WorldWideScience

Sample records for humanized anti-platelet glycoprotein

  1. Novel agents for anti-platelet therapy

    Directory of Open Access Journals (Sweden)

    Ji Xuebin

    2011-11-01

    Full Text Available Abstract Anti-platelet therapy plays an important role in the treatment of patients with thrombotic diseases. The most commonly used anti-platelet drugs, namely, aspirin, ticlopidine, and clopidogrel, are effective in the prevention and treatment of cardio-cerebrovascular diseases. Glycoprotein IIb/IIIa antagonists (e.g., abciximab, eptifibatide and tirofiban have demonstrated good clinical benefits and safety profiles in decreasing ischemic events in acute coronary syndrome. However, adverse events related to thrombosis or bleeding have been reported in cases of therapy with glycoprotein IIb/IIIa antagonists. Cilostazol is an anti-platelet agent used in the treatment of patients with peripheral ischemia, such as intermittent claudication. Presently, platelet adenosine diphosphate P2Y(12 receptor antagonists (e.g., clopidogrel, prasugrel, cangrelor, and ticagrelor are being used in clinical settings for their pronounced protective effects. The new protease-activated receptor antagonists, vorapaxar and atopaxar, potentially decrease the risk of ischemic events without significantly increasing the rate of bleeding. Some other new anti-platelet drugs undergoing clinical trials have also been introduced. Indeed, the number of new anti-platelet drugs is increasing. Consequently, the efficacy of these anti-platelet agents in actual patients warrants scrutiny, especially in terms of the hemorrhagic risks. Hopefully, new selective platelet inhibitors with high anti-thrombotic efficiencies and low hemorrhagic side effects can be developed.

  2. Anti-platelet and anti-thrombosis characteristics of Z4A5, a novel selective platelet glycoprotein IIb/IIIa inhibitor, compared with eptifibatide under long-term infusion.

    Science.gov (United States)

    Shi, X L; Shen, S; Guo, M M; Zhang, G J; Che, J; Wang, B; Zhou, J

    2015-12-01

    Platelet Glycoprotein IIb/IIIa inhibitors are approved for the treatment of acute coronary syndromes and percutaneous coronary interventions due to their effects on the final common pathway of platelet aggregation. Z4A5 is a new hexapeptide IIb/IIIa inhibitor with antiplatelet and antithrombotic effects. This study was performed to assess the characteristics of Z4A5 compared with another IIb/IIIa inhibitor eptifibatide. Light-transmission aggregometry was used to measure platelet aggregation to assess the antiplatelet efficacy of Z4A5 in vitro and ex vivo in beagles. The time course of platelet inhibition and bleeding time prolongation during i.v. bolus plus infusion and after infusion of the Z4A5 were evaluated in beagles following two 2 x 2 Latin square designs. We also compared the antithrombotic activity of Z4A5 with eptifibatide in arterial thrombosis and arteriovenous shunt thrombosis model in beagles. Our data showed that Z4A5 completely inhibited adenosine diphosphate (ADP)-, thrombin- and arachidonic acid-induced in vitro platelet aggregation with values of IC50 of 260 nM, 128.6 and 56.4 n respectively. Z4A5 also markedly and stably prevented ADP-induced ex vivo platelet aggregation and prolonged the bleeding time throughout the 8-hour infusion. Both platelet function and bleeding time returned to normal sooner after cessation of Z4A5 infusion than after eptifibatide. Z4A5 inhibited thrombosis and had the same potent antithrombotic activity as eptifibatide. In conclusion, Z4A5 has the same potent antiplatelet effect and antithrombotic activity with the advantage of a faster on and off time compared to eptifibatide.

  3. Role of zona pellucida glycoproteins during fertilization in humans.

    Science.gov (United States)

    Gupta, Satish Kumar

    2015-04-01

    In the last decade, scientific investigations pertaining to the role of zona pellucida (ZP) glycoproteins during fertilization in humans have led to new insights. This has been achieved using purified native/recombinant human zona proteins and transgenic mice expressing human ZP glycoproteins. The proposed model in mice of ZP glycoprotein-3 (ZP3) acting as primary sperm receptor and ZP glycoprotein-2 (ZP2) as secondary sperm receptor has been modified for sperm-egg binding in humans. ZP glycoprotein-1 (ZP1), ZP3, and ZP glycoprotein-4 (ZP4) have been shown to bind to the capacitated human sperm. ZP2 binds to the acrosome-reacted human spermatozoa. Further, the eggs obtained from transgenic mice expressing human ZP2 alone or in conjunction with other human instead of mouse zona proteins showed binding of human sperm, suggesting that ZP2 might also play a role in sperm-egg binding. This function has been mapped to a domain corresponding to amino acid residues 51-144 of ZP2. In contrast to mice, where ZP3 is the primary agonist for inducing the acrosome reaction, in humans, the acrosome reaction can be mediated by ZP1, ZP3, and ZP4. The effect of mutations in the genes encoding zona proteins on the ZP morphology and infertility has not been established. Further, the role of autoantibodies against ZP in women with 'unexplained infertility' leading to poor outcome of in vitro fertilization is currently controversial and needs further investigations. Understanding the role of ZP glycoproteins during human fertilization facilitates the development of new contraceptives and strategies to overcome the problem of infertility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Human Milk Glycoproteins Protect Infants Against Human Pathogens

    Science.gov (United States)

    Liu, Bo

    2013-01-01

    Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737

  5. Humanizing recombinant glycoproteins from Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Hansen, Anders Holmgaard; Amann, Thomas; Kol, Stefan

    hamster ovary (CHO) cells are making a very heterogeneous mixture of NGlycans. We speculate that the CHO pattern of N-Glycans would affect half-life and/or efficacy of the glycoprotein in the bloodstream making it unsuitable for human intravenous use, whereas our humanized version would be identical...

  6. The peri-operative management of anti-platelet therapy in elective, non-cardiac surgery.

    Science.gov (United States)

    Alcock, Richard F; Naoum, Chris; Aliprandi-Costa, Bernadette; Hillis, Graham S; Brieger, David B

    2013-07-31

    Cardiovascular complications are important causes of morbidity and mortality in patients undergoing elective non-cardiac surgery, with adverse cardiac outcomes estimated to occur in approximately 4% of all patients. Anti-platelet therapy withdrawal may precede up to 10% of acute cardiovascular syndromes, with withdrawal in the peri-operative setting incompletely appraised. The aims of our study were to determine the proportion of patients undergoing elective non-cardiac surgery currently prescribed anti-platelet therapy, and identify current practice in peri-operative management. In addition, the relationship between management of anti-platelet therapy and peri-operative cardiac risk was assessed. We evaluated consecutive patients attending elective non-cardiac surgery at a major tertiary referral centre. Clinical and biochemical data were collected and analysed on patients currently prescribed anti-platelet therapy. Peri-operative management of anti-platelet therapy was compared with estimated peri-operative cardiac risk. Included were 2950 consecutive patients, with 516 (17%) prescribed anti-platelet therapy, primarily for ischaemic heart disease. Two hundred and eighty nine (56%) patients had all anti-platelet therapy ceased in the peri-operative period, including 49% of patients with ischaemic heart disease and 46% of patients with previous coronary stenting. Peri-operative cardiac risk score did not influence anti-platelet therapy management. Approximately 17% of patients undergoing elective non-cardiac surgery are prescribed anti-platelet therapy, the predominant indication being for ischaemic heart disease. Almost half of all patients with previous coronary stenting had no anti-platelet therapy during the peri-operative period. The decision to cease anti-platelet therapy, which occurred commonly, did not appear to be guided by peri-operative cardiac risk stratification. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Anti-platelet activity of a three-finger toxin (3FTx) from Indian monocled cobra (Naja kaouthia) venom.

    Science.gov (United States)

    Chanda, Chandrasekhar; Sarkar, Angshuman; Sistla, Srinivas; Chakrabarty, Dibakar

    2013-11-22

    A low molecular weight anti-platelet peptide (6.9 kDa) has been purified from Naja kaouthia venom and was named KT-6.9. MALDI-TOF/TOF mass spectrometry analysis revealed the homology of KT-6.9 peptide sequence with many three finger toxin family members. KT-6.9 inhibited human platelet aggregation process in a dose dependent manner. It has inhibited ADP, thrombin and arachidonic acid induced platelet aggregation process in dose dependent manner, but did not inhibit collagen and ristocetin induced platelet aggregation. Strong inhibition (70%) of the ADP induced platelet aggregation by KT-6.9 suggests competition with ADP for its receptors on platelet surface. Anti-platelet activity of KT-6.9 was found to be 25 times stronger than that of anti-platelet drug clopidogrel. Binding of KT-6.9 to platelet surface was confirmed by surface plasma resonance analysis using BIAcore X100. Binding was also observed by a modified sandwich ELISA method using anti-KT-6.9 antibodies. KT-6.9 is probably the first 3 FTx from Indian monocled cobra venom reported as a platelet aggregation inhibitor. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Anti-platelet Therapy Resistance – Concept, Mechanisms and Platelet Function Tests in Intensive Care Facilities

    Directory of Open Access Journals (Sweden)

    Mărginean Alina

    2016-01-01

    Full Text Available It is well known that critically ill patients require special attention and additional consideration during their treatment and management. The multiple systems and organ dysfunctions, typical of the critical patient, often results in different patterns of enteral absorption in these patients. Anti-platelet drugs are the cornerstone in treating patients with coronary and cerebrovascular disease. Dual anti-platelet therapy with aspirin and clopidogrel is the treatment of choice in patients undergoing elective percutaneous coronary interventions and is still widely used in patients with acute coronary syndromes. However, despite the use of dual anti-platelet therapy, some patients continue to experience cardiovascular ischemic events. Recurrence of ischemic events is partly attributed to the fact that some patients have poor inhibition of platelet reactivity despite treatment. These patients are considered low- or nonresponders to therapy. The underlying mechanisms leading to resistance are not yet fully elucidated and are probably multifactorial, cellular, genetic and clinical factors being implicated. Several methods have been developed to asses platelet function and can be used to identify patients with persistent platelet reactivity, which have an increased risk of thrombosis. In this paper, the concept of anti-platelet therapy resistance, the underlying mechanisms and the methods used to identify patients with low responsiveness to anti-platelet therapy will be highlighted with a focus on aspirin and clopidogrel therapy and addressing especially critically ill patients.

  9. Molecular evidence for human alpha 2-HS glycoprotein (AHSG) polymorphism.

    Science.gov (United States)

    Osawa, M; Umetsu, K; Ohki, T; Nagasawa, T; Suzuki, T; Takeichi, S

    1997-01-01

    Alpha 2-HS glycoprotein (AHSG) is a human plasma glycoprotein that exhibits genetic polymorphism on isoelectric focusing (IEF). To identify the origin of two common alleles, AHSG*1 and *2, we examined nucleotide exchanges in the gene. AHSG cDNA was obtained by RT-PCR from poly(A) RNA of seven liver tissue samples and subcloned into a plasmid vector. After sequencing, we found six single nucleotide differences in comparison with the originally reported sequence. In particular, the nucleotide substitutions of C to T at amino acid position 230 and C to G at position 238 were common among the samples exhibiting phenotype 2-1 or 2. Since these substitutions might give rise to a NlaIII site and a SacI site, respectively, for the potential AHSG*2, we analyzed these substitutions by PCR-RFLP using genomic DNA of 68 individuals. The result was consistent with the IEF analysis of the corresponding serum, indicating that AHSG*1 was characterized by ACG (Thr) at position 230 in exon 6 and ACC (Thr) at position 238 in exon 7, and that AHSG*2 was characterized by ATG (Met) at position 230 and AGC (Ser) at position 238.

  10. Crystal Structure of the Human Cytomegalovirus Glycoprotein B.

    Directory of Open Access Journals (Sweden)

    Heidi G Burke

    2015-10-01

    Full Text Available Human cytomegalovirus (HCMV, a dsDNA, enveloped virus, is a ubiquitous pathogen that establishes lifelong latent infections and caused disease in persons with compromised immune systems, e.g., organ transplant recipients or AIDS patients. HCMV is also a leading cause of congenital viral infections in newborns. Entry of HCMV into cells requires the conserved glycoprotein B (gB, thought to function as a fusogen and reported to bind signaling receptors. gB also elicits a strong immune response in humans and induces the production of neutralizing antibodies although most anti-gB Abs are non-neutralizing. Here, we report the crystal structure of the HCMV gB ectodomain determined to 3.6-Å resolution, which is the first atomic-level structure of any betaherpesvirus glycoprotein. The structure of HCMV gB resembles the postfusion structures of HSV-1 and EBV homologs, establishing it as a new member of the class III viral fusogens. Despite structural similarities, each gB has a unique domain arrangement, demonstrating structural plasticity of gB that may accommodate virus-specific functional requirements. The structure illustrates how extensive glycosylation of the gB ectodomain influences antibody recognition. Antigenic sites that elicit neutralizing antibodies are more heavily glycosylated than those that elicit non-neutralizing antibodies, which suggest that HCMV gB uses glycans to shield neutralizing epitopes while exposing non-neutralizing epitopes. This glycosylation pattern may have evolved to direct the immune response towards generation of non-neutralizing antibodies thus helping HCMV to avoid clearance. HCMV gB structure provides a starting point for elucidation of its antigenic and immunogenic properties and aid in the design of recombinant vaccines and monoclonal antibody therapies.

  11. Is anti-platelet therapy interruption a real clinical issue? Its implications in dentistry and particularly in periodontics

    Directory of Open Access Journals (Sweden)

    Kumar A

    2009-01-01

    Full Text Available The use of anti-platelet therapy has reduced the mortality and morbidity of cardiovascular disease remarkably. A considerable number of patients presenting before a dentist or periodontist give a history of anti-platelet therapy. A clinical dilemma whether to discontinue the anti-platelet therapy or continue the same always confronts the practitioner. Diverse opinions exist regarding the management of such patients. While one group of researchers advise continuation of anti-platelet therapy rather than invite remote, but possible, thromboembolic events, another group encourages discontinuation for variable periods. This study aims at reviewing the current rationale of anti-platelet therapy and the various options available to a clinician, with regard to the management of a patient under anti-platelet therapy. Current recommendations and consensus favour no discontinuation of anti-platelet therapy. This recommendation, however, comes with a rider to use caution and consider other mitigating factors as well. With a large number of patients giving a history of anti-platelet therapy, the topic is of interest and helps a clinician to arrive at a decision.

