the power consumption and humidity collection rates for various room and ambient temperatures. The results show that coefficient of performance of the unit is improved by 18% to 20% after incorporation of WLHP due to pre-cooling of return air by WLHP, which reduces the thermal load on compressor. Similarly, the energy consumption is reduced by 20% to 25% due to higher thermostat setting and the humidity collection is improved by 35% due to pre-cooling effect of WLHP. The results are tabulated and conclusion drawn is presented based on the performance.

  13. Effects of Temperature and Humidity on the Characterization of C-4 Explosive Threats

    Science.gov (United States)

    Miller, C. J.; Yoder, T. S.

    2012-06-01

    were examined using scanning electron microscopy and atomic force microscopy in an attempt to determine how the explosive was bound to the substrate. This is the second article in a series on the effects of temperature and relative humidity on trace explosive threats.

  14. Impacts of Present and Future Climate Variability On Agriculture and Forestry in the Humid and Sub-Humid Tropics

    International Nuclear Information System (INIS)

    Zhao, Y.; Wang, C.; Wang, S.; Tibig, Lourdes V.

    2005-01-01

    Although there are different results from different studies, most assessments indicate that climate variability would have negative effects on agriculture and forestry in the humid and sub-humid tropics. Cereal crop yields would decrease generally with even minimal increases in temperature. For commercial crops, extreme events such as cyclones, droughts and floods lead to larger damages than only changes of mean climate. Impacts of climate variability on livestock mainly include two aspects; impacts on animals such as increase of heat and disease stress-related death, and impacts on pasture. As to forestry, climate variability would have negative as well as some positive impacts on forests of humid and sub-humid tropics. However, in most tropical regions, the impacts of human activities such as deforestation will be more important than climate variability and climate change in determining natural forest cover

  15. Physiological and subjective responses to low relative humidity in young and elderly men.

    Science.gov (United States)

    Sunwoo, Yujin; Chou, Chinmei; Takeshita, Junko; Murakami, Motoko; Tochihara, Yutaka

    2006-05-01

    In order to compare the physiological and the subjective responses to low relative humidity of elderly and young men, we measured saccharin clearance time (SCT), frequency of blinking, hydration state of the skin, transepidermal water loss (TEWL), sebum level recovery and skin temperatures as physiological responses. We asked subjects to evaluate thermal, dryness and comfort sensations as subjective responses using a rating scale. Eight non-smoking healthy male students (21.7+/-0.8 yr) and eight non-smoking healthy elderly men (71.1+/-4.1 yr) were selected. The pre-room conditions were maintained at an air temperature (Ta) of 25 degrees C and a relative humidity (RH) of 50%. The test-room conditions were adjusted to provide 25 degrees C Ta and RH levels of 10%, 30% and 50%. RH had no effect on the activity of the sebaceous gland or change of mean skin temperature. SCT of the elderly group under 10% RH was significantly longer than that of the young group. In particular, considering the SCT change, the nasal mucous membrane seems to be affected more in the elderly than in the young in low RH. Under 30% RH, the eyes and skin become dry, and under 10% RH the nasal mucous membrane becomes dry as well as the eyes and skin. These findings suggested that to avoid dryness of the eyes and skin, it is necessary to maintain greater than 30% RH, and to avoid dryness of the nasal mucous membrane, it is necessary to maintain greater than 10% RH. On the thermal sensation of the legs, at the lower humidity level, the elderly group felt cooler than the young group. On the dry sensation of the eyes and throat, the young group felt drier than the elderly group at the lower humidity levels. From the above results, the elderly group had difficulty in feeling dryness in the nasal mucous membrane despite being easily affected by low humidity. On the other hand, the young group felt the change of humidity sensitively despite not being severely affected by low humidity. Ocular mucosa and

  16. Dose-rate and humidity effects upon the gamma-radiation response of nylon-based radiachromic film dosimeters

    International Nuclear Information System (INIS)

    Gehringer, P.; Eschweiler, H.; Proksch, E.

    1979-10-01

    At dose-rates typical for 60 Co gamma irradiation sources, the radiation response of hexahydroxyethyl pararosaniline cyanide/ 50μm nylon radiachromic films is dependent upon dose-rate as well as upon the moisture content of the films, or the relative humidity of the surrounding atmosphere, respectively. Under equilibrium moisture conditions, the response measured at 606 nm 24 hours after end of irradiation shows its highest dose-rate dependence at about 32 % r.h. A decrease in dose-rate from 2.8 to 0.039 Gy.s -1 results in a decrease in response by 17%. At higher humidities, the sensitivity of the film as well as the rate dependence decreases and at 86% r.h. no discernible dose-rate effect could be found. At lower humidities than 32% a flat maximum in response follows. At nominal 0% r.h. a second absorption band at 412 nm appears which is converted completely to an additional 606 nm absorption by exposure to a humid atmosphere. After that procedure the resultant response is somewhat lower than but shows almost the same dose-rate dependence as at 32% r.h. or else to eliminate the dose-rate effect by an extrapolation procedure based on the fact that the rate dependence vanishes at zero dose. (author)

  17. Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect

    Science.gov (United States)

    Pontes, Maria José

    2018-01-01

    This paper presents a system capable of measuring temperature and relative humidity with polymer optical fiber (POF) sensors. The sensors are based on variations of the Young’s and shear moduli of the POF with variations in temperature and relative humidity. The system comprises two POFs, each with a predefined torsion stress that resulted in a variation in the fiber refractive index due to the stress-optic effect. Because there is a correlation between stress and material properties, the variation in temperature and humidity causes a variation in the fiber’s stress, which leads to variations in the fiber refractive index. Only two photodiodes comprise the sensor interrogation, resulting in a simple and low-cost system capable of measuring humidity in the range of 5–97% and temperature in the range of 21–46 °C. The root mean squared errors (RMSEs) between the proposed sensors and the reference were 1.12 °C and 1.36% for the measurements of temperature and relative humidity, respectively. In addition, fiber etching resulted in a sensor with a 2 s response time for a relative humidity variation of 10%, which is one of the lowest recorded response times for intrinsic POF humidity sensors. PMID:29558387

  18. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    Science.gov (United States)

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  19. AIRS-only Product on Giovanni for Exploring Up-to-date AIRS Observation and Comparing with AIRS+AMSU Product

    Science.gov (United States)

    Ding, F.; Hearty, T. J., III; Theobald, M.; Vollmer, B.; Wei, J.

    2017-12-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has been the home of processing, archiving, and distribution services for the Atmospheric Infrared Sounder (AIRS) mission since its launch in 2002 for the global observations of the atmospheric state. Giovanni, a web-based application developed by the GES DISC, provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. Most important variables, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases, from version 6 AIRS product are available on Giovanni. The AIRS is an instrument suite comprised of a hyperspectral infrared instrument AIRS and two multichannel microwave instruments, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB). As the HSB ceased operation in very early stage of AIRS mission, the AIRS project operates two parallel retrieval algorithms: one using both IR and MW measurements (AIRS+AMSU) and the other using only IR measurements (AIRS-only) for the most time of the mission. The AIRS+AMSU product is better and the variables on Giovanni are from it. However, the generation of AIRS+AMSU product has been suspended since the AMSU instrument anomaly occurred in late 2016. To continue exploring up-to-date AIRS observations, the same set of variables from the AIRS-only product are added on Giovanni by the GES DSIC. This will also support the comparison of AIRS-only with AIRS+AMSU retrievals. In the presentation, we will demonstrate the visualization of AIRS-only product and the plots/statistics of comparison with AIRS+AMSU product using Giovanni.

  20. Nacre-like hybrid films: Structure, properties, and the effect of relative humidity.

    Science.gov (United States)

    Abba, Mohammed T; Hunger, Philipp M; Kalidindi, Surya R; Wegst, Ulrike G K

    2015-03-01

    Functional materials often are hybrids composed of biopolymers and mineral constituents. The arrangement and interactions of the constituents frequently lead to hierarchical structures with exceptional mechanical properties and multifunctionality. In this study, hybrid thin films with a nacre-like brick-and-mortar microstructure were fabricated in a straightforward and reproducible manner through manual shear casting using the biopolymer chitosan as the matrix material (mortar) and alumina platelets as the reinforcing particles (bricks). The ratio of inorganic to organic content was varied from 0% to 15% and the relative humidities from 36% to 75% to determine their effects on the mechanical properties. It was found that increasing the volume fraction of alumina from 0% to 15% results in a twofold increase in the modulus of the film, but decreases the tensile strength by up to 30%, when the volume fraction of alumina is higher than 5%. Additionally, this study quantifies and illustrates the critical role of the relative humidity on the mechanical properties of the hybrid film. Increasing the relative humidity from 36% to 75% decreases the modulus and strength by about 45% and triples the strain at failure. These results suggest that complex hybrid materials can be manufactured and tailor made for specific applications or environmental conditions. Copyright © 2015. Published by Elsevier Ltd.

  1. The effect of a personalized ventilation system on perceived air quality and SBS symptoms

    DEFF Research Database (Denmark)

    Kaczmarczyk, Jan; Zeng, Q.; Melikov, Arsen Krikor

    2002-01-01

    Perceived air quality, SBS symptoms and performance were studied with 30 human subjects. Experiments were performed in an office set-up with six workplaces, each equipped with a Personalized Ventilation System (PVS). Each PVS allowed the amount of supply air and its direction to be controlled...... condition in regard to perceived air quality, perception of freshness and intensity of SBS symptoms was when PVS supplied outdoor air at 20 deg.C. Perceived air quality in this case was significantly better (p....... Subjects participated in four experiments: (1) PVS supplying outdoor air at 20 deg.C; (2) PVS supplying outdoor air at 23 deg.C; (3) PVS supplying recirculated room air; and (4) mixing ventilation. Room temperature was kept constant at 23 deg.C and relative humidity at 30%. Results showed that the best...

