WorldWideScience

Sample records for humanoid robot develop

  1. Honda humanoid robots development.

    Science.gov (United States)

    Hirose, Masato; Ogawa, Kenichi

    2007-01-15

    Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's 'challenging spirit'.

  2. The Development of Emotional Flexible Spine Humanoid Robots

    OpenAIRE

    Or, Jimmy

    2008-01-01

    Based on the work presented above, we believe that with current technologies, it is unrealistic to build a flexible spine humanoid robot that has as many vertebrae as a human. Also, controlling the robots using the tendons or hydraulic power approach might not be ideal. Our research has shown that by carefully designing the spine mechanism, it is possible to build a flexible spine humanoid robot that can use full-body motions to express emotions. Compared with the robots developed by other gr...

  3. Masterarm{sup +} Development for Teleoperation of a Humanoid Robot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S. [University of Washington, Seattle, WA (United States); Lee, J. W. [Samsung SDI Corporate RandD Center, Seoul (Korea); Lee, S. Y. [Texas AandM University, Texas (United States); Kim, M. S.; Lee, J. W. [Korea Institute of Science and Technology, Taejon (Korea)

    2001-06-01

    In this paper, a masterarm for teleoperation of humanoid robot is presented. This masterarm is based on human kinematics, which not only mimics human posture/motion completely, but also has wider work range. In addition, by using the distributed controller architecture and electric brake for force reflection, small size and lightweight of the device can be achieved. Some important experiments integrated with the humanoid robot, CENTAUR developed by KIST(Korea Institute of Science and Technology), are conducted to evaluate the performance of the proposed masterarm. (author). 11 refs., 18 figs.

  4. Humanoid Robot

    Science.gov (United States)

    Linn, Douglas M. (Inventor); Ambrose, Robert O. (Inventor); Diftler, Myron A. (Inventor); Askew, Scott R. (Inventor); Platt, Robert (Inventor); Mehling, Joshua S. (Inventor); Radford, Nicolaus A. (Inventor); Strawser, Phillip A. (Inventor); Bridgwater, Lyndon (Inventor); Wampler, II, Charles W. (Inventor); hide

    2013-01-01

    A humanoid robot includes a torso, a pair of arms, two hands, a neck, and a head. The torso extends along a primary axis and presents a pair of shoulders. The pair of arms movably extend from a respective one of the pair of shoulders. Each of the arms has a plurality of arm joints. The neck movably extends from the torso along the primary axis. The neck has at least one neck joint. The head movably extends from the neck along the primary axis. The head has at least one head joint. The shoulders are canted toward one another at a shrug angle that is defined between each of the shoulders such that a workspace is defined between the shoulders.

  5. Teleoperated Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Stefan GRUSHKO

    2016-12-01

    Full Text Available Article describes technical solution of teleoperated humanoid robotic system. To acquire position data of operator’s body Kinect sensor is used. In article are described mathematical equations used to transform data from Kinect sensor to positions of each servomotor of the robot. Article also describes software and electric structure for both components of the system: robot and operator’s PC. All software solutions are developed using C#. For dynamic simulation of the system a detailed model of the robot has been created in V-Rep, simulation receives same data as real robot.

  6. Teen Sized Humanoid Robot: Archie

    Science.gov (United States)

    Baltes, Jacky; Byagowi, Ahmad; Anderson, John; Kopacek, Peter

    This paper describes our first teen sized humanoid robot Archie. This robot has been developed in conjunction with Prof. Kopacek’s lab from the Technical University of Vienna. Archie uses brushless motors and harmonic gears with a novel approach to position encoding. Based on our previous experience with small humanoid robots, we developed software to create, store, and play back motions as well as control methods which automatically balance the robot using feedback from an internal measurement unit (IMU).

  7. Design and Development of the Humanoid Robot BHR-5

    Directory of Open Access Journals (Sweden)

    Zhangguo Yu

    2014-08-01

    Full Text Available This paper presents the mechanical and control system design of the latest humanoid robot platform, BHR-5, from Beijing Institute of Technology. The robot was developed as a comprehensive platform to investigate the planning and control for the fast responsive motion under unforeseen circumstances, for example, playing table-tennis. It has improvement on mechanical structure, stiffness, and reliability. An open control architecture based on concurrent multichannel communication mode of CAN bus is proposed to upgrade the real-time communication performance and the expansibility of the control system. Experiments on walking and playing table-tennis validate the effectiveness of the design.

  8. Cooperative Object Transportation With Multiple Humanoid Robots

    OpenAIRE

    呉, 孟鴻

    2015-01-01

    There are more and more robots appearing in factory or our daily life due to development of recent technology. Among all types of robots, humanoid robots have the potential to perform multiple tasks and walk on uneven terrain like human beings. Hence, it is expected that humanoid robots work instead of human beings at dangerous zones such as plant facilities. In such dangerous zones, humanoid robots must cooperate with each other in order to carry heavy and large objects. Although there is...

  9. Development of an Anthropomorphic Robotic Arm and Hand for Interactive Humanoids

    Institute of Scientific and Technical Information of China (English)

    Jamie K. Paik; Bu Hyun Shin; Young-bong Bang; Young-Bo Shim

    2012-01-01

    Humanoid robots are designed and built to mimic human form and movement.Ultimately,they are meant to resemble the size and physical abilities of a human in order to function in human-oriented environments and to work autonomously but to pose no physical threat to humans.Here,a humanoid robot that resembles a human in appearance and movement is built using powerful actuators paired with gear trains,joint mechanisms,and motor drivers that are all encased in a package no larger than that of the human physique.In this paper,we propose the construction of a humanoid-applicable anthropomorphic 7-DoF arm complete with an 8-DoF hand.The novel mechanical design of this humanoid arm makes it sufficiently compact to be compatible with currently available narrating-model humanoids,and to be sufficiently powerful and flexible to be functional; the number of degrees of freedom endowed in this robotic arm is sufficient for executing a wide range of tasks,including dexterous hand movements.The developed humanoid arm and hand are capable of sensing and interpreting incoming external force using the motor in each joint current without conventional torque sensors.The humanoid arm adopts an algorithm to avoid obstacles and the dexterous hand is capable of grasping objects.The developed robotic arm is suitable for use in an interactive humanoid robot.

  10. Evolutionary humanoid robotics

    CERN Document Server

    Eaton, Malachy

    2015-01-01

    This book examines how two distinct strands of research on autonomous robots, evolutionary robotics and humanoid robot research, are converging. The book will be valuable for researchers and postgraduate students working in the areas of evolutionary robotics and bio-inspired computing.

  11. Introduction to humanoid robotics

    CERN Document Server

    Kajita, Shuuji; Harada, Kensuke; Yokoi, Kazuhito

    2014-01-01

    This book is for researchers, engineers, and students who are willing to understand how humanoid robots move and be controlled. The book starts with an overview of the humanoid robotics research history and state of the art. Then it explains the required mathematics and physics such as kinematics of multi-body system, Zero-Moment Point (ZMP) and its relationship with body motion. Biped walking control is discussed in depth, since it is one of the main interests of humanoid robotics. Various topics of the whole body motion generation are also discussed. Finally multi-body dynamics is presented to simulate the complete dynamic behavior of a humanoid robot. Throughout the book, Matlab codes are shown to test the algorithms and to help the reader´s understanding.

  12. Developing Humanoid Robots for Real-World Environments

    Science.gov (United States)

    Stoica, Adrian; Kuhlman, Michael; Assad, Chris; Keymeulen, Didier

    2008-01-01

    Humanoids are steadily improving in appearance and functionality demonstrated in controlled environments. To address the challenges of operation in the real-world, researchers have proposed the use of brain-inspired architectures for robot control, and the use of robot learning techniques that enable the robot to acquire and tune skills and behaviours. In the first part of the paper we introduce new concepts and results in these two areas. First, we present a cerebellum-inspired model that demonstrated efficiency in the sensory-motor control of anthropomorphic arms, and in gait control of dynamic walkers. Then, we present a set of new ideas related to robot learning, emphasizing the importance of developing teaching techniques that support learning. In the second part of the paper we propose the use in robotics of the iterative and incremental development methodologies, in the context of practical task-oriented applications. These methodologies promise to rapidly reach system-level integration, and to early identify system-level weaknesses to focus on. We apply this methodology in a task targeting the automated assembly of a modular structure using HOAP-2. We confirm this approach led to rapid development of a end-to-end capability, and offered guidance on which technologies to focus on for gradual improvement of a complete functional system. It is believed that providing Grand Challenge type milestones in practical task-oriented applications accelerates development. As a meaningful target in short-mid term we propose the 'IKEA Challenge', aimed at the demonstration of autonomous assembly of various pieces of furniture, from the box, following included written/drawn instructions.

  13. 教学用人形机器人研制①%Development of humanoid robot teaching

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    The design of the teaching of humanoid robot developed system contains the console and humanoid robot two parts ,th-rough the console to complete all of the humanoid robot control operations , console and humanoid robots using wireless communi-cation between the way data communication.%  本次设计的教学用人形机器人的研制系统由控制台和教学用人形机器人两部分组成,通过控制台即可完成对教学用人形机器人的所有控制操作,控制台和教学用人形机器人之间采用无线通信方式进行数据的通信。

  14. Artificial heart for humanoid robot

    Science.gov (United States)

    Potnuru, Akshay; Wu, Lianjun; Tadesse, Yonas

    2014-03-01

    A soft robotic device inspired by the pumping action of a biological heart is presented in this study. Developing artificial heart to a humanoid robot enables us to make a better biomedical device for ultimate use in humans. As technology continues to become more advanced, the methods in which we implement high performance and biomimetic artificial organs is getting nearer each day. In this paper, we present the design and development of a soft artificial heart that can be used in a humanoid robot and simulate the functions of a human heart using shape memory alloy technology. The robotic heart is designed to pump a blood-like fluid to parts of the robot such as the face to simulate someone blushing or when someone is angry by the use of elastomeric substrates and certain features for the transport of fluids.

  15. The iCub humanoid robot: an open-systems platform for research in cognitive development.

    Science.gov (United States)

    Metta, Giorgio; Natale, Lorenzo; Nori, Francesco; Sandini, Giulio; Vernon, David; Fadiga, Luciano; von Hofsten, Claes; Rosander, Kerstin; Lopes, Manuel; Santos-Victor, José; Bernardino, Alexandre; Montesano, Luis

    2010-01-01

    We describe a humanoid robot platform--the iCub--which was designed to support collaborative research in cognitive development through autonomous exploration and social interaction. The motivation for this effort is the conviction that significantly greater impact can be leveraged by adopting an open systems policy for software and hardware development. This creates the need for a robust humanoid robot that offers rich perceptuo-motor capabilities with many degrees of freedom, a cognitive capacity for learning and development, a software architecture that encourages reuse & easy integration, and a support infrastructure that fosters collaboration and sharing of resources. The iCub satisfies all of these needs in the guise of an open-system platform which is freely available and which has attracted a growing community of users and developers. To date, twenty iCubs each comprising approximately 5000 mechanical and electrical parts have been delivered to several research labs in Europe and to one in the USA.

  16. Application of neural network to humanoid robots-development of co-associative memory model.

    Science.gov (United States)

    Itoh, Kazuko; Miwa, Hiroyasu; Takanobu, Hideaki; Takanishi, Atsuo

    2005-01-01

    We have been studying a system of many harmonic oscillators (neurons) interacting via a chaotic force since 2002. Each harmonic oscillator is driven by chaotic force whose bifurcation parameter is modulated by the position of the harmonic oscillator. Moreover, a system of mutually coupled chaotic neural networks was investigated. Different patterns were stored in each network and the associative memory problem was discussed in these networks. Each network can retrieve the pattern stored in the other network. On the other hand, we have been developing new mechanisms and functions for a humanoid robot with the ability to express emotions and communicate with humans in a human-like manner. We introduced a mental model which consisted of the mental space, the mood, the equations of emotion, the robot personality, the need model, the consciousness model and the behavior model. This type of mental model was implemented in Emotion Expression Humanoid Robot WE-4RII (Waseda Eye No.4 Refined II). In this paper, an associative memory model using mutually coupled chaotic neural networks is proposed for retrieving optimum memory (recognition) in response to a stimulus. We implemented this model in Emotion Expression Humanoid Robot WE-4RII (Waseda Eye No.4 Refined II).

  17. Versatile Humanoid Robots for Theatrical Performances

    Directory of Open Access Journals (Sweden)

    Chyi-Yeu Lin

    2013-01-01

    Full Text Available The purpose of this research is to develop multi-talented humanoid robots, based on technologies featuring high-computing and control abilities, to perform onstage. It has been a worldwide trend in the last decade to apply robot technologies in theatrical performance. The more robot performers resemble human beings, the easier it becomes for the emotions of audiences to be bonded with robotic performances. Although all kinds of robots can be theatrical performers based on programs, humanoid robots are more advantageous for playing a wider range of characters because of their resemblance to human beings. Thus, developing theatrical humanoid robots is becoming very important in the field of the robot theatre. However, theatrical humanoid robots need to possess the same versatile abilities as their human counterparts, instead of merely posing or performing motion demonstrations onstage, otherwise audiences will easily become bored. The four theatrical robots developed for this research have successfully performed in a public performance and participated in five programs. All of them were approved by most audiences.

  18. Dynamics and Control of Humanoid Robots: A Geometrical Approach

    CERN Document Server

    Ivancevic, Vladimir G

    2011-01-01

    his paper reviews modern geometrical dynamics and control of humanoid robots. This general Lagrangian and Hamiltonian formalism starts with a proper definition of humanoid's configuration manifold, which is a set of all robot's active joint angles. Based on the `covariant force law', the general humanoid's dynamics and control are developed. Autonomous Lagrangian dynamics is formulated on the associated `humanoid velocity phase space', while autonomous Hamiltonian dynamics is formulated on the associated `humanoid momentum phase space'. Neural-like hierarchical humanoid control naturally follows this geometrical prescription. This purely rotational and autonomous dynamics and control is then generalized into the framework of modern non-autonomous biomechanics, defining the Hamiltonian fitness function. The paper concludes with several simulation examples. Keywords: Humanoid robots, Lagrangian and Hamiltonian formalisms, neural-like humanoid control, time-dependent biodynamics

  19. Humanoid Robots in the Classroom

    DEFF Research Database (Denmark)

    Majgaard, Gunver

    2015-01-01

    Humanoid robots have been used as educational tools in primary and lower secondary schools. The students involved were between 11 and 16 years old. The learning goals included: programming, language learning, ethics, technology and mathematics, e.g. practised by 7th grade students who programmed...... the robots and made the robots recite poems about the future. As preparation, the teachers participated in workshops in didactical planning and programming of the robots. In the most successful settings, the students worked with academic objectives beyond programming and robotics. Through examples......, the potentials and the shortcomings of robot-supported learning are highlighted....

  20. Synchronization and quorum sensing in a swarm of humanoid robots

    CERN Document Server

    Bechon, Patrick

    2012-01-01

    With the advent of inexpensive simple humanoid robots, new classes of robotic questions can be considered experimentally. One of these is collective behavior of groups of humanoid robots, and in particular robot synchronization and swarming. The goal of this work is to robustly synchronize a group of humanoid robots, and to demonstrate the approach experimentally on a choreography of 8 robots. We aim to be robust to network latencies, and to allow robots to join or leave the group at any time (for example a fallen robot should be able to stand up to rejoin the choreography). Contraction theory is used to allow each robot in the group to synchronize to a common virtual oscillator, and quorum sensing strategies are exploited to fit within the available bandwidth. The humanoids used are Nao's, developed by Aldebaran Robotics.

  1. Walking control of small size humanoid robot: HAJIME ROBOT 18

    Science.gov (United States)

    Sakamoto, Hajime; Nakatsu, Ryohei

    2007-12-01

    HAJIME ROBOT 18 is a fully autonomous biped robot. It has been developed for RoboCup which is a worldwide soccer competition of robots. It is necessary for a robot to have high mobility to play soccer. High speed walking and all directional walking are important to approach and to locate in front of a ball. HAJIME ROBOT achieved these walking. This paper describes walking control of a small size humanoid robot 'HAJIME ROBOT 18' and shows the measurement result of ZMP (Zero Moment Point). HAJIME ROBOT won the Robotics Society of Japan Award in RoboCup 2005 and in RoboCup 2006 Japan Open.

  2. Development of an Omnidirectional Walk Engine for Soccer Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Nima Shafii

    2015-12-01

    The walking engine is tested on both simulated and real NAO robots. Our results are encouraging given the fact that the robot performs favourably, walking quickly and in a stable manner in any direction in comparison with the best RoboCup 3D soccer simulation teams for which the same simulator is used. In addition, the proposed analytical Fourier-based approach is compared with the well-established numerical ZMP dynamics control method. Our results show that the presented analytical approach involves less time and complexity and better accuracy compared with the ZMP preview control method.

  3. State Estimation for Humanoid Robots

    Science.gov (United States)

    2015-07-01

    in [92]. Ogata et al. detect abnormality through discriminant analysis and learning [93][94], similarly, pattern classification was used in [95]. Yun...Inter- national Conference on. IEEE, 2010, pp. 3323–3328. [93] K. Ogata , K. Terada, and Y. Kuniyoshi, “Falling motion control for humanoid robots

  4. Humanoid Robots in the Classroom

    DEFF Research Database (Denmark)

    Majgaard, Gunver

    2015-01-01

    Humanoid robots have been used as educational tools in primary and lower secondary schools. The students involved were between 11 and 16 years old. The learning goals included: programming, language learning, ethics, technology and mathematics, e.g. practised by 7th grade students who programmed...

  5. Humanoid Robots in the Classroom

    DEFF Research Database (Denmark)

    Majgaard, Gunver

    2015-01-01

    Humanoid robots have been used as educational tools in primary and lower secondary schools. The students involved were between 11 and 16 years old. The learning goals included: programming, language learning, ethics, technology and mathematics, e.g. practised by 7th grade students who programmed...

  6. Reinforcement Learning Algorithms in Humanoid Robotics

    OpenAIRE

    Katic, Dusko; Vukobratovic, Miomir

    2007-01-01

    This study considers a optimal solutions for application of reinforcement learning in humanoid robotics Humanoid Robotics is a very challenging domain for reinforcement learning, Reinforcement learning control algorithms represents general framework to take traditional robotics towards true autonomy and versatility. The reinforcement learning paradigm described above has been successfully implemented for some special type of humanoid robots in the last 10 years. Reinforcement learning is well...

  7. Humanoid robot simulator: a realistic dynamics approach

    OpenAIRE

    Lima, José; Gonçalves, José; Costa, Paulo; Moreira, António

    2008-01-01

    This paper describes a humanoid robot simulator with realistic dynamics. As simulation is a powerful tool for speeding up the control software development, the suggested accurate simulator allows to accomplish this goal. The simulator, based on the Open Dynamics Engine and GLScene graphics library, provides instant visual feedback and allows the user to test any control strategy without damaging the real robot in the early stages of the development. The proposed simulator also captures some c...

  8. Realistic Behaviour Simulation of a Humanoid Robot

    OpenAIRE

    2008-01-01

    This paper describes a humanoid robot simulator with realistic dynamics. As simulation is a powerful tool for speeding up the control software development, the proposed accurate simulator allows to fulfil this goal. The simulator is based on the Open Dynamics Engine and GLScene graphics library, providing instant visual feedback. User is able to test any control strategy without bringing damage to the real robot in the early stages of the development. The proposed simulator also captures some...

  9. Interactive Learning for Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Elsayed Mostafa Saad

    2012-07-01

    Full Text Available Acquiring new knowledge through interactive learn-ing mechanisms is a key ability for humanoid robots in a natural environment. Such learning mechanisms need to be performed autonomously and through interaction with the environment or with other agents/humans. This paper proposes a vision system, where robot can learn how to identify the geometric shapes and colors of the objects. Furthermore, the paper proposes a natural language understanding system, where the robot can learn to effectively communicate with human through a dialogue developed in Arabic language. The developed di-alogue and a dynamic object model are used for learning semantic categories, object descriptions, and new words acquisition for object learning. Moreover, integration between the proposed vision and natural language understanding systems has been presented. Intensive experiments have been conducted indoor to address the validity of the proposed system. The achieved results show that the overall system performance is high compared with the related literature to the theme of this paper.

  10. Vocal Emotion of Humanoid Robots: A Study from Brain Mechanism

    Directory of Open Access Journals (Sweden)

    Youhui Wang

    2014-01-01

    Full Text Available Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of AI robots to facilitate the communication between man-machines and human beings, especially for the vocal emotion in interactive system of future humanoid robots. This paper explored the brain mechanism of vocal emotion by studying previous researches and developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human beings.

  11. Development of a humanoid robot hand with coupling four-bar linkage

    Directory of Open Access Journals (Sweden)

    Xinhua Liu

    2017-01-01

    Full Text Available To improve the operating performance of robots’ end-effector, a humanoid robot hand based on coupling four-bar linkage was designed. An improved transmission system was proposed for the base joint of the thumb. Thus, a far greater motion range and more reasonable layout of the palm were obtained. Moreover, the mathematical model for kinematics simulation was presented based on the Assur linkage group theory to verify and optimize the proposed structure. To research the motion relationships between the fingers and the object in the process of grasping object, the grasping analysis of multi-finger manipulation was presented based on contact kinematics. Finally, a prototype of the humanoid robot hand was produced by a three-dimensional printer, and a kinematics simulation example and the workspace solving of the humanoid robot hand were carried out. The results showed that the velocities of finger joints approximately met the proportion relationship 1:1:1, which accorded with the grasping law of the human hand. In addition, the large workspace, reasonable layout, and good manipulability of the humanoid robot hand were verified.

  12. Motion control simulation based on VR for humanoid robot

    Science.gov (United States)

    He, Huaiqing; Tang, Haoxuan

    2004-03-01

    This paper describes the motion control simulation based on VR for humanoid robot aiming at walking and running. To insure that the motion rhythm of humanoid robot conforms to the motion laws of humans, the body geometrical model based on skeleton and its kinematics models based on the graph of time sequences are presented firstly. Then a control algorithm based on Jacobian matrix is proposed to generate the periodical walking and running. Finally, computer simulation experiments demonstrate the feasibility of the models and the algorithm. The simulation system developed makes us interactively regulate the motion direction and velocity for humanoid robot.

  13. Obstacle Avoidance in Groping Locomotion of a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Masahiro Ohka

    2008-11-01

    Full Text Available This paper describes the development of an autonomous obstacle-avoidance method that operates in conjunction with groping locomotion on the humanoid robot Bonten-Maru II. Present studies on groping locomotion consist of basic research in which humanoid robot recognizes its surroundings by touching and groping with its arm on the flat surface of a wall. The robot responds to the surroundings by performing corrections to its orientation and locomotion direction. During groping locomotion, however, the existence of obstacles within the correction area creates the possibility of collisions. The objective of this paper is to develop an autonomous method to avoid obstacles in the correction area by applying suitable algorithms to the humanoid robot's control system. In order to recognize its surroundings, six-axis force sensors were attached to both robotic arms as end effectors for force control. The proposed algorithm refers to the rotation angle of the humanoid robot's leg joints due to trajectory generation. The algorithm relates to the groping locomotion via the measured groping angle and motions of arms. Using Bonten-Maru II, groping experiments were conducted on a wall's surface to obtain wall orientation data. By employing these data, the humanoid robot performed the proposed method autonomously to avoid an obstacle present in the correction area. Results indicate that the humanoid robot can recognize the existence of an obstacle and avoid it by generating suitable trajectories in its legs.

  14. A hybrid brain interface for a humanoid robot assistant.

    Science.gov (United States)

    Finke, Andrea; Knoblauch, Andreas; Koesling, Hendrik; Ritter, Helge

    2011-01-01

    We present an advanced approach towards a semi-autonomous, robotic personal assistant for handicapped people. We developed a multi-functional hybrid brain-robot interface that provides a communication channel between humans and a state-of-the-art humanoid robot, Honda's Humanoid Research Robot. Using cortical signals, recorded, processed and translated by an EEG-based brain-machine interface (BMI), human-robot interaction functions independently of users' motor control deficits. By exploiting two distinct cortical activity patterns, P300 and event-related desynchronization (ERD), the interface provides different dimensions for robot control. An empirical study demonstrated the functionality of the BMI guided humanoid robot. All participants could successfully control the robot that accomplished a shopping task.

  15. Development of the multi-segment lumbar spine for humanoid robots

    Directory of Open Access Journals (Sweden)

    Penčić Marko M.

    2016-01-01

    Full Text Available The paper presents development of multi-segment lumbar structure based on the human spine. The research is performed within the project based on development of socially acceptable robot named "SARA". Two approaches for spine realization of humanoids exist: multi-joint viscoelastic structures (5-10 joints that have variable flexibility and structures that consist of one joint - torso/waist joint, which has low elasticity and high stiffness. We propose multi-joint flexible structure with stiff, low backlash and self-locking mechanisms that require small actuators. Based on kinematic-dynamic requirements dynamical model of robot is formed. Dynamical simulation is performed for several postures of the robot and driving torques of lumbar structure are determined. During development of the lumbar structure 16 variant solutions are considered. Developed lumbar structure consists of three equal segments, it has 6 DOFs (2 DOFs per segment and allows movements of lateral flexion ±30° and torsion ±45°, as well as the combination of these two movements. In development phase the movements of flexion/extension are excluded, for the bending of the body forward to an angle of 45° is achieved by rotation in the hip joints. Proposed solution of the lumbar structure is characterized by self-locking of mechanisms (if for any reason actuators stop working, lumbar structure retains current posture, low backlash (high positioning accuracy and repeatability of movements, compactness, high carrying capacity and small dimensions. [Projekat Ministarstva nauke Republike Srbije, br. III44008 and by Provincial secretariat for science and technological development under contract 114-451-2116/2011

  16. Superunderactuated Multifingered Hand for Humanoid Robot

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-zeng; CHEN Qiang; SUN Zhen-guo; XU Lei

    2006-01-01

    A novel underactuated fmger mechanism was designed.Finger mechanism was incoroorated into a humanoid robot hand to obtain more degrees of freedom with less actuators and good grasping functions with shape adaptation,therefore decreasing the requirements for the control systern.A novel superunderactuated multifingered hand (TH-2 Hand)for a humanoid robot was designed based on a previous underactuated finger mechanism.The TH-2 Hand was attached to a humanoid robot because of its high personification,supemnderactuation,compactness,easy real-time control,small volume,light weight,and strong graspmg tunction.

  17. Perception and estimation challenges for humanoid robotics: DARPA Robotics Challenge and NASA Valkyrie

    Science.gov (United States)

    Fallon, Maurice

    2016-10-01

    This paper describes ongoing work at the University of Edinburgh's Humanoid Robotics Project. University of Edinburgh have formed a collaboration with the United States' National Aeronautics and Space Administration (NASA) around their R5 humanoid robot commonly known as Valkyrie. Also involved are MIT, Northeastern University and the Florida Institute for Human and Machine Cognition (IHMC) as part of NASA's Space Robotics Challenge. We will outline the development of state estimation and localization algorithms being developed for Valkyrie.

  18. Sensory Integration with Articulated Motion on a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    J. Rojas

    2005-01-01

    Full Text Available This paper describes the integration of articulated motion with auditory and visual sensory information that enables a humanoid robot to achieve certain reflex actions that mimic those of people. Reflexes such as reach-and-grasp behavior enables the robot to learn, through experience, its own state and that of the world. A humanoid robot with binaural audio input, stereo vision, and pneumatic arms and hands exhibited tightly coupled sensory-motor behaviors in four different demonstrations. The complexity of successive demonstrations was increased to show that the reflexive sensory-motor behaviors combine to perform increasingly complex tasks. The humanoid robot executed these tasks effectively and established the groundwork for the further development of hardware and software systems, sensory-motor vector-space representations, and coupling with higher-level cognition.

  19. Development of a neuromorphic control system for a lightweight humanoid robot

    Science.gov (United States)

    Folgheraiter, Michele; Keldibek, Amina; Aubakir, Bauyrzhan; Salakchinov, Shyngys; Gini, Giuseppina; Mauro Franchi, Alessio; Bana, Matteo

    2017-03-01

    A neuromorphic control system for a lightweight middle size humanoid biped robot built using 3D printing techniques is proposed. The control architecture consists of different modules capable to learn and autonomously reproduce complex periodic trajectories. Each module is represented by a chaotic Recurrent Neural Network (RNN) with a core of dynamic neurons randomly and sparsely connected with fixed synapses. A set of read-out units with adaptable synapses realize a linear combination of the neurons output in order to reproduce the target signals. Different experiments were conducted to find out the optimal initialization for the RNN’s parameters. From simulation results, using normalized signals obtained from the robot model, it was proven that all the instances of the control module can learn and reproduce the target trajectories with an average RMS error of 1.63 and variance 0.74.

  20. A Cross-Platform Tactile Capabilities Interface for Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Jie eMa

    2016-04-01

    Full Text Available This article presents the core elements of a cross-platform tactile capabilities interface (TCI for humanoid arms. The aim of the interface is to reduce the cost of developing humanoid robot capabilities by supporting reuse through cross-platform deployment. The article presents a comparative analysis of existing robot middleware frameworks, as well as the technical details of the TCI framework that builds on the the existing YARP platform. The TCI framework currently includes robot arm actuators with robot skin sensors. It presents such hardware in a platform independent manner, making it possible to write robot control software that can be executed on different robots through the TCI frameworks. The TCI framework supports multiple humanoid platforms and this article also presents a case study of a cross-platform implementation of a set of tactile protective withdrawal reflexes that have been realised on both the Nao and iCub humanoid robot platforms using the same high-level source code.

  1. Comparison of Human and Humanoid Robot Control of Upright Stance

    OpenAIRE

    Peterka, Robert J.

    2009-01-01

    There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a sugges...

  2. LARM PKM solutions for torso design in humanoid robots

    Science.gov (United States)

    Ceccarelli, Marco

    2014-12-01

    Human-like torso features are essential in humanoid robots. In this paper problems for design and operation of solutions for a robotic torso are discussed by referring to experiences and designs that have been developed at Laboratory of Robotics and Mechatronics (LARM) in Cassino, Italy. A new solution is presented with conceptual views as waist-trunk structure that makes a proper partition of the performance for walking and arm operations as sustained by a torso.

  3. A modular real-time vision system for humanoid robots

    Science.gov (United States)

    Trifan, Alina L.; Neves, António J. R.; Lau, Nuno; Cunha, Bernardo

    2012-01-01

    Robotic vision is nowadays one of the most challenging branches of robotics. In the case of a humanoid robot, a robust vision system has to provide an accurate representation of the surrounding world and to cope with all the constraints imposed by the hardware architecture and the locomotion of the robot. Usually humanoid robots have low computational capabilities that limit the complexity of the developed algorithms. Moreover, their vision system should perform in real time, therefore a compromise between complexity and processing times has to be found. This paper presents a reliable implementation of a modular vision system for a humanoid robot to be used in color-coded environments. From image acquisition, to camera calibration and object detection, the system that we propose integrates all the functionalities needed for a humanoid robot to accurately perform given tasks in color-coded environments. The main contributions of this paper are the implementation details that allow the use of the vision system in real-time, even with low processing capabilities, the innovative self-calibration algorithm for the most important parameters of the camera and its modularity that allows its use with different robotic platforms. Experimental results have been obtained with a NAO robot produced by Aldebaran, which is currently the robotic platform used in the RoboCup Standard Platform League, as well as with a humanoid build using the Bioloid Expert Kit from Robotis. As practical examples, our vision system can be efficiently used in real time for the detection of the objects of interest for a soccer playing robot (ball, field lines and goals) as well as for navigating through a maze with the help of color-coded clues. In the worst case scenario, all the objects of interest in a soccer game, using a NAO robot, with a single core 500Mhz processor, are detected in less than 30ms. Our vision system also includes an algorithm for self-calibration of the camera parameters as well

  4. Modeling humanoid swarm robots with petri nets

    OpenAIRE

    2015-01-01

    Robots have become a hot topic in today‟s electronic world. There are many definitions for it. One of the definition in Oxford dictionary states “a robot is a machine capable for carrying out a complex series of action automatically especially one programmable by a computer”. This paper deals with a special kind of robot, which is also known as humanoid robot. These robots are replication of human beings with head, torso, arms and legs. A model of human is presented in this paper as discre...

  5. Reverse control for humanoid robot task recognition.

    Science.gov (United States)

    Hak, Sovannara; Mansard, Nicolas; Stasse, Olivier; Laumond, Jean Paul

    2012-12-01

    Efficient methods to perform motion recognition have been developed using statistical tools. Those methods rely on primitive learning in a suitable space, for example, the latent space of the joint angle and/or adequate task spaces. Learned primitives are often sequential: A motion is segmented according to the time axis. When working with a humanoid robot, a motion can be decomposed into parallel subtasks. For example, in a waiter scenario, the robot has to keep some plates horizontal with one of its arms while placing a plate on the table with its free hand. Recognition can thus not be limited to one task per consecutive segment of time. The method presented in this paper takes advantage of the knowledge of what tasks the robot is able to do and how the motion is generated from this set of known controllers, to perform a reverse engineering of an observed motion. This analysis is intended to recognize parallel tasks that have been used to generate a motion. The method relies on the task-function formalism and the projection operation into the null space of a task to decouple the controllers. The approach is successfully applied on a real robot to disambiguate motion in different scenarios where two motions look similar but have different purposes.

  6. Whole-body impedance control of wheeled humanoid robots

    CERN Document Server

    Dietrich, Alexander

    2016-01-01

    Introducing mobile humanoid robots into human environments requires the systems to physically interact and execute multiple concurrent tasks. The monograph at hand presents a whole-body torque controller for dexterous and safe robotic manipulation. This control approach enables a mobile humanoid robot to simultaneously meet several control objectives with different pre-defined levels of priority, while providing the skills for compliant physical contacts with humans and the environment. After a general introduction into the topic of whole-body control, several essential reactive tasks are developed to extend the repertoire of robotic control objectives. Additionally, the classical Cartesian impedance is extended to the case of mobile robots. All of these tasks are then combined and integrated into an overall, priority-based control law. Besides the experimental validation of the approach, the formal proof of asymptotic stability for this hierarchical controller is presented. By interconnecting the whole-body ...

  7. Humanoid Robotics: Real-Time Object Oriented Programming

    Science.gov (United States)

    Newton, Jason E.

    2005-01-01

    Programming of robots in today's world is often done in a procedural oriented fashion, where object oriented programming is not incorporated. In order to keep a robust architecture allowing for easy expansion of capabilities and a truly modular design, object oriented programming is required. However, concepts in object oriented programming are not typically applied to a real time environment. The Fujitsu HOAP-2 is the test bed for the development of a humanoid robot framework abstracting control of the robot into simple logical commands in a real time robotic system while allowing full access to all sensory data. In addition to interfacing between the motor and sensory systems, this paper discusses the software which operates multiple independently developed control systems simultaneously and the safety measures which keep the humanoid from damaging itself and its environment while running these systems. The use of this software decreases development time and costs and allows changes to be made while keeping results safe and predictable.

  8. Design and Implementation an Autonomous Humanoid Robot Based on Fuzzy Rule-Based Motion Controller

    Directory of Open Access Journals (Sweden)

    Mohsen Taheri

    2010-04-01

    Full Text Available Research on humanoid robotics in Mechatronics and Automation Laboratory, Electrical and Computer Engineering, Islamic Azad University Khorasgan branch (Isfahan of Iran was started at
    the beginning of this decade. Various research prototypes for humanoid robots have been designed and are going through evolution over these years. This paper describes the hardware and software design of the kid size humanoid robot systems of the PERSIA Team in 2009. The robot has 20 actuated degrees of freedom based on Hitec HSR898. In this paper we have tried to focus on areas such as mechanical structure, Image processing unit, robot controller, Robot AI and behavior
    learning. In 2009, our developments for the Kid size humanoid robot include: (1 the design and construction of our new humanoid robots (2 the design and construction of a new hardware and software controller to be used in our robots. The project is described in two main parts: Hardware and Software. The software is developed a robot application which consists walking controller, autonomous motion robot, self localization base on vision and Particle Filter, local AI, Trajectory Planning, Motion Controller and Network. The hardware consists of the mechanical structure and the driver circuit board. Each robot is able to walk, fast walk, pass, kick and dribble when it catches
    the ball. These humanoids have been successfully participating in various robotic soccer competitions. This project is still in progress and some new interesting methods are described in the current report.

  9. Humanoid robot simulation with a joint trajectory optimized controller

    OpenAIRE

    2008-01-01

    This paper describes a joint trajectory optimized controller for a humanoid robot simulator following the real robot characteristics. As simulation is a powerful tool for speeding up the control software development, the proposed accurate simulator allows to fulfil this goal. The simulator, based on the Open Dynamics Engine and GLScene graphics library, provides instant visual feedback. The proposed simulator, with realistic dynamics, allows to design and test behaviours and control strat...

  10. ”Where is your nose?” : developing body awareness skills among children with autism using a humanoid robot

    OpenAIRE

    Costa, Sandra; Lehmann, Hagen; Robins, Ben; Dautenhahn, Kerstin; Soares, Filomena

    2013-01-01

    This article describes an exploratory study in which children with autism interact with KASPAR, a humanoid robot, equipped with tactile sensors able to distinguish a gentle from a harsh touch, and to respond accordingly. The study investigated a novel scenario for robot-assisted play, namely to increase body awareness with tasks that taught the children about the identification of human body parts. Based on our analysis of the childrens behaviours while interacting with K...

  11. Toward humanoid robots for operations in complex urban environments

    Science.gov (United States)

    Pratt, Jerry E.; Neuhaus, Peter; Johnson, Matthew; Carff, John; Krupp, Ben

    2010-04-01

    Many infantry operations in urban environments, such as building clearing, are extremely dangerous and difficult and often result in high casualty rates. Despite the fast pace of technological progress in many other areas, the tactics and technology deployed for many of these dangerous urban operation have not changed much in the last 50 years. While robots have been extremely useful for improvised explosive device (IED) detonation, under-vehicle inspection, surveillance, and cave exploration, there is still no fieldable robot that can operate effectively in cluttered streets and inside buildings. Developing a fieldable robot that can maneuver in complex urban environments is challenging due to narrow corridors, stairs, rubble, doors and cluttered doorways, and other obstacles. Typical wheeled and tracked robots have trouble getting through most of these obstacles. A bipedal humanoid is ideally shaped for many of these obstacles because its legs are long and skinny. Therefore it has the potential to step over large barriers, gaps, rocks, and steps, yet squeeze through narrow passageways, and through narrow doorways. By being able to walk with one foot directly in front of the other, humanoids also have the potential to walk over narrow "balance beam" style objects and can cross a narrow row of stepping stones. We describe some recent advances in humanoid robots, particularly recovery from disturbances, such as pushes and walking over rough terrain. Our disturbance recovery algorithms are based on the concept of Capture Points. An N-Step Capture Point is a point on the ground in which a legged robot can step to in order to stop in N steps. The N-Step Capture Region is the set of all N-Step Capture Points. In order to walk without falling, a legged robot must step somewhere in the intersection between an N-Step Capture Region and the available footholds on the ground. We present results of push recovery using Capture Points on our humanoid robot M2V2.

  12. Infant discrimination of humanoid robots

    Directory of Open Access Journals (Sweden)

    Goh eMatsuda

    2015-09-01

    Full Text Available Recently, extremely humanlike robots called androids have been developed, some of which are already being used in the field of entertainment. In the context of psychological studies, androids are expected to be used in the future as fully controllable human stimuli to investigate human nature. In this study, we used an android to examine infant discrimination ability between human beings and non-human agents. Participants (N = 42 infants were assigned to three groups based on their age, i.e., 6- to 8-month-olds, 9- to 11-month-olds, and 12- to 14-month-olds, and took part in a preferential looking paradigm. Of three types of agents involved in the paradigm—a human, an android modeled on the human, and a mechanical-looking robot made from the android—two at a time were presented side-by-side as they performed a grasping action. Infants’ looking behavior was measured using an eye tracking system, and the amount of time spent focusing on each of three areas of interest (face, goal, and body was analyzed. Results showed that all age groups predominantly looked at the robot and at the face area, and that infants aged over 9 months watched the goal area for longer than the body area. There was no difference in looking times and areas focused on between the human and the android. These findings suggest that 6- to 14-month-olds are unable to discriminate between the human and the android, although they can distinguish the mechanical robot from the human.

  13. Infant discrimination of humanoid robots

    Science.gov (United States)

    Matsuda, Goh; Ishiguro, Hiroshi; Hiraki, Kazuo

    2015-01-01

    Recently, extremely humanlike robots called “androids” have been developed, some of which are already being used in the field of entertainment. In the context of psychological studies, androids are expected to be used in the future as fully controllable human stimuli to investigate human nature. In this study, we used an android to examine infant discrimination ability between human beings and non-human agents. Participants (N = 42 infants) were assigned to three groups based on their age, i.e., 6- to 8-month-olds, 9- to 11-month-olds, and 12- to 14-month-olds, and took part in a preferential looking paradigm. Of three types of agents involved in the paradigm—a human, an android modeled on the human, and a mechanical-looking robot made from the android—two at a time were presented side-by-side as they performed a grasping action. Infants’ looking behavior was measured using an eye tracking system, and the amount of time spent focusing on each of three areas of interest (face, goal, and body) was analyzed. Results showed that all age groups predominantly looked at the robot and at the face area, and that infants aged over 9 months watched the goal area for longer than the body area. There was no difference in looking times and areas focused on between the human and the android. These findings suggest that 6- to 14-month-olds are unable to discriminate between the human and the android, although they can distinguish the mechanical robot from the human. PMID:26441772

  14. A Course in Simulation and Demonstration of Humanoid Robot Motion

    Science.gov (United States)

    Liu, Hsin-Yu; Wang, Wen-June; Wang, Rong-Jyue

    2011-01-01

    An introductory course for humanoid robot motion realization for undergraduate and graduate students is presented in this study. The basic operations of AX-12 motors and the mechanics combination of a 16 degrees-of-freedom (DOF) humanoid robot are presented first. The main concepts of multilink systems, zero moment point (ZMP), and feedback…

  15. Effective Length Design of Humanoid Robot Fingers Using Biomimetic Optimization

    Directory of Open Access Journals (Sweden)

    Byoung-Ho Kim

    2015-10-01

    Full Text Available In this study, we propose an effective design method for the phalangeal parameters and the total size of humanoid robot fingers based on a biomimetic optimization. For the optimization, an interphalangeal joint coordination parameter and the length constraints inherent in human fingers are considered from a biomimetic perspective. A reasonable grasp formulation is also taken into account from the viewpoint of power grasping, where the grasp space of a humanoid robot finger is importantly considered to determine the phalangeal length parameters. The usefulness of the devised biomimetic optimization method is shown through the design examples of various humanoid robot fingers. In fact, the optimization-based finger design method enables us to determine effectively the proper phalangeal size of humanoid robot fingers for human-like object handling tasks. In addition, we discuss its contribution to the structural configuration and coordinated motion of a humanoid robot finger, and address its practical availability in terms of effective finger design.

  16. Humanoid Robot Balance Control using the Spherical Inverted Pendulum Model

    Directory of Open Access Journals (Sweden)

    Ahmed eElhasairi

    2015-10-01

    Full Text Available Human beings are highly efficient in maintaining standing balance under the influence of different perturbations. However, biped humanoid robots are far from exhibiting similar skills. This is mainly due to the limitations in the current control and modelling techniques used in humanoid robots. Even though approaches using the Linear Inverted Pendulum Model and the Preview Control schemes have shown improved results, they still suffer from shortcomings in the overall generated motion. We propose here a model and control approach that aims to overcome the limiting assumptions in the LIPM models, through using the ankle joint variables in modelling and control of the standing balance of the humanoid robot.

  17. Human interface, automatic planning, and control of a humanoid robot

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Y.K. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)]|[Sandia National Labs., Albuquerque, NM (United States); Kang, S.C.; Lee, S.; Cho, K.R.; Kim, H.S.; Lee, C.W. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); Park, S.M. [Jeonju Technical Coll. (Korea, Republic of)

    1998-11-01

    This paper presents an integrated robotic system consisting of human interfaces, motion- and grasp-planning algorithms, a controller, a graphical simulator, and a humanoid robot with over 60 joints. All of these subsystems are integrated in a coordinated fashion to enable the robot to perform a commanded task with as much autonomy as possible. The highest level of the system is the human interfaces, which enable a user to specify tasks conveniently and efficiently. At the mid-level, several planning algorithms generate motions of the robot body, arms, and hands automatically. At the lowest level, the motor controllers are equipped with both a position controller and a compliant motion controller to execute gross motions and contact motions, respectively. The main contributions of the work are the large-scale integration and the development of the motion planners for a humanoid robot. A hierarchical integration scheme that preserves the modularities of the human interfaces, the motion planners, and the controller has been the key for the successful integration. The set of motion planners is developed systematically so as to coordinate the motions of the body, arms, and hands to perform a large variety of tasks.

  18. A CORBA-Based Control Architecture for Real-Time Teleoperation Tasks in a Developmental Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2011-06-01

    Full Text Available This paper presents the development of new Humanoid Robot Control Architecture (HRCA platform based on Common Object Request Broker Architecture (CORBA in a developmental biped humanoid robot for real-time teleoperation tasks. The objective is to make the control platform open for collaborative teleoperation research in humanoid robotics via the internet. Meanwhile, to generate optimal trajectory generation in bipedal walk, we proposed a real time generation of optimal gait by using Genetic Algorithms (GA to minimize the energy for humanoid robot gait. In addition, we proposed simplification of kinematical solutions to generate controlled trajectories of humanoid robot legs in teleoperation tasks. The proposed control systems and strategies was evaluated in teleoperation experiments between Australia and Japan using humanoid robot Bonten-Maru. Additionally, we have developed a user-friendly Virtual Reality (VR user interface that is composed of ultrasonic 3D mouse system and a Head Mounted Display (HMD for working coexistence of human and humanoid robot in teleoperation tasks. The teleoperation experiments show good performance of the proposed system and control, and also verified the good performance for working coexistence of human and humanoid robot.

  19. A CORBA-Based Control Architecture for Real-Time Teleoperation Tasks in a Developmental Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2011-06-01

    Full Text Available This paper presents the development of new Humanoid Robot Control Architecture (HRCA platform based on Common Object Request Broker Architecture (CORBA in a developmental biped humanoid robot for real‐time teleoperation tasks. The objective is to make the control platform open for collaborative teleoperation research in humanoid robotics via the internet. Meanwhile, to generate optimal trajectory generation in bipedal walk, we proposed a real time generation of optimal gait by using Genetic Algorithms (GA to minimize the energy for humanoid robot gait. In addition, we proposed simplification of kinematical solutions to generate controlled trajectories of humanoid robot legs in teleoperation tasks. The proposed control systems and strategies was evaluated in teleoperation experiments between Australia and Japan using humanoid robot Bonten‐Maru. Additionally, we have developed a user‐ friendly Virtual Reality (VR user interface that is composed of ultrasonic 3D mouse system and a Head Mounted Display (HMD for working coexistence of human and humanoid robot in teleoperation tasks. The teleoperation experiments show good performance of the proposed system and control, and also verified the good performance for working coexistence of human and humanoid robot.

  20. STS Motion Control Using Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Mohd Bazli Bahar

    2014-07-01

    Full Text Available This study presents the development of Sit to Stand (STS motion control method. The main challenge in STS is in addressing the lift-off from chair problem. In solving the problem, the main components of the humanoid STS motion system involved are the (1 phase and trajectory planning and (2 motion control. These components should be designed so that the Zero Moment Point (ZMP, Centre of Pressure (CoP and Centre of Mass (CoM is always in the support polygon. Basically, in STS motion control there are two components, 1. Action selector and 2. Tracking controller. The STS motion control should able to operate in real time and continuously able to adapt any change in between the motion. In this way, the accuracy of the controller to rectify the motion error shall increase. The overall proposed method to perform the STS motion is designed to have two main phases. (1 CoM transferring that implements Alexander STS technique and (2 Stabilization Strategy that used IF-THEN rules and proportional velocity controller. This study focuses on the presentation of the development of second phase which are 1. The development of the IF-THEN rules as the action selector that operates in real time to assists the proportional controller in making the best decision and, 2. The development of Proportional Gain Identification for the proportional velocity controller that is capable to change the gain implementation by referring to the define region that represent the motion condition. The validation of the proposed method is done experimentally using NAO robot as the test platform. The coefficient of the gain identification for the proportional controller was tuned using NAO robot that was initially set at sitting position on a wooden chair. The inclination of the body from a frame perpendicular with the ground, angle y is observed. Coefficient that gives the lowest RMSE of angle y trajectory is taken as a constant. Results show the proposed control method has reduce

  1. Interaction Histories and Short Term Memory: Enactive Development of Turn-taking Behaviors in a Childlike Humanoid Robot

    CERN Document Server

    Broz, Frank; Kose-Bagci, Hatice; Dautenhahn, Kerstin

    2012-01-01

    In this article, an enactive architecture is described that allows a humanoid robot to learn to compose simple actions into turn-taking behaviors while playing interaction games with a human partner. The robot's action choices are reinforced by social feedback from the human in the form of visual attention and measures of behavioral synchronization. We demonstrate that the system can acquire and switch between behaviors learned through interaction based on social feedback from the human partner. The role of reinforcement based on a short term memory of the interaction is experimentally investigated. Results indicate that feedback based only on the immediate state is insufficient to learn certain turn-taking behaviors. Therefore some history of the interaction must be considered in the acquisition of turn-taking, which can be efficiently handled through the use of short term memory.

  2. Humanoid Robot RH-1 for Collaborative Tasks: A Control Architecture for Human-Robot Cooperation

    Directory of Open Access Journals (Sweden)

    Concepción A. Monje

    2008-01-01

    Full Text Available The full-scale humanoid robot RH-1 has been totally developed in the University Carlos III of Madrid. In this paper we present an advanced control system for this robot so that it can perform tasks in cooperation with humans. The collaborative tasks are carried out in a semi-autonomous way and are intended to be put into operation in real working environments where humans and robots should share the same space. Before presenting the control strategy, the kinematic model and a simplified dynamic model of the robot are presented. All the models and algorithms are verified by several simulations and experimental results.

  3. Humanoid robot Lola: design and walking control.

    Science.gov (United States)

    Buschmann, Thomas; Lohmeier, Sebastian; Ulbrich, Heinz

    2009-01-01

    In this paper we present the humanoid robot LOLA, its mechatronic hardware design, simulation and real-time walking control. The goal of the LOLA-project is to build a machine capable of stable, autonomous, fast and human-like walking. LOLA is characterized by a redundant kinematic configuration with 7-DoF legs, an extremely lightweight design, joint actuators with brushless motors and an electronics architecture using decentralized joint control. Special emphasis was put on an improved mass distribution of the legs to achieve good dynamic performance. Trajectory generation and control aim at faster, more flexible and robust walking. Center of mass trajectories are calculated in real-time from footstep locations using quadratic programming and spline collocation methods. Stabilizing control uses hybrid position/force control in task space with an inner joint position control loop. Inertial stabilization is achieved by modifying the contact force trajectories.

  4. Balancing Theory and Practical Work in a Humanoid Robotics Course

    Science.gov (United States)

    Wolff, Krister; Wahde, Mattias

    2010-01-01

    In this paper, we summarize our experiences from teaching a course in humanoid robotics at Chalmers University of Technology in Goteborg, Sweden. We describe the robotic platform used in the course and we propose the use of a custom-built robot consisting of standard electronic and mechanical components. In our experience, by using standard…

  5. Humanoid Robot Head Design Based on Uncanny Valley and FACS

    Directory of Open Access Journals (Sweden)

    Jizheng Yan

    2014-01-01

    Full Text Available Emotional robots are always the focus of artificial intelligence (AI, and intelligent control of robot facial expression is a hot research topic. This paper focuses on the design of humanoid robot head, which is divided into three steps to achieve. The first step is to solve the uncanny valley about humanoid robot, to find and avoid the relationship between human being and robot; the second step is to solve the association between human face and robot head; compared with human being and robots, we analyze the similarities and differences and explore the same basis and mechanisms between robot and human analyzing the Facial Action Coding System (FACS, which guides us to achieve humanoid expressions. On the basis of the previous two steps, the third step is to construct a robot head; through a series of experiments we test the robot head, which could show some humanoid expressions; through human-robot interaction, we find people are surprised by the robot head expression and feel happy.

  6. Clock-turning gait synthesis for humanoid robots

    Institute of Scientific and Technical Information of China (English)

    Zhe TANG; Zengqi SUN; Hongbo LIU; Meng Joo ER

    2007-01-01

    Turning gait is a basic motion for humanoid robots.This paper presents a method for humanoid turning.i.e.clock-turning.The objective of clock-turning is to change robot direction at a stationary spot.The clock-turning planning consists of four steps:ankle trajectory generation,hip trajectory generation,knee trajectory generation,and inverse kinematics calculation.Our proposed method is based on a typical humanoid structure with 12 DOFs(degrees of freedom).The final output of clock-turning planning is 12 reference trajectories.which are used to control a humanoid robot wim 12 DOFs.ZMP(zero moment point)is used as stability criterion for the planning.Simulation experiments are conducted to verify the effectiveness of our proposed clock-turning method.

  7. A Hybrid Method of Analyzing Patents for Sustainable Technology Management in Humanoid Robot Industry

    Directory of Open Access Journals (Sweden)

    Jongchan Kim

    2016-05-01

    Full Text Available A humanoid, which refers to a robot that resembles a human body, imitates a human’s intelligence, behavior, sense, and interaction in order to provide various types of services to human beings. Humanoids have been studied and developed constantly in order to improve their performance. Humanoids were previously developed for simple repetitive or hard work that required significant human power. However, intelligent service robots have been developed actively these days to provide necessary information and enjoyment; these include robots manufactured for home, entertainment, and personal use. It has become generally known that artificial intelligence humanoid technology will significantly benefit civilization. On the other hand, Successful Research and Development (R & D on humanoids is possible only if they are developed in a proper direction in accordance with changes in markets and society. Therefore, it is necessary to analyze changes in technology markets and society for developing sustainable Management of Technology (MOT strategies. In this study, patent data related to humanoids are analyzed by various data mining techniques, including topic modeling, cross-impact analysis, association rule mining, and social network analysis, to suggest sustainable strategies and methodologies for MOT.