  12. Dentists' approach to patients on anti-platelet agents and warfarin: a survey of practice.

    LENUS (Irish Health Repository)

    Murphy, James

    2010-04-23

    In everyday practice, dentists are confronted with the dilemma of patients on anti-platelet agents and warfarin who require invasive dental procedures and, more pertinently, dental extractions. There may be a divergence of opinion among dentists regarding how they manage these patients. AIMS: To assess general dental practitioners\\' approach to the management of patients taking anti-platelet agents and\\/or warfarin who are undergoing invasive dental procedures. METHODS AND DATA: A semi-structured questionnaire was designed to survey general dental practitioners in a large Irish urban area. RESULTS: A response rate of 89% was achieved in a study population of 54 general dental practitioners. A total of 25% of respondents who carry out extractions on warfarinised patients do not check the INR prior to invasive dental procedures. Some 90% of respondents stop anti-platelet agents prior to extractions. CONCLUSIONS: A significant proportion of respondents fail to check warfarinised patients\\' INR prior to invasive dental procedures. Furthermore, a trend of stopping anti-platelet agents was noted, which is in contrast with current recommendations in the dental literature. Certain practices in this small study population proved alarming and highlight the need for improved awareness of current guidelines. A further large-scale study may be justified, as variation in practice may have clinical and medico-legal repercussions.

  13. Lectin-based analysis of fucosylated glycoproteins of human skim milk during 47 days of lactation.

    Science.gov (United States)

    Lis-Kuberka, Jolanta; Kątnik-Prastowska, Iwona; Berghausen-Mazur, Marta; Orczyk-Pawiłowicz, Magdalena

    2015-12-01

    Glycoproteins of human milk are multifunctional molecules, and their fucosylated variants are potentially active molecules in immunological events ensuring breastfed infants optimal development and protection against infection diseases. The expression of fucosylated glycotopes may correspond to milk maturation stages. The relative amounts of fucosylated glycotopes of human skim milk glycoproteins over the course of lactation from the 2(nd) day to the 47(th) day were analyzed in colostrums, transitional and mature milk samples of 43 healthy mothers by lectin-blotting using α1-2-, α1-6-, and α1-3-fucose specific biotinylated Ulex europaeus (UEA), Lens culinaris (LCA), and Lotus tetragonolobus (LTA) lectins, respectively. The reactivities of UEA and LCA with the milk glycoproteins showed the highest expression of α1-2- and α1-6-fucosylated glycotopes on colostrum glycoproteins. The level of UEA-reactive glycoproteins from the beginning of lactation to the 14(th) day was high and relatively stable in contrast to LCA-reactive glycoproteins, the level of which significantly decreased from 2-3 to 7-8 days then remained almost unchanged until the 12(th)-14(th) days. Next, during the progression of lactation the reactivities with both lectins declined significantly. Eighty percent of α1-2- and/or α1-6-fucosylated glycoproteins showed a high negative correlation with milk maturation. In contrast, most of the analyzed milk glycoproteins were not recognized or weakly recognized by LTA and remained at a low unchanged level over lactation. Only a 30-kDa milk glycoprotein was evidently LTA-reactive, showing a negative correlation with milk maturation. The gradual decline of high expression of α1-2- and α1-6-, but not α1-3-, fucoses on human milk glycoproteins of healthy mothers over lactation was associated with milk maturation.

  14. Alterations of branching and differential expression of sialic acid on alpha-1-acid glycoprotein in human seminal plasma.

    NARCIS (Netherlands)

    Kratz, E; Poland, DC; Dijk, van W.; Katnik-Prastowska, I

    2003-01-01

    BACKGROUND: The degree of branching and types of fucosylation of glycans on alpha(1)-acid glycoprotein (AGP) have been found to be associated with alpha(1)-acid glycoprotein concentrations in human seminal plasma. The glycosylation pattern of alpha(1)-acid glycoprotein in seminal plasma obtained

  15. Vasorelaxant and anti-platelet aggregation effects of aqueous Ocimum basilicum extract.

    Science.gov (United States)

    Amrani, Souliman; Harnafi, Hicham; Gadi, Dounia; Mekhfi, Hassane; Legssyer, Abdelkhaleq; Aziz, Mohammed; Martin-Nizard, Françoise; Bosca, Lisardo

    2009-08-17

    In this work the endothelium-dependant vasorelaxant and anti-platelet aggregation activities of an aqueous extract from Ocimum basilicum were studied. The vasorelaxant effect was undertaken in thoracic aorta from three experimental groups of rats: one of them (NCG) fed with standard diet, the second (HCG) with hypercholesterolemic diet (HCD) and the third (BTG) with hypercholesterolemic diet together with an intragastric administration of Ocimum basilicum extract at a dose of 0.5 g/kg body weight for a period of 10 weeks. The in vitro anti-platelet aggregation of Ocimum basilicum extract was studied using thrombin (0.5 U/ml) and ADP (5 microM) as agonists. The results show that the HCD statistically decreases vascular relaxation in HCG compared to NCG (pOcimum basilicum extract exerts a significant vasorelaxant effect at 10(-5) M (pOcimum basilicum as medicinal plant could be beneficial for cardiovascular system.

  16. Anti-platelet aggregation triterpene saponins from the galls of Sapindus mukorossi.

    Science.gov (United States)

    Huang, Hui-Chi; Tsai, Wei-Jern; Liaw, Chia-Ching; Wu, Shih-Hsiung; Wu, Yang-Chang; Kuo, Yao-Haur

    2007-09-01

    Bioassay-directed fractionation of an ethanolic extract of the galls of Sapindus mukorossi has resulted in the isolation of two new tirucallane-type triterpenoid saponins, sapinmusaponins Q (1) and R (2), along with three known oleanane-type triterpenoid saponins (3-5). Their structures were elucidated on the basis of spectroscopic analysis and chemical hydrolysis. Biological evaluation showed that both sapinmusaponins Q and R demonstrated more potent anti-platelet aggregation activity than aspirin.

  17. High-Mr glycoprotein profiles in human milk serum and fat-globule membrane.

    Science.gov (United States)

    Shimizu, M; Yamauchi, K; Miyauchi, Y; Sakurai, T; Tokugawa, K; McIlhinney, R A

    1986-01-01

    Gradient-polyacrylamide-gel electrophoresis of human milk serum separated three high-Mr glycoprotein bands. The properties of the components corresponding to the three bands (tentatively termed 'Components C, B and A' in their order of migration) were compared by staining with four monoclonal antibodies and lectins. Components B and C both reacted with the four antibodies, but Component A did not. Components B and C were stained with peanut (Arachis hypogaea) agglutinin (PNA) and wheat (Triticum)-germ agglutinin (WGA), Component A being stained with soya-bean (Glycine max) agglutinin as well as PNA and WGA. These results suggest that Components B and C were related molecules, whereas Component A was markedly different from them. The reactivities of Components B and C were the same as those of PAS-0, a high-Mr periodate/Schiff (PAS)-positive glycoprotein previously isolated from human milk fat-globule membrane (MFGM). Component C, whose electrophoretic mobility was the same as PAS-0, could have been a soluble form of PAS-0. A high-Mr glycoprotein having the same properties as Component A was also observed in MFGM. The amino acid composition of the isolated Component A was significantly different from that of Component C and PAS-0, high threonine and serine contents being characteristic of Component A. The carbohydrate content of Component A was 65-80%, and was much higher than that of Component C and PAS-0. Fucose, galactose, N-acetylglucosamine, N-acetylgalactosamine and sialic acid were each detected as constituent sugars of Component A. Component A represents, therefore, a new high-Mr glycoprotein species in human milk serum and MFGM. Since these glycoproteins were high-Mr mucin-like glycoproteins, the names 'HM glycoprotein-A' and 'HM glycoprotein-C' were proposed for Component A and Component C (PAS-O) respectively. Images Fig. 2. Fig. 3. Fig. 5. Fig. 6. PMID:3707520

  18. Comparative Analysis of Whey N-Glycoproteins in Human Colostrum and Mature Milk Using Quantitative Glycoproteomics.

    Science.gov (United States)

    Cao, Xueyan; Song, Dahe; Yang, Mei; Yang, Ning; Ye, Qing; Tao, Dongbing; Liu, Biao; Wu, Rina; Yue, Xiqing

    2017-11-29

    Glycosylation is a ubiquitous post-translational protein modification that plays a substantial role in various processes. However, whey glycoproteins in human milk have not been completely profiled. Herein, we used quantitative glycoproteomics to quantify whey N-glycosylation sites and their alteration in human milk during lactation; 110 N-glycosylation sites on 63 proteins and 91 N-glycosylation sites on 53 proteins were quantified in colostrum and mature milk whey, respectively. Among these, 68 glycosylation sites on 38 proteins were differentially expressed in human colostrum and mature milk whey. These differentially expressed N-glycoproteins were highly enriched in "localization", "extracellular region part", and "modified amino acid binding" according to gene ontology annotation and mainly involved in complement and coagulation cascades pathway. These results shed light on the glycosylation sites, composition and biological functions of whey N-glycoproteins in human colostrum and mature milk, and provide substantial insight into the role of protein glycosylation during infant development.

  19. Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion.

    Science.gov (United States)

    Peterson, Robyn A; Gueniche, Audrey; Adam de Beaumais, Ségolène; Breton, Lionel; Dalko-Csiba, Maria; Packer, Nicolle H

    2016-03-01

    There is increasing evidence that secretory fluids such as tears, saliva and milk play an important role in protecting the human body from infection via a washing mechanism involving glycan-mediated adhesion of potential pathogens to secretory glycoproteins. Interaction of sweat with bacteria is well established as the cause of sweat-associated malodor. However, the role of sweat glycoproteins in microbial attachment has received little, if any, research interest in the past. In this review, we demonstrate how recent published studies involving high-throughput proteomic analysis have inadvertently, and fortuitously, exposed an abundance of glycoproteins in sweat, many of which have also been identified in other secretory fluids. We bring together research demonstrating microbial adhesion to these secretory glycoproteins in tears, saliva and milk and suggest a similar role of the sweat glycoproteins in mediating microbial attachment to sweat and/or skin. The contribution of glycan-mediated microbial adhesion to sweat glycoproteins, and the associated impact on sweat derived malodor and pathogenic skin infections are unchartered new research areas that we are beginning to explore. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. 'ZP domain' of human zona pellucida glycoprotein-1 binds to human spermatozoa and induces acrosomal exocytosis.

    Science.gov (United States)

    Ganguly, Anasua; Bansal, Pankaj; Gupta, Tripti; Gupta, Satish K

    2010-09-11

    The human egg coat, zona pellucida (ZP), is composed of four glycoproteins designated as zona pellucida glycoprotein-1 (ZP1), -2 (ZP2), -3 (ZP3) and -4 (ZP4) respectively. The zona proteins possess the archetypal 'ZP domain', a signature domain comprised of approximately 260 amino acid (aa) residues. In the present manuscript, attempts have been made to delineate the functional significance of the 'ZP domain' module of human ZP1, corresponding to 273-551 aa fragment of human ZP1. Baculovirus-expressed, nickel-nitrilotriacetic acid affinity chromatography purified 'ZP domain' of human ZP1 was employed to assess its capability to bind and subsequently induce acrosomal exocytosis in capacitated human spermatozoa using tetramethyl rhodamine isothiocyanate conjugated Pisum sativum Agglutinin in absence or presence of various pharmacological inhibitors. Binding characteristics of ZP1 'ZP domain' were assessed employing fluorescein isothiocyanate (FITC) labelled recombinant protein. SDS-PAGE and immunoblot characterization of the purified recombinant protein (both from cell lysate as well as culture supernatant) revealed a doublet ranging from ~35-40 kDa. FITC- labelled 'ZP domain' of ZP1 binds primarily to the acrosomal cap of the capacitated human spermatozoa. A dose dependent increase in acrosomal exocytosis was observed when capacitated sperm were incubated with recombinant 'ZP domain' of human ZP1. The acrosome reaction mediated by recombinant protein was independent of Gi protein-coupled receptor pathway, required extra cellular calcium and involved both T- and L-type voltage operated calcium channels. Results described in the present study suggest that the 'ZP domain' module of human ZP1 has functional activity and may have a role during fertilization in humans.

  1. Electrophoretic demonstration of glycoproteins, lipoproteins, and phosphoproteins in human and bovine enamel

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Bøg-Hansen, T C

    1990-01-01

    Enamel proteins from fully mineralized human molars and from bovine tooth germs were separated by electrophoresis. The gels were stained for detection of glycoproteins, lipoproteins, and phosphoproteins. Glycoproteins were shown by periodic acid-Schiff staining and lectin blotting. In mature human...... enamel a number of high molecular weight proteins could be demonstrated after ethylenediaminetetra-acetic acid demineralization and subsequent Triton X-100 extraction. These proteins are suggested to be lipoproteins. Phosphoproteins could only be visualized in enamel matrix from the tooth germs....

  2. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation.

    Science.gov (United States)

    Ghaderi, Darius; Zhang, Mai; Hurtado-Ziola, Nancy; Varki, Ajit

    2012-01-01

    One of the fastest growing fields in the pharmaceutical industry is the market for therapeutic glycoproteins. Today, these molecules play a major role in the treatment of various diseases, and include several protein classes, i.e., clotting factors, hormones, cytokines, antisera, enzymes, enzyme inhibitors, Ig-Fc-Fusion proteins, and monoclonal antibodies. Optimal glycosylation is critical for therapeutic glycoproteins, as glycans can influence their yield, immunogenicity and efficacy, which impact the costs and success of such treatments. While several mammalian cell expression systems currently used can produce therapeutic glycoproteins that are mostly decorated with human-like glycans, they can differ from human glycans by presenting two structures at the terminal and therefore most exposed position. First, natural human N-glycans are lacking the terminal Gal 1-3Gal (alpha-Gal) modification; and second, they do not contain the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc). All humans spontaneously express antibodies against both of these glycan structures, risking increased immunogenicity of biotherapeutics carrying such non-human glycan epitopes. However, in striking contrast to the alpha-Gal epitope, exogenous Neu5Gc can be metabolically incorporated into human cells and presented on expressed glycoproteins in several possible epitopes. Recent work has demonstrated that this non-human sialic acid is found in widely varying amounts on biotherapeutic glycoproteins approved for treatment of various medical conditions. Neu5Gc on glycans of these medical agents likely originates from the production process involving the non-human mammalian cell lines and/or the addition of animal-derived tissue culture supplements. Further studies are needed to fully understand the impact of Neu5Gc in biotherapeutic agents. Similar concerns apply to human cells prepared for allo- or auto-transplantation, that have been grown in animal-derived tissue culture supplements.

  3. Griffonia simplicifolia agglutinin-2-binding glycoprotein as a novel carbohydrate antigen of human colonic carcinoma.

    Science.gov (United States)

    Nakayama, J; Okano, A; Maeda, H; Miyachi, M; Ota, H; Katsuyama, T; Kanai, M

    1990-04-01

    Griffonia simplicifolia agglutinin-2-binding glycoprotein (GBG) in human colonic carcinoma was examined immunochemically and histochemically, GBG was extracted from colonic carcinoma as a serum-type glycoprotein of 160 kilodaltons. GBG was not identical with carcinoembryonic antigen (CEA), since its molecular weight and localization in tissue sections were different from those of CEA. The non-reducing terminals of GBG probably carry N-acetylglucosamine, but not blood group determinants. Furthermore, GBG was released by phosphatidylinositol-specific phospholipase C from cell membrane. GBG was suggested to be anchored to the membrane via linkage to a glycosyl-phosphatidylinositol molecule. Among colonic carcinoma-associated antigens, serum-type glycoproteins having N-acetylglucosamine at non-reducing terminals have not previously been reported. GBG is a novel carbohydrate antigen of human colonic carcinoma.