  2. Effect of air-polluting gases on plant metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, I

    1972-01-01

    Among the air-polluting gases, SO/sub 2/, ozone, peroxyacetylnitrate (PAN) and fluorine are those whose action is studied most. This review tries to show the connection between the well-known macroscopic symptoms, on the one hand, the the primary point of attack at the enzymatic level, the changes in the plant's metabolism, and the microscopic and electronmicroscopic results, on the other. PAN and ozone, which originate through the action of sunlight on auto-exhausts, cause the strong oxidizing character of this type of smog. Their primary point of attack seems to be their oxidizing effect on protein SH-groups. PAN in special oxidizes the SH-groups of a photoreducible disulfide containing chloroplast protein, thus blocking photosynthesis. SO/sub 2/, which originates from combustion of coal and petroleum as well as from roasting of sulfur-containing ores, causes the reductive character of this type of smog. SO/sub 2/ has a special position among the air-polluting gases because it can be incorporated without damaging effect into the normal sulfur metabolism up to a certain level. After exceeding this limit, it causes a rapid depression of photosynthesis. F/sup -/ is bound as a salt in the cell wall or in the cell vacuole and is thereby prevented from its damaging effect on metabolic processes up to a certain level. Upon exceeding this, it acts mainly on the enzymes of carbohydrate metabolism. In a few examples it is shown in which way the collapse of cell compartmentation causes the loss of regulatory mechanisms of the cell. The influence of internal (genetic conditions, physiological age etc.) and external (light, temperature, humidity etc.) factors on the general metabolism, and, in this way, on the sensitivity of the plant to air-polluting gases, is shown. 195 references.

  3. Exploiting the igloo principle and greenhouse effect to regulate humidity and temperature

    Directory of Open Access Journals (Sweden)

    Prabhu Karthick

    2006-01-01

    Full Text Available Background: Toxic epidermal necrolysis can be fatal and nursing care with careful monitoring of temperature and humidity can improve survival rate. We adapted the greenhouse and igloo principle using a common hood to monitor the temperature and humidity. Methods: A small heater with a regulator was placed in a mini hood and temperature was recorded inside the uncovered hood and hood covered with green cloth and aluminium foil separately. The regular hood was placed over a volunteer and the temperature was measured inside the open hood and hood covered with green cloth and aluminium foil separately. The relative humidity was also monitored using Zeal mercury dry - wet bulb hygrometer. Results: Temperature increase was most marked in the foil-covered hood followed by cloth-covered hood, both with the heater and the volunteer. Similarly, in the volunteer study, the humidity was best maintained inside the aluminium foil-covered hood. Conclusion: We recommend the use of regular hood with suitable cover to monitor the humidity and temperature of patients with toxic epidermal necrolysis.

  4. A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO2 versus MEA-Based Postcombustion Capture.

    Science.gov (United States)

    van der Giesen, Coen; Meinrenken, Christoph J; Kleijn, René; Sprecher, Benjamin; Lackner, Klaus S; Kramer, Gert Jan

    2017-01-17

    Most carbon capture and storage (CCS) envisions capturing CO 2 from flue gas. Direct air capture (DAC) of CO 2 has hitherto been deemed unviable because of the higher energy associated with capture at low atmospheric concentrations. We present a Life Cycle Assessment of coal-fired electricity generation that compares monoethanolamine (MEA)-based postcombustion capture (PCC) of CO 2 with distributed, humidity-swing-based direct air capture (HS-DAC). Given suitable temperature, humidity, wind, and water availability, HS-DAC can be largely passive. Comparing energy requirements of HS-DAC and MEA-PCC, we find that the parasitic load of HS-DAC is less than twice that of MEA-PCC (60-72 kJ/mol versus 33-46 kJ/mol, respectively). We also compare other environmental impacts as a function of net greenhouse gas (GHG) mitigation: To achieve the same 73% mitigation as MEA-PCC, HS-DAC would increase nine other environmental impacts by on average 38%, whereas MEA-PCC would increase them by 31%. Powering distributed HS-DAC with photovoltaics (instead of coal) while including recapture of all background GHG, reduces this increase to 18%, hypothetically enabling coal-based electricity with net-zero life-cycle GHG. We conclude that, in suitable geographies, HS-DAC can complement MEA-PCC to enable CO 2 capture independent of time and location of emissions and recapture background GHG from fossil-based electricity beyond flue stack emissions.

  5. Preparation and properties of DLC/MoS2 multilayer coatings for high humidity tribology

    Science.gov (United States)

    Zhao, Xiaoyu; Lu, Zhibin; Wu, Guizhi; Zhang, Guangan; Wang, Liping; Xue, Qunji

    2016-06-01

    The DLC/MoS2 multilayer coatings with different modulus ratios were deposited by magnetron sputtering in this study. The morphology, structure, composition, mechanical properties and tribological properties were investigated using several analytical techniques (FESEM, AFM, TEM, AES, XPS, nanoindentation and high humidity tribological test). The results showed that the well-defined multilayer coatings were composed of densely packed particles in which many nanocrystallines with some kinds of defects were distributed in matrix. The incorporation of oxygen into the lattice led to the degraded chemical stability. The coating’s hardness and elastic modulus were almost in the same range. Moderate improvement on the high humidity tribological properties were obtained, which was important for the extension of the service life of MoS2 in humid air.

  6. Is Obsidian Hydration Dating Affected by Relative Humidity?

    Science.gov (United States)

    Friedman, I.; Trembour, F.W.; Smith, G.I.; Smith, F.L.

    1994-01-01

    Experiments carried out under temperatures and relative humidities that approximate ambient conditions show that the rate of hydration of obsidian is a function of the relative humidity, as well as of previously established variables of temperature and obsidian chemical composition. Measurements of the relative humidity of soil at 25 sites and at depths of between 0.01 and 2 m below ground show that in most soil environments, at depths below about 0.25 m, the relative humidity is constant at 100%. We have found that the thickness of the hydrated layer developed on obsidian outcrops exposed to the sun and to relative humidities of 30-90% is similar to that formed on other portions of the outcrop that were shielded from the sun and exposed to a relative humidity of approximately 100%. Surface samples of obsidian exposed to solar heating should hydrate more rapidly than samples buried in the ground. However, the effect of the lower mean relative humidity experiences by surface samples tends to compensate for the elevated temperature, which may explain why obsidian hydration ages of surface samples usually approximate those derived from buried samples.

  7. The Use of Radiation-Induced Degradation in Controlling Molecular Weights of Polysaccharides : The Effect of Humidity

    International Nuclear Information System (INIS)

    Sen, M.

    2006-01-01

    Better understanding of chemistry of radiation-induced degradation is becoming of increasing importance on account of the utilization of polymeric materials in a variety of radiation environments as well as beneficial uses of degraded polymers. It is very well known that polysaccharides in dry form or in solution degrade when exposed to ionizing radiation. In this study degrading effect of radiation has been considered from the point of view of controlling the molecular weights of kappa- and iota-carrageenans and sodium alginate irradiated under varying environmental conditions. The humidity equilibrated polymer samples kept over saturated aqueous salt solutions of NaCl, NaNO 3 and MgCl 2 were irradiated in a Gammacell 220 at room temperature. The degradation was investigated in detail by a careful Gel Permeation Chromatographic analysis of their respective molecular weights before and after irradiation Alexander-Charlesby-Ross equation was used in determining their radiation-chemical yields. Degradation yield is the highest for dry irradiated kappa- (G(S) = 0.73) and iota-carrageenans (G(S) = 2.43) and with small amount of water taken up from surrounding humidity degradation becomes less pronounced and G(S) values show a decrease down to G(S) = 0.16 and 0.87 at 75 % relative humidity, respectively. At very high water contents degradation effect again becomes more effective. Sodium alginate has fount to be less sensitive to the effect of humidity. When there is small amount of water in the polysaccharide structure, it is unlikely to expect an indirect effect of radiation. The water located in between the polymer chains however can give enough mobility to kappa and iota karrageenans chains, plastifying effect, which may enhance the radical-radical combinations thus lowering the rate of degradation hence reducing G(S) values

  8. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths.

    Science.gov (United States)

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A

    2012-06-12

    Most research on plant-pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue--transient humidity gradients--using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12-24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator.

  9. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths

    Science.gov (United States)

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A.

    2012-01-01

    Most research on plant–pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue—transient humidity gradients—using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12–24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator. PMID:22645365

  10. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience

    Science.gov (United States)

    Stone, Wendy; Kroukamp, Otini; Korber, Darren R.; McKelvie, Jennifer; Wolfaardt, Gideon M.

    2016-01-01

    The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation. PMID:27746774

  11. Parametric analysis of a combined dew point evaporative-vapour compression based air conditioning system

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2016-09-01

    Full Text Available A dew point evaporative-vapour compression based combined air conditioning system for providing good human comfort conditions at a low cost has been proposed in this paper. The proposed system has been parametrically analysed for a wide range of ambient temperatures and specific humidity under some reasonable assumptions. The proposed system has also been compared from the conventional vapour compression air conditioner on the basis of cooling load on the cooling coil working on 100% fresh air assumption. The saving of cooling load on the coil was found to be maximum with a value of 60.93% at 46 °C and 6 g/kg specific humidity, while it was negative for very high humidity of ambient air, which indicates that proposed system is applicable for dry and moderate humid conditions but not for very humid conditions. The system is working well with an average net monthly power saving of 192.31 kW h for hot and dry conditions and 124.38 kW h for hot and moderate humid conditions. Therefore it could be a better alternative for dry and moderate humid climate with a payback period of 7.2 years.

  12. Humidity Effects on Soluble Core Mechanical and Thermal Properties (Polyvinyl Alcohol/Microballoon Composite)

    Science.gov (United States)

    1993-01-01

    This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties. This report describes test results, procedures employed, and any unusual occurrences or specific observations associated with this test program.

  13. Performance analysis of a direct expansion air dehumidification system combined with membrane-based total heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Cai-Hang; Zhang, Li-Zhi; Pei, Li-Xia [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-09-15

    A direct expansion (DX) air dehumidification system is an efficient way to supply fresh and dry air to a built environment. It plays a key role in preventing the spread of respiratory disease like Swine flu (H1N1). To improve the efficiency of a conventional DX system in hot and humid regions, a new system of DX in combination with a membrane-based total heat exchanger is proposed. Air is supplied with dew points. A detailed mathematical modeling is performed. A cell-by-cell simulation technique is used to simulate its performances. A real prototype is built in our laboratory in South China University of Technology to validate the model. The effects of inlet air humidity and temperature, evaporator and condenser sizes on the system performance are investigated. The results indicate that the model can predict the system accurately. Compared to a conventional DX system, the air dehumidification rate (ADR) of the novel system is 0.5 times higher, and the coefficient of performance (COP) is 1 times higher. Furthermore, the system performs well even under harsh hot and humid weather conditions. (author)

  14. A Note on the Spatio Temporal Variations in the Temperature and Relative Humidity over Akure, Ondo State, Nigeria

    Science.gov (United States)

    Eludoyin, A. O.; Akinbode, O. M.; Archibong, E. O.