  8. Reference Trajectory Generation for 3-Dimensional Walking of a Humanoid Robot

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Humanoid walking planning is a complicated task because of the high number of degrees of freedom (DOFs) and the variable mechanical structure during walking. In this paper, a planning method for 3-dimensional (3-D) walking movements was developed based on a model of a typical humanoid robot with 12 DOFs on the lower body. The planning process includes trajectory generation for the hip, ankle, and knee joints in the Cartesian space. The balance of the robot was ensured by adjusting the hip motion. The angles for each DOF were obtained from 3-D kinematics calculation. The calculation gave reference trajectories of all the DOFs on the humanoid robot which were used to control the real robot. The simulation results show that the method is effective.

  9. Robust visual servoing based Chinese calligraphy on a humanoid robot

    Institute of Scientific and Technical Information of China (English)

    马哲

    2016-01-01

    A robust visual servoing system is investigated on a humanoid robot which grasps a brush in Chinese calligraphy task.The system is implemented based on uncalibrated visual servoing controller utilizing Kalman-Bucy filter, with the help of an object detector by continuously adaptive MeanShift ( CAMShift) algorithm.Under this control scheme, a humanoid robot can satisfactorily grasp a brush without system modeling.The proposed method is shown to be robust and effective through a Chinese calligraphy task on a NAO robot.

  10. Complete low-cost implementation of a teleoperated control system for a humanoid robot.

    Science.gov (United States)

    Cela, Andrés; Yebes, J Javier; Arroyo, Roberto; Bergasa, Luis M; Barea, Rafael; López, Elena

    2013-01-24

    Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot's back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system.

  11. Time-Varying Affective Response for Humanoid Robots

    Science.gov (United States)

    Moshkina, Lilia; Arkin, Ronald C.; Lee, Jamee K.; Jung, Hyunryong

    This paper describes the design of a complex time-varying affective architecture. It is an expansion of the TAME architecture (traits, attitudes, moods, and emotions) as applied to humanoid robotics. It particular it is intended to promote effective human-robot interaction by conveying the robot’s affective state to the user in an easy-to-interpret manner.

  12. Kinematics Analysis Based on Screw Theory of a Humanoid Robot

    Institute of Scientific and Technical Information of China (English)

    MAN Cui-hua; FAN Xun; LI Cheng-rong; ZHAO Zhong-hui

    2007-01-01

    A humanoid robot is a complex dynamic system for its idiosyncrasy. This paper aims to provide a mathematical and theoretical foundation for the design of the configuration, kinematics analysis of a novel humanoid robot. It has a simplified configuration and design for entertainment purpose. The design methods, principle and mechanism are discussed. According to the design goals of this research, there are ten degrees of freedom in the two bionic arms.Modularization, concurrent design and extension theory methods were adopted in the configuration study and screw theory was introduced into the analysis of humanoid robot kinematics. Comparisons with other methods show that: 1) only two coordinates need to be established in the kinematics analysis of humanoid robot based on screw theory; 2) the spatial manipulator Jacobian obtained by using twist and exponential product formula is succinct and legible; 3) adopting screw theory to resolve the humanoid robot arms kinematics question can avoid singularities; 4) using screw theory can solve the question of specification insufficiency.

  13. Hierarchical Motion Control for a Team of Humanoid Soccer Robots

    Directory of Open Access Journals (Sweden)

    Seung-Joon Yi

    2016-02-01

    Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.

  14. Hierarchical Motion Control for a Team of Humanoid Soccer Robots

    Directory of Open Access Journals (Sweden)

    Seung-Joon Yi

    2016-02-01

    Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.

  15. Complete Low-Cost Implementation of a Teleoperated Control System for a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Rafael Barea

    2013-01-01

    Full Text Available Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot’s back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system.

  16. A Framework for Obstacles Avoidance of Humanoid Robot Using Stereo Vision

    Directory of Open Access Journals (Sweden)

    Widodo Budiharto

    2013-04-01

    Full Text Available In this paper, we propose a framework for multiple moving obstacles avoidance strategy using stereo vision for humanoid robot in indoor environment. We assume that this model of humanoid robot is used as a service robot to deliver a cup to customer from starting point to destination point. We have successfully developed and introduced three main modules to recognize faces, to identify multiple moving obstacles and to initiate a maneuver. A group of people who are walking will be tracked as multiple moving obstacles. Predefined maneuver to avoid obstacles is applied to robot because the limitation of view angle from stereo camera to detect multiple obstacles. The contribution of this research is a new method for multiple moving obstacles avoidance strategy with Bayesian approach using stereo vision based on the direction and speed of obstacles. Depth estimation is used to obtain distance calculation between obstacles and the robot. We present the results of the experiment of the humanoid robot called Gatotkoco II which is used our proposed method and evaluate its performance. The proposed moving obstacles avoidance strategy was tested empirically and proved effective for humanoid robot.

  17. A Framework for Obstacles Avoidance of Humanoid Robot using Stereo Vision

    Directory of Open Access Journals (Sweden)

    Widodo Budiharto

    2013-04-01

    Full Text Available In this paper, we propose a framework for multiple moving obstacles avoidance strategy using stereo vision for humanoid robot in indoor environment. We assume that this model of humanoid robot is used as a service robot to deliver a cup to customer from starting point to destination point. We have successfully developed and introduced three main modules to recognize faces, to identify multiple moving obstacles and to initiate a maneuver. A group of people who are walking will be tracked as multiple moving obstacles. Predefined maneuver to avoid obstacles is applied to robot because the limitation of view angle from stereo camera to detect multiple obstacles. The contribution of this research is a new method for multiple moving obstacles avoidance strategy with Bayesian approach using stereo vision based on the direction and speed of obstacles. Depth estimation is used to obtain distance calculation between obstacles and the robot. We present the results of the experiment of the humanoid robot called Gatotkoco II which is used our proposed method and evaluate its performance. The proposed moving obstacles avoidance strategy was tested empirically and proved effective for humanoid robot.

  18. Analysis of Coordinated Motions of Humanoid Robot Fingers Using Interphalangeal Joint Coordination

    Directory of Open Access Journals (Sweden)

    Byoung-Ho Kim

    2014-04-01

    Full Text Available In this study, we analyse the coordinated motions of humanoid robot fingers using an interphalangeal joint coordination. For this purpose, four humanoid robot fingers with different sizes have been considered. A biomimetic interphalangeal joint coordination (IJC formulation based on the grasp configuration of human fingers has been presented for humanoid robot fingers. The usefulness of the specified IJC formulation for human-like finger motion has been verified through comparative demonstrations. As a result, a proper coordination of humanoid robot fingertips can be achieved by applying our IJC formulation. Also the IJC formulation can be used to design of humanoid robot fingers.

  19. Motion Planning of Humanoid Robot for Obstacle Negotiation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The motion planning for obstacle negotiation by humanoid robot BHR-2 through stepping over or stepping on/off the wide and flat obstacle at known locations is presented. In the trajectory generation method, first the constraints of the foot motion parameters which include obstacle dimensions and the distance of obstacle from the humanoid robot is formulated. By varying the values of the constraint parameters, different types of foot motion for different obstacles can be produced. In this method, first the foot trajectory is generated, and then the waist trajectory is computed by using cubic spline interpolation without first calculating the zero moment point (ZMP) trajectory . The dynamic stability during the execution of stepping over and stepping on/off trajectories are ensured by incorporating the ZMP criterion. The effectiveness of the proposed method is confirmed by simulations and experiments on humanoid robot BHR-2.

  20. Comparison of human and humanoid robot control of upright stance.

    Science.gov (United States)

    Peterka, Robert J

    2009-01-01

    There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to approximately 1Hz) dynamic characteristics of human stance control. These subsystems are (1) a "sensory integration" mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions and (2) an "effort control" mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions where humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the

  1. Realistic humanoid robot simulation with an optimized controller: a power consumption minimization approach

    OpenAIRE

    2008-01-01

    This paper describes a humanoid robot simulator supporting joint trajectory optimization, following accurately the real robot characteristics. The simulator, based on a rigid body simulator (Open Dynamics Engine) and an OpenGL based graphics library (GLScene), provides instant visual feedback and realistic dynamics. It allows to design and test behaviours and control methods without access to the real hardware, preventing damages in the real robot in the earlier stages of development. Having ...

  2. The Rh-1 Full-Size Humanoid Robot: Design, Walking Pattern Generation and Control

    Directory of Open Access Journals (Sweden)

    M. Arbulú

    2009-01-01

    Full Text Available This paper is an overview of the humanoid robot Rh-1, the second phase of the Rh project, which was launched by the Robotics Lab at the Carlos III University of Madrid in 2002. The robot mechanical design includes the specifications development in order to construct a platform, which is capable of stable biped walking. At first, the robots’ weights were calculated in order to obtain the inverse dynamics and to select the actuators. After that, mechanical specifications were introduced in order to verify the robot’s structural behaviour with different experimental gaits. In addition, an important aspect is the joints design when their axes are crossed, which is called ‘Joints of Rectangular Axes’ (JRA. The problem with these joints is obtaining two or more degrees of freedom (DOF in small space. The construction of a humanoid robot also includes the design of hardware and software architectures. The main advantage of the proposed hardware and software architectures is the use of standardised solutions frequently used in the automation industry and commercially available hardware components. It provides scalability, modularity and application of standardised interfaces and brings the design of the complex control system of the humanoid robot out of a closed laboratory to industry. Stable walking is the most essential ability for the humanoid robot. The three dimensional Linear Inverted Pendulum Model (3D-LIPM and the Cart-table models had been used in order to achieve natural and dynamic biped walking. Humanoid dynamics is widely simplified by concentrating its mass in the centre of gravity (COG and moving it following the natural inverted pendulum laws (3D-LIPM or by controlling the cart motion (Cart-table model. An offline-calculated motion pattern does not guarantee the walking stability of the humanoid robot. Control architecture for the dynamic humanoid robot walking was developed, which is able to make online modifications of the

  3. Cooperation of Humanoid Robots using Teleoperation for Transferring an Object

    Directory of Open Access Journals (Sweden)

    Ali Raza Jafri

    2008-11-01

    Full Text Available In this paper, a method is proposed for humanoid robots performing object transfering task in a teleoperated cooperative paradigm. The cooperative task is accomplished using simple communication among two humanoid robots and then switch between modes according to the situation. In case of object passing with two humanoid robots, mutual position shifts may occur while they are moving. Therefore, it is necessary to correct the position in a real-time manner.To control the arm and hand of the robot remotely we use master arm and hand while it carries and passes the object, the dynamic stability during the execution of walking is ensured by incorporating the ZMP criterion and the desired spacing between the robots is controlled by Leader follower type control .Object passing cooperation for two humanoid robots is based on computer control, wireless LAN, vision, cooperative handling control and text commands. The method is applied as key software of the system. The effectiveness of the proposed methodology for performing cooperatively real time tasks is discussed.

  4. A teleoperation system to control the humanoid robot using an RGB-D sensor

    Science.gov (United States)

    Shelomentcev, E. E.; Aleksandrova, T. V.

    2016-04-01

    This paper presents a concept design of the work algorithm for a teleoperation control system of a humanoid robot. The humanoid robot control system needs to stabilize the robot in a vertical position in order to prevent the robot from falling. The process of design of the control system includes the design of position filter to detect the unstable positions. The application of such a control system enables to control the humanoid robot using motion capture technology.

  5. RESEARCH ON THE DOF DISPOSITION AND MECHANISMS DESIGN OF HUMANOID ROBOT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The DOF of human being was analyzed in this paper. Three reasonable kinds of DOF disposition programs came up to design a humanoid robot and an optimal DOF disposition program was chosen according to configuration appearance, realizing the balance and torsion movement and analysis of torque of the humanoid. Three special mechanisms were designed so that the humanoid robot has some special function.

  6. The mechanical design of a humanoid robot with flexible skin sensor for use in psychiatric therapy

    Science.gov (United States)

    Burns, Alec; Tadesse, Yonas

    2014-03-01

    In this paper, a humanoid robot is presented for ultimate use in the rehabilitation of children with mental disorders, such as autism. Creating affordable and efficient humanoids could assist the therapy in psychiatric disability by offering multimodal communication between the humanoid and humans. Yet, the humanoid development needs a seamless integration of artificial muscles, sensors, controllers and structures. We have designed a human-like robot that has 15 DOF, 580 mm tall and 925 mm arm span using a rapid prototyping system. The robot has a human-like appearance and movement. Flexible sensors around the arm and hands for safe human-robot interactions, and a two-wheel mobile platform for maneuverability are incorporated in the design. The robot has facial features for illustrating human-friendly behavior. The mechanical design of the robot and the characterization of the flexible sensors are presented. Comprehensive study on the upper body design, mobile base, actuators selection, electronics, and performance evaluation are included in this paper.

  7. Toward Speech and Nonverbal Behaviors Integration for Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2012-09-01

    Full Text Available It is essential to integrate speeches and nonverbal behaviors for a humanoid robot in human-robot interaction. This paper presents an approach using multi-object genetic algorithm to match the speeches and behaviors automatically. Firstly, with humanoid robot's emotion status, we construct a hierarchical structure to link voice characteristics and nonverbal behaviors. Secondly, these behaviors corresponding to speeches are matched and integrated into an action sequence based on genetic algorithm, so the robot can consistently speak and perform emotional behaviors. Our approach takes advantage of relevant knowledge described by psychologists and nonverbal communication. And from experiment results, our ultimate goal, implementing an affective robot to act and speak with partners vividly and fluently, could be achieved.

  8. Imitation of Dynamic Walking With BSN for Humanoid Robot.

    Science.gov (United States)

    Teachasrisaksakul, Krittameth; Zhang, Zhi-Qiang; Yang, Guang-Zhong; Lo, Benny

    2015-05-01

    Humanoid robots have been used in a wide range of applications including entertainment, healthcare, and assistive living. In these applications, the robots are expected to perform a range of natural body motions, which can be either preprogrammed or learnt from human demonstration. This paper proposes a strategy for imitating dynamic walking gait for a humanoid robot by formulating the problem as an optimization process. The human motion data are recorded with an inertial sensor-based motion tracking system (Biomotion+). Joint angle trajectories are obtained from the transformation of the estimated posture. Key locomotion frames corresponding to gait events are chosen from the trajectories. Due to differences in joint structures of the human and robot, the joint angles at these frames need to be optimized to satisfy the physical constraints of the robot while preserving robot stability. Interpolation among the optimized angles is needed to generate continuous angle trajectories. The method is validated using a NAO humanoid robot, with results demonstrating the effectiveness of the proposed strategy for dynamic walking.

  9. Automated Optimization of Walking Parameters for the Nao Humanoid Robot

    NARCIS (Netherlands)

    Girardi, N.; Kooijman, C.; Wiggers, A.J.; Visser, A.

    2013-01-01

    This paper describes a framework for optimizing walking parameters for a Nao humanoid robot. In this case an omnidirectional walk is learned. The parameters are learned in simulation with an evolutionary approach. The best performance was obtained for a combination of a low mutation rate and a high

  10. The Roasted Tomato Challenge for a Humanoid Robot

    NARCIS (Netherlands)

    Lagrand, C.; van der Meer, M.; Visser, A.; Cunha, B.; Lima, J.; Silva, M.; Leitão, P.

    2016-01-01

    Supporting humans in the kitchen is a difficult task for a humanoid robot. This study focuses on one of the tasks identified in the HUMABOT Challenge, finding a tomato in a kitchen environment and grabbing it from the table. Three detection algorithms are evaluated on their performance to find the t

  11. New ankle actuation mechanism for a humanoid robot

    NARCIS (Netherlands)

    Oort, van Gijs; Reinink, Roelof; Stramigioli, Stefano

    2011-01-01

    In this article we discuss the design of a new ankle actuation mechanism for the humanoid robot TUlip. The new mechanism consists of two coupled series-elastic systems. We discuss the choice of actuators according to calculations for maximum achievable walking speed. Some control issues, MIMO and no

  12. The eMOSAIC model for humanoid robot control.

    Science.gov (United States)

    Sugimoto, Norikazu; Morimoto, Jun; Hyon, Sang-Ho; Kawato, Mitsuo

    2012-05-01

    In this study, we propose an extension of the MOSAIC architecture to control real humanoid robots. MOSAIC was originally proposed by neuroscientists to understand the human ability of adaptive control. The modular architecture of the MOSAIC model can be useful for solving nonlinear and non-stationary control problems. Both humans and humanoid robots have nonlinear body dynamics and many degrees of freedom. Since they can interact with environments (e.g., carrying objects), control strategies need to deal with non-stationary dynamics. Therefore, MOSAIC has strong potential as a human motor-control model and a control framework for humanoid robots. Yet application of the MOSAIC model has been limited to simple simulated dynamics since it is susceptive to observation noise and also cannot be applied to partially observable systems. Our approach introduces state estimators into MOSAIC architecture to cope with real environments. By using an extended MOSAIC model, we are able to successfully generate squatting and object-carrying behaviors on a real humanoid robot.

  13. Towards Autonomous Operations of the Robonaut 2 Humanoid Robotic Testbed

    Science.gov (United States)

    Badger, Julia; Nguyen, Vienny; Mehling, Joshua; Hambuchen, Kimberly; Diftler, Myron; Luna, Ryan; Baker, William; Joyce, Charles

    2016-01-01

    The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012. Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators ("legs"), more capable processors, and new sensors, as shown in Figure 1. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions. Technology development has thus far followed two main paths, autonomous climbing and efficient tool manipulation. Central to both technologies has been the incorporation of a human robotic interaction paradigm that involves the visualization of sensory and pre-planned command data with models of the robot and its environment. Figure 2 shows screenshots of these interactive tools, built in rviz, that are used to develop and implement these technologies on R2. Robonaut 2 is designed to move along the handrails and seat track around the US lab inside the ISS. This is difficult for many reasons, namely the environment is cluttered and constrained, the robot has many degrees of freedom (DOF) it can utilize for climbing, and remote commanding for precision tasks such as grasping handrails is time-consuming and difficult. Because of this, it is important to develop the technologies needed to allow the robot to reach operator-specified positions as

  14. Bodily mood expression : Recognize moods from functional behaviors of humanoid robots

    NARCIS (Netherlands)

    Xu, J.; Broekens, J.; Hindriks, K.; Neerincx, M.A.

    2013-01-01

    Our goal is to develop bodily mood expression that can be used during the execution of functional behaviors for humanoid social robots. Our model generates such expression by stylizing behaviors through modulating behavior parameters within functional bounds. We have applied this approach to two

  15. The Role of Physical Embodiment of Humanoid Robot Interaction

    DEFF Research Database (Denmark)

    Segato, Nicolaj; Krogsager, Anders; Jensen, Daniel Grønkjær

    2014-01-01

    An important role for the communication management in human communication is head nods, e.g. as nonverbal feedback signal. Based on a Japanese study with virtual agents, have showed that the using head nods in virtual agents elicited more verbal output from the user, we look into the use of head...... nods in communications between user and a humanoid robot, Keepon robot and a virtual agent resembling a cat that the user encounters for the first time....

  16. Mechanical design and optimal control of humanoid robot (TPinokio)

    OpenAIRE

    Teck Chew Wee

    2014-01-01

    The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking...

  17. Control Structure Design for Man-Function Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Yifeng Cui

    2013-07-01

    Full Text Available This paper presents a new humanoid robot control structure - Man-Function humanoid robot. The sensing devices worn on the human body, these devices will produce signals of joints’ change when people move. Computer of the control system receiving the signals and processing them, then issue control signals to the servos of the robot at the same time, control the robot’s behavior. For this reason, a control structure of human’s behavior to determine the robot’s behavior formed. The humanoid robot has 17 servos and two pressure sensors, the rotation of these servos’ steering gears lead to the robot’s behavior changes, and 12 servos corresponding to the human body sensing devices, other 5 servos used for the stability control of the robot combined with the pressure sensors. Based on this control structure, some pilot tests of the sensing device or servo have been done, the closed-loop position control mode has been chosen and the Kalman filter smoothing optimization method been used, the initial static walking control of the robot been realized.

  18. Autonomous learning in humanoid robotics through mental imagery.

    Science.gov (United States)

    Di Nuovo, Alessandro G; Marocco, Davide; Di Nuovo, Santo; Cangelosi, Angelo

    2013-05-01

    In this paper we focus on modeling autonomous learning to improve performance of a humanoid robot through a modular artificial neural networks architecture. A model of a neural controller is presented, which allows a humanoid robot iCub to autonomously improve its sensorimotor skills. This is achieved by endowing the neural controller with a secondary neural system that, by exploiting the sensorimotor skills already acquired by the robot, is able to generate additional imaginary examples that can be used by the controller itself to improve the performance through a simulated mental training. Results and analysis presented in the paper provide evidence of the viability of the approach proposed and help to clarify the rational behind the chosen model and its implementation.

  19. Mechatronic Design of a New Humanoid Robot with Hybrid Parallel Actuation

    Directory of Open Access Journals (Sweden)

    Vítor Santos

    2012-10-01

    Full Text Available Humanoid robotics is unquestionably a challenging and long-term field of research. Of the numerous and most urgent challenges to tackle, autonomous and efficient locomotion may possibly be the most underdeveloped at present in the research community. Therefore, to pursue studies in relation to autonomy with efficient locomotion, the authors have been developing a new teen-sized humanoid platform with hybrid characteristics. The hybrid nature is clear in the mixed actuation based on common electrical motors and passive actuators attached in parallel to the motors. This paper presents the mechatronic design of the humanoid platform, focusing mainly on the mechanical structure, the design and simulation of the hybrid joints, and the different subsystems implemented. Trying to keep the appropriate human proportions and main degrees of freedom, the developed platform utilizes a distributed control architecture and a rich set of sensing capabilities, both ripe for future development and research.

  20. Mechatronic Design of a New Humanoid Robot with Hybrid Parallel Actuation

    Directory of Open Access Journals (Sweden)

    Vítor Santos

    2012-10-01

    Full Text Available Humanoid robotics is unquestionably a challenging and long‐term field of research. Of the numerous and most urgent challenges to tackle, autonomous and efficient locomotion may possibly be the most underdeveloped at present in the research community. Therefore, to pursue studies in relation to autonomy with efficient locomotion, the authors have been developing a new teen‐sized humanoid platform with hybrid characteristics. The hybrid nature is clear in the mixed actuation based on common electrical motors and passive actuators attached in parallel to the motors. This paper presents the mechatronic design of the humanoid platform, focusing mainly on the mechanical structure, the design and simulation of the hybrid joints, and the different subsystems implemented. Trying to keep the appropriate human proportions and main degrees of freedom, the developed platform utilizes a distributed control architecture and a rich set of sensing capabilities, both ripe for future development and research.

  1. Design and Nonlinear Control of a 2-DOF Flexible Parallel Humanoid Arm Joint Robot

    Directory of Open Access Journals (Sweden)

    Leijie Jiang

    2017-01-01

    Full Text Available The paper focuses on the design and nonlinear control of the humanoid wrist/shoulder joint based on the cable-driven parallel mechanism which can realize roll and pitch movement. In view of the existence of the flexible parts in the mechanism, it is necessary to solve the vibration control of the flexible wrist/shoulder joint. In this paper, a cable-driven parallel robot platform is developed for the experiment study of the humanoid wrist/shoulder joint. And the dynamic model of the mechanism is formulated by using the coupling theory of the flexible body’s large global motion and small flexible deformation. Based on derived dynamics, antivibration control of the joint robot is studied with a nonlinear control method. Finally, simulations and experiments were performed to validate the feasibility of the developed parallel robot prototype and the proposed control scheme.

  2. FPGA for Robotic Applications: from Android/Humanoid Robots to Artificial Men

    Directory of Open Access Journals (Sweden)

    Tole Sutikno

    2011-12-01

    Full Text Available Researches on home robots have been increasing enormously. There has always existed a continuous research effort on problems of anthropomorphic robots which is now called humanoid robots. Currently, robotics has evolved to the point that different branches have reached a remarkable level of maturity, that neural network and fuzzy logic are the main artificial intelligence as intelligent control on the robotics. Despite all this progress, while aiming at accomplishing work-tasks originally charged only to humans, robotic science has perhaps quite naturally turned into the attempt to create artificial men. It is true that artificial men or android humanoid robots open certainly very broad prospects. This “robot” may be viewed as a personal helper, and it will be called a home-robot, or personal robot. This is main reason why the two special sections are issued in the TELKOMNIKA sequentially.

  3. Robonaut 2 - The First Humanoid Robot in Space

    Science.gov (United States)

    Diftler, M. A.; Radford, N. A.; Mehling, J. S.; Abdallah, M. E.; Bridgwater, L. B.; Sanders, A. M.; Askew, R. S.; Linn, D. M.; Yamokoski, J. D.; Permenter, F. A.; Hargrave, B. K.

    2010-01-01

    NASA and General Motors have developed the second generation Robonaut, Robonaut 2 or R2, and it is scheduled to arrive on the International Space Station in late 2010 and undergo initial testing in early 2011. This state of the art, dexterous, anthropomorphic robotic torso has significant technical improvements over its predecessor making it a far more valuable tool for astronauts. Upgrades include: increased force sensing, greater range of motion, higher bandwidth and improved dexterity. R2 s integrated mechatronics design results in a more compact and robust distributed control system with a faction of the wiring of the original Robonaut. Modularity is prevalent throughout the hardware and software along with innovative and layered approaches for sensing and control. The most important aspects of the Robonaut philosophy are clearly present in this latest model s ability to allow comfortable human interaction and in its design to perform significant work using the same hardware and interfaces used by people. The following describes the mechanisms, integrated electronics, control strategies and user interface that make R2 a promising addition to the Space Station and other environments where humanoid robots can assist people.

  4. Embedded distributed vision system for humanoid soccer robot

    OpenAIRE

    Blanes Noguera, Francisco; Muñoz Benavent, Pau; Muñoz Alcobendas, Manuel; Simó Ten, José Enrique; CORONEL PARADA, JAVIER OSVALDO; Albero Gil, Miguel

    2011-01-01

    [EN] Computer vision is one of the most challenging applications in sensor systems since the signal is complex from spatial and logical point of view. Due to these characteristics vision applications require high computing resources, which makes them especially difficult to use in embedded systems, like mobile robots with reduced amount memory and computing power. In this work a distributed architecture for humanoid visual control is presented using specific nodes ...

  5. Robot-mediated interviews--how effective is a humanoid robot as a tool for interviewing young children?

    Directory of Open Access Journals (Sweden)

    Luke Jai Wood

    Full Text Available Robots have been used in a variety of education, therapy or entertainment contexts. This paper introduces the novel application of using humanoid robots for robot-mediated interviews. An experimental study examines how children's responses towards the humanoid robot KASPAR in an interview context differ in comparison to their interaction with a human in a similar setting. Twenty-one children aged between 7 and 9 took part in this study. Each child participated in two interviews, one with an adult and one with a humanoid robot. Measures include the behavioural coding of the children's behaviour during the interviews and questionnaire data. The questions in these interviews focused on a special event that had recently taken place in the school. The results reveal that the children interacted with KASPAR very similar to how they interacted with a human interviewer. The quantitative behaviour analysis reveal that the most notable difference between the interviews with KASPAR and the human were the duration of the interviews, the eye gaze directed towards the different interviewers, and the response time of the interviewers. These results are discussed in light of future work towards developing KASPAR as an 'interviewer' for young children in application areas where a robot may have advantages over a human interviewer, e.g. in police, social services, or healthcare applications.

  6. Robot-Mediated Interviews - How Effective Is a Humanoid Robot as a Tool for Interviewing Young Children?

    Science.gov (United States)

    Wood, Luke Jai; Dautenhahn, Kerstin; Rainer, Austen; Robins, Ben; Lehmann, Hagen; Syrdal, Dag Sverre

    2013-01-01

    Robots have been used in a variety of education, therapy or entertainment contexts. This paper introduces the novel application of using humanoid robots for robot-mediated interviews. An experimental study examines how children’s responses towards the humanoid robot KASPAR in an interview context differ in comparison to their interaction with a human in a similar setting. Twenty-one children aged between 7 and 9 took part in this study. Each child participated in two interviews, one with an adult and one with a humanoid robot. Measures include the behavioural coding of the children’s behaviour during the interviews and questionnaire data. The questions in these interviews focused on a special event that had recently taken place in the school. The results reveal that the children interacted with KASPAR very similar to how they interacted with a human interviewer. The quantitative behaviour analysis reveal that the most notable difference between the interviews with KASPAR and the human were the duration of the interviews, the eye gaze directed towards the different interviewers, and the response time of the interviewers. These results are discussed in light of future work towards developing KASPAR as an ‘interviewer’ for young children in application areas where a robot may have advantages over a human interviewer, e.g. in police, social services, or healthcare applications. PMID:23533625

  7. Robot-mediated interviews--how effective is a humanoid robot as a tool for interviewing young children?

    Science.gov (United States)

    Wood, Luke Jai; Dautenhahn, Kerstin; Rainer, Austen; Robins, Ben; Lehmann, Hagen; Syrdal, Dag Sverre

    2013-01-01

    Robots have been used in a variety of education, therapy or entertainment contexts. This paper introduces the novel application of using humanoid robots for robot-mediated interviews. An experimental study examines how children's responses towards the humanoid robot KASPAR in an interview context differ in comparison to their interaction with a human in a similar setting. Twenty-one children aged between 7 and 9 took part in this study. Each child participated in two interviews, one with an adult and one with a humanoid robot. Measures include the behavioural coding of the children's behaviour during the interviews and questionnaire data. The questions in these interviews focused on a special event that had recently taken place in the school. The results reveal that the children interacted with KASPAR very similar to how they interacted with a human interviewer. The quantitative behaviour analysis reveal that the most notable difference between the interviews with KASPAR and the human were the duration of the interviews, the eye gaze directed towards the different interviewers, and the response time of the interviewers. These results are discussed in light of future work towards developing KASPAR as an 'interviewer' for young children in application areas where a robot may have advantages over a human interviewer, e.g. in police, social services, or healthcare applications.

  8. NUClear: A Loosely Coupled Software Architecture for Humanoid Robot Systems

    Directory of Open Access Journals (Sweden)

    Trent eHouliston

    2016-04-01

    Full Text Available This paper discusses the design and interface of NUClear, a new hybrid message-passing architecture for embodied humanoid robotics. NUClear is modular, low latency and promotes functional and expandable software design. It greatly reduces the latency for messages passed between modules as the messages routes are established at compile time. It also reduces the number of functions that must be written using a system called co-messages which aids in dealing with multiple simultaneous data. NUClear has primarily been evaluated on a humanoid robotic soccer platform and on a robotic boat platform, with evaluations showing that NUClear requires fewer callbacks and cache variables over existing message-passing architectures. NUClear does have limitations when applying these techniques on multi-processed systems. It performs best in lower power systems where computational resources are limited. Future work will focus on applying the architecture to new platforms, including a larger form humanoid platform and a virtual reality platform and further evaluating the impact of the novel techniques introduced.

  9. Robosapien Robot used to Model Humanoid Interaction to Perform tasks in Dangerous Manufacturing Environments

    Science.gov (United States)

    Stopforth, R.; Bright, G.

    2014-07-01

    Humans are involved with accidents in manufacturing environments. A possibility to prevent humans from these scenarios is, to introduce humanoid robots within these industrial areas. This paper investigates the control scenario and environments required at a small scale level, with the use of the Robosapien robot. The Robosapien robot is modified to control it with a task of removing a cylinder and inserting it into a hole. Analysis is performed on the performance of the Robosapien robot and relating it with that of a humanoid robot. A discussion with suggestions is concluded with the efficiency and profitability that would need to be considered, for having a humanoid robot within the manufacturing environment.

  10. Visual perception system and method for a humanoid robot

    Science.gov (United States)

    Wells, James W. (Inventor); Mc Kay, Neil David (Inventor); Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  11. Dynamics based modeling of wheeled platform for humanoid robot torso

    Directory of Open Access Journals (Sweden)

    Petrović Vladimir M.

    2016-01-01

    Full Text Available From the ancient mythology till the modern times, people were trying to build an artificial mechanical replica of themselves. Inspired by this long tradition of various engineering projects, we will hereby describe a partly humanoid robotic structure. Our robotic configuration is composed out of an anthropomimetic upper body, but instead of legs it uses a wheeled cart for the motion. In our research, this so-called semi-anthropomimetic structure has a four-wheeled cart. This work is aiming to analyze the behaviour of the robot that is exposed to different kind of external disturbances. Disturbances coming from the outside in the form of external forces (impulse and long term simulate the interactions of the robot and its ambience. Necessary simulations were thoroughly executed (in that way analyzing robotic balance and proper size of the cart is evaluated following the ZMP theoretical background. [Projekat Ministarstva nauke Republike Srbije, br. TR-35003 i br. III-44008

  12. Visual SLAM and Moving-object Detection for a Small-size Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Yin-Tien Wang

    2010-09-01

    Full Text Available In the paper, a novel moving object detection (MOD algorithm is developed and integrated with robot visual Simultaneous Localization and Mapping (vSLAM. The moving object is assumed to be a rigid body and its coordinate system in space is represented by a position vector and a rotation matrix. The MOD algorithm is composed of detection of image features, initialization of image features, and calculation of object coordinates. Experimentation is implemented on a small-size humanoid robot and the results show that the performance of the proposed algorithm is efficient for robot visual SLAM and moving object detection.

  13. Learning Spatial Object Localization from Vision on a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Jürgen Leitner

    2012-12-01

    Full Text Available We present a combined machine learning and computer vision approach for robots to localize objects. It allows our iCub humanoid to quickly learn to provide accurate 3D position estimates (in the centimetre range of objects seen. Biologically inspired approaches, such as Artificial Neural Networks (ANN and Genetic Programming (GP, are trained to provide these position estimates using the two cameras and the joint encoder readings. No camera calibration or explicit knowledge of the robot's kinematic model is needed. We find that ANN and GP are not just faster and have lower complexity than traditional techniques, but also learn without the need for extensive calibration procedures. In addition, the approach is localizing objects robustly, when placed in the robot's workspace at arbitrary positions, even while the robot is moving its torso, head and eyes.

  14. HCBPM: An Idea toward a Social Learning Environment for Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Fady Alnajjar

    2010-01-01

    Full Text Available To advance robotics toward real-world applications, a growing body of research has focused on the development of control systems for humanoid robots in recent years. Several approaches have been proposed to support the learning stage of such controllers, where the robot can learn new behaviors by observing and/or receiving direct guidance from a human or even another robot. These approaches require dynamic learning and memorization techniques, which the robot can use to reform and update its internal systems continuously while learning new behaviors. Against this background, this study investigates a new approach to the development of an incremental learning and memorization model. This approach was inspired by the principles of neuroscience, and the developed model was named “Hierarchical Constructive Backpropagation with Memory” (HCBPM. The validity of the model was tested by teaching a humanoid robot to recognize a group of objects through natural interaction. The experimental results indicate that the proposed model efficiently enhances real-time machine learning in general and can be used to establish an environment suitable for social learning between the robot and the user in particular.

  15. Reinforcement Learning on autonomous humanoid robots

    NARCIS (Netherlands)

    Schuitema, E.

    2012-01-01

    Service robots have the potential to be of great value in households, health care and other labor intensive environments. However, these environments are typically unique, not very structured and frequently changing, which makes it difficult to make service robots robust and versatile through manual

  16. Inverse Kinematics of a Humanoid Robot with Non-Spherical Hip: A Hybrid Algorithm Approach

    OpenAIRE

    2013-01-01

    This paper describes an approach to solve the inverse kinematics problem of humanoid robots whose construction shows a small but non negligible offset at the hip which prevents any purely analytical solution to be developed. Knowing that a purely numerical solution is not feasible due to variable efficiency problems, the proposed one first neglects the offset presence in order to obtain an approximate “solution” by means of an analytical algorithm based on screw theory, a...

  17. Real-Time Control of Humanoid Robots Considering External Forces on Upper Part of the Body

    Science.gov (United States)

    Inomata, Kentaro; Shigemori, Yo; Uchimura, Yutaka

    Recently, the demand for the practical use of service robots has risen significantly because of acceleration of demographic aging, and a humanoid robot is one of the promising form factors of service robots. When a humanoid robot is used by a human in a real environment, the robot needs to be designed by taking into account the various external forces that act on the robot. Thus far, most of the walking humanoid robots have been mainly controlled by the conventional ZMP method to maintain a stable walking posture. However, the conventional ZMP method can not be used to handle the various external forces that act on the upper part of the humanoid robot body. To overcome these problems, in this paper, we propose a novel control method, which we called 3DZMP and pZMP, for a humanoid robot to react to the external force on the upper part of the body. The 3DZMP is defined as the point in three-dimensional space at which the moment about all axes is zero. 3DZMP can prevent the rotation of a humanoid robot. The pZMP is defined as the point corresponding to the orthographic projection of the 3DZMP on a plane. pZMP is used to evaluate the stability of 3DZMP. We implemented the proposed method on a prototype robot and verified that the robot gained the capability to react to external forces that could not be handled by the conventional ZMP method.

  18. Inverse Kinematics of a Humanoid Robot with Non-Spherical Hip: A Hybrid Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Rafael Cisneros Limón

    2013-04-01

    Full Text Available This paper describes an approach to solve the inverse kinematics problem of humanoid robots whose construction shows a small but non negligible offset at the hip which prevents any purely analytical solution to be developed. Knowing that a purely numerical solution is not feasible due to variable efficiency problems, the proposed one first neglects the offset presence in order to obtain an approximate “solution” by means of an analytical algorithm based on screw theory, and then uses it as the initial condition of a numerical refining procedure based on the Levenberg‐Marquardt algorithm. In this way, few iterations are needed for any specified attitude, making it possible to implement the algorithm for real‐time applications. As a way to show the algorithm’s implementation, one case of study is considered throughout the paper, represented by the SILO2 humanoid robot.

  19. Extending NGOMSL Model for Human-Humanoid Robot Interaction in the Soccer Robotics Domain

    Directory of Open Access Journals (Sweden)

    Rajesh Elara Mohan

    2008-01-01

    Full Text Available In the field of human-computer interaction, the Natural Goals, Operators, Methods, and Selection rules Language (NGOMSL model is one of the most popular methods for modelling knowledge and cognitive processes for rapid usability evaluation. The NGOMSL model is a description of the knowledge that a user must possess to operate the system represented as elementary actions for effective usability evaluations. In the last few years, mobile robots have been exhibiting a stronger presence in commercial markets and very little work has been done with NGOMSL modelling for usability evaluations in the human-robot interaction discipline. This paper focuses on extending the NGOMSL model for usability evaluation of human-humanoid robot interaction in the soccer robotics domain. The NGOMSL modelled human-humanoid interaction design of Robo-Erectus Junior was evaluated and the results of the experiments showed that the interaction design was able to find faults in an average time of 23.84 s. Also, the interaction design was able to detect the fault within the 60 s in 100% of the cases. The Evaluated Interaction design was adopted by our Robo-Erectus Junior version of humanoid robots in the RoboCup 2007 humanoid soccer league.

  20. Event-Driven Visual Attention for the Humanoid Robot iCub]{Event-Driven Visual Attention for the Humanoid Robot iCub

    Directory of Open Access Journals (Sweden)

    Francesco eRea

    2013-12-01

    Full Text Available Fast reaction to sudden and potentially interesting stimuli is a crucial feature for safe and reliable interaction with the environment. Here we present a biologically inspired attention system developed for the humanoid robot iCub. It is based on input from unconventional event-driven vision sensors and an efficient computational method. The resulting system shows low-latency and fast determination of the location of the focus of attention. The performance is benchmarked against an instance of the state of the art in robotics artificial attention system used in robotics. Results show that the proposed system is two orders of magnitude faster that the benchmark in selecting a new stimulus to attend.

  1. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  2. Classification of Sitting States for the Humanoid Robot SJTU-HR1

    Institute of Scientific and Technical Information of China (English)

    Jialun Yang; Feng Gao

    2011-01-01

    The classification of sitting issues is investigated since detailed state classification for humanoid robots plays a key role in the practical application of humanoid robots, particularly for the humanoid robots doing complicated tasks. This paper presents the concept, the characteristics tree, and the prototype of the humanoid robot SJTU-HR1. The basic states for humanoid robots are proposed, including lying, sitting, standing, and handstanding. Moreover, the sitting states are classified into several states from the viewpoint of topology. The GF (generalized function) set theory is applied to achieve the kinematic characteristics of the interested end-effectors of the humanoid robot SJTU-HR1. Finally, the results indicate that a large number of the siring states can be represented by the meaningful notations systematically. Furthermore, the one-to-one correspondence between the state and kinematic characteristics of the interested end-effectors of the SJTU-HR1 leads to deeper insight into the capabilities of the humanoid robot SJTU-HR1.

  3. Modeling and control of multifingered dextrous manipulation for humanoid robot hands

    OpenAIRE

    Michalec, Romain

    2011-01-01

    In robotics, when the demands for dexterity and versatility are high, traditional end effectors quickly show their limits and humanoid robot hands look like an appealing alternative. Unfortunately, although such hands can be built nowadays that are mechanically satisfactory, using them still remains problematic because their control is difficult. In this thesis, we have investigated three problems related to the control of humanoid robot hands: controlling the motion of the grasped object and...

  4. Integration of humanoid robots in collaborative working environment: a case study on motion generation

    OpenAIRE

    Stasse, Olivier; Ruland, Rudolf; Lamiraux, Florent; Kheddar, Abderrahmane; Yokoi, Kazuhito; Prinz, Wolfgang

    2009-01-01

    International audience; This paper illustrates through a practical example an integration of a humanoid robotic architecture, with an open-platform collaborative working environment called BSCW (Be Smart-Cooperate Worldwide). BSCW is primarily designed to advocate a futuristic shared workspace system for humans. We exemplify how a complex robotic system (such as a humanoid robot) can be integrated as a proactive collaborative agent which provides services and interacts with other agents shari...

  5. Emulating human leg impairments and disabilities in walking with humanoid robots

    OpenAIRE

    Lengagne, Sébastien; Kheddar, Abderrahmane; Druon, Sébastien; Yoshida, Eiichi

    2011-01-01

    International audience; In this paper, we present a method for emulating human walking motions with leg impairments or disabilities using humanoid robots. Our optimal dynamic multi-contact motion software generates the emulated motions. We take into account the full-body dynamic model of the robot and consider possible leg impairments as additional physical constraints in the optimization problem. The proposed approach is verified using HRP-2 humanoid robot. Simulations and experiments reveal...

  6. Blind speech separation system for humanoid robot with FastICA for audio filtering and separation

    Science.gov (United States)

    Budiharto, Widodo; Santoso Gunawan, Alexander Agung

    2016-07-01

    Nowadays, there are many developments in building intelligent humanoid robot, mainly in order to handle voice and image. In this research, we propose blind speech separation system using FastICA for audio filtering and separation that can be used in education or entertainment. Our main problem is to separate the multi speech sources and also to filter irrelevant noises. After speech separation step, the results will be integrated with our previous speech and face recognition system which is based on Bioloid GP robot and Raspberry Pi 2 as controller. The experimental results show the accuracy of our blind speech separation system is about 88% in command and query recognition cases.

  7. Method and apparatus for automatic control of a humanoid robot

    Science.gov (United States)

    Abdallah, Muhammad E (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Reiland, Matthew J (Inventor); Sanders, Adam M (Inventor)

    2013-01-01

    A robotic system includes a humanoid robot having a plurality of joints adapted for force control with respect to an object acted upon by the robot, a graphical user interface (GUI) for receiving an input signal from a user, and a controller. The GUI provides the user with intuitive programming access to the controller. The controller controls the joints using an impedance-based control framework, which provides object level, end-effector level, and/or joint space-level control of the robot in response to the input signal. A method for controlling the robotic system includes receiving the input signal via the GUI, e.g., a desired force, and then processing the input signal using a host machine to control the joints via an impedance-based control framework. The framework provides object level, end-effector level, and/or joint space-level control of the robot, and allows for functional-based GUI to simplify implementation of a myriad of operating modes.

  8. Remote monitoring of nursing home residents using a humanoid robot.

    Science.gov (United States)

    Bäck, Iivari; Kallio, Jouko; Perälä, Sami; Mäkelä, Kari

    2012-09-01

    We studied the feasibility of using a humanoid robot as an assistant in the monitoring of nursing home residents. The robot can receive alarms via its wireless Internet connection and navigate independently to the room where the alarm originated. Once it has entered the room, the robot can transmit near real time images to the staff and also open a voice connection between the resident and the remote caregivers. This way the remote caregiver is able to check the situation in the room, and take appropriate actions. We tested the prototype robot in three private nursing homes in the Finnish county of South Ostrobothnia. During the testing, 2-4 alarms were produced by each participant and there were 29 alarms in total. The robot was able to navigate correctly to the room from which the alarm was sent and open the speech connection, as well as transmit images via the wireless Internet connection. The experiments provided evidence of the feasibility of using autonomous robots as assistants to nursing home staff in remote monitoring. The response from the nursing home residents was uniformly positive.

  9. "It's not my fault!": Investigating the effects of the deceptive behaviour of a humanoid robot

    NARCIS (Netherlands)

    Wijnen, L.; Coenen, J.; Grzyb, B.J.

    2017-01-01

    We investigated the effects of the deceptive behaviour of a robot, hypothesising that a lying robot would be perceived as more intelligent and human-like, but less trust-worthy than a non-lying robot. The participants engaged in a collaborative task with the non-lying and lying humanoid robot NAO.

  10. Artificial heart for humanoid robot using coiled SMA actuators

    Science.gov (United States)

    Potnuru, Akshay; Tadesse, Yonas

    2015-03-01

    Previously, we have presented the design and characterization of artificial heart using cylindrical shape memory alloy (SMA) actuators for humanoids [1]. The robotic heart was primarily designed to pump a blood-like fluid to parts of the robot such as the face to simulate blushing or anger by the use of elastomeric substrates for the transport of fluids. It can also be used for other applications. In this paper, we present an improved design by using high strain coiled SMAs and a novel pumping mechanism that uses sequential actuation to create peristalsis-like motions, and hence pump the fluid. Various placements of actuators will be investigated with respect to the silicone elastomeric body. This new approach provides a better performance in terms of the fluid volume pumped.

  11. Fuzzy-stochastic functor machine for general humanoid-robot dynamics.

    Science.gov (United States)

    Ivancevic, V G; Snoswell, M

    2001-01-01

    In this paper the fuzzy-stochastic-Hamiltonian functor-machine is proposed as a general model for the humanoid-robot dynamics, including all necessary degrees of freedom to match the "realistic" human-like motion. Starting with the continual-sequential generalization of the standard state equation for the linear MIMO-systems, the "meta-cybernetic" model of the "functor-machine" is developed as a three-stage nonlinear description of humanoid dynamics: (1) dissipative, muscle-driven Hamiltonian dynamics, (2) stochastic fluctuations and discrete jumps, and (3) fuzzy inputs, parameters and initial conditions. An example of symmetrical three-dimensional (3-D) load-lifting is used to illustrate all the phases in developing the functor-machine model.

  12. Comparison of Smart Visual Attention Mechanisms for Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Carlos E. Agüero

    2012-12-01

    Full Text Available Cameras are one of the most relevant sensors in autonomous robots. One challenge with them is to manage the small field of view of regular cameras. A method of coping with this, similar to the attention systems in humans, is to use mobile cameras to cover all the robot surroundings and to perceive all the objects of interest to the robot tasks even if they do not lie in the same snapshot. A gaze control algorithm is then required that continuously selects where the camera should look. This paper presents three different covert attention mechanisms that have been designed and compared: one based on round‐Robin sharing, another based on dynamic salience and one with fixed pattern camera movements. Several experiments have been performed with a humanoid robot in order to validate them and to give an objective comparison in the context of RoboCup, where the robots have several perceptive needs like localization and object tracking that must be satisfied and may not be fully compatible.

  13. Making Humanoid Robots More Acceptable Based on the Study of Robot Characters in Animation

    Directory of Open Access Journals (Sweden)

    Fatemeh Maleki

    2015-03-01

    Full Text Available In this paper we take an approach in Humanoid Robots are not considered as robots who resembles human beings in a realistic way of appearance and act but as robots who act and react like human that make them more believable by people. Regarding this approach we will study robot characters in animation movies and discuss what makes some of them to be accepted just like a moving body and what makes some other robot characters to be believable as a living human. The goal of this paper is to create a rule set that describes friendly, socially acceptable, kind, cute... robots and in this study we will review example robots in popular animated movies. The extracted rules and features can be used for making real robots more acceptable.

  14. Virtual Entity-Based Rapid Prototype for Design and Simulation of Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Guofeng Tong

    2013-07-01

    Full Text Available This paper proposes a framework for a virtual entity‐based rapid prototype (VERP to facilitate the design and simulation of humanoid robots. The VERP framework consists of three components: virtual entities, a high‐fidelity simulation environment with physical and rendering engines, and an interface between the physical and simulation environments. To study the effectiveness of the proposed framework, we present a complete prototype for a humanoid robot using virtual entity modelling, control algorithm design and simulation. The humanoid robot is mathematically modelled with adjustable physical parameters which determine the kinematic and dynamic behaviour of the virtual entity in the simulation environment. With the simulated model, a control scheme for the virtual entity and the actual humanoid robot are designed and implemented through the interface. The empirical experiments and numerical analysis show the effectiveness and preciseness of the proposed VERP in terms of simulation fidelity, dynamic performance, and control interface.

  15. Humanoid robotics in health care: An exploration of children's and parents' emotional reactions.

    Science.gov (United States)

    Beran, Tanya N; Ramirez-Serrano, Alex; Vanderkooi, Otto G; Kuhn, Susan

    2015-07-01

    A new non-pharmacological method of distraction was tested with 57 children during their annual flu vaccination. Given children's growing enthusiasm for technological devices, a humanoid robot was programmed to interact with them while a nurse administered the vaccination. Children smiled more often with the robot, as compared to the control condition, but they did not cry less. Parents indicated that their children held stronger memories for the robot than for the needle, wanted the robot in the future, and felt empowered to cope. We conclude that children and their parents respond positively to a humanoid robot at the bedside.

  16. Investigating the ability to read others’ intentions using humanoid robots

    Directory of Open Access Journals (Sweden)

    Alessandra eSciutti

    2015-09-01

    Full Text Available The ability to interact with other people hinges crucially on the possibility to anticipate how their actions would unfold. Recent evidence suggests that a similar skill may be grounded on the fact that we perform an action differently if different intentions lead it. Human observers can detect these differences and use them to predict the purpose leading the action. Although intention reading from movement observation is receiving a growing interest in research, the currently applied experimental paradigms have important limitations. Here, we describe a new approach to study intention understanding that takes advantage of robots, and especially of humanoid robots. We posit that this choice may overcome the drawbacks of previous methods, by guaranteeing the ideal trade-off between controllability and naturalness of the interactive scenario. Robots indeed can establish an interaction in a controlled manner, while sharing the same action space and guaranteeing contingent behaviors. To conclude, we discuss the advantages of this research strategy and the aspects to be taken in consideration when attempting to define which human (and robot motion features allow for intention reading during social interactive tasks.

  17. Mechanical design and optimal control of humanoid robot (TPinokio

    Directory of Open Access Journals (Sweden)

    Teck Chew Wee

    2014-04-01

    Full Text Available The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking gait generation methods. The optimality in the gait trajectory is achieved by applying augmented model predictive control method and the pole-zero cancellation method, taken into consideration of a trade-off between walking speed and stability. The mechanism of the TPinokio robot is designed in modular form, so that its kinematics can be modelled accurately into a multiple point-mass system, its dynamics is modelled using the single and double mass inverted pendulum model and zero-moment-point concept. The effectiveness of the design and control technique is validated by simulation testing with the robot walking on flat surface and climbing stairs.

  18. Multi-physics modelling of a compliant humanoid robot

    Energy Technology Data Exchange (ETDEWEB)

    Zobova, Alexandra A., E-mail: azobova@mech.math.msu.su [Lomonosov Moscow State University, Faculty of Mechanics and Mathematics (Russian Federation); Habra, Timothée, E-mail: timothee.habra@uclouvain.be [Université catholique de Louvain (UCL), Center for Research in Mechatronics, Institute of Mechanics, Materials, and Civil Engineering (Belgium); Van der Noot, Nicolas, E-mail: nicolas.vandernoot@uclouvain.be, E-mail: nicolas.vandernoot@epfl.ch [EPFL STI IBI BIOROB, Biorobotics Laboratory, Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL) (Switzerland); Dallali, Houman, E-mail: houman.dallali@iit.it; Tsagarakis, Nikolaos G., E-mail: nikos.tsagarakis@iit.it [Istituto Italiano di Tecnologia, Department of Advanced Robotics (Italy); Fisette, Paul, E-mail: paul.fisette@uclouvain.be; Ronsse, Renaud, E-mail: renaud.ronsse@uclouvain.be [Université catholique de Louvain (UCL), Center for Research in Mechatronics, Institute of Mechanics, Materials, and Civil Engineering (Belgium)

    2017-01-15

    We present a multibody simulator being used for compliant humanoid robot modelling and report our reasoning for choosing the settings of the simulator’s key features. First, we provide a study on how the numerical integration speed and accuracy depend on the coordinate representation of the multibody system. This choice is particularly critical for mechanisms with long serial chains (e.g. legs and arms). Our second contribution is a full electromechanical model of the inner dynamics of the compliant actuators embedded in the COMAN robot, since joints’ compliance is needed for the robot safety and energy efficiency. Third, we discuss the different approaches for modelling contacts and selecting an appropriate contact library. The recommended solution is to couple our simulator with an open-source contact library offering both accurate and fast contact modelling. The simulator performances are assessed by two different tasks involving contacts: a bimanual manipulation task and a squatting tasks. The former shows reliability of the simulator. For the latter, we report a comparison between the robot behaviour as predicted by our simulation environment, and the real one.