  4. Analgesic, anti-inflammatory and anti-platelet activities of Buddleja crispa.

    Science.gov (United States)

    Bukhari, Ishfaq A; Gilani, Anwar H; Meo, Sultan Ayoub; Saeed, Anjum

    2016-02-25

    Buddleja crispa Benth (Buddlejaceae) is a dense shrub; several species of genus Buddleja have been used in the management of various health conditions including pain and inflammation. The present study was aimed to investigate the analgesic, anti-inflammatory and anti-platelet properties of B. crispa. Male rats (220-270 gm,) and mice (25-30 gm) were randomly divided into different groups (n = 6). Various doses of plant extract of B. crispa, its fractions and pure compounds isolated from the plant were administered intraperitoneally (i.p). The analgesic, anti-inflammatory and anti-platelet activities were assessed using acetic acid and formalin-induced nociception in mice, carrageenan-induced rat paw edema and arachidonic acid-induced platelets aggregation tests. The intraperitoneal administration of the methanolic extract (50 and 100 mg/kg), hexane fraction (10 and 25 mg/kg i.p) exhibited significant inhibition (P < 0.01) of the acetic acid-induced writhing in mice and attenuated formalin-induced reaction time of animals in second phase of the test. Pure compounds BdI-2, BdI-H3 and BH-3 isolated from B. crispa produced significant (P < 0.01) analgesic activity in acetic acid-induced and formalin tests. The crude extract of B. crispa (50-200 mg/kg i.p.) and its hexane fraction inhibited carrageenan-induced rat paw edema with maximum inhibition of 65 and 71% respectively (P < 0.01). The analgesic and anti-inflammatory effect of the plant extract and isolated pure compounds were comparable to diclofenac sodium. B. crispa plant extract (0.5-2.5 mg/mL) produced significant anti-platelet effect (P < 0.01) with maximum inhibition of 78% at 2.5 mg/ml. The findings from our present study suggest that B. crispa possesses analgesic, anti-inflammatory and anti-platelet properties. B. crispa could serve a potential novel source of compounds effective in pain and inflammatory conditions.

  5. Human CRISP-3 binds serum alpha(1)B-glycoprotein across species

    DEFF Research Database (Denmark)

    Udby, Lene; Johnsen, Anders H; Borregaard, Niels

    2010-01-01

    CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular...

  6. A megakaryocyte with no platelets: anti-platelet antibodies, apoptosis, and platelet production.

    Science.gov (United States)

    Perdomo, José; Yan, Feng; Chong, Beng H

    2013-01-01

    Primary immune thrombocytopenia (ITP) and drug-induced thrombocytopenia (DITP) are disorders caused primarily by the presence of anti-platelet auto-antibodies (Abs). Hematologists have traditionally seen thrombocytopenia as the result of increased destruction of Ab-coated platelets by the reticuloendothelial system. While accurate, this approach does not fully account for other laboratory observations. There is increasing evidence suggesting a significant cellular component in the etiology of both ITP and DITP. In ITP, megakaryocytes (Mks) show characteristics consistent with increased apoptosis, which correlates with a reduction in platelet production capacity. Platelet production by Mks is impaired in both the bone marrow of ITP patients and in Mks produced in vitro when treated with ITP or DITP auto-Abs. Recently, it was shown that anti GPIb/IX DITP Abs act directly on Mks and induce apoptosis, hinder differentiation, and prevent platelet production. The origin of pathological megakaryocytic apoptosis is yet to be explored in more detail but current observations imply that there is a direct contribution by anti-platelet Abs. Here we review the evidence for Ab-mediated megakaryocytic damage in ITP and DITP, examine possible molecular mechanisms and consider potential clinical implications.

  7. In vitro anti-platelet potency of ticagrelor in blood samples from infants and children.

    Science.gov (United States)

    Söderlund, Fredrik; Asztély, Anna-Karin; Jeppsson, Anders; Nylander, Sven; Berggren, Anders; Nelander, Karin; Castellheim, Albert; Romlin, Birgitta S

    2015-09-01

    Ticagrelor, a novel platelet inhibitor acting on the ADP-dependent P2Y12 receptor, is currently approved for treating adults with acute coronary syndrome. The effect of ticagrelor in children has not been explored. As a first step, we here evaluate if the in vitro anti-platelet potency of ticagrelor in blood samples from children of different age is different as compared with in blood samples from adults. Blood samples from 36 healthy children grouped by age (0-2 months, n=6; 2-6 months, n=6; 6months-2years, n=6; 2-6 years, n=10; 6-12 years, n=8) and 13 adults were collected for in vitro analysis using vasodilator stimulated phosphoprotein phosphorylation (VASP) assay in whole blood and ADP-induced light transmission aggregometry (LTA) in platelet rich plasma. Ticagrelor (0.01 - 10μmol/L) was added in vitro and its potency was assessed by calculating the concentration that provided 50% inhibition of the maximum response (IC50). The in vitro potency of ticagrelor in blood from adults and in blood from children of any age group were comparable, both when analyzed with LTA and with VASP. These in vitro results are consistent with the hypothesis that ticagrelor would achieve a comparable anti-platelet effect in children of different ages as in adults at equal plasma exposure. Copyright © 2015. Published by Elsevier Ltd.

  8. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    Science.gov (United States)

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo(L-Pro-L-Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Immunoreactivity of glycoproteins isolated from human peripheral nerve and Campylobacter jejuni (O:19

    Directory of Open Access Journals (Sweden)

    Katerina Brezovska

    2011-01-01

    Full Text Available Objective: Antibodies to ganglioside GM1 are associated with Guillain-Barré Syndrome (GBS in patients with serologic evidence of a preceding infection with Campylobacter jejuni. Molecular mimicry between C. jejuni Lipopolysaccharide (LPS and ganglioside GM1 has been proven to be the immunopathogenic mechanism of the disease in the axonal variant of GBS. GM1-positive sera cross-react with several Gal-GalNAc-bearing glycoproteins from the human peripheral nerve and C. jejuni (O:19. This study aimed to examine the immunoreactivity of the digested cross-reactive glycoproteins isolated from the human peripheral nerve and C. jejuni (O:19 with Peanut Agglutinin (PNA as a marker for the Gal-GalNAc determinant, and with sera from patients with GBS. Materials and Methods: For this purpose, the cross-reactive glycoproteins from peripheral nerve and C. jejuni (O:19 were enzymatically digested with trypsin and the obtained peptides were incubated with PNA and GBS sera. Results: Western blot analysis of the separated peptides revealed several bands showing positive reactivity to PNA and to sera from patients with GBS, present in both digests from peripheral nerve and C. jejuni (O:19. Conclusions: These data indicate the possible molecular mimicry between the cross-reactive glycoproteins present in C. jejuni and human peripheral nerve and its potential role in the development of GBS following infection with C. jejuni (O:19.

  10. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits

    Science.gov (United States)

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  11. Characterization of the Fusion and Attachment Glycoproteins of Human Metapneumovirus and Human Serosurvey to Determine Reinfection Rates

    Science.gov (United States)

    2007-06-27

    Rhabdoviridae plant virus , replicate in the cytoplasm (66). The Paramyxoviridae are enveloped viruses and have been defined by the fusion glycoprotein...Examples of Paramyxoviridae Subfamily Genus Representative Viruses Rubulavirus Mumps virus Human parainfluenza virus type 2, 4a, 4b Avulavirus...Newcastle disease virus Respirovirus Human parainfluenza virus type 1, 3 Sendai virus Henipavirus Hendra virus Nipah virus Paramyxovirinae

  12. Immunohistochemical study of the expression of human milk fat globule membrane glycoprotein 70.

    Science.gov (United States)

    Imam, A; Taylor, C R; Tökés, Z A

    1984-05-01

    Human milk fat globule membrane, which is said to derive from apical plasma membrane of secretory epithelial cells in breast, was analyzed by sodium dodecyl sulfate-two:dimensional gel electrophoresis. More than 35 components were detected in the gels. One of the major glycoproteins with an apparent molecular weight of 70,000, human milk fat globule membrane glycoprotein, was purified to homogeneity. The pattern of distribution of this glycoprotein in tissues was studied using polyclonal rabbit antibodies to the purified component. The localization of the antigen was accomplished by an indirect immunoperoxidase staining method. Normal mammary epithelial cells display this antigen mostly on the apical plasma membrane, whereas poorly differentiated breast carcinoma cells retained it predominantly in the cytoplasm. These observations suggest that the proper insertion of this glycoprotein into an apical membrane domain may be impaired in malignant tumor cells. In addition, a small population of tumor cells in each case examined failed to express detectable amounts of this component, indicating the presence of antigenic heterogeneity among the tumor cell population.

  13. Characterization of the Outer Domain of the gp120 Glycoprotein from Human Immunodeficiency Virus Type 1

    Science.gov (United States)

    Yang, Xinzhen; Tomov, Vesko; Kurteva, Svetla; Wang, Liping; Ren, Xinping; Gorny, Miroslaw K.; Zolla-Pazner, Susan; Sodroski, Joseph

    2004-01-01

    The core of the gp120 glycoprotein from human immunodeficiency virus type 1 (HIV-1) is comprised of three major structural domains: the outer domain, the inner domain, and the bridging sheet. The outer domain is exposed on the HIV-1 envelope glycoprotein trimer and contains binding surfaces for neutralizing antibodies such as 2G12, immunoglobulin G1b12, and anti-V3 antibodies. We expressed the outer domain of HIV-1YU2 gp120 as an independent protein, termed OD1. OD1 efficiently bound 2G12 and a large number of anti-V3 antibodies, indicating its structural integrity. Immunochemical studies with OD1 indicated that antibody responses against the outer domain of the HIV-1 gp120 envelope glycoprotein are rare in HIV-1-infected human sera that potently neutralize the virus. Surprisingly, such outer-domain-directed antibody responses are commonly elicited by immunization with recombinant monomeric gp120. Immunization with soluble, stabilized HIV-1 envelope glycoprotein trimers elicited antibody responses that more closely resembled those in the sera of HIV-1-infected individuals. These results underscore the qualitatively different humoral immune responses elicited during natural infection and after gp120 vaccination and help to explain the failure of gp120 as an effective vaccine. PMID:15542649

  14. Multiple Drug Transport Pathways through human P-Glycoprotein(†)

    Science.gov (United States)

    McCormick, James W.; Vogel, Pia D.; Wise, John G.

    2015-01-01

    P-glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11 to 12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methyl-pyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar is presented that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp. PMID:26125482

  15. Glycosylation pattern of anti-platelet IgG is stable during pregnancy and predicts clinical outcome in alloimmune thrombocytopenia

    NARCIS (Netherlands)

    Sonneveld, Myrthe E.; Natunen, Suvi; Sainio, Susanna; Koeleman, Carolien A. M.; Holst, Stephanie; Dekkers, Gillian; Koelewijn, Joke; Partanen, Jukka; van der Schoot, C. Ellen; Wuhrer, Manfred; Vidarsson, Gestur

    2016-01-01

    Fetal or neonatal alloimmune thrombocytopenia (FNAIT) is a potentially life-threatening disease where fetal platelets are destroyed by maternal anti-platelet IgG alloantibodies. The clinical outcome varies from asymptomatic, to petechiae or intracranial haemorrhage, but no marker has shown reliable

  16. Experimental evaluation of analgesic, anti-inflammatory and anti-platelet potential of Dashamoola

    Directory of Open Access Journals (Sweden)

    Reshma R Parekar

    2015-01-01

    Full Text Available Background: Dashamoola, in the form of arishta and kwath, is a commonly used classical Ayurvedic multi-ingredient formulation for management of pain, arthritis and inflammatory disorders. Objective: To study analgesic, anti-inflammatory and anti-platelet activity of Dashamoola and its combination with aspirin. Materials and Methods: Wistar albino rats (180-200 g and Swiss albino mice (20-25 g of either sex were divided randomly into five groups: Distilled water, aspirin (500mg/kg in rats; 722.2 mg/kg in mice, Dashamoolarishta (1.8 mL/kg in rats; 2.5 mL/kg in mice and Dashamoolarishta with aspirin. Anti-inflammatory activity was measured by change in paw volume in carrageenan-induced inflammation, protein content in model of peritonitis and granuloma weight in cotton pellet granuloma. Analgesic effect was evaluated by counting number of writhes in writhing model. Maximum platelet aggregation and percentage inhibition of ADP and collagen-induced platelet aggregation were estimated in vitro. Statistical analysis was done using one way ANOVA (post hoc Tukey′s test and P < 0.05 was considered significant. Results: Dashamoolarishta and its combination with aspirin showed significantly (P < 0.01 less number of writhes. It showed significant (P < 0.001 anti-inflammatory activity by paw edema reduction in rats, decrease in proteins in peritoneal fluid (P < 0.001 and decrease in granuloma weight (P < 0.05 as compared to respective vehicle control groups. Dashamoola kwath alone and in combination with aspirin inhibited maximum platelet aggregation and percent inhibition of platelets as compared to vehicle (P < 0.001. Conclusion: Dashamoola formulation alone and its combination with aspirin showed comparable anti-inflammatory, analgesic and anti-platelet effects to aspirin.

  17. Recombinant Glycoprotein Vaccines for Human Immunodeficiency Virus-Infected Children and Their Effects on Viral Quasispecies

    OpenAIRE

    Essajee, Shaffiq M; Yogev, Ram; Pollack, Henry; Greenhouse, Bryan; Krasinski, Keith; Borkowsky, William

    2002-01-01

    In individuals infected with human immunodeficiency virus type 1 (HIV-1), specific immunity is associated with a more diverse viral repertoire and slower disease progression. Attempts to enhance antiviral immunity with therapeutic vaccination have shown that recombinant glycoprotein (RGP) vaccines are safe, well tolerated, and immunogenic, but the effect of RGP vaccines on the viral repertoire is unknown. We evaluated diversification of the viral envelope in 12 HIV-infected children who recei...

  18. Molecular cloning and mammalian expression of human beta 2-glycoprotein I cDNA

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Schousboe, Inger; Boel, Espen

    1991-01-01

    Human β2-glycoprotein (β2gpI) cDNA was isolated from a liver cDNA library and sequenced. The cDNA encoded a 19-residue hydrophobic signal peptide followed by the mature β2gpI of 326 amino acid residues. In liver and in the hepatoma cell line HepG2 there are two mRNA species of about 1.4 and 4.3 kb...