    2007-07-01

    This study was carried out in one of the Administrative State Capitals in the southwestern part of Nigeria. Its aim is to serve as a baseline data for highlighting the effect of spatial distribution of settlements, population, and socioeconomic activities on urban air temperature and relative humidity. The main objective of the study is to assess the impact of urban growth on the microclimate of the administrative city. Temperature and relative humidity data from 1992 to 2001 were obtained from the three existing meteorological stations in Akure, the Administrative Capital of Ondo State, Nigeria, namely the Federal Ministry of Aviation, Akure Airport station (FMA), Federal University of Technology, Akure (FUTA) and the Federal School of Agriculture (SOA). Air temperature and relative humidity measurements along primary roads and in the built up areas were obtained from seventeen stations, using sling psychrometer. The data were subsequently analysed for spatial and temporal variations. The results obtained indicated that while the maximum, average and minimum temperatures showed significant annual variations, the spatial variations among the existing meteorological stations were not significant. The city is characterized by increasing annual mean temperatures whose maximum was significantly higher than that of Ondo town — another important town within the state. The annual mean temperatures ranged between 26.2°C and 30.4°C. Minimum and maximum temperatures varied from 12.3°C to 26°C and 22.5°C to 39.6°C, respectively while the relative humidity ranged between 27.5% and 98.2%. Urban `heat island' intensity was exhibited around central business district of the Oba market. 2007 American Institute of Physics

  15. Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.

    Science.gov (United States)

    Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.

    2000-12-01

    The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air

  16. Ultrahigh humidity sensitivity of graphene oxide.

    Science.gov (United States)

    Bi, Hengchang; Yin, Kuibo; Xie, Xiao; Ji, Jing; Wan, Shu; Sun, Litao; Terrones, Mauricio; Dresselhaus, Mildred S

    2013-01-01

    Humidity sensors have been extensively used in various fields, and numerous problems are encountered when using humidity sensors, including low sensitivity, long response and recovery times, and narrow humidity detection ranges. Using graphene oxide (G-O) films as humidity sensing materials, we fabricate here a microscale capacitive humidity sensor. Compared with conventional capacitive humidity sensors, the G-O based humidity sensor has a sensitivity of up to 37800% which is more than 10 times higher than that of the best one among conventional sensors at 15%-95% relative humidity. Moreover, our humidity sensor shows a fast response time (less than 1/4 of that of the conventional one) and recovery time (less than 1/2 of that of the conventional one). Therefore, G-O appears to be an ideal material for constructing humidity sensors with ultrahigh sensitivity for widespread applications.

  17. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    Science.gov (United States)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant

  18. AIRQino, a low-cost air quality mobile platform

    Science.gov (United States)

    Zaldei, Alessandro; Vagnoli, Carolina; Di Lonardo, Sara; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Martelli, Francesca; Matese, Alessandro

    2015-04-01

    Recent air quality regulations (Directive 2008/50/EC) enforce the transition from point-based monitoring networks to new tools that must be capable of mapping and forecasting air quality on the totality of land area, and therefore the totality of citizens. This implies new technologies such as models and additional indicative measurements, are needed in addition to accurate fixed air quality monitoring stations, that until now have been taken as reference by local administrators for the enforcement of various mitigation strategies. However, due to their sporadic spatial distribution, they cannot describe the highly resolved spatial pollutant variations within cities. Integrating additional indicative measurements may provide adequate information on the spatial distribution of the ambient air quality, also allowing for a reduction of the required minimum number of fixed sampling points, whose high cost and complex maintenance still remain a crucial concern for local administrators. New low-cost and small size sensors are becoming available, that could be employed in air quality monitoring including mobile applications. However, accurate assessment of their accuracy and performance both in controlled and real monitoring conditions is crucially needed. Quantifying sensor response is a significant challenge due to the sensitivity to ambient temperature and humidity and the cross-sensitivity to others pollutant species. This study reports the development of an Arduino compatible electronic board (AIRQino) which integrates a series of low-cost metal oxide and NDIR sensors for air quality monitoring, with sensors to measure air temperature, relative humidity, noise, solar radiation and vertical acceleration. A comparative assessment was made for CO2, CO, NO2, CH4, O3, VOCs concentrations, temperature and relative humidity. A controlled climatic chamber study (-80°C / +80°C) was performed to verify temperature and humidity interference using reference gas cylinders and

  19. Influence of humidity on the growth characteristics and properties of chemical bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Cheng; Chao, Yen-Tai [Department of Mechatronics Engineering, National Changhua University of Education, Changhua 50007, Taiwan (China); Yao, Pin-Chuan, E-mail: pcyao@mail.dyu.edu.tw [Department of Materials Science and Engineering, Da-Yeh University, Dacun, Changhua 51591, Taiwan (China)

    2014-07-01

    In this study, the effect of humidity on the growth characteristics and properties of chemical bath-deposited ZnS thin films was systematically investigated. All deposition was conducted by an open CBD system under various relative humidity levels (RH) or by a hermetic CBD system as a comparison. It shows, for films deposited by an open system, the ambient humidity plays an important role in the quality of the resultant films. Damp environments lead to powdery films. Generally, all films prepared in this study using NH{sub 3} and hydrazine hydrate as the complexing agents were amorphous or poorly crystalline. For an open system, the [H{sup +}] from the dissolved carbon dioxide in the air competes with the ammonium ions in the bath solution. According to Le Châtelier's principle, more ammonia was consumed, which favors the free [Zn{sup +2}] in the solution, facilitating the homogeneous precipitation of Zn(OH){sub 2} and giving rise to a powdery film. The x-ray photoelectron spectrum shows, for an open system, the content of Zn–O compounds in the form of Zn(OH){sub 2} and ZnO, etc., is increased by the relative humidity of the environment. The visible transmittance is reduced by RH. The higher optical band gap of the as-deposited films could be attributed to the quantum confinement effects due to the small grain size of the polycrystalline ZnS films over the substrates.

  20. Effects of air conditioning, dehumidification and natural ventilation on indoor concentrations of 222Rn and 220Rn

    International Nuclear Information System (INIS)

    Lee, Thomas K.C.; Yu, K.N.

    2000-01-01

    A bedroom was selected for detailed measurements on 220 Rn and 222 Rn concentrations and environmental parameters including CO 2 concentration, temperature and relative humidity. To simulate different sealing conditions, five conditions were artificially created in the sampling period of 25 consecutive days. It was concluded that natural ventilation is the most efficient way to lower the 222 Rn levels, while air conditioning is the next. Dehumidification provides only a marginal reduction of 222 Rn levels. The 220 Rn concentrations are not affected by natural ventilation, air conditioner or dehumidification, and were all around 10 Bq m -3 . There are no significant correlations between the 220 Rn and 222 Rn concentrations and environmental conditions such as CO 2 concentrations, temperature, relative humidity and pressure

  1. Adjustment of web-building initiation to high humidity: a constraint by humidity-dependent thread stickiness in the spider Cyrtarachne.

    Science.gov (United States)

    Baba, Yuki G; Kusahara, Miki; Maezono, Yasunori; Miyashita, Tadashi

    2014-07-01

    Cyrtarachne is an orb-weaving spider belonging to the subfamily Cyrtarachninae (Araneidae) which includes triangular-web-building Pasilobus and bolas spiders. The Cyrtarachninae is a group of spiders specialized in catching moths, which is thought to have evolved from ordinary orb-weaving araneids. Although the web-building time of nocturnal spiders is in general related to the time of sunset, anecdotal evidence has suggested variability of web-building time in Cyrtarachne and its closely related genera. This study has examined the effects of temperature, humidity, moonlight intensity, and prey (moths) availability on web-building time of Cyrtarachne bufo, Cyrtarachne akirai, and Cyrtarachne nagasakiensis. Generalized linear mixed model (GLMM) have revealed that humidity, and not prey availability, was the essential variable that explained the daily variability of web-building time. Experiments measuring thread stickiness under different humidities showed that, although the thread of Cyrtarachne was found to have strong stickiness under high humidity, low humidity caused a marked decrease of thread stickiness. By contrast, no obvious change in stickiness was seen in an ordinary orb-weaving spider, Larinia argiopiformis. These findings suggest that Cyrtarachne adjusts its web-building time to favorable conditions of high humidity maintaining strong stickiness, which enables the threads to work efficiently for capturing prey.

  2. Singularités de la rhéologie de l'air humide saturé et diffusion moléculaire dans les milieux nuageuxSingularities in the rheology of saturated humid air, and molecular diffusion in cloods

    Science.gov (United States)

    Bois, Pierre-Antoine

    Under realistic assumptions, we propose a thermodynamical formalism providing, for the moist-saturated air (cloudy air), a generalized Fick's law. This Fick's law leads to a double diffusive rheology with Dufour effect. The form taken by the energy equation is slightly different from the classical form used in convection problems. We compare the equations with those of the convection in moist unsaturated air (the Dufour effect and all double diffusive effects disappear in this case). As application we demonstrate some consequences of this diffusion in cloudy convection. To cite this article: P.A. Bois, C. R. Mecanique 330 (2002) 627-632.

  3. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador

    Science.gov (United States)

    Johansson, Erik; Yahia, Moohammed Wasim; Arroyo, Ivette; Bengs, Christer

    2018-03-01

    The thermal environment outdoors affects human comfort and health. Mental and physical performance is reduced at high levels of air temperature being a problem especially in tropical climates. This paper deals with human comfort in the warm-humid city of Guayaquil, Ecuador. The main aim was to examine the influence of urban micrometeorological conditions on people's subjective thermal perception and to compare it with two thermal comfort indices: the physiologically equivalent temperature (PET) and the standard effective temperature (SET*). The outdoor thermal comfort was assessed through micrometeorological measurements of air temperature, humidity, mean radiant temperature and wind speed together with a questionnaire survey consisting of 544 interviews conducted in five public places of the city during both the dry and rainy seasons. The neutral and preferred values as well as the upper comfort limits of PET and SET* were determined. For both indices, the neutral values and upper thermal comfort limits were lower during the rainy season, whereas the preferred values were higher during the rainy season. Regardless of season, the neutral values of PET and SET* are above the theoretical neutral value of each index. The results show that local people accept thermal conditions which are above acceptable comfort limits in temperate climates and that the subjective thermal perception varies within a wide range. It is clear, however, that the majority of the people in Guayaquil experience the outdoor thermal environment during daytime as too warm, and therefore, it is important to promote an urban design which creates shade and ventilation.