  19. A novel compound biped locomotion algorithm for humanoid robots to realize biped walking

    Institute of Scientific and Technical Information of China (English)

    Ruiwu XIN; Nanfeng XIAO

    2009-01-01

    In this paper,a compound biped locomotion algorithm for a humanoid robot under development is pre-sented.This paper is organized in two main parts.In the first part,it mainly focuses on the structural design for the humanoid.In the second part.the compound biped locomotion algorithm is presented based on the reference motion and reference Zero Moment Point(ZMP).This novel algorithm includes calculation of the upper body motion and trajectory of the Center of Gravity(COG) of the robot.First,disturbances from the environment are eliminated by the compensational movement of the upper body; then based on the error between a reference ZMP and the real ZMP as well as the relation between ZMP and CoG,the CoG error is calculated,thus leading to the CoG trajectory.Then,the motion of the robot converges to its reference motion,generating stable biped walking.Because the calculation of upper body motion and tra-jectory of CoG both depend on the reference motion,they can work in parallel,thus providing double insurances against the robot's collapse.Finally,the algorithm is validated by different kinds of simulation experiments.

  20. Navigation Strategy by Contact Sensing Interaction for a Biped Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2008-11-01

    Full Text Available This report presents a basic contact interaction-based navigation strategy for a biped humanoid robot to support current visual-based navigation. The robot's arms were equipped with force sensors to detect physical contact with objects. We proposed a motion algorithm consisting of searching tasks, self-localization tasks, correction of locomotion direction tasks and obstacle avoidance tasks. Priority was given to right-side direction to navigate the robot locomotion. Analysis of trajectory generation, biped gait pattern, and biped walking characteristics was performed to define an efficient navigation strategy in a biped walking humanoid robot. The proposed algorithm is evaluated in an experiment with a 21-dofs humanoid robot operating in a room with walls and obstacles. The experimental results reveal good robot performance when recognizing objects by touching, grasping, and continuously generating suitable trajectories to correct direction and avoid collisions.

  1. Stroke Motion Learning for a Humanoid Robotic Ping-Pong Player Using a Novel Motion Capture System

    Directory of Open Access Journals (Sweden)

    C. H. Lai

    2010-01-01

    Full Text Available Problem statement: Human ping-pong players determine the stroke trajectory according to their experience before the ball enters their court. However, to enable a humanoid robot to select the appropriate stroke motion based on skills learned from 3D motion, important patterns must be generated to simplify the complex 3D motion. Approach: This study developed an effective strategy for teaching ping-pong skills to a humanoid robot. An optical/inertial motion-capture system that retrieves the stroke motion was constructed, along with the retrieved stroke motion trajectories analyzed to obtain the desired stroke patterns of the robot. Results: A motion capture system was implemented mainly to orient the robot on the stroke motion trajectory. This system was applied directly to a ping-pong game between a human player and a pitching machine to enable the robot to learn backhand strokes through human demonstration. The ball was continuously struck to the opponent so that it hit the anticipated region on the opposite side of the court while the pitching machine served the ball. The data were then classified using the proposed stopping detector and then processed by Principal Components Analysis (PCA to generate the stroke patterns after collecting 50 datasets for stroke trajectories. Conclusion: The right arm of the humanoid robot was successfully instructed to perform the actual ping-pong stroke using the generated trajectory.

  2. The experimental humanoid robot H7: a research platform for autonomous behaviour.

    Science.gov (United States)

    Nishiwaki, Koichi; Kuffner, James; Kagami, Satoshi; Inaba, Masayuki; Inoue, Hirochika

    2007-01-15

    This paper gives an overview of the humanoid robot 'H7', which was developed over several years as an experimental platform for walking, autonomous behaviour and human interaction research at the University of Tokyo. H7 was designed to be a human-sized robot capable of operating autonomously in indoor environments designed for humans. The hardware is relatively simple to operate and conduct research on, particularly with respect to the hierarchical design of its control architecture. We describe the overall design goals and methodology, along with a summary of its online walking capabilities, autonomous vision-based behaviours and automatic motion planning. We show experimental results obtained by implementations running within a simulation environment as well as on the actual robot hardware.

  3. Event-driven visual attention for the humanoid robot iCub.

    Science.gov (United States)

    Rea, Francesco; Metta, Giorgio; Bartolozzi, Chiara

    2013-01-01

    Fast reaction to sudden and potentially interesting stimuli is a crucial feature for safe and reliable interaction with the environment. Here we present a biologically inspired attention system developed for the humanoid robot iCub. It is based on input from unconventional event-driven vision sensors and an efficient computational method. The resulting system shows low-latency and fast determination of the location of the focus of attention. The performance is benchmarked against an instance of the state of the art in robotics artificial attention system used in robotics. Results show that the proposed system is two orders of magnitude faster that the benchmark in selecting a new stimulus to attend.

  4. Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.

    Science.gov (United States)

    Brookes, Jack; Kuznecovs, Maksims; Kanakis, Menelaos; Grigals, Arturs; Narvidas, Mazvydas; Gallagher, Justin; Levesley, Martin

    2017-07-01

    Robotics is increasing in popularity as a method of providing rich, personalized and cost-effective physiotherapy to individuals with some degree of upper limb paralysis, such as those who have suffered a stroke. These robotic rehabilitation systems are often high powered, and exoskeletal systems can attach to the person in a restrictive manner. Therefore, ensuring the mechanical safety of these devices before they come in contact with individuals is a priority. Additionally, rehabilitation systems may use novel sensor systems to measure current arm position. Used to capture and assess patient movements, these first need to be verified for accuracy by an external system. We present the ALAN-Arm, a humanoid robotic arm designed to be used for both accuracy benchmarking and safety testing of robotic rehabilitation systems. The system can be attached to a rehabilitation device and then replay generated or human movement trajectories, as well as autonomously play rehabilitation games or activities. Tests of the ALAN-Arm indicated it could recreate the path of a generated slow movement path with a maximum error of 14.2mm (mean = 5.8mm) and perform cyclic movements up to 0.6Hz with low gain (<1.5dB). Replaying human data trajectories showed the ability to largely preserve human movement characteristics with slightly higher path length and lower normalised jerk.

  5. Sports Training Support Method by Self-Coaching with Humanoid Robot

    Science.gov (United States)

    Toyama, S.; Ikeda, F.; Yasaka, T.

    2016-09-01

    This paper proposes a new training support method called self-coaching with humanoid robots. In the proposed method, two small size inexpensive humanoid robots are used because of their availability. One robot called target robot reproduces motion of a target player and another robot called reference robot reproduces motion of an expert player. The target player can recognize a target technique from the reference robot and his/her inadequate skill from the target robot. Modifying the motion of the target robot as self-coaching, the target player could get advanced cognition. Some experimental results show some possibility as the new training method and some issues of the self-coaching interface program as a future work.

  6. Using a Humanoid Robot to Develop a Dialogue-Based Interactive Learning Environment for Elementary Foreign Language Classrooms

    Science.gov (United States)

    Chang, Chih-Wei; Chen, Gwo-Dong

    2010-01-01

    Elementary school is the critical stage during which the development of listening comprehension and oral abilities in language acquisition occur, especially with a foreign language. However, the current foreign language instructors often adopt one-way teaching, and the learning environment lacks any interactive instructional media with which to…

  7. Using a Humanoid Robot to Develop a Dialogue-Based Interactive Learning Environment for Elementary Foreign Language Classrooms

    Science.gov (United States)

    Chang, Chih-Wei; Chen, Gwo-Dong

    2010-01-01

    Elementary school is the critical stage during which the development of listening comprehension and oral abilities in language acquisition occur, especially with a foreign language. However, the current foreign language instructors often adopt one-way teaching, and the learning environment lacks any interactive instructional media with which to…

  8. KASPAR – A Minimally Expressive Humanoid Robot for Human–Robot Interaction Research

    Directory of Open Access Journals (Sweden)

    Kerstin Dautenhahn

    2009-01-01

    Full Text Available This paper provides a comprehensive introduction to the design of the minimally expressive robot KASPAR, which is particularly suitable for human–robot interaction studies. A low-cost design with off-the-shelf components has been used in a novel design inspired from a multi-disciplinary viewpoint, including comics design and Japanese Noh theatre. The design rationale of the robot and its technical features are described in detail. Three research studies will be presented that have been using KASPAR extensively. Firstly, we present its application in robot-assisted play and therapy for children with autism. Secondly, we illustrate its use in human–robot interaction studies investigating the role of interaction kinesics and gestures. Lastly, we describe a study in the field of developmental robotics into computational architectures based on interaction histories for robot ontogeny. The three areas differ in the way as to how the robot is being operated and its role in social interaction scenarios. Each will be introduced briefly and examples of the results will be presented. Reflections on the specific design features of KASPAR that were important in these studies and lessons learnt from these studies concerning the design of humanoid robots for social interaction will also be discussed. An assessment of the robot in terms of utility of the design for human–robot interaction experiments concludes the paper.

  9. Feasibility Study of a Socially Assistive Humanoid Robot for Guiding Elderly Individuals during Walking

    Directory of Open Access Journals (Sweden)

    Chiara Piezzo

    2017-07-01

    Full Text Available The impact of the world-wide ageing population has commenced with respect to society in developed countries. Several researchers focused on exploring new methods to improve the quality of life of elderly individuals by allowing them to remain independent and healthy to the maximum possible extent. For example, new walking aids are designed to allow elderly individuals to remain mobile in a safe manner because the importance of walking is well-known. The aim of the present study involves designing a humanoid robot guide as a walking trainer for elderly individuals. It is hypothesized that the same service robot provides an assistive and social contribution with respect to interaction between elderly users by motivating them to walk more and simultaneously provides assistance, such as physical assistance and gait monitoring, while walking. This study includes a detailed statement of the research problem as well as a literature review of existing studies related to walking companion robots. A user-centred design approach is adopted to report the results of the current first feasibility study by using a commercially available humanoid robot known as Pepper developed by Softbank-Aldebaran. A quantitative questionnaire was used to investigate all elements that assess intrinsic motivation in users while performing a given activity. Conversely, basic gait data were acquired through a video analysis to test the capability of the robot to modify the gait of human users. The results in terms of the feedback received from elderly subjects and the literature review improve the design of the walking trainer for elderly individuals.

  10. Design and Kinematic Analysis of a Novel Humanoid Robot Eye Using Pneumatic Artificial Muscles

    Institute of Scientific and Technical Information of China (English)

    Xuan-yin Wang; Yang Zhang; Xiao-jie Fu; Gui-shan Xiang

    2008-01-01

    This paper proposed a novel humanoid robot eye, which is driven by six Pneumatic Artificial Muscles (PAMs) and rotates with 3 Degree of Freedom (DOF). The design of the mechanism and motion type of the robot eye are inspired by that of human eyes. The model of humanoid robot eye is established as a parallel mechanism, and the inverse-kinematic problem of this flexible tendons driving parallel system is solved by the analytical geometry method. As an extension, the simulation result for saccadic movement is presented under three conditions. The design and kinematic analysis of the prototype could be a sig nificant step towards the goal of building an autonomous humanoid robot eye with the movement and especially the visual functions similar to that of human.

  11. Puesta en marcha y documentación del tobillo del robot humanoide RH2

    OpenAIRE

    Gómez Royuela, Cristina

    2010-01-01

    El Robotics Lab de la Universidad Carlos III tiene prevista la construcción de un nuevo robot humanoide, el RH-2, sucesor del RH-1. Se trata de un humanoide que mejorará las prestaciones y movimientos del anterior. Este trabajo se centra en el tobillo del robot, prototipado en una plataforma experimental de péndulo invertido de dos grados de libertad. El principal objetivo consiste en un control total del mismo así como documentar y analizar en profundidad cada elemento que forma el tobillo. ...

  12. The Co-simulation of Humanoid Robot Based on Solidworks, ADAMS and Simulink

    Science.gov (United States)

    Song, Dalei; Zheng, Lidan; Wang, Li; Qi, Weiwei; Li, Yanli

    A simulation method of adaptive controller is proposed for the humanoid robot system based on co-simulation of Solidworks, ADAMS and Simulink. A complex mathematical modeling process is avoided by this method, and the real time dynamic simulating function of Simulink would be exerted adequately. This method could be generalized to other complicated control system. This method is adopted to build and analyse the model of humanoid robot. The trajectory tracking and adaptive controller design also proceed based on it. The effect of trajectory tracking is evaluated by fitting-curve theory of least squares method. The anti-interference capability of the robot is improved a lot through comparative analysis.

  13. Developmental word grounding through a growing neural network with a humanoid robot.

    Science.gov (United States)

    He, Xiaoyuan; Kojima, Ryo; Hasegawa, Osamu

    2007-04-01

    This paper presents an unsupervised approach of integrating speech and visual information without using any prepared data. The approach enables a humanoid robot, Incremental Knowledge Robot 1 (IKR1), to learn word meanings. The approach is different from most existing approaches in that the robot learns online from audio-visual input, rather than from stationary data provided in advance. In addition, the robot is capable of learning incrementally, which is considered to be indispensable to lifelong learning. A noise-robust self-organized growing neural network is developed to represent the topological structure of unsupervised online data. We are also developing an active-learning mechanism, called "desire for knowledge," to let the robot select the object for which it possesses the least information for subsequent learning. Experimental results show that the approach raises the efficiency of the learning process. Based on audio and visual data, they construct a mental model for the robot, which forms a basis for constructing IKRI's inner world and builds a bridge connecting the learned concepts with current and past scenes.

  14. Backchannel Head Nods in Danish First Meeting Encounters with a Humanoid Robot

    DEFF Research Database (Denmark)

    Krogsager, Anders; Segato, Nicolaj; Rehm, Matthias

    2014-01-01

    investigate the use of head nods in communications between a user and a humanoid robot (Nao) that they meet for the first time. Contrary to the virtual agent case, the robot elicited less talking from the user when it was using head nods as a feedback signal. A follow-up experiment revealed that the physical...

  15. Making planned paths look more human-like in humanoid robot manipulation planning

    DEFF Research Database (Denmark)

    Zacharias, F.; Schlette, C.; Schmidt, F.

    2011-01-01

    It contradicts the human's expectations when humanoid robots move awkwardly during manipulation tasks. The unnatural motion may be caused by awkward start or goal configurations or by probabilistic path planning processes that are often used. This paper shows that the choice of an arm's target...... for the robot arm....

  16. Pre-Schoolers' Interest and Caring Behaviour around a Humanoid Robot

    Science.gov (United States)

    Ioannou, Andri; Andreou, Emily; Christofi, Maria

    2015-01-01

    This exploratory case study involved a humanoid robot, NAO, and four pre-schoolers. NAO was placed in an indoor playground together with other toys and appeared as a peer who played, talked, danced and said stories. Analysis of video recordings focused on children's behaviour around NAO and how the robot gained children's attention and…

  17. Pre-Schoolers' Interest and Caring Behaviour around a Humanoid Robot

    Science.gov (United States)

    Ioannou, Andri; Andreou, Emily; Christofi, Maria

    2015-01-01

    This exploratory case study involved a humanoid robot, NAO, and four pre-schoolers. NAO was placed in an indoor playground together with other toys and appeared as a peer who played, talked, danced and said stories. Analysis of video recordings focused on children's behaviour around NAO and how the robot gained children's attention and…

  18. Building Robota, a Mini-Humanoid Robot for the Rehabilitation of Children with Autism

    Science.gov (United States)

    Billard, Aude; Robins, Ben; Nadel, Jacqueline; Dautenhahn, Kerstin

    2007-01-01

    The Robota project constructs a series of multiple-degrees-of-freedom, doll-shaped humanoid robots, whose physical features resemble those of a human baby. The Robota robots have been applied as assistive technologies in behavioral studies with low-functioning children with autism. These studies investigate the potential of using an imitator robot…

  19. Building Robota, a Mini-Humanoid Robot for the Rehabilitation of Children with Autism

    Science.gov (United States)

    Billard, Aude; Robins, Ben; Nadel, Jacqueline; Dautenhahn, Kerstin

    2007-01-01

    The Robota project constructs a series of multiple-degrees-of-freedom, doll-shaped humanoid robots, whose physical features resemble those of a human baby. The Robota robots have been applied as assistive technologies in behavioral studies with low-functioning children with autism. These studies investigate the potential of using an imitator robot…

  20. Designing of Medium-Size Humanoid Robot with Face Recognition Features

    Directory of Open Access Journals (Sweden)

    Christian Tarunajaya

    2016-02-01

    Full Text Available owadays, there have been so many development of robot that can receive command and do speech recognition and face recognition. In this research, we develop a humanoid robot system with a controller that based on Raspberry Pi 2. The methods we used are based on Audio recognition and detection, and also face recognition using PCA (Principal Component Analysis with OpenCV and Python. PCA is one of the algorithms to do face detection by doing reduction to the number of dimension of the image possessed. The result of this reduction process is then known as eigenface to do face recognition process. In this research, we still find a false recognition. It can be caused by many things, like database condition, maybe the images are too dark or less varied, blur test image, etc. The accuracy from 3 tests on different people is about 93% (28 correct recognitions out of 30.

  1. Walking Algorithm of Humanoid Robot on Uneven Terrain with Terrain Estimation

    Directory of Open Access Journals (Sweden)

    Jiang Yi

    2016-02-01

    Full Text Available Humanoid robots are expected to achieve stable walking on uneven terrains. In this paper, a control algorithm for humanoid robots walking on previously unknown terrains with terrain estimation is proposed, which requires only minimum modification to the original walking gait. The swing foot trajectory is redesigned to ensure that the foot lands at the desired horizontal positions under various terrain height. A compliant terrain adaptation method is applied to the landing foot to achieve a firm contact with the ground. Then a terrain estimation method that takes into account the deformations of the linkages is applied, providing the target for the following correction and adjustment. The algorithm was validated through walking experiments on uneven terrains with the full-size humanoid robot Kong.

  2. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot.

    Science.gov (United States)

    Tidoni, Emmanuele; Gergondet, Pierre; Kheddar, Abderrahmane; Aglioti, Salvatore M

    2014-01-01

    Advancement in brain computer interfaces (BCI) technology allows people to actively interact in the world through surrogates. Controlling real humanoid robots using BCI as intuitively as we control our body represents a challenge for current research in robotics and neuroscience. In order to successfully interact with the environment the brain integrates multiple sensory cues to form a coherent representation of the world. Cognitive neuroscience studies demonstrate that multisensory integration may imply a gain with respect to a single modality and ultimately improve the overall sensorimotor performance. For example, reactivity to simultaneous visual and auditory stimuli may be higher than to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet, knowledge about whether audio-visual integration may improve the control of a surrogate is meager. To explore this issue, we provided human footstep sounds as audio feedback to BCI users while controlling a humanoid robot. Participants were asked to steer their robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that audio-visual synchrony between footsteps sound and actual humanoid's walk reduces the time required for steering the robot. Thus, auditory feedback congruent with the humanoid actions may improve motor decisions of the BCI's user and help in the feeling of control over it. Our results shed light on the possibility to increase robot's control through the combination of multisensory feedback to a BCI user.

  3. Model-based Robotic Dynamic Motion Control for the Robonaut 2 Humanoid Robot

    Science.gov (United States)

    Badger, Julia M.; Hulse, Aaron M.; Taylor, Ross C.; Curtis, Andrew W.; Gooding, Dustin R.; Thackston, Allison

    2013-01-01

    Robonaut 2 (R2), an upper-body dexterous humanoid robot, has been undergoing experimental trials on board the International Space Station (ISS) for more than a year. R2 will soon be upgraded with two climbing appendages, or legs, as well as a new integrated model-based control system. This control system satisfies two important requirements; first, that the robot can allow humans to enter its workspace during operation and second, that the robot can move its large inertia with enough precision to attach to handrails and seat track while climbing around the ISS. This is achieved by a novel control architecture that features an embedded impedance control law on the motor drivers called Multi-Loop control which is tightly interfaced with a kinematic and dynamic coordinated control system nicknamed RoboDyn that resides on centralized processors. This paper presents the integrated control algorithm as well as several test results that illustrate R2's safety features and performance.

  4. A direct methanol fuel cell system to power a humanoid robot

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Han-Ik [Center for Fuel Cell Research, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongyang, Seoul 130-650 (Korea); School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, San 56-1, Shillim-dong, Kwanak-ku, Seoul 151-744 (Korea); Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Ha, Heung Yong [Center for Fuel Cell Research, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongyang, Seoul 130-650 (Korea); Cho, Baek-Kyu; Oh, Jun-Ho [HUBO Laboratory, Humanoid Robot Research Center, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea); Moon, Sang Heup [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, San 56-1, Shillim-dong, Kwanak-ku, Seoul 151-744 (Korea)

    2010-01-01

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%. (author)

  5. Using the Functional Reach Test for Probing the Static Stability of Bipedal Standing in Humanoid Robots Based on the Passive Motion Paradigm

    Directory of Open Access Journals (Sweden)

    Jacopo Zenzeri

    2013-01-01

    Full Text Available The goal of this paper is to analyze the static stability of a computational architecture, based on the Passive Motion Paradigm, for coordinating the redundant degrees of freedom of a humanoid robot during whole-body reaching movements in bipedal standing. The analysis is based on a simulation study that implements the Functional Reach Test, originally developed for assessing the danger of falling in elderly people. The study is carried out in the YARP environment that allows realistic simulations with the iCub humanoid robot.

  6. 人形机器人孤独症教学课程体系设计与开发%Development of Curriculum System for Autism Based on Humanoid Robot Technology

    Institute of Scientific and Technical Information of China (English)

    陈东帆; 于新宇; 李睿强; 沈奕杨; 汪学敏; 雷俊卿

    2016-01-01

    目的:开发基于人形机器人技术,针对孤独症儿童社会交往障碍的结构化康复课程。方法通过对机器人软件编程、课程结构化分层完成康复课程开发,并应用于3名孤独症儿童。结果和结论开发出基于人形机器人技术,针对孤独症儿童社会交往障碍的结构化康复课程。3名儿童在课堂上大部分时间保持关注,偶有情绪行为异常。%Objective To develop a curriculum system for social communication disorders rehabilitation in children with autism based on humanoid robot. Methods The curriculum was developed through the robot programming and the structure hierarchy of the curriculum. It was applied in three children with autism. Results and Conclusion The curriculum has been developed. All the children concentrated in the class, with few emotive disorders.

  7. The control system for the Honda humanoid robot.

    Science.gov (United States)

    Takenaka, Toru

    2006-09-01

    To avoid tipping over either during walking or on standing up, humans will first push down hard on the ground with a part of the sole of the foot. Then, when the tipping force can no longer be resisted, a change in body position or an extra step (stepping out) may be required to stabilise the posture. Our biped robot's control system attempts to reproduce and execute the same postural control operations carried out by humans. In this article, we present the history of robot development at Honda, fundamental dynamics for robots and the principles of posture control.

  8. A Robust Vision Module for Humanoid Robotic Ping-Pong Game

    Directory of Open Access Journals (Sweden)

    Xiaopeng Chen

    2015-04-01

    Full Text Available Developing a vision module for a humanoid ping-pong game is challenging due to the spin and the non-linear rebound of the ping-pong ball. In this paper, we present a robust predictive vision module to overcome these problems. The hardware of the vision module is composed of two stereo camera pairs with each pair detecting the 3D positions of the ball on one half of the ping-pong table. The software of the vision module divides the trajectory of the ball into four parts and uses the perceived trajectory in the first part to predict the other parts. In particular, the software of the vision module uses an aerodynamic model to predict the trajectories of the ball in the air and uses a novel non-linear rebound model to predict the change of the ball's motion during rebound. The average prediction error of our vision module at the ball returning point is less than 50 mm - a value small enough for standard sized ping-pong rackets. Its average processing speed is 120fps. The precision and efficiency of our vision module enables two humanoid robots to play ping-pong continuously for more than 200 rounds.

  9. A Robust Vision Module for Humanoid Robotic Ping-Pong Game

    Directory of Open Access Journals (Sweden)

    Xiaopeng Chen

    2015-04-01

    Full Text Available Developing a vision module for a humanoid ping-pong game is challenging due to the spin and the non-linear rebound of the ping-pong ball. In this paper, we present a robust predictive vision module to overcome these problems. The hardware of the vision module is composed of two stereo camera pairs with each pair detecting the 3D positions of the ball on one half of the ping-pong table. The software of the vision module divides the trajectory of the ball into four parts and uses the perceived trajectory in the first part to predict the other parts. In particular, the software of the vision module uses an aerodynamic model to predict the trajectories of the ball in the air and uses a novel non-linear rebound model to predict the change of the ball’s motion during rebound. The average prediction error of our vision module at the ball returning point is less than 50 mm — a value small enough for standard sized ping-pong rackets. Its average processing speed is 120fps. The precision and efficiency of our vision module enables two humanoid robots to play ping-pong continuously for more than 200 rounds.

  10. Foot placement modification for a biped humanoid robot with narrow feet.

    Science.gov (United States)

    Hashimoto, Kenji; Hattori, Kentaro; Otani, Takuya; Lim, Hun-Ok; Takanishi, Atsuo

    2014-01-01

    This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion.

  11. Stability Control and Simulation of Biped Humanoid Robot Walking on Rough Terrains

    Institute of Scientific and Technical Information of China (English)

    Jiang Kai

    2015-01-01

    In this paper, we provide several methods to solve the problem of humanoid robot walking on rough terrains. By using the Passive Inverted Pendulum Model(PIPM) and predictive control, with some optimizing strategy added, we realized the smooth walking on a slope with rocks on it.

  12. Biologically inspired kinematic synergies enable linear balance control of a humanoid robot.

    Science.gov (United States)

    Hauser, Helmut; Neumann, Gerhard; Ijspeert, Auke J; Maass, Wolfgang

    2011-05-01

    Despite many efforts, balance control of humanoid robots in the presence of unforeseen external or internal forces has remained an unsolved problem. The difficulty of this problem is a consequence of the high dimensionality of the action space of a humanoid robot, due to its large number of degrees of freedom (joints), and of non-linearities in its kinematic chains. Biped biological organisms face similar difficulties, but have nevertheless solved this problem. Experimental data reveal that many biological organisms reduce the high dimensionality of their action space by generating movements through linear superposition of a rather small number of stereotypical combinations of simultaneous movements of many joints, to which we refer as kinematic synergies in this paper. We show that by constructing two suitable non-linear kinematic synergies for the lower part of the body of a humanoid robot, balance control can in fact be reduced to a linear control problem, at least in the case of relatively slow movements. We demonstrate for a variety of tasks that the humanoid robot HOAP-2 acquires through this approach the capability to balance dynamically against unforeseen disturbances that may arise from external forces or from manipulating unknown loads.

  13. A Practical Humanoid Robot Morphology for Operation in Civilian Environments

    OpenAIRE

    MCGINN, CONOR

    2014-01-01

    Despite recent progress in robotics research and development, the effective design of multi-purpose robotic solutions for civilian and domestic environments has proven particularly elusive. Mechanically simple systems are typically incapable of traversing stairs (a feature in most buildings) and lack the flexibility to undertake many tasks that may be desired while more complex solutions suffer from practical issues relating to excessive weight, size, power consumption and c...

  14. Control of humanoid robot via motion-onset visual evoked potentials.

    Science.gov (United States)

    Li, Wei; Li, Mengfan; Zhao, Jing

    2014-01-01

    This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task.

  15. Classification of lying states for the humanoid robot SJTU-HR1

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The humanoid robot SJTU-HR1’s concept is introduced and its characteristics tree is given.The basic states for SJTU-HR1 are proposed,including lying,sitting,standing and handstanding,abstracted from the daily exercises of human beings.The GF(generalized function) set theory is exploited to achieve the kinematic characteristics of the interested EEs(end-effectors) of SJTU-HR1 for the lying states.Finally,the results show that the large amounts of states can be described using the abbreviations in a systematic manner.Although we have focused on the application of the GF set theory to humanoid robots,particularly the SJTU-HR1,this methodology can also be applied to quadruped robots and hexapedal robots,especially when the desired tasks are complex.

  16. Classification of lying states for the humanoid robot SJTU-HR1

    Institute of Scientific and Technical Information of China (English)

    YANG JiaLun; GAO Feng; JIN ZhenLin; SHI LiFeng

    2009-01-01

    The humanoid robot SJTU-HRI's concept is introduced and its characteristics tree is given. The basic states for SJTU-HR1 are proposed, including lying, sitting, standing and handstsnding, abstracted from the daily exercises of human beings. The GF (generalized function) set theory is exploited to achieve the kinematic characteristics of the interested EEs (end-effectors) of SJTU-HR1 for the lying states.Finally, the results show that the large amounts of states can be described using the abbreviations in a systematic manner. Although we have focused on the application of the GF set theory to humanoid robots, particularly the SJTU-HR1, this methodology can also be applied to quadruped robots and hexapedal robots, especially when the desired tasks are complex.

  17. Foot Placement Modification for a Biped Humanoid Robot with Narrow Feet

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    2014-01-01

    Full Text Available This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot’s feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion.

  18. Unix Philosophy and the Real World: Control Software for Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Neil Thomas Dantam

    2016-03-01

    Full Text Available Robot software combines the challenges of general purpose and real-time software, requiring complex logic and bounded resource use. Physical safety, particularly for dynamic systems such as humanoid robots, depends on correct software. General purpose computation has converged on unix-like operating systems -- standardized as POSIX, the Portable Operating System Interface -- for devices from cellular phones to supercomputers. The modular, multi-process design typical of POSIX applications is effective for building complex and reliable software. Absent from POSIX, however, is an interproccess communication mechanism that prioritizes newer data as typically desired for control of physical systems. We address this need in the Ach communication library which provides suitable semantics and performance for real-time robot control. Although initially designed for humanoid robots, Ach has broader applicability to complex mechatronic devices -- humanoid and otherwise -- that require real-time coupling of sensors, control, planning, and actuation. The initial user space implementation of Ach was limited in the ability to receive data from multiple sources. We remove this limitation by implementing Ach as a Linux kernel module, enabling Ach's high-performance and latest-message-favored semantics within conventional POSIX communication pipelines. We discuss how these POSIX interfaces and design principles apply to robot software, and we present a case study using the Ach kernel module for communication on the Baxter robot.

  19. Kinematics design and human motion transfer for a humanoid service robot arm

    CSIR Research Space (South Africa)

    Dube, C

    2009-11-01

    Full Text Available should have a struc- ture and range of motion similar to that of a human. This paper focuses on the kinematic design of a humanoid robot arm for human environments and the transferring of hu- man motion to the humanoid arm via visual motion capture... frame for the shoulder girdle DOFs a method of extracting ster- num position information from the motion capture data is for- mulated. Finally the formulation is compared against a test data set in order to verify the formulation (Section 6). 2...

  20. Desarrollo de algoritmo para detección y comando de robots humanoides en tareas de recolección

    Directory of Open Access Journals (Sweden)

    Germán Andrés Vargas Torres

    2015-07-01

    Full Text Available This article presents an algorithm which commands a group of Bioloid humanoid robots in order to organize them around an object of interest, previously detected by an external vision system. The robots form a Multi-Agent System (MAS oriented towards cooperative gathering tasks. Development of the MAS, as well as each of the organization algorithm’s components and simulation inside a virtual environment are all detailed. The algorithm is subdivided in two dedicated threads: one of which handles machine vision (filtering, contour detection and classification achieved through EmguCV libraries and operational space calculations, and another which operates ZigBee wireless communication with the robots. Furthermore, the robots possess their own embedded code which enables them to translate a sequence of received instructions into gait patterns which allow them to move towards the object of interest. Total execution time for the gathering task is chosen as the global performance measure to evaluate.

  1. Energy harvesting from walking motion of a humanoid robot using a piezoelectric composite

    Science.gov (United States)

    Cha, Youngsu; Hong, Seokmin

    2016-10-01

    In this paper, we investigate the energy harvesting of a piezoelectric composite in a knee pad during walking motion. We use a humanoid robot as a test bed for the experiments using the knee pad. The humanoid wears the knee pad hosting the piezoelectric composite, and its operating knee motion mimics the walking based on the data captured from a human. The use of the humanoid enables the motion to be completely repeatable. We quantitatively study the energy harvesting by using the repeated motion. An electromechanical model for the piezoelectric energy harvester is used to estimate power transferred to varied load resistances under the repeated knee motion. With a good agreement between the experiments and the model predictions, we demonstrate power harvesting on the order of ten microWatts.

  2. A selective attention-based contextual perception approach for a humanoid robot

    Institute of Scientific and Technical Information of China (English)

    Yanrong JIANG; Nanfeng XIAO

    2007-01-01

    A humanoid robot is always flooded by sensed information when sensing the environment, and it usually needs significant time to compute and process the sensed information. In this paper, a selective attention-based contextual perception approach was proposed for humanoid robots to sense the environment with high efficiency. First, the connotation of attention window (AW) is extended to make a more general and abstract definition of AW, and its four kinds of operations and state transformations are also discussed. Second, the attention control policies are described, which integrate intensionguided perceptual objects selection and distractor inhibition, and can deal with emergent issues. Distractor inhibition is used to filter unrelated information. Last, attention policies are viewed as the robot's perceptual modes, which can control and adjust the perception efficiency. The experimental results show that the presented approach can promote the perceptual efficiency significantly, and the perceptual cost can be effectively controlled through adopting different attention policies.

  3. Humanoid Robot 3 -D Motion Simulation for Hardware Realization

    Institute of Scientific and Technical Information of China (English)

    CAO Xi; ZHAO Qun-fei; MA Pei-sun

    2007-01-01

    In this paper, three dimensions kinematics andkinetics simulation arc discussed for hardware realization ofa physical biped walking-chair robot. The direct and inverseclose-form kinematics solution of the biped walking-chairis deduced. Several gaits are realized with thekinematics solution, including walking straight on levelfloor, going up stair, squatting down and standing up. ZeroMoment Point(ZMP) equation is analyzed considering themovement of the crew. The simulated biped walking-chairrobot is used for mechanical design, gaits development andvalidation before they are tested on real robot.

  4. An affordable compact humanoid robot for Autism Spectrum Disorder interventions in children.

    Science.gov (United States)

    Dickstein-Fischer, Laurie; Alexander, Elizabeth; Yan, Xiaoan; Su, Hao; Harrington, Kevin; Fischer, Gregory S

    2011-01-01

    Autism Spectrum Disorder impacts an ever-increasing number of children. The disorder is marked by social functioning that is characterized by impairment in the use of nonverbal behaviors, failure to develop appropriate peer relationships and lack of social and emotional exchanges. Providing early intervention through the modality of play therapy has been effective in improving behavioral and social outcomes for children with autism. Interacting with humanoid robots that provide simple emotional response and interaction has been shown to improve the communication skills of autistic children. In particular, early intervention and continuous care provide significantly better outcomes. Currently, there are no robots capable of meeting these requirements that are both low-cost and available to families of autistic children for in-home use. This paper proposes the piloting the use of robotics as an improved diagnostic and early intervention tool for autistic children that is affordable, non-threatening, durable, and capable of interacting with an autistic child. This robot has the ability to track the child with its 3 degree of freedom (DOF) eyes and 3-DOF head, open and close its 1-DOF beak and 1-DOF each eyelids, raise its 1-DOF each wings, play sound, and record sound. These attributes will give it the ability to be used for the diagnosis and treatment of autism. As part of this project, the robot and the electronic and control software have been developed, and integrating semi-autonomous interaction, teleoperation from a remote healthcare provider and initiating trials with children in a local clinic are in progress.

  5. Impact motion control of humanoid robot BHR-5 based on the energy integral method

    Directory of Open Access Journals (Sweden)

    Fei Meng

    2016-01-01

    Full Text Available To replace human beings for a task conducted in a realistic environment, the ability to perform impact motions such as running, jumping, and carrying is required for a humanoid robot. At present, it is quite difficult for the humanoid robot to achieve the motion performance of human beings. To address this issue, this article proposes to use a novel impact motion control method for a humanoid robot called BHR-5 using energy integral method. First, we have designed a high power density joint controller to drive each brushless motor to actuate each robot joint. The joint controller can generate sufficient power to actuate the robot joint with an instantaneous overload when limiting the input power in a unit interval. Second, the control system can generate trajectories to realize impact motion by integrating the energy of the whole body. Finally, we have conducted performance test on BHR-5 to verify the control method using our motor drivers and trajectory generation method. Analysis of the experimental results confirmed the effectiveness of the proposed control method for performing impact motions.

  6. Research progress of humanoid robots for mobile operation and artificial intelligence%面向作业与人工智能的仿人机器人研究进展

    Institute of Scientific and Technical Information of China (English)

    吴伟国

    2015-01-01

    以人类自身为原型参照的仿人全身机器人是国际机器人研究领域最具代表性的研究对象,也是机器人学、机器人技术以及人工智能的终极研究目标. 针对国际上目前在仿人全身机器人、仿人头部、多指手、仿人双足步行机等方面理论与关键技术进行了全面回顾、综述与分析,包括作者在仿人机器人方面相关研究工作的回顾;归纳总结了目前仿人全身机器人技术程度,从驱动元部件、步行稳定性、本体集成化设计、操作能力以及环境适应性等角度分别提出了目前存在的主要技术问题以及今后发展的趋势;为从事与仿人机器人及其各组成部分相关研究的科研人员以及相关科技管理部门提供参考.%Whole-body humanoid robot, which regards human beings as the reference prototype, is the most representative research object and the ultimate goal of robotics, robot technology and artificial intelligence. Comprehensive review, summary and analysis of current theories and key technologies in whole-body humanoid robot, humanoid head, multi-finger hand, humanoid biped walking machine and so on are given, including review of the relevant works on humanoid robots by the author. By summarizing the current technical level of humanoid robots' development, the main technical problems and the trend of the future development are respectively discussed in the aspects of driving elements, walking stability, integrated designation and operation ability of the mechanical systems, environment adaptability and so on. References of decision making are provided for researchers and managers engaged in the relevant works of humanoid robots and their components.

  7. Classification of obstacle shape for generating walking path of humanoid robot

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Soo; Kim, Do Ik [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-02-15

    To generate the walking path of a humanoid robot in an unknown environment, the shapes of obstacles around the robot should be detected accurately. However, doing so incurs a very large computational cast. Therefore this study proposes a method to classify the obstacle shape into three types: a shape small enough for the robot to go over, a shape planar enough for the robot foot to make contact with, and an uncertain shape that must be avoided by the robot. To classify the obstacle shape, first, the range and the number of the obstacles is detected. If an obstacle can make contact with the robot foot, the shape of an obstacle is accurately derived. If an obstacle has uncertain shape or small size, the shape of an obstacle is not detected to minimize the computational load. Experimental results show that the proposed algorithm efficiently classifies the shapes of obstacles around the robot in real time with low computational load.

  8. Feasibility of using a humanoid robot to elicit communicational response in children with mild autism

    Science.gov (United States)

    Malik, Norjasween Abdul; Shamsuddin, Syamimi; Yussof, Hanafiah; Azfar Miskam, Mohd; Che Hamid, Aminullah

    2013-12-01

    Research evidences are accumulating with regards to the potential use of robots for the rehabilitation of children with autism. The purpose of this paper is to elaborate on the results of communicational response in two children with autism during interaction with the humanoid robot NAO. Both autistic subjects in this study have been diagnosed with mild autism. Following the outcome from our first pilot study; the aim of this current experiment is to explore the application of NAO robot to engage with a child and further teach about emotions through a game-centered and song-based approach. The experiment procedure involved interaction between humanoid robot NAO with each child through a series of four different modules. The observation items are based on ten items selected and referenced to GARS-2 (Gilliam Autism Rating Scale-second edition) and also input from clinicians and therapists. The results clearly indicated that both of the children showed optimistic response through the interaction. Negative responses such as feeling scared or shying away from the robot were not detected. Two-way communication between the child and robot in real time significantly gives positive impact in the responses towards the robot. To conclude, it is feasible to include robot-based interaction specifically to elicit communicational response as a part of the rehabilitation intervention of children with autism.

  9. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.

    Science.gov (United States)

    Or, Jimmy

    2010-04-01

    Biped humanoid robots have gained much popularity in recent years. These robots are mainly controlled by two major control methods, the biologically-inspired approach based on Central Pattern Generator (CPG) and the engineering-oriented approach based on Zero Moment Point (ZMP). Given that flexibility in the body torso is required in some human activities, we believe that it is beneficial for the next generation of humanoid robots to have a flexible spine as humans do. In order to cope with the increased complexity in controlling this type of robot, a new kind of control system is necessary. Currently, there is no controller that allows a flexible spine humanoid robot to maintain stability in real-time while walking with dynamic spine motions. This paper presents a new hybrid CPG-ZMP control system for the walking of a realistically simulated flexible spine humanoid robot. Experimental results showed that using our control method, the robot is able to adapt its spine motions in real-time to allow stable walking. Our control system could be used for the control of the next generation humanoid robots.

  10. Visual servo walking control for humanoids with finite-time convergence and smooth robot velocities

    Science.gov (United States)

    Delfin, Josafat; Becerra, Hector M.; Arechavaleta, Gustavo

    2016-07-01

    In this paper, we address the problem of humanoid locomotion guided from information of a monocular camera. The goal of the robot is to reach a desired location defined in terms of a target image, i.e., a positioning task. The proposed approach allows us to introduce a desired time to complete the positioning task, which is advantageous in contrast to the classical exponential convergence. In particular, finite-time convergence is achieved while generating smooth robot velocities and considering the omnidirectional waking capability of the robot. In addition, we propose a hierarchical task-based control scheme, which can simultaneously handle the visual positioning and the obstacle avoidance tasks without affecting the desired time of convergence. The controller is able to activate or inactivate the obstacle avoidance task without generating discontinuous velocity references while the humanoid is walking. Stability of the closed loop for the two task-based control is demonstrated theoretically even during the transitions between the tasks. The proposed approach is generic in the sense that different visual control schemes are supported. We evaluate a homography-based visual servoing for position-based and image-based modalities, as well as for eye-in-hand and eye-to-hand configurations. The experimental evaluation is performed with the humanoid robot NAO.

  11. Herbert: Design and Realisation of an full-sized anthropometrically correct humanoid robot

    Directory of Open Access Journals (Sweden)

    Brennand ePierce

    2015-06-01

    Full Text Available In this paper we present the development of a new full-sized anthropometrically correct humanoid robot Herbert. Herbert has 33 DOFs: 1 29 active DOFs (2 × 4 in the legs, 2 × 7 in the arms, 4 in the waist and 3 in the head; 2 4 passive DOFs (2 × 2 in the ankles. We present the objectives of the design and the development of our system, the hardware (mechanical, electronics as well as the supporting software architecture that encompasses the realisation of the complete humanoid system.Several key elements, that have to be taken into account in our approach to keep the costs low while ensuring high-performance, will be presented. In realising Herbert we applied a modular design for the overall mechanical structure. Two core mechanical module types make up the main structural elements of Herbert: 1 small compact mechanical drive modules; and 2 compliant mechanical drive modules. The electronic system of Herbert, which is based on two different types of motor control boards and an FPGA module with a central controller, is discussed. The software architecture is based on ROS with a number of sub nodes used for the controller. All these supporting components have been important in the development of the complete system.Finally, we present results showing our robot’s performances: demonstrating the behaviour of the compliant modules, the ability of tracking a desired position/velocity as well as a simple torque controller. We also evaluate our custom communication system. Additionally, we demonstrate Herbert balancing and squatting to show its performance. Moreover, we also show the simplicity of the higher level supporting software framework in realising new behaviours. All in all, we show that our system is compact and able to achieve comparable human performances and has human proportions while being low cost.

  12. Constraint-based Ground contact handling in Humanoid Robotics Simulation

    OpenAIRE

    Martin Moraud, Eduardo; Hale, Joshua G.; Cheng, Gordon

    2008-01-01

    International audience; This paper presents a method for resolving contact in dynamic simulations of articulated figures. It is intended for humanoids with polygonal feet and incorporates Coulomb friction exactly. The proposed technique is based on a constraint selection paradigm. Its implementation offers an exact mode which guarantees correct behavior, as well as an efficiency optimized mode which sacrifices accuracy for a tightly bounded computational burden, thus facilitating batch simula...

  13. 仿人服务机器人的平衡控制%Balance control of a humanoid service robot Balance control of a humanoid service robot

    Institute of Scientific and Technical Information of China (English)

    张爽; 邬依林; 葛伟亮; 蓝恺

    2016-01-01

    The dynamic characteristics of humanoid robot are complex,coupled and nonlinear.There-fore,the balance control for humanoid robot is significant in research.The research of an intelligent hu-manoid service robot system is presented.Firstly,the intelligent biped humanoid robot (HUBO)is used as a test platform to analyze its balance system and gait generation based on ZMP algorithm in different situations.The control methods are also analyzed to ensure the walking balance for the HUBO.Then,u-sing Simulink,the balance control performance is verified via simulations.Finally,the system parameters are analyzed through the simulation results to guarantee a better performance for gait balance control.%仿人机器人具有复杂的耦合非线性特性,因此仿人机器人的平衡控制具有重要的研究意义。针对仿人服务机器人系统,研究智能仿人服务机器人的平衡控制。首先,研究智能双足仿人机器人 HUBO 的行走与站立时平衡模式,分析 HUBO 基于 ZMP 的步态规划方法,并分析 HUBO 内部各个关键控制器的控制方式,以保证机器人行走时的平衡。然后,通过这些信息,使用 Simulink 对各控制器进行仿真,验证控制效果。最后,通过仿真分析、改进各项控制参数,进一步改善了仿人机器人步态平衡控制,达到较好的步态平衡控制效果。

  14. Foundations for a Theory of Mind for a Humanoid Robot

    Science.gov (United States)

    2001-05-01

    conditions such as autism and Asperger’s syndrome. These researchers have focused on behaviors that allow for the recognition of important social cues...children develop theory-of-mind skills, how these same skills are deficient in individuals with certain developmental disorders (such as autism ), and...exactly like a human; people have little 22 trouble in interpreting the behavior and expressions of dogs , chimpanzees, and other animals. The robot must

  15. Achievement report for fiscal 2000 on operational research of human cooperative and coexisting (humanoid) robot system. Operational research of humanoid robot system; 2000 nendo ningen kyocho kyozongata robot system un'yo kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper reports the achievements in fiscal 2000 in the operational research of humanoid robot system. Carrying out the development smoothly and efficiently requires accumulation of the operational know-how in both of the periodical check and maintenance and the aspects of hard and software to maintain the functions and performances of the robot platform having been developed in the previous fiscal year. Checks were given on fitting of the fasteners and connectors, batteries, and sensors. Operations were confirmed and adjusted on the liquid crystal projector of the surrounded visual display system for remotely controlled operation, polarization filters, screens, reflector mirrors, and wide viewing angle cameras. Verifications were made on fitting of the arm operation force sensing and presenting system, checks on the mechanical components, and operation of the driving system, whereas no change has been found in the operation for the period of one year, and sufficient performance was identified for the remote robot operation. The virtual robot platform has presented no crash and impediments during erroneous use in the disks of the dynamics simulator and the distributed network processing system. (NEDO)

  16. Achievement report for fiscal 2000 on operational research of human cooperative and coexisting (humanoid) robot system. Development for practical application of new power generation technology; 2000 nendo ningen kyocho kyozongata robot system un'yo kenkyu seika hokokusho. Shinhatsuden gijutsu jitsuyoka kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper reports the achievements in fiscal 2000 in the development for practical application of a new power generation technology for the human cooperative and coexisting (humanoid) robot system. Carrying out the development smoothly and efficiently requires accumulation of the system operational know-how, as well as the periodical check and maintenance to maintain the functions and performances of the robot platform having been developed in the previous fiscal year. Checks were given on the robot platform hardware, and no anomalies were verified in all operation. For the remote operation platform, normal operations were identified in the visual and audio information presenting and communication systems, including such components as the PCI, noise removing card, three-dimensional microphone, and SGI320. Operations were confirmed on the movement and operation sensing and presenting system, whereas no change has been found in the operation for the period of one year, and sufficient performance was maintained. For the virtual robot platform, the operation was made open to public on the basic operation library network interface. No operational defects, damages, wear, and electrical failures were found in the master hand for the remote control by hands, force sense presentation, finger and wrist position detection, and contact angle presentation. (NEDO)

  17. Dynamic Communication of Humanoid Robot with Multiple People Based on Interaction Distance

    Science.gov (United States)

    Tasaki, Tsuyoshi; Matsumoto, Shohei; Ohba, Hayato; Yamamoto, Shunichi; Toda, Mitsuhiko; Komatani, Kazunori; Ogata, Tetsuya; Okuno, Hiroshi G.

    Research on human-robot interaction is getting an increasing amount of attention. Since most research has dealt with communication between one robot and one person, quite few researchers have studied communication between a robot and multiple people. This paper presents a method that enables robots to communicate with multiple people using the ``selection priority of the interactive partner'' based on the concept of Proxemics. In this method, a robot changes active sensory-motor modalities based on the interaction distance between itself and a person. Our method was implemented into a humanoid robot, SIG2. SIG2 has various sensory-motor modalities to interact with humans. A demonstration of SIG2 showed that our method selected an appropriate interaction partner during interaction with multiple people.

  18. Concurrent Path Planning with One or More Humanoid Robots

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Reiland, Matthew J. (Inventor)

    2014-01-01

    A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork.

  19. Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures.

    Directory of Open Access Journals (Sweden)

    Thierry Chaminade

    Full Text Available BACKGROUND: The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents. METHODOLOGY: Here, fMRI was used to assess how brain areas activated by the perception of human basic emotions (facial expression of Anger, Joy, Disgust and silent speech respond to a humanoid robot impersonating the same emotions, while participants were instructed to attend either to the emotion or to the motion depicted. PRINCIPAL FINDINGS: Increased responses to robot compared to human stimuli in the occipital and posterior temporal cortices suggest additional visual processing when perceiving a mechanical anthropomorphic agent. In contrast, activity in cortical areas endowed with mirror properties, like left Broca's area for the perception of speech, and in the processing of emotions like the left anterior insula for the perception of disgust and the orbitofrontal cortex for the perception of anger, is reduced for robot stimuli, suggesting lesser resonance with the mechanical agent. Finally, instructions to explicitly attend to the emotion significantly increased response to robot, but not human facial expressions in the anterior part of the left inferior frontal gyrus, a neural marker of motor resonance. CONCLUSIONS: Motor resonance towards a humanoid robot, but not a human, display of facial emotion is increased when attention is directed towards judging emotions. SIGNIFICANCE: Artificial agents can be used to assess how factors like anthropomorphism affect neural response to the perception of human actions.

  20. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Thomas Mergner

    2017-04-01

    Full Text Available Control of a multi-body system in both robots and humans may face the problem of destabilizing dynamic coupling effects arising between linked body segments. The state of the art solutions in robotics are full state feedback controllers. For human hip-ankle coordination, a more parsimonious and theoretically stable alternative to the robotics solution has been suggested in terms of the Eigenmovement (EM control. Eigenmovements are kinematic synergies designed to describe the multi DoF system, and its control, with a set of independent, and hence coupling-free, scalar equations. This paper investigates whether the EM alternative shows “real-world robustness” against noisy and inaccurate sensors, mechanical non-linearities such as dead zones, and human-like feedback time delays when controlling hip-ankle movements of a balancing humanoid robot. The EM concept and the EM controller are introduced, the robot's dynamics are identified using a biomechanical approach, and robot tests are performed in a human posture control laboratory. The tests show that the EM controller provides stable control of the robot with proactive (“voluntary” movements and reactive balancing of stance during support surface tilts and translations. Although a preliminary robot-human comparison reveals similarities and differences, we conclude (i the Eigenmovement concept is a valid candidate when different concepts of human sensorimotor control are considered, and (ii that human-inspired robot experiments may help to decide in future the choice among the candidates and to improve the design of humanoid robots and robotic rehabilitation devices.

  1. Control of a humanoid robot by a noninvasive brain-computer interface in humans.

    Science.gov (United States)

    Bell, Christian J; Shenoy, Pradeep; Chalodhorn, Rawichote; Rao, Rajesh P N

    2008-06-01

    We describe a brain-computer interface for controlling a humanoid robot directly using brain signals obtained non-invasively from the scalp through electroencephalography (EEG). EEG has previously been used for tasks such as controlling a cursor and spelling a word, but it has been regarded as an unlikely candidate for more complex forms of control owing to its low signal-to-noise ratio. Here we show that by leveraging advances in robotics, an interface based on EEG can be used to command a partially autonomous humanoid robot to perform complex tasks such as walking to specific locations and picking up desired objects. Visual feedback from the robot's cameras allows the user to select arbitrary objects in the environment for pick-up and transport to chosen locations. Results from a study involving nine users indicate that a command for the robot can be selected from four possible choices in 5 s with 95% accuracy. Our results demonstrate that an EEG-based brain-computer interface can be used for sophisticated robotic interaction with the environment, involving not only navigation as in previous applications but also manipulation and transport of objects.

  2. Humanoid Walking Robot: Modeling, Inverse Dynamics, and Gain Scheduling Control

    OpenAIRE

    Elvedin Kljuno; Williams, Robert L.

    2010-01-01

    This article presents reference-model-based control design for a 10 degree-of-freedom bipedal walking robot, using nonlinear gain scheduling. The main goal is to show concentrated mass models can be used for prediction of the required joint torques for a bipedal walking robot. Relatively complicated architecture, high DOF, and balancing requirements make the control task of these robots difficult. Although linear control techniques can be used to control bipedal robots, nonlinear control is n...

  3. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    Full Text Available In this paper, we evaluate the control performance of SSVEP (steady-state visual evoked potential- and P300-based models using Cerebot-a mind-controlled humanoid robot platform. Seven subjects with diverse experience participated in experiments concerning the open-loop and closed-loop control of a humanoid robot via brain signals. The visual stimuli of both the SSVEP- and P300- based models were implemented on a LCD computer monitor with a refresh frequency of 60 Hz. Considering the operation safety, we set the classification accuracy of a model over 90.0% as the most important mandatory for the telepresence control of the humanoid robot. The open-loop experiments demonstrated that the SSVEP model with at most four stimulus targets achieved the average accurate rate about 90%, whereas the P300 model with the six or more stimulus targets under five repetitions per trial was able to achieve the accurate rates over 90.0%. Therefore, the four SSVEP stimuli were used to control four types of robot behavior; while the six P300 stimuli were chosen to control six types of robot behavior. Both of the 4-class SSVEP and 6-class P300 models achieved the average success rates of 90.3% and 91.3%, the average response times of 3.65 s and 6.6 s, and the average information transfer rates (ITR of 24.7 bits/min 18.8 bits/min, respectively. The closed-loop experiments addressed the telepresence control of the robot; the objective was to cause the robot to walk along a white lane marked in an office environment using live video feedback. Comparative studies reveal that the SSVEP model yielded faster response to the subject's mental activity with less reliance on channel selection, whereas the P300 model was found to be suitable for more classifiable targets and required less training. To conclude, we discuss the existing SSVEP and P300 models for the control of humanoid robots, including the models proposed in this paper.