  19. 3,3′,4,4′,5-Pentachlorobiphenyl Inhibits Drug Efflux Through P-Glycoprotein in KB-3 Cells Expressing Mutant Human P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujise

    2004-01-01

    Full Text Available The effects on the drug efflux of 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126, the most toxic of all coplanar polychlorinated biphenyls (Co-PCBs, were examined in KB-3 cells expressing human wild-type and mutant P-glycoprotein in which the 61st amino acid was substituted for serine or phenylalanine (KB3-Phe61. In the cells expressing P-glycoproteins, accumulations of vinblastine and colchicine decreased form 85% to 92% and from 62% to 91%, respectively, and the drug tolerances for these chemicals were increased. In KB3-Phe61, the decreases in drug accumulation were inhibited by adding PCB-126 in a way similar to that with cyclosporine A: by adding 1 μM PCB-126, the accumulations of vinblastine and colchicine increased up to 3.3- and 2.3-fold, respectively. It is suggested that PCB-126 decreased the drug efflux by inhibiting the P-glycoprotein in KB3-Phe61. Since there were various P-glycoproteins and many congeners of Co-PCBs, this inhibition has to be considered a new cause of the toxic effects of Co-PCBs.

  20. Structure of the gene encoding human alpha 2-HS glycoprotein (AHSG).

    Science.gov (United States)

    Osawa, M; Umetsu, K; Sato, M; Ohki, T; Yukawa, N; Suzuki, T; Takeichi, S

    1997-09-01

    Alpha 2-HS glycoprotein (AHSG) is a human plasma glycoprotein and fetuin is the homologue in the calf. In this report, we present the structure and organization of the AHSG gene. Introns and the 5' and 3'-flanking regions were obtained by polymerase chain reaction (PCR) and the inverted PCR, respectively, from genomic DNA using AHSG cDNA-specific oligonucleotide primers. The sequence of the PCR products shows that the coding region spans approximately 8.2 kb and is composed of seven exons interrupted by six introns. The exon-intron splice junctions agree with the consensus sequence, and the positions interrupted by introns are precisely identical to those of the rat insulin receptor tyrosine kinase inhibitor (fetuin) gene. The 5'-promoter region contains several characteristic sequences such as an A + T-rich sequence of TAAATAA, C/EBP-binding site, and hepatocyte nuclear factor-5 (HNF-5) and serum response factor (SRF) sites.

  1. Structure and expression of the human MDR (P-glycoprotein) gene family.

    OpenAIRE

    Chin, J E; Soffir, R; Noonan, K E; Choi, K.; Roninson, I B

    1989-01-01

    The human MDR (P-glycoprotein) gene family is known to include two members, MDR1 and MDR2. The product of the MDR1 gene, which is responsible for resistance to different cytotoxic drugs (multidrug resistance), appears to serve as an energy-dependent efflux pump for various lipophilic compounds. The function of the MDR2 gene remains unknown. We have examined the structure of the human MDR gene family by Southern hybridization of DNA from different multidrug-resistant cell lines with subfragmen...

  2. Tumor Biomarker Glycoproteins in the Seminal Plasma of Healthy Human Males Are Endogenous Ligands for DC-SIGN*

    Science.gov (United States)

    Clark, Gary F.; Grassi, Paola; Pang, Poh-Choo; Panico, Maria; Lafrenz, David; Drobnis, Erma Z.; Baldwin, Michael R.; Morris, Howard R.; Haslam, Stuart M.; Schedin-Weiss, Sophia; Sun, Wei; Dell, Anne

    2012-01-01

    DC-SIGN is an immune C-type lectin that is expressed on both immature and mature dendritic cells associated with peripheral and lymphoid tissues in humans. It is a pattern recognition receptor that binds to several pathogens including HIV-1, Ebola virus, Mycobacterium tuberculosis, Candida albicans, Helicobacter pylori, and Schistosoma mansoni. Evidence is now mounting that DC-SIGN also recognizes endogenous glycoproteins, and that such interactions play a major role in maintaining immune homeostasis in humans and mice. Autoantigens (neoantigens) are produced for the first time in the human testes and other organs of the male urogenital tract under androgenic stimulus during puberty. Such antigens trigger autoimmune orchitis if the immune response is not tightly regulated within this system. Endogenous ligands for DC-SIGN could play a role in modulating such responses. Human seminal plasma glycoproteins express a high level of terminal Lewisx and Lewisy carbohydrate antigens. These epitopes react specifically with the lectin domains of DC-SIGN. However, because the expression of these sequences is necessary but not sufficient for interaction with DC-SIGN, this study was undertaken to determine if any seminal plasma glycoproteins are also endogenous ligands for DC-SIGN. Glycoproteins bearing terminal Lewisx and Lewisy sequences were initially isolated by lectin affinity chromatography. Protein sequencing established that three tumor biomarker glycoproteins (clusterin, galectin-3 binding glycoprotein, prostatic acid phosphatase) and protein C inhibitor were purified by using this affinity method. The binding of DC-SIGN to these seminal plasma glycoproteins was demonstrated in both Western blot and immunoprecipitation studies. These findings have confirmed that human seminal plasma contains endogenous glycoprotein ligands for DC-SIGN that could play a role in maintaining immune homeostasis both in the male urogenital tract and the vagina after coitus. PMID:21986992

  3. Anti-Platelet Aggregation and Vasorelaxing Effects of the Constituents of the Rhizomes of Zingiber officinale

    Directory of Open Access Journals (Sweden)

    Tian-Shung Wu

    2012-07-01

    Full Text Available In the present study, the chemical investigation of the bioactive fractions of the rhizomes of Zingiber officinale has resulted in the identification of twenty-nine compounds including one new compound, O-methyldehydrogingerol (1. Some of the isolates were subjected into the evaluation of their antiplatelet aggregation and vasorelaxing bioactivities. Among the tested compounds, [6]-gingerol (13 and [6]-shogaol (17 exhibited potent anti-platelet aggregation bioactivity. In addition, [10]-gingerol (15 inhibited the Ca2+-dependent contractions in high K+ medium. According to the results in the present research, the bioactivity of ginger could be related to the anti-platelet aggregation and vasorelaxing mechanism.

  4. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs

    Science.gov (United States)

    Wright, Bernice; Spencer, Jeremy P.E.; Lovegrove, Julie A.; Gibbins, Jonathan M.

    2013-01-01

    Flavonoids are low-molecular weight, aromatic compounds derived from fruits, vegetables, and other plant components. The consumption of these phytochemicals has been reported to be associated with reduced cardiovascular disease (CVD) risk, attributed to their anti-inflammatory, anti-proliferative, and anti-thrombotic actions. Flavonoids exert these effects by a number of mechanisms which include attenuation of kinase activity mediated at the cell-receptor level and/or within cells, and are characterized as broad-spectrum kinase inhibitors. Therefore, flavonoid therapy for CVD is potentially complex; the use of these compounds as molecular templates for the design of selective and potent small-molecule inhibitors may be a simpler approach to treat this condition. Flavonoids as templates for drug design are, however, poorly exploited despite the development of analogues based on the flavonol, isoflavonone, and isoflavanone subgroups. Further exploitation of this family of compounds is warranted due to a structural diversity that presents great scope for creating novel kinase inhibitors. The use of computational methodologies to define the flavonoid pharmacophore together with biological investigations of their effects on kinase activity, in appropriate cellular systems, is the current approach to characterize key structural features that will inform drug design. This focussed review highlights the potential of flavonoids to guide the design of clinically safer, more selective, and potent small-molecule inhibitors of cell signalling, applicable to anti-platelet therapy. PMID:23024269

  5. Elucidation of N-glycosites within human plasma glycoproteins for cancer biomarker discovery.

    Science.gov (United States)

    Drake, Penelope; Schilling, Birgit; Gibson, Brad; Fisher, Susan

    2013-01-01

    Glycans are an important class of post-translational modifications that decorate a wide array of protein substrates. These cell-type specific molecules, which are modulated during developmental and disease processes, are attractive biomarker candidates as biology regarding altered glycosylation can be used to guide the experimental design. The mass spectrometry (MS)-based workflow described here incorporates chromatography on affinity matrices formed from lectins, proteins that bind specific glycan motifs. The goal was to design a relatively simple method for the rapid analysis of small plasma volumes (e.g., clinical specimens). As increases in sialylation and fucosylation are prominent among cancer-associated modifications, we focused on Sambucus nigra agglutinin and AAL, which bind sialic acid- and fucose-containing structures, respectively. Positive controls (fucosylated and sialylated human lactoferrin glycopeptides), and negative controls (high-mannose glycopeptides from Saccharomyces cerevisiae invertase) were used to monitor the specificity of lectin capture and optimize the workflow. Multiple Affinity Removal System 14-depleted, trypsin-digested human plasma from healthy donors served as the target analyte. Samples were loaded onto the lectin columns and separated by high performance liquid chromatography (HPLC) into flow through and bound fractions, which were treated with PNGase F, an amidase that removes N-linked glycans and marks the underlying asparagine glycosite by a +1 Da mass shift. The deglycosylated peptide fractions were interrogated by HPLC ESI-MS/MS on a quadrupole time-of-flight mass spectrometer. The method allowed identification of 122 human plasma glycoproteins containing 247 unique glycosites. Notably, glycoproteins that circulate at ng/mL levels (e.g., cadherin-5 at 0.3-4.9 ng/mL, and neutrophil gelatinase-associated lipocalin which is present at ∼2.5 ng/mL) were routinely observed, suggesting that this method enables the detection of

  6. Purification and preliminary characterization of the glycoprotein Ib complex in the human platelet membrane.

    Science.gov (United States)

    Berndt, M C; Gregory, C; Kabral, A; Zola, H; Fournier, D; Castaldi, P A

    1985-09-16

    Human platelet glycoprotein Ib (GP Ib) is a major integral membrane protein that has been identified as the platelet-binding site mediating the factor VIII/von Willebrand-factor-dependent adhesion of platelets to vascular subendothelium. Recent evidence suggests that GP Ib is normally complexed with another platelet membrane protein, GP IX. In this study, human platelet plasma membranes were selectively solubilized with a buffer containing 0.1% (v/v) Triton X-100. The GP Ib complex (GP Ib plus GP IX) was purified to homogeneity in approximately 30% yield by immunoaffinity chromatography of the membrane extract using the anti-(glycoprotein Ib complex) murine monoclonal antibody, WM 23, coupled to agarose. GP Ib and GP IX were subsequently isolated as purified components by immunoaffinity chromatography of the GP Ib complex using a second anti-(glycoprotein Ib complex) monoclonal antibody, FMC 25, coupled to agarose. As assessed by dodecyl sulphate/polyacrylamide gel electrophoresis, purified GP Ib was identical to the molecule on intact platelets and had an apparent relative molecular mass of 170 000 under nonreducing conditions and 135 000 (alpha subunit) and 25 000 (beta subunit) under reducing conditions. GP IX had an apparent Mr of 22 000 under both nonreducing and reducing conditions. Purified Gb Ib complex and GP Ib inhibited the ristocetin-mediated, human factor VIII/von Willebrand-factor-dependent and bovine factor VIII/von Willebrand-factor-dependent agglutination of washed human platelets suggesting the proteins had been isolated in functionally active form. GP Ib alpha had a similar amino acid composition to that previously reported for its proteolytic degradation product, glycocalicin. The amino acid compositions of GP Ib beta and GP IX were similar but showed marked differences in the levels of glutamic acid, alanine, histidine and arginine. The N-termini of GP Ib alpha and GP IX were blocked; GP Ib beta had the N-terminal sequence, Ile-Pro-Ala-Pro-. On

  7. Structural basis for the recognition of human cytomegalovirus glycoprotein B by a neutralizing human antibody.

    Directory of Open Access Journals (Sweden)

    Nadja Spindler

    2014-10-01

    Full Text Available Human cytomegalovirus (HCMV infections are life-threating to people with a compromised or immature immune system. Upon adhesion, fusion of the virus envelope with the host cell is initiated. In this step, the viral glycoprotein gB is considered to represent the major fusogen. Here, we present for the first time structural data on the binding of an anti-herpes virus antibody and describe the atomic interactions between the antigenic domain Dom-II of HCMV gB and the Fab fragment of the human antibody SM5-1. The crystal structure shows that SM5-1 binds Dom-II almost exclusively via only two CDRs, namely light chain CDR L1 and a 22-residue-long heavy chain CDR H3. Two contiguous segments of Dom-II are targeted by SM5-1, and the combining site includes a hydrophobic pocket on the Dom-II surface that is only partially filled by CDR H3 residues. SM5-1 belongs to a series of sequence-homologous anti-HCMV gB monoclonal antibodies that were isolated from the same donor at a single time point and that represent different maturation states. Analysis of amino acid substitutions in these antibodies in combination with molecular dynamics simulations show that key contributors to the picomolar affinity of SM5-1 do not directly interact with the antigen but significantly reduce the flexibility of CDR H3 in the bound and unbound state of SM5-1 through intramolecular side chain interactions. Thus, these residues most likely alleviate unfavorable binding entropies associated with extra-long CDR H3s, and this might represent a common strategy during antibody maturation. Models of entire HCMV gB in different conformational states hint that SM5-1 neutralizes HCMV either by blocking the pre- to postfusion transition of gB or by precluding the interaction with additional effectors such as the gH/gL complex.

  8. Serological responses in chimpanzees inoculated with human immunodeficiency virus glycoprotein (gp120) subunit vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, L.O.; Pyle, S.W.; Nara, P.L.; Bess, J.W. Jr.; Gonda, M.A.; Kelliher, J.C.; Gilden, R.V.; Robey, W.G.; Bolognesi, D.P.; Gallo, R.C.

    1987-12-01

    The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4/sup +/ and T8/sup +/ cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4/sup +/ cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo.

  9. Impact of a human CMP-sialic acid transporter on recombinant glycoprotein sialylation in glycoengineered insect cells.

    Science.gov (United States)

    Mabashi-Asazuma, Hideaki; Shi, Xianzong; Geisler, Christoph; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2013-02-01

    Insect cells are widely used for recombinant glycoprotein production, but they cannot provide the glycosylation patterns required for some biotechnological applications. This problem has been addressed by genetically engineering insect cells to express mammalian genes encoding various glycoprotein glycan processing functions. However, for various reasons, the impact of a mammalian cytosine-5'-monophospho (CMP)-sialic acid transporter has not yet been examined. Thus, we transformed Spodoptera frugiperda (Sf9) cells with six mammalian genes to generate a new cell line, SfSWT-4, that can produce sialylated glycoproteins when cultured with the sialic acid precursor, N-acetylmannosamine. We then super-transformed SfSWT-4 with a human CMP-sialic acid transporter (hCSAT) gene to isolate a daughter cell line, SfSWT-6, which expressed the hCSAT gene in addition to the other mammalian glycogenes. SfSWT-6 cells had higher levels of cell surface sialylation and also supported higher levels of recombinant glycoprotein sialylation, particularly when cultured with low concentrations of N-acetylmannosamine. Thus, hCSAT expression has an impact on glycoprotein sialylation, can reduce the cost of recombinant glycoprotein production and therefore should be included in ongoing efforts to glycoengineer the baculovirus-insect cell system. The results of this study also contributed new insights into the endogenous mechanism and potential mechanisms of CMP-sialic acid accumulation in the Golgi apparatus of lepidopteran insect cells.

  10. Core Structure of S2 from the Human Coronavirus NL63 Spike Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Zheng,Q.; Deng, Y.; Liu, J.; van der Hoek, L.; Berkhout, B.; Lu, M.

    2006-01-01

    Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an {alpha}-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 {sup o}C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.