  4. Comfort in High-Performance Homes in a Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, A. [IBACOS, Inc., Pittsburgh, PA (United States); Beach, R. [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-01-01

    IBACOS monitored 37 homes during the late summer and early fall of 2014 in a hot and humid climate to better understand indoor comfort conditions. These homes were constructed in the last several years by four home builders that offered a comfort and performance guarantee for the homes. The homes were located in one of four cities: Tampa, Florida; Orlando, Florida; Houston, Texas; and San Antonio, Texas. Temperature and humidity data were collected from the thermostat and each room of the house using small, battery-powered data loggers. To understand system runtime and its impact on comfort, supply air temperature also was measured on a 1-minute interval. Overall, the group of homes only exceeded a room-to-room temperature difference of 6 degrees Fahrenheit for 5% of the time.

  5. CONTROLLING FACTORS OF POTENTIAL EVAPOTRANSPIRATION ABOVE GRASSLAND IN HUMID AND ARID AREA

    Directory of Open Access Journals (Sweden)

    . Yanto

    2013-05-01

    Full Text Available Potential evapotranspiration (PET is an importance process in water balance studies controlled by a number of meteorological factors such as temperature, wind speed, atmospheric pressure, solar radiation, vapor pressure gradient, relative humidity and biological factors such as vegetation type, canopy height and plant density that varied in time-scale and in spatial scale. Of all those variables, determining the most controlling factors of evapotranspiration in humid and arid area is of interest of this paper. Two sites representing humid and arid area i.e. Fermi Prairie site in Illinois and Audubon Research Ranch in Arizona respectively were investigated in this study.  The flux data employed in this study was acquired from Ameriflux Netwotk. Penmann-Monteith formula is employed in to estimate evapotranspiration rate in both sites. The result shows that the PET is in dependence on the considered meteorological factor such as shortwave radiation, vapor pressure, air temperature, wind speed, net radiation and vapor pressure deficit. It is also can be inferred from the analysis that PET is also strongly controlled by vegetation factors represented as stomatal resistance. Keywords: Potential evapotranspiration, Penmann-Monteith, humid, arid.

  6. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method

    International Nuclear Information System (INIS)

    Fang, F; Futter, J; Markwitz, A; Kennedy, J

    2009-01-01

    The UV and humidity sensing properties of ZnO nanorods prepared by arc discharge have been studied. Scanning electron microscopy and photoluminescence spectroscopy were carried out to analyze the morphology and optical properties of the as-synthesized ZnO nanorods. Proton induced x-ray emission was used to probe the impurities in the ZnO nanorods. A large quantity of high purity ZnO nanorod structures were obtained with lengths of 0.5-1 μm. The diameters of the as-synthesized ZnO nanorods were found to be between 40 and 400 nm. The nanorods interlace with each other, forming 3D networks which make them suitable for sensing application. The addition of a polymeric film-forming agent (BASF LUVISKOL VA 64) improved the conductivity, as it facilitates the construction of conducting networks. Ultrasonication helped to separate the ZnO nanorods and disperse them evenly through the polymeric agent. Improved photoconductivity was measured for a ZnO nanorod sensor annealed in air at 200 deg. C for 30 min. The ZnO nanorod sensors showed a UV-sensitive photoconduction, where the photocurrent increased by nearly four orders of magnitude from 2.7 x 10 -10 to 1.0 x 10 -6 A at 18 V under 340 nm UV illumination. High humidity sensitivity and good stability were also measured. The resistance of the ZnO nanorod sensor decreased almost linearly with increasing relative humidity (RH). The resistance of the ZnO nanorods changed by approximately five orders of magnitude from 4.35 x 10 11 Ω in dry air (7% RH) to about 4.95 x 10 6 Ω in 95% RH air. It is experimentally demonstrated that ZnO nanorods obtained by the arc discharge method show excellent performance and promise for applications in both UV and humidity sensors.

  7. A Trial Intercomparison of Humidity Generators at Extremes of Range Using Relative Humidity Transmitters

    Science.gov (United States)

    Stevens, M.; Benyon, R.; Bell, S. A.; Vicente, T.

    2008-10-01

    In order to effectively implement the Mutual Recognition Arrangement (MRA) of the International Committee for Weights and Measures (CIPM), national metrology institutes (NMIs) are required to support their claims of calibration and measurement capability (CMC) with a quality system compliant with ISO/IEC 17025, and with suitable evidence of participation in key or supplementary comparisons. The CMC review process, both at regional and inter-regional levels, uses criteria that combine the provisions mentioned above, together with additional evidence demonstrating scientific and technical competence of the institutes. For dew-point temperatures, there are key comparisons in progress under the Consultative Committee for Thermometry (CCT) and under the European regional metrology organisation (EUROMET), together with information available on past regional supplementary comparisons. However, for relative humidity there are, to date, no such comparisons available to support CMC entries. This paper presents and discusses the results of a preliminary investigation of the use of relative humidity and temperature transmitters in order to determine their suitability for the intercomparison of standard humidity generators in support of CMC claims for the calibration of relative humidity instruments. The results of a recent bilateral comparison between 2 NMIs at the extremes of the range up to 98%rh at 70 °C, and down to 1%rh at -40 °C are reported. Specific precautions and recommendations on the use of the devices as transfer standards are presented.

  8. Changes of pressure and humidity affect olfactory function.

    Science.gov (United States)

    Kuehn, Michael; Welsch, Heiko; Zahnert, Thomas; Hummel, Thomas

    2008-03-01

    The present study aimed at investigating the question whether olfactory function changes in relation to barometric pressure and humidity. Using climate chambers, odor threshold and discrimination for butanol were tested in 75 healthy volunteers under hypobaric and hyperbaric, and different humidity conditions. Among other effects, olfactory sensitivity at threshold level, but not suprathreshold odor discrimination, was impaired in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests.

  9. An experimental study of the air humidification process using a membrane contactor

    Directory of Open Access Journals (Sweden)

    Englart Sebastian

    2017-01-01

    Full Text Available The article presents the results of the experimental examination of the effectiveness of air humidification using a membrane module. The construction of the membrane module and the measuring stand is also discussed. In order to assess the effectiveness of air humidification using the membrane module, the measurements of temperature and humidity at the membrane module’s inlet and outlet, air flow rate, water flow rate and water temperature were taken. Based on the measurements, the effectiveness coefficients, E, have been determined. The power demand for the solution under study has also been discussed.

  10. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    Science.gov (United States)

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  11. Evaporation Kinetics of Laboratory Generated Secondary Organic Aerosols at Elevated Relative Humidity

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jacqueline M.; Imre, D.; Beranek, Josef; Shrivastava, ManishKumar B.; Zelenyuk, Alla

    2015-01-06

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semi-solid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on SOA particles generated, evaporated, and aged at 0%, 50% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30% to 70% of the particle mass evaporates in 2 hours, followed by a much slower evaporation rate. Evaporation kinetics at 0% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses, with aging at elevated RH leading to more significant effect. In all cases, SOA evaporation is nearly size-independent, providing direct evidence that oligomers play a crucial role in determining the evaporation kinetics.

  12. Humidity : a review and primer on atmospheric moisture and human health.

    OpenAIRE

    David, R.E.; McGregor, G.R.; Enfield, K.B.

    2016-01-01

    Research examining associations between weather and human health frequently includes the effects of atmospheric humidity. A large number of humidity variables have been developed for numerous purposes, but little guidance is available to health researchers regarding appropriate variable selection. We examine a suite of commonly used humidity variables and summarize both the medical and biometeorological literature on associations between humidity and human health. As an example of the importa...

  13. Humidity: A review and primer on atmospheric moisture and human health.

    Science.gov (United States)

    Davis, Robert E; McGregor, Glenn R; Enfield, Kyle B

    2016-01-01

    Research examining associations between weather and human health frequently includes the effects of atmospheric humidity. A large number of humidity variables have been developed for numerous purposes, but little guidance is available to health researchers regarding appropriate variable selection. We examine a suite of commonly used humidity variables and summarize both the medical and biometeorological literature on associations between humidity and human health. As an example of the importance of humidity variable selection, we correlate numerous hourly humidity variables to daily respiratory syncytial virus isolates in Singapore from 1992 to 1994. Most water-vapor mass based variables (specific humidity, absolute humidity, mixing ratio, dewpoint temperature, vapor pressure) exhibit comparable correlations. Variables that include a thermal component (relative humidity, dewpoint depression, saturation vapor pressure) exhibit strong diurnality and seasonality. Humidity variable selection must be dictated by the underlying research question. Despite being the most commonly used humidity variable, relative humidity should be used sparingly and avoided in cases when the proximity to saturation is not medically relevant. Care must be taken in averaging certain humidity variables daily or seasonally to avoid statistical biasing associated with variables that are inherently diurnal through their relationship to temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Climatic Reliability of Electronics: Early Prediction and Control of Contamination and humidity effects

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas

    were to a significant extent guided by the climatic reliability issues the electronic companies are currently facing. The research in this thesis is focused on the synergistic effects of process related contamination, humidity, potential bias, and PCBA design related aspects, while various tests...... assuming parasitic circuit due to water layer formation on the PCBA surface. The chapters 2-5 review the factors influencing the climatic reliability of electronics namely humidity interaction with materials and ionic contamination on the PCBA surface, common types and sources of ionic contamination...... in electronics, the test methods and techniques, and failure mechanisms related to climate and contamination. Chapter 6 summarizes the materials and experimental methods employed in this thesis. The results of various investigations are presented as individual research papers as published or in the draft form...

  15. Effect of different humidity levels on the biology of longtailed mealy bug pseudococcus longispinus (targioni and tozzetti) (homoptera: pseudococidae)

    International Nuclear Information System (INIS)

    Gillani, W.A.

    2009-01-01

    On determining the effects of different humidity levels on the biology of mealy bug Pseudococcus longispinus (Targioni and Tozzetti), it was found that the relative humidity (RH) at 35%, 55% and 75% had no effect on pre-adult development, adult longevity, life span and fecundity of P. longispinus. The survival of pre-adult stages was minimal at 35% RH. Sex ratio was male-biased at 35% RH and female-biased at 75% RH. (author)

  16. Humidity-dependent wound sealing in succulent leaves of Delosperma cooperi - An adaptation to seasonal drought stress.