  4. Indoor SLAM Using Laser and Camera with Closed-Loop Controller for NAO Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Shuhuan Wen

    2014-01-01

    Full Text Available We present a SLAM with closed-loop controller method for navigation of NAO humanoid robot from Aldebaran. The method is based on the integration of laser and vision system. The camera is used to recognize the landmarks whereas the laser provides the information for simultaneous localization and mapping (SLAM . K-means clustering method is implemented to extract data from different objects. In addition, the robot avoids the obstacles by the avoidance function. The closed-loop controller reduces the error between the real position and estimated position. Finally, simulation and experiments show that the proposed method is efficient and reliable for navigation in indoor environments.

  5. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.

    Science.gov (United States)

    Zhao, Jing; Li, Wei; Li, Mengfan

    2015-01-01

    In this paper, we evaluate the control performance of SSVEP (steady-state visual evoked potential)- and P300-based models using Cerebot-a mind-controlled humanoid robot platform. Seven subjects with diverse experience participated in experiments concerning the open-loop and closed-loop control of a humanoid robot via brain signals. The visual stimuli of both the SSVEP- and P300- based models were implemented on a LCD computer monitor with a refresh frequency of 60 Hz. Considering the operation safety, we set the classification accuracy of a model over 90.0% as the most important mandatory for the telepresence control of the humanoid robot. The open-loop experiments demonstrated that the SSVEP model with at most four stimulus targets achieved the average accurate rate about 90%, whereas the P300 model with the six or more stimulus targets under five repetitions per trial was able to achieve the accurate rates over 90.0%. Therefore, the four SSVEP stimuli were used to control four types of robot behavior; while the six P300 stimuli were chosen to control six types of robot behavior. Both of the 4-class SSVEP and 6-class P300 models achieved the average success rates of 90.3% and 91.3%, the average response times of 3.65 s and 6.6 s, and the average information transfer rates (ITR) of 24.7 bits/min 18.8 bits/min, respectively. The closed-loop experiments addressed the telepresence control of the robot; the objective was to cause the robot to walk along a white lane marked in an office environment using live video feedback. Comparative studies reveal that the SSVEP model yielded faster response to the subject's mental activity with less reliance on channel selection, whereas the P300 model was found to be suitable for more classifiable targets and required less training. To conclude, we discuss the existing SSVEP and P300 models for the control of humanoid robots, including the models proposed in this paper.

  6. Hybrid Taguchi DNA Swarm Intelligence for Optimal Inverse Kinematics Redundancy Resolution of Six-DOF Humanoid Robot Arms

    Directory of Open Access Journals (Sweden)

    Hsu-Chih Huang

    2014-01-01

    Full Text Available This paper presents a hybrid Taguchi deoxyribonucleic acid (DNA swarm intelligence for solving the inverse kinematics redundancy problem of six degree-of-freedom (DOF humanoid robot arms. The inverse kinematics problem of the multi-DOF humanoid robot arm is redundant and has no general closed-form solutions or analytical solutions. The optimal joint configurations are obtained by minimizing the predefined performance index in DNA algorithm for real-world humanoid robotics application. The Taguchi method is employed to determine the DNA parameters to search for the joint solutions of the six-DOF robot arms more efficiently. This approach circumvents the disadvantage of time-consuming tuning procedure in conventional DNA computing. Simulation results are conducted to illustrate the effectiveness and merit of the proposed methods. This Taguchi-based DNA (TDNA solver outperforms the conventional solvers, such as geometric solver, Jacobian-based solver, genetic algorithm (GA solver and ant, colony optimization (ACO solver.

  7. Data-Based Control for Humanoid Robots Using Support Vector Regression, Fuzzy Logic, and Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Liyang Wang

    2016-01-01

    Full Text Available Time-varying external disturbances cause instability of humanoid robots or even tip robots over. In this work, a trapezoidal fuzzy least squares support vector regression- (TF-LSSVR- based control system is proposed to learn the external disturbances and increase the zero-moment-point (ZMP stability margin of humanoid robots. First, the humanoid states and the corresponding control torques of the joints for training the controller are collected by implementing simulation experiments. Secondly, a TF-LSSVR with a time-related trapezoidal fuzzy membership function (TFMF is proposed to train the controller using the simulated data. Thirdly, the parameters of the proposed TF-LSSVR are updated using a cubature Kalman filter (CKF. Simulation results are provided. The proposed method is shown to be effective in learning and adapting occasional external disturbances and ensuring the stability margin of the robot.

  8. On the Use of the Humanoid Bioloid System for Robot-Assisted Transcription of Mexican Spanish Speech

    Directory of Open Access Journals (Sweden)

    Santiago-Omar Caballero-Morales

    2015-12-01

    Full Text Available Within the context of service robotics (SR, the development of assistive technologies has become an important research field. However, the accomplishment of assistive tasks requires precise and fine control of the mechanic systems that integrate the robotic entity. Among the most challenging tasks in robot control, the handwriting task (transcription is of particular interest due to the fine control required to draw single and multiple alphabet characters to express words and sentences. For language learning activities, robot-assisted speech transcription can motivate the student to practice pronunciation and writing tasks in a dynamic environment. Hence, this paper is aimed to provide the techniques and models to accomplish accurate robot-assisted transcription of Spanish speech. The transcriptor is integrated by a multi-user speech recognizer for continuous speech and the kinematic models for the Mexican Spanish alphabet characters. The Bioloid system with the standard humanoid configuration and no special modifications or tools was considered for implementation. Particularly, the proposed transcriptor could perform the handwriting task with the Bioloid’s two two DOF (degrees-of-freedom arms. This enabled writing of one-line short and long sentences with small alphabet characters (width <1.0 cm. It is expected that the technique and models that integrate the transcriptor can provide support for the development of robot-assisted language learning activities for children and young adults.

  9. Design of a Distributed Control System Using a Personal Computer and Micro Control Units for Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Yamano

    2010-01-01

    Full Text Available Problem statement: Humanoid robots have many motors and sensors and many control methods are used to carry out complicated tasks of the robots. Therefore, efficient control systems are required for the robots. Approach: This study presented a distributed control system using a Personal Computer (PC and Micro Control Units (MCUs for humanoid robots. Distributed control systems have the advantages that parallel processing using multiple computers is possible and cables in the system can be short. For the control of the humanoid robots, required functions of the control system were discussed. Based on the discussion, the hardware of the system including a PC and MCUs was proposed. The system was designed to carry out the process of the robot control efficiently. The system can be expanded easily by increasing the number of MCU boards. The software of the system for feedback control of the motors and the communication between the computers was proposed. Flexible switching of motor control methods can be achieved easily. Results: Experiments were performed to show the effectiveness of the system. The sampling frequency of the whole system can be about 0.5 kHz and that in local MCUs can be about 10 kHz. Control method of the motor can be changed during the motion in an experiment controlling four joints of the robot. Conclusion: The results of the experiments showed that the distributed control system proposed in this study is effective for humanoid robots.

  10. "Robovie, You'll Have to Go into the Closet Now": Children's Social and Moral Relationships with a Humanoid Robot

    Science.gov (United States)

    Kahn, Peter H., Jr.; Kanda, Takayuki; Ishiguro, Hiroshi; Freier, Nathan G.; Severson, Rachel L.; Gill, Brian T.; Ruckert, Jolina H.; Shen, Solace

    2012-01-01

    Children will increasingly come of age with personified robots and potentially form social and even moral relationships with them. What will such relationships look like? To address this question, 90 children (9-, 12-, and 15-year-olds) initially interacted with a humanoid robot, Robovie, in 15-min sessions. Each session ended when an experimenter…

  11. Emotion expression of an affective state space; a humanoid robot displaying a dynamic emotional state during a soccer game

    NARCIS (Netherlands)

    van der Mey, A.; Smit, F; Droog, K.J.; Visser, A.

    2010-01-01

    Following a soccer game is an example where clear emotions are displayed. This example is worked out for a humanoid robot which can express emotions with body language. The emotions expressed by the robot are not just stimuli-response, but are based on an affective state which shows dynamic behavior

  12. Feasibility of using a humanoid robot for enhancing attention and social skills in adolescents with autism spectrum disorder.

    Science.gov (United States)

    Jordan, Kimberlee; King, Marcus; Hellersteth, Sophia; Wirén, Anna; Mulligan, Hilda

    2013-09-01

    This study investigated the use of robotic technology for promoting attention, communication and social skills in adolescents with autism spectrum disorder (ASD). Attention, communication and social skills were measured while participants played a memory card matching game (Face Match) using (a) a humanoid robot, (b) a Smart Board and (c) playing cards. Three participants with ASD and three with other cognitive impairments were recruited from a secondary school with a special needs unit. Participants were paired such that one of each pair had a diagnosis of ASD and Face Match was played in these pairs for ∼15 min, with a game organizer present. On 3 separate days, video recordings were made as the participants played Face Match; a different game mode (robot, Smart Board, playing cards) was used each day. A system for categorizing attention, communication and social skills was developed that described 16 subcategories of interactions and intra-actions. In general, participants with ASD showed highly individualized patterns of behaviour in the three different modes. However, repetitive behaviour was reduced in participants with ASD when using both the robot and the Smart Board compared with playing cards. We show that it is feasible to use a robot to assist teaching of social skills to adolescents with ASD, but suggest that the robot features could be further explored and utilized.

  13. Embedded diagnostic, prognostic, and health management system and method for a humanoid robot

    Science.gov (United States)

    Barajas, Leandro G. (Inventor); Sanders, Adam M (Inventor); Reiland, Matthew J (Inventor); Strawser, Philip A (Inventor)

    2013-01-01

    A robotic system includes a humanoid robot with multiple compliant joints, each moveable using one or more of the actuators, and having sensors for measuring control and feedback data. A distributed controller controls the joints and other integrated system components over multiple high-speed communication networks. Diagnostic, prognostic, and health management (DPHM) modules are embedded within the robot at the various control levels. Each DPHM module measures, controls, and records DPHM data for the respective control level/connected device in a location that is accessible over the networks or via an external device. A method of controlling the robot includes embedding a plurality of the DPHM modules within multiple control levels of the distributed controller, using the DPHM modules to measure DPHM data within each of the control levels, and recording the DPHM data in a location that is accessible over at least one of the high-speed communication networks.

  14. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.

    Science.gov (United States)

    Tani, Jun; Nishimoto, Ryu; Namikawa, Jun; Ito, Masato

    2008-02-01

    This paper examines characteristics of interactive learning between human tutors and a robot having a dynamic neural-network model, which is inspired by human parietal cortex functions. A humanoid robot, with a recurrent neural network that has a hierarchical structure, learns to manipulate objects. Robots learn tasks in repeated self-trials with the assistance of human interaction, which provides physical guidance until the tasks are mastered and learning is consolidated within the neural networks. Experimental results and the analyses showed the following: 1) codevelopmental shaping of task behaviors stems from interactions between the robot and a tutor; 2) dynamic structures for articulating and sequencing of behavior primitives are self-organized in the hierarchically organized network; and 3) such structures can afford both generalization and context dependency in generating skilled behaviors.

  15. Triggering social interactions: chimpanzees respond to imitation by a humanoid robot and request responses from it.

    Science.gov (United States)

    Davila-Ross, Marina; Hutchinson, Johanna; Russell, Jamie L; Schaeffer, Jennifer; Billard, Aude; Hopkins, William D; Bard, Kim A

    2014-05-01

    Even the most rudimentary social cues may evoke affiliative responses in humans and promote social communication and cohesion. The present work tested whether such cues of an agent may also promote communicative interactions in a nonhuman primate species, by examining interaction-promoting behaviours in chimpanzees. Here, chimpanzees were tested during interactions with an interactive humanoid robot, which showed simple bodily movements and sent out calls. The results revealed that chimpanzees exhibited two types of interaction-promoting behaviours during relaxed or playful contexts. First, the chimpanzees showed prolonged active interest when they were imitated by the robot. Second, the subjects requested 'social' responses from the robot, i.e. by showing play invitations and offering toys or other objects. This study thus provides evidence that even rudimentary cues of a robotic agent may promote social interactions in chimpanzees, like in humans. Such simple and frequent social interactions most likely provided a foundation for sophisticated forms of affiliative communication to emerge.

  16. Emotion Attribution to a Non-Humanoid Robot in Different Social Situations

    Science.gov (United States)

    Lakatos, Gabriella; Gácsi, Márta; Konok, Veronika; Brúder, Ildikó; Bereczky, Boróka; Korondi, Péter; Miklósi, Ádám

    2014-01-01

    In the last few years there was an increasing interest in building companion robots that interact in a socially acceptable way with humans. In order to interact in a meaningful way a robot has to convey intentionality and emotions of some sort in order to increase believability. We suggest that human-robot interaction should be considered as a specific form of inter-specific interaction and that human–animal interaction can provide a useful biological model for designing social robots. Dogs can provide a promising biological model since during the domestication process dogs were able to adapt to the human environment and to participate in complex social interactions. In this observational study we propose to design emotionally expressive behaviour of robots using the behaviour of dogs as inspiration and to test these dog-inspired robots with humans in inter-specific context. In two experiments (wizard-of-oz scenarios) we examined humans' ability to recognize two basic and a secondary emotion expressed by a robot. In Experiment 1 we provided our companion robot with two kinds of emotional behaviour (“happiness” and “fear”), and studied whether people attribute the appropriate emotion to the robot, and interact with it accordingly. In Experiment 2 we investigated whether participants tend to attribute guilty behaviour to a robot in a relevant context by examining whether relying on the robot's greeting behaviour human participants can detect if the robot transgressed a predetermined rule. Results of Experiment 1 showed that people readily attribute emotions to a social robot and interact with it in accordance with the expressed emotional behaviour. Results of Experiment 2 showed that people are able to recognize if the robot transgressed on the basis of its greeting behaviour. In summary, our findings showed that dog-inspired behaviour is a suitable medium for making people attribute emotional states to a non-humanoid robot. PMID:25551218

  17. Emotion attribution to a non-humanoid robot in different social situations.

    Directory of Open Access Journals (Sweden)

    Gabriella Lakatos

    Full Text Available In the last few years there was an increasing interest in building companion robots that interact in a socially acceptable way with humans. In order to interact in a meaningful way a robot has to convey intentionality and emotions of some sort in order to increase believability. We suggest that human-robot interaction should be considered as a specific form of inter-specific interaction and that human-animal interaction can provide a useful biological model for designing social robots. Dogs can provide a promising biological model since during the domestication process dogs were able to adapt to the human environment and to participate in complex social interactions. In this observational study we propose to design emotionally expressive behaviour of robots using the behaviour of dogs as inspiration and to test these dog-inspired robots with humans in inter-specific context. In two experiments (wizard-of-oz scenarios we examined humans' ability to recognize two basic and a secondary emotion expressed by a robot. In Experiment 1 we provided our companion robot with two kinds of emotional behaviour ("happiness" and "fear", and studied whether people attribute the appropriate emotion to the robot, and interact with it accordingly. In Experiment 2 we investigated whether participants tend to attribute guilty behaviour to a robot in a relevant context by examining whether relying on the robot's greeting behaviour human participants can detect if the robot transgressed a predetermined rule. Results of Experiment 1 showed that people readily attribute emotions to a social robot and interact with it in accordance with the expressed emotional behaviour. Results of Experiment 2 showed that people are able to recognize if the robot transgressed on the basis of its greeting behaviour. In summary, our findings showed that dog-inspired behaviour is a suitable medium for making people attribute emotional states to a non-humanoid robot.

  18. Emotion attribution to a non-humanoid robot in different social situations.

    Science.gov (United States)

    Lakatos, Gabriella; Gácsi, Márta; Konok, Veronika; Brúder, Ildikó; Bereczky, Boróka; Korondi, Péter; Miklósi, Ádám

    2014-01-01

    In the last few years there was an increasing interest in building companion robots that interact in a socially acceptable way with humans. In order to interact in a meaningful way a robot has to convey intentionality and emotions of some sort in order to increase believability. We suggest that human-robot interaction should be considered as a specific form of inter-specific interaction and that human-animal interaction can provide a useful biological model for designing social robots. Dogs can provide a promising biological model since during the domestication process dogs were able to adapt to the human environment and to participate in complex social interactions. In this observational study we propose to design emotionally expressive behaviour of robots using the behaviour of dogs as inspiration and to test these dog-inspired robots with humans in inter-specific context. In two experiments (wizard-of-oz scenarios) we examined humans' ability to recognize two basic and a secondary emotion expressed by a robot. In Experiment 1 we provided our companion robot with two kinds of emotional behaviour ("happiness" and "fear"), and studied whether people attribute the appropriate emotion to the robot, and interact with it accordingly. In Experiment 2 we investigated whether participants tend to attribute guilty behaviour to a robot in a relevant context by examining whether relying on the robot's greeting behaviour human participants can detect if the robot transgressed a predetermined rule. Results of Experiment 1 showed that people readily attribute emotions to a social robot and interact with it in accordance with the expressed emotional behaviour. Results of Experiment 2 showed that people are able to recognize if the robot transgressed on the basis of its greeting behaviour. In summary, our findings showed that dog-inspired behaviour is a suitable medium for making people attribute emotional states to a non-humanoid robot.

  19. A Humanoid System Infrastructure: The RIBSI Middleware

    Science.gov (United States)

    Toda, Kengo; Tomiyama, Ken

    A new middleware framework that is implemented as the RIBSI (Real-time Interactive Behavior-Sensing Interface) middleware on our original humanoid morph2 is proposed. A hierarchical control system architecture for humanoids is developed for morph2 that consists of a device layer, a middleware layer, which is the proposed RIBSI middleware, and an application layer. The RIBSI middleware provides the upper layer of the humanoid system with individual motor devices, integrated virtual action generation devices, individual sensor devices and virtual sensors integrating sensor information. The proposed middleware works as an infrastructure of the humanoid control system, and can respond to asynchronous requests from the upper layer. In order to verify the capabilities of the proposed middleware, the humanoid control system implementing the RIBSI middleware is evaluated not only on humanoid morph2 but also on a quadrupedal locomotion robot.

  20. Achievement report for fiscal 2000 on operational research of human cooperative and coexisting (humanoid) robot system. Development of energy usage rationalizing technology; 2000 nendo ningen kyocho kyozongata robot system un'yo kenkyu seika hokokusho. Energy shiyo gorika gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper reports the achievements in fiscal 2000 in the operational research on the human cooperative and coexisting (humanoid) robot system to rationalize energy usage. Operational method and maintenance were studied on the platform hardware that has been developed in the previous fiscal year. Checks were given periodically on the robot platform hardware, and no anomalies were verified in all operation. Verifications were made on the fasteners, additional tightening, fitting of the connectors, battery checks, zero position and step response checks, and output checks on the force component sensor, gyro sensor and G sensor. For the virtual robot platform, discussions were given on the basic movement library for the geography complying three-dimensional walking. Such configurations were constituted that integrated use is possible with the simulator system by connecting the networks, and the user can instruct the CORBA server with the generation of walking movements according to the GUI by using the general purpose WWW browser to connect it to the HTTP server, whose result can be verified by three-dimensional graphics. A method to stabilize the all-axis movement servo model was made open to public. (NEDO)

  1. HYDROïD humanoid robot head with perception and emotion capabilities :Modeling, Design and Experimental Results

    Directory of Open Access Journals (Sweden)

    Samer eAlfayad

    2016-04-01

    Full Text Available In the framework of the HYDROïD humanoid robot project, this paper describes the modeling and design of an electrically actuated head mechanism. Perception and emotion capabilities are considered in the design process. Since HYDROïD humanoid robot is hydraulically actuated, the choice of electrical actuation for the head mechanism addressed in this paper is justified. Considering perception and emotion capabilities leads to a total number of 15 degrees of freedom for the head mechanism which are split on four main sub-mechanisms: the neck, the mouth, the eyes and the eyebrows. Biological data and kinematics performances of human head are taken as inputs of the design process. A new solution of uncoupled eyes is developed to possibly address the master-slave process that links the human eyes as well as vergence capabilities. Modeling each sub-system is carried out in order to get equations of motion, their frequency responses and their transfer functions. The neck pitch rotation is given as a study example. Then, the head mechanism performances are presented through a comparison between model and experimental results validating the hardware capabilities. Finally, the head mechanism is integrated on the HYDROïD upper-body. An object tracking experiment coupled with emotional expressions is carried out to validate the synchronization of the eye rotations with the body motions.

  2. A reliability-based particle filter for humanoid robot self-localization in RoboCup Standard Platform League.

    Science.gov (United States)

    Munera Sánchez, Eduardo; Muñoz Alcobendas, Manuel; Blanes Noguera, Juan Fco; Benet Gilabert, Ginés; Simó Ten, José E

    2013-11-04

    This paper deals with the problem of humanoid robot localization and proposes a new method for position estimation that has been developed for the RoboCup Standard Platform League environment. Firstly, a complete vision system has been implemented in the Nao robot platform that enables the detection of relevant field markers. The detection of field markers provides some estimation of distances for the current robot position. To reduce errors in these distance measurements, extrinsic and intrinsic camera calibration procedures have been developed and described. To validate the localization algorithm, experiments covering many of the typical situations that arise during RoboCup games have been developed: ranging from degradation in position estimation to total loss of position (due to falls, 'kidnapped robot', or penalization). The self-localization method developed is based on the classical particle filter algorithm. The main contribution of this work is a new particle selection strategy. Our approach reduces the CPU computing time required for each iteration and so eases the limited resource availability problem that is common in robot platforms such as Nao. The experimental results show the quality of the new algorithm in terms of localization and CPU time consumption.

  3. Vision-based Recognition of Activities by a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Mounîm A. El-Yacoubi

    2015-12-01

    Full Text Available We present an autonomous assistive robotic system for human activity recognition from video sequences. Due to the large variability inherent to video capture from a non-fixed robot (as opposed to a fixed camera, as well as the robot’s limited computing resources, implementation has been guided by robustness to this variability and by memory and computing speed efficiency. To accommodate motion speed variability across users, we encode motion using dense interest point trajectories. Our recognition model harnesses the dense interest point bag-of-words representation through an intersection kernel-based SVM that better accommodates the large intra-class variability stemming from a robot operating in different locations and conditions. To contextually assess the engine as implemented in the robot, we compare it with the most recent approaches of human action recognition performed on public datasets (non-robot-based, including a novel approach of our own that is based on a two-layer SVM-hidden conditional random field sequential recognition model. The latter’s performance is among the best within the recent state of the art. We show that our robot-based recognition engine, while less accurate than the sequential model, nonetheless shows good performances, especially given the adverse test conditions of the robot, relative to those of a fixed camera.

  4. Mechanism Design and System Control for Humanoid Space Robot Movement Using a Simple Gravity-Compensation System

    Directory of Open Access Journals (Sweden)

    Zhihong Jiang

    2013-11-01

    Full Text Available Space robots are an effective resource for astronauts working in a dangerous space environment. This paper proposes and implements a system to validate the performance of robot movement in space. A humanoid robot was designed with a vision-based self-calibration and navigation system. In addition, a path planning method was proposed to minimize joint torque. Simple gravity-compensation equipment with active and passive mechanisms was proposed. However, the flexible connection required for free movement between the robot and the gravity-compensation equipment meant that the space robot was likely to vibrate when moving. In order to address this challenge, a new hybrid force-position controller with joint torque feedforward was proposed. This controller was based on the system dynamics model with a particular focus on joint dynamics. Experimental test results validated the system design and methodology, showing that the humanoid space robot could move sufficiently using simple gravity-compensation equipment.

  5. Audio-visual perception system for a humanoid robotic head.

    Science.gov (United States)

    Viciana-Abad, Raquel; Marfil, Rebeca; Perez-Lorenzo, Jose M; Bandera, Juan P; Romero-Garces, Adrian; Reche-Lopez, Pedro

    2014-05-28

    One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped. Besides, within the scope of interactive autonomous robots, there is a lack in terms of evaluating the benefits of audio-visual attention mechanisms, compared to only audio or visual approaches, in real scenarios. Most of the tests conducted have been within controlled environments, at short distances and/or with off-line performance measurements. With the goal of demonstrating the benefit of fusing sensory information with a Bayes inference for interactive robotics, this paper presents a system for localizing a person by processing visual and audio data. Moreover, the performance of this system is evaluated and compared via considering the technical limitations of unimodal systems. The experiments show the promise of the proposed approach for the proactive detection and tracking of speakers in a human-robot interactive framework.

  6. Audio-Visual Perception System for a Humanoid Robotic Head

    Directory of Open Access Journals (Sweden)

    Raquel Viciana-Abad

    2014-05-01

    Full Text Available One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped. Besides, within the scope of interactive autonomous robots, there is a lack in terms of evaluating the benefits of audio-visual attention mechanisms, compared to only audio or visual approaches, in real scenarios. Most of the tests conducted have been within controlled environments, at short distances and/or with off-line performance measurements. With the goal of demonstrating the benefit of fusing sensory information with a Bayes inference for interactive robotics, this paper presents a system for localizing a person by processing visual and audio data. Moreover, the performance of this system is evaluated and compared via considering the technical limitations of unimodal systems. The experiments show the promise of the proposed approach for the proactive detection and tracking of speakers in a human-robot interactive framework.

  7. Combining gait optimization with passive system to increase the energy efficiency of a humanoid robot walking movement

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ana I. [Polytechnic Institute of Bragança (Portugal); ALGORITMI,University of Minho (Portugal); Lima, José [Polytechnic Institute of Bragança (Portugal); INESC TEC (formerly INESC Porto) Porto (Portugal); Costa, Paulo [Faculty of Engineering, University of Porto (Portugal); INESC TEC (formerly INESC Porto) Porto (Portugal)

    2015-03-10

    There are several approaches to create the Humanoid robot gait planning. This problem presents a large number of unknown parameters that should be found to make the humanoid robot to walk. Optimization in simulation models can be used to find the gait based on several criteria such as energy minimization, acceleration, step length among the others. The energy consumption can also be reduced with elastic elements coupled to each joint. The presented paper addresses an optimization method, the Stretched Simulated Annealing, that runs in an accurate and stable simulation model to find the optimal gait combined with elastic elements. Final results demonstrate that optimization is a valid gait planning technique.

  8. Impedance Control and its Effects on a Humanoid Robot Playing Table Tennis

    Directory of Open Access Journals (Sweden)

    Rong Xiong

    2012-11-01

    Full Text Available This paper proposes an impedance control scheme used on humanoid robots for stability maintenance when the robot is expected to carry out fast manipulatory tasks. We take table tennis playing as an example to study this issue. The fast acceleration required by table tennis rallying will result in an unknown large reaction force on the robot, causing the body to swing back and forth in an oscillating motion and the foot to lose complete contact with the ground. To improve the stability during fast manipulation and in order to resist disturbances due to the reaction force, we introduce impedance control to absorb the impact and decrease the amplitude of body swinging. The system’s adjusting time is also reduced and the oscillations are eliminated according to the experimental results, which show the effectiveness of our scheme.

  9. Humanoid Walking Robot: Modeling, Inverse Dynamics, and Gain Scheduling Control

    Directory of Open Access Journals (Sweden)

    Elvedin Kljuno

    2010-01-01

    Full Text Available This article presents reference-model-based control design for a 10 degree-of-freedom bipedal walking robot, using nonlinear gain scheduling. The main goal is to show concentrated mass models can be used for prediction of the required joint torques for a bipedal walking robot. Relatively complicated architecture, high DOF, and balancing requirements make the control task of these robots difficult. Although linear control techniques can be used to control bipedal robots, nonlinear control is necessary for better performance. The emphasis of this work is to show that the reference model can be a bipedal walking model with concentrated mass at the center of gravity, which removes the problems related to design of a pseudo-inverse system. Another significance of this approach is the reduced calculation requirements due to the simplified procedure of nominal joint torques calculation. Kinematic and dynamic analysis is discussed including results for joint torques and ground force necessary to implement a prescribed walking motion. This analysis is accompanied by a comparison with experimental data. An inverse plant and a tracking error linearization-based controller design approach is described. We propose a novel combination of a nonlinear gain scheduling with a concentrated mass model for the MIMO bipedal robot system.

  10. Whole-Body Motion Planning for Humanoid Robots by Specifying Via-Points

    Directory of Open Access Journals (Sweden)

    ChangHyun Sung

    2013-07-01

    Full Text Available We design a framework about the planning of whole body motion for humanoid robots. Motion planning with various constraints is essential to success the task. In this research, we propose a motion planning method corresponding to various conditions for achieving the task. We specify some via-points to deal with the conditions for target achievement depending on various constraints. Together with certain constraints including task accomplishment, the via-point representation plays a crucial role in the optimization process of our method. Furthermore, the via-points as the optimization parameters are related to some physical conditions. We applied this method to generate the kicking motion of a humanoid robot HOAP-3. We have confirmed that the robot was able to complete the task of kicking a ball over an obstacle into a goal in addition to changing conditions of the location of a ball. These results show that the proposed motion planning method using via-point representation can increase articulation of the motion.

  11. An SSVEP based BCI to control a humanoid robot by using portable EEG device.

    Science.gov (United States)

    Güneysu, Arzu; Akin, H Levent

    2013-01-01

    Brain Computer Interfaces (BCIs) are systems that allow human subjects to interact with the environment by interpreting brain signals into machine commands. This work provides a design for a BCI to control a humanoid robot by using signals obtained from the Emotiv EPOC, a portable electroencephalogram (EEG) device with 14 electrodes and sampling rate of 128 Hz. The main objective is to process the neuroelectric responses to an externally driven stimulus and generate control signals for the humanoid robot Nao accordingly. We analyze steady-state visually evoked potential (SSVEP) induced by one of four groups of light emitting diodes (LED) by using two distinct signals obtained from the two channels of the EEG device which reside on top of the occipital lobe. An embedded system is designed for generating pulse width modulated square wave signals in order to flicker each group of LEDs with different frequencies. The subject chooses the direction by looking at one of these groups of LEDs that represent four directions. Fast Fourier Transform and a Gaussian model are used to detect the dominant frequency component by utilizing harmonics and neighbor frequencies. Then, a control signal is sent to the robot in order to draw a fixed sized line in that selected direction by BCI. Experimental results display satisfactory performance where the correct target is detected 75% of the time on the average across all test subjects without any training.

  12. Affordance estimation for vision-based object replacement on a humanoid robot

    DEFF Research Database (Denmark)

    Mustafa, Wail; Wächter, Mirko; Szedmak, Sandor

    2016-01-01

    In this paper, we address the problem of finding replacements of missing objects, involved in the execution of manipulation tasks. Our approach is based on estimating functional affordances for the unknown objects in order to propose replacements. We use a vision-based affordance estimation system...... large-scale datasets. The results indicate that the system is able to successfully predict the affordances of novel objects. We also implement our system on a humanoid robot and demonstrate the affordance estimation in a real scene....

  13. A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition.

    Science.gov (United States)

    Choi, Bongjae; Jo, Sungho

    2013-01-01

    This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system.

  14. Research of Humanoid Robot Voluntary Movement in 3D Computer Animation%电脑动画中3D虚拟人自主运动的研究

    Institute of Scientific and Technical Information of China (English)

    钱驰波; 薛晓明

    2011-01-01

    电脑动画中复杂环境下3D虚拟人自主运动的研究,是计算机图像处理技术发展过程中急待突破的一个环节.主要原因是传统处理的方式过于复杂耗时.针对上述问题,应用计划分离器建立虚拟人的运动模型,使虚拟人在高低不平的环境中实现正步走、侧走、跑步及跳跃等程序性动画.实验结果表明:提出的方法简单、快捷.%It is urgent breakthrough technology for the development of computer image processing to research 3D humanoid robot voluntary movement in the complex environment due to the traditional way of dealing with timeconsuming and too complex. In response to these problems, a motion planning system capable of generating both global and local motions for a humanoid robot in a layered or two and half dimensional environment are proposed, so that the humanoid robot in the rugged environment to achieve frontal and side walking, jogging and jumping procedural animation. The results show that the proposed method is simple and fast.

  15. Increasing N200 Potentials Via Visual Stimulus Depicting Humanoid Robot Behavior.

    Science.gov (United States)

    Li, Mengfan; Li, Wei; Zhou, Huihui

    2016-02-01

    Achieving recognizable visual event-related potentials plays an important role in improving the success rate in telepresence control of a humanoid robot via N200 or P300 potentials. The aim of this research is to intensively investigate ways to induce N200 potentials with obvious features by flashing robot images (images with meaningful information) and by flashing pictures containing only solid color squares (pictures with incomprehensible information). Comparative studies have shown that robot images evoke N200 potentials with recognizable negative peaks at approximately 260 ms in the frontal and central areas. The negative peak amplitudes increase, on average, from 1.2 μV, induced by flashing the squares, to 6.7 μV, induced by flashing the robot images. The data analyses support that the N200 potentials induced by the robot image stimuli exhibit recognizable features. Compared with the square stimuli, the robot image stimuli increase the average accuracy rate by 9.92%, from 83.33% to 93.25%, and the average information transfer rate by 24.56 bits/min, from 72.18 bits/min to 96.74 bits/min, in a single repetition. This finding implies that the robot images might provide the subjects with more information to understand the visual stimuli meanings and help them more effectively concentrate on their mental activities.

  16. Learning Spatial Object Localization from Vision on a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Jürgen Leitner

    2012-12-01

    We find that ANN and GP are not just faster and have lower complexity than traditional techniques, but also learn without the need for extensive calibration procedures. In addition, the approach is localizing objects robustly, when placed in the robot’s workspace at arbitrary positions, even while the robot is moving its torso, head and eyes.

  17. Validation of the dynamics of an humanoid robot in USARSim

    NARCIS (Netherlands)

    van Noort, S.; Visser, A.

    2012-01-01

    This paper describes a model to replicate the dynamics of a walking robot inside USARSim. USARSim is an existing 3D simulator based on the Unreal Engine, which provides facilities for good quality rendering, physics simulation, networking, a highly versatile scripting language and a powerful visual

  18. Humanoid robots versus humans: How is emotional valence of facial expressions recognized by individuals with schizophrenia? An exploratory study.

    Science.gov (United States)

    Raffard, Stéphane; Bortolon, Catherine; Khoramshahi, Mahdi; Salesse, Robin N; Burca, Marianna; Marin, Ludovic; Bardy, Benoit G; Billard, Aude; Macioce, Valérie; Capdevielle, Delphine

    2016-10-01

    The use of humanoid robots to play a therapeutic role in helping individuals with social disorders such as autism is a newly emerging field, but remains unexplored in schizophrenia. As the ability for robots to convey emotion appear of fundamental importance for human-robot interactions, we aimed to evaluate how schizophrenia patients recognize positive and negative facial emotions displayed by a humanoid robot. We included 21 schizophrenia outpatients and 17 healthy participants. In a reaction time task, they were shown photographs of human faces and of a humanoid robot (iCub) expressing either positive or negative emotions, as well as a non-social stimulus. Patients' symptomatology, mind perception, reaction time and number of correct answers were evaluated. Results indicated that patients and controls recognized better and faster the emotional valence of facial expressions expressed by humans than by the robot. Participants were faster when responding to positive compared to negative human faces and inversely were faster for negative compared to positive robot faces. Importantly, participants performed worse when they perceived iCub as being capable of experiencing things (experience subscale of the mind perception questionnaire). In schizophrenia patients, negative correlations emerged between negative symptoms and both robot's and human's negative face accuracy. Individuals do not respond similarly to human facial emotion and to non-anthropomorphic emotional signals. Humanoid robots have the potential to convey emotions to patients with schizophrenia, but their appearance seems of major importance for human-robot interactions. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Humanoid robotics and human-centered initiatives at IRI

    OpenAIRE

    Alenyà, Guillem; Hernàndez, Sergi; Andrade-Cetto, J.; Sanfeliu, Alberto; Torras, Carme

    2009-01-01

    This work was supported by projects: 'Perception, action & cognition through learning of object-action complexes.' (4915), 'Ubiquitous networking robotics in urban settings' (E-00938), 'CONSOLIDER-INGENIO 2010 Multimodal interaction in pattern recognition and computer vision' (V-00069), 'Robotica ubicua para entornos urbanos' (J-01225), 'Grup de recerca consolidat - VIS' (2005SGR-00937), 'Percepción y acción ante incertidumbre' (4803), 'Grup de recerca consolidat - ROBÒTICA' (8007), 'The huma...

  20. Generalisation, decision making, and embodiment effects in mental rotation: A neurorobotic architecture tested with a humanoid robot.

    Science.gov (United States)

    Seepanomwan, Kristsana; Caligiore, Daniele; Cangelosi, Angelo; Baldassarre, Gianluca

    2015-12-01

    Mental rotation, a classic experimental paradigm of cognitive psychology, tests the capacity of humans to mentally rotate a seen object to decide if it matches a target object. In recent years, mental rotation has been investigated with brain imaging techniques to identify the brain areas involved. Mental rotation has also been investigated through the development of neural-network models, used to identify the specific mechanisms that underlie its process, and with neurorobotics models to investigate its embodied nature. Current models, however, have limited capacities to relate to neuro-scientific evidence, to generalise mental rotation to new objects, to suitably represent decision making mechanisms, and to allow the study of the effects of overt gestures on mental rotation. The work presented in this study overcomes these limitations by proposing a novel neurorobotic model that has a macro-architecture constrained by knowledge held on brain, encompasses a rather general mental rotation mechanism, and incorporates a biologically plausible decision making mechanism. The model was tested using the humanoid robot iCub in tasks requiring the robot to mentally rotate 2D geometrical images appearing on a computer screen. The results show that the robot gained an enhanced capacity to generalise mental rotation to new objects and to express the possible effects of overt movements of the wrist on mental rotation. The model also represents a further step in the identification of the embodied neural mechanisms that may underlie mental rotation in humans and might also give hints to enhance robots' planning capabilities.

  1. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.

    Science.gov (United States)

    Nassour, John; Hénaff, Patrick; Benouezdou, Fethi; Cheng, Gordon

    2014-06-01

    In this paper, we present an extended mathematical model of the central pattern generator (CPG) in the spinal cord. The proposed CPG model is used as the underlying low-level controller of a humanoid robot to generate various walking patterns. Such biological mechanisms have been demonstrated to be robust in locomotion of animal. Our model is supported by two neurophysiological studies. The first study identified a neural circuitry consisting of a two-layered CPG, in which pattern formation and rhythm generation are produced at different levels. The second study focused on a specific neural model that can generate different patterns, including oscillation. This neural model was employed in the pattern generation layer of our CPG, which enables it to produce different motion patterns-rhythmic as well as non-rhythmic motions. Due to the pattern-formation layer, the CPG is able to produce behaviors related to the dominating rhythm (extension/flexion) and rhythm deletion without rhythm resetting. The proposed multi-layered multi-pattern CPG model (MLMP-CPG) has been deployed in a 3D humanoid robot (NAO) while it performs locomotion tasks. The effectiveness of our model is demonstrated in simulations and through experimental results.

  2. On learning, representing, and generalizing a task in a humanoid robot.

    Science.gov (United States)

    Calinon, Sylvain; Guenter, Florent; Billard, Aude

    2007-04-01

    We present a programming-by-demonstration framework for generically extracting the relevant features of a given task and for addressing the problem of generalizing the acquired knowledge to different contexts. We validate the architecture through a series of experiments, in which a human demonstrator teaches a humanoid robot simple manipulatory tasks. A probability-based estimation of the relevance is suggested by first projecting the motion data onto a generic latent space using principal component analysis. The resulting signals are encoded using a mixture of Gaussian/Bernoulli distributions (Gaussian mixture model/Bernoulli mixture model). This provides a measure of the spatio-temporal correlations across the different modalities collected from the robot, which can be used to determine a metric of the imitation performance. The trajectories are then generalized using Gaussian mixture regression. Finally, we analytically compute the trajectory which optimizes the imitation metric and use this to generalize the skill to different contexts.

  3. Kinematics and Dynamics of a New 16 DOF Humanoid Biped Robot with Active Toe Joint

    Directory of Open Access Journals (Sweden)

    C. Hernández-Santos

    2012-11-01

    Full Text Available Humanoid biped robots are typically complex in design, having numerous Degrees-of-Freedom (DOF due to the ambitious goal of mimicking the human gait. The paper proposes a new architecture for a biped robot with seven DOF per each leg and one DOF corresponding to the toe joint. Furthermore, this work presents close equations for the forward and inverse kinematics by dividing the walking gait into the Sagittal and Frontal planes. This paper explains the mathematical model of the dynamics equations for the legs into the Sagittal and Frontal planes by further applying the principle of Lagrangian dynamics. Finally, a control approach using a PD control law with gravity compensation was recurred in order to control the desired trajectories and finding the required torque by the joints. The paper contains several simulations and numerical examples to prove the analytical results, using SimMechanics of MATLAB toolbox and SolidWorks to verify the analytical results.

  4. Universal Robot Hand Equipped with Tactile and Joint Torque Sensors: Development and Experiments on Stiffness Control and Object Recognition

    OpenAIRE

    Hiroyuki NAKAMOTO; Kobayashi, Futoshi; Nobuaki IMAMURA; Shirasawa, Hidenori; Kojima, Fumio

    2007-01-01

    Various humanoid robots have been developed and multifunction robot hands which are able to attach those robots like human hand is needed. But a useful robot hand has not been depeveloped, because there are a lot of problems such as control method of many degrees of freedom and processing method of enormous sensor outputs. Realizing such robot hand, we have developed five-finger robot hand. In this paper, the detailed structure of developed robot hand is described. The robot hand we developed...

  5. 基于ADAMS的仿人机器人步态仿真与分析%Gait Simulation and Analysis of Humanoid Robot Based on ADAMS

    Institute of Scientific and Technical Information of China (English)

    安志亮; 李卫国; 王利利; 蔡长亮

    2015-01-01

    Humanoid robot is a hot issue in the field of robotics research. Structure of the humanoid robot is designed based on Pro/E. Gait simulation analysis of the humanoid robot is carried out based on ADAMS. In the ADAMS environment ,the reasonable gait planning of humanoid robot is obtained ,and the quantitative analysis on the mass centre position of arm is carried out in the steady and rapid walking process of humanoid robot. Based on results of the simulation analysis, humanoid robot gait is optimized.%仿人机器人是机器人研究领域的热点问题。文中在利用Pro/E三维建模软件对仿人机器人进行了结构设计之后,又用ADAMS仿真分析软件对仿人机器人进行了步态仿真分析。在ADAMS环境下对针对仿人机器人进行了合理的步态规划,并且在仿人机器人平稳快速行走过程中对上肢的质心位置移动做了定量分析。最后针对仿真分析结果对仿人机器人步态进行了优化设计。

  6. Control of a Step Walking Combined to Arms Swinging for a Three Dimensional Humanoid Prototype

    Directory of Open Access Journals (Sweden)

    Amira Aloulou

    2010-01-01

    Full Text Available Problem statement: Present researches focus to make humanoid robots more and more autonomous so they can assist human in daily works like taking care of children, aged or disabled persons. In such social activities, the contemporary humanoid robots are expected to have human like morphology and gait. Studies on bipedal locomotion for humanoid robots are then part of the hottest topics in the field of robotic researches. Knowing the benefits of arm swinging for human gait, we propose in this study a new prototype of female humanoid robot morphology having the capabilities to swing arms during step walking. Approach: A new humanoid robot prototype had been introduced based on a human morphology corresponding to a woman whose weight is 70 kg and height is 1,73 m and using realistic gait parameters of a women. The female humanoid robot prototype was composed of fifteen links associated to twenty-six degrees of freedom. Winter statistical model had been applied to determine all physical parameters corresponding to each link. Modeling the proposed humanoid robot implies first to establish the kinematic model basically founded on Euler’s transformation matrix and then to set the dynamic model computed using the Newton-Euler method. To show how the arms played an important role in bipedal gait, we had chosen to consider the whole body as two independent robotic systems: the upper body and the lower body. Results: Both three dimensional kinematic and dynamic models of the humanoid robot had been developed. The three dimensional humanoid robot was controlled via a feedback linearization control during the single support, impact and double support phases. The simulation results showed the arm swing during the step of walking. Conclusion: The humanoid robot proposed has a human like morphology and ensures the function of a step walking with arm swinging. The applied control laws have ensured to the robot desired performances during a step walking.

  7. Room Volume Estimation Based on Ambiguity of Short-Term Interaural Phase Differences Using Humanoid Robot Head

    Directory of Open Access Journals (Sweden)

    Ryuichi Shimoyama

    2016-07-01

    Full Text Available Humans can recognize approximate room size using only binaural audition. However, sound reverberation is not negligible in most environments. The reverberation causes temporal fluctuations in the short-term interaural phase differences (IPDs of sound pressure. This study proposes a novel method for a binaural humanoid robot head to estimate room volume. The method is based on the statistical properties of the short-term IPDs of sound pressure. The humanoid robot turns its head toward a sound source, recognizes the sound source, and then estimates the ego-centric distance by its stereovision. By interpolating the relations between room volume, average standard deviation, and ego-centric distance experimentally obtained for various rooms in a prepared database, the room volume was estimated by the binaural audition of the robot from the average standard deviation of the short-term IPDs at the estimated distance.

  8. Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism.

    Science.gov (United States)

    Liu, Zhi; Chen, Ci; Zhang, Yun; Chen, C L P

    2015-03-01

    To achieve an excellent dual-arm coordination of the humanoid robot, it is essential to deal with the nonlinearities existing in the system dynamics. The literatures so far on the humanoid robot control have a common assumption that the problem of output hysteresis could be ignored. However, in the practical applications, the output hysteresis is widely spread; and its existing limits the motion/force performances of the robotic system. In this paper, an adaptive neural control scheme, which takes the unknown output hysteresis and computational efficiency into account, is presented and investigated. In the controller design, the prior knowledge of system dynamics is assumed to be unknown. The motion error is guaranteed to converge to a small neighborhood of the origin by Lyapunov's stability theory. Simultaneously, the internal force is kept bounded and its error can be made arbitrarily small.

  9. Active audition for humanoid robots that can listen to three simultaneous talkers

    Science.gov (United States)

    Okuno, Hiroshi G.; Nakadai, Kazuhiro

    2003-04-01

    The direction-pass filter (DPF) separates sounds originating from a particular direction by using a pair of microphones embedded in each ear of humanoid robot. DPF first extracts harmonic structures from each channel, finds a corresponding pair on right and left channels, and then calculates their interaural phase difference (IPD) and interaural intensity difference (IID). These IPD and IID are matched with reference data obtained by HRTF or by the geometrical relation to determine the sound source direction. The direction obtained by face detection may be used as a candidate for the direction. Finally, all subbands from the direction are collected to synthesize a wave form by inverse FFT. The allowance of collection depends on the direction; narrow (10 deg) at center, while wide (30 deg) at the periphery. This property is called ``auditory fovea'' and is exploited by DPF actively to improve performance of sound source separation. In addition, a humanoid actively turns its head toward the speaker to listen better. Real-time DPF is implemented by distributed processing with five PCs. Preliminary experiments of active audition in speech recognition of three simultaneous utterances of digits in a normal room is also reported. [Work supported by JSPS.

  10. Open Humanoid Robot Simulator Based on ODE%基于ODE引擎的开放式仿人机器人仿真

    Institute of Scientific and Technical Information of China (English)

    薛方正; 刘成军; 李楠; 李祖枢

    2011-01-01

    为了获得灵活、开放、简洁的仿真功能,提出了一种基于ODE(open dynamics engine)的仿人机器人仿真平台集成方案.将基于ODE的仿人机器人仿真系统开发过程定义为两类运算:变换叠加和关节叠加,并设计了这两类叠加的ODE算法.将仿人机器人结构描述为一个设计者和计算机都可以理解的结构表,将该结构表翻译为ODE基本元素实现仿真.设计并实现,一个基于所提出方案的仿人机器人仿真平台,根据基于倒立摆的步态规划思想,设计并在仿真平台上实现了双足步行的仿真实验.实验证明了文中方法的有效性.%To get open, flexible, and compact properties of simulators, an ODE (open dynamics engine) based integration solution of humanoid robot simulator is presented.The development procedure of the ODE based humanoid robot simulator is defined as two kinds of operations, i.e.transform summation and joint summation, and the ODE algorithms of the two operations are given.The structure of a humanoid robot is described by a robot structure table that can be understood by simulator designers and the computer.The robot structure table is translated into ODE elements to realize simulation.A humanoid robot simulation platform based on the proposed method is designed and realized.The biped walking experiment using an inverted pendulum based gait planning method is realized on the simulator.The experiment results prove the effectiveness of the presented methods.

  11. Peripersonal Space and Margin of Safety around the Body: Learning Visuo-Tactile Associations in a Humanoid Robot with Artificial Skin

    Science.gov (United States)

    Roncone, Alessandro; Fadiga, Luciano; Metta, Giorgio

    2016-01-01

    This paper investigates a biologically motivated model of peripersonal space through its implementation on a humanoid robot. Guided by the present understanding of the neurophysiology of the fronto-parietal system, we developed a computational model inspired by the receptive fields of polymodal neurons identified, for example, in brain areas F4 and VIP. The experiments on the iCub humanoid robot show that the peripersonal space representation i) can be learned efficiently and in real-time via a simple interaction with the robot, ii) can lead to the generation of behaviors like avoidance and reaching, and iii) can contribute to the understanding the biological principle of motor equivalence. More specifically, with respect to i) the present model contributes to hypothesizing a learning mechanisms for peripersonal space. In relation to point ii) we show how a relatively simple controller can exploit the learned receptive fields to generate either avoidance or reaching of an incoming stimulus and for iii) we show how the robot can select arbitrary body parts as the controlled end-point of an avoidance or reaching movement. PMID:27711136

  12. Optimal sagittal gait with ZMP stability during complete walking cycle for humanoid robots

    Institute of Scientific and Technical Information of China (English)

    Zongying SHI; Wenli XU; Yisheng ZHONG; Mingguo ZHAO

    2007-01-01

    A parametric method to generate low energy gait for both single and double support phases with zero moment point(ZMP) stability is presented. The ZMP stability condition is expressed as a limit to the actuating torque of the support ankle, and the inverse dynamics of both walking phases is investigated. A parametric optimization method is implemented which approximates joint trajectories by cubic spline functions connected at uniformly distributed time knots and makes optimization parameters only involve finite discrete states describing key postures. Thus, the gait optimization is transformed into an ordinary constrained nonlinear programming problem. The effectiveness of the method is verified through numerical simulations conducted on the humanoid robot THBIP-I model.

  13. The Study of Fractional Order Controller with SLAM in the Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Shuhuan Wen

    2014-01-01

    Full Text Available We present a fractional order PI controller (FOPI with SLAM method, and the proposed method is used in the simulation of navigation of NAO humanoid robot from Aldebaran. We can discretize the transfer function by the Al-Alaoui generating function and then get the FOPI controller by Power Series Expansion (PSE. FOPI can be used as a correction part to reduce the accumulated error of SLAM. In the FOPI controller, the parameters (Kp,Ki,  and  α need to be tuned to obtain the best performance. Finally, we compare the results of position without controller and with PI controller, FOPI controller. The simulations show that the FOPI controller can reduce the error between the real position and estimated position. The proposed method is efficient and reliable for NAO navigation.

  14. Slow walking model for children with multiple disabilities via an application of humanoid robot

    Science.gov (United States)

    Wang, ZeFeng; Peyrodie, Laurent; Cao, Hua; Agnani, Olivier; Watelain, Eric; Wang, HaoPing

    2016-02-01

    Walk training research with children having multiple disabilities is presented. Orthosis aid in walking for children with multiple disabilities such as Cerebral Palsy continues to be a clinical and technological challenge. In order to reduce pain and improve treatment strategies, an intermediate structure - humanoid robot NAO - is proposed as an assay platform to study walking training models, to be transferred to future special exoskeletons for children. A suitable and stable walking model is proposed for walk training. It would be simulated and tested on NAO. This comparative study of zero moment point (ZMP) supports polygons and energy consumption validates the model as more stable than the conventional NAO. Accordingly direction variation of the center of mass and the slopes of linear regression knee/ankle angles, the Slow Walk model faithfully emulates the gait pattern of children.

  15. Mood contagion of robot body language in human robot interaction

    NARCIS (Netherlands)

    Xu, J.; Broekens, J.; Hindriks, K.; Neerincx, M.A.

    2015-01-01

    The aim of our work is to design bodily mood expressions of humanoid robots for interactive settings that can be recognized by users and have (positive) effects on people who interact with the robots. To this end, we develop a parameterized behavior model for humanoid robots to express mood through

  16. Mood contagion of robot body language in human robot interaction

    NARCIS (Netherlands)

    Xu, J.; Broekens, D.J.; Hindriks, K.V.; Neerincx, M.A.

    2015-01-01

    The aim of our work is to design bodily mood expressions of humanoid robots for interactive settings that can be recognized by users and have (positive) effects on people who interact with the robots. To this end, we develop a parameterized behavior model for humanoid robots to express mood through

  17. Binaural Active Audition for Humanoid Robots to Localise Speech over Entire Azimuth Range

    Directory of Open Access Journals (Sweden)

    Hyun-Don Kim

    2009-01-01

    Full Text Available We applied motion theory to robot audition to improve the inadequate performance. Motions are critical for overcoming the ambiguity and sparseness of information obtained by two microphones. To realise this, we first designed a sound source localisation system integrated with cross-power spectrum phase (CSP analysis and an EM algorithm. The CSP of sound signals obtained with only two microphones was used to localise the sound source without having to measure impulse response data. The expectation-maximisation (EM algorithm helped the system to cope with several moving sound sources and reduce localisation errors. We then proposed a way of constructing a database for moving sounds to evaluate binaural sound source localisation. We evaluated our sound localisation method using artificial moving sounds and confirmed that it could effectively localise moving sounds slower than 1.125 rad/s. Consequently, we solved the problem of distinguishing whether sounds were coming from the front or rear by rotating and/or tipping the robot's head that was equipped with only two microphones. Our system was applied to a humanoid robot called SIG2, and we confirmed its ability to localise sounds over the entire azimuth range as the success rates for sound localisation in the front and rear areas were 97.6% and 75.6% respectively.