  11. Effect of Desmopressin in Reducing Bleeding after Cardiac Surgery in Patients Receiving Anti-Platelet Agents

    Directory of Open Access Journals (Sweden)

    Kamran Shadvar

    2016-07-01

    Full Text Available Background: Severe bleeding is an important cause of morbidity and mortality in cardiac surgery using the cardiopulmonary bypass (CPB pump. Desmopressin, a synthetic analogue of vasopressin, is used to prevent postoperative bleeding in patients with renal insufficiency. The aim of the present study was to evaluate the effect of desmopressin in reducing blood loss after cardiac surgery in patients receiving antiplatelet drugs. Methods: In this prospective clinical trial, 40 patients undergoing coronary artery bypass grafting (CABG surgery with CPB, aged over 18 years, and on antiplatelet therapy for a week before surgery were divided in two groups. Case and control groups received nasal desmopressin spray and nasal normal saline spray, respectively. Patient vital signs, blood loss, administration of blood products, prescription drugs to improve the coagulation status, serum and whole intake and output of patients, need for a second surgery to control the bleeding, remaining sternum open, mortality due to bleeding, duration of intensive care unit (ICU stay and mechanical ventilation were recorded. Results: In the case and control groups there were no differences in duration of operation, mechanical ventilation and length of ICU stay. There was no significant difference in terms of postoperative bleeding and intake of blood products between two groups (P>0.05. Reoperation due to bleeding in the case and control groups was observed in 3 (15%, and 1 (5% patient(s, respectively (P=0.3. Conclusion: Desmopressin has no significant effect on reducing the amount of bleeding after cardiac surgery in patients receiving anti-platelet agents.   Keywords: CABG; cardio pulmonary bypass pump; hemorrhage; desmopressin

  12. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity

    Energy Technology Data Exchange (ETDEWEB)

    Halaban, R.; Moellmann, G. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1990-06-01

    Melanogenesis is regulated in large part by tyrosinase, and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmentated (B{sup lt}/B{sup lt}) coat versus the wild-type black (B/B). The authors show that the b locus codes for a glycoprotein with the activity of a catalase (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, they conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. The studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the B{sup lt} mutation renders the protein susceptible to rapid proteolytic degradation.

  13. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus

    DEFF Research Database (Denmark)

    Giang, Erick; Dorner, Marcus; Prentoe, Jannick C

    2012-01-01

    Hepatitis C virus (HCV) infects ∼2% of the world's population. It is estimated that there are more than 500,000 new infections annually in Egypt, the country with the highest HCV prevalence. An effective vaccine would help control this expanding global health burden. HCV is highly variable......, and an effective vaccine should target conserved T- and B-cell epitopes of the virus. Conserved B-cell epitopes overlapping the CD81 receptor-binding site (CD81bs) on the E2 viral envelope glycoprotein have been reported previously and provide promising vaccine targets. In this study, we isolated 73 human m......bs on the E1E2 complex, has an exceptionally broad neutralizing activity toward diverse HCV genotypes and protects against heterologous HCV challenge in a small animal model. The mAb panel will be useful for the design and development of vaccine candidates to elicit broadly neutralizing antibodies...

  14. Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Picariello, Gianluca; Ferranti, Pasquale; Mamone, Gianfranco

    2008-01-01

    by Hydrophilic Interaction LC (HILIC) and MS analysis. Glycopeptides were selectively enriched from the protein tryptic digest of human milk samples. Oligosaccharide-free peptides obtained by peptide N-glycosidase F (PNGase F) treatment were characterized by a shotgun MS-based approach, allowing...... the identification of N-glycosylated sites localized on proteins. Using this strategy, 32 different glycoproteins were identified and 63 N-glycosylated sites encrypted in them were located. The glycoproteins include immunocompetent factors, membrane fat globule-associated proteins, enzymes involved in lipid...

  15. The human glycoprotein salivary agglutinin inhibits the interaction of dc-sign and langerin with oral micro-organisms

    NARCIS (Netherlands)

    Boks, M.A.; Gunput, S.T.G.; Kosten, I.; Gibbs, S.; van Vliet, S.J.; Ligtenberg, A.J.M.; van Kooyk, Y.

    2016-01-01

    Salivary agglutinin (SAG), also known as gp340 or SALSA, is a glycoprotein encoded by the Deleted in Malignant Brain Tumours 1 gene and is abundantly present in human saliva. SAG aggregates bacteria and viruses, thereby promoting their clearance from the oral cavity. The mucosa lining the oral

  16. Profiling of Concanavalin A-Binding Glycoproteins in Human Hepatic Stellate Cells Activated with Transforming Growth Factor-β1

    Directory of Open Access Journals (Sweden)

    Yannan Qin

    2014-11-01

    Full Text Available Glycoproteins play important roles in maintaining normal cell functions depending on their glycosylations. Our previous study indicated that the abundance of glycoproteins recognized by concanavalin A (ConA was increased in human hepatic stellate cells (HSCs following activation by transforming growth factor-β1 (TGF-β1; however, little is known about the ConA-binding glycoproteins (CBGs of HSCs. In this study, we employed a targeted glycoproteomics approach using lectin-magnetic particle conjugate-based liquid chromatography-tandem mass spectrometry to compare CBG profiles between LX-2 HSCs with and without activation by TGF-β1, with the aim of discovering novel CBGs and determining their possible roles in activated HSCs. A total of 54 and 77 proteins were identified in the quiescent and activated LX-2 cells, respectively. Of the proteins identified, 14.3% were glycoproteins and 73.3% were novel potential glycoproteins. Molecules involved in protein processing in the endoplasmic reticulum (e.g., calreticulin and calcium signaling (e.g., 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase β-2 [PLCB2] were specifically identified in activated LX-2 cells. Additionally, PLCB2 expression was upregulated in the cytoplasm of the activated LX-2 cells, as well as in the hepatocytes and sinusoidal cells of liver cirrhosis tissues. In conclusion, the results of this study may aid future investigations to find new molecular mechanisms involved in HSC activation and antifibrotic therapeutic targets.

  17. Galectin Binding to Neo-Glycoproteins: LacDiNAc Conjugated BSA as Ligand for Human Galectin-3

    Directory of Open Access Journals (Sweden)

    Sophia Böcker

    2015-07-01

    Full Text Available Carbohydrate-lectin interactions are relatively weak. As they play an important role in biological recognition processes, multivalent glycan ligands are designed to enhance binding affinity and inhibitory potency. We here report on novel neo-glycoproteins based on bovine serum albumin as scaffold for multivalent presentation of ligands for galectins. We prepared two kinds of tetrasaccharides (N-acetyllactosamine and N,N-diacetyllactosamine terminated by multi-step chemo-enzymatic synthesis utilizing recombinant glycosyltransferases. Subsequent conjugation of these glycans to lysine groups of bovine serum albumin via squaric acid diethyl ester yielded a set of 22 different neo-glycoproteins with tuned ligand density. The neo-glycoproteins were analyzed by biochemical and chromatographic methods proving various modification degrees. The neo-glycoproteins were used for binding and inhibition studies with human galectin-3 showing high affinity. Binding strength and inhibition potency are closely related to modification density and show binding enhancement by multivalent ligand presentation. At galectin-3 concentrations comparable to serum levels of cancer patients, we detect the highest avidities. Selectivity of N,N-diacetyllactosamine terminated structures towards galectin-3 in comparison to galectin-1 is demonstrated. Moreover, we also see strong inhibitory potency of our scaffolds towards galectin-3 binding. These novel neo-glycoproteins may therefore serve as selective and strong galectin-3 ligands in cancer related biomedical research.

  18. Galectin Binding to Neo-Glycoproteins: LacDiNAc Conjugated BSA as Ligand for Human Galectin-3.

    Science.gov (United States)

    Böcker, Sophia; Laaf, Dominic; Elling, Lothar

    2015-07-24

    Carbohydrate-lectin interactions are relatively weak. As they play an important role in biological recognition processes, multivalent glycan ligands are designed to enhance binding affinity and inhibitory potency. We here report on novel neo-glycoproteins based on bovine serum albumin as scaffold for multivalent presentation of ligands for galectins. We prepared two kinds of tetrasaccharides (N-acetyllactosamine and N,N-diacetyllactosamine terminated) by multi-step chemo-enzymatic synthesis utilizing recombinant glycosyltransferases. Subsequent conjugation of these glycans to lysine groups of bovine serum albumin via squaric acid diethyl ester yielded a set of 22 different neo-glycoproteins with tuned ligand density. The neo-glycoproteins were analyzed by biochemical and chromatographic methods proving various modification degrees. The neo-glycoproteins were used for binding and inhibition studies with human galectin-3 showing high affinity. Binding strength and inhibition potency are closely related to modification density and show binding enhancement by multivalent ligand presentation. At galectin-3 concentrations comparable to serum levels of cancer patients, we detect the highest avidities. Selectivity of N,N-diacetyllactosamine terminated structures towards galectin-3 in comparison to galectin-1 is demonstrated. Moreover, we also see strong inhibitory potency of our scaffolds towards galectin-3 binding. These novel neo-glycoproteins may therefore serve as selective and strong galectin-3 ligands in cancer related biomedical research.

  19. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Vaibhav [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Darmani, Nissar A.; Thrush, Gerald R. [Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Shukla, Deepak, E-mail: dshukla@uic.edu [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2009-12-18

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  20. The identification of specific Rhesus-polypeptide-blood-group-ABH-active-glycoprotein complexes in the human red-cell membrane.

    Science.gov (United States)

    Moore, S; Green, C

    1987-06-15

    1. RhD,c and E immune complexes isolated from 3H- and 125I-surface-radiolabelled and unlabelled intact human red cells were analysed by SDS/polyacrylamide-gel electrophoresis. 2. Apparent Mr values of 31,900 for RhD polypeptide and 33,100 for Rhc,E polypeptide were obtained under both reducing and non-reducing conditions. Glycosylation of RhD,c and E polypeptides was not detected. 3. RhD,c and E immune complexes also contain a glycoprotein component. RhD glycoprotein (apparent Mr 45,000-100,000) is distinct from Rhc,E glycoprotein(s) (apparent Mr 35,000-65,000). Rh (Rhesus) glycoprotein carbohydrate moieties are susceptible to endo-beta-galactosidase digestion and carry blood-group-ABH determinants. This suggests the presence of polylactosaminoglycan-type structures. 4. Rh glycoproteins are not present in Rh immune complexes as a result of non-specific adsorption of membrane glycoproteins during the membrane-solubilization phase of immune-complex isolation because RhD immune complexes isolated from a 1:1 (v/v) mixture of Acde/cde and OcDE/cDE red cells do not contain blood-group-A-active glycoprotein. 5. Blood-group-A immune complexes isolated from group-A red cells of the appropriate Rh phenotypes contain the 31,900- and 33,100-apparent-Mr Rh polypeptides. 6. It was concluded from the above evidence that non-covalent Rh-glycoprotein-Rh-polypeptide complexes exist in the native red-cell membrane. 7. The 31,900- and 33,100-apparent-Mr Rh polypeptides are absent from blood-group-A immune complexes isolated from regulator type Rhnull cells (donor A.L.), but are replaced by a 33,800-apparent-Mr Rhnull-specific polypeptide (Rhnull polypeptide). It is suggested that Rhnull polypeptide is an aberrant product of the Rh gene complex.

  1. Combined genetic variants of human cytomegalovirus envelope glycoproteins as congenital infection markers.

    Science.gov (United States)

    Arcangeletti, Maria-Cristina; Vasile Simone, Rosita; Rodighiero, Isabella; De Conto, Flora; Medici, Maria-Cristina; Martorana, Davide; Chezzi, Carlo; Calderaro, Adriana

    2015-11-26

    Human cytomegalovirus (HCMV) is still considered to be the main viral cause of birth defects and long-term neurological and sensory sequelae following congenital infection. Several Authors sustain a key role of HCMV envelope glycoproteins, such as gB, gN and gO - mainly involved in cell targeting, viral penetration and spread - as putative virulence factors. The genes coding for these glycoproteins possess hypervariable regions, resulting in a number of genetic variants in circulating clinical strains. Considering that the genetic polymorphisms underlying the specific differences between gB, gN and gO genotypes can influence the ability of HCMV to preferentially target specific host cells, it is very likely that they play an important role in defining HCMV infection outcome. In the present study, we analysed HCMV gB, gN and gO gene polymorphisms in viral strains isolated from paediatric patients with congenital or post-natal infection, to investigate whether specific genetic variants may be associated with congenital infection. The restriction fragment polymorphisms of genes coding for HCMV gB (UL55), gN (UL73) and gO (UL74) were investigated by analysing viral DNA extracted from 40 urine samples of as many paediatric patients with congenital or post-natal HCMV infection. Randomly selected samples were subjected to DNA sequencing and phylogenetic analysis. Statistical analysis was performed using Fisher's exact test to assess the significance of single and combined glycoprotein genotypes frequency distribution. Statistical significance was considered at a P <0.05. While gB genomic variants were quite homogeneously represented in both paediatric groups, the gN4 genotype significantly prevailed in congenitally infected children (89.5 %) vs post-natally infected children (47.6 %), with a predominance of the gN4c variant (47.4 %). A similar trend was observed for gO3 (52.6 % vs 19 %). Concerning genotypes association, a statistically significant (P = 0.037) gN4-gO3

  2. Molecular spectroscopic and thermodynamic studies on the interaction of anti-platelet drug ticlopidine with calf thymus DNA

    Science.gov (United States)

    Afrin, Shumaila; Rahman, Yusra; Sarwar, Tarique; Husain, Mohammed Amir; Ali, Abad; Shamsuzzaman; Tabish, Mohammad

    2017-11-01

    Ticlopidine is an anti-platelet drug which belongs to the thienopyridine structural family and exerts its effect by functioning as an ADP receptor inhibitor. Ticlopidine inhibits the expression of TarO gene in S. aureus and may provide protection against MRSA. Groove binding agents are known to disrupt the transcription factor DNA complex and consequently inhibit gene expression. Understanding the mechanism of interaction of ticlopidine with DNA can prove useful in the development of a rational drug designing system. At present, there is no such study on the interaction of anti-platelet drugs with nucleic acids. A series of biophysical experiments were performed to ascertain the binding mode between ticlopidine and calf thymus DNA. UV-visible and fluorescence spectroscopic experiments confirmed the formation of a complex between ticlopidine and calf thymus DNA. Moreover, the values of binding constant were found to be in the range of 103 M- 1, which is indicative of groove binding between ticlopidine and calf thymus DNA. These results were further confirmed by studying the effect of denaturation on double stranded DNA, iodide quenching, viscometric studies, thermal melting profile as well as CD spectral analysis. The thermodynamic profile of the interaction was also determined using isothermal titration calorimetric studies. The reaction was found to be endothermic and the parameters obtained were found to be consistent with those of known groove binders. In silico molecular docking studies further corroborated well with the experimental results.

  3. A pharmacodynamic comparison of a personalized strategy for anti-platelet therapy versus ticagrelor in achieving a therapeutic window.