    Science.gov (United States)

    Speck, Olga; Schlechtendahl, Mark; Borm, Florian; Kampowski, Tim; Speck, Thomas

    2018-01-01

    During evolution, plants evolved various reactions to wounding. Fast wound sealing and subsequent healing represent a selective advantage of particular importance for plants growing in arid habitats. An effective self-sealing function by internal deformation has been found in the succulent leaves of Delosperma cooperi. After a transversal incision, the entire leaf bends until the wound is closed. Our results indicate that the underlying sealing principle is a combination of hydraulic shrinking and swelling as the main driving forces and growth-induced mechanical pre-stresses in the tissues. Hydraulic effects were measured in terms of the relative bending angle over 55 minutes under various humidity conditions. The higher the relative air humidity, the lower the bending angle. Negative bending angles were found when a droplet of liquid water was applied to the wound. The statistical analysis revealed highly significant differences of the single main effects such as "humidity conditions in the wound region" and "time after wounding" and their interaction effect. The centripetal arrangement of five tissue layers with various thicknesses and significantly different mechanical properties might play an additional role with regard to mechanically driven effects. Injury disturbs the mechanical equilibrium, with pre-stresses leading to internal deformation until a new equilibrium is reached. In the context of self-sealing by internal deformation, the highly flexible wide-band tracheids, which form a net of vascular bundles, are regarded as paedomorphic tracheids, which are specialised to prevent cell collapse under drought stress and allow for building growth-induced mechanical pre-stresses.

  17. 40% Whole-House Energy Savings in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  18. 40% Whole-House Energy Savings in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilbride, T. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hefty, M. G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cole, P. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adams, K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butner, R. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ortiz, S. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Love, Pat M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-09-01

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  19. Moisture removal rate for air dehumidification by triethylene glycol in a structured packed column

    International Nuclear Information System (INIS)

    Elsarrag, Esam

    2007-01-01

    In this investigation, a desiccant dehumidifier is tested for different ranges of liquid to air flow rate ratios to expand the validity range of the results. Theoretical and experimental studies of the simultaneous heat and mass transfer to evaluate the moisture removal rate are conducted. The model predictions are compared with experimental results with very good agreement. Through the experimental study, the important design variables that affect the moisture removal rate are defined and compared with previous studies. The correlation found in the literature is assessed, and the errors are reported. The parameters that are varied during the experiments included the air and liquid flow rates, the air humidity ratio, the desiccant equilibrium humidity and the packing height. It is found that the liquid flow rate has no significant effect on the moisture removal rate when the liquid to air flow ratio has exceeded the value of 2

  20. Stress corrosion cracking of U-0.1% Cr in humid helium atmosphere

    International Nuclear Information System (INIS)

    Zalkind, S.; Eshkenazy, R.; Harush, S.; Halperin, D.; Moreno, D.; Abramov, E.; Venkert, A.

    1994-01-01

    Rivets were matched into adapted drilled holes in plates, both made of U-0.1% Cr alloy and were placed in different environments containing dry air and helium and humid air and helium for a variety of exposure times. After opening, the most significant amounts of corrosion products were detected in the specimens that stayed for three years in humid helium (5% RH) environment. Radial cracks, developed in the bore edge, were detected in the specimens. X-ray diffraction patterns of the corrosion products gave the composition of UH 3 and UO 2 . The microstructure was examined using light and electron microscopy techniques. The hydride phase that was observed, formed mainly beneath the oxide layer and penetrated into the metal matrix as needle-like forms. The formation of a lower density hydride phase, yielded in a large volume change causing the development of high stresses at the rivet-bore interface. The combination of the high stress and the weakening of the bore edge due to the presence of the brittle hydride phase led to radial crack formation around the bore edge. (orig.)

  1. Rationalizing the mechanism of HMDS degradation in air and effective control of the reaction byproducts

    Science.gov (United States)

    Seguin, Kevin; Dallas, Andrew J.; Weineck, Gerald

    2008-03-01

    The concern over molecular contamination on the surfaces of optics continues to grow. Most recently, this concern has focused on siloxane contamination resulting from hexamethyldisilazane (HMDS) which is commonly used as a wafer treatment to improve photoresist adhesion onto wafers. From this process, HMDS vapor can be found within FABs and process tools where it has been linked to issues related to lens hazing. This type of surface contamination is significantly detrimental to the imaging process and is generally corrected by extensive surface cleaning or even lens replacement. Additionally, this type of repair also requires adjustment of the optical axis, thereby contributing to an extended downtime. HMDS is known to be very sensitive to the presence of water and is therefore believed to degrade in humid airstreams. This research focuses on rationalizing the reaction mechanisms of HMDS in dry and humid airstreams and in the presence of several adsorbent surfaces. It is shown that HMDS hydrolyzes in humid air to trimethylsilanol (TMS) and ammonia (NH 3). Furthermore, it is shown that TMS can dimerize in air, or on specific types of adsorption media, to form hexamethyldisiloxane (HMDSO). Additionally, we report on the relative impact of these reaction mechanisms on the removal of both HMDS and its hydrolysis products (TMS, HMDSO and NH 3).

  2. Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM

    International Nuclear Information System (INIS)

    Shen, Yajing; Nakajima, Masahiro; Ridzuan Ahmad, Mohd; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-01-01

    A novel method for measuring an adhesion force of single yeast cell is proposed based on a nanorobotic manipulation system inside an environmental scanning electron microscope (ESEM). The effect of ambient humidity on a single yeast cell adhesion force was studied. Ambient humidity was controlled by adjusting the chamber pressure and temperature inside the ESEM. It has been demonstrated that a thicker water film was formed at a higher humidity condition. The adhesion force between an atomic force microscopy (AFM) cantilever and a tungsten probe which later on known as a substrate was evaluated at various humidity conditions. A micro-puller was fabricated from an AFM cantilever by use of focused ion beam (FIB) etching. The adhesion force of a single yeast cell (W303) to the substrate was measured using the micro-puller at the three humidity conditions: 100%, 70%, and 40%. The results showed that the adhesion force between the single yeast cell and the substrate is much smaller at higher humidity condition. The yeast cells were still alive after being observed and manipulated inside ESEM based on the result obtained from the re-culturing of the single yeast cell. The results from this work would help us to understand the ESEM system better and its potential benefit to the single cell analysis research. -- Research highlights: → A nanorobotic manipulation system was developed inside an ESEM. → A micro-puller was designed for single yeast cell adhesion force measurement. → Yeast cells were still alive after being observed and manipulated inside ESEM. → Yeast cell adhesion force to substrate is smaller at high humidity condition than at low humidity condition.

  3. Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yajing, E-mail: shen@robo.mein.nagoya-u.ac.jp [Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan); Nakajima, Masahiro [Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ridzuan Ahmad, Mohd [Department of Mechatronics and Robotics, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310 (Malaysia); Kojima, Seiji; Homma, Michio [Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Fukuda, Toshio [Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2011-07-15

    A novel method for measuring an adhesion force of single yeast cell is proposed based on a nanorobotic manipulation system inside an environmental scanning electron microscope (ESEM). The effect of ambient humidity on a single yeast cell adhesion force was studied. Ambient humidity was controlled by adjusting the chamber pressure and temperature inside the ESEM. It has been demonstrated that a thicker water film was formed at a higher humidity condition. The adhesion force between an atomic force microscopy (AFM) cantilever and a tungsten probe which later on known as a substrate was evaluated at various humidity conditions. A micro-puller was fabricated from an AFM cantilever by use of focused ion beam (FIB) etching. The adhesion force of a single yeast cell (W303) to the substrate was measured using the micro-puller at the three humidity conditions: 100%, 70%, and 40%. The results showed that the adhesion force between the single yeast cell and the substrate is much smaller at higher humidity condition. The yeast cells were still alive after being observed and manipulated inside ESEM based on the result obtained from the re-culturing of the single yeast cell. The results from this work would help us to understand the ESEM system better and its potential benefit to the single cell analysis research. -- Research highlights: {yields} A nanorobotic manipulation system was developed inside an ESEM. {yields} A micro-puller was designed for single yeast cell adhesion force measurement. {yields} Yeast cells were still alive after being observed and manipulated inside ESEM. {yields} Yeast cell adhesion force to substrate is smaller at high humidity condition than at low humidity condition.

  4. Evaluation of environmental and physiological factors of a whole ceiling-type air conditioner using a salivary biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Yusuke; Yamaguchi, Masaki [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Morito, Naomi; Nishimiya, Hajime; Yamagishi, Hideyuki [Asahi Kasei Homes Corporation, R and D Laboratories, 2-1 Samejima, Fuji, Shizuoka 416-8501 (Japan)

    2009-06-15

    In order to improve environmental condition such as humidity and airflow in living spaces, a whole ceiling-type air conditioner is proposed. This novel air conditioner exhaust dispersed airflow from the whole ceiling by using a 3-dimensional knit fabric. The purpose of this paper is to reveal the effects when controlling humidity and airflow using the whole ceiling-type air conditioner compared to a commercialized concentrated exhaust air conditioner (normal-type air conditioner) under the same temperature. Salivary {alpha}-amylase activity (SAA) was used as an index of sympathetic nervous activity. An acute experiment for a 15 min period was conducted using 12 healthy young female adults. No significant differences in room and skin temperatures were observed between the whole ceiling-type air conditioner and the normal-type air conditioner. The whole ceiling-type air conditioner showed 11.1% lower humidity than the normal-type air conditioner. The whole ceiling-type air conditioner showed one-thirteenth the airflow of the normal-type air conditioner. As a result, the PMV of the whole ceiling-type air conditioner was more comfortable level than the normal one. Moreover, subjective evaluation questionnaire revealed a significant difference was observed in wind perception (windy). The SAA of subjects under the whole ceiling-type air conditioner showed significantly low values compared with the normal-type air conditioner. It was found that the subject's sympathetic nervous activity has been inactivated under the conditions of the whole ceiling-type air conditioner. Thus, it was revealed that the whole ceiling-type air conditioner provides a more comfortable air environment by reducing physical stimulations to humans. (author)

  5. Experimental investigation of a super performance dew point air cooler

    International Nuclear Information System (INIS)

    Xu, Peng; Ma, Xiaoli; Zhao, Xudong; Fancey, Kevin

    2017-01-01

    Highlights: •The cooler had a complex heat & mass exchanger with an advanced wet material layer. •Intermittent water supply scheme was implemented. •The cooler achieved 100–160% higher COP compared to the existing dew point coolers. •Electricity use of the cooler was reduced by 50–70% compared to existing dew coolers. •This optimal working air ratio was 0.364 that enabled maximised cooling effectiveness. -- Abstract: This paper presents an experimental investigation of a super performance dew point air cooler which, by employing a super performance wet material layer, innovative heat and mass exchanger and intermittent water supply scheme, has achieved a significantly higher energy efficiency (i.e. Coefficient of Performance, COP) and a much lower electrical energy use compared to the existing air coolers of the same type. This involves the dedicated system design & construction, fully planned experimental testing under various simulated climatic conditions representing the climate of hot & dry, warm & dry, moderate, warm & humid and standard lab testing condition, testing results analysis and discussion, as well as the parallel comparison against the commercial dew point air cooler. Under the standard test condition, i.e. dry bulb temperature of 37.8 °C and coincident wet bulb temperature of 21.1 °C, the prototype cooler achieved the wet-bulb cooling effectiveness of 114% and dew-point cooling effectiveness of 75%, yielding a significantly high COP value of 52.5 at the optimal working air ratio of 0.364. The testing also indicated that the lower inlet air relative humidity led to a higher cooling efficiency, while the lower cooling output helped increase COP and cooling effectiveness (including the wet-bulb effectiveness and dew-point effectiveness) of the cooler.