  18. Characterization of coiled SMA actuators for humanoid robot

    Science.gov (United States)

    Potnuru, Akshay; Tadesse, Yonas

    2017-04-01

    In this paper, we present modeling and characterization of coiled SMA spring actuators that are fabricated by coiling cylindrical SMA wires on to a threaded screw mandrel and applying heat treatment. Here, we evaluate a theoretical model that describes the actuation behavior of SMA coiled springs based on the constitutive model of SMA. We have experimentally verified the developed theoretical model and analyzed various parameters with respect to temperature change during actuation. The model was coded in Simulink® and the effects of various parameters with respect to temperature change were investigated. Simulations were compared with experiments and good agreement was obtained. We also show, how the high tension winding of SMA on the mandrel help in better performance and understanding of the fabricated coiled SMAs.

  19. Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model.

    Science.gov (United States)

    Ito, Masato; Noda, Kuniaki; Hoshino, Yukiko; Tani, Jun

    2006-04-01

    This study presents experiments on the learning of object handling behaviors by a small humanoid robot using a dynamic neural network model, the recurrent neural network with parametric bias (RNNPB). The first experiment showed that after the robot learned different types of ball handling behaviors using human direct teaching, the robot was able to generate adequate ball handling motor sequences situated to the relative position between the robot's hands and the ball. The same scheme was applied to a block handling learning task where it was shown that the robot can switch among learned different block handling sequences, situated to the ways of interaction by human supporters. Our analysis showed that entrainment of the internal memory structures of the RNNPB through the interactions of the objects and the human supporters are the essential mechanisms for those observed situated behaviors of the robot.

  20. Forward Models Applied in Visual Servoing for a Reaching Task in the iCub Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Daniel Fernando Tello Gamarra

    2009-01-01

    Full Text Available This paper details the application of a forward model to improve a reaching task. The reaching task must be accomplished by a humanoid robot with 53 degrees of freedom (d.o.f. and a stereo-vision system. We have explored via simulations a new way of constructing and utilizing a forward model that encodes eye–hand relationships. We constructed a forward model using the data obtained from only a single reaching attempt. ANFIS neural networks are used to construct the forward model, but the forward model is updated online with new information that comes from each reaching attempt. Using the obtained forward model, an initial image Jacobian is estimated and is used with a visual servoing controller. Simulation results demonstrate that errors are lower when the initial image Jacobian is derived from the forward model. This paper is one of the few attempts at applying visual servoing in a complete humanoid robot.

  1. Stable Walking of Humanoid Robots Using Vertical Center of Mass and Foot Motions by an Evolutionary Optimized Central Pattern Generator

    Directory of Open Access Journals (Sweden)

    Young-Dae Hong

    2016-02-01

    Full Text Available This paper proposes a method to produce the stable walking of humanoid robots by incorporating the vertical center of mass (COM and foot motions, which are generated by the evolutionary optimized central pattern generator (CPG, into the modifiable walking pattern generator (MWPG. The MWPG extends the conventional 3-D linear inverted pendulum model (3-D LIPM by allowing a zero moment point (ZMP variation. The disturbance caused by the vertical COM motion is compensated in real time by the sensory feedback in the CPG. In this paper, the vertical foot trajectory of the swinging leg, as well as the vertical COM trajectory of the 3-D LIPM, are generated by the CPG for the effective compensation of the disturbance. Consequently, using the proposed method, the humanoid robot is able to walk with a vertical COM and the foot motions generated by the CPG, while modifying its walking patterns by using the MWPG in real time. The CPG with the sensory feedback is optimized to obtain the desired output signals. The optimization of the CPG is formulated as a constrained optimization problem with equality constraints and is solved by two-phase evolutionary programming (TPEP. The validity of the proposed method is verified through walking experiments for the small-sized humanoid robot, HanSaRam-IX (HSR-IX.

  2. Study on State Transition Method Applied to Motion Planning for a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Xuyang Wang

    2008-11-01

    Full Text Available This paper presents an approach of motion planning for a humanoid robot using a state transition method. In this method, motion planning is simplified by introducing a state-space to describe the whole motion series. And each state in the state-space corresponds to a contact state specified during the motion. The continuous motion is represented by a sequence of discrete states. The concept of the transition between two neighboring states, that is the state transition, can be realized by using some traditional path planning methods. Considering the dynamical stability of the robot, a state transition method based on search strategy is proposed. Different sets of trajectories are generated by using a variable 5th-order polynomial interpolation method. After quantifying the stabilities of these trajectories, the trajectories with the largest stability margin are selected as the final state transition trajectories. Rising motion process is exemplified to validate the method and the simulation results show the proposed method to be feasible and effective.

  3. 一种仿人机器人跑步状态分析模型%A Running State Analysis Model for Humanoid Robot

    Institute of Scientific and Technical Information of China (English)

    王险峰; 洪炳镕; 朴松昊; 钟秋波

    2011-01-01

    In this paper, according to the dynamics of running humanoid robot, a probability model of running state analysis for humanoid robot is proposed based on the feedback of virtual acceleration sensor. Inertial force affects the running state of humanoid robot during the course of running. The value of acceleration can express inertial force. So we can obtain dynamic feedback from the virtual acceleration sensor built in humanoid robot to illustrate the running state of humanoid robot, and can analyse dynamic feedback from virtual acceleration sensor by using wavelet transform and fast Fourier transform. The probability model of running state analysis for humanoid robot is formulated by energy eigenvalue abstracted in freqency field. Using Mahalanobis distance as a criteria for stable running of humanoid robot, this model can express humanoid robot running state quantitatively. Simulation is conduct for humanoid robot model built with ADAMS, and the virtual acceleration sensor is built in the center of mass for humanoid robot. The experimental results show that this model is able to describe the running of humanoid robot and express the running state of humanoid robot during the course of running including start gait and stop gait, and it can help humanoid robot adjust their gaits with the change of environment to ensure their running stability.%依据仿人机器人跑步的动力学特性,通过对仿人机器人虚拟加速度传感器输出的信号进行分析,建立了仿人机器人跑步相关特征值的概率模型.针对仿人机器人的结构,分析了在整个跑步过程中惯性力和弯矩的作用,对跑步状态的影响,获取虚拟加速度传感器输出的信号,采用小波变换分析动态信号,同时进行快速傅里叶变换,在频域上提取能量特征值.使用马氏距离作为稳定跑步的判定标准,并给出了定量描述,在ADAMS软件中搭建仿人机器人,虚拟加速度传感器设置在质心处,进行跑步仿真实

  4. Biomechanics of Step Initiation After Balance Recovery With Implications for Humanoid Robot Locomotion.

    Science.gov (United States)

    Miller Buffinton, Christine; Buffinton, Elise M; Bieryla, Kathleen A; Pratt, Jerry E

    2016-03-01

    Balance-recovery stepping is often necessary for both a human and humanoid robot to avoid a fall by taking a single step or multiple steps after an external perturbation. The determination of where to step to come to a complete stop has been studied, but little is known about the strategy for initiation of forward motion from the static position following such a step. The goal of this study was to examine the human strategy for stepping by moving the back foot forward from a static, double-support position, comparing parameters from normal step length (SL) to those from increasing SLs to the point of step failure, to provide inspiration for a humanoid control strategy. Healthy young adults instrumented with joint reflective markers executed a prescribed-length step from rest while marker positions and ground reaction forces (GRFs) were measured. The participants were scaled to the Gait2354 model in opensim software to calculate body kinematic and joint kinetic parameters, with further post-processing in matlab. With increasing SL, participants reduced both static and push-off back-foot GRF. Body center of mass (CoM) lowered and moved forward, with additional lowering at the longer steps, and followed a path centered within the initial base of support (BoS). Step execution was successful if participants gained enough forward momentum at toe-off to move the instantaneous capture point (ICP) to within the BoS defined by the final position of both feet on the front force plate. All lower extremity joint torques increased with SL except ankle joint. Front knee work increased dramatically with SL, accompanied by decrease in back-ankle work. As SL increased, the human strategy changed, with participants shifting their CoM forward and downward before toe-off, thus gaining forward momentum, while using less propulsive work from the back ankle and engaging the front knee to straighten the body. The results have significance for human motion, suggesting the upper limit of the

  5. KASPAR – A Minimally Expressive Humanoid Robot for Human–Robot Interaction Research

    OpenAIRE

    Kerstin Dautenhahn; Nehaniv, Chrystopher L.; Walters, Michael L.; Ben Robins; Hatice Kose-Bagci; N. Assif Mirza; Mike Blow

    2009-01-01

    This paper provides a comprehensive introduction to the design of the minimally expressive robot KASPAR, which is particularly suitable for human–robot interaction studies. A low-cost design with off-the-shelf components has been used in a novel design inspired from a multi-disciplinary viewpoint, including comics design and Japanese Noh theatre. The design rationale of the robot and its technical features are described in detail. Three research studies will be presented that have been using ...

  6. Design of head system of emotional humanoid robot%仿人表情机器人头部系统设计

    Institute of Scientific and Technical Information of China (English)

    许向荣; 宋现春; 林仪彪

    2014-01-01

    With the continuous development of the artificial intelligence technology,intelligent service robot,which has human-computer interaction function, has become an important development direction in the field of robotics research,and humanoid robot with facial expression recognition and representation has become the focus of researches.In the paper,emotional characteristics and its definition have been analyzed,the mechanism,control system and software system of the head system of the robot with the function of expression reproduction have been designed on the basis of machinery design,sensor technology,actuator control and artificial intelligence technology.Through the design and control of the head system,the robot's head organ and expression control points can accurately and quickly move to designated position,so a variety of emotional expression can be completed.%随着人工智能技术的不断发展,具有人机交互功能的智能服务机器人已经成为机器人研究领域一个重要的发展方向,具有表情识别与再现能力的仿人表情机器人已成为该方向研究的热点。文章分析了表情机器人的表情特征及其定义,基于机械设计、传感器技术、电机控制、人工智能以及三维造型等技术对具有表情再现功能的机器人头部机械结构、控制系统及软件系统进行了研究与设计。通过对头部系统的控制与设计,该机器人的头部各器官及其相应的表情控制点可以迅速、精确地到达预定的位置,从而实现各种情感的表达。

  7. Preliminary Concept Study on Integrated Lunar Exploration of Astronaut and Humanoid Robot%航天员与类人机器人月面联合探测概念初步研究

    Institute of Scientific and Technical Information of China (English)

    李海阳; 张波; 黄海兵

    2014-01-01

    The development of technologies involved in human-robot joint exploration including the humanoid robot , tele-operation , man-machine shared control , and ground verification were intro-duced .Then the concept of integrated lunar exploration of astronaut and humanoid robot was studied and the system structure , mode analysis and mission programming of the lunar exploration were pro-posed .In the end , the key technologies such as humanoid robot technology , human-machine syner-gy technology , tele-operation and control technology and ground simulation verification technology were summarized .%介绍了人机联合探测中涉及的类人机器人、遥操作、人机共享控制、地面验证等技术发展现状;对月面类人机器人与航天员联合探测的概念进行了初步研究,规划出了月面人机联合探测系统结构、探测模式和探测任务等;并对类人机器人技术、人机协同操作技术、遥操作控制技术和地面仿真验证技术等关键技术进行了总结。

  8. Design of the Humanoid Dexterous Hand of Service Robots%服务机器人仿人灵巧手设计

    Institute of Scientific and Technical Information of China (English)

    左骏秋; 张磊; 金志鹏; 喜冠南; 孙小刚

    2014-01-01

    The current humanoid dexterons hand is problematic, of which the cost is excessive and the struc-ture is complicated, which results in that it is not conducive to the operation of service robots and market ex-pansion. Based on this, we propose a simple humanoid dexterous hand design. The program, only designs three fingers, and each finger has three degrees of freedom, applies one motor-driven under-drive mode. The finger joints are transmitted by interleaved steel belt, which guarantees each of them can rotate at the same time. The design of this simple humanoid robot hand not only ensures the realization of humanoid movements, but also saves spaces and costs, with simple but compact structure.%目前设计的仿人灵巧手存在成本过高、结构复杂等问题,不利于服务机器人的动作实现与市场拓展。基于此,提出一种简易的仿人灵巧手设计方案。该方案中,仅设计了三根手指,每根手指三个自由度,采用了电机驱动的欠驱动方式,手指每个关节间由交错式钢丝带传动,达到了关节同时转动的设计要求。该设计既完成了仿人动作,又能达到节省空间的目的,且结构简单而紧凑,降低了开发成本。

  9. Biomimetic walking trajectory generation of humanoid robot on an inclined surface using Fourier series.

    Science.gov (United States)

    Park, Ill-Woo; Kim, Jung-Yup

    2014-10-01

    This article describes a novel method to generate a biomimetic walking trajectory for a biped humanoid robot on an inclined surface. We assume that the configuration of the inclined surface is known, and we solve the human-like walking trajectory generation problem by obtaining the solution from the desired zero moment point (ZMP) trajectory to the center of gravity (CoG) trajectory. We present an analytic solution for the walking trajectory generation by using Fourier series. From the given ZMP trajectory biomimetically represented by the Fourier series, we focus on how to find the CoG trajectory in an analytical way. A time-segmentation based approach is adopted for generating the trajectories. The trajectory functions need to be continuous between the segments; thus, the solution is found by calculating the coefficients under these connectivity conditions. We derive a general form of the ZMP equation using a simple inverted pendulum model (SIPM), which includes the ZMP and the CoG trajectories in the horizontal and vertical directions to quantify the walking parameters on the inclined surface. The performance of the proposed approach is verified by conducting walking simulations using a full-body dynamic simulator on three different inclined surfaces and comparing them to the authors' previous approach.

  10. Smooth and Energy Saving Gait Planning for Humanoid Robot Using Geodesics

    Directory of Open Access Journals (Sweden)

    Liandong Zhang

    2012-01-01

    Full Text Available A novel gait planning method using geodesics for humanoid robot is given in this paper. Both the linear inverted pendulum model and the exact Single Support Phase (SSP are studied in our energy optimal gait planning based on geodesics. The kinetic energy of a 2-dimension linear inverted pendulum is obtained at first. We regard the kinetic energy as the Riemannian metric and the geodesic on this metric is studied and this is the shortest line between two points on the Riemannian surface. This geodesic is the optimal kinetic energy gait for the COG because the kinetic energy along geodesic is invariant according to the geometric property of geodesics and the walking is smooth and energy saving. Then the walking in Single Support Phase is studied and the energy optimal gait for the swing leg is obtained using our geodesics method. Finally, experiments using state-of-the-art method and using our geodesics optimization method are carried out respectively and the corresponding currents of the joint motors are recorded. With the currents comparing results, the feasibility of this new gait planning method is verified.

  11. A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.

    Science.gov (United States)

    Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip

    2014-11-01

    This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.

  12. Contextual action recognition and target localization with an active allocation of attention on a humanoid robot.

    Science.gov (United States)

    Ognibene, Dimitri; Chinellato, Eris; Sarabia, Miguel; Demiris, Yiannis

    2013-09-01

    Exploratory gaze movements are fundamental for gathering the most relevant information regarding the partner during social interactions. Inspired by the cognitive mechanisms underlying human social behaviour, we have designed and implemented a system for a dynamic attention allocation which is able to actively control gaze movements during a visual action recognition task exploiting its own action execution predictions. Our humanoid robot is able, during the observation of a partner's reaching movement, to contextually estimate the goal position of the partner's hand and the location in space of the candidate targets. This is done while actively gazing around the environment, with the purpose of optimizing the gathering of information relevant for the task. Experimental results on a simulated environment show that active gaze control, based on the internal simulation of actions, provides a relevant advantage with respect to other action perception approaches, both in terms of estimation precision and of time required to recognize an action. Moreover, our model reproduces and extends some experimental results on human attention during an action perception.

  13. Reaching and Grasping a Glass of Water by Locked-In ALS Patients through a BCI-Controlled Humanoid Robot.

    Science.gov (United States)

    Spataro, Rossella; Chella, Antonio; Allison, Brendan; Giardina, Marcello; Sorbello, Rosario; Tramonte, Salvatore; Guger, Christoph; La Bella, Vincenzo

    2017-01-01

    Locked-in Amyotrophic Lateral Sclerosis (ALS) patients are fully dependent on caregivers for any daily need. At this stage, basic communication and environmental control may not be possible even with commonly used augmentative and alternative communication devices. Brain Computer Interface (BCI) technology allows users to modulate brain activity for communication and control of machines and devices, without requiring a motor control. In the last several years, numerous articles have described how persons with ALS could effectively use BCIs for different goals, usually spelling. In the present study, locked-in ALS patients used a BCI system to directly control the humanoid robot NAO (Aldebaran Robotics, France) with the aim of reaching and grasping a glass of water. Four ALS patients and four healthy controls were recruited and trained to operate this humanoid robot through a P300-based BCI. A few minutes training was sufficient to efficiently operate the system in different environments. Three out of the four ALS patients and all controls successfully performed the task with a high level of accuracy. These results suggest that BCI-operated robots can be used by locked-in ALS patients as an artificial alter-ego, the machine being able to move, speak and act in his/her place.

  14. Reaching and Grasping a Glass of Water by Locked-In ALS Patients through a BCI-Controlled Humanoid Robot

    Science.gov (United States)

    Spataro, Rossella; Chella, Antonio; Allison, Brendan; Giardina, Marcello; Sorbello, Rosario; Tramonte, Salvatore; Guger, Christoph; La Bella, Vincenzo

    2017-01-01

    Locked-in Amyotrophic Lateral Sclerosis (ALS) patients are fully dependent on caregivers for any daily need. At this stage, basic communication and environmental control may not be possible even with commonly used augmentative and alternative communication devices. Brain Computer Interface (BCI) technology allows users to modulate brain activity for communication and control of machines and devices, without requiring a motor control. In the last several years, numerous articles have described how persons with ALS could effectively use BCIs for different goals, usually spelling. In the present study, locked-in ALS patients used a BCI system to directly control the humanoid robot NAO (Aldebaran Robotics, France) with the aim of reaching and grasping a glass of water. Four ALS patients and four healthy controls were recruited and trained to operate this humanoid robot through a P300-based BCI. A few minutes training was sufficient to efficiently operate the system in different environments. Three out of the four ALS patients and all controls successfully performed the task with a high level of accuracy. These results suggest that BCI-operated robots can be used by locked-in ALS patients as an artificial alter-ego, the machine being able to move, speak and act in his/her place. PMID:28298888

  15. 具有情感的类人表情机器人研究综述%Research Summarization of Humanoid Expression Robot with Emotion

    Institute of Scientific and Technical Information of China (English)

    王志良; 王巍; 谷学静; 郑思仪

    2011-01-01

    Humanoid expression robot with emotion is as one of hot topics in robot rsearch. To this area,summarization was given. First,after pectination of the road of research on emotional humanoid expression robot, related theories and technologies of representative robot were summarized synoptically. In additon, their system construction, mechanical structure, sensors,controlling system and another features were compared and analyzed. Second, theories and technologies to this area, such as facial action coding system, artificial psychology and artificial emotion, sensoring technlogy,image processing,voice recognization and synthesis were expounded in detail. Based on these, some future research directions to several existing problems were proposed. Lastly, developing of humanoid expression robot with emotion was forecasted.%具有情感的类人表情机器人是机器人研究领域中的热点问题之一.对这方面的研究现状进行了综述.首先,梳理了国内外具有情感的类人表情机器人的研究之路,概括性地总结了具有代表性的表情机器人涉及的相关理论与技术,并对比分析了其系统构成、机械结构、传感系统、控制系统和特性;其次,详细阐述了该领域所涉及的理论与技术,包括面部编码系统理论、人工心理与人工情感理论、传感技术、图像处理技术以及语音识别与表达技术,继而针对该领域研究中存在的问题讨论了进一步的研究方向;最后,对该领域未来的发展进行了展望.

  16. 仿人机器人动态步行控制综述%Survey on dynamic walking control of humanoid robot

    Institute of Scientific and Technical Information of China (English)

    刘成军; 李祖枢; 薛方正

    2009-01-01

    This paper surveys the history and current research on dynamic walking control of humanoid robot.The characteristics of dynamic walking are summarized and the stability criteria of dynamic walking are also analyzed.Posture stability criterion based on ZMP(Zero Moment Point) and gait stability criterion based on Poincaré map are introduced.The learning methods and adaptation capabilities of dynamic walking on a complex terrain are presented and the typical solutions of dynamic walking con-trol are reviewed.Several problems of dynamic walking control which need to be solved are listed and the development directions are presented.%综述了仿人机器人动态步行的研究历史和研究现状.归纳了动态步行的特点,分析了动态步行稳定性判定方法,介绍了基于ZMP的姿态稳定判据和基于庞加莱映射(Poincaré Map)的步态稳定判据.总结了仿人机器人学习适应复杂地面环境步行的方法,概述了动态步行控制实现的典型解决方案,指出了动态步行控制中待解决的问题,并探讨了未来的发展方向.

  17. Qualitative adaptive reward learning with success failure maps: applied to humanoid robot walking.

    Science.gov (United States)

    Nassour, John; Hugel, Vincent; Ben Ouezdou, Fethi; Cheng, Gordon

    2013-01-01

    In the human brain, rewards are encoded in a flexible and adaptive way after each novel stimulus. Neurons of the orbitofrontal cortex are the key reward structure of the brain. Neurobiological studies show that the anterior cingulate cortex of the brain is primarily responsible for avoiding repeated mistakes. According to vigilance threshold, which denotes the tolerance to risks, we can differentiate between a learning mechanism that takes risks and one that averts risks. The tolerance to risk plays an important role in such a learning mechanism. Results have shown the differences in learning capacity between risk-taking and risk-avert behaviors. These neurological properties provide promising inspirations for robot learning based on rewards. In this paper, we propose a learning mechanism that is able to learn from negative and positive feedback with reward coding adaptively. It is composed of two phases: evaluation and decision making. In the evaluation phase, we use a Kohonen self-organizing map technique to represent success and failure. Decision making is based on an early warning mechanism that enables avoiding repeating past mistakes. The behavior to risk is modulated in order to gain experiences for success and for failure. Success map is learned with adaptive reward that qualifies the learned task in order to optimize the efficiency. Our approach is presented with an implementation on the NAO humanoid robot, controlled by a bioinspired neural controller based on a central pattern generator. The learning system adapts the oscillation frequency and the motor neuron gain in pitch and roll in order to walk on flat and sloped terrain, and to switch between them.

  18. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  19. Grounding Action Words in the Sensorimotor Interaction with the World: Experiments with a Simulated iCub Humanoid Robot.

    Science.gov (United States)

    Marocco, Davide; Cangelosi, Angelo; Fischer, Kerstin; Belpaeme, Tony

    2010-01-01

    This paper presents a cognitive robotics model for the study of the embodied representation of action words. The present research will present how an iCub humanoid robot can learn the meaning of action words (i.e. words that represent dynamical events that happen in time) by physically interacting with the environment and linking the effects of its own actions with the behavior observed on the objects before and after the action. The control system of the robot is an artificial neural network trained to manipulate an object through a Back-Propagation-Through-Time algorithm. We will show that in the presented model the grounding of action words relies directly to the way in which an agent interacts with the environment and manipulates it.

  20. Grounding action words in the sensorimotor interaction with the world: experiments with a simulated iCub humanoid robot

    Directory of Open Access Journals (Sweden)

    Davide Marocco

    2010-05-01

    Full Text Available This paper presents a cognitive robotics model for the study of the embodied representation of action words. The present research will present how a iCub humanoid robot can learn the meaning of action words (i.e. words that represent dynamical events that happen in time by physically acting on the environment and linking the effects of its own actions with the behaviour observed on the objects before and after the action. The control system of the robot is an artificial neural network trained to manipulate an object through a Back-Propagation Through Time algorithm. We will show that in the presented model the grounding of action words relies directly to the way in which an agent interacts with the environment and manipulates it.

  1. Integración de sensores a bordo del robot mini-humanoide Bioloid

    OpenAIRE

    Valbuena Sánchez, Antonio

    2015-01-01

    En este proyecto se ha desarrollado el pie robótico ROBfoot para ser integrado en plataformas robóticas mini-humanoides. El proyecto nace en la línea de investigación de robótica mini-humanoide de la Asociación de Robótica de la Universidad Carlos III de Madrid persiguiendo aumentar las capacidades de las plataformas robóticas mini-humanoides que disponen. El pie robótico tiene la capacidad reconocer el entorno, procesar información y establecer comunicación con el controlador principal...

  2. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control.

    Science.gov (United States)

    Nam, Yunjun; Koo, Bonkon; Cichocki, Andrzej; Choi, Seungjin

    2014-02-01

    We present a novel human-machine interface, called GOM-Face , and its application to humanoid robot control. The GOM-Face bases its interfacing on three electric potentials measured on the face: 1) glossokinetic potential (GKP), which involves the tongue movement; 2) electrooculogram (EOG), which involves the eye movement; 3) electromyogram, which involves the teeth clenching. Each potential has been individually used for assistive interfacing to provide persons with limb motor disabilities or even complete quadriplegia an alternative communication channel. However, to the best of our knowledge, GOM-Face is the first interface that exploits all these potentials together. We resolved the interference between GKP and EOG by extracting discriminative features from two covariance matrices: a tongue-movement-only data matrix and eye-movement-only data matrix. With the feature extraction method, GOM-Face can detect four kinds of horizontal tongue or eye movements with an accuracy of 86.7% within 2.77 s. We demonstrated the applicability of the GOM-Face to humanoid robot control: users were able to communicate with the robot by selecting from a predefined menu using the eye and tongue movements.

  3. 智能仿人机器人的现状及展望%Actuality and prospect of intelligent humanoid robot

    Institute of Scientific and Technical Information of China (English)

    姜山; 程君实; 陈佳品; 刘江华

    2000-01-01

    The studies on humanoid robot attract more and more interests in the field of intelligent robot.The important characters of the humanoid robot are discussed in this paper.Based on the research works around the world,a thorough survey is presented.According to the analysis of the research,the prospects for the future research are described.%仿人机器人是当前智能机器人研究领域中最新的研究方向之一,并引起了广泛的注意。本文介绍了作为智能机器人重要表现形式的仿人机器人的特点,对世界上针对仿人机器人的研究工作进行了综述,指出了各自的侧重点及不足之处,指出了今后研究工作的重点。

  4. Humanoid: a final frontier; Humanoid wo mezashite

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, S. [Waseda University, Tokyo (Japan). School of Science and Engineering

    1998-03-05

    With an intention to achieve a Humanoid (a robot resembling human being), this paper introduces three cases of robot research (to which the author has been involved) with eyes placed on bodily functionality of the robot. The Wabot-2 exhibited at the Tsukuba Science Exhibition in 1985 has fingers, arms and legs with nearly the same shapes as those of human being, had a conversation in the Japanese language, and played an electronic organ with a skill comparable to professional pianists. The Hadaly-2 developed in 1997 is equipped with shapes and functions closer to human being than in the Wabot-2 except for the movement mechanism. The Hadaly-2 recognized an approaching person, greeted and shook hands with him, and played with building blocks with him. These model base robots which can respond to works based on initially prepared environment and scenario consist only of motion systems, while robots equipped with even biological autonomy systems in addition to the motion systems (but have no body construction as complex as human being) have been developed. 5 refs., 2 figs.

  5. A Robotic Therapy Case Study: Developing Joint Attention Skills with a Student on the Autism Spectrum

    Science.gov (United States)

    Charron, Nancy; Lewis, Lundy; Craig, Michael

    2017-01-01

    The purpose of this article is to describe a possible methodology for developing joint attention skills in students with autism spectrum disorder. Co-robot therapy with the humanoid robot NAO was used to foster a student's joint attention skill development; 20-min sessions conducted once weekly during the school year were video recorded and…

  6. Stability Criterion for Humanoid Running

    Institute of Scientific and Technical Information of China (English)

    LIZhao-Hui; HUANGQiang; LIKe-Jie

    2005-01-01

    A humanoid robot has high mobility but possibly risks of tipping over. Until now, one main topic on humanoid robots is to study the walking stability; the issue of the running stability has rarely been investigated. The running is different from the walking, and is more difficult to maintain its dynamic stability. The objective of this paper is to study the stability criterion for humanoid running based on the whole dynamics. First, the cycle and the dynamics of running are analyzed. Then, the stability criterion of humanoid running is presented. Finally, the effectiveness of the proposed stability criterion is illustrated by a dynamic simulation example using a dynamic analysis and design system (DADS).

  7. Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment.

    Directory of Open Access Journals (Sweden)

    Yuichi Yamashita

    2008-11-01

    Full Text Available It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties ("multiple timescales". Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms

  8. Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment.

    Science.gov (United States)

    Yamashita, Yuichi; Tani, Jun

    2008-11-01

    It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties ("multiple timescales"). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional

  9. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Alyssa M. Batula

    2017-01-01

    Full Text Available Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs, partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot that were mapped to four high-level commands (turn left, turn right, move forward, and move backward to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot and the physical-robot BCI (control of the DARwIn-OP humanoid robot. Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training.

  10. Neural-Dynamic-Method-Based Dual-Arm CMG Scheme With Time-Varying Constraints Applied to Humanoid Robots.

    Science.gov (United States)

    Zhang, Zhijun; Li, Zhijun; Zhang, Yunong; Luo, Yamei; Li, Yuanqing

    2015-12-01

    We propose a dual-arm cyclic-motion-generation (DACMG) scheme by a neural-dynamic method, which can remedy the joint-angle-drift phenomenon of a humanoid robot. In particular, according to a neural-dynamic design method, first, a cyclic-motion performance index is exploited and applied. This cyclic-motion performance index is then integrated into a quadratic programming (QP)-type scheme with time-varying constraints, called the time-varying-constrained DACMG (TVC-DACMG) scheme. The scheme includes the kinematic motion equations of two arms and the time-varying joint limits. The scheme can not only generate the cyclic motion of two arms for a humanoid robot but also control the arms to move to the desired position. In addition, the scheme considers the physical limit avoidance. To solve the QP problem, a recurrent neural network is presented and used to obtain the optimal solutions. Computer simulations and physical experiments demonstrate the effectiveness and the accuracy of such a TVC-DACMG scheme and the neural network solver.

  11. Humanoid Robot simulation and gait planning%人形机器人建模与步态规划

    Institute of Scientific and Technical Information of China (English)

    唐策; 赵现朝; 齐臣坤

    2012-01-01

    目前人形机器人控制的难点主要集中在:关节扭矩不够,运动稳定性不佳等方面.针对以上问题,提出了以下解决方案:针对关节扭矩不够选取了大扭矩电动机的同时,采用三次样条差值使运动轨迹更加平滑,减小输出扭矩.采用ZMP来观察运动轨迹,改善运动的稳定性.同时,由于人形机器人运动稳定性不佳,容易摔倒,使用ODE物理引擎在Labview中建模与仿真,进行更加方便的进行步态规划的研究.最终实现了仿真平台下人形机器人的稳定行走.%The control difficulties of humanoid robot are mainly concentrated on the insufficiency of joints torque and the poor stability of robot motion. To solve the insufficiency of joints torque, high torque motors are chosen, and the cubic spline interpolation is used to smooth the trajectory for reducing the output torque. ZMP trajectory is used to observe and improve the stability of movement. Meanwhile, due to the poor stability, it is easy to tumble the robot down. ODE is used to carry out modeling and simulation on the Labview platform, such that it is more convenient to make a study of the gait planning. Finally, a steady humanoid robot walking is achieved in the simulation environment.

  12. A running trajectory generation method for humanoid robot%一种仿人机器人跑步运动轨迹生成方法

    Institute of Scientific and Technical Information of China (English)

    王险峰; 洪炳镕; 朴松昊; 许宪东

    2011-01-01

    Using a cart-curved table model,a running trajectory generation method for humanoid robot was presented. Trajectory of center of mass for humanoid robot was planned in support phase and flight phase,respectively. Trajectory of center of mass for humanoid robot was planned by solving dynamic equation based on cart-curved table model in support phase. Center of mass for humanoid robot is parapolic movement in flight phase. At the same time, cubic interpolation method is used to plan foot trajectory in different phase. The simulation results show that humanoid robot is able to run stably. Our proposed methed is verified satisfactorily.%采用小车-曲面桌子模型,提出了一种仿人机器人跑步运动轨迹生成方法.针对仿人机器人在单腿支撑阶段和飞行阶段不同的运动方式,分别规划仿人机器人的质心轨迹,在单腿支撑阶段,求解根据小车-曲面桌子模型建立的动力学方程,规划出机器人的质心轨迹;在飞行阶段,仿人机器人质心作抛物线运动.采用3次插值方法规划双足在不同阶段的轨迹.仿真实验结果表明:仿人机器人能够实现稳定的跑步运动,验证了方法的有效性.

  13. Supervisory Control of a Humanoid Robot in Microgravity for Manipulation Tasks

    Science.gov (United States)

    Farrell, Logan C.; Strawser, Phil; Hambuchen, Kimberly; Baker, Will; Badger, Julia

    2017-01-01

    Teleoperation is the dominant form of dexterous robotic tasks in the field. However, there are many use cases in which direct teleoperation is not feasible such as disaster areas with poor communication as posed in the DARPA Robotics Challenge, or robot operations on spacecraft a large distance from Earth with long communication delays. Presented is a solution that combines the Affordance Template Framework for object interaction with TaskForce for supervisory control in order to accomplish high level task objectives with basic autonomous behavior from the robot. TaskForce, is a new commanding infrastructure that allows for optimal development of task execution, clear feedback to the user to aid in off-nominal situations, and the capability to add autonomous verification and corrective actions. This framework has allowed the robot to take corrective actions before requesting assistance from the user. This framework is demonstrated with Robonaut 2 removing a Cargo Transfer Bag from a simulated logistics resupply vehicle for spaceflight using a single operator command. This was executed with 80% success with no human involvement, and 95% success with limited human interaction. This technology sets the stage to do any number of high level tasks using a similar framework, allowing the robot to accomplish tasks with minimal to no human interaction.

  14. Humanoid Head Robot Based on Emotional Interaction%基于情感交互的仿人头部机器人

    Institute of Scientific and Technical Information of China (English)

    刘遥峰; 王志良

    2009-01-01

    本研究的甘的是设计一台机器人,使它可以与人互动,并在日常生活中和常见的地方协助人类.为了完成这些任务,机器人必须友好地显示出一些情感,表现出友好的特点和个性.依据仿生学,研制了一台仿人头部机器人,建立了机器人的行为决策模型.该机器人具有人类的6种基本面部表情,以及人脸检测、语音情感识别与合成、情感行为决策等能力,能够通过机器视觉、语音交互、情感表达等方式与人进行有效的情感交互.%The purpose of this research is to design a robot which can interact with people and help them in their daily lives and common areas. In order to accomplish these tasks, the robot must show some friendly feelings to demonstrate friendly features and personality. Based on bionics, a humanoid head robot is developed and the robot's behavior decision-making model is established. The robot has six basic facial expressions, and can accomplish face detection, speech recognition and synthesis, and emotional behavior decision. The robot can interact with people in an emotional manner through machine vision, speech interaction and emotional expression effectively.

  15. Eye-head stabilization mechanism for a humanoid robot tested on human inertial data

    DEFF Research Database (Denmark)

    Vannucci, Lorenzo; Falotico, Egidio; Tolu, Silvia;

    2016-01-01

    they keep the image stationary on the retina. In this work we present the first complete model of eye-head stabilization based on the coordination of VCR and VOR. The model is provided with learning and adaptation capabilities based on internal models. Tests on a simulated humanoid platform replicating...

  16. Development of a system based on 3D vision, interactive virtual environments, ergonometric signals and a humanoid for stroke rehabilitation.

    Science.gov (United States)

    Ibarra Zannatha, Juan Manuel; Tamayo, Alejandro Justo Malo; Sánchez, Angel David Gómez; Delgado, Jorge Enrique Lavín; Cheu, Luis Eduardo Rodríguez; Arévalo, Wilson Alexander Sierra

    2013-11-01

    This paper presents a stroke rehabilitation (SR) system for the upper limbs, developed as an interactive virtual environment (IVE) based on a commercial 3D vision system (a Microsoft Kinect), a humanoid robot (an Aldebaran's Nao), and devices producing ergonometric signals. In one environment, the rehabilitation routines, developed by specialists, are presented to the patient simultaneously by the humanoid and an avatar inside the IVE. The patient follows the rehabilitation task, while his avatar copies his gestures that are captured by the Kinect 3D vision system. The information of the patient movements, together with the signals obtained from the ergonometric measurement devices, is used also to supervise and to evaluate the rehabilitation progress. The IVE can also present an RGB image of the patient. In another environment, that uses the same base elements, four game routines--Touch the balls 1 and 2, Simon says, and Follow the point--are used for rehabilitation. These environments are designed to create a positive influence in the rehabilitation process, reduce costs, and engage the patient.

  17. 基于人体工程学的仿人机械臂构型%Configuration of Humanoid Robotic Arm Based on Human Engineering

    Institute of Scientific and Technical Information of China (English)

    赵京; 宋春雨; 杜滨

    2013-01-01

    针对仿人机械臂构型问题,提出一种新的筛选方法,并确定串联结构方式下最符合人臂特征的仿人机械臂构型.从人体解剖学的角度出发,分析人臂的运动机理,并结合人体测量学和机器人学相关原理构建6种不同的仿人机械臂构型.提出全局相对可操作度指标对不同构型进行灵活性分析,并采用可视化方法绘制出各构型的运动灵活性性能分布图.根据人臂的运动特性分析人臂的运动工作空间,将各构型仿人机械臂工作空间与其对比,从而筛选出串联方式下的最佳仿人机械臂构型.该结果为仿人机械臂的设计提供了理论依据,并为后续运动规划奠定了基础.%A new screening method is proposed in configuring humanoid robotic arm,and a series configuration which is most consistent with the human arm characteristics is constructed The morement mechamnsm of human arm from the point of view of human anatomy is analyzed,and 6 types of humanoid robotic arm combined with the mechanism of anthropometry and robotics are constructed.The global relative manipulability index is put forward,and the dexterity of different types of humanoid robotic arm with this index are analyzed.The visualization method is used to plot the image of dexterous performance distribution.The workspaces of human arm are analyzed,and different types of humanoid robotic arm's workspace with it are contrasted,thereby screening the best type of humanoid robotic arm.The results lay the foundation for humanoid robotic arm design and follow-up study of motion planning.

  18. Waist design and motion simulation for pneumatic type humanoid robot%气压式仿人机器人的腰部设计与运动仿真

    Institute of Scientific and Technical Information of China (English)

    邱家浩; 蒋刚

    2012-01-01

    提出了一种新型的气压式仿人机器人腰部机构,它具有结构简单和运动稳定的特点.气压式仿人机器人腰部的运动受到手部、头部和腿部等关节力矩的影响.在对机器人进行简化之后,依据高效-欧拉算法,对该仿人机器人进行整体建模,导出腰部俯仰和侧转关节的动力学模型.从动力学上分析,机器人腰部手部和腿部的运动以及外力(矩)等的影响.在Pro/e3.0上建立仿人机器人腰部结构模型,然后导入ADAMS中进行动力学仿真研究,验证了该模型的正确性.%It presents a new type of waist institutions of a pneumatic humanoid robot with simple structure and stable movementThe motion of pneumatic humanoid robot waist is affected by the torque of hand,head and legs joints.After Simplifying the robot,the modeling for overall humanoid robot is made based on efficient-Euler algorithm.Then,the dynamic model of pitching and tilt waist joint is derived. The impacts of the robot waist,hands and legs,as well as external forces (moments)on the kinetics is analyzed. After that, the waist structural of humanoid robot is modeled in Pro/e3.0,and then imported into the ADAMS for dynamic simulation,which results verify the correctness of the model.

  19. Analysis of the present research status and key technology of the humanoid emotion-interactive countenance robot%仿人情感交互表情机器人研究现状及关键技术

    Institute of Scientific and Technical Information of China (English)

    柯显信; 尚宇峰; 卢孔笔

    2013-01-01

    仿人情感交互表情机器人作为当前智能机器人研究领域中热门的研究方向之一,引起了广泛的关注。为了更加深入地研究仿人表情机器人,对日本、美国、欧盟和国内表情机器人的一些研究成果做了总结。分析了仿人情感交互表情机器人研究的理论框架和关键技术。最后,探讨了未来的发展趋势,对今后的研究方向提出了几点看法。%An increasing amount of research is being focused on the contemporary field of robotic intelligence .As a result, the humanoid emotion-interactive countenance robot is attracting wider attention .This paper summarizes some of the research achievements regarding the countenance robot in Japan , the USA, the European Union and China .Additionally this paper analyzes the theoretical framework and key technology of the research for the human-oid emotion-interactive countenance robot , and finally the authors discuss the future development trends and put forward some opinions on the future direction of the research .

  20. Keep focussing: striatal dopamine multiple functions resolved in a single mechanism tested in a simulated humanoid robot.

    Science.gov (United States)

    Fiore, Vincenzo G; Sperati, Valerio; Mannella, Francesco; Mirolli, Marco; Gurney, Kevin; Friston, Karl; Dolan, Raymond J; Baldassarre, Gianluca

    2014-01-01

    The effects of striatal dopamine (DA) on behavior have been widely investigated over the past decades, with "phasic" burst firings considered as the key expression of a reward prediction error responsible for reinforcement learning. Less well studied is "tonic" DA, where putative functions include the idea that it is a regulator of vigor, incentive salience, disposition to exert an effort and a modulator of approach strategies. We present a model combining tonic and phasic DA to show how different outflows triggered by either intrinsically or extrinsically motivating stimuli dynamically affect the basal ganglia by impacting on a selection process this system performs on its cortical input. The model, which has been tested on the simulated humanoid robot iCub interacting with a mechatronic board, shows the putative functions ascribed to DA emerging from the combination of a standard computational mechanism coupled to a differential sensitivity to the presence of DA across the striatum.

  1. Walking Stability Compensation Strategy of a Small Humanoid Robot Based on the Error of Swing Foot Height and Impact Force

    Directory of Open Access Journals (Sweden)

    Jiandong Zhao

    2013-05-01

    Full Text Available In order to reduce the impact force of swing legs and improve walking stability when a small humanoid robot is walking, a set of impact dynamics equations based on the second kind Lagrange equation is produced, and an impact compensation control strategy with a BP network optimized by a particle swarm algorithm is designed. The core element of the compensation controller is replacing the error back propagation with a particle swarm algorithm. Due to the regulating joints of the knee, hip and ankle, the walking process is more stable than before. The experiment results show that when the left swing leg lands, the impact force drops by 2N and 1.5N respectively in the moments 4.5s and 10.5s. Therefore, the compensation strategy can reduce the impact force effectively and improve the walking stability.

  2. Research of Humanoid Robot Biped Walking Model%仿人机器人双足行走模型研究

    Institute of Scientific and Technical Information of China (English)

    肖乐; 张玉生; 殷晨波

    2011-01-01

    针对仿人机器人双足行走的稳定性问题,引入零力矩点理论,根据稳定行走必须满足地面反作用力位于稳定区域内这个条件,推导出仿人机器人在行走过程中单双腿支撑期的稳定区域面积和稳定裕量.建立2种不同形状的仿人机器人双足模型,在足底和地面间创建一系列接触力,并通过机械系统动力学自动分析软件得到行走过程中足底各个点的受力曲线并进行受力分析,得出合理的双足形状.%Aiming at the problem of walking stability in humanoid robot, this paper introduces Zero Moment Point(ZMP) theory, the reaction force of ground must be inside the support polygon to maintain dynamic balance. The area of stable region and stability margin in single support phase and double support phase are deduced. Humanoid robot biped walking model with two different shapes is established, and a series of contact is set between sole and ground. The contact forces ware got through Automatic Dynamic Analysis of Mechanical System(ADAMS) software after analyzing simulation and the forces of the sole during walking, it gets reasonable bipedal shape.

  3. Analysis of Humanoid Robot which Uses in Disabled People's Living%仿人机器人在残障人生活起居中的应用分析

    Institute of Scientific and Technical Information of China (English)

    李剑; 李辉

    2012-01-01

    本文在仿人机器人与残障人的基础上,进一步从应用需求、应用可行性、应用范围、应用现状、应用前景、发展趋势等方面,分析研究了仿人机器人在残障人生活起居中的应用可能性、必要性、科学性及未来发展趋势.%On the basis of concept and characteristics of humanoid robot and disabled people, further from application requirements, application feasibility, application scope, application status, application prospects, application trends, etc. This article analyzed and researched the application of humanoid robot in the daily life of disabled people. All of this is not only showing the possibilities, the necessity and scientific of application of humanoid robot uses in the daily life of disabled people, but also provides a theoretical basis and research base for further research and specific applications design to service robots.

  4. 基于HMCD的仿人机器人单杠运动控制策略%HMCD-based dynamic motion control strategy of humanoid robot on a horizontal bar

    Institute of Scientific and Technical Information of China (English)

    陈雯柏; 高世杰; 吴细宝

    2012-01-01

    为完成仿人机器人单杠运动,分析了欠驱动单杠机器人Acrobot模型,并根据IHOG技术要求、实物机器人本体结构和自由度配置,提出了基于HMCD的控制策略.通过单杠视频捕捉获取人体运动数据,根据仿人机器人模型分析关键特征点、基本动作的运动数据得到的关键帧的关节角数据,经过运动学约束调整,采用插值方法生成能够应用于仿人机器人的运动轨迹.在MF-1型仿人机器人单杠实物平台上进行控制实验的成功,验证了该方法的有效性.%Aiming at the movement implementation of a humanoid robot on a horizontal bar, the control strategy based on HMCD (human motion capture data) is proposed in this paper. The Acrobot model, its physical structure, the degree of freedom and the technical requirements of International Humanoid-robot Olympic Games (IHOG) were analyzed for the robot on a horizontal bar. The key steps of this dynamic motion strategy are motion data capture through the video of humans motion on the horizontal bar, the key feature points'analysis of the humanoid robot model and the joint angles kinematic data match in the basic movements. After making the appropriate adjustments due to the kinematic constraints, an interpolation method was used to generate the motion trajectory of all the joints. The experimental results, based on MF-1 type humanoid robot on the horizontal bar indicate that the proposed method is feasible and effective.

  5. IKid 仿人足球机器人的自定位和球定位%Self-positioning and soccer-positioning of IKid humanoid robots

    Institute of Scientific and Technical Information of China (English)

    徐杰超; 李伟仙; 谢瑞亲; 祝连庆

    2016-01-01

    仿人足球机器人的定位问题是机器人完成自主移动和智能决策的关键问题之一。介绍了本校IKid仿人足球机器人自身在球场的定位和足球在机器人坐标系的定位。前者通过自身内部九轴惯性传感器测量加速度、磁场方向和旋转角速度,并在此基础上通过粒子滤波和时间漂移修正等手段补偿误差完成机器人自身的位置和姿态计算。后者通过摄像头采集足球的视觉图像,在图像处理的基础上通过单目摄像机视觉系统完成在眼坐标系中足球三维坐标的计算,并通过手眼标定实现足球在机器人坐标系的定位。以上定位系统和定位方法已被应用于现有的IKid机器人,使其更好地完成动态行走、找球和踢球等动作。%Positioning issue of Humanoid robots is one of the key issues for its auto moving and automatic decision . This paper introduces the self-positioning on soccer field and the soccer-positioning in robots coordinate frames of IKid humanoid robots from our team . With 9-axes inertia sensor to measure acceleration , magnetic field direction and rotation angular velocity , IKid humanoid robots removes measurement error by particle filter and time drift compensation ,and then calculates itself position and posture .In the meanwhile ,with one camera to capture soccer image ,IKid humanoid robots calculates the soccer ’ s position in the camera coordinates (that is the robotic eye coordinates) ,and then transform it to the robotic hand coordinates by hand-eye calibration parameters .The above positioning system and method have been applied to the IKid humanoid robots and help it to walk dynamically ,look for and kick the soccer better .

  6. Online control of a humanoid robot through hand movement imagination using CSP and ECoG based features.

    Science.gov (United States)

    Kapeller, C; Gergondet, P; Kamada, K; Ogawa, H; Takeuchi, F; Ortner, R; Pruckl, R; Kheddar, A; Scharinger, J; Guger, C

    2015-08-01

    Intention recognition through decoding brain activity could lead to a powerful and independent Brain-Computer-Interface (BCI) allowing for intuitive control of devices like robots. A common strategy for realizing such a system is the motor imagery (MI) BCI using electroencephalography (EEG). Changing to invasive recordings like electrocorticography (ECoG) allows extracting very robust features and easy introduction of an idle state, which might simplify the mental task and allow the subject to focus on the environment. Especially for multi-channel recordings like ECoG, common spatial patterns (CSP) provide a powerful tool for feature optimization and dimensionality reduction. This work focuses on an invasive and independent MI BCI that allows triggering from an idle state, and therefore facilitates tele-operation of a humanoid robot. The task was to lift a can with the robot's hand. One subject participated and reached 95.4 % mean online accuracy after six runs of 40 trials. To our knowledge, this is the first online experiment with a MI BCI using CSPs from ECoG signals.

  7. 一种仿人机器人步态优化的新方法研究%Gait Optimizing of Humanoid Robots Using a New Method

    Institute of Scientific and Technical Information of China (English)

    徐李超; 张祺

    2012-01-01

    It uses the seven-link model for humanoid robots to establish the robot posture vector. First, a polynomical equation with five parameters was used to fit the robot hip's curves, and then a non-time reference variable was used to work out the robot's ankle and knee trajectories. In the region where the robot can walk stably, the maximum distance for the robot's ZMP deviation from the foot center was obtained by using the genetic algorithm. At the same time, the parameters of the hip were determined to optimize the humanoid robot gait. Experimental results show that this method is effective.%利用仿人机器人七连杆模型,建立了机器人姿态的位置向量.先用带参数的五次多项式拟合机器人髋关节的位置曲线,然后用非时间参考变量的方式规划出了踝关节和膝关节的运动轨迹.在机器人步行的稳定区域内,通过遗传算法求得了ZMP点偏离脚掌中心距离的最大值,从而确定了髋关节的参数,实现了仿人机器人步态优化.实验证明该方法有效.

  8. A method of bidirectional dynamic modeling for humanoid robot%仿人机器人的一种双向动力学建模方法

    Institute of Scientific and Technical Information of China (English)

    李国进; 易丐; 林瑜

    2011-01-01

    To obtain more accurate dynamic model of humanoid robot, this paper proposes a method of bidirectional dynamic modeling for the joints of humanoid robot. By considering of the efficiency of power transmission in two different directions, the humanoid robot was simplified as five-link mechanic structure according to the definition of ground constraint forces and joint torques. By employing the Lagrange equation, a bidirectional dynamic model of the humanoid robot was built. Compareed with the traditional modle, the results of the experiment based on SHR-6S platform and computer simulation demonstrate that this bidirectional dynamic model have a smaller error range.%为了得到更精确的仿人机器人动力学模型,提出一种在仿人机器人关节处采用双向动力学建模的方法.考虑关节处两个不同传输方向的功率传输效率,根据地面约束力和关节力矩定义,将仿人机器人简化为五连杆结构,采用Lagrange方程建立仿人机器人的双向动力学模型.对双向动力学模型进行计算机仿真,并在小型仿人机器人SHR-6S平台上进行对比实验.实验结果验证该双向动力学模型较传统方法建立的模型误差更小,更接近实测结果.

  9. 基于中枢模式发生器的仿人机器人步态规划%Humanoid robot gait planning based on Central Pattern Generator

    Institute of Scientific and Technical Information of China (English)

    李正文; 张国良; 张维平; 羊帆

    2011-01-01

    对Matsuoka振荡器进行了分析,根据仿人机器人步态规划的要求,选用Matsuoka振荡器构建了中枢模式发生器(CPG)网络;采用遗传算法(GA)来调整网络的参数,解决了关键的网络参数调整的问题;根据CPG网络的输出结果,控制仿人机器人的相应关节,实现了仿人机器人基本步态规划。通过ADAMS进行了仿真,结果表明,该控制策略具有较理想的效果,并且原理简单,易于实现。%The Matsuoka oscillator was analyzed, according to the humanoid robot gait planning requirements, the Matsuoka oscillator was selected to construct the Central Pattern Generator (CPG) network, using genetic algorithms (GA) to adjust the network parameters, the key network parameter adjustment problem was solved; according to the CPG network output results, the humanoid robot relevant joint was controlled, the basic gait planning of the humanoid robot was achieved. Through the ADAMS simulation, the results show that this control strategy has an ideal effect, and the principle is simple, easy to implement.

  10. 仿人机器人步态规划反馈控制研究综述%Review of humanoid robot feedback control gait planning

    Institute of Scientific and Technical Information of China (English)

    毕盛; 闵华清; 陈强

    2011-01-01

    Humanoid robot gait planning is one of the most important research areas.The main methods of humanoid robot gait planning, feedback control method and not feedback control method, are introduced.The characteristics of feedback control gait planning are summarized and described the concrete control method and process of many famous humanoid robots,such as Asimo,HRP,KHR and Darmstad.The problems of feedback control gait planning to bc solved in the future are listed.%仿人机器人步行稳定性是机器人领域重要研究内容之一.介绍了仿人机器人常用的步态规划方法,划分为非反馈式和反馈式的两种步态规划算法.总结了反馈式步态规划主要研究的内容,并以世界著名Asimo、HRP、KHR和Darmstad仿人机器人为例,描述仿人机器人具体反馈控制方法和过程.探讨了仿人机器人步态反馈控制中有待研究的内容.