    Science.gov (United States)

    Malhotra, Nikita; Abunassar, Joseph; Wells, George A; McPherson, Ruth; Fu, Angel; Hibbert, Benjamin; Labinaz, Marino; Le May, Michel; Dick, Alexander; Glover, Chris; Froeschl, Michael; Marquis, Jean-François; Tran, Luan; Bernick, Jordan; Chong, Aun-Yeong; So, Derek Y F

    2015-10-15

    A therapeutic window in antiplatelet treatment has been associated with concurrent lowering of bleeding and ischemic risks. Prasugrel and ticagrelor provide potent platelet inhibition, but may increase bleeding. No study has evaluated a personalized therapy with selective use of novel P2Y12 inhibitory agents compared to empiric ticagrelor use. The objective of this study was to compare a personalized anti-platelet therapy strategy to empiric ticagrelor in achieving a therapeutic window. Using the CAPITAL registry, we performed a retrospective analysis to evaluate a personalized anti-platelet therapy (PAT) strategy, using a pharmacogenetic approach, and compared it to empiric ticagrelor. In the PAT group, carriers of CYP2C19*2 received prasugrel and non-carriers received clopidogrel. The primary outcome was the proportion of patients within a validated therapeutic window, after a steady state treatment (≥48h) of antiplatelet therapy, as measured by a P2Y12 reaction unit (PRU) >85 and strategy of ticagrelor. Future prospective evaluation of novel PAT strategies will be required to prove clinical utility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Serum glycoproteins in the liver diseases. VII. Further studies on the properties of desialylated glycoprotein binding activity in particulate fraction of human liver homogenate.

    Science.gov (United States)

    Arima, T

    1979-08-01

    Binding of desialylated alpha 1-acid glycoprotein by human liver particulate fraction exhibited a dependence on the presence of calcium chloride whereas Cu+, Mn+, Zn+ Fe+ and Co+ inhibited the binding. The other cations such as K+, Na+, Ba+, Mg+ or Pb+ were determined to be non-effective on the binding activity. The pH of the assay for binding was not critical in the range of 6.5 to 9.5. The binding process required the presence of terminal sialic acid on the particulate protein. Fifty nine per cent of binding activity in the original liver paticulate fraction were recovered in acetone powder. Extraction of the acetone powder with a buffer containing EDTA resulted in an increased total binding activity. After extraction with 1--10% Triton X-100, 60% of the activity were still detected in insoluble fraction.

  5. Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination.

    Science.gov (United States)

    Peschl, Patrick; Schanda, Kathrin; Zeka, Bleranda; Given, Katherine; Böhm, Denise; Ruprecht, Klemens; Saiz, Albert; Lutterotti, Andreas; Rostásy, Kevin; Höftberger, Romana; Berger, Thomas; Macklin, Wendy; Lassmann, Hans; Bradl, Monika; Bennett, Jeffrey L; Reindl, Markus

    2017-10-25

    Antibodies to the myelin oligodendrocyte glycoprotein (MOG) are associated with a subset of inflammatory demyelinating diseases of the central nervous system such as acute disseminated encephalomyelitis and neuromyelitis optica spectrum disorders. However, whether human MOG antibodies are pathogenic or an epiphenomenon is still not completely clear. Although MOG is highly conserved within mammals, previous findings showed that not all human MOG antibodies bind to rodent MOG. We therefore hypothesized that human MOG antibody-mediated pathology in animal models may only be evident using species-specific MOG antibodies. We screened 80 human MOG antibody-positive samples for their reactivity to mouse and rat MOG using either a live cell-based assay or immunohistochemistry on murine, rat, and human brain tissue. Selected samples reactive to either human MOG or rodent MOG were subsequently tested for their ability to induce complement-mediated damage in murine organotypic brain slices or enhance demyelination in an experimental autoimmune encephalitis (EAE) model in Lewis rats. The MOG monoclonal antibody 8-18-C5 was used as a positive control. Overall, we found that only a subset of human MOG antibodies are reactive to mouse (48/80, 60%) or rat (14/80, 18%) MOG. Purified serum antibodies from 10 human MOG antibody-positive patients (8/10 reactive to mouse MOG, 6/10 reactive to rat MOG), 3 human MOG-negative patients, and 3 healthy controls were tested on murine organotypic brain slices. Purified IgG from one patient with high titers of anti-human, mouse, and rat MOG antibodies and robust binding to myelin tissue produced significant, complement-mediated myelin loss in organotypic brain slices, but not in the EAE model. Monoclonal 8-18-C5 MOG antibody caused complement-mediated demyelination in both the organotypic brain slice model and in EAE. This study shows that a subset of human MOG antibodies can induce complement-dependent pathogenic effects in a murine ex vivo

  6. Human CRISP-3 binds serum alpha(1)B-glycoprotein across species.

    Science.gov (United States)

    Udby, Lene; Johnsen, Anders H; Borregaard, Niels

    2010-04-01

    CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular such that involve cell cultures, binding proteins present in sera might interfere in the experiments. We examined sera from five different animal species for CRISP-3 binding proteins using gel filtration and ligand blotting. We developed a rapid method for isolation of proteins that bind to human CRISP-3 and identified the isolated proteins by mass spectrometry and N-terminal sequencing. We identified A1BG as a CRISP-3 binding protein in sera from cow, horse and rabbit. CRISP-3 bound kininogen 1 in mouse serum, whereas rat serum showed no CRISP-3 binding activity. In equine serum, we furthermore detected a possible CRISP, already bound to A1BG. It seems to be a common mechanism that A1BGs bind CRISPs, also across species. Apart from the possible physiological implications hereof, complex binding of CRISPs by A1BG (and other proteins) may interfere with the detection and function of CRISPs, when these are studied in the presence of animal sera. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Sasnauskas Kęstutis

    2011-05-01

    Full Text Available Abstract Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN and measles hemagglutinin (MeH in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A and is closely associated with small heat shock proteins (sHsps that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of

  8. Biliverdin is the endogenous ligand of human serum alpha1-acid glycoprotein.

    Science.gov (United States)

    Zsila, Ferenc; Mády, György

    2008-08-01

    alpha(1)-Acid glycoprotein (AAG), an acute phase component of the human serum, is a prominent member of the lipocalin family of proteins showing inflammatory/immunomodulatory activities and promiscuous drug binding properties. Both three-dimensional structure of AAG and its precise biological function are still unknown and only a few endogenous AAG ligands have been described to date. CD spectroscopic studies performed with commercial AAG and the separated genetic variants revealed high-affinity binding of biliverdin (BV) and biliverdin dimethyl ester to the 'F1/S' fraction of the protein. The preferential accommodation of the right-handed, P-helicity conformers of the pigments by the protein matrix resulted in strong induced CD activity, which was utilized for estimation of the binding parameters and to locate the binding site. It was concluded that both pigments are bound in the central beta-barrel cavity of AAG, held principally by hydrophobic interactions. Possible biological implications of the BV binding ability of AAG with special emphasis on the heme oxygenase-1 pathway are discussed.

  9. Structure of the Ebola virus glycoprotein bound to a human survivor antibody

    Science.gov (United States)

    Lee, Jeffrey E.; Fusco, Marnie L.; Hessell, Ann J.; Oswald, Wendelien B.; Burton, Dennis R.; Saphire, Erica Ollmann

    2008-01-01

    Ebola virus (EBOV) entry requires the surface glycoprotein, GP, to initiate attachment and fusion of viral and host membranes. Here, we report the crystal structure of EBOV GP in its trimeric, pre-fusion conformation (GP1+GP2) bound to a neutralizing antibody, KZ52, derived from a human survivor of the 1995 Kikwit outbreak. Three GP1 viral attachment subunits assemble to form a chalice, cradled by the GP2 fusion subunits, while a novel glycan cap and projected mucin-like domain restrict access to the conserved receptor-binding site sequestered in the chalice bowl. The glycocalyx surrounding GP is likely central to immune evasion and may explain why survivors have insignificant neutralizing antibody titres. KZ52 recognizes a protein epitope at the chalice base where it clamps several regions of the pre-fusion GP2 to the N terminus of GP1. This structure now provides a template for unraveling the mechanism of EBOV GP-mediated fusion and for future immunotherapeutic development. PMID:18615077

  10. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    Science.gov (United States)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  11. Genetic polymorphism of human alpha 2 HS-glycoprotein (AHSG) in the resident population of the Basque Country (northern Spain).

    Science.gov (United States)

    García, O; Alonso, A

    1992-01-01

    The genetic polymorphism of human alpha 2 HS-glycoprotein (AHSG) was studied in a sample of 466 healthy unrelated individuals resident in the Basque Country (Northern Spain) by isoelectric focusing on micro-ultrathin polyacrylamide gels followed by immunoblotting. The allele frequencies obtained were AHSG*1 = 0.7253, AHSG*2 = 0.2683 and AHSG*3 = 0.0064. These allele frequencies were compared with those reported in other European populations.

  12. Stereoselective transport of hydrophilic quaternary drugs by human MDR1 and rat Mdr1b P-glycoproteins

    OpenAIRE

    Guido J E J Hooiveld; Heegsma, Janette; van Montfoort, Jessica E; Jansen, Peter L M; Meijer, Dirk K.F; Müller, Michael

    2002-01-01

    The present study was performed to evaluate and compare the ability of human MDR1-, and rat Mdr1b- and Mdr2-P-glycoproteins to transport hydrophilic monoquaternary drugs. Transport studies were performed with plasma membrane vesicles isolated from MDR1-, Mdr1b-, or Mdr2-overexpressing insect cells.As model substrates we used the N-methylated derivatives of the diastereomers quinidine and quinine, the monoquaternary compounds N-methylquinidine and N-methylquinine. Vincristine, an established M...

  13. Diffuse Alveolar Hemorrhage Associated With Low Molecular Weight Heparin and Dual Anti-platelet Therapy After Percutaneous Coronary Intervention.

    Science.gov (United States)

    Yildirim, Fatma; Kara, İskender; Okuyan, Hızır; Abaci, Adnan; Turkoglu, Melda; Aygencel, Gülbin

    2016-01-19

    A 54-year-old man had undergone to percutaneous coronary intervention (PCI) and two stents were placed to left anterior coronary artery and circumflex artery. Low molecular weight heparin (LMWH) together with ticagrelor 90 mg twice a day and acetylsalicylic acid (Aspirin) were started after PCI due to high risk of stent trombosis. On the fourth day of patient's follow-up in the intensive care unit (ICU), bloody secretion was started from endotracheal tube. Hemoglobin dropping, bilateral infiltration on the chest X-ray and bleeding from lung were diagnosed as diffuse alveolar hemorrhage (DAH). Apart from LMWH and antiplatelet therapies with aspirin and ticagrelor, there were no other identified risk factors for DAH. As far as we know, our report is the first case of DAH caused by LMWH and dual anti-platelet therapy including ticagrelor. This article is protected by copyright. All rights reserved. Copyright © 2016 John Wiley & Sons Ltd.

  14. Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions.

    Science.gov (United States)

    Li, Suping; Shi, Quanwei; Liu, Guanglei; Zhang, Weilin; Wang, Zhicheng; Wang, Yuedan; Dai, Kesheng

    2010-05-01

    Serious thrombotic and hemorrhagic problems or even fatalities evoked by either microgravity or hypergravity occur commonly in the world. We recently reported that platelet functions are inhibited in microgravity environments and activated under high-G conditions, which reveals the pathogenesis for gravity change-related hemorrhagic and thrombotic diseases. However, the mechanisms of platelet functional variations under different gravity conditions remain unclear. In this study we show that the amount of filamin A coimmunoprecipitated with GPIbalpha was enhanced in platelets exposed to modeled microgravity and, in contrast, was reduced in 8 G-exposed platelets. Hypergravity induced actin filament formation and redistribution, whereas actin filaments were reduced in platelets treated with modeled microgravity. Furthermore, intracellular Ca2+ levels were elevated by hypergravity. Pretreatment of platelets with the cell-permeable Ca2+ chelator BAPTA-AM had no effect on cytoskeleton reorganization induced by hypergravity but significantly reduced platelet aggregation induced by ristocetin/hypergravity. Two anti-platelet agents, aspirin and tirofiban, effectively reversed the shortened tail bleeding time and reduced the death rate of mice exposed to hypergravity. Furthermore, the increased P-selectin surface expression was obviously reduced in platelets from mice treated with aspirin/hypergravity compared with those from mice treated with hypergravity alone. These data suggest that the actin cytoskeleton reorganization and intracellular Ca2+ level play key roles in the regulation of platelet functions in different gravitational environments. The results with anti-platelet agents not only further confirm the activation of platelets in vivo but also suggest a therapeutic potential for hypergravity-induced thrombotic diseases.

  15. Influence of low-dose proton pump inhibitors administered concomitantly or separately on the anti-platelet function of clopidogrel.

    Science.gov (United States)

    Furuta, Takahisa; Sugimoto, Mitsushige; Kodaira, Chise; Nishino, Masafumi; Yamade, Mihoko; Uotani, Takahiro; Sahara, Shu; Ichikawa, Hitomi; Kagami, Takuma; Iwaizumi, Moriya; Hamaya, Yasushi; Osawa, Satoshi; Sugimoto, Ken; Umemura, Kazuo

    2017-04-01

    Proton pump inhibitors (PPIs) at low doses can effectively prevent gastrointestinal bleeding due to aspirin and are widely used in Japan for gastroprotection in patients taking anti-platelet agents. We examined the influence of different PPIs at low doses administered concomitantly or separately on anti-platelet functions of clopidogrel. In 41 healthy Japanese volunteers with different CYP2C19 genotypes who took clopidogrel 75 mg in the morning alone, or with omeprazole 10 mg, esomeprazole 10 mg, lansoprazole 15 mg, or rabeprazole 10 mg, either concomitantly in the morning or separately in the evening, we measured the inhibition of platelet aggregation (IPA, %) using VerifyNow P2Y12 assay at 4 h after the last clopidogrel dose on Day 7 of each regimen. IPA by clopidogrel with rabeprazole administered at lunchtime, approximately 4 h after clopidogrel, was also measured. Mean IPAs in those concomitantly receiving omeprazole, esomeprazole, lansoprazole or rabeprazole (47.2 ± 21.1%, 43.2 ± 20.2%, 46.4 ± 18.8%, and 47.3 ± 19.2%, respectively) were significantly decreased compared with those receiving clopidogrel alone (56.0%) (all ps clopidogrel with rabeprazole administered at lunchtime was 51.6%, which was markedly similar to that of clopidogrel alone (p = 0.114). All tested PPIs reduce the efficacy of clopidogrel when administered concomitantly. Our preliminary data suggest that administration of rabeprazole 4 h following clopidogrel may minimize potential drug-drug interactions.