  6. Measurements of Humidity and Temperature in the Marine Environment during the HEXOS Main Experiment

    NARCIS (Netherlands)

    Katsaros, K.B.; Cosmo, J. de; Lind, R.J.; Anderson, R.J.; Smith, S.D.; Kraan, R.; Oost, W.A.; Uhlig, K.; Mestayer, P.G.; Larsen, S.E.; Smith, M.H.; Leeuw, G. de

    1994-01-01

    Accurate measurement of fluctuations in temperature and humidity are needed for determination of the surface evaporation rate and the air-sea sensible heat flux using either the eddy correlation or inertial dissipation method for flux calculations. These measurements are difficult to make over the

  7. Humidity fluctuations in the marine boundary layer measured at a coastal site with an infrared humidity sensor

    DEFF Research Database (Denmark)

    Sempreviva, A.M.; Gryning, Sven-Erik

    1996-01-01

    An extensive set of humidity turbulence data has been analyzed from 22-m height in the marine boundary layer. Fluctuations of humidity were measured by an ''OPHIR'', an infrared humidity sensor with a 10 Hz scanning frequency and humidity spectra were produced. The shapes of the normalized spectra...... follow the established similarity functions. However the 10-min time averaged measurements underestimate the value of the absolute humidity. The importance of the humidity flux contribution in a marine environment in calculating the Obukhov stability length has been studied. Deviations from Monin......-Obukhov similarity theory seem to be connected to a low correlation between humidity and temperature....

  8. Impact of air traffic on the climate

    Energy Technology Data Exchange (ETDEWEB)

    Stief, G. [Florence Univ. (Italy). Ist. di Agrometeorologia

    1997-12-31

    Though emission from world-wide air traffic may seem to be relatively small in comparison to that from all other anthropogenic sources, the deleterious effect on the climate of the gases and particles emitted by planes is disproportionately large. It is thought that air traffic, working together with pollutants that have already accumulated at critical heights, and depending on humidity and temperature, plays a decisive role in helping to cause the changes, presented below, in global radiation, sunshine duration, rainfall and maximum and minimum temperatures which are taking place. (author) 7 refs.

  9. Impact of air traffic on the climate

    Energy Technology Data Exchange (ETDEWEB)

    Stief, G [Florence Univ. (Italy). Ist. di Agrometeorologia

    1998-12-31

    Though emission from world-wide air traffic may seem to be relatively small in comparison to that from all other anthropogenic sources, the deleterious effect on the climate of the gases and particles emitted by planes is disproportionately large. It is thought that air traffic, working together with pollutants that have already accumulated at critical heights, and depending on humidity and temperature, plays a decisive role in helping to cause the changes, presented below, in global radiation, sunshine duration, rainfall and maximum and minimum temperatures which are taking place. (author) 7 refs.

  10. Effect of temperature and humidity on electrical properties of organic semiconductor orange dye films deposited from solution

    International Nuclear Information System (INIS)

    Karimov, K.S.; Babadzhanov, A.; Turaeva, M.A.; Marupov, R.; Ahmed, M.M.; Khalid, F.A.; Khan, M.N.; Zakaullah, Kh.; Moiz, S.A.

    2003-01-01

    In this study the effect of temperature and humidity on electrical properties of organic semiconductor orange dye (OD) have been examined. Thin films of OD (C/sub 17/H/sub 17/N/sub 5/O/sub 2/) were deposited from 10 wt. % aqueous solution on gold and conductive glass (SnO/sub 2/) substrates. The films were grown at room temperature under normal gravity conditions, i.e., 1 g and in a spin coater up to an angular speed of 1000 RPM. Two different types of structures: surface Ga/OD/Au and sandwich AVOD/SnO/sub 2/ were fabricated and their DC and low frequency AC characteristics were evaluated for the temperature range 30-70 deg. C at ambient humidity of 50-80 %. It was observed that the sandwich structure of OD films show rectification behavior whilst the conductivity of all devices are temperature and humidity dependent. Observed room temperature activation energy for OD films was 0.30 eV which showed an increase up to 0.51 eV as a function of temperature. It was found that certain sandwich structures are more sensitive to humidity than others and the observed resistance to humidity ratio for Au/OD/Au was 5.4 whereas for Au/OD/Ga samples it was 5.0. (author)

  11. Investigation of Indoor Air Quality in Houses of Macedonia

    Directory of Open Access Journals (Sweden)

    Silvia Vilčeková

    2017-01-01

    Full Text Available People who live in buildings are exposed to harmful effects of indoor air pollution for many years. Therefore, our research is aimed to investigate the indoor air quality in family houses. The measurements of indoor air temperature, relative humidity, total volatile organic compounds (TVOC, particulate matters (PM and sound pressure level were carried out in 25 houses in several cities of the Republic of Macedonia. Mean values of indoor air temperature and relative humidity ranged from 18.9 °C to 25.6 °C and from 34.1% to 68.0%, respectively. With regard to TVOC, it can be stated that excessive occurrence was recorded. Mean values ranged from 50 μg/m3 to 2610 μg/m3. Recommended value (200 μg/m3 for human exposure to TVOC was exceeded in 32% of houses. Mean concentrations of PM2.5 (particular matter with diameter less than 2.5 μm and PM10 (diameter less than 10 μm are determined to be from 16.80 μg/m3 to 30.70 μg/m3 and from 38.30 μg/m3 to 74.60 μg/m3 individually. Mean values of sound pressure level ranged from 29.8 dB(A to 50.6 dB(A. Dependence between characteristics of buildings (Year of construction, Year of renovation, Smoke and Heating system and data from measurements (Temperature, Relative humidity, TVOC, PM2.5 and PM10 were analyzed using R software. Van der Waerden test shows dependence of Smoke on TVOC and PM2.5. Permutational multivariate analysis of variance shows the effect of interaction of Renovation and Smoke.

  12. Effect analysis of air introduced by pressurization on fuel rod performances

    International Nuclear Information System (INIS)

    Ren Qisen; Liu Tong; Sheng Guofu

    2012-01-01

    In the process of pressurization and seal welding, it is common practice to vacuumize before gas filling for the sake of preventing introducing air and other impurities, which would affect the gas composition inside of the fuel rod. However, vacuumization during pressurization is likely not being required sometimes in order to simplify the fabrication procedure. In the present work, based on the AFA3G fuel rod design with 2 MPa of filling gas, analyses on fuel rod performances were carried out under the condition of pressurization with and without vacuumization, respectively. Furthermore, the effect on hydrogen content in fuel rod was preliminarily discussed. Results indicate that the impacts of air composition introduced by pressurization on fuel rod thermal-mechanical performances, such as internal pressure and fuel center temperature, were extremely slight. The gap conductance varies to some extent as a result of the change of gas composition due to air introduced in fuel rod. The impact of humidity on water content in fuel rod is negligible at a low temperature of around 25℃. However, at higher temperature, it is essential to pay attention on the control of fabrication process, and prevent much moisture entering into the fuel rod and increasing the probability of hydriding failure. (authors)

  13. Generalized additive model of air pollution to daily mortality

    International Nuclear Information System (INIS)

    Kim, J.; Yang, H.E.

    2005-01-01

    The association of air pollution with daily mortality due to cardiovascular disease, respiratory disease, and old age (65 or older) in Seoul, Korea was investigated in 1999 using daily values of TSP, PM10, O 3 , SO 2 , NO 2 , and CO. Generalized additive Poisson models were applied to allow for the highly flexible fitting of daily trends in air pollution as well as nonlinear association with meteorological variables such as temperature, humidity, and wind speed. To estimate the effect of air pollution and weather on mortality, LOESS smoothing was used in generalized additive models. The findings suggest that air pollution levels affect significantly the daily mortality. (orig.)

  14. Measurement and prediction of indoor air quality using a breathing thermal manikin.

    Science.gov (United States)

    Melikov, A; Kaczmarczyk, J

    2007-02-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method for predicting air acceptability based on inhaled air parameters and known exposure-response relationships established in experiments with human subjects is suggested. Recommendations for optimal simulation of human breathing by means of a breathing thermal manikin when studying pollution concentration, temperature and humidity of the inhaled air as well as the transport of exhaled air (which may carry infectious agents) between occupants are outlined. In order to compare results obtained with breathing thermal manikins, their nose and mouth geometry should be standardized.

  15. Kinetic modelling of NO heterogeneous radiation-catalytic oxidation on the TiO2 surface in humid air under the electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Nichipor Henrietta

    2017-09-01

    Full Text Available Theoretical study of NOx removal from humid air by a hybrid system (catalyst combined with electron beam was carried out. The purpose of this work is to study the possibility to decrease energy consumption for NOx removal. The kinetics of radiation catalytic oxidation of NO on the catalyst TiO2 surface under electron beam irradiation was elaborated. Program Scilab 5.3.0 was used for numerical simulations. Influential parameters such as inlet NO concentration, dose, gas fl ow rate, water concentration and catalyst contents that can affect NOx removal efficiency were studied. The results of calculation show that the removal efficiency of NOx might be increased by 8-16% with the presence of a catalyst in the gas irradiated field.