  11. Inverse Kinematics Analysis for Humanoid Running Robot%人形跑步机器人的逆运动学分析

    Institute of Scientific and Technical Information of China (English)

    王利平; 魏航信; 刘明治

    2011-01-01

    提出一种人形跑步机器人逆运动学的分析方法.由于机器人在跑步时存在一个双脚离地的腾空阶段,因此建立了惯性坐标系、参考坐标系和物体坐标系,用来确定机器人身体各个部分的相对位置.采用齐次坐标转换矩阵分析机器人质心和双脚轨迹与机器人各个关节角度、角速度、角加速度等的关系,并用Newton-Raphson方法根据机器人质心轨迹和双脚轨迹计算出各个关节的运动参数,完成逆运动学分析.并通过算例验证这种方法的有效性.%An analysis method of inverse kinematics for humanoid running robot was proposed. Inertia coordinates, reference coordinates and body coordinates were built to determine relative position of each part on body of the robot since there was a flight phase of two feet lifting off ground while it was running. By using homogeneous transformation matrix, the relationships between the center of mass (COM) of the robot with trajectories of two feet and each joint angle, angular velocity, angular acceleration were analyzed. The Newton-Raphson algorithm was used to calculate the kinematic parameters of each joint according to the trajectories of COM of the robot and its two feet. So the inverse kinematics analysis was accomplished. A simulation was made to verify effectiveness of the method.

  12. Adaptive gaze stabilization through cerebellar internal models in a humanoid robot

    DEFF Research Database (Denmark)

    Vannucci, Lorenzo; Tolu, Silvia; Falotico, Egidio

    2016-01-01

    Two main classes of reflexes relying on the vestibular system are involved in the stabilization of the human gaze: The vestibulocollic reflex (VCR), which stabilizes the head in space and the vestibulo-ocular reflex (VOR), which stabilizes the visual axis to minimize retinal image motion. The VOR...... on the coordination of VCR and VOR and OKR. The model, inspired on neuroscientific cerebellar theories, is provided with learning and adaptation capabilities based on internal models. Tests on a simulated humanoid platform confirm the effectiveness of our approach....

  13. Humanoid Robot: A Review of the Architecture, Applications and Future Trend

    Directory of Open Access Journals (Sweden)

    Chen-Hunt Ting

    2014-02-01

    Full Text Available With the advancement in the area of robotics, exoskeleton technology has come a long way since its beginnings in the late 60’s. Researchers over the world have developed their own exoskeleton prototypes and some of the well known exoskeleton includes the BLEEX, MIT exoskeleton, HAL, LOPES, ALEX and many more. Although technologies have since improved from the 60’s, challenges still exist in exoskeleton design. In this study, we are going to review different exoskeleton technologies as well as its role in the area of rehabilitation. This purpose in rehabilitation is promising, based on countless of researches which have been done.

  14. From Concept to Realization: Designing Miniature Humanoids for Running

    Directory of Open Access Journals (Sweden)

    Youngbum Jun

    2010-02-01

    Full Text Available Humanoid robots present exciting research possibilities such as human gaits, social interaction, and even creativity. Full-size humanoid designs have shown impressive capabilities, yet are custom-built and expensive. Cost and sophistication barriers make reproducing and verifying results very difficult. The recent proliferation of mini-humanoids presents an affordable alternative, in that smaller robots are cheaper to own and simpler to operate. At less than 2000 USD, these robots are capable of human-like motion, yet lack precision sensors and processing power. The authors' goal is to produce a miniature humanoid robot that is both small and affordable, while capable of advanced dynamic walking and running. This requires sensing of the robot's inertia and velocity, the forces on its feet, and the ability to generate and modify motion commands in real time. The presented design uses commercial parts and simple machining methods to minimize cost. A power-efficient mobile x86 computer on-board leverages existing operating systems and simplifies software development. Preliminary results demonstrate controlled walking and feedback control.

  15. A non-humanoid robot in the "uncanny valley": experimental analysis of the reaction to behavioral contingency in 2-3 year old children.

    Science.gov (United States)

    Yamamoto, Kentaro; Tanaka, Saori; Kobayashi, Hiromi; Kozima, Hideki; Hashiya, Kazuhide

    2009-09-16

    Infants' sensitivity to social or behavioral contingency has been examined in the field of developmental psychology and behavioral sciences, mainly using a double video paradigm or a still face paradigm. These studies have shown that infants distinguish other individuals' contingent behaviors from non-contingent ones. The present experiment systematically examined if this ability extends to the detection of non-humanoids' contingent actions in a communicative context. We examined two- to three-year-olds' understanding of contingent actions produced by a non-humanoid robot. The robot either responded contingently to the actions of the participants (contingent condition) or programmatically reproduced the same sequence of actions to another participant (non-contingent condition). The results revealed that the participants exhibited different patterns of response depending on whether or not the robot responded contingently. It was also found that the participants did not respond positively to the contingent actions of the robot in the earlier periods of the experimental sessions. This might reflect the conflict between the non-humanlike appearance of the robot and its humanlike contingent actions, which presumably led the children to experience the uncanny valley effect.

  16. 基于并联机构的仿人机器人结构设计%Structure Design of Humanoid Robot Based on Parallel Mechanisms

    Institute of Scientific and Technical Information of China (English)

    戴珊珊; 陈庆贺

    2011-01-01

    仿人型机器人具有较强的环境适应能力.为了提高机器人的灵活性及稳定性,文章采用球面三自由度并联机构作为腰关节,并对该关节结构进行了改进,设计了一种新型的仿人型机器人,并利用ADAMS软件对其进行了仿真验证.结果表明,机器人能够进行完整的步态行走,腰部并联机构采用3-RRR+S’-p机构,能够实现机器人腰部的灵活运动,具有较好的稳定性和刚性.%The humanoid robot has the stronger adaptive capacity to environments. In order to increase the flexibility and stability of the robot, the spherical 3-dof parallel mechanism was choosed as the waist joint. The structure of joint was optimized. And a new type humanoid robot was designed. The robot was emulated by ADAMS software. The results indicated that the robot could walk and the 3-RRR + S' -P manipulator could make the waist joint move flexibly with preferable stability and rigidity.

  17. DARPA Robotics Challenge (DRC) Using Human-Machine Teamwork to Perform Disaster Response with a Humanoid Robot

    Science.gov (United States)

    2017-02-01

    Virtual Robotics Challenge (VRC), Trials, and Finals), as well as an extended research phase. It gives an overview of their general workflow for...four phases of IHMC’s participation in the DARPA Robotics Challenge: Phase 1, Virtual Robotics Challenge; Phase 2, Trials; Phase 3, Finals; and Phase...VRC, and the DRC Trials. 15. SUBJECT TERMS Robotics, Mobility, Platform Dexterity, Supervised Autonomy, Wireless, Ground 16. SECURITY CLASSIFICATION

  18. Mobile Autonomous Humanoid Assistant

    Science.gov (United States)

    Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.

    2004-01-01

    A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  19. Oscillators and crank turning: exploiting natural dynamics with a humanoid robot arm.

    Science.gov (United States)

    Williamson, Matthew M

    2003-10-15

    This paper presents an approach to robot-arm control that exploits the natural dynamics of the arm. This is in contrast to traditional approaches, which either ignore or cancel out arm dynamics. While the traditional approaches are more general, they often result in systems and robot designs that are not robust. The alternative approach gives systems that are computationally simple, robust to variation in system parameters, robust to changes in the dynamics themselves, and versatile. The approach is examined using the example of a compliant robot arm, controlled by independent neural oscillators, in a crank-turning task. A model is constructed, and the robot behaviour compared with the model. These data show that the arm-oscillator system is exploiting the natural dynamics by finding and exciting the resonant mode of the underlying mechanical system. Since this is a natural behaviour of the system, the robot behaviour is robust. The paper concludes by discussing the opportunities and limitations of this approach.

  20. Keep focussing: striatal dopamine multiple functions resolved in a single mechanism tested in a simulated humanoid robot

    Directory of Open Access Journals (Sweden)

    Vincenzo G. Fiore

    2014-02-01

    Full Text Available The effects of striatal dopamine (DA on behavior have been widely investigated over the past decades, with ``phasic'' burst firings considered as the key expression of a reward prediction error responsible for reinforcement learning. Less well studied is tonic DA, where putative functions include the idea that it is a regulator of vigor, incentive salience, disposition to exert an effort and a modulator of approach strategies. We present a preliminary model combining tonic and phasic DA to show how different outflows triggered by either intrinsically or extrinsically motivating stimuli dynamically affect the basal ganglia by impacting on a selection process that this system performs on the inputs provided by the targeted cortex.The model, which has been tested on the simulated humanoid robot iCub in the interaction with a mechatronic board, shows the putative functions ascribed to DA emerging from the combination of a standard computational mechanism coupled to a differential sensitivity to the presence of DA across the striatum.

  1. Effect of motion smoothness on brain activity while observing a dance: An fMRI study using a humanoid robot.

    Science.gov (United States)

    Miura, Naoki; Sugiura, Motoaki; Takahashi, Makoto; Sassa, Yuko; Miyamoto, Atsushi; Sato, Shigeru; Horie, Kaoru; Nakamura, Katsuki; Kawashima, Ryuta

    2010-01-01

    Motion smoothness is critical in transmitting implicit information of body action, such as aesthetic qualities in dance performances. We expected that the perception of motion smoothness would be characterized by great intersubject variability deriving from differences in personal backgrounds and attitudes toward expressive body actions. We used functional magnetic resonance imaging and a humanoid robot to investigate the effects of the motion smoothness of expressive body actions and the intersubject variability due to personal attitudes on perceptions during dance observation. The effect of motion smoothness was analyzed by both conventional subtraction analysis and functional connectivity analyses that detect cortical networks reflecting intersubject variability. The results showed that the cortical networks of motion- and body-sensitive visual areas showed increases in activity in areas corresponding with motion smoothness, but the intersubject variability of personal attitudes toward art did not influence these active areas. In contrast, activation of cortical networks, including the parieto-frontal network, has large intersubject variability, and this variability is associated with personal attitudes about the consciousness of art. Thus, our results suggest that activity in the cortical network involved in understanding action is influenced by personal attitudes about the consciousness of art during observations of expressive body actions.

  2. 基于SimMechanics的仿人机器人运动学仿真%Kinematics Simulation of Humanoid Robot Based on SimMechanics

    Institute of Scientific and Technical Information of China (English)

    江乐果; 朱华炳

    2014-01-01

    The SimMechanics of Matlab toolbox is used to build the simulation model of humanoid robot mechanism. According to the model diagram,the humanoid robot dynamic walking process was observed intuitively,and the angular acceleration of robot body center of gravity and torque variation map of hip joint were solved. A planner five-bar mechanism motion model simulating to the instan-taneous state of humanoid robot was established,based on Kane method to solve the dynamic equation of the mechanism. The SimMe-chanics simulation tools are applied in the mechanism analysis,which provides a convenient and simple method for the mechanical sys-tem simulation.%利用Matlab/SimMechanics机构仿真工具建立了仿人机器人机构的仿真模型,并由模型图直观地观察仿人机器人的动态步行过程,求出了机器人躯体重心的角加速度和髋关节的扭矩变化图。建立了仿人机器人的瞬时状态的平面五杆机构运动模型,根据Kane法求解出了机构的动力学方程。在机构分析中应用SimMechanics仿真工具,为机械系统的仿真提供一种十分简便的方法。

  3. Design Approach of Biologically-Inspired Musculoskeletal Humanoids

    Directory of Open Access Journals (Sweden)

    Yuto Nakanishi

    2013-04-01

    Full Text Available In order to realize more natural and various motions like humans, humanlike musculoskeletal tendon-driven humanoids have been studied. Especially, it is very challenging to design musculoskeletal body structure which consists of complicated bones, redundant powerful and flexible muscles, and large number of distributed sensors. In addition, it is very challenging to reveal humanlike intelligence to manage these complicated musculoskeletal body structure. This paper sums up life-sized musculoskeletal humanoids Kenta, Kotaro, Kenzoh and Kenshiro which we have developed so far, and describes key technologies to develop and control these robots.

  4. Design Approach of Biologically-Inspired Musculoskeletal Humanoids

    Directory of Open Access Journals (Sweden)

    Yuto Nakanishi

    2013-04-01

    Full Text Available In order to realize more natural and various motions like humans, humanlike musculoskeletal tendon-driven humanoids have been studied. Especially, it is very challenging to design musculoskeletal body structure which consists of complicated bones, redundant powerful and flexible muscles, and large number of distributed sensors. In addition, it is very challenging to reveal humanlike intelligence to manage these complicated musculoskeletal body structure. This paper sums up life-sized musculoskeletal humanoids Kenta, Kotaro, Kenzoh and Kenshiro which we have developed so far, and describes key technologies to develop and control these robots.

  5. Application of distributed power in humanoid robot control system*%分布式电源在仿人机器人控制系统中的应用

    Institute of Scientific and Technical Information of China (English)

    钟灶生; 薛方正; 敬成林

    2011-01-01

    为实现仿人机器人无缆工作的时间更长,设计了采用分布式电源的控制系统.仿人机器人关节电机驱动器采用动力电和数字电分开供电的方式,动力电主要为电机供电,而数字电主要为控制芯片供电,因而采用分布式电源方案,即由一个电池组对多个关节驱动器的数字电部分供电,而对单个关节驱动器的动力电部分由一个电池组供电.该方案在搭建的多电机控制系统中验证了其可行性,为仿人机器人无缆工作的时间更长提供了一种可能.%To realize long work hours of a humanoid robot without cable, a control system using distributed power is designed. Humanoid robot joint motor drives with separate power supply of dynamic power and digital way.Dynamic power mainly supply for motor, while the digital power mainly supply for the control chip. So that the control system use distributed power scheme,that is to say,a battery pack supply for a number of digital electric part of joint drive,while dynamic electric of each joint drive is supplied by a single battery pack. The feasibility of this method is verified in multi-motor control system. It becomes possible to work long time for humanoid robot.

  6. 仿人机器人的可变ZMP步态规划%A new walking pattern synthesis with variable ZMP of humanoid robot

    Institute of Scientific and Technical Information of China (English)

    张颖超; 葛壮; 胡凯

    2011-01-01

    为使仿人机器人能够稳定地行走,基于三维倒立摆模型,采用了可变ZMP(Zero-Moment Point)来进行仿人机器人的步态规划.在单脚支撑期依据可变ZMP采规划COG(Center of Gravity)的轨迹,在双脚支撑期内则让ZMP保持低速匀速运动,由此来规划此时间段的COG轨迹.仿真结果验证了规划的合理性,保证了更强的稳定性,并且使得采用此规划的仿人机器人的行走和人类的行走更加相似.%Based on the 3D Inverted Pendulum model,a new walking pattern synthesis was proposed,which can make a humanoid robot walk smoothly by variable ZMP(Zero-Moment Point). By the new way,in the single leg support phase, the COG ( Center of Gravity) trajectory equation of the humanoid robot can be educed through the variable ZMP;while in the double leg support phase,the COG trajectory can be educed by the ZMP moving at a lower constant velocity. Simulation results verifies the proposed method,which can guarantee a relatively high stability. And the humanoid robot in this walking pattern can walk more smoothly, and in a more similar way to human walking.

  7. Dissociated emergent-response system and fine-processing system in human neural network and a heuristic neural architecture for autonomous humanoid robots.

    Science.gov (United States)

    Yan, Xiaodan

    2010-01-01

    The current study investigated the functional connectivity of the primary sensory system with resting state fMRI and applied such knowledge into the design of the neural architecture of autonomous humanoid robots. Correlation and Granger causality analyses were utilized to reveal the functional connectivity patterns. Dissociation was within the primary sensory system, in that the olfactory cortex and the somatosensory cortex were strongly connected to the amygdala whereas the visual cortex and the auditory cortex were strongly connected with the frontal cortex. The posterior cingulate cortex (PCC) and the anterior cingulate cortex (ACC) were found to maintain constant communication with the primary sensory system, the frontal cortex, and the amygdala. Such neural architecture inspired the design of dissociated emergent-response system and fine-processing system in autonomous humanoid robots, with separate processing units and another consolidation center to coordinate the two systems. Such design can help autonomous robots to detect and respond quickly to danger, so as to maintain their sustainability and independence.

  8. Dissociated Emergent-Response System and Fine-Processing System in Human Neural Network and a Heuristic Neural Architecture for Autonomous Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Xiaodan Yan

    2010-01-01

    Full Text Available The current study investigated the functional connectivity of the primary sensory system with resting state fMRI and applied such knowledge into the design of the neural architecture of autonomous humanoid robots. Correlation and Granger causality analyses were utilized to reveal the functional connectivity patterns. Dissociation was within the primary sensory system, in that the olfactory cortex and the somatosensory cortex were strongly connected to the amygdala whereas the visual cortex and the auditory cortex were strongly connected with the frontal cortex. The posterior cingulate cortex (PCC and the anterior cingulate cortex (ACC were found to maintain constant communication with the primary sensory system, the frontal cortex, and the amygdala. Such neural architecture inspired the design of dissociated emergent-response system and fine-processing system in autonomous humanoid robots, with separate processing units and another consolidation center to coordinate the two systems. Such design can help autonomous robots to detect and respond quickly to danger, so as to maintain their sustainability and independence.

  9. Humanoid Robot Gait Planning Based on the Feedback Control%基于反馈控制的仿人机器人步态规划

    Institute of Scientific and Technical Information of China (English)

    李正文; 张国良; 张维平

    2011-01-01

    为了解决仿人机器人离线步态规划中机器人难以跟踪期望步态的问题,建立了仿人机器人的简化三连杆模型,并运用拉格朗日力学对模型进行了动力学分析,包括机器人单腿支撑期和双腿支撑期以及整体步行模型,在此基础上,提出将混杂系统的输出作为机器人的规划步态函数,设计了反馈控制器来实时调整机器人的实际步态.仿真结果表明,所设计的反馈控制器能够很好地调整机器人步态.%In order to solve the problem that robot is difficult to track the desired gait in the hu-manoid robot off - line gait planning, create the three - link humanoid robot model and use La-grange mechanics to analysis the robot dynamics, including single leg support, double legs support and the overall support of the walk model, on this basis, propose hybrid system output as a function of the robot gait planning, design a feedback controller to adjust the actual robot gait in real time. The simulation results show that the designed feedback controller can adjust the gait well.

  10. Interdisciplinary Construction and Implementation of a Human sized Humanoid Robot by master students

    DEFF Research Database (Denmark)

    Helbo, Jan; Svendsen, Mads Sølver

    2009-01-01

    With limited funding it seemed a very good idea to encourage master students to design and construct their own human size biped robot.  Because this task is huge and very interdisciplinary different expertises were covered by students from different departments who in turn took over results from ...

  11. Inertia Matching Manipulability and Load Matching Optimization for Humanoid Jumping Robot

    Directory of Open Access Journals (Sweden)

    Zhaohong Xu

    2008-11-01

    Full Text Available Human jumping motion includes stance phase, flight phase and landing impact phase. Jumping robot belongs to a variable constraints system because every phase has different constraint conditions. An unified dynamics equation during stance phase and flight phase is established based on floated-basis space. Inertia matching is used to analyze actuator/gear systems and select the optimum gear ratio based on the transmission performance between the torque produced at the actuator and the torque applied to the load. Load matching is an important index which affects jumping performance and reflects the capability of supporting a weight or mass. It also affects the distributing of the center of gravity (COG. Regarding jumping robot as a redundant manipulator with a load at end-effector, inertia matching can be applied to optimize load matching for jumping robot. Inertia matching manipulability and directional manipulability are easy to analyze and optimize the load matching parameters. A 5th order polynomial function is defined to plan COG trajectory of jumping motion, taking into account the constraint conditions of both velocity and acceleration. Finally, the numerical simulation of vertical jumping and experimental results show inertia matching is in direct proportion to jumping height, and inertia matching manipulability is a valid method to load matching optimization and conceptual design of robot.

  12. Humanoid by ROBO-BLOCK

    Science.gov (United States)

    Niimi, Hirofumi; Koike, Minoru; Takeuchi, Seiichi; Douhara, Noriyoshi

    2007-12-01

    Humanoid by ROBO-BLOCK (robot block system) and the rational formula of robots were proposed. ROBO-BLOCK is composed of servo motors, the parts for servomotor rotor, the brackets for servomotor fixation, the board parts and the controllers. A robot can be assembled easily by ROBO-BLOCK. Meanwhile, it is convenient when the structure of the robot can be described easily as a character. The whole structure of the robot is expressed as rational formula of the robot to show molecule structure in chemistry. ROBO-BLOCK can be useful for not only the research but also the education. Creative student experiment was done in the college of industrial technology.

  13. Integration et evaluation de capacites interactives d'un robot humanoide

    Science.gov (United States)

    Rosseau, Vincent

    Le domaine de l'Interaction Humain-Robot (HRI) est en pleine expansion. En effet, de. plus en plus de plateformes robotiques sont mises en œuvre pour faire évoluer ce domaine. Sur ces plateformes, toujours plus de modalités d'interaction sont mises en place telles que les mouvements corporels, la reconnaissance de gestes ou d'objets, la reconnaissance et la synthèse vocale ou encore la mobilité, pour pouvoir effectuer l'interaction la plus complète et la plus naturelle pour l'humain. Mais ceci amène aussi une complexité croissante de l'intégration de ces modalités sur une seule et même plateforme. Aussi, le domaine HRI étant à ses débuts, la méthodologie expérimentale des travaux se limite le plus souvent à des preuves de concept éprouvées en laboratoire ou en milieux ouverts non contrôlés. Il se trouve que peu de chercheurs présentent une démarche structurée et rigoureuse pour l'évaluation expérimentale d'interaction humain-robot en milieux ouverts, et il en résulte des recherches de types exploratoires qui examinent principalement la complexité technologique des modalités interactives à mettre en œuvre, et non l'impact de ces modalités sur la qualité des interactions. Le but de l'étude présentée dans ce document est d'étudier l'intégration de plusieurs modalités interactives sur un robot mobile humanoïde telles que la parole, les gestes et la mobilité sur la qualité des interactions humain-robot. Plus spécifiquement, le contexte de l'étude consiste à examiner l'impact de modalités interactives sur la capacité du robot à attirer l'attention d'une personne et à engager une interaction avec elle. Le scénario expérimental consiste à permettre au robot, à partir de la parole, d'expressions faciales, de mouvement de la tête, de gestes avec son bras et de sa mobilité, de demander de l'assistance à une personne à proximité de lui remettre un objet se trouvant au sol. L'hypothèse sous-jacente est que l

  14. Autonomous robotics and deep learning

    CERN Document Server

    Nath, Vishnu

    2014-01-01

    This Springer Brief examines the combination of computer vision techniques and machine learning algorithms necessary for humanoid robots to develop "true consciousness." It illustrates the critical first step towards reaching "deep learning," long considered the holy grail for machine learning scientists worldwide. Using the example of the iCub, a humanoid robot which learns to solve 3D mazes, the book explores the challenges to create a robot that can perceive its own surroundings. Rather than relying solely on human programming, the robot uses physical touch to develop a neural map of its en

  15. Inertia Matching Manipulability and Load Matching Optimization for Humanoid Jumping Robot

    OpenAIRE

    Zhaohong Xu; Tiansheng Lu; Xuyang Wang

    2008-01-01

    Human jumping motion includes stance phase, flight phase and landing impact phase. Jumping robot belongs to a variable constraints system because every phase has different constraint conditions. An unified dynamics equation during stance phase and flight phase is established based on floated-basis space. Inertia matching is used to analyze actuator/gear systems and select the optimum gear ratio based on the transmission performance between the torque produced at the actuator and the torque ap...

  16. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  17. Air Muscle Actuated Low Cost Humanoid Hand

    Directory of Open Access Journals (Sweden)

    Peter Scarfe

    2006-06-01

    Full Text Available The control of humanoid robot hands has historically been expensive due to the cost of precision actuators. This paper presents the design and implementation of a low-cost air muscle actuated humanoid hand developed at Curtin University of Technology. This hand offers 10 individually controllable degrees of freedom ranging from the elbow to the fingers, with overall control handled through a computer GUI. The hand is actuated through 20 McKibben-style air muscles, each supplied by a pneumatic pressure-balancing valve that allows for proportional control to be achieved with simple and inexpensive components. The hand was successfully able to perform a number of human-equivalent tasks, such as grasping and relocating objects.

  18. Universal Robot Hand Equipped with Tactile and Joint Torque Sensors: Development and Experiments on Stiffness Control and Object Recognition

    Directory of Open Access Journals (Sweden)

    Hiroyuki NAKAMOTO

    2007-04-01

    Full Text Available Various humanoid robots have been developed and multifunction robot hands which are able to attach those robots like human hand is needed. But a useful robot hand has not been depeveloped, because there are a lot of problems such as control method of many degrees of freedom and processing method of enormous sensor outputs. Realizing such robot hand, we have developed five-finger robot hand. In this paper, the detailed structure of developed robot hand is described. The robot hand we developed has five fingers of multi-joint that is equipped with joint torque sensors and tactile sensors. We report experimental results of a stiffness control with the developed robot hand. Those results show that it is possible to change the stiffness of joints. Moreover we propose an object recognition method with the tactile sensor. The validity of that method is assured by experimental results.

  19. Survey and Prospect on Walking Control Strategies for Humanoid Robot%仿人机器人的步行控制方法综述及展望

    Institute of Scientific and Technical Information of China (English)

    付根平; 杨宜民; 李静

    2011-01-01

    步行控制是仿人机器人最重要的技术之一,是仿人机器人实现最基本的类人动作的关键.从步态规划和步态控制两方面综述了仿人机器人步行控制的研究现状,对已有的典型步态规划和步态控制方法进行了分析与比较,并展望了仿人机器人步行控制的研究方向.%Walking control is one of the most important technologies for humanoid robot, which is the key point to realize elementary hominine action. The study state of walking control strategies for humanoid robot was summarized from the aspects such as walking pattern planning and walking control. Some classical methods on walking pattern planning and walking control were analyzed and compared. The research prospects were described.

  20. 仿人跑步机器人稳定性与控制策略研究进展%A Survey of Stability and Control Strategy for Humanoid Running Robots

    Institute of Scientific and Technical Information of China (English)

    彭胜军; 税海涛; 马宏绪

    2011-01-01

    Research status and current development of the stability criterion and control strategy for humanoid running robots are discussed. The inherent properties of humanoid running robots are analyzed, including unilateral constrain, hybrid system and changing topology. The two stability criterions based on ZMP ( zero moment point) and zeroing angle momentum, as well as based on poincare map and limit cycle are introduced. The time - variant control strategy based on trajectory planning and the time - invariant control strategy based on virtual constraint are overviewed. The advantages and disadvantages of the two control strategies are also analyzed. The difficulties and future works in this field are presented. The final goal of this research is to apply the stability criterions and control strategies to humanoid running robot to improve its locomotive capability.%针对仿人跑步机器人稳定性和控制策略的研究现状与发展趋势进行了探讨.首先.分析了仿人跑步模型的固有特性,包括单边约束特性、系统混杂特性和变拓扑结构特性,介绍了基于ZMP(Zero Moment Point)和零化角动量的稳定性判据以及基于庞加莱映射和极限环的稳定性判据,总结了基于轨迹规划的时变控制策略和基于虚拟约束的定常控制策略,并分析了2种控制策略各自的优缺点,指出仿人跑步机器人研究领域的难点问题和未来工作.最终目标是将这些稳定性判据和控制策略应用到仿人跑步机器人,以提高其跑步运动的性能.

  1. Design of wireless video manipulated system based on humanoid robot%基于仿人机器人的无线视频监控系统设计

    Institute of Scientific and Technical Information of China (English)

    李欢; 魏衡华

    2014-01-01

    针对仿人机器人的人机交互问题,提出在无线网络下,使用智能手机对配备有摄像头的仿人机器人进行视频监控。基于 Linux 系统,使用 V4L2接口对摄像头视频信息进行采集,并使用JPEG 算法对其进行压缩,使用智能手机的 Web 浏览器显示视频信息,并通过浏览器页面的按钮向机器人发送控制命令。实验结果表明,在无线局域网内,仿人机器人摄像头拍摄到的视频信息可以清晰、稳定、及时地传输到不同系统和品牌的智能手机 Web 浏览器上,用户可根据需要向仿人机器人发送控制命令,操作方便简单,便于使用。%For the problem of humanoid robot interaction , using the smart phone for video manipulation of the humanoid robot equipped with camera via wireless network was proposed . The design used V4L2 interface to collect the information from the camer-a and JPEG algorithm for video compression based on the Linux system , the video could be shown on the browser and the manipu-lation command can send to the robot in the wireless network . Experimental elucidates that the video information can transmit form the humanoid robot camera to the browser on the disparity system and band of smart phone clearly in the wireless local area net-work , user can send command to the robot according to the demand , it demonstrates that the system is compatibility and user friendly .

  2. 仿人机器人的非奇异终端滑模控制%Nonsingular terminal sliding mode control for humanoid robots

    Institute of Scientific and Technical Information of China (English)

    柴钰; 朱道宏

    2011-01-01

    目前,仿人机器人代替人类在工业、矿山安全作业等方面起到了至关重要的作用,而机器人稳定性控制技术的进一步提高,则尽可能的避免了由于机器人操作失误所带来的危害.针对具有不确定性干扰的仿人机器人系统的轨迹跟踪控制问题,利用终端滑模控制方法,给出了设计的全局有限时间跟踪控制器.首先,利用拉格朗日法建立了5连杆仿人机器人的动力学模型,基于非奇异终端滑模控制技术并利用终端滑模设计思想,设计了轨迹跟踪滑模控制器.其次,由于 所设计的控制器的非连续性,将会使得系统产生抖振现象.针对这个问题,利用修正的饱和函数来代替控制律中的符号函数,从而减少了系统的抖振问题;最后,仿真算例表明了该方法的有效性.%Currently, the humanoid robots instead of human beings performs a significant function in the fields of industry, mine safety etc. To decrease security risks caused by the robots running away owing to the misoperations, the stability control technologies for robots should be further improved. So this paper proposes a global finite-time tracking controller based on the nonsingular terminal sliding mode control, which could solve trajectory tracking control problems of humanoid robot system under uncertain disturbance. Firstly, the dynamic model of humanoid robot with 5connecting rods was built through La-grangian method, and then the sliding model controller for trajectory tracking was designed based on nonsingular terminal sliding mode. Secondly, the sign function was replaced by the modified saturation function in the controller for eliminating the chattering problem caused by non-continuity. Finally, the simulation results verified the effectiveness of this method.

  3. Integración de Arbotix, Raspberry Pi y motores Dynamixel Ax-12+ para un robot humanoide que busca y patea pelotas

    OpenAIRE

    Dos Reis, Jennifer; León, Juliana; Chang, Carolina; Universidad de Cuenca; Dirección de Investigación de la Universidad de Cuenca; DIUC

    2014-01-01

    En este artículo se presenta a DeBuPa (Detección Búsqueda Pateo) un humanoide de tamaño pequeño (38 cm de alto) construido con las piezas del kit Bioloid. Del kit se ha excluido la tarjeta CM-510 para sustituirla por la tarjeta controladora Arbotix, que será la que controle los 16 motores Dynamixel Ax-12+ (para mover al robot) y 2 servomotores analógicos (para mover la cámara). Además se ha agregado un mini computador Raspberry Pi, con su cámara, para que el robot pueda detectar y seguir la p...

  4. Sensor-Based Programming of Central Pattern Generators in Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Hamed Shahbazi

    2013-04-01

    Full Text Available In the present article, a method for generating curvilinear bipedal walking patterns is proposed which is able to generate rhythmic and periodic trajectories for a Nao soccer player robot. To do so, a programmable central pattern generator was used which was inspired from locomotion structures in vertebrate animals. In this paper, the programmable central pattern generators were extended and new Equations were added to make a curvilinear pattern for walking Nao robots on a specified circular curve. In addition, some specific Equations were added to the model to control the arms and synchronize them with the movement of the feet. The model uses some sensory inputs to obtain some feedback from the movement and adjust it conforming to the potential perturbations. Input sensory values consist of accelerator values and foot pressure sensor values located on the bottom of each foot. Feedback values can adopt walking to some desired specifications and compensate the effects of some types of perturbations. The proposed model has many benefits including smooth walking patterns and modulation during walking. This model can be extended and used in the Nao soccer player both for the standard platform and the 3D soccer simulation leagues of Robocup SPL competitions to train different types of motions.

  5. Robotic hand with locking mechanism using TCP muscles for applications in prosthetic hand and humanoids

    Science.gov (United States)

    Saharan, Lokesh; Tadesse, Yonas

    2016-04-01

    This paper presents a biomimetic, lightweight, 3D printed and customizable robotic hand with locking mechanism consisting of Twisted and Coiled Polymer (TCP) muscles based on nylon precursor fibers as artificial muscles. Previously, we have presented a small-sized biomimetic hand using nylon based artificial muscles and fishing line muscles as actuators. The current study focuses on an adult-sized prosthetic hand with improved design and a position/force locking system. Energy efficiency is always a matter of concern to make compact, lightweight, durable and cost effective devices. In natural human hand, if we keep holding objects for long time, we get tired because of continuous use of energy for keeping the fingers in certain positions. Similarly, in prosthetic hands we also need to provide energy continuously to artificial muscles to hold the object for a certain period of time, which is certainly not energy efficient. In this work we, describe the design of the robotic hand and locking mechanism along with the experimental results on the performance of the locking mechanism.

  6. Multilevel Cognitive Machine-Learning-Based Concept for Artificial Awareness: Application to Humanoid Robot Awareness Using Visual Saliency

    Directory of Open Access Journals (Sweden)

    Kurosh Madani

    2012-01-01

    Full Text Available As part of “intelligence,” the “awareness” is the state or ability to perceive, feel, or be mindful of events, objects, or sensory patterns: in other words, to be conscious of the surrounding environment and its interactions. Inspired by early-ages human skills developments and especially by early-ages awareness maturation, the present paper accosts the robots intelligence from a different slant directing the attention to combining both “cognitive” and “perceptual” abilities. Within such a slant, the machine (robot shrewdness is constructed on the basis of a multilevel cognitive concept attempting to handle complex artificial behaviors. The intended complex behavior is the autonomous discovering of objects by robot exploring an unknown environment: in other words, proffering the robot autonomy and awareness in and about unknown backdrop.

  7. 小型仿人机器人步行稳定控制方法研究%Research on Walking Stability Control Method for Small Humanoid Robots

    Institute of Scientific and Technical Information of China (English)

    李光日; 黄强; 徐乾; 李国栋

    2014-01-01

    针对小型仿人机器人足部异常着地姿态对步行稳定性的重要影响,提出了一种基于力分布的快速着地柔顺控制方法,使机器人能够根据着地时地面反作用力的分布情况,快速判断足部着地姿态,通过实时调节踝关节实现机器人的快速着地柔顺控制。该方法结合基于零力矩点(Zero Moment Point,ZMP)和身体姿态的平衡控制方法,在运动调节功能的协调下,形成了一个较为完备的小型仿人机器人实时稳定控制体系。%In order to match the walking stability requirement when foot is landing abnormally, a compliance control method based on the distribution of landing stress is put forward. According to the fast judgment of abnormal landing posture,the small humanoid robot can adjust the ankle to achieve better stability;the balance control methods are used based on the ZMP and attitude to guarantee the walking stability by adjusting the ankle and hip of the robot;the rela-tionship among the dynamic gait,stability control and motion restriction can be coordinated by motion adjustment. By combining these three control methods,a real-time stability control system of small humanoid robot are obtained.

  8. Multi-layer robot skin with embedded sensors and muscles

    Science.gov (United States)

    Tomar, Ankit; Tadesse, Yonas

    2016-04-01

    Soft artificial skin with embedded sensors and actuators is proposed for a crosscutting study of cognitive science on a facial expressive humanoid platform. This paper focuses on artificial muscles suitable for humanoid robots and prosthetic devices for safe human-robot interactions. Novel composite artificial skin consisting of sensors and twisted polymer actuators is proposed. The artificial skin is conformable to intricate geometries and includes protective layers, sensor layers, and actuation layers. Fluidic channels are included in the elastomeric skin to inject fluids in order to control actuator response time. The skin can be used to develop facially expressive humanoid robots or other soft robots. The humanoid robot can be used by computer scientists and other behavioral science personnel to test various algorithms, and to understand and develop more perfect humanoid robots with facial expression capability. The small-scale humanoid robots can also assist ongoing therapeutic treatment research with autistic children. The multilayer skin can be used for many soft robots enabling them to detect both temperature and pressure, while actuating the entire structure.

  9. 基于嵌入式平台仿人机器人的设计与实现%The design and implementation of humanoid robot based on embedded system

    Institute of Scientific and Technical Information of China (English)

    杨亮; 王勇

    2016-01-01

    In view of the problems of high cost and hard to control in the practical application of humanoid robot, a solution of humanoid robot based on embedded system is proposed. In this solution, the mechanical structure is implemented by 3D printing and the control scheme based on master-slave CPUs is chosen. The master CPU is ARM BCM2835 chip, which runs Linux operating system and support image capture through usb camera and accessing WiFi network;The master CPU can communicate with the slave CPU via UART protocol. In order to achieve stable walk, the walk gaits are generated offline by cubic spline interpolation and a joint angle controller is constructed to track the desired trajectories. The experiment results show that the humanoid robot based on the presented solution can walk stably with natural gait, which is easier to be applied for the advantage of low-cost.%针对仿人机器人制造成本高、控制难度大不利于进一步推广应用的问题,提出了一种低成本的基于嵌入式平台仿人机器人的设计方案,该方案通过3D打印的方式实现机器人机械结构,在控制方案上采用主从双CPU的二级控制方式,主CPU采用ARM BCM2835,上面运行嵌入式Linux操作系统,可通过usb摄像头获取图像信息,支持WiFi网络接入;主从CPU之间通过UART接口通讯。为实现稳定步行,采用三次样条离线规划机器人步态,并通过关节角度控制器实时跟踪关节角度轨迹,实验结果表明,采用本方案研制的仿人机器人能够实现稳定、协调的步行,具有成本低、易于推广的优点。

  10. Local Environment Recognition System Using Modified SURF-Based 3D Panoramic Environment Map for Obstacle Avoidance of a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Tae-Koo Kang

    2013-06-01

    Full Text Available This paper addresses a local environment recognition system for obstacle avoidance. In vision systems, obstacles that are located beyond the Field of View (FOV cannot be detected precisely. To deal with the FOV problem, we propose a 3D Panoramic Environment Map (PEM using a Modified SURF algorithm (MSURF. Moreover, in order to decide the avoidance direction and motion automatically, we also propose a Complexity Measure (CM and Fuzzy-Logic-based Avoidance Motion Selector (FL-AMS. The CM is utilized to decide an avoidance direction for obstacles. The avoidance motion is determined using FL-AMS, which considers environmental conditions such as the size of obstacles and available space. The proposed system is applied to a humanoid robot built by the authors. The results of the experiment show that the proposed method can be effectively applied to a practical environment.

  11. An Embedded System for Tracking Human Motion and Humanoid Interfaces

    Directory of Open Access Journals (Sweden)

    Ming-June Tsai

    2012-12-01

    Full Text Available The aim of this research is using embedded CPU to develop a human motion tracking system and construct a motion replication interface for a humanoid robot. In the motion tracking system, we use a CPLD (Complex Programmable Logic Device which is built in a central control unit (CCU to generate synchronous signals for all the periphery devices and control the data flow from CCD boards to a PC via a USB chip. An embedded DSP on the CCD board is adopted to control the CCD exposure and conduct image processing. The peak position of exposure was computed by the on-board DSP within sub-pixel accuracy. In the construction of a motion replication interface, the same CCU is used to generate the PWM signals to drive the motors of the humanoid robot. All of the respective firmware coding methods are discussed in this article.

  12. Learning from Demonstration and Correction via Multiple Modalities for a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Argall Brenna

    2011-12-01

    Full Text Available This paper reports ongoing work that employs multiple demonstration modalities in order to accomplish motion control learning in a multi-staged policy adaptation process. A novel interface for providing tactile guidance to correct learned motion control behaviors is introduced. This interface extends our prior work by making use of a more sophisticated set of tactile sensors, developed by the ROBOSKIN consortium.

  13. Balance maintenance in high-speed motion of humanoid robot arm-based on the 6D constraints of momentum change rate.

    Science.gov (United States)

    Zhang, Da-song; Xiong, Rong; Wu, Jun; Chu, Jian

    2014-01-01

    Based on the 6D constraints of momentum change rate (CMCR), this paper puts forward a real-time and full balance maintenance method for the humanoid robot during high-speed movement of its 7-DOF arm. First, the total momentum formula for the robot's two arms is given and the momentum change rate is defined by the time derivative of the total momentum. The author also illustrates the idea of full balance maintenance and analyzes the physical meaning of 6D CMCR and its fundamental relation to full balance maintenance. Moreover, discretization and optimization solution of CMCR has been provided with the motion constraint of the auxiliary arm's joint, and the solving algorithm is optimized. The simulation results have shown the validity and generality of the proposed method on the full balance maintenance in the 6 DOFs of the robot body under 6D CMCR. This method ensures 6D dynamics balance performance and increases abundant ZMP stability margin. The resulting motion of the auxiliary arm has large abundance in joint space, and the angular velocity and the angular acceleration of these joints lie within the predefined limits. The proposed algorithm also has good real-time performance.

  14. Active gesture-changeable underactuated finger for humanoid robot hand based on multiple tendons

    Directory of Open Access Journals (Sweden)

    D. Che

    2010-12-01

    Full Text Available The concept called gesture-changeable under-actuated (GCUA function is utilized to improve the dexterities of traditional under-actuated hands and reduce the control difficulties of dexterous hands. Based on GCUA function, a novel mechanical finger by multiple tendons: GCUA-T finger, is designed. The finger uses tendon mechanisms to achieve GCUA function which includes traditional underactuated (UA grasping motion and special pre-bending (PB, or pre-shaping motion before UA grasping. Operation principles and force analyses of the fingers are given, and the effect of GCUA function on the movements of a hand is discussed. The finger can satisfy the requirements of grasping and operating with low dependence on control system and low cost on manufacturing expenses, which develops a new way between dexterous hand and traditional under-actuated hand.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  15. Targeting and tracking algorithm of humanoid soccer robot%一种仿人足球机器人目标定位与追踪算法

    Institute of Scientific and Technical Information of China (English)

    许家铭; 解仑; 王志良; 于国晨

    2011-01-01

    基于仿人足球机器人嵌入式系统结构,对目标定位和跟踪算法进行改进,提出一种适用于嵌入式全自主型机器人的颜色识别算法.首先,改进通用的颜色识别过程方法,添加目标特征统计学习,使足球机器人能够脱离PC机进行自主的目标颜色特征阈值设定;其次,简化基于嵌入式单目视觉系统下的目标定位算法,并通过扩大首帧搜索区域或加入形状检测的方法改进基于Camshift的目标跟踪算法,使其满足实时性和自主性;最后,在一个18自由度的仿人足球机器人上进行仿真和试验,在一定光照范围内,实际系统能够满足实时性和准确性的要求.结果表明:改进后的目标定位和跟踪算法及颜色识别过程具有较高的性能.%The target location and tracking algorithm was improved and a novel color recognition algorithm was proposed for autonomous robot based on the embedded structure of humanoid soccer robot system. Firstly, the common color identification method was improved by adding the statistical learning process of targeted color features in order to make the threshold of the object color features set by the soccer robot automatically instead of PC. Secondly, the target locating system based on embedded monocular vision system was simplified. The target tracking algorithm based on Camshift was improved by extending the first frame searching area or adding the shape check method. The real-time and autonomous requirement was met. Finally,the simulation and experiment on an 18-degree-freedom humanoid soccer robot was done. In a certain light range, the real-time performance and accuracy of the algorithm were verified. The results show that the improved target localization, tracking algorithm and color identification process have a high performance.

  16. A Humanoid Robot Control System with SSVEP-based Asynchronous Brain-Computer Interface%一种基于SSVEP的仿人机器人异步脑机接口控制系统

    Institute of Scientific and Technical Information of China (English)

    邓志东; 李修全; 郑宽浩; 姚文韬

    2011-01-01

    A feature extraction method is proposed for steady-state visual evoked potential (SSVEP) idle state detection.By designing a two-level classifier structure, SSVEP-based asynchronous brain-computer interface (BCI) is established.A wireless sensor network (WSN) hardware node embedded with TI CC2430 is implemented for remote transmission of robot control command. The developed humanoid robot control system has multiple control modes, such as mind control,voice interaction, joystick input, machine vision, and obstacle avoidance. The effectiveness of brain-computer interface asynchronous control is validated through experiments on SSVEP idle-state detection.%设计了稳态视觉诱发电位(SSVEP)空闲状态检测的特征提取方法,建立了基于SSVEP的异步脑机接口二级分类器结构,开发了基于TICC2430芯片的无线传感器网络模块,实现了机器人控制命令的远程传送,使该仿人机器人系统具有脑电控制、语音交互、游戏手柄交互、机器视觉与避障等功能.通过SSVEP窄闲状态检测实验验证了脑机接口系统异步控制的有效性.

  17. A psychology based approach for longitudinal development in cognitive robotics

    Directory of Open Access Journals (Sweden)

    James eLaw

    2014-01-01

    Full Text Available A major challenge in robotics is the ability to learn, from novel experiences, new behaviour that is useful for achieving new goals and skills. Autonomous systems must be able to learn solely through the environment, thus ruling out a priori task knowledge, tuning, extensive training, or other forms of pre-programming. Learning must also be cumulative and incremental, as complex skills are built on top of primitive skills. Additionally, it must be driven by intrinsic motivation because formative experience is gained through autonomous activity, even in the absence of extrinsic goals or tasks. This paper presents an approach to these issues through robotic implementations inspired by the learning behaviour of human infants. We describe an approach to developmental learning and present results from a demonstration of longitudinal development on an iCub humanoid robot. The results cover the rapid emergence of staged behaviour, the role of constraints in development, the effect of bootstrapping between stages, and the use of a schema memory of experiential fragments in learning new skills. The context is a longitudinalexperiment in which the robot advanced from uncontrolled motor babbling to skilled hand/eyeintegrated reaching and basic manipulation of objects. This approach offers promise for furtherfast and effective sensory-motor learning techniques for robotic learning.

  18. A psychology based approach for longitudinal development in cognitive robotics.

    Science.gov (United States)

    Law, J; Shaw, P; Earland, K; Sheldon, M; Lee, M

    2014-01-01

    A major challenge in robotics is the ability to learn, from novel experiences, new behavior that is useful for achieving new goals and skills. Autonomous systems must be able to learn solely through the environment, thus ruling out a priori task knowledge, tuning, extensive training, or other forms of pre-programming. Learning must also be cumulative and incremental, as complex skills are built on top of primitive skills. Additionally, it must be driven by intrinsic motivation because formative experience is gained through autonomous activity, even in the absence of extrinsic goals or tasks. This paper presents an approach to these issues through robotic implementations inspired by the learning behavior of human infants. We describe an approach to developmental learning and present results from a demonstration of longitudinal development on an iCub humanoid robot. The results cover the rapid emergence of staged behavior, the role of constraints in development, the effect of bootstrapping between stages, and the use of a schema memory of experiential fragments in learning new skills. The context is a longitudinal experiment in which the robot advanced from uncontrolled motor babbling to skilled hand/eye integrated reaching and basic manipulation of objects. This approach offers promise for further fast and effective sensory-motor learning techniques for robotic learning.

  19. FY 1998 Report on research and development project. Research and development of human-cooperative/coexisting robot systems; 1998 nendo ningen kyocho kyozongata robot system kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This R and D project is aimed at development of the human-cooperative/coexisting robot systems with high safety and reliability, capable of performing complicated works cooperatively and in a coexisting manner with humans in human working and living spaces, in order to help improve safety and efficiency in various industrial areas, improve services and convenience in manufacturing and service areas, and create new industries. The trend surveys cover humanoid robot systems, remote control systems and simulators, and the application surveys cover services for humans, basic humanoids and entertainment communication. The 1998 R and D efforts include research and development, fabrication and surveys for the following themes; (1) fabrication of robot platforms for supporting manual works, (2) development of surrounded visual display systems, (3) development of robot arm manipulation and force displaying systems, (4) development of a dynamic simulator, (5) development of a distributed software platform, (6) researches and development of computation algorithm for kinematic chain dynamics, (7) development of motion teaching system for multi-functional robots, (8) investigation of trends in robotics technology, and (9) researches and surveys of robot application. (NEDO)

  20. 人形机器人技术在孤独症儿童干预中的应用%Application of Humanoid Robot in Intervention for Autistic Children

    Institute of Scientific and Technical Information of China (English)

    陈东帆; 李睿强; 韩琨

    2015-01-01

    目的:探讨人形机器人对孤独症儿童社会交往能力、专注力以及行为能力的改善情况。方法通过机器人参与的教学情境教学,诱导10名孤独症儿童与人形机器人NAO互动。观察孤独症儿童在眼神注视、社会交往以及学习任务完成方面的表现。结果10名儿童在有机器人参与的教学中,眼睛注视次数更多,安静时间显著增加。9人“注视”行为实际互动次数达到实验理论互动次数的50%以上,行为准确率达到80%;5人“挥手”行为实际互动次数达到实验理论互动次数的50%以上,7人行为准确率达到50%;7人“说你好”行为互动次数达到实验理论互动次数的50%以上,4人行为准确率超过50%。结论机器人有助于改善孤独症儿童的社交能力、专注力与行为能力。%Objective To investigate the effect of humanoid robot on social skills, concentration and mobility in children with autism. Methods 10 autistic children were asked to interact with humanoid robot NAO in a teaching environment that involves active participation of the robot. The eye-contact and social interaction, as well as performances in accomplishing learning objectives were observed. Results The 10 children exhibited more concentrated gazing and significantly longer periods of silence. The actual number of interaction of the be-havior Gazing of 9 children exceeded 50%of the theoretical one, the success rate of which reaching 50%. For the behavior Waving, 5 chil-dren were able to interact for more than 50%of the theoretical times, with an accuracy of performance of 50%in 7 children. For Say Hello, 7 children were able to interact for more than 50%of the theoretical times, with an accuracy of performance of 50%in 4 children. Conclu-sion Application of humanoid robots NAO may improve the social skills, concentration and mobility in autistic children.

  1. Recent Development of Rehabilitation Robots

    Directory of Open Access Journals (Sweden)

    Zhiqin Qian

    2015-02-01

    Full Text Available We have conducted a critical review on the development of rehabilitation robots to identify the limitations of existing studies and clarify some promising research directions in this field. This paper is presented to summarize our findings and understanding. The demands for assistive technologies for elderly and disabled population have been discussed, the advantages and disadvantages of rehabilitation robots as assistive technologies have been explored, the issues involved in the development of rehabilitation robots are investigated, some representative robots in this field by leading research institutes have been introduced, and a few of critical challenges in developing advanced rehabilitation robots have been identified. Finally to meet the challenges of developing practical rehabilitation robots, reconfigurable and modular systems have been proposed to meet the identified challenges, and a few of critical areas leading to the potential success of rehabilitation robots have been discussed.

  2. Fiscal 2000 report on result of R and D on robot system cooperating and coexisting with human beings. Development of energy conservation technology; 2000 nendo ningen kyocho kyozongata robot system kenkyu kaihatsu seika hokokusho. Energy shiyo gorika gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    Introduction of a number of robots and consumption of a large amount of energy are unavoidable if a complicated process operation is to be carried out by robots in an extensive work site. Great energy conservation is contrived by developing robots applicable to manufacturing in performing a variety of operations in place of human beings and thereby reducing the number of robots to work. This paper explains the fiscal 2000 results. For dual-handed cooperative tasks, a function was examined capable of gripping an object without giving a humanoid robot an instruction of an exact gripping position. A method was designed to prepare a command for the other arm through a command for one arm, with torque impedance control employed for the purpose of avoiding damage due to collision. A study was conducted on a three-dimensional shape detecting model using a visual device of a robot. In grasping problems of balance control of a humanoid robot, the behavior of a robot consisting of multi-links was considered as behavior of inverted pendulum, with possibility checked for the stabilization of the balance. For the purpose of putting the virtual robot platform previously developed to practical use, a three-dimensional operation tool of run-time user interface was developed, with research conducted on the sophistication of robot application. (NEDO)

  3. Balance Maintenance in High-Speed Motion of Humanoid Robot Arm-Based on the 6D Constraints of Momentum Change Rate

    Directory of Open Access Journals (Sweden)

    Da-song Zhang

    2014-01-01

    Full Text Available Based on the 6D constraints of momentum change rate (CMCR, this paper puts forward a real-time and full balance maintenance method for the humanoid robot during high-speed movement of its 7-DOF arm. First, the total momentum formula for the robot’s two arms is given and the momentum change rate is defined by the time derivative of the total momentum. The author also illustrates the idea of full balance maintenance and analyzes the physical meaning of 6D CMCR and its fundamental relation to full balance maintenance. Moreover, discretization and optimization solution of CMCR has been provided with the motion constraint of the auxiliary arm’s joint, and the solving algorithm is optimized. The simulation results have shown the validity and generality of the proposed method on the full balance maintenance in the 6 DOFs of the robot body under 6D CMCR. This method ensures 6D dynamics balance performance and increases abundant ZMP stability margin. The resulting motion of the auxiliary arm has large abundance in joint space, and the angular velocity and the angular acceleration of these joints lie within the predefined limits. The proposed algorithm also has good real-time performance.

  4. Control de movimiento de un robot humanoide por medio de visión de máquina y réplica de movimientos humanos

    Directory of Open Access Journals (Sweden)

    Robinson Jiménez Moreno

    2013-07-01

    Full Text Available En este artículo se presenta el desarrollo e implementación de un sistema de captura de movimiento antropomórfico mediante técnicas de visión de máquina basado en el dispositivo Kinect, con el fin de realizar el control de movimiento imitativo de un agente robótico Bioloid en el Grupo de Aplicaciones Virtuales (GAV del Programa de Ingeniería en Mecatrónica de la Universidad Militar Nueva Granada (UMNG. Dados los múltiples grados de libertad de un brazo humano, se busca simplificar una interfaz de control que permita replicar los movimientos de este en un robot humanoide. En este artículo se presentan las técnicas usadas para mejorar el nivel de precisión de los datos entregados por el Kinect y los métodos personalizados de transmisión y codificación de las órdenes enviadas al robot. Los resultados obtenidos derivan en un sistema que cumple con las exigencias básicas de estabilidad, precisión y velocidad de repuesta en la imitación.