  16. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago

    2004-10-01

    Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential

  17. Dystrophin-glycoprotein complex and vinculin-talin-integrin system in human adult cardiac muscle.

    Science.gov (United States)

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Gaeta, Roberto; Di Mauro, Debora; Arco, Alba; Consolo, Angela; Santoro, Giuseppe; Trimarchi, Fabio; Favaloro, Angelo

    2009-02-01

    Costameres were identified, for the first time, in skeletal and cardiac muscle, as regions associated with the sarcolemma, consisting of densely clustered patches of vinculin; they have many characteristics common to the cell-extracellular matrix-type of adherens junctions. Costameres are considered 'proteic machinery' and they appear to comprise two protein complexes, the dystrophin-glycoprotein complex (DGC) and the vinculin-talin-integrin system. In comparison to skeletal muscle, few studies have focused on cardiac muscle regarding these two complexes, and study is generally relative to dystrophin or to cardiac diseases, such as cardiomyopathies. However, insufficient data are available on these proteins in healthy human cardiomyocytes. For this reason, we performed an immunohistochemical study using human cardiac muscle fibers, in order to define the real distribution and the spatial relationship between the proteins in these two complexes. Our data showed a real costameric distribution of DGC and of the vinculin-talin-integrin system; all tested proteins were present in T-tubule and in intercalated disks. Moreover, our data demonstrated that all tested proteins of DGC colocalized with each other, as all tested components of the vinculin-talin-integrin system, and that all tested proteins of DGC colocalized with all tested proteins of the vinculin-talin-integrin system. Finally, all tested proteins of the two complexes were localized in the region of the sarcolemma over the I band, in 100% of our observations. The present study, for the first time, analyzed the majority of proteins of DGC and of the vinculin-talin-integrin system in cardiac muscle fibers, and it confirmed that DGC and the vinculin-talin-integrin system have a role in the transduction of mechanical force to the extracellular matrix. Finally it attributed a key role in the regulation of action potential duration to cardiac myocytes.

  18. Label-Free Detection of Human Glycoprotein (CgA) Using an Extended-Gated Organic Transistor-Based Immunosensor.

    Science.gov (United States)

    Minamiki, Tsukuru; Minami, Tsuyoshi; Sasaki, Yui; Wakida, Shin-Ichi; Kurita, Ryoji; Niwa, Osamu; Tokito, Shizuo

    2016-11-30

    Herein, we report on the fabrication of an extended-gated organic field-effect transistor (OFET)-based immunosensor and its application in the detection of human chromogranin A (hCgA). The fabricated OFET device possesses an extended-gate electrode immobilized with an anti-CgA antibody. The titration results of hCgA showed that the electrical changes in the OFET characteristics corresponded to the glycoprotein recognition ability of the monoclonal antibody (anti-CgA). The observed sensitivity (detection limit: 0.11 µg/mL) and selectivity indicate that the OFET-based immunosensor can be potentially applied to the rapid detection of the glycoprotein concentration without any labeling.

  19. Label-Free Detection of Human Glycoprotein (CgA Using an Extended-Gated Organic Transistor-Based Immunosensor

    Directory of Open Access Journals (Sweden)

    Tsukuru Minamiki

    2016-11-01

    Full Text Available Herein, we report on the fabrication of an extended-gated organic field-effect transistor (OFET-based immunosensor and its application in the detection of human chromogranin A (hCgA. The fabricated OFET device possesses an extended-gate electrode immobilized with an anti-CgA antibody. The titration results of hCgA showed that the electrical changes in the OFET characteristics corresponded to the glycoprotein recognition ability of the monoclonal antibody (anti-CgA. The observed sensitivity (detection limit: 0.11 µg/mL and selectivity indicate that the OFET-based immunosensor can be potentially applied to the rapid detection of the glycoprotein concentration without any labeling.

  20. Characterization of the microheterogeneity in glycoproteins by 500-MHz 1H-NMR spectroscopy of glycopeptide preparations : Application to a monofucosylated tetra-antennary glycopeptide fraction from human plasma α1-acid glycoprotein

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Halbeek, H. van; Dorland, L.; Montreuil, J.; Fournet, B.; Schmid, K.

    1981-01-01

    Five hundred-MHz 1H-NMR spectroscopy was employed to study a monofucosylated tetra-antennary glycopeptide fraction which was derived from human plasma α1-acid glycoprotein. This fraction was earlier judged to be homogeneous by 360-MHz 1H-NMR spectroscopic analysis (Fournet, B., Montreuil, J.,

  1. Genetic diversity and molecular evolution of the major human metapneumovirus surface glycoproteins over a decade.

    Science.gov (United States)

    Papenburg, Jesse; Carbonneau, Julie; Isabel, Sandra; Bergeron, Michel G; Williams, John V; De Serres, Gaston; Hamelin, Marie-Ève; Boivin, Guy

    2013-11-01

    Human metapneumovirus (HMPV) is a recently discovered paramyxovirus that is a major cause of respiratory infections worldwide. We aim to describe the molecular evolution of the HMPV F (fusion) and G (attachment) surface glycoproteins because they are targets for vaccines, monoclonal antibodies and antivirals currently in development. Nasopharyngeal aspirates were collected in children <3 years old with acute respiratory infection in Quebec City during 2001-2010. HMPV-positive samples (n = 163) underwent HMPV-F and -G gene sequencing. Furthermore, HMPV-F (n = 124) and -G (n = 217) sequences were obtained from GenBank and other studies. Evolutionary analyses (phylogenetic reconstruction, sequence identity, detection of recombination and adaptive evolution) were computed. Sequences clustered into 5 genetic lineages (A1, A2a, A2b, B1 and B2). Multiple lineages circulated each year in Quebec City. With the exception of B1, each of the 5 subgroups was the predominant lineage during ≥1 season. The A1 lineage was not detected since 2002-2003 in our local cohort. There was no evidence of inter- or intragenic recombination. HMPV-F was highly conserved, whereas HMPV-G exhibited greater diversity. HMPV-F demonstrated strong evidence of purifying selection, both overall and in an abundance of negatively selected amino acid sites. In contrast, sites under diversifying selection were detected in all HMPV-G lineages (range, 4-15), all of which were located in the ectodomain. Predominant circulating HMPV lineages vary by year. HMPV-F is highly constrained and undergoes significant purifying selection. Given its high genetic variability, we found a modest number of positively selected sites in HMPV-G. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. P-Glycoprotein Induction Ameliorates Colistin Induced Nephrotoxicity in Cultured Human Proximal Tubular Cells

    Science.gov (United States)

    Lee, Sun-hyo; Kim, Jin-sun; Ravichandran, Kameswaran; Gil, Hyo-Wook; Song, Ho-yeon; Hong, Sae-yong

    2015-01-01

    The pathogenesis of colistin induced nephrotoxicity is poorly understood. Currently there are no effective therapeutic or prophylactic agents available. This study was aimed to determine the mechanism of colistin induced nephrotoxicity and to determine whether P-glycoprotein (P-gp) induction could prevent colistin induced nephrotoxicity. Colistin induced cell toxicity in cultured human proximal tubular cells in both dose and time dependent manner. Colistin provoked ROS in a dose dependent manner as measured by DCF-DA. To investigate apoptosis, caspase 3/7 activity was determined. Caspase 3/7 activity was increased dose dependently (25, 50, 100 μg/ml) at 6 h. Autophagosome formation was assessed by measuring LC3- II/LC3-I ratio. The ratio of LC3-II to LC3- I was increased at 2 h (25 μg/ml). Suppression of autophagosome formation increased colistin induced nephrotoxicity. The expression of P-gp and the cell toxicity was determined in colistin with or without dexamethasone (P-gp inducer) and verapamil (selective P-gp inhibitor). Colistin itself suppressed the expression of P-gp. P-gp expression and activity decreased colistin induced nephrotoxicity with dexamethasone treatment. In addition induced P-gp transporter was shown to improve the efflux effect on colistin treated HK2 cell line, which was demonstrated by calcein-AM fluorescence accumulation assay. The increased activity could be blocked by N-acetylcysteine. In conclusion, colistin induces nephrotoxicity by suppressing P-gp. Induction of P-gp could ameliorate colistin induced nephrotoxicity by decreasing apoptosis. PMID:26287374

  3. P-Glycoprotein Induction Ameliorates Colistin Induced Nephrotoxicity in Cultured Human Proximal Tubular Cells.

    Directory of Open Access Journals (Sweden)

    Sun-hyo Lee

    Full Text Available The pathogenesis of colistin induced nephrotoxicity is poorly understood. Currently there are no effective therapeutic or prophylactic agents available. This study was aimed to determine the mechanism of colistin induced nephrotoxicity and to determine whether P-glycoprotein (P-gp induction could prevent colistin induced nephrotoxicity. Colistin induced cell toxicity in cultured human proximal tubular cells in both dose and time dependent manner. Colistin provoked ROS in a dose dependent manner as measured by DCF-DA. To investigate apoptosis, caspase 3/7 activity was determined. Caspase 3/7 activity was increased dose dependently (25, 50, 100 μg/ml at 6 h. Autophagosome formation was assessed by measuring LC3- II/LC3-I ratio. The ratio of LC3-II to LC3- I was increased at 2 h (25 μg/ml. Suppression of autophagosome formation increased colistin induced nephrotoxicity. The expression of P-gp and the cell toxicity was determined in colistin with or without dexamethasone (P-gp inducer and verapamil (selective P-gp inhibitor. Colistin itself suppressed the expression of P-gp. P-gp expression and activity decreased colistin induced nephrotoxicity with dexamethasone treatment. In addition induced P-gp transporter was shown to improve the efflux effect on colistin treated HK2 cell line, which was demonstrated by calcein-AM fluorescence accumulation assay. The increased activity could be blocked by N-acetylcysteine. In conclusion, colistin induces nephrotoxicity by suppressing P-gp. Induction of P-gp could ameliorate colistin induced nephrotoxicity by decreasing apoptosis.

  4. Cytotoxicity and comparative binding mechanism of piperine with human serum albumin and α-1-acid glycoprotein.

    Science.gov (United States)

    Yeggoni, Daniel Pushparaju; Rachamallu, Aparna; Kallubai, Monika; Subramanyam, Rajagopal

    2015-01-01

    Human serum albumin (HSA) and α-1-acid glycoprotein (AGP) (acute phase protein) are the plasma proteins in blood system which transports many drugs. To understand the pharmacological importance of piperine molecule, here, we studied the anti-inflammatory activity of piperine on mouse macrophages (RAW 264.7) cell lines, which reveals that piperine caused an increase in inhibition growth of inflammated macrophages. Further, the fluorescence maximum quenching of proteins were observed upon binding of piperine to HSA and AGP through a static quenching mechanism. The binding constants obtained from fluorescence emission were found to be K(piperine) = 5.7 ± .2 × 10(5) M(-1) and K(piperine) = 9.3± .25 × 10(4) M(-1) which correspond to the free energy of -7.8 and -6.71 kcal M(-1)at 25 °C for HSA and AGP, respectively. Further, circular dichrosim studies revealed that there is a marginal change in the secondary structural content of HSA due to partial destabilization of HSA-piperine complexes. Consequently, inference drawn from the site-specific markers (phenylbutazone, site I marker) studies to identify the binding site of HSA noticed that piperine binds at site I (IIA), which was further authenticated by molecular docking and molecular dynamic (MD) studies. The binding constants and free energy corresponding to experimental and computational analysis suggest that there are hydrophobic and hydrophilic interactions when piperine binds to HSA. Additionally, the MD studies have showed that HSA-piperine complex reaches equilibration state at around 3 ns, which prove that the HSA-piperine complex is stable in nature.

  5. Cell Surface and Secreted Protein Profiles of Human Thyroid Cancer Cell Lines Reveal Distinct Glycoprotein Patterns

    Science.gov (United States)

    Arcinas, Arthur; Yen, Ten-Yang; Kebebew, Electron; Macher, Bruce A.

    2009-01-01

    Cell surface proteins have been shown to be effective therapeutic targets. In addition, shed forms of these proteins and secreted proteins can serve as biomarkers for diseases, including cancer. Thus, identification of cell surface and secreted proteins has been a prime area of interest in the proteomics field. Most cell surface and secreted proteins are known to be glycosylated and therefore, a proteomics strategy targeting these proteins was applied to obtain proteomic profiles from various thyroid cancer cell lines that represent the range of thyroid cancers of follicular cell origin. In this study, we oxidized the carbohydrates of secreted proteins and those on the cell surface with periodate and isolated them via covalent coupling to hydrazide resin. The glycoproteins obtained were identified from tryptic peptides and N-linked glycopeptides released from the hydrazide resin using 2-dimensional liquid chromatography-tandem mass spectrometry in combination with the gas phase fractionation. Thyroid cancer cell lines derived from papillary thyroid cancer (TPC-1), follicular thyroid cancer (FTC-133), Hürthle cell carcinoma (XTC-1), and anaplastic thyroid cancer (ARO and DRO-1) were evaluated. An average of 150 glycoproteins were identified per cell line, of which more than 57 percent are known cell surface or secreted glycoproteins. The usefulness of the approach for identifying thyroid cancer associated biomarkers was validated by the identification of glycoproteins (e.g. CD44, galectin 3 and metalloproteinase inhibitor 1) that have been found to be useful markers for thyroid cancer. In addition to glycoproteins that are commonly expressed by all of the cell lines, we identified others that are only expressed in the more well-differentiated thyroid cancer cell lines (follicular, Hürthle cell and papillary), or by cell lines derived from undifferentiated tumors that are uniformly fatal forms of thyroid cancer (i.e. anaplastic). Based on the results obtained, a

  6. A novel expression system of domain I of human beta2 glycoprotein I in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Pearl Laurence H

    2006-02-01

    Full Text Available Abstract Background The antiphospholipid syndrome (APS, characterised by recurrent miscarriage and thrombosis, is a significant cause of morbidity and mortality. Domain I (DI of human beta 2 glycoprotein I (β2GPI is thought to contain crucial antibody binding epitopes for antiphospholipid antibodies (aPL, which are critical to the pathogenesis of APS. Expressing this protein in bacteria could facilitate studies investigating how this molecule interacts with aPL. Methods Using a computer programme called Juniper, sequentially overlapping primers were designed to be used in a recursive polymerase chain reaction (PCR to produce a synthetic DI gene. Specifically Juniper incorporates 'major' codons preferred by bacteria altering 41 codons out of 61. This was cloned into the expression plasmid pET(26b and expressed in BL21(DE3 Escherichia coli (E. coli. By virtue of a pelB leader sequence, periplasmic localisation of DI aided disulphide bond formation and toxicity was addressed by tightly regulating expression through the high stringency T7lac promoter. Results Purified, soluble his-tagged DI in yields of 750 μg/L bacterial culture was obtained and confirmed on Western blot. Expression using the native human cDNA sequence of DI in the same construct under identical conditions yielded significantly less DI compared to the recombinant optimised sequence. This constitutes the first description of prokaryotic expression of soluble DI of β2GPI. Binding to murine monoclonal antibodies that recognise conformationally restricted epitopes on the surface of DI and pathogenic human monoclonal IgG aPL was confirmed by direct and indirect immunoassay. Recombinant DI also bound a series of 21 polyclonal IgG samples derived from patients with APS. Conclusion By producing a synthetic gene globally optimised for expression in E. coli, tightly regulating expression and utilising periplasmic product translocation, efficient, soluble E. coli expression of the

  7. A novel site-II directed glycoprotein estimation ELISA to aid rabies vaccine manufacture for veterinary and human use.