  16. Effects of humidity on the mechanical properties of gecko setae.

    Science.gov (United States)

    Prowse, Michael S; Wilkinson, Matt; Puthoff, Jonathan B; Mayer, George; Autumn, Kellar

    2011-02-01

    We tested the hypothesis that an increase in relative humidity (RH) causes changes in the mechanical properties of the keratin of adhesive gecko foot hairs (setae). We measured the effect of RH on the tensile deformation properties, fracture, and dynamic mechanical response of single isolated tokay gecko setae and strips of the smooth lamellar epidermal layer. The mechanical properties of gecko setae were strongly affected by RH. The complex elastic modulus (measured at 5 Hz) of a single seta at 80% RH was 1.2 GPa, only 39% of the value when dry. An increase in RH reduced the stiffness and increased the strain to failure. The loss tangent increased significantly with humidity, suggesting that water absorption produces a transition to a more viscous type of deformation. The influence of RH on the properties of the smooth epidermal layer was comparable with that of isolated seta, with the exception of stress at rupture. These values were two to four times greater for the setae than for the smooth layer. The changes in mechanical properties of setal keratin were consistent with previously reported increases in contact forces, supporting the hypothesis that an increase in RH softens setal keratin, which increases adhesion and friction. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Study on the Correlation between Humidity and Material Strains in Separable Micro Humidity Sensor Design

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Chang

    2017-05-01

    Full Text Available Incidents of injuries caused by tiles falling from building exterior walls are frequently reported in Taiwan. Humidity is an influential factor in tile deterioration but it is more difficult to measure the humidity inside a building structure than the humidity in an indoor environment. Therefore, a separable microsensor was developed in this study to measure the humidity of the cement mortar layer with a thickness of 1.5–2 cm inside the external wall of a building. 3D printing technology is used to produce an encapsulation box that can protect the sensor from damage caused by the concrete and cement mortar. The sensor is proven in this study to be capable of measuring temperature and humidity simultaneously and the measurement results are then used to analyze the influence of humidity on external wall tile deterioration.

  18. Twin-cuvette measurement technique for investigation of dry deposition of O3 and PAN to plant leaves under controlled humidity conditions

    Science.gov (United States)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Sörgel, Matthias; Kesselmeier, Jürgen

    2016-02-01

    We present a dynamic twin-cuvette system for quantifying the trace-gas exchange fluxes between plants and the atmosphere under controlled temperature, light, and humidity conditions. Compared with a single-cuvette system, the twin-cuvette system is insensitive to disturbing background effects such as wall deposition. In combination with a climate chamber, we can perform flux measurements under constant and controllable environmental conditions. With an Automatic Temperature Regulated Air Humidification System (ATRAHS), we are able to regulate the relative humidity inside both cuvettes between 40 and 90 % with a high precision of 0.3 %. Thus, we could demonstrate that for a cuvette system operated with a high flow rate (> 20 L min-1), a temperature-regulated humidification system such as ATRAHS is an accurate method for air humidification of the flushing air. Furthermore, the fully automatic progressive fill-up of ATRAHS based on a floating valve improved the performance of the entire measurement system and prevented data gaps. Two reactive gas species, ozone (O3) and peroxyacetyl nitrate (PAN), were used to demonstrate the quality and performance of the twin-cuvette system. O3 and PAN exchange with Quercus ilex was investigated over a 14 day measurement period under controlled climate chamber conditions. By using O3 mixing ratios between 32 and 105 ppb and PAN mixing ratios between 100 and 350 ppt, a linear dependency of the O3 flux as well as the PAN flux in relation to its ambient mixing ratio could be observed. At relative humidity (RH) of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the deposition of O3 to the plant leaves was found to be only controlled by the leaf stomata. For PAN, an additional resistance inhibited the uptake of PAN by the leaves. Furthermore, the formation of water films on the leaf surface of plants inside the chamber could be continuously tracked with our custom built leaf wetness sensors

  19. A Sensor Based on LiCl/NaA Zeolite Composites for Effective Humidity Sensing.

    Science.gov (United States)

    Zhang, Ying; Xiang, Hongyu; Sun, Liang; Xie, Qiuhong; Liu, Man; Chen, Yu; Ruan, Shengping

    2018-03-01

    LiCl/NaA zeolite composites were successfully prepared by doping 1 wt%, 2 wt%, 5 wt%, and 8 wt% of LiCl into NaA zeolite. The humidity sensing properties of LiCl/NaA composites were investigated among 11% 95% relative humidity (RH). The LiCl/NaA composites exhibited better humidity sensing properties than pure NaA zeolite. The sensor made by 2 wt% Li-doped NaA zeolite possesses the best linearly in the whole RH. These results demonstrate that the LiCl/NaA composites have the potential application in humidity sensing.

  20. Graphene based humidity-insensitive films

    KAUST Repository

    Tai, Yanlong

    2017-09-08

    A humidity nonsensitive material based on reduced-graphene oxide (r-GO) and methods of making the same are provided, in an embodiment, the materia! has a resistance/humidity variation of about -15% to 15% based on different sintering time or temperature. In an aspect, the resistance variation to humidity can be close to zero or -0.5% to 0.5%, showing a humidity non sensitivity property. In an embodiment, a humidity nonsensitive material based on the r-GO and carbon nanotube (CNT) composites is provided, wherein the ratio of CNT to r-GO is adjusted. The ratio can be adjusted based on the combined contribution of carbon nanotube (positive resistance variation) and reduced- graphene oxide (negative resistance variation) behaviors.

  1. Water vapor mass balance method for determining air infiltration rates in houses

    Science.gov (United States)

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  2. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    Science.gov (United States)

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  3. [An early warning method of cucumber downy mildew in solar greenhouse based on canopy temperature and humidity modeling].

    Science.gov (United States)

    Wang, Hui; Li, Mei-lan; Xu, Jian-ping; Chen, Mei-xiang; Li, Wen-yong; Li, Ming

    2015-10-01

    The greenhouse environmental parameters can be used to establish greenhouse nirco-climate model, which can combine with disease model for early warning, with aim of ecological controlling diseases to reduce pesticide usage, and protecting greenhouse ecological environment to ensure the agricultural product quality safety. Greenhouse canopy leaf temperature and air relative humidity, models were established using energy balance and moisture balance principle inside the greenhouse. The leaf temperature model considered radiation heat transfer between the greenhouse crops, wall, soil and cover, plus the heat exchange caused by indoor net radiation and crop transpiration. Furthermore, the water dynamic balance in the greenhouse including leaf transpiration, soil evaporation, cover and leaf water vapor condensation, was considered to develop a relative humidity model. The primary infection and latent period warning models for cucumber downy mildew (Pseudoperonospora cubensis) were validated using the results of the leaf temperature and relative humidity model, and then the estimated disease occurrence date of cucumber downy mildew was compared with actual disease occurrence date of field observation. Finally, the results were verified by the measured temperature and humidity data of September and October, 2014. The results showed that the root mean square deviations (RMSDs) of the measured and estimated leaf temperature were 0.016 and 0.024 °C, and the RMSDs of the measured and estimated air relative humidity were 0.15% and 0.13%, respectively. Combining the result of estimated temperature and humidity models, a cucumber disease early warning system was established to forecast the date of disease occurrence, which met with the real date. Thus, this work could provide the micro-environment data for the early warning system of cucumber diseases in solar greenhouses.

  4. Effects on asthma and respiratory allergy of Climate change and air pollution.

    Science.gov (United States)

    D'Amato, Gennaro; Vitale, Carolina; De Martino, Annamaria; Viegi, Giovanni; Lanza, Maurizia; Molino, Antonio; Sanduzzi, Alessandro; Vatrella, Alessandro; Annesi-Maesano, Isabella; D'Amato, Maria

    2015-01-01

    The major changes to our world are those involving the atmosphere and the climate, including global warming induced by anthropogenic factors, with impact on the biosphere and human environment. Studies on the effects of climate changes on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between allergic respiratory diseases, asthma and environmental factors, like meteorological variables, airborne allergens and air pollution. Epidemiologic studies have demonstrated that urbanization, high levels of vehicle emissions and westernized lifestyle are correlated with an increased frequency of respiratory allergy, mainly in people who live in urban areas in comparison with people living in rural areas. However, it is not easy to evaluate the impact of climate changes and air pollution on the prevalence of asthma in general and on the timing of asthma exacerbations, although the global rise in asthma prevalence and severity could be also considered an effect of air pollution and climate changes. Since airborne allergens and air pollutants are frequently increased contemporaneously in the atmosphere, enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of respiratory allergy and asthma in atopic subjects in the last five decades. Pollen allergy is frequently used to study the interrelationship between air pollution and respiratory allergic diseases such as rhinitis and bronchial asthma. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc) can affect both components (biological and chemical) of this interaction. Scientific societies should be involved in advocacy activities, such as those realized by the Global Alliance against chronic Respiratory Diseases (GARD).

  5. A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Khasan S. Karimov

    2013-03-01

    Full Text Available In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O-based humidity sensor. Silver thin films (thickness ~200 nm were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.

  6. INFLUENCE OF TEMPERATURE AND RELATIVE HUMIDITY ON THE STUDDED AGARICUS BLAZEI MURRILL MUSHROOM COMPOST

    Directory of Open Access Journals (Sweden)

    Sándor Rózsa

    2017-12-01

    Full Text Available Almond mushroom, Agaricus blazei Murrill, is the so-called secondary saprophyte, developing on partially processed substrate, in which microorganisms reduced complex ligno-cellulose compounds. Numerous authors have shown that due to the similar life cycle in the cultivation of almond mushroom technologies developed for white button mushroom may be applied. However, almond mushroom requires high temperature and high humidity as well as access to light to form fruiting bodies. In Brazil, due to the advantageous climatic conditions this species is frequently grown outdoors; however, in other countries - mainly due to its high temperature requirements - such cultivation system is risky and may only be successful during very warm summers. In this study, we analyzed four kind of compost studded by Agaricus blazei Murrill mushroom mycelium. We recorded every hour the air and compost temperature and the air relative humidity. The best studded compost was the classical, followed by synthetic and then by the mixt compost.

  7. The effect of relative humidity on germination of Sporangia of Phytophthora ramorum

    Science.gov (United States)

    Sporangia of three isolates of P. ramorum representing three different clonal lineages were subjected to relative humidity (RH) levels between 80 and 100% for exposure periods ranging from 1 to 24 h at 20°C in darkness. Airtight snap-lid plastic containers (21.5 x 14.5 x 5 cm) were used as humidity ...