  5. Running Motion Planning for Humanoid Robot Based on Embedded Vision System%具有单目嵌入式视觉的仿人机器人分层控制系统设计

    Institute of Scientific and Technical Information of China (English)

    韩吉烨; 陈宇; 钟秋波; 赵余

    2012-01-01

    According to the characters of humanoid robot,a multi-layers control system for humanoid robot based on single vision is present.By studying the basic principles of robotic treadmill exercise,swinging of the robot arms is introduced to the motion of running and optimizing the overall energy cost through the process of running is proposed.Lastly,under the rules of sprint in FIRA,motion planning of sprint is implemented by the decision system via the response of vision and pose of the robot.Experiments show that the method of control presented here is suitable for games of athletics.%针对仿人机器人的特点,设计了一个具有单目视觉的仿人机器人分层控制系统.通过研究机器人跑步运动的基本原理,在机器人跑步运动中引入手臂摆动姿态,通过最优化跑步过程的总体能效进行步态规划.最后根据FIRA比赛规则,决策系统通过视觉反馈和姿态反馈信息,调用底层动作库,进行短跑运动规划.实验结果表明,该仿人机器人的控制方式效果良好,适合参加竞技类比赛.

  6. Developing a successful robotics program.

    Science.gov (United States)

    Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M

    2012-01-01

    Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.

  7. 轮式移动仿人护理机器人运动稳定性分析%Analysis of Motion Stability of a Mobile Humanoid Nursing Robot

    Institute of Scientific and Technical Information of China (English)

    贠今天; 邓利浩; 桑宏强

    2016-01-01

    When a nursing robot assisted medical staff to take good care of the patients,the mo-tion stability of the robot was the most concern,which was directly related to the success or failure of the nursing tasks.When the nursing robot lifted the patients with arm and waist,tilting and sliding would most likely to occur.Herein,an omni-directional mobile humanoid nursing robot was taken as the research object,and the motion stability was analyzed from two aspects of static and dynamic.Un-der the conditions of no load and low speed motion,centre of gravity projection method was used to analyze the static stability;under the load conditions,the theory of ZMP combined with the theory of recursive Newton Euler algorithm was used to analyze the dynamic stability.ADAMS was used to simulate the robot’s movement process,which provides the theoretical and simulation basis for the nursing robot stability.%针对护理机器人腰臂配合抱起病人时容易发生倾翻和侧滑的问题,以自主研发的全方位移动仿人护理机器人为研究对象,从静态和动态两个方面研究机器人此阶段的运动稳定性。在没有负载或低速运动工况下,利用重心投影法,分析其静态稳定性;在有负载变化情况下,利用零力矩点理论并结合递归牛顿-欧拉算法,分析其动态稳定性。最后运用 ADAMS 仿真软件对护理机器人运动过程进行仿真分析,为确保护理机器人的运动稳定性提供理论依据。

  8. Latest Advances in Robot Kinematics

    CERN Document Server

    Husty, Manfred

    2012-01-01

    This book is  of interest to researchers inquiring about modern topics and methods in the kinematics, control and design of robotic manipulators. It considers the full range of robotic systems, including serial, parallel and cable driven manipulators, both planar and spatial. The systems range from being less than fully mobile to kinematically redundant to overconstrained. In addition to recognized areas, this book also presents recent advances in emerging areas such as the design and control of humanoids and humanoid subsystems, and the analysis, modeling and simulation of human body motions, as well as the mobility analysis of protein molecules and the development of machines which incorporate man.

  9. 基于凸包与模糊控制的仿真足球机器人%Humanoid Simulation Soccer Robot Based on Convex Hull and Fuzzy Control

    Institute of Scientific and Technical Information of China (English)

    江旭辉; 陈万米; 耿子健

    2015-01-01

    In the humanoid soccer robot simulation working environment,the ball and the robots are in constant motion,the path planning problem is an obstacle avoidance problem to a great extent.Taking into account the steering of humanoid simulation soccer robot is not too smart and the competition environment of robot to complete the task time.This dissertation introduces a kind of synthesis algorithm based on convex hull and fuzzy control,focusing on solving the problem of local path planning with obstacles.%在类人仿真足球机器人的作业环境中,球和机器人都在不断运动,其路径规划问题在很大程度上就是避障问题.考虑到类人仿真足球机器人不太灵巧的转向方式和比赛环境对机器人完成任务的时间要求.介绍了一种基于凸包与模糊控制的合成算法,着重解决有障碍物的局部路径规划问题.

  10. 基于鱼群算法的仿人机器人步态优化%Research on the gait optimization of humanoid robots based on the fish swarm algorithm

    Institute of Scientific and Technical Information of China (English)

    卢嘉敏; 杨宜民; 付根平

    2013-01-01

    This paper focuses on the shortcomings and deficiencies existing in the present gait optimization method . The influence caused by the leg joints of a humanoid robot on the gait stability is analyzed .In the radial and lateral plane , the ZMP stability margin of the gait of a robot and the integral energy consumption are taken as parameters to form a target function , the fish swarm algorithm is applied to optimize the gait of the humanoid robot programmed on the basis of the spline interpolation method .The simulation experiment shows that , by the use of this method , not on-ly may the smooth gait of a humanoid robot with a large ZMP stability margin and small energy consumption be ob -tained , but also the global search capability has been found to be better and the optimization speed is faster , in com-parison to the optimization of the inheritance algorithm used for the gait optimization of a humanoid robot.%针对现有步态优化方法中存在的缺点和不足,分析了仿人机器人腿部各关节对步态稳定性的影响,在径向和侧向平面内以机器人步态的ZMP稳定裕度和整体能耗为参数构造目标函数,利用鱼群算法对基于样条插值方法规划的仿人机器人步态进行优化。仿真实验表明,该方法不仅能够获得ZMP稳定裕度大、能耗小的仿人机器人平滑步态,而且相对采用遗传算法对仿人机器人步态优化具有更好的全局搜索能力和更快的寻优速度。

  11. Emotion Walking for Humanoid Avatars Using Brain Signals

    Directory of Open Access Journals (Sweden)

    Ahmad Hoirul Basori

    2013-01-01

    Full Text Available Interaction between humans and humanoid avatar representations is very important in virtual reality and robotics, since the humanoid avatar can represent either a human or a robot in a virtual environment. Many researchers have focused on providing natural interactions for humanoid avatars or even for robots with the use of camera tracking, gloves, giving them the ability to speak, brain interfaces and other devices. This paper provides a new multimodal interaction control for avatars by combining brain signals, facial muscle tension recognition and glove tracking to change the facial expression of humanoid avatars according to the user's emotional condition. The signals from brain activity and muscle movements are used as the emotional stimulator, while the glove acts as emotion intensity control for the avatar. This multimodal interface can determine when the humanoid avatar needs to change their facial expression or their walking power. The results show that humanoid avatar have different timelines of walking and facial expressions when the user stimulates them with different emotions. This finding is believed to provide new knowledge on controlling robots' and humanoid avatars' facial expressions and walking.

  12. Autonomous military robotics

    CERN Document Server

    Nath, Vishnu

    2014-01-01

    This SpringerBrief reveals the latest techniques in computer vision and machine learning on robots that are designed as accurate and efficient military snipers. Militaries around the world are investigating this technology to simplify the time, cost and safety measures necessary for training human snipers. These robots are developed by combining crucial aspects of computer science research areas including image processing, robotic kinematics and learning algorithms. The authors explain how a new humanoid robot, the iCub, uses high-speed cameras and computer vision algorithms to track the objec

  13. 基于碰撞危险度的仿人机器人动态避碰博弈策略%Game Strategy of Dynamic Collision Avoidance for Humanoid Robots based on the Collision Risk

    Institute of Scientific and Technical Information of China (English)

    李光日; 黄强; 徐乾; 李国栋; 李敬; 李敏

    2012-01-01

    According to the motion characters of humanoid robot, we design a collision prediction and a collision risk assessment method, and present a game strategy for dynamic collision avoidance based on the collision risk.By choosing appropriate game model, the humanoid robot collision problem is transformed to the partial game process with other robots under limited communication conditions%针对面向协同的仿人机器人避碰运动策略进行研究.设计了一种仿人机器人碰撞预测及碰撞危险度评估方法,提出了一种基于碰撞危险度的仿人机器人动态避碰博弈策略.该方法通过动态博弈模型,将仿人机器人避碰运动问题转化为机器人在有限通信辅助下与其他机器人进行博弈的过程.

  14. Application of dual-axis accelerometer ADXL203 in perceptual foot system of humanoid robot%ADXL203型双轴加速计在机器人足部感知系统中的应用

    Institute of Scientific and Technical Information of China (English)

    申海义; 吴宝元; 任阳; 申飞; 吴仲城

    2012-01-01

    In complex environments, ground reaction force can not meet the demand of walking stably for humanoid robot, then angle information of foot is more important in this application. The feet dip angle can reflect the sloping ground state, it is an important basis of the humanoid robot stability control.The high-speed real-time collection and processing of angle information is realized by using ADXL2O3 dual axle acceleration sensor and DSP (TMS3202811), and through the experiment proof that the tilt sensors in the robot foot perception system is feasible.%仿人机器人要实现在复杂环境下稳定行走,仅仅依靠地面反力信息远不能满足应用要求,此时足部的倾角信息显得更为重要.脚面倾角可以反映地面倾斜状态,是仿人机器人稳定控制的一个重要依据.利用ADXL203双轴加速度传感器与DSP (TMS3202811)实现对倾角信息的实时高速采集与处理,并通过实验证明了倾角传感器在机器人足部感知系统中是可行的.

  15. Development of compositional and contextual communicable congruence in robots by using dynamic neural network models.

    Science.gov (United States)

    Park, Gibeom; Tani, Jun

    2015-12-01

    The current study presents neurorobotics experiments on acquisition of skills for "communicable congruence" with human via learning. A dynamic neural network model which is characterized by its multiple timescale dynamics property was utilized as a neuromorphic model for controlling a humanoid robot. In the experimental task, the humanoid robot was trained to generate specific sequential movement patterns as responding to various sequences of imperative gesture patterns demonstrated by the human subjects by following predefined compositional semantic rules. The experimental results showed that (1) the adopted MTRNN can achieve generalization by learning in the lower feature perception level by using a limited set of tutoring patterns, (2) the MTRNN can learn to extract compositional semantic rules with generalization in its higher level characterized by slow timescale dynamics, (3) the MTRNN can develop another type of cognitive capability for controlling the internal contextual processes as situated to on-going task sequences without being provided with cues for explicitly indicating task segmentation points. The analysis on the dynamic property developed in the MTRNN via learning indicated that the aforementioned cognitive mechanisms were achieved by self-organization of adequate functional hierarchy by utilizing the constraint of the multiple timescale property and the topological connectivity imposed on the network configuration. These results of the current research could contribute to developments of socially intelligent robots endowed with cognitive communicative competency similar to that of human.

  16. Presence of Life-Like Robot Expressions Influences Children’s Enjoyment of Human-Robot Interactions in the Field

    NARCIS (Netherlands)

    Cameron, David; Fernando, Samuel; Collins, Emily; Millings, Abigail; Moore, Roger; Sharkey, Amanda; Evers, Vanessa; Prescott, Tony

    Emotions, and emotional expression, have a broad influence on the interactions we have with others and are thus a key factor to consider in developing social robots. As part of a collaborative EU project, this study examined the impact of lifelike affective facial expressions, in the humanoid robot

  17. Presence of Life-Like Robot Expressions Influences Children’s Enjoyment of Human-Robot Interactions in the Field

    NARCIS (Netherlands)

    Cameron, David; Fernando, Samuel; Collins, Emily; Millings, Abigail; Moore, Roger; Sharkey, Amanda; Evers, Vanessa; Prescott, Tony

    2015-01-01

    Emotions, and emotional expression, have a broad influence on the interactions we have with others and are thus a key factor to consider in developing social robots. As part of a collaborative EU project, this study examined the impact of lifelike affective facial expressions, in the humanoid robot

  18. The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions.

    Science.gov (United States)

    Saygin, Ayse Pinar; Chaminade, Thierry; Ishiguro, Hiroshi; Driver, Jon; Frith, Chris

    2012-04-01

    Using functional magnetic resonance imaging (fMRI) repetition suppression, we explored the selectivity of the human action perception system (APS), which consists of temporal, parietal and frontal areas, for the appearance and/or motion of the perceived agent. Participants watched body movements of a human (biological appearance and movement), a robot (mechanical appearance and movement) or an android (biological appearance, mechanical movement). With the exception of extrastriate body area, which showed more suppression for human like appearance, the APS was not selective for appearance or motion per se. Instead, distinctive responses were found to the mismatch between appearance and motion: whereas suppression effects for the human and robot were similar to each other, they were stronger for the android, notably in bilateral anterior intraparietal sulcus, a key node in the APS. These results could reflect increased prediction error as the brain negotiates an agent that appears human, but does not move biologically, and help explain the 'uncanny valley' phenomenon.

  19. Bipedal Walking Simulation System Using OpenGL for Humanoid Robot%基于OpenGL的仿人机器人步行仿真研究

    Institute of Scientific and Technical Information of China (English)

    宋薇; 章亚男; 见浪護; 刘勖

    2013-01-01

    Foot model is usually considered as one point or a circle in most bipedal walking simulations for decreasing the modeling difficulty. However, such simulations are less persuasive because the foot model is much different from the real human foot. The dynamic model of a bipedal humanoid robot composed by multi-links was set up by using a graphic presentation software "Open GL" under C++ Builder 6.0 environment. Several different walking styles were analyzed that may exist in a walking sequence including the style of foot rotating with toes-contacting, to make the walking of the robot more like human beings. Switching among those styles depended on different contact situations between the foot and the ground. Control strategy for bipedal walking simulation utilized position feedback and sinusoidal input, and stable walking with dynamic walking styles changing was obtained in the simulation.%已有的仿真建模中,为了减少复杂性,大多将人足模型简化为点或圆弧,这与实际情况相差较远.在C++Builder 6.0环境下利用“Open GL”图形库建立了3D仿人型机器人双足步行仿真系统,用多关节串联机构模拟足部,实现包括由前脚掌支撑、足部转动的多种步态方式,并分析步行中各种步态间的转换,根据机器人脚跟、脚尖与地面接触状态的变化动态切换不同的步态方式,符合人足步行的实际情况,增强了机器人步行的灵活性与拟人性.该系统的控制部分采用位置反馈与正弦驱动相结合的行走控制方法,通过对人足模型的多关节动力学建模,有效地实现了机器人的稳定步行仿真,并实现了步行过程中的实时步态调整.

  20. 仿人机器人跑步稳定性准则%Stability Criterion for Humanoid Running

    Institute of Scientific and Technical Information of China (English)

    李朝晖; 黄强; 李科杰

    2005-01-01

    A humanoid robot has high mobility but possibly risks of tipping over. Until now, one main topic on humanoid robots is to study the walking stability; the issue of the running stability has rarely been investigated. The running is different from the walking, and is more difficult to maintain its dynamic stability. The objective of this paper is to study the stability criterion for humanoid running based on the whole dynamics. First, the cycle and the dynamics of running are analyzed. Then, the stability criterion of humanoid running is presented. Finally, the effectiveness of the proposed stability criterion is illustrated by a dynamic simulation example using a dynamic analysis and design system (DADS).

  1. YARP: Yet Another Robot Platform

    Directory of Open Access Journals (Sweden)

    Lorenzo Natale

    2008-11-01

    Full Text Available We describe YARP, Yet Another Robot Platform, an open-source project that encapsulates lessons from our experience in building humanoid robots. The goal of YARP is to minimize the effort devoted to infrastructure-level software development by facilitating code reuse, modularity and so maximize research-level development and collaboration. Humanoid robotics is a "bleeding edge" field of research, with constant flux in sensors, actuators, and processors. Code reuse and maintenance is therefore a significant challenge. We describe the main problems we faced and the solutions we adopted. In short, the main features of YARP include support for inter-process communication, image processing as well as a class hierarchy to ease code reuse across different hardware platforms. YARP is currently used and tested on Windows, Linux and QNX6 which are common operating systems used in robotics.

  2. 基于视觉前馈和视觉反馈的仿人机器人抓取操作%Object Manipulation of a Humanoid Robot Based on Visual Feedforward and Visual Feedback

    Institute of Scientific and Technical Information of China (English)

    贾东永; 黄强; 田野; 张伟民; 高峻峣

    2009-01-01

    针对仿人机器人执行抓取操作,提出了一种联合使用视觉前馈和视觉反馈的控制策略. 在视觉前馈中利用基于表格的逆运动学算法,简化了逆运动学计算,减少了抓取操作时间. 视觉反馈补偿了弱标定并增加了系统的稳定性. 两种控制算法的联合使用简化了仿人机器人的伸手抓取操作. 实验结果验证了该控制策略的可用性.%According to the reach-to-grasp task for a humanoid robot,a method combining visual feedforward and visual feedback is proposed. Reverse kinematics algorithm based on the grid is used in the visual feedforward to facilitate the reach-to-grasp task and reduces the manipulation time. The visual feedback increases the robustness by compensating the weak calibration error. The combination of two control strategies facilitates reach-to-grasp task for a humanoid robot. The robustness of the system is confirmed by experimental results.

  3. Theoretical research on a six-axis accelerometer for humanoid robot wrist%类人机器人腕用六维加速度传感器的理论研究

    Institute of Scientific and Technical Information of China (English)

    于春战; 张新义; 贾庆轩; 韩进宏; 刘剑平

    2011-01-01

    The acceleration of humanoid robot wrist disturbs the grasp robustness of the multi-fingered robot hand. In order to acquire the acceleration, effectively counteract the disturbance caused by the acceleration and ensure robot hand grasping stably and accurately, this paper presents a six-axis accelerometer that uses a parallel mechanism as the sensing element for humanoid robot wrist, establishes its mathematics model, deduces the acceleration Jacobian matrix and sensitivity Jacobian matrix and analyses its static characteristics. Based on the defined static characteristic indices, the theoretical model parameters are optimized using the physical model of solution space. The computing example of a six-axis accelerometer for humanoid robot wrist is given; the acquired maximum error between the theo-retical strains and experimental strains of each leg is 1.617% , which verifies that the design parameters are valid. Finally, the results of calibration experiment also testify that the proposed theory and method are valid and reliable.%类人机器人灵巧手抓取过程中的惯性力会影响到抓取的鲁棒性,为了消除惯性力的影响,需要检测出加在手上的空间加速度反馈给控制系统,以确保抓取的平稳性和快速性.采用并联机构作为弹性元件研究了一种六维加速度传感器,建立了静态数学模型,推导了加速度和灵敏度雅可比矩阵,并对传感器的静态特性进行了研究.根据定义的静态性能指标采用空间模型理论的图谱寻优法,优化设计了传感器的理论模型参数.为了验证设计参数的可靠性,给出了1种类人机器人腕用六维加速度传感器的算例,仿真实验获得的各弹性连接杆上应变的实验值与理论值的最大误差为1.617%.最后标定实验结果证明研究的理论和方法是有效和可靠的.

  4. A cortically-inspired model for inverse kinematics computation of a humanoid finger with mechanically coupled joints.

    Science.gov (United States)

    Gentili, Rodolphe J; Oh, Hyuk; Kregling, Alissa V; Reggia, James A

    2016-05-19

    The human hand's versatility allows for robust and flexible grasping. To obtain such efficiency, many robotic hands include human biomechanical features such as fingers having their two last joints mechanically coupled. Although such coupling enables human-like grasping, controlling the inverse kinematics of such mechanical systems is challenging. Here we propose a cortical model for fine motor control of a humanoid finger, having its two last joints coupled, that learns the inverse kinematics of the effector. This neural model functionally mimics the population vector coding as well as sensorimotor prediction processes of the brain's motor/premotor and parietal regions, respectively. After learning, this neural architecture could both overtly (actual execution) and covertly (mental execution or motor imagery) perform accurate, robust and flexible finger movements while reproducing the main human finger kinematic states. This work contributes to developing neuro-mimetic controllers for dexterous humanoid robotic/prosthetic upper-extremities, and has the potential to promote human-robot interactions.

  5. The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions

    Science.gov (United States)

    Chaminade, Thierry; Ishiguro, Hiroshi; Driver, Jon; Frith, Chris

    2012-01-01

    Using functional magnetic resonance imaging (fMRI) repetition suppression, we explored the selectivity of the human action perception system (APS), which consists of temporal, parietal and frontal areas, for the appearance and/or motion of the perceived agent. Participants watched body movements of a human (biological appearance and movement), a robot (mechanical appearance and movement) or an android (biological appearance, mechanical movement). With the exception of extrastriate body area, which showed more suppression for human like appearance, the APS was not selective for appearance or motion per se. Instead, distinctive responses were found to the mismatch between appearance and motion: whereas suppression effects for the human and robot were similar to each other, they were stronger for the android, notably in bilateral anterior intraparietal sulcus, a key node in the APS. These results could reflect increased prediction error as the brain negotiates an agent that appears human, but does not move biologically, and help explain the ‘uncanny valley’ phenomenon. PMID:21515639

  6. 基于能量转换的仿人机器人摆动腿落地改进阻抗控制方法%Improved impedance control of humanoid robot swing leg landing based on energy conversion

    Institute of Scientific and Technical Information of China (English)

    常琦; 张国良; 敬斌

    2012-01-01

    According to no buffering device of biped humanoid robot in the rapid movement of swing leg landing will affect the stability of the robot body problems, combined with the impedance control characteristics, analyzed from the perspective of energy conversion based on energy conversion of the humanoid robot leg landing, an improved impedance control method was proposed. Based on the impedance control method as the foundation, through analysis with the robot leg swing fall terminal velocity and barycenter velocity after landing, combined with the energy conversion in the swing leg landing process, the authors controlled the force of robot leg when landing, achieved the purpose that the swing leg landing buffered. Finally, this method was applied to robot Nao. The experiment proves that the instantaneous force is decreased when robot leg swing landing ground, achieves the effect of buffer landing, and the pre-control was implemented.%针对没有缓冲装置的双足仿人机器人在快速运动中摆动腿落地会对机器人身体稳定性带来影响的问题,结合阻抗控制的控制特点,从能量转换的角度进行分析,提出了基于能量转换的仿人机器人摆动腿落地改进阻抗控制方法.以阻抗控制方法为基础,通过对机器人摆动腿落地时末端速度以及落地后质心速度的分析,结合在摆动腿落地这一过程中能量的转换关系,对机器人摆动腿各关节的力进行控制,从而达到机器人摆动腿缓冲落地的目的.最后,将此方法应用于机器人Nao,实验证明,机器人摆动腿落地时与地面的瞬时作用力减小,达到了缓冲落地的效果,同时也起到了预先控制的作用.

  7. Humanoid Intelligent Management System

    Institute of Scientific and Technical Information of China (English)

    DU Jun-ping; TU Xu-yan

    2004-01-01

    This paper proposes a concept and design strategy for the humanoid intelligent management system (HIMS) based on artificial life. Various topics are discussed including the design method and implementation techniques for the dual management scheme (DMS), humanoid intelligent management model (HIMM), central-decentralized management pattern, and multi-grade coordination function.

  8. New development in robot vision

    CERN Document Server

    Behal, Aman; Chung, Chi-Kit

    2015-01-01

    The field of robotic vision has advanced dramatically recently with the development of new range sensors.  Tremendous progress has been made resulting in significant impact on areas such as robotic navigation, scene/environment understanding, and visual learning. This edited book provides a solid and diversified reference source for some of the most recent important advancements in the field of robotic vision. The book starts with articles that describe new techniques to understand scenes from 2D/3D data such as estimation of planar structures, recognition of multiple objects in the scene using different kinds of features as well as their spatial and semantic relationships, generation of 3D object models, approach to recognize partially occluded objects, etc. Novel techniques are introduced to improve 3D perception accuracy with other sensors such as a gyroscope, positioning accuracy with a visual servoing based alignment strategy for microassembly, and increasing object recognition reliability using related...

  9. Robotic Technology Efforts at the NASA/Johnson Space Center

    Science.gov (United States)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center's Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of "dull, dirty or dangerous" tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center's newest development areas can provide crew with low mass exercise capability and also augment an astronaut's strength while wearing a space suit. This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center's Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  10. 基于多传感器集成的仿人机器人足部感知系统%A Perceptual Foot System of Humanoid Robot Based on the Integration of Multi-Sensors

    Institute of Scientific and Technical Information of China (English)

    申飞; 吴宝元; 罗健飞; 任阳; 吴仲城

    2011-01-01

    It is well known that the foot of humanoid robot serves as not only the main part contacting with the ground but also the unique foundation for supporting the body. The capability of various kinds of ground information detection is certainly used as the key control of walking steadily and naturally for humanoid robot. A new-type perceptual foot system with perceive ability to detect and process various kinds of information (such as foot posture, support area,ground force and position,etc;)in complicated environments was designed on the integration of 6-axis force sensor, inertial measurement unit ( IMU) and flexible array sensor. Theoretical analysis and simulation results have proved the feasibility of the design, which provides research platform in promoting the innovation of humanoid robot for theoretical research, control technology, bionic gait planning and system structure.%足部是仿人机器人本体支撑的基础,也是唯一与地面接触并发生相互作用的主要部件,其各种地面信息获取能力是机器人实现仿人的自然性稳定行走控制的关键.基于六维力传感器、惯量测量单元和柔性触觉阵列传感器,设计了一种新型仿人机器人集成化足部感知系统(IPFS).具备对各种地面环境识别和足部姿态获取、足底与外界接触位置的实时感知和估计、有效支撑区域、地面反力以及姿态等信息的感知能力.实机实验结果表明足部感知系统较好地满足仿人机器人理论化和实用化需求,为促进仿人机器人理论研究、控制技术、仿生步态规划及其体系结构的创新提供了实验研究平台.

  11. HBS-1: A Modular Child-Size 3D Printed Humanoid

    Directory of Open Access Journals (Sweden)

    Lianjun Wu

    2016-01-01

    Full Text Available An affordable, highly articulated, child-size humanoid robot could potentially be used for various purposes, widening the design space of humanoids for further study. Several findings indicated that normal children and children with autism interact well with humanoids. This paper presents a child-sized humanoid robot (HBS-1 intended primarily for children’s education and rehabilitation. The design approach is based on the design for manufacturing (DFM and the design for assembly (DFA philosophies to realize the robot fully using additive manufacturing. Most parts of the robot are fabricated with acrylonitrile butadiene styrene (ABS using rapid prototyping technology. Servomotors and shape memory alloy actuators are used as actuating mechanisms. The mechanical design, analysis and characterization of the robot are presented in both theoretical and experimental frameworks.

  12. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.

    Science.gov (United States)

    Dawood, Farhan; Loo, Chu Kiong

    2016-01-01

    Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.

  13. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.

    Directory of Open Access Journals (Sweden)

    Farhan Dawood

    Full Text Available Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.

  14. Study of Bipedal Robot Walking Motion in Low Gravity: Investigation and Analysis

    Directory of Open Access Journals (Sweden)

    Aiman Omer

    2014-09-01

    Full Text Available Humanoid robots are expected to play a major role in the future of space and planetary exploration. Humanoid robot features could have many advantages, such as interacting with astronauts and the ability to perform human tasks. However, the challenge of developing such a robot is quite high due to many difficulties. One of the main difficulties is the difference in gravity. Most researchers in the field of bipedal locomotion have not paid much attention to the effect of gravity. Gravity is an important parameter in generating a bipedal locomotion trajectory. This research investigates the effect of gravity on bipedal walking motion. It focuses on low gravity, since most of the known planets and moons have lower gravity than earth. Further study is conducted on a full humanoid robot model walking subject to the moon’s gravity, and an approach for dealing with moon gravity is proposed in this paper.

  15. 基于接触力信息的仿人机器人ZMP测量系统%A ZMP measurement system of humanoid robot based on interaction force information

    Institute of Scientific and Technical Information of China (English)

    刘成军; 李祖枢

    2011-01-01

    A ZMP measurement system of humanoid robot with sensor array based on contact force information of the foot is presented,to solve the problem of contact force information which is not sensed comprehensively for the force/torque sensor of the present ZMP measurement system hasn' t been set to touch the ground directly. The multi-stage amplification of the sensor signals is introduced. The hardware and software system for information collecting are presented- The communication with external MCU via CAN bus is realized. The designed system has been used in actual humanoid robot. The results of walking experiment indicate that the actual ZMP can be measured and the contact force information at different parts of the foot with the ground can be collected,computed and transmitted on-line effectively via the ZMP measurement system which is simple to be realized.%针对现有仿人机器人零力矩点(ZMP)测量系统的力/力矩传感器不直接触地导致不能充分反映脚底各部位受力的问题,设计了一种基于地面接触力信息的具有传感器阵列的ZMP测量系统.介绍了传感器信号多级放大、采集及处理的软硬件系统,应用CAN总线接口实现了与外部上位机的通信.所设计的系统已应用于实际仿人机器人.步行实验表明:该系统能有效完成步行中ZMP的实时测量和脚底各部位受力信息的实时采集、计算与通信,简单易实现.

  16. State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xuyang Wang

    2008-11-01

    Full Text Available A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots.To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion.

  17. Active Vision for Humanoid Robots

    NARCIS (Netherlands)

    Wang, X.

    2015-01-01

    Human perception is an active process. By altering its viewpoint rather than passively observing surroundings and by operating on sequences of images rather than on a single frame, the human visual system has the ability to explore the most relevant information based on knowledge, therefore when gro

  18. Active Vision for Humanoid Robots

    NARCIS (Netherlands)

    Wang, X.

    2015-01-01

    Human perception is an active process. By altering its viewpoint rather than passively observing surroundings and by operating on sequences of images rather than on a single frame, the human visual system has the ability to explore the most relevant information based on knowledge, therefore when

  19. Inventing Japan's 'robotics culture': the repeated assembly of science, technology, and culture in social robotics.

    Science.gov (United States)

    Sabanović, Selma

    2014-06-01

    Using interviews, participant observation, and published documents, this article analyzes the co-construction of robotics and culture in Japan through the technical discourse and practices of robotics researchers. Three cases from current robotics research--the seal-like robot PARO, the Humanoid Robotics Project HRP-2 humanoid, and 'kansei robotics' - show the different ways in which scientists invoke culture to provide epistemological grounding and possibilities for social acceptance of their work. These examples show how the production and consumption of social robotic technologies are associated with traditional crafts and values, how roboticists negotiate among social, technical, and cultural constraints while designing robots, and how humans and robots are constructed as cultural subjects in social robotics discourse. The conceptual focus is on the repeated assembly of cultural models of social behavior, organization, cognition, and technology through roboticists' narratives about the development of advanced robotic technologies. This article provides a picture of robotics as the dynamic construction of technology and culture and concludes with a discussion of the limits and possibilities of this vision in promoting a culturally situated understanding of technology and a multicultural view of science.

  20. Can a Humanoid Face be Expressive? A Psychophysiological Investigation.

    Science.gov (United States)

    Lazzeri, Nicole; Mazzei, Daniele; Greco, Alberto; Rotesi, Annalisa; Lanatà, Antonio; De Rossi, Danilo Emilio

    2015-01-01

    Non-verbal signals expressed through body language play a crucial role in multi-modal human communication during social relations. Indeed, in all cultures, facial expressions are the most universal and direct signs to express innate emotional cues. A human face conveys important information in social interactions and helps us to better understand our social partners and establish empathic links. Latest researches show that humanoid and social robots are becoming increasingly similar to humans, both esthetically and expressively. However, their visual expressiveness is a crucial issue that must be improved to make these robots more realistic and intuitively perceivable by humans as not different from them. This study concerns the capability of a humanoid robot to exhibit emotions through facial expressions. More specifically, emotional signs performed by a humanoid robot have been compared with corresponding human facial expressions in terms of recognition rate and response time. The set of stimuli included standardized human expressions taken from an Ekman-based database and the same facial expressions performed by the robot. Furthermore, participants' psychophysiological responses have been explored to investigate whether there could be differences induced by interpreting robot or human emotional stimuli. Preliminary results show a trend to better recognize expressions performed by the robot than 2D photos or 3D models. Moreover, no significant differences in the subjects' psychophysiological state have been found during the discrimination of facial expressions performed by the robot in comparison with the same task performed with 2D photos and 3D models.

  1. Model Driven Software Development for Agricultural Robotics

    DEFF Research Database (Denmark)

    Larsen, Morten

    The design and development of agricultural robots, consists of both mechan- ical, electrical and software components. All these components must be de- signed and combined such that the overall goal of the robot is fulfilled. The design and development of these systems require collaboration between...... processing, control engineering, etc. This thesis proposes a Model-Driven Software Develop- ment based approach to model, analyse and partially generate the software implementation of a agricultural robot. Furthermore, Guidelines for mod- elling the architecture of an agricultural robots are provided......, assisting with bridging the different engineering disciplines. Timing play an important role in agricultural robotic applications, synchronisation of robot movement and implement actions is important in order to achieve precision spraying, me- chanical weeding, individual feeding, etc. Discovering...

  2. Advances in Robotic Servicing Technology Development

    Science.gov (United States)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  3. An Anthropomorphic Robot Hand Developed Based on Underactuated Mechanism and Controlled by EMG Signals

    Institute of Scientific and Technical Information of China (English)

    Da-peng Yang; Jing-dong Zhao; Yi-kun Gu; Xin-qing Wang; Nan Li; Li Jiang; Hong Liu; Hai Huang; Da-wei Zhao

    2009-01-01

    When developing a humanoid myo-control hand, not only the mechanical structure should be considered to afford a high dexterity, but also the myoelectric (electromyography, EMG) control capability should be taken into account to fully accomplish the actuation tasks. This paper presents a novel humanoid robotic myocontrol hand (AR hand Ⅲ) which adopted an underac-tuated mechanism and a forearm myocontrol EMG method. The AR hand Ⅲ has five fingers and 15 joints, and actuated by three embedded motors. Underactuation can be found within each finger and between the rest three fingers (the middle finger, the ring finger and the little finger) when the hand is grasping objects. For the EMG control, two specific methods are proposed: the three-fingered hand gesture configuration of the AR hand Ⅲ and a pattern classification method of EMG signals based on a statistical learning algorithm-Support Vector Machine (SVM). Eighteen active hand gestures of a testee are recognized ef-fectively, which can be directly mapped into the motions of AR hand Ⅲ. An on-line EMG control scheme is established based on two different decision functions: one is for the discrimination between the idle and active modes, the other is for the recog-nition of the active modes. As a result, the AR hand Ⅲ can swiftly follow the gesture instructions of the testee with a time delay less than 100 ms.

  4. Actuator and electronics packaging for extrinsic humanoid hand

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Reich, David M. (Inventor); Askew, Scott R. (Inventor)

    2013-01-01

    The lower arm assembly for a humanoid robot includes an arm support having a first side and a second side, a plurality of wrist actuators mounted to the first side of the arm support, a plurality of finger actuators mounted to the second side of the arm support and a plurality of electronics also located on the first side of the arm support.

  5. Vision based motion control for a humanoid head

    NARCIS (Netherlands)

    Visser, L.C.; Carloni, R.; Stramigioli, S.

    2009-01-01

    This paper describes the design of a motion control algorithm for a humanoid robotic head, which consists of a neck with four degrees of freedom and two eyes (a stereo pair system) that tilt on a common axis and rotate sideways freely. The kinematic and dynamic properties of the head are analyzed an

  6. Analysis of balance control methods based on inverted pendulum for legged robots

    Directory of Open Access Journals (Sweden)

    Denisov Alexander

    2017-01-01

    Full Text Available Methods of balance control for a legged robot, the model of which is presented as a two-section inverted pendulum, are considered. The following balance methods for humanoid robots are analysed: the parallel algorithm of the network operator method; the method of natural synergies; the method of fuzzy control, the spherical inverted pendulum mode, a dual length linear inverted pendulum method. The best of these methods will be used in the development of the Russian anthropomorphic robot Antares.

  7. Development of a continuum robot for colonoscopy

    Institute of Scientific and Technical Information of China (English)

    Hu Haiyan; Li Mantian; Wang Pengfei; Feng Yuan; Sun Lining

    2009-01-01

    A novel continuum robot for colonoscopy is presented. The aim is to develop a robot for colonoscopy which can provide the same functions as conventional colonoscope, but much less pain and discomfort for patient. In contrast to traditional rigid-link robot, the robot features a continuous backbone with no joints. The continuum robot is 300 mm in total length and 12 mm in diameter that is less than the average diameter of human colon (20 mm). The robot has a total of 4 DOF (degrees of freedom) and is actuated remotely by 6 hybrid step motors through super-elastic NiTi wires. Its shape can be changed with high dexterity, therefore ensuring its adaptability to the tortuous shape of human colon. The mechanical structure, kinematics and DSP-based control system are discussed; prototype experiments are carried out to validate the kinematics model and to show the motion performances.

  8. The development of robot art

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2009-01-01

    Going through a few examples of robot artists who are recognized worldwide, we try to analyze the deepest meaning of what is called “robot art” and the related art field definition. We also try to highlight its well-marked borders, such as kinetic sculptures, kinetic art, cyber art, and cyberpunk...... that might classify robot art as a unique and innovative discipline, and to track down some of the principles by which a robotic artifact can or cannot be considered an art piece in terms of social, cultural, and strictly artistic interest....

  9. 一种面向仿人机器人的传感器标准化接口模块%A design method and its application for standardized sensors interface module of humanoid robot

    Institute of Scientific and Technical Information of China (English)

    任阳; 吴宝元; 罗健飞; 吴仲城

    2011-01-01

    针对未来机器人感知系统部件模块化、标准化的发展趋势,研究了基于IEEE1451机器人传感器标准化接口模块的设计思路,讨论了标准化接口模块的硬件体系结构和软件设计方法,给出了接口模块网络通信接口应用层协议的详细定义、接口模块TEDS的设计、基于XML的TEDS表达和处理流程,提出标准化接口模块软件设计采用组件化策略并定义了6种用户接口组件.最后以仿人机器人足部感知系统为实例证明了本方法的可行性.%To the modular and standardized trend of robot perception system, this paper studied on the design method of standardized robot sensors interface module based on the standard of IEEE1451, discussed the hardware architecture and software design method of the standardized interface module. Emphatically introduced the detailed definition of the module's network communication interface* design of the module's TEDS (transducer electronic data sheet) , expression and processing of XML (extensible markup language) based TEDS, also proposed a component-based idea for the module's software design and defined six components of the user interface. Finally took the humanoid robot foot perception system as an example to prove the feasibility of the proposed method.

  10. Decoupled Closed-Form Solution for Humanoid Lower Limb Kinematics

    Directory of Open Access Journals (Sweden)

    Alejandro Said

    2015-01-01

    Full Text Available This paper presents an explicit, omnidirectional, analytical, and decoupled closed-form solution for the lower limb kinematics of the humanoid robot NAO. The paper starts by decoupling the position and orientation analysis from the overall Denavit-Hartenberg (DH transformation matrices. Here, the joint activation sequence for the DH matrices is based on the geometry of a triangle. Furthermore, the implementation of a forward and a reversed kinematic analysis for the support and swing phase equations is developed to avoid matrix inversion. The allocation of constant transformations allows the position and orientation end-coordinate systems to be aligned with each other. Also, the redefinition of the DH transformations and the use of constraints allow decoupling the shared DOF between the legs and the torso. Finally, a geometric approach to avoid the singularities during the walking process is indicated. Numerical data is presented along with an experimental implementation to prove the validity of the analytical results.

  11. 3D Parametric Gait Planning of Humanoid Robot with Consideration of Comprehensive Biped Walking Constraints%考虑综合步行约束的仿人机器人参数化3D步态规划方法

    Institute of Scientific and Technical Information of China (English)

    伊强; 陈恳; 刘莉; 付成龙

    2009-01-01

    给出了一种三维环境下双足行走的参数化步态规划方法,建立了仿人机器人13质量块约束动力学模型.考虑单腿支撑和双腿支撑无冲击连续切换的六点边界约束条件、可行步态物理约束条件以及ZMP稳定性约束条件,以关节输出力矩函数的二次型积分值最小作为优化指标,采用参数化步态优化方法,将复杂关节轨迹的规划问题转化为分段多项式系数组成的有限参数向量的优化问题,得到厂快速和慢速两组光滑无振动的优化步态.仿真和样机实验验证了该方法的有效性.%A parametric gait planning of 3D biped walking is proposed and a 13-rigid-body constrained dynamic model of humanoid robot is also established. With the considerations of six-point boundary constraints of successive and impact-less steps including SSP (single-support-phase) and DSP (double-support-phase), physical constraints of feasible gait and ZMP (zero moment point) stability constraints of locomotion, tow groups of slow and fast walking speed with smooth and non-jerky optimal joint trajectory curves to minimize integral quadratic amount of joint driving torques are obtained by adopting the parametric gait optimization approach, which makes the complicated joint trajectory planning problem transform into the optimization problem of limited parametric vectors composed of piecewisepolynomial coefficients. The effectiveness of this method is confirmed by dynamic simulations and walking experiments on an actual humanoid robot.

  12. Acquiring neural signals for developing a perception and cognition model

    Science.gov (United States)

    Li, Wei; Li, Yunyi; Chen, Genshe; Shen, Dan; Blasch, Erik; Pham, Khanh; Lynch, Robert

    2012-06-01

    The understanding of how humans process information, determine salience, and combine seemingly unrelated information is essential to automated processing of large amounts of information that is partially relevant, or of unknown relevance. Recent neurological science research in human perception, and in information science regarding contextbased modeling, provides us with a theoretical basis for using a bottom-up approach for automating the management of large amounts of information in ways directly useful for human operators. However, integration of human intelligence into a game theoretic framework for dynamic and adaptive decision support needs a perception and cognition model. For the purpose of cognitive modeling, we present a brain-computer-interface (BCI) based humanoid robot system to acquire brainwaves during human mental activities of imagining a humanoid robot-walking behavior. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model. The BCI system consists of a data acquisition unit with an electroencephalograph (EEG), a humanoid robot, and a charge couple CCD camera. An EEG electrode cup acquires brainwaves from the skin surface on scalp. The humanoid robot has 20 degrees of freedom (DOFs); 12 DOFs located on hips, knees, and ankles for humanoid robot walking, 6 DOFs on shoulders and arms for arms motion, and 2 DOFs for head yaw and pitch motion. The CCD camera takes video clips of the human subject's hand postures to identify mental activities that are correlated to the robot-walking behaviors. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model.

  13. A Bio-Inspired Approach to the Realization of Sustained Humanoid Motion

    Directory of Open Access Journals (Sweden)

    Miomir Vukobratović

    2012-11-01

    Full Text Available This paper overviews some author’s biomechanical inspiration for the development of an approach which enables the realization of bipedal artificial motion. First, we introduce the notion of dynamic balance, which is a basic prerequisite for the realization of any task by humanoids. Then, as ground reference points, important indicators of a humanoid’s state were introduced and discussed. Particular attention was paid to ZMP, which is the most important indicator of robot dynamic balance. Issues of modelling of the complex mechanical systems (humanoids belonging to this class were also discussed. Such software should allow humanoid modelling, either without any contact with the environment (such as flying freely in space, for example, during jumping or having contact with ground or any other supporting object. It also should be enough general to cover different humanoids’ structures, postures, and allow the calculation of all relevant dynamic characteristics. Some examples are presented in this paper (e.g., the modelling of a goalkeeper catching a ball, the replication of human motion trying to re‐establish posture and dynamic balance where jeopardized by perturbation.

  14. Human-Robot Interaction: Status and Challenges.

    Science.gov (United States)

    Sheridan, Thomas B

    2016-06-01

    The current status of human-robot interaction (HRI) is reviewed, and key current research challenges for the human factors community are described. Robots have evolved from continuous human-controlled master-slave servomechanisms for handling nuclear waste to a broad range of robots incorporating artificial intelligence for many applications and under human supervisory control. This mini-review describes HRI developments in four application areas and what are the challenges for human factors research. In addition to a plethora of research papers, evidence of success is manifest in live demonstrations of robot capability under various forms of human control. HRI is a rapidly evolving field. Specialized robots under human teleoperation have proven successful in hazardous environments and medical application, as have specialized telerobots under human supervisory control for space and repetitive industrial tasks. Research in areas of self-driving cars, intimate collaboration with humans in manipulation tasks, human control of humanoid robots for hazardous environments, and social interaction with robots is at initial stages. The efficacy of humanoid general-purpose robots has yet to be proven. HRI is now applied in almost all robot tasks, including manufacturing, space, aviation, undersea, surgery, rehabilitation, agriculture, education, package fetch and delivery, policing, and military operations. © 2016, Human Factors and Ergonomics Society.

  15. 基于强化学习的类人机器人步行参数训练算法%Walking Parameters Training Algorithm of Humanoid Robot Based on Reinforcement Learning

    Institute of Scientific and Technical Information of China (English)

    梁志伟; 朱松豪

    2012-01-01

    基于轨迹规划的类人机器人在合理的参数组合下可实现快速稳定的行走.为优化步行参数,提出一种基于强化学习的步行参数训练算法.对步行参数进行降阶处理,利用强化学习算法优化参数,并设置奖惩机制.在Robocup3D仿真平台上进行实验,结果证明了该算法的有效性.%Aiming at optimizing walking parameters for quick, and stable walking of humanoid robot based on trajectory planning method, this paper presents a walking parameters training algorithm based on reinforcement learning. By decreasing the number of walking parameters, the reinforcement learning is applied to optimize these parameters, and the reward and punishment mechanism is given. Experimental results show that the algorithm is feasible in the RoboCup3D simulation platform.

  16. Development of autonomous grasping and navigating robot

    Science.gov (United States)

    Kudoh, Hiroyuki; Fujimoto, Keisuke; Nakayama, Yasuichi

    2015-01-01

    The ability to find and grasp target items in an unknown environment is important for working robots. We developed an autonomous navigating and grasping robot. The operations are locating a requested item, moving to where the item is placed, finding the item on a shelf or table, and picking the item up from the shelf or the table. To achieve these operations, we designed the robot with three functions: an autonomous navigating function that generates a map and a route in an unknown environment, an item position recognizing function, and a grasping function. We tested this robot in an unknown environment. It achieved a series of operations: moving to a destination, recognizing the positions of items on a shelf, picking up an item, placing it on a cart with its hand, and returning to the starting location. The results of this experiment show the applicability of reducing the workforce with robots.

  17. Control Methods for a Humanoid Robot Walking Stably on the Unknown Ground%拟人机器人未知环境下稳定行走控制方法

    Institute of Scientific and Technical Information of China (English)

    肖乐; 殷晨波; 谢从华

    2015-01-01

    A humanoid robot is one of the key research directions in the area of robots research. The present study focuses on the realization of bipedal on the flat ground and stable walking in the known ground environ?ment, but how to realize stable walking on unknown ground has always been a difficulty and a focus of research. This paper conducted a research on the three control methods of the unknown environment by adjusting the land?ing time, the landing position and ground vibration stability control. These control methods could maintain stabil?ity during the whole working process, especially when the ground is uneven and the swing leg is landing.%拟人机器人是机器人研究领域的重点研究方向之一,研究主要集中在实现双足行走,在平整地面上和已知地面环境下的稳定行走,但是在未知地面环境下实现稳定行走一直是研究的难点和热点. 本文研究了在未知环境下通过调整落地时间、落地位置、落地减振控制三种方法控制稳定.这些控制方法使得机器人在未知环境下摆动腿落地瞬间冲击力较大时能保持良好的稳定性.

  18. Robot development for nuclear material processing

    Energy Technology Data Exchange (ETDEWEB)

    Pedrotti, L.R.; Armantrout, G.A.; Allen, D.C.; Sievers, R.H. Sr.

    1991-07-01

    The Department of Energy is seeking to modernize its special nuclear material (SNM) production facilities and concurrently reduce radiation exposures and process and incidental radioactive waste generated. As part of this program, Lawrence Livermore National Laboratory (LLNL) lead team is developing and adapting generic and specific applications of commercial robotic technologies to SNM pyrochemical processing and other operations. A working gantry robot within a sealed processing glove box and a telerobot control test bed are manifestations of this effort. This paper describes the development challenges and progress in adapting processing, robotic, and nuclear safety technologies to the application. 3 figs.

  19. Advances in robot kinematics

    CERN Document Server

    Khatib, Oussama

    2014-01-01

    The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to overconstrained.  The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.

  20. Robotic Lunar Lander Development Project Status

    Science.gov (United States)

    Hammond, Monica; Bassler, Julie; Morse, Brian

    2010-01-01

    This slide presentation reviews the status of the development of a robotic lunar lander. The goal of the project is to perform engineering tests and risk reduction activities to support the development of a small lunar lander for lunar surface science. This includes: (1) risk reduction for the flight of the robotic lander, (i.e., testing and analyzing various phase of the project); (2) the incremental development for the design of the robotic lander, which is to demonstrate autonomous, controlled descent and landing on airless bodies, and design of thruster configuration for 1/6th of the gravity of earth; (3) cold gas test article in flight demonstration testing; (4) warm gas testing of the robotic lander design; (5) develop and test landing algorithms; (6) validate the algorithms through analysis and test; and (7) tests of the flight propulsion system.

  1. Robots as objects-to-develop-with

    Directory of Open Access Journals (Sweden)

    Alessandro Pollini

    2006-01-01

    Full Text Available Studio dell’impiego di artefatti robotici nella pratica psicomotoria, esplorando l’approccio ai robot come “objects-to-develop-with”. Viene presentato un’esperienza sperimentale.

  2. Modelling of dynamically stable AR-601M robot locomotion in Simulink

    Directory of Open Access Journals (Sweden)

    Khusainov Ramil

    2016-01-01

    Full Text Available Humanoid robots will gradually play an important role in our daily lives. Currently, research on anthropomorphic robots and biped locomotion is one of the most important problems in the field of mobile robotics, and the development of reliable control algorithms for them is a challenging task. In this research two algorithms for stable walking of Russian anthropomorphic robot AR-601M with 41 Degrees of Freedom (DoF are investigated. To achieve a human-like dynamically stable locomotion 6 DoF in each robot leg are controlled with Virtual Height Inverted Pendulum and Preview control methods.

  3. The Paradigm of Utilizing Robots in the Teaching Process: A Comparative Study

    Science.gov (United States)

    Bacivarov, Ioan C.; Ilian, Virgil L. M.

    2012-01-01

    This paper discusses a comparative study of the effects of using a humanoid robot for introducing students to personal robotics. Even if a humanoid robot is one of the more complicated types of robots, comprehension was not an issue. The study highlighted the importance of using real hardware for teaching such complex subjects as opposed to…

  4. A control system for a flexible spine belly-dancing humanoid.

    Science.gov (United States)

    Or, Jimmy

    2006-01-01

    Recently, there has been a lot of interest in building anthropomorphic robots. Research on humanoid robotics has focused on the control of manipulators and walking machines. The contributions of the torso towards ordinary movements (such as walking, dancing, attracting mates, and maintaining balance) have been neglected by almost all humanoid robotic researchers. We believe that the next generation of humanoid robots will incorporate a flexible spine in the torso. To meet the challenge of controlling this kind of high-degree-of-freedom robot, a new control architecture is necessary. Inspired by the rhythmic movements commonly exhibited in lamprey locomotion as well as belly dancing, we designed a controller for a simulated belly-dancing robot using the lamprey central pattern generator. Experimental results show that the proposed lamprey central pattern generator module could potentially generate plausible output patterns, which could be used for all the possible spine motions with minimized control parameters. For instance, in the case of planar spine motions, only three input parameters are required. Using our controller, the simulated robot is able to perform complex torso movements commonly seen in belly dancing as well. Our work suggests that the proposed controller can potentially be a suitable controller for a high-degree-of-freedom, flexible spine humanoid robot. Furthermore, it allows us to gain a better understanding of belly dancing by synthesis.

  5. Fiscal 1998 R and D report on the human coordination/coexistence robot system (development of practical technology for rational energy use); 1998 nendo ningen kyocho kyozongata robot system no kenkyu kaihatsu (energy shiyo gorika kankei gijutsu jitsuyoka kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report reports the R and D on the human coordination/coexistence robot system possible to perform various works instead of people. As for an intelligent robot hand, 4-finger hand and arm hardware were developed and fabricated, and operation of the assembled system of them was tested. As for a robot platform, a remote control platform, and the interface specifications of command communication and data communication were studied. As for 3-D walk adaptive to land shapes, an analysis environment for a control algorithm and an easy-to-use environment for a virtual platform simulator were prepared. By using this analysis environment, the central part of the walk control algorithm, and a module for forming walk patterns were developed. In the application research on energy saving, various problems on dangerous and harsh conditions in construction and disaster restoration works were analyzed, and the needs of a humanoid robot for such works were studied. (NEDO)

  6. A neural framework for organization and flexible utilization of episodic memory in cumulatively learning baby humanoids.

    Science.gov (United States)

    Mohan, Vishwanathan; Sandini, Giulio; Morasso, Pietro

    2014-12-01

    Cumulatively developing robots offer a unique opportunity to reenact the constant interplay between neural mechanisms related to learning, memory, prospection, and abstraction from the perspective of an integrated system that acts, learns, remembers, reasons, and makes mistakes. Situated within such interplay lie some of the computationally elusive and fundamental aspects of cognitive behavior: the ability to recall and flexibly exploit diverse experiences of one's past in the context of the present to realize goals, simulate the future, and keep learning further. This article is an adventurous exploration in this direction using a simple engaging scenario of how the humanoid iCub learns to construct the tallest possible stack given an arbitrary set of objects to play with. The learning takes place cumulatively, with the robot interacting with different objects (some previously experienced, some novel) in an open-ended fashion. Since the solution itself depends on what objects are available in the "now," multiple episodes of past experiences have to be remembered and creatively integrated in the context of the present to be successful. Starting from zero, where the robot knows nothing, we explore the computational basis of organization episodic memory in a cumulatively learning humanoid and address (1) how relevant past experiences can be reconstructed based on the present context, (2) how multiple stored episodic memories compete to survive in the neural space and not be forgotten, (3) how remembered past experiences can be combined with explorative actions to learn something new, and (4) how multiple remembered experiences can be recombined to generate novel behaviors (without exploration). Through the resulting behaviors of the robot as it builds, breaks, learns, and remembers, we emphasize that mechanisms of episodic memory are fundamental design features necessary to enable the survival of autonomous robots in a real world where neither everything can be known

  7. Language grounding in robots

    CERN Document Server

    2012-01-01

    Covers all aspects of language interaction with robots, from embodiment, action and perception to conceptualization and grammar in a single volume Discusses several significant innovations, such as robotic embodiment, evolutionary derivation of neural controllers, embodied cognitive semantics and fluid construction grammar Presents the new humanoid robot platform, Myon, used by an increasing number of research laboratories

  8. DOE EM industry programs robotics development

    Energy Technology Data Exchange (ETDEWEB)

    Staubly, R.; Kothari, V.

    1998-12-31

    The Office of Science and Technology (OST) manages an aggressive program for RD and D, as well as testing and evaluation for the Department of Energy`s (DOE`s) Environmental Management (EM) organization. The goal is to develop new and improved environmental restoration and waste management technologies to clean up the inventory of the DOE weapons complex faster, safer, and cheaper than is possible with currently available technologies. Robotic systems reduce worker exposure to the absolute minimum, while providing proven, cost-effective, and, for some applications, the only acceptable technique for addressing challenging problems. Development of robotic systems for remote operations occurs in three main categories: tank waste characterization and retrieval; decontamination and dismantlement; and characterization, mapping, and inspection systems. In addition, the Federal Energy Technology Center (FETC) has some other projects which fall under the heading of supporting R and D. The central objective of all FETC robotic projects is to make robotic systems more attractive by reducing costs and health risks associated with the deployment of robotic technologies in the cleanup of the nuclear weapons complex. This will be accomplished through development of robots that are cheaper, faster, safer, and more reliable, as well as more straightforward to modify/adapt and more intuitive to operate with autonomous capabilities and intelligent controls that prevent accidents and optimize task execution.

  9. Development of Mine Detection Robot System

    Directory of Open Access Journals (Sweden)

    Yuichi Satsumi

    2008-11-01

    Full Text Available The Mine Detection Robot supports the mine removal work in countries where mines are buried, such as Afghanistan. The development started from September, 2003. Considering running on rough terrains, the robot has four crawlers, and hydraulic motors in front and rear were serially connected by piping so that they could rotate synchronously. Two work arms were mounted on the robot, one was a horizontal multi-joint SCARA type with motorized 2-link arm, while the other was a vertical multi-joint manipulator with 6 degrees of freedom. Also, domestic evaluation tests were carried out from February to March, 2005, followed by overseas validation tests in Croatia from February to March, 2006. These tests were conducted with a mine detecting senor mounted on the Robot, and the detection performance was evaluated by its mine detection rate.

  10. Development of Mine Detection Robot System

    Directory of Open Access Journals (Sweden)

    Hajime Aoyama

    2007-06-01

    Full Text Available The Mine Detection Robot supports the mine removal work in countries where mines are buried, such as Afghanistan. The development started from September, 2003. Considering running on rough terrains, the robot has four crawlers, and hydraulic motors in front and rear were serially connected by piping so that they could rotate synchronously. Two work arms were mounted on the robot, one was a horizontal multi-joint SCARA type with motorized 2-link arm, while the other was a vertical multi-joint manipulator with 6 degrees of freedom. Also, domestic evaluation tests were carried out from February to March, 2005, followed by overseas validation tests in Croatia from February to March, 2006. These tests were conducted with a mine detecting senor mounted on the Robot, and the detection performance was evaluated by its mine detection rate.

  11. Vision-Based Robot Following Using PID Control

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar Pati

    2017-06-01

    Full Text Available Applications like robots which are employed for shopping, porter services, assistive robotics, etc., require a robot to continuously follow a human or another robot. This paper presents a mobile robot following another tele-operated mobile robot based on a PID (Proportional–Integral-Differential controller. Here, we use two differential wheel drive robots; one is a master robot and the other is a follower robot. The master robot is manually controlled and the follower robot is programmed to follow the master robot. For the master robot, a Bluetooth module receives the user’s command from an android application which is processed by the master robot’s controller, which is used to move the robot. The follower robot receives the image from the Kinect sensor mounted on it and recognizes the master robot. The follower robot identifies the x, y positions by employing the camera and the depth by using the Kinect depth sensor. By identifying the x, y, and z locations of the master robot, the follower robot finds the angle and distance between the master and follower robot, which is given as the error term of a PID controller. Using this, the follower robot follows the master robot. A PID controller is based on feedback and tries to minimize the error. Experiments are conducted for two indigenously developed robots; one depicting a humanoid and the other a small mobile robot. It was observed that the follower robot was easily able to follow the master robot using well-tuned PID parameters.

  12. Why Are There Developmental Stages in Language Learning? A Developmental Robotics Model of Language Development.

    Science.gov (United States)

    Morse, Anthony F; Cangelosi, Angelo

    2017-02-01

    Most theories of learning would predict a gradual acquisition and refinement of skills as learning progresses, and while some highlight exponential growth, this fails to explain why natural cognitive development typically progresses in stages. Models that do span multiple developmental stages typically have parameters to "switch" between stages. We argue that by taking an embodied view, the interaction between learning mechanisms, the resulting behavior of the agent, and the opportunities for learning that the environment provides can account for the stage-wise development of cognitive abilities. We summarize work relevant to this hypothesis and suggest two simple mechanisms that account for some developmental transitions: neural readiness focuses on changes in the neural substrate resulting from ongoing learning, and perceptual readiness focuses on the perceptual requirements for learning new tasks. Previous work has demonstrated these mechanisms in replications of a wide variety of infant language experiments, spanning multiple developmental stages. Here we piece this work together as a single model of ongoing learning with no parameter changes at all. The model, an instance of the Epigenetic Robotics Architecture (Morse et al 2010) embodied on the iCub humanoid robot, exhibits ongoing multi-stage development while learning pre-linguistic and then basic language skills. Copyright © 2016 Cognitive Science Society, Inc.

  13. Can a humanoid face be expressive? A psychophysiological investigation

    Directory of Open Access Journals (Sweden)

    Nicole eLazzeri

    2015-05-01

    Full Text Available Non-verbal signals expressed through body language play a crucial role in multi-modal human communication during social relations. Indeed, in all cultures facial expressions are the most universal and direct signs to express innate emotional cues. A human face conveys important information in social interactions and helps us to better understand our social partners and establish empathic links.Latest researches show that humanoid and social robots are becoming increasingly similar to humans, both aesthetically and expressively. However, their visual expressiveness is a crucial issue that must be improved to make these robots more realistic and intuitively perceivable by humans as not different from them.This study concerns the capability of a humanoid robot to exhibit emotion through facial expressions. More specifically, emotional signs performed by a humanoid robot have been compared with corresponding human facial expressions in terms of recognition rate and response time. The set of stimuli included standardized human expressions taken from an Ekman-based database and the same facial expressions performed by the robot. Furthermore, participants' psychophysiological responses have been explored to investigate whether there could be differences induced by interpreting robot or human emotional stimuli.Preliminary results show a trend to better recognize expressions performed by the robot than 2D photos or 3D models. Moreover no significant differences in the subjects' psychophysiological state have been found during the discrimination of facial expressions performed by the robot in comparison with the same task performed with 2D photos and 3D models.

  14. Fiscal 2000 report on result of R and D on robot system cooperating and coexisting with human beings. R and D on robot system cooperating and coexisting with human beings; 2000 nendo ningen kyocho kyozongata robot system kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    A highly safe and reliable robot is being developed capable of cooperating with human beings and executing complicated operations in a human working/living space. This paper describes the fiscal 2000 results. Development of robot motion library was continued for extended task for providing services to people in care houses for the aged controlling motions of the humanoid robot. A basic design for a personal service system by the humanoid robot was conducted with the aim of nursing assistance and for the objective of developing a portable terminal type tele-operation device. A public and a home cockpit were researched with the purpose of developing user interfaces for telexistence control. A dynamic simulator for humanoid robots was built, with motions of standing-up and walking examined, in order to develop basic theories for the dual-handed tasks aided by the leg-arm cooperative motion. To develop a robot that properly and safely cooperates and coexists with the human beings, it is essential to obtain a dynamically reasonable and natural control law, so that the basic studies were conducted in this direction. With the purpose of developing a motion capture and learning system, a virtual robot platform and an information acquiring interface were developed. Studies were also conducted on modeling technique for achieving realistic material properties from high-precision image synthesis and actual images. (NEDO)

  15. Minimum-acceleration Trajectory Optimization for Humanoid Manipulator Based on Differential Evolution

    Directory of Open Access Journals (Sweden)

    Ren Ziwu

    2016-04-01

    Full Text Available A humanoid manipulator produces significantly reactive forces against a humanoid body when it operates in a rapid and continuous reaction environment (e.g., playing baseball, ping-pong etc.. This not only disturbs the balance and stability of the humanoid robot, but also influences its operation precision. To solve this problem, a novel approach, which is able to generate a minimum-acceleration and continuous acceleration trajectory for the humanoid manipulator, is presented in this paper. By this method, the whole trajectory of humanoid manipulation is divided into two processes, i.e., the operation process and the return process. Moreover, the target operation point is considered as a particular point that should be passed through. As such, the trajectory of each process is described through a quartic polynomial in the joint space, after which the trajectory planning problem for the humanoid manipulator can be formulated as a global constrained optimization problem. In order to alleviate the reactive force, a fitness function that aims to minimize the maximum acceleration of each joint of the manipulator is defined, while differential evolution is employed to determine the joint accelerations of the target operation point. Thus, a trajectory with a minimum-acceleration and continuous acceleration profile is obtained, which can reduce the effect on the body and be favourable for the balance and stability of the humanoid robot to a certain extent. Finally, a humanoid robot with a 7-DOF manipulator for ping-pong playing is employed as an example. Simulation experiment results show the effectiveness of this method for the trajectory planning problem being studied.

  16. 小型仿人机器人逆运动学分析及步态规划%Inverse Kinematics Analysis and Gait Planning of Small Humanoid Robot

    Institute of Scientific and Technical Information of China (English)

    王勇; 闫腾达; 付庄; 赵言正

    2011-01-01

    In this paper, based on the theory of robotics, the analysis of robot structure and walking characteristics, joined the constraints of mechanical structure, discussed the sources of these constraints and use the "sliding bar" simplified method to do the inverse kinematics transformation, got the inverse solution applications of the inverse kinematics equations. On this basis, achieved the robot gait planning, and validated the inverse solution.%基于机器入学的理论基础,在对小型仿人机器人几何机构和行走特点进行分析的基础上,加入了机构的约束条件,讨论了这些约束条件的来源,并用“滑移杆”化简方法进行了逆运动学变换,得到了逆运动学方程的反解.在此基础上实现对机器人步态规划,并且进行了验证.

  17. 室内环境仿人机器人快速视觉定位算法%An Algorithm for Fast Visual Location with the Humanoid Robot in Indoor Environment

    Institute of Scientific and Technical Information of China (English)

    吴俊君; 胡国生

    2013-01-01

    Visual location is one of the most important issues in robot visual navigation.The locating efficiency has a large impact on the performance of the visual navigation.A fast visual location method is proposed:BRISK is employed as the local invariant features,the scene model based on aggregate is described and the similarity of the scenes is measured by Sorensen coefficient to avoid complex computation for efficiency.The method has been verified by simulation and experiment with a humanoid robot in indoor environment.The effectiveness is 99% and the average measuring time is 0.03 s (33 fps).The result demonstrates that the method has good performance in terms of effectiveness,robustness and real time.%视觉定位是移动机器人视觉导航的关键问题之一.定位的实时性对视觉导航的性能有较大的影响.在确保定位有效性前提下,提出一种快速的视觉定位方法:采用BRISK (Binary Robust Invariant Scalable Key Points)特征作为局部不变性特征点,基于集合理论将场景图像简化为物种种群集合,采用种群相似系数索雷申系数测量场景的相似性,避免繁杂的计算过程,力求简洁快速有效地完成视觉定位.仿真和仿人机器人实验结果表明:在非结构化室内环境下,视觉定位有效性达到99%,场景相似性测量的平均时间0.03 s(每秒33幅图像),验证了该方法的有效性、鲁棒性和良好的实时性.

  18. Inverse Kinematic Control of Humanoids Under Joint Constraints

    Directory of Open Access Journals (Sweden)

    Inhyeok Kim

    2013-01-01

    Full Text Available We propose an inverse kinematic control framework for a position controlled humanoid robot with bounded joint range, velocity, and acceleration limits. The proposed framework comprises two components, an inverse kinematics algorithm and a damping controller. The proposed IKTC (Inverse Kinematics with Task Corrections algorithm is based on the second order task‐ priority method in order to ensure the velocity‐continuity of the solution. When the minimum norm solution exceeds the joint bounds, the problem is treated as a quadratic optimization problem with box constraints; an optimal task correction that lets the solution satisfy the constraints is found. In order to express the three kinds of joint constraints as a second order box constraint, a novel method is also proposed. The joint stiffness of a position controlled humanoid robot necessitates a damping controller to attenuate jolts caused by repeated contacts. We design a damping controller by using an inverted pendulum model with a compliant joint that takes into account the compliance around the foot. By using ZMP [20] measurement, the proposed damping controller is applicable not only in SSP (Single Support Phase but also in DSP (Double Support Phase. The validity of the proposed methods is shown by imitating a captured whole‐body human motion with a position controlled humanoid robot.

  19. Brain-Machine Interfacing Control of Whole-Body Humanoid Motion

    Directory of Open Access Journals (Sweden)

    Karim eBouyarmane

    2014-08-01

    Full Text Available We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI, motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task.

  20. Robotics Technology Development Program. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  1. Developing stereo image based robot control system

    Science.gov (United States)

    Suprijadi, Pambudi, I. R.; Woran, M.; Naa, C. F.; Srigutomo, W.

    2015-04-01

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  2. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  3. Design and Development of Robot Hand System

    Directory of Open Access Journals (Sweden)

    Panchumarthy Seetharamaiah

    2011-01-01

    Full Text Available Research on robot hand design is being carried out to accommodate a variety of tasks such as grasping and manipulation of objects in the field of industrial applications, service robots and rehabilitation robots. Problem statement: To design and develop a microcontroller-based four fingered robotic hand with a simple and minimal control strategy to pick and place application with object detection by simple IR sensor logic. Approach: The methodology is based on anthropomorphic design with three fingers and an opposing thumb. Each finger has three links and three double revolute joints. Each finger is actuated by a single opposing pair of tendons. The robot hand system is interfaced to microcontroller with software control by means of 14 independent commands for the motion of joints: close and open for fore finger, middle finger, ring finger and thumb finger and wrist up and down, base clockwise and counter clockwise, pick and place and home position. The tendoning system and wireless feedback logic provide the hand with the ability to confirm to object topology and therefore providing the advantage of using a simple control structure. Results: Reliable grasping and releasing is achieved with simple control mechanisms and IR sensors/push-button switches. The hand can pick a variety of objects with different surface characteristics and shapes without having to reconstruct its surface description. Picking of the object is successfully completed as long as the object is within the workspace of the hand and placed the object at the desired position within the workspace by relevant software control using keyboard commands. Conclusion: Hardware and software development of microcontroller-based four-fingered robotic hand is addressed. Details of hand control software for mainly pick and place applications are presented. Results of the experimental work for pick and place application of different objects is enumerated.

  4. Humanoid Upper Torso Complexity for Displaying Gestures

    Directory of Open Access Journals (Sweden)

    Robert Richardson

    2012-05-01

    Full Text Available Body language is an important part of human‐ to‐human communication; therefore body language in humanoid robots is very important for successful communication and social interaction with humans. The number of degrees of freedom (d.o.f necessary to achieve realistic body language in robots has been investigated. Using animation, three robots were simulated performing body language gestures; the complex model was given 25 d.o.f, the simplified model 18 d.o.f and the basic model 10 d.o.f. A subjective survey was created online using these animations, to obtain people’s opinions on the realism of the gestures and to see if they could recognize the emotions portrayed. It was concluded that the basic system was the least realistic, complex system the most realistic, and the simplified system was only slightly less realistic than the human. Modular robotic joints were then fabricated so that the gestures could be implemented experimentally. The experimental results demonstrate that through simplification of the required degrees of freedom, the gestures can be experimentally reproduced.

  5. Humanoid Upper Torso Complexity for Displaying Gestures

    Directory of Open Access Journals (Sweden)

    Robert Richardson

    2008-11-01

    Full Text Available Body language is an important part of human-to-human communication; therefore body language in humanoid robots is very important for successful communication and social interaction with humans. The number of degrees of freedom (d.o.f necessary to achieve realistic body language in robots has been investigated. Using animation, three robots were simulated performing body language gestures; the complex model was given 25 d.o.f, the simplified model 18 d.o.f and the basic model 10 d.o.f. A subjective survey was created online using these animations, to obtain people's opinions on the realism of the gestures and to see if they could recognise the emotions portrayed. It was concluded that the basic system was the least realistic, complex system the most realistic, and the simplified system was only slightly less realistic than the human. Modular robotic joints were then fabricated so that the gestures could be implemented experimentally. The experimental results demonstrate that through simplification of the required degrees of freedom, the gestures can be experimentally reproduced.

  6. Initial phases of design-based research into the educational potentials of NAO-robots

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Bertel, Lykke Brogaard

    2014-01-01

    In this paper, we describe our initial research, using the humanoid robot NAO in primary and secondary schools. How does a programmable humanoid enrich teaching and how do we prepare the teachers? Ten school classes are using the robot for creative programming. So far we have experienced...... that the robot enriches the learning processes by combining the auditory, visual and kinaesthetic modalities....

  7. 用于武术擂台赛的仿人智能机器人设计%Intelligent Humanoid Robot Designed for Martial Arts Contest

    Institute of Scientific and Technical Information of China (English)

    王择; 李响; 胡金鑫; 王浩冉; 李鑫; 刘赛赛

    2016-01-01

    搭建一台基于人体构造的擂台机器人,实现人体四肢的基础功能,可进行击打、弯曲等动作。行走部分基于轮子的差速控制。整体动作控制利用动作投影技术完成,其技术是基于对图像的识别处理,摄像头获取人的行为图像,经过单片机与电脑的计算转化为基础的位置坐标,达到对舵机以及电机的控制。最终达到擂台上上双方人员控制机器人进行互相击打或者击倒对方的竞技比赛效果。%Builds a platform robot based on the structure of the human body, to achieve the basic function of the limbs of the human body, beating and bending action. Differential speed control based on wheel. The overall motion control and motion projection technology is completed, the technology is based on the recognition and processing of the image, the camera gets peopleˊs behavior images, after the calculation of the single chip computer and computer into the base position coordinates, to achieve the steering gear and motor control. The ring on both sides ultimately control the robot for hitting each other or knockout competition effect.

  8. Development of a soft untethered robot using artificial muscle actuators

    Science.gov (United States)

    Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian

    2017-04-01

    Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.

  9. Initial phases of design-based research into the educational potentials of NAO-robots

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Bertel, Lykke Brogaard

    2014-01-01

    In this paper, we describe our initial research, using the humanoid robot NAO in primary and secondary schools. How does a programmable humanoid enrich teaching and how do we prepare the teachers? Ten school classes are using the robot for creative programming. So far we have experienced that the......In this paper, we describe our initial research, using the humanoid robot NAO in primary and secondary schools. How does a programmable humanoid enrich teaching and how do we prepare the teachers? Ten school classes are using the robot for creative programming. So far we have experienced...

  10. Robotics applications on an advanced hypercube multiprocessor: initial developments

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Hall. M.C.G.; Einstein, J.R.

    1986-01-01

    Specialized computer architectures for advanced robotics applications at ORNL/CESAR are based on the hypercube ensemble concept. We summarize the current status of algorithm development and present results for robot dynamics and navigation problems. 13 refs.

  11. Robotics and Automation Education: Developing the Versatile, Practical Lab.

    Science.gov (United States)

    Stenerson, Jon

    1986-01-01

    Elements of the development of a robotics and automation laboratory are discussed. These include the benefits of upgrading current staff, ways to achieve this staff development, formation of a robotics factory automation committee, topics to be taught with a robot, elements of a laboratory, laboratory funding, and design safety. (CT)

  12. The robot programming network

    OpenAIRE

    Cervera Mateu, Enric; Martinet, Philippe; Marín Prades, Raúl; Moughlbay, Amine A.; Pascual del Pobil Ferré, Ángel; Alemany, Jaime; Esteller Curto, Roger; Casañ Núñez, Gustavo Adolfo

    2016-01-01

    The Robot Programming Network (RPN) is an initiative for creating a network of robotics education laboratories with remote programming capabilities. It consists of both online open course materials and online servers that are ready to execute and test the programs written by remote students. Online materials include introductory course modules on robot programming, mobile robotics and humanoids, aimed to learn from basic concepts in science, technology, engineering, and math...

  13. Recent in vivo surgical robot and mechanism developments.

    Science.gov (United States)

    Rentschler, M E; Oleynikov, D

    2007-09-01

    The surgical landscape is quickly changing because of the major driving force of robotics. Well-established technology that provides robotic assistance from outside the patient may soon give way to alternative approaches that place the robotic mechanisms inside the patient, whether through traditional laparoscopic ports or through other, natural orifices. While some of this technology is still being developed, other concepts are being evaluated through clinical trials. This article examines the state of the art in surgical robots and mechanisms by providing an overview of the ex vivo robotic systems that are commercially available to in vivo mechanisms, and robotic assistants that are being tested in animal models.

  14. 仿人型机械臂抓取目标路径规划的研究%The Path Planning Research of Grabing by the Humanoid Robot Manipulator

    Institute of Scientific and Technical Information of China (English)

    于乃功; 黄灿; 林佳

    2012-01-01

    In the field of robotic control, control problem of manipulator has always been the focus of research. In this paper, the kinematic model of the six degrees of freedom manipulator is accurately established, and on this basis, the path programming algorithm of the manipulator crawling has been studied and optimized, so make the manipulator of motion control more stable and reliable, the Matlab simulation is adopted for the study of the theory were demonstrated.%在机器人控制领域中,机械臂的控制问题一直是研究的焦点.针对六自由度机械臂建立了精确的运动学模型,并在此基础上对机械臂抓取目标物体时的路径规划算法进行了研究与优化,使机械臂的运动控制更加平稳可靠,并通过Matlab仿真对研究理论进行了论证.

  15. Reflexiones sobre alteridad y técnica: La figura del robot humanoide en algunas transposiciones de la literatura al cine

    Directory of Open Access Journals (Sweden)

    Raúl Cuadros Contreras

    2008-12-01

    Full Text Available La ciecia ficción lanza una mirada a las formas más extremas de otredad que se puedan imaginar. Esos otros seres y otros mundos le abren la puerta a nuevas ontologías y a la desnaturalización de categorías opuestas, tales como orgánico/inorgánico, natural/artificial. Resultan así nuevas formas de pensar la identidad y la definición de ser humano. En este artículo se explora este proceso analizando representaciones de la técnica y su mediación en las relaciones entre identidad y alteridad en algunas narraciones de este género. Para este fin, el autor toma como ejemplo el tratamiento que se le da a la figura del robot o del cyborg en películas recientes y muestra la humanización de éstos.

  16. Development of testing metrics for military robotics

    Science.gov (United States)

    Resendes, Raymond J.

    1993-05-01

    The use of robotics or unmanned systems offers significant benefits to the military user by enhancing mobility, logistics, material handling, command and control, reconnaissance, and protection. The evaluation and selection process for the procurement of an unmanned robotic system involves comparison of performance and physical characteristics such as operating environment, application, payloads and performance criteria. Testing an unmanned system for operation in an unstructured environment using emerging technologies, which have not yet been fully tested, presents unique challenges for the testing community. Standard metrics, test procedures, terminologies, and methodologies simplify comparison of different systems. A procedure was developed to standardize the test and evaluation process for UGVs. This procedure breaks the UGV into three components: the platform, the payload, and the command and control link. Standardized metrics were developed for these components which permit unbiased comparison of different systems. The development of these metrics and their application will be presented.

  17. New trends in medical and service robots human centered analysis, control and design

    CERN Document Server

    Chevallereau, Christine; Pisla, Doina; Bleuler, Hannes; Rodić, Aleksandar

    2016-01-01

    Medical and service robotics integrates several disciplines and technologies such as mechanisms, mechatronics, biomechanics, humanoid robotics, exoskeletons, and anthropomorphic hands. This book presents the most recent advances in medical and service robotics, with a stress on human aspects. It collects the selected peer-reviewed papers of the Fourth International Workshop on Medical and Service Robots, held in Nantes, France in 2015, covering topics on: exoskeletons, anthropomorphic hands, therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, BMI and BCI, haptic devices and design for medical and assistive robotics. This book offers a valuable addition to existing literature.

  18. Study on the Mobility of Service Robots

    Directory of Open Access Journals (Sweden)

    Hwan-Joo Kwak

    2012-04-01

    Full Text Available The major characteristics of robots can be divided into several categories ranging from mobility to autonomy. The mobility of service robots is essential and fundamental to commercial and scientific progress. The rapid development of practical service robots depends on our decision which are the most efficient and affordable kinds of locomotion. The selection of the best locomotion, however, is not simple and easy, since the boundaries of robot working areas cannot always be defined clearly. This study emphasizes the usefulness of humanoid type service robots as general service robots, and concentrates on finding the most appropriate means of locomotion for a particular workspace. Several forms of robot locomotion were considered in three types of workspaces, and compared analytically. The results showed that three/four-wheeled robots were best suited to work in a large office or factory. Bipedal robots were suited to work in a small office or home, and quadruped robots were suited to work in outdoors. As a general alternative, bipedal locomotion seems to be the most adaptable form of locomotion for general service robots.

  19. Development of inspection/maintenance robot for underground pipes

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Cho, M.W.; Kim, Y.H.; Park, B.S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-11-01

    A sewage inspection/maintenance robot is developed which inspects physical defects of inner walls of sewage pipes as well as effectively repairs these defects. The robot system consists of a cutting robot, a inspection robot, and a packer robot. The cutting robot removes the branch pipes extruded into a main pipe as well as grinds the surface of defected parts. Unlike other sewage cutting robots, the developed cutting robot is equipped with two cutting tools whose position can be easily changed each other by remote operations. The inspection robot is equipped with a rotary type inspection module which utilizes laser sensors and automatically inspects defects. Also, image processing technology is applied to this robot so that the identification of accurate geometry of the defects is made possible by combining the displacement data from laser sensor and a image data from the Ccd camera. The inspection robot can be autonomously navigates by utilizing a gyro compass as a navigation sensor and the velocity difference between left and right wheels. The packer robot fills the cracks or holes of inner wall by expending its rubber tube inside the pipes. 20 refs., 166 figs., 30 tabs. (Author)

  20. Development of wall ranging radiation inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. J.; Yoon, J. S.; Park, Y. S.; Hong, D. H.; Oh, S. C.; Jung, J. H.; Chae, K. S

    1999-03-01

    With the aging of nation's nuclear facilities, the target of this project is to develop an under water wall ranging robotic vehicle which inspects the contamination level of the research reactor (TRIGA MARK III) as a preliminary process to dismantling. The developed vehicle is driven by five thrusters and consists of small sized control boards, and absolute position detector, and a radiation detector. Also, the algorithm for autonomous navigation is developed and its performance is tested through under water experiments. Also, the test result at the research reactor shows that the vehicle firmly attached the wall while measuring the contamination level of the wall.

  1. Development of a robot Holon using an open modular controller

    DEFF Research Database (Denmark)

    Schnell, Jakob; Andersen, Søren; Sørensen, Christian

    1999-01-01

    System (HoMuCS) architecture and methodology for implementing a HMS. This paper specifically reviews the development of a Robot Holon based on an open controller in the context of the HoMuCS architecture. The paper will describe the results and research work that was involved in developing a robot holon...... for a physical robot. The robot holon was implemented on an existing robot at the department which was upgraded by removing its native control system and replacing it with a new PC-based open controller. The development of the robot holon builds on the notion that a robot holon will be able to performboth......Holonic Manufacturing Systems (HMS) has during the last period presented itself as an advantageous theoretical foundation for the problems that arise in controlling agile manufacturing systems. Previous research, at the Department, has demonstrated how modern shop floor control systems can...

  2. Investigating tactile event recognition in child-robot interaction for use in autism therapy.

    Science.gov (United States)

    Amirabdollahian, Farshid; Robins, Ben; Dautenhahn, Kerstin; Ji, Ze

    2011-01-01

    The work presented in this paper is part of our investigation in the ROBOSKIN project. The project aims to develop and demonstrate a range of new robot capabilities based on robot skin tactile feedback from large areas of the robot body. The main objective of the project is to develop cognitive mechanisms exploiting tactile feedback to improve human-robot interaction capabilities. The project aims also to investigate the possible use of this technology in robot-assisted play in the context of autism therapy. This article reports progress made in investigating tactile child-robot interactions where children with autism interacted with the humanoid robot KASPAR equipped with the first prototype of skin patches, introducing a new algorithm for tactile event recognition which will enhance the observational data analysis that has been used in the past.

  3. Robotic Lunar Lander Development Status

    Science.gov (United States)

    Ballard, Benjamin; Cohen, Barbara A.; McGee, Timothy; Reed, Cheryl

    2012-01-01

    NASA Marshall Space Flight Center and John Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  4. Development of soft robots using dielectric elastomer actuators

    Science.gov (United States)

    Godaba, Hareesh; Wang, Yuzhe; Cao, Jiawei; Zhu, Jian

    2016-04-01

    Soft robots are gaining in popularity due to their unique attributes such as low weight, compliance, flexibility and diverse range in motion types. This paper illustrates soft robots and actuators which are developed using dielectric elastomer. These developments include a jellyfish robot, a worm like robot and artificial muscle actuators for jaw movement in a robotic skull. The jellyfish robot which employs a bulged dielectric elastomer membrane has been demonstrated too generate thrust and buoyant forces and can move effectively in water. The artificial muscle for jaw movement employs a pure shear configuration and has been shown to closely mimic the jaw motion while chewing or singing a song. Thee inchworm robot, powered by dielectric elastomer actuator can demonstrate stable movement in one-direction.

  5. Line Tracking Control of a Two-Wheeled Mobile Robot Using Visual Feedback

    Directory of Open Access Journals (Sweden)

    G. H. Lee

    2013-03-01

    Full Text Available This article presents the development and control of a two‐wheeled mobile robot as the base of a human carrier for an amusement/transportation vehicle. The robot has a combined structure of two systems: a line tracking mobile robot and an inverted pendulum system that maintains balance while following a line on the floor. The mobile robot is purposely designed to carry a human operator or humanoid arms. The robot has the capability to follow the line on the floor using visual feedback, as well as maintaining its balance on two wheels. A visual servoing technique allows the robot to follow the line on the floor captured by a camera as the desired trajectory. Controllers are designed to have good line tracking and balancing performance using sensor fusion techniques. Experimental studies involving the robot following a line demonstrate the feasibility of it being an amusement vehicle.

  6. Line Tracking Control of a Two-Wheeled Mobile Robot Using Visual Feedback

    Directory of Open Access Journals (Sweden)

    G. H. Lee

    2013-03-01

    Full Text Available This article presents the development and control of a two-wheeled mobile robot as the base of a human carrier for an amusement/transportation vehicle. The robot has a combined structure of two systems: a line tracking mobile robot and an inverted pendulum system that maintains balance while following a line on the floor. The mobile robot is purposely designed to carry a human operator or humanoid arms. The robot has the capability to follow the line on the floor using visual feedback, as well as maintaining its balance on two wheels. A visual servoing technique allows the robot to follow the line on the floor captured by a camera as the desired trajectory. Controllers are designed to have good line tracking and balancing performance using sensor fusion techniques. Experimental studies involving the robot following a line demonstrate the feasibility of it being an amusement vehicle.

  7. Development of a remote inspection robot for high pressure structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae C.; Kim, Jae H.; Choi, Yu R.; Moon, Soon S

    1999-10-01

    The high pressure structures in industrial plants must be periodically inspected for ensure their safety. Currently, the examination of them is manually performed by human inspectors, and there are many restrictions to examine the large containers which enclose dangerous chemicals or radioactive materials. We developed a remotely operated robot to examine these structures using recent mobile robot and computer technologies. Our robot has two magnetic caterpillars that make the robot can adhere to the structures made of steel like materials. The robot moves to the position for examination, and scans that position using ultrasonic probes equipped on it's arm, and transmits the result to the inspector according to his/her commands. Without building any auxiliary structures the robot can inspect the places where manual inspection can't reach. Therefore the robot can make shortening the inspection time as well as preventing the inspector from an accident. (author)

  8. NASA's Robotic Lunar Lander Development Project

    Science.gov (United States)

    Cohen, Barbara A.

    2012-01-01

    Since early 2005, NASA's Robotic Lunar Lander Development (RLLD) office at NASA MSFC, in partnership with the Applied Physics Laboratory (APL), has developed mission concepts and preformed risk-reduction activities to address planetary science and exploration objectives uniquely met with landed missions. The RLLD team developed several concepts for lunar human-exploration precursor missions to demonstrate precision landing and in-situ resource utilization, a multi-node lunar geophysical network mission, either as a stand-alone mission, or as part of the International Lunar Network (ILN), a Lunar Polar Volatiles Explorer and a Mercury lander mission for the Planetary Science decadal survey, and an asteroid rendezvous and landing mission for the Exploration Precursor Robotics Mission (xPRM) office. The RLLD team has conducted an extensive number of risk-reduction activities in areas common to all lander concepts, including thruster testing, propulsion thermal control demonstration, composite deck design and fabrication, and landing leg stability and vibration. In parallel, the team has developed two robotic lander testbeds providing closed-loop, autonomous hover and descent activities for integration and testing of flight-like components and algorithms. A compressed-air test article had its first flight in September 2009 and completed over 150 successful flights. This small test article (107 kg dry/146 kg wet) uses a central throttleable thruster to offset gravity, plus 3 descent thrusters (37lbf ea) and 6 attitude-control thrusters (12lbf ea) to emulate the flight system with pulsed operation over approximately 10s of flight time. The test article uses carbon composite honeycomb decks, custom avionics (COTS components assembled in-house), and custom flight and ground software. A larger (206 kg dry/322 kg wet), hydrogen peroxide-propelled vehicle began flight tests in spring 2011 and fly over 30 successful flights to a maximum altitude of 30m. The monoprop testbed

  9. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  10. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out resul

  11. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out resul

  12. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out

  13. Robot Competence Development by Constructive Learning

    Science.gov (United States)

    Meng, Q.; Lee, M. H.; Hinde, C. J.

    This paper presents a constructive learning approach for developing sensor-motor mapping in autonomous systems. The system’s adaptation to environment changes is discussed and three methods are proposed to deal with long term and short term changes. The proposed constructive learning allows autonomous systems to develop network topology and adjust network parameters. The approach is supported by findings from psychology and neuroscience especially during infants cognitive development at early stages. A growing radial basis function network is introduced as a computational substrate for sensory-motor mapping learning. Experiments are conducted on a robot eye/hand coordination testbed and results show the incremental development of sensory-motor mapping and its adaptation to changes such as in tool-use.

  14. Survey on research and development of reconfigurable modular robots

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-08-01

    Full Text Available This article presents a comprehensive survey of reconfigurable modular robots, which covers the origin, history, the state of the art, key technologies, challenges, and applications of reconfigurable modular robots. An elaborative classification of typical reconfigurable modular robots is proposed based on the characteristics of the modules and the reconfiguration mechanism. As the system characteristics of reconfigurable modular robots are mainly dependent on the functions of modules, the mechanical and electrical design features of modules of typical reconfigurable modular robots are discussed in detail. Furthermore, an in-depth comparison analysis is conducted, which encompasses discussions of module shape, module degrees of freedom, module attribute, connection mechanisms, interface autonomy, locomotion modes, and workspace. Meanwhile, many reconfigurable modular robot researches focus on the study of self-X capabilities (i.e. self-reconfiguration, self-assembly, self-adaption, etc., which embodies autonomy performance of reconfigurable modular robots in certain extent. An evolutionary cobweb evaluation model is proposed in this article to evaluate the autonomy level of reconfigurable modular robots. Although various reconfigurable modular robots have been developed and some of them have been put into practical applications such as search and rescue missions, there still exist many open theoretical, technical, and practical challenges in this field. This work is hopefully to offer a reference for the further developments of reconfigurable modular robots.

  15. Development of a Biomimetic Quadruped Robot

    Institute of Scientific and Technical Information of China (English)

    Thanhtam Ho; Sunghac Choi; Sangyoon Lee

    2007-01-01

    This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions and sustainability of a heavy load. The design of the robot legs is inspired by the leg configuration of insects, two joints (hip and knee) of the leg enable two basic motions, lifting and stepping. The robot frame is designed to have a slope relative to the horizontal plane, which makes the robot move forward. In addition, the bounding locomotion of quadruped animals is implemented in the robot. Experiments show that the robot can carry an additional load of about 100 g and run with a fairly high velocity. The quadruped prototype can be an important step towards the goal of building an autonomous mobile robot actuated by piezocomposite actuators.

  16. Developing Skin Analogues for a Robotic Octopus

    Institute of Scientific and Technical Information of China (English)

    Jinping Hou; Richard H.C.Bonser; George Jeronimidis

    2012-01-01

    In order to fabricate a biomimetic skin for an octopus inspired robot,a new process was developed based on mechanical properties measured from real octopus skin.Various knitted nylon textiles were tested and the one of 10-denier nylon was chosen as reinforcement.A combination of Ecoflex 0030 and 0010 silicone rubbers was used as matrix of the composite to obtain the right stiffness for the skin-analogue system.The open mould fabrication process developed allows air bubble to escape easily and the artificial skin produced was thin and waterproof.Material properties of the biomimetic skin were characterised using static tensile and instrumented scissors cutting tests.The Young's moduli of the artificial skin are 0.08 MPa and 0.13 MPa in the longitudinal and transverse directions,which are much lower than those of the octopus skin.The strength and fracture toughness of the artificial skin,on the other hand are higher than those of real octopus skins.Conically-shaped skin prototypes to be used to cover the robotic arm unit were manufactured and tested.The biomimetic skin prototype was stiff enough to maintain it conical shape when filled with water.The driving force for elongation was reduced significantly compared with previous prototypes.

  17. Curiosity driven reinforcement learning for motion planning on humanoids

    OpenAIRE

    Mikhail eFrank; Jürgen eLeitner; Marijn eStollenga; Alexander eFörster; Jürgen eSchmidhuber

    2014-01-01

    Most previous work on textit{artificial curiosity} and textit{intrinsic motivation} focuses on basic concepts and theory. Experimental results are generally limited to toy scenarios, such as navigation in a simulated maze, or control of a simple mechanical system with one or two degrees of freedom. To study artificial curiosity in a more realistic setting, we emph{embody} a curious agent in the complex iCub humanoid robot. Our novel reinforcement learning framework consists of a state-of-the...

  18. Design and Development of a Landmines Removal Robot

    Directory of Open Access Journals (Sweden)

    K.T.M.U. Hemapala

    2012-03-01

    The solution to the demining problem shall be a low cost robotic outfit with resort to nearby available resources and competences (e.g., drawn from the local agricultural machinery and know‐how. This paper discusses an ongoing project that aims to develop a low‐cost robot with intelligent remote‐command abilities, as a cheap productivity upgrading, assembled from standard farming devices, through the shared know‐how and commitment of locally involved operators. During the study, the authors have developed a low‐cost robot capable of removing mines. The robot consists of modified agricultural components including its mobile carrier and the mine effector.

  19. DOE EM industry programs robotics development

    Energy Technology Data Exchange (ETDEWEB)

    Staubly, R.; Kothari, V. [Dept. of Energy, Morgantown, WV (United States)

    1997-12-01

    The Office of Science and Technology (OST) manages an aggressive program for RD&D, as well as testing and evaluation for the U.S. Department of Energy`s (DOE) Environmental Management (EM) organization. The goal is to develop new and improved environmental restoration and waste management technologies to clean up the inventory of the DOE weapons complex faster, safer, and cheaper than is possible with currently available technologies. OST has organized technology management activities along focus teams for each major problem area. There are currently five focus areas: decontamination and decommissioning, tanks, subsurface contaminants, mixed waste, and plutonium. In addition, OST is pursuing research and development (R&D) that cuts across these focus areas by having applications in two or more focus areas. Currently, there are three cross-cutting programs: the robotics technology development; characterization, monitoring, and sensor technologies; and efficient separations and processing.

  20. The new robotic telescope developed at the Perugia University Observatory

    CERN Document Server

    Tosti, G; Falchetti-Frescura, A

    1999-01-01

    In the next few years a turning-point in blazar study will be represented by the development of automatic monitoring. This will need the diffusion of the robotic telescope concept all over the world. In this paper we present the main characteristics of a 0.80 m robotic telescope which could be useful prototype instrument for a world-wide network of robotic telescopes devoted to intensive monitoring of variable sources. (0 refs).

  1. [Robotic single site surgery: current practice and future developments].

    Science.gov (United States)

    Buchs, N C; Pugin, F; Volonté, F; Jung, M; Hagen, M E; Morel, P

    2012-06-20

    Robotic surgery has been gaining increasing acceptance for several years now, establishing itself with success in all the surgical fields. Besides, since the introduction of single site surgery, the interest for the robotic technology is more than obvious, offering technical possibilities to overcome the natural limitations of laparoscopy. This article reviews the different devices available and the indications of robotic single site surgery. Moreover, the future developments of this new technology are discussed as well.

  2. Hardware And Software For Development Of Robot Arms

    Science.gov (United States)

    Usikov, Daniel

    1995-01-01

    System of modular, reusable hardware and software assembled for use in developing remotely controlled robotic arms. Includes (1) central computer and peripheral equipment at control and monitoring station and (2) remote mechanical platform that supports robotic arm. Central computer controls motor drives of robotic arm, but optically, platform holds on-board computer for autonomous operation. Consists mostly of commercial hardware and software. Simulated results of commands viewed in three dimensions.

  3. Development of Live-working Robot for Power Transmission Lines

    Science.gov (United States)

    Yan, Yu; Liu, Xiaqing; Ren, Chengxian; Li, Jinliang; Li, Hui

    2017-07-01

    Dream-I, the first reconfigurable live-working robot for power transmission lines successfully developed in China, has the functions of autonomous walking on lines and accurately positioning. This paper firstly described operation task and object of the robot; then designed a general platform, an insulator replacement end and a drainage plate bolt fastening end of the robot, presented a control system of the robot, and performed simulation analysis on operation plan of the robot; and finally completed electrical field withstand voltage tests in a high voltage hall as well as online test and trial on actual lines. Experimental results show that by replacing ends of manipulators, the robot can fulfill operation tasks of live replacement of suspension insulators and live drainage plate bolt fastening.

  4. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human`s eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. 203 figs, 12 tabs, 72 refs. (Author).

  5. Developing of robot flexible processing system for shipbuilding profile steel

    Institute of Scientific and Technical Information of China (English)

    姚舜; 邱涛; 楼松年; 王宏杰

    2003-01-01

    A robot flexible processing system of shipbuilding profile steel was developed. The system consists of computer integrated control and robot. An off-line programming robot was used for marking and cutting of shipbuilding profile steel. In the system the deformation and position error of profile steel can be detected by precise sensors, and figure position coordinate error resulted from profile steel deformation can be compensated by modifying traveling track of robotic arm online. The practical operation results show that the system performance can meet the needs of profile steel processing.

  6. Development of a Minimally Actuated Jumping-Rolling Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2015-04-01

    Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.

  7. The Development of a Radiation Hardened Robot for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil (and others)

    2007-04-15

    We has been developed two remotely controlled robotic systems. One is a underwater vehicle for inspection of the internal structures of PWRs and retrieving foreign stubs in the reactor pressure vessels and reactor coolant pipes. The other robotic system consists of a articulated-type mobile robot capable of recovering the failure of the fuel exchange machine and a mini modular mobile robot for inspection of feeder pipes with ultrasonic array sensors in PHWRs. The underwater robot has been designed by considering radiation effect, underwater condition, and accessibility to the working area. The size of underwater robot is designed to enter the cold legs. A extendable manipulator is mounted on the mobile robot, which can restore nuclear fuel exchange machine. The mini modular mobile robot is composed of dual inch worm mechanisms, which are constructed by two gripper bodies that can fix the robot body on to the pipe and move along the longitudinal and to rotate in a circumferential direction to access all of the outer surfaces of the pipe.

  8. Design and Development Issues for Educational Robotics Training Camps

    Science.gov (United States)

    Ucgul, Memet; Cagiltay, Kursat

    2014-01-01

    The aim of this study is to explore critical design issues for educational robotics training camps and to describe how these factors should be implemented in the development of such camps. For this purpose, two robotics training camps were organized for elementary school students. The first camp had 30 children attendees, and the second had 22. As…

  9. Developing Creative Behavior in Elementary School Students with Robotics

    Science.gov (United States)

    Nemiro, Jill; Larriva, Cesar; Jawaharlal, Mariappan

    2017-01-01

    The School Robotics Initiative (SRI), a problem-based robotics program for elementary school students, was developed with the objective of reaching students early on to instill an interest in Science, Technology, Engineering, and Math disciplines. The purpose of this exploratory, observational study was to examine how the SRI fosters student…

  10. Design and Development Issues for Educational Robotics Training Camps

    Science.gov (United States)

    Ucgul, Memet; Cagiltay, Kursat

    2014-01-01

    The aim of this study is to explore critical design issues for educational robotics training camps and to describe how these factors should be implemented in the development of such camps. For this purpose, two robotics training camps were organized for elementary school students. The first camp had 30 children attendees, and the second had 22. As…

  11. Design and development of miniature parallel robot for eye surgery.

    Science.gov (United States)

    Sakai, Tomoya; Harada, Kanako; Tanaka, Shinichi; Ueta, Takashi; Noda, Yasuo; Sugita, Naohiko; Mitsuishi, Mamoru

    2014-01-01

    A five degree-of-freedom (DOF) miniature parallel robot has been developed to precisely and safely remove the thin internal limiting membrane in the eye ground during vitreoretinal surgery. A simulator has been developed to determine the design parameters of this robot. The developed robot's size is 85 mm × 100 mm × 240 mm, and its weight is 770 g. This robot incorporates an emergency instrument retraction function to quickly remove the instrument from the eye in case of sudden intraoperative complications such as bleeding. Experiments were conducted to evaluate the robot's performance in the master-slave configuration, and the results demonstrated that it had a tracing accuracy of 40.0 μm.

  12. Development control systems takeover: subject robotic arm on the example anthropomorhic robot AR-601

    Science.gov (United States)

    Sirazetdinov, R.; Devaev, V.; Zakirzyanova, G.

    2016-06-01

    It is proposed the formation software architecture of complex motion for robotic systems in the form of sets of behavior - patterns - similar to the motor reflexes of living organisms. To form patterns of behavior of the robot teh authors used a methodology of structural analysis of complex systems IDEF0, then developed types of elementary algorithms (patterns) that make up the dynamics of the anthropomorphic robot jump. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

  13. Drum-mate: interaction dynamics and gestures in human-humanoid drumming experiments

    Science.gov (United States)

    Kose-Bagci, Hatice; Dautenhahn, Kerstin; Syrdal, Dag S.; Nehaniv, Chrystopher L.

    2010-06-01

    This article investigates the role of interaction kinesics in human-robot interaction (HRI). We adopted a bottom-up, synthetic approach towards interactive competencies in robots using simple, minimal computational models underlying the robot's interaction dynamics. We present two empirical, exploratory studies investigating a drumming experience with a humanoid robot (KASPAR) and a human. In the first experiment, the turn-taking behaviour of the humanoid is deterministic and the non-verbal gestures of the robot accompany its drumming to assess the impact of non-verbal gestures on the interaction. The second experiment studies a computational framework that facilitates emergent turn-taking dynamics, whereby the particular dynamics of turn-taking emerge from the social interaction between the human and the humanoid. The results from the HRI experiments are presented and analysed qualitatively (in terms of the participants' subjective experiences) and quantitatively (concerning the drumming performance of the human-robot pair). The results point out a trade-off between the subjective evaluation of the drumming experience from the perspective of the participants and the objective evaluation of the drumming performance. A certain number of gestures was preferred as a motivational factor in the interaction. The participants preferred the models underlying the robot's turn-taking which enable the robot and human to interact more and provide turn-taking closer to 'natural' human-human conversations, despite differences in objective measures of drumming behaviour. The results are consistent with the temporal behaviour matching hypothesis previously proposed in the literature which concerns the effect that the participants adapt their own interaction dynamics to the robot's.

  14. The NAO humanoid: a combination of performance and affordability

    CERN Document Server

    Gouaillier, David; Blazevic, Pierre; Kilner, Chris; Monceaux, Jerome; Lafourcade, Pascal; Marnier, Brice; Serre, Julien; Maisonnier, Bruno

    2008-01-01

    This article presents the design of the autonomous humanoid robot called NAO that is built by the French company Aldebaran-Robotics. With its height of 0.57 m and its weight about 4.5 kg, this innovative robot is lightweight and compact. It distinguishes itself from its existing Japanese, American, and other counterparts thanks to its pelvis kinematics design, its proprietary actuation system based on brush DC motors, its electronic, computer and distributed software architectures. This robot has been designed to be affordable without sacrificing quality and performance. It is an open and easy-to-handle platform where the user can change all the embedded system software or just add some applications to make the robot adopt specific behaviours. The robot's head and forearms are modular and can be changed to promote further evolution. The comprehensive and functional design is one of the reasons that helped select NAO to replace the AIBO quadrupeds in the 2008 RoboCup standard league.

  15. Future robotic platforms in urologic surgery: recent developments.

    Science.gov (United States)

    Herrell, S Duke; Webster, Robert; Simaan, Nabil

    2014-01-01

    To review recent developments at Vanderbilt University of new robotic technologies and platforms designed for minimally invasive urologic surgery and their design rationale and potential roles in advancing current urologic surgical practice. Emerging robotic platforms are being developed to improve performance of a wider variety of urologic interventions beyond the standard minimally invasive robotic urologic surgeries conducted currently with the da Vinci platform. These newer platforms are designed to incorporate significant advantages of robotics to improve the safety and outcomes of transurethral bladder surgery and surveillance, further decrease the invasiveness of interventions by advancing LESS surgery, and to allow for previously impossible needle access and ablation delivery. Three new robotic surgical technologies that have been developed at Vanderbilt University are reviewed, including a robotic transurethral system to enhance bladder surveillance and transurethral bladder tumor, a purpose-specific robotic system for LESS, and a needle-sized robot that can be used as either a steerable needle or small surgeon-controlled micro-laparoscopic manipulator.

  16. Future robotic platforms in urologic surgery: Recent Developments

    Science.gov (United States)

    Herrell, S. Duke; Webster, Robert; Simaan, Nabil

    2014-01-01

    Purpose of review To review recent developments at Vanderbilt University of new robotic technologies and platforms designed for minimally invasive urologic surgery and their design rationale and potential roles in advancing current urologic surgical practice. Recent findings Emerging robotic platforms are being developed to improve performance of a wider variety of urologic interventions beyond the standard minimally invasive robotic urologic surgeries conducted presently with the da Vinci platform. These newer platforms are designed to incorporate significant advantages of robotics to improve the safety and outcomes of transurethral bladder surgery and surveillance, further decrease the invasiveness of interventions by advancing LESS surgery, and allow for previously impossible needle access and ablation delivery. Summary Three new robotic surgical technologies that have been developed at Vanderbilt University are reviewed, including a robotic transurethral system to enhance bladder surveillance and TURBT, a purpose-specific robotic system for LESS, and a needle sized robot that can be used as either a steerable needle or small surgeon-controlled micro-laparoscopic manipulator. PMID:24253803

  17. Tema 2: Ethel and her Telenoid: Toward using humanoids to alleviate symptoms of dementia

    Directory of Open Access Journals (Sweden)

    Jens Dinesen Strandbech

    2016-01-01

    Full Text Available This article elaborates on a longitudinal study investigating if conversations with the teleoperated humanoid robot Telenoid can alleviate symptoms of dementia. The article initially frames Telenoid in the field of social robotics and relevant dementia-initiatives before dwelling on the emerging relationship between Telenoid and a person with severe dementia. Here it is shown how persons with severe dementia can benefit greatly from interaction with Functionally Designed Anthropomorphic Robots such as Telenoid as a means of providing a temporary ‘conversational stepping stone’, working toward improving quality of life and regaining conversational and social confidence to seek and interact socially with others.

  18. Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    Science.gov (United States)

    Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer

    2011-01-01

    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator

  19. The development of radiation hardened robot for nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Seung Ho; Kim, Byung Soo and others

    2000-04-01

    The work conducted in this stage covers development of core technology of tele-robot system including monitoring technique in high-level radioactive area, tele-sensing technology and radiation-hardened technology for the non-destructive tele-inspection system which monitors the primary coolant system during the normal operations of PHWR(Pressurized Heavy Water Reactor) NPPs and measures the decrease of bending part of feeder pipe during overall. Based on the developed core technology, the monitoring mobile robot system of the primary coolant system and the feeder pipe inspecting robot system are developed.

  20. Development of robotic plasma radiochemical assays for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Alexoff, D.L.; Shea, C.; Fowler, J.S.; Gatley, S.J.; Schlyer, D.J. [Brookhaven National Lab., Upton, NY (United States). Dept. of Chemistry

    1995-12-01

    A commercial laboratory robot system (Zymate PyTechnology II Laboratory Automation System; Zymark Corporation, Hopkinton, MA) was interfaced to standard and custom laboratory equipment and programmed to perform rapid radiochemical analyses for quantitative PET studies. A Zymark XP robot arm was used to carry out the determination of unchanged (parent) radiotracer in plasma using only solid phase extraction methods. Robotic throughput for the assay of parent radiotracer in plasma is 4--6 samples/hour depending on the radiotracer. Robotic assays of parent compound in plasma were validated for the radiotracers [{sup 11}C]Benztropine, [{sup 11}C]cocaine, [{sup 11}C]clorgyline, [{sup 11}C]deprenyl, [{sup 11}C]methadone, [{sup 11}C]methylphenidate, [{sup 11}C]raclorpride, and [{sup 11}C]SR46349B. A simple robot-assisted methods development strategy has been implemented to facilitate the automation of plasma assays of new radiotracers.