  8. Effects of acute supplementation of caffeine on cardiorespiratory responses during endurance running in a hot & humid climate.

    Science.gov (United States)

    Ping, Wong Chee; Keong, Chen Chee; Bandyopadhyay, Amit

    2010-07-01

    Athletes in Malaysia need to perform in a hot and humid climate. Chronic supplementation of caffeine on endurance performance have been studied extensively in different populations. However, concurrent research on the effects of acute supplementation of caffeine on cardiorespiratory responses during endurance exercise in the Malaysian context especially in a hot and humid environment is unavailable. Nine heat adapted recreational Malaysian male runners (aged: 25.4+/-6.9 yr) who were nonusers of caffeine (23.7+/-12.6 mg per day) were recruited in this placebo--controlled double--blind randomized study. Caffeine (5 mg per kg of body weight) or placebo was ingested in the form of a capsule one hour prior to the running exercise trial at 70 per cent of VO2max on a motorised treadmill in a heat-controlled laboratory (31 degrees C, 70% relative humidity). Subjects drank 3 ml of cool water per kg of body weight every 20 min during the running trials to avoid the adverse effects of dehydration. Heart rate, core body temperature and rate of perceived exertion (RPE) were recorded at intervals of 10 min, while oxygen consumption was measured at intervals of 20 min. Running time to exhaustion was significantly (Pexercise from their respective resting values in both trials (P<0.001). Our study showed that ingestion of 5 mg of caffeine per kg of body weight improved the endurance running performance but did not impose any significant effect on other individual cardiorespiratory parameters of heat-acclimated recreational runners in hot and humid conditions.

  9. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  10. Effect of warm air supplied facially on occupants' comfort

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarczyk, J. [Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Konarskiego 20, PL-44-101 Gliwice (Poland); Melikov, A.; Sliva, D. [Department of Civil Engineering, Technical University of Denmark, International Centre for Indoor Environment and Energy, Nils Koppels Alle, DTU, Building 402, 2800 Lyngby (Denmark)

    2010-04-15

    Human response to air movement supplied locally towards the face was studied in a room with an air temperature of 20 C and a relative humidity of 30%. Thirty-two human subjects were exposed to three conditions: calm environment and facially supplied airflow at 21 C and at 26 C. The air was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend the applicability of personalized ventilation aiming to supply clean air for breathing at the lower end of the temperature range recommended in the standards. Providing individual control is essential in order to avoid discomfort for the most sensitive occupants. (author)

  11. Effects of relative humidity on banana fruit drop

    NARCIS (Netherlands)

    Saengpook, C.; Ketsa, S.; Doorn, van W.G.

    2007-01-01

    Commercial ripening of banana fruit occurs at high relative humidity (RH), which prevents browning of damaged skin areas. In experiments with ripening at high RH (94 ± 1%) the individual fruit (fingers) of `Sucrier¿ (Musa acuminata, AA Group) banana exhibited a high rate of drop. The falling off of

  12. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Operation, Recovery, and Lessons Learned

    Science.gov (United States)

    Balistreri, Steven F.; Steele, John W.; Caron, Mark E.; Laliberte, Yvon J.; Shaw, Laura A.

    2013-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX in the ISS segments, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the ISS cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings as well as remediation and recovery of the full heat exchanger will be

  13. Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying; Raja, Suresh; Ferro, Andrea R.; Jaques, Peter A.; Hopke, Philip K. [Clarkson University, 8 Clarkson Avenue, Center for Air Resources Engineering and Science, Potsdam, NY 13699 (United States); Gressani, Cheryl; Wetzel, Larry E. [Air Innovations, Inc, 7000 Performance Drive, North Syracuse, NY 13212 (United States)

    2010-02-15

    Poor indoor air quality has been linked to the exacerbation of asthma symptoms in children. Because people spend most of their time indoors, improving indoor air quality may provide some relief to asthma sufferers. A study was conducted to assess whether operating an air cleaning/ventilating unit (HEPAiRx {sup registered}) in a child's bedroom can improve his/her respiratory health. Thirty children diagnosed with asthma were randomly split into two groups. For the first six weeks, group A had the air cleaning/ventilating unit (HEPAiRx {sup registered}) running in the bedrooms of the participants and group B did not; for the second six weeks, both groups had the cleaners running in the bedrooms; and, for the final six weeks, group A turned the cleaners off and group B kept theirs running. Indoor air quality parameters, including temperature, relative humidity, particulate matter (PM 0.5-10 {mu}m), carbon monoxide, carbon dioxide and total volatile organic compound (TVOC) concentrations, were monitored in each bedroom using an AirAdvice indoor air quality multi-meter. As a measure of pulmonary inflammation, exhaled breath condensate (EBC) was collected every sixth day and analyzed for nitrate and pH. Peak expiratory flow (PEF) was also measured. PM and TVOC concentrations decreased with operation of the HEPAiRx an average of 72% and 59%, respectively. The EBC nitrate concentrations decreased significantly and the EBC pH and PEF values increased significantly with operation of the unit (p < 0.001 when comparing on/off sample means). These results indicate that air cleaning in combination with ventilation can effectively reduce symptoms for asthma sufferers. (author)

  14. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    Directory of Open Access Journals (Sweden)

    Shuangxi Zhou

    2016-09-01

    Full Text Available This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF Radio Frequency Identification (RFID technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  15. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring.

    Science.gov (United States)

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-09-20

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  16. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    Science.gov (United States)

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-01-01

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods. PMID:27657070

  17. Efficacy of humidity retention bags for the reduced adsorption and improved cleaning of tissue proteins including prion-associated amyloid to surgical stainless steel surfaces.

    Science.gov (United States)

    Secker, T J; Pinchin, H E; Hervé, R C; Keevil, C W

    2015-01-01

    Increasing drying time adversely affects attachment of tissue proteins and prion-associated amyloid to surgical stainless steel, and reduces the efficacy of commercial cleaning chemistries. This study tested the efficacy of commercial humidity retention bags to reduce biofouling on surgical stainless steel and to improve subsequent cleaning. Surgical stainless steel surfaces were contaminated with ME7-infected brain homogenates and left to dry for 15 to 1,440 min either in air, in dry polythene bags or within humidity retention bags. Residual contamination pre/post cleaning was analysed using Thioflavin T/SYPRO Ruby dual staining and microscope analysis. An increase in biofouling was observed with increased drying time in air or in sealed dry bags. Humidity retention bags kept both protein and prion-associated amyloid minimal across the drying times both pre- and post-cleaning. Therefore, humidity bags demonstrate a cheap, easy to implement solution to improve surgical instrument reprocessing and to potentially reduce associated hospital acquired infections.

  18. Electrical properties of air in the Carlsbad Caverns

    International Nuclear Information System (INIS)

    Wilkening, M.; Romero, V.

    1980-01-01

    Radon 222 and its daughter product concentrations in the Carlsbad Caverns are higher than in outdoor air by a factor of several hundred. The effects of the radiation from these substances on the electrical properties of air in the cave have been studied. The rate of ion-pair production, the ion density, and the electrical conductivity are much higher in the Cave than in outdoor air. The mobility of the ions is less than outdoors due to the high humidity and low condensation nuclei concentration. A small net space charge produces a barely detectable electric field of the order of one percent of the earth's fair weather field

  19. Feasibility study on novel room air conditioner with natural cooling capability

    International Nuclear Information System (INIS)

    Han, Zongwei; Liu, Qiankun; Zhang, Yanqing; Zhang, Shuwei; Liu, Jiangzhen; Li, Weiliang

    2016-01-01

    Highlights: • A novel heat pipe combined evaporative cooling room air conditioner is constructed. • The mathematical model of the air conditioner is established. • The reliability of the model is verified by experiments. • The performance of the novel and conventional air conditioner is compared. • The applicability of the novel air conditioner in different areas is investigated. - Abstract: In order to improve the energy efficiency of room air conditioners, this paper proposed a new air conditioner that combined evaporative cooling technology, separate type heat pipe technology, and vapour compression refrigeration technology (called “combined air conditioner”). The mathematical model of the air conditioner was established and its reliability was verified by experiments. Based on the model, the simulation of the operating performance of the combined air conditioner and a conventional air conditioner was studied in typical climate regions during the cooling period, with the following results: In cold and dry areas like Shenyang, compared with the conventional air conditioner, the average cooling coefficient of performance (COP) of the combined air conditioner was increased by 27.40%. As the climate gradually became warmer and humidity gradually increased, the running time of the heat pipe cooling mode was gradually reduced, and then the energy-saving effect of the combined air conditioner became worse. For example, in the hot and humid Guangzhou, the energy saving rate was only 11.81%. Therefore, it was found that the combined air conditioner had good energy-saving potential in cold and dry areas.

  20. Experimental investigations on performance of liquid desiccant-vapor compression hybrid air conditioner

    International Nuclear Information System (INIS)

    Mohan, B. Shaji; Tiwari, Shaligram; Maiya, M.P.

    2015-01-01

    A coupled desiccant column is integrated with a conventional room air conditioner (AC) to enhance dehumidification of the room air. One desiccant column (absorber) is placed after the evaporator the other (regenerator) after the condenser of the AC unit. Such a novel liquid desiccant vapour compression hybrid air conditioning system has been fabricated and tested in a balanced ambient room type calorimeter for very low flow rates of liquid desiccant (lithium bromide solution). The moisture from the cold supply air is transferred to the hot condenser air by the desiccant flowing in the loop, thereby complimenting the dehumidification of the room air at the evaporator. The supply air is also sensibly heated during the dehumidification process by liquid desiccant in the absorber, which together enables the hybrid system to maintain low humidity in the room. Whereas the liquid desiccant is regenerated by the condenser waste heat, the entire cooling is derived only by the AC unit. The experimental results show that an increase of room temperature reduces both dehumidification of process air and regeneration of liquid desiccant, whereas an increase of room specific humidity enhances both these for the flow rate of the liquid desiccant in the range of 0.2–1.6% of the air flow rate through the absorber. - Highlights: • A liquid desiccant vapor compression hybrid system is fabricated and tested. • The liquid desiccant reduces latent load but equally increases sensible load. • Hybrid system performance is studied for varying room temperature and humidity. • Higher room temperature lowers air dehumidification and desiccant regeneration. • Increase of room specific humidity enhances dehumidification and also regeneration