    Science.gov (United States)

    Abhinay, Gontu; Dessain, Scott; Srikanth, Adabala; Senthilkumar, R L; Vidyasagar, Pitta; Praveen, Alagangula; Chandrasekhar Reddy, R V; Swapna Reddy, Erri; Rajendra, Lingala

    2014-01-03

    Although the World Health Organization recommends the use of in vitro techniques to qualify rabies vaccine lot release, very limited proposals have been made to arrive at a harmonized approach for wide scale usage. The present study proposed and evaluated the use of a novel avidin-biotin ELISA as an alternative to these in vivo tests in rabies vaccine manufacture. This assay utilized a neutralizing pan reactive monoclonal antibody (mAb) reactive with the conserved site-II of the natively folded rabies glycoprotein. Linear regression analysis of the in vitro glycoprotein estimates with the in vivo potency values, showed a good correlation (r(2)=0.8) with veterinary vaccines, but a poor correlation (r(2)=0.2) with human vaccines. However, we could qualitatively arrive at cut-off glycoprotein estimates from the ELISA, above which all the vaccines were declared to be protective by mouse challenge studies (>2.5IU/dose). Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Recombinant Human Myelin-Associated Glycoprotein Promoter Drives Selective AAV-Mediated Transgene Expression in Oligodendrocytes.

    Science.gov (United States)

    von Jonquieres, Georg; Fröhlich, Dominik; Klugmann, Claudia B; Wen, Xin; Harasta, Anne E; Ramkumar, Roshini; Spencer, Ziggy H T; Housley, Gary D; Klugmann, Matthias

    2016-01-01

    Leukodystrophies are hereditary central white matter disorders caused by oligodendrocyte dysfunction. Recent clinical trials for some of these devastating neurological conditions have employed an ex vivo gene therapy approach that showed improved endpoints because cross-correction of affected myelin-forming cells occurred following secretion of therapeutic proteins by transduced autologous grafts. However, direct gene transfer to oligodendrocytes is required for the majority of leukodystrophies with underlying mutations in genes encoding non-secreted oligodendroglial proteins. Recombinant adeno-associated viral (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in rodents have shown that the use of cellular promoters is sufficient to target AAV-mediated transgene expression to glia. The potential of this strategy has not been exploited. The major caveat of the AAV system is its limited packaging capacity of ~5 kb, providing the rationale for identifying small yet selective recombinant promoters. Here, we characterize the human myelin associated glycoprotein (MAG) promoter for reliable targeting of AAV-mediated transgene expression to oligodendrocytes in vivo. A homology screen revealed highly conserved genomic regions among mammalian species upstream of the transcription start site. Recombinant AAV expression cassettes carrying the cDNA encoding enhanced green fluorescent protein (GFP) driven by truncated versions of the recombinant MAG promoter (2.2, 1.5 and 0.3 kb in size) were packaged as cy5 vectors and delivered into the dorsal striatum of mice. At 3 weeks post-injection, oligodendrocytes, neurons and astrocytes expressing the reporter were quantified by immunohistochemical staining. Our results revealed that both 2.2 and 1.5 kb MAG promoters targeted more than 95% of transgene expression to oligodendrocytes. Even the short 0.3 kb fragment conveyed high oligodendroglial specific transgene

  9. Modification-specific proteomic analysis of glycoproteins in human body fluids by mass spectrometry

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Hägglund, Per; Jensen, Ole Nørregaard

    2007-01-01

    -glycosylated proteins in body fluids and other complex samples. An approach for identification of N-glycosylated proteins and mapping of their glycosylation sites is described. In this approach, glycoproteins are initially selectively purified by lectin chromatography. Following tryptic digestion, glycopeptides...

  10. Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein

    NARCIS (Netherlands)

    Konings, WN; Poelarends, GJ

    2002-01-01

    Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural

  11. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin

    DEFF Research Database (Denmark)

    Larsen, U L; Hyldahl Olesen, L; Nyvold, Charlotte Guldborg

    2007-01-01

    P-glycoprotein (Pgp) plays a part in the intestinal uptake of xenobiotics and has been associated with susceptibility to ulcerative colitis. The aim of this study was to examine Pgp activity in relation to age, gender, medical treatment (rifampicin or ketoconazole) and the multidrug resistance (MDR...

  12. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available The henipaviruses, represented by Hendra (HeV and Nipah (NiV viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4 was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  13. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Science.gov (United States)

    Xu, Kai; Rockx, Barry; Xie, Yihu; DeBuysscher, Blair L; Fusco, Deborah L; Zhu, Zhongyu; Chan, Yee-Peng; Xu, Yan; Luu, Truong; Cer, Regina Z; Feldmann, Heinz; Mokashi, Vishwesh; Dimitrov, Dimiter S; Bishop-Lilly, Kimberly A; Broder, Christopher C; Nikolov, Dimitar B

    2013-01-01

    The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  14. Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin-3.

    Science.gov (United States)

    Wang, Helen; Huang, Wei; Orwenyo, Jared; Banerjee, Aditi; Vasta, Gerardo R; Wang, Lai-Xi

    2013-04-01

    We report a facile synthesis of glycoprotein-based glyco-ligands and their binding with influenza hemagglutinin and human galectin-3. Human serum albumin (HSA) was used as the scaffold and an Asn-linked complex type N-glycan prepared from chicken eggs was used as the glycan building block. It was found that Cu(I)-catalyzed alkyne-azide cycloaddition reaction (click chemistry) between the alkyne-labeled glycan and the azide-tagged HSA led to an efficient formation of the glycoconjugates. The density of glycan ligands on the protein scaffold was readily varied by changing the molar ratios of the two reactants. Binding studies indicated that the sialylated and desialylated multivalent glycoligands could selectively bind to influenza hemagglutinin and human galectin-3, respectively, with high affinity. In the two glycan-lectin interactions, a clear multivalent effect was observed. Moreover, a cell-based assay showed that the synthetic multivalent glyco-ligands could efficiently inhibit the attachment of galectin-3 to human prostate cancer and lung cancer cell lines. This study suggests that the synthetic glycoprotein-based glyco-ligands can be useful for different applications, including blocking the function of galectin-3 in cancer metastasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Differences in Growth Properties among Two Human Cytomegalovirus Glycoprotein O Genotypes

    Directory of Open Access Journals (Sweden)

    Julia Kalser

    2017-08-01

    Full Text Available Glycoprotein O (gO of the human cytomegalovirus (HCMV is the critical subunit of the envelope trimer gH/gL/gO as it interacts with platelet-derived growth factor alpha receptor upon fibroblast entry, and triggers gB-mediated fusion for fibroblast and epithelial cell infection. Eight genotypes (GT of the highly polymorphic gO gene are described, yet it is unclear whether the distinct GTs differ in their function. Thus, we aimed to elucidate potential functional differences between two highly diverse gO GTs in an otherwise genomically identical HCMV strain. Therefore, resident gO GT1c sequence of strain TB40-BAC4-luc was entirely replaced by gO GT4 of strain Towne and both, GT1c and GT4 viruses, were investigated for their growth properties in fibroblasts and epithelial cells. In addition, two conserved gO cysteines involved in gH/gL/gO stabilization were mutated to serine either in GT1c (C218S and C343S or GT4 (C216S and C336S and their effects on cell-free infectivity were assessed. GT4 viruses displayed a significantly enhanced epithelial cell tropism and this resulted in higher virus release upon replication in epithelial cells when compared to GT1c viruses. Further, when the two cysteines were individually mutated in gO GT1c no impairment in cell-free infectivity was observed. This, however, was in sharp contrast to gO GT4, in which both of the corresponding cysteine mutations led to a substantial reduction in cell-free infectivity which was even more pronounced upon mutation of GT4-C336 than of GT4-C216. In conclusion, these findings provide evidence that the two highly diverse gO genotypes, GT1c and GT4, differ in their functional properties as revealed by their different infection capacities for epithelial cells and by their different responsiveness to mutation of strictly conserved cysteine residues. Thus, it is likely that the gO heterogeneity influences cell-free infectivity of HCMV also in vivo which may have important implications for

  16. Mutations in the carboxyl-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding.

    OpenAIRE

    Zheng, Z.; Maidji, E; Tugizov, S; Pereira, L

    1996-01-01

    Human cytomegalovirus glycoprotein B (gB) plays a role in the fusion of the virion envelope with the host cell membrane and in syncytium formation in infected cells. Hydrophobic sequences at the carboxyl terminus, amino acids (aa) 714 to 771, anchor gB in the lipid bilayer, but the unusual length of this domain suggests that it may serve another role in gB structure. To explore the function(s) of this region, we deleted aa 717 to 747 (gB deltaI mutation), aa 751 to 771 (gB deltaII mutation), ...

  17. Antibodies to Glycoproteins Shared by Human Peripheral Nerve and Campylobacter jejuni in Patients with Multifocal Motor Neuropathy

    Directory of Open Access Journals (Sweden)

    Ljubica Suturkova

    2013-01-01

    Full Text Available We have tested serum samples from 24 patients with multifocal motor neuropathy (MMN for reactivity to ganglioside GM1 and to Gal(β1–3GalNAc-bearing glycoproteins isolated from human peripheral nerve and from Campylobacter jejuni (Cj serotype O:19. IgM anti-GM1 antibodies were detected by ELISA in 11 patients (45.8% with MMN and in only one subject (4% from the control group. Western blots showed positive reactivity of sera from 6 patients (25% with MMN to several Gal(β1–3GalNAc-bearing glycoproteins from human peripheral nerve and from Cj O:19 isolates. Sera from three patients (12.5% with MMN showed positively reactive bands with similar electrophoretic mobility in all isolates (60–62 kDa, 48–51 kDa, 42 kDa, and 38 kDa. All six patients showed positive reactivity to 48–52 kDa protein isolated from human peripheral nerve. Increased titer of IgG antibodies to 60–62 kDa protein isolated from Cj O:19 associated with Guillain-Barré syndrome was detected in three patients, and their serum showed also IgG positive reactivity to peripheral nerve antigen with the same electrophoretic mobility. One of these patients had a previous history of Cj infection which suggests the possibility that Cj may be also involved in the pathogenesis of MMN.

  18. Grifola frondosa Glycoprotein GFG-3a Arrests S phase, Alters Proteome, and Induces Apoptosis in Human Gastric Cancer Cells.

    Science.gov (United States)

    Cui, Fengjie; Zan, Xinyi; Li, Yunhong; Sun, Wenjing; Yang, Yan; Ping, Lifeng

    2016-01-01

    GFG-3a is a novel glycoprotein previously purified from the fermented mycelia of Grifola frondosa with novel sugar compositions and protein sequencing. The present study aims to investigate its effects on the cell cycle, differential proteins expression, and apoptosis of human gastric cancer SGC-7901 cells. Our findings revealed that GFG-3a induced the cell apoptosis and arrested cell cycle at S phase. GFG-3a treatment resulted in the differential expression of 21 proteins in SGC-7901 cells by upregulating 10 proteins including RBBP4 associated with cell cycle arrest and downregulating 11 proteins including RUVBL1, NPM, HSP90AB1, and GRP78 involved in apoptosis and stress response. qRT-PCR and Western blot analysis also suggested that GFG-3a could increase the expressions of Caspase-8/-3, p53, Bax, and Bad while decrease the expressions of Bcl2, Bcl-xl, PI3K, and Akt1. These results indicated that the stress response, p53-dependent mitochondrial-mediated, Caspase-8/-3-dependent, and PI3k/Akt pathways were involved in the GFG-3a-induced apoptosis process in SGC-7901 cells. These findings might provide a basis to prevent or treat human gastric cancer with GFG-3a and understand the tumor-inhibitory molecular mechanisms of mushroom glycoproteins.

  19. Further characterization of some heterophile agglutinins reacting with alkali-labile carbohydrate chains of human erythrocyte glycoproteins.

    Science.gov (United States)

    Dahr, W; Uhlenbruck, G; Bird, G W

    1975-01-01

    The nature of the receptor sites for several agglutinins is characterized by hemagglutination inhibition assays. The inhibitory activity of human erythrocytes glycoproteins, from which sialic acid, sialic acid and galactose or alkali-labile oligosaccharides have been removed, is compared to the inhibitory effect of compounds with known structure. It is shown that the lectin from Arachis hypogea and anti-T bind to alkali-labile galactosyl-residues. Agglutinins from Bauhinia purpurea and variegata (non- or N-specific), Maclura aurantiaca, Iberis amara, sempervirens, umbellata hybrida and umbellata nana (M- or nonspecific), Moluccella laevis (A- plus N-specific), Helix pomatia, Helix aspersa, Helix lucorum and Caucasotachea atrolabiata interact with alkali-labile N-acetylgalactosamine. The results obtained with the anti-A agglutinins from various snails suggest that human erythrocyte glycoproteins contain, besides the alkali-labile tetrasaccharide, a peptide-linked sialyl-N-acetyl-galactosaminyl-residue. The investigations do not allow a precise definition of the receptor sites for the lectins having M- or N-specificity.

  20. The effect of pre-injury anti-platelet therapy on the development of complications in isolated blunt chest wall trauma: a retrospective study.

    Directory of Open Access Journals (Sweden)

    Ceri Battle

    Full Text Available INTRODUCTION: The difficulties in the management of the blunt chest wall trauma patient in the Emergency Department due to the development of late complications are well recognised in the literature. Pre-injury anti-platelet therapy has been previously investigated as a risk factor for poor outcomes following traumatic head injury, but not in the blunt chest wall trauma patient cohort. The aim of this study was to investigate pre-injury anti-platelet therapy as a risk factor for the development of complications in the recovery phase following blunt chest wall trauma. METHODS: A retrospective study was completed in which the medical notes were analysed of all blunt chest wall trauma patients presenting to a large trauma centre in Wales in 2012 and 2013. Using univariate and multivariable logistic regression analysis, pre-injury platelet therapy was investigated as a risk factor for the development of complications following blunt chest wall trauma. Previously identified risk factors were included in the analysis to address the influence of confounding. RESULTS: A total of 1303 isolated blunt chest wall trauma patients presented to the ED in Morriston Hospital in 2012 and 2013 with complications recorded in 144 patients (11%. On multi-variable analysis, pre-injury anti-platelet therapy was found to be a significant risk factor for the development of complications following isolated blunt chest wall trauma (odds ratio: 16.9; 95% confidence intervals: 8.2-35.2. As in previous studies patient age, number of rib fractures, chronic lung disease and pre-injury anti-coagulant use were also found to be significant risk factors. CONCLUSIONS: Pre-injury anti-platelet therapy is being increasingly used as a first line treatment for a number of conditions and there is a concurrent increase in trauma in the elderly population. Pre-injury anti-platelet therapy should be considered as a risk factor for the development of complications by clinicians managing

  1. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways.

    Directory of Open Access Journals (Sweden)

    Margaret A Scull

    2009-05-01

    Full Text Available Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE, we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C, avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C. These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C, rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2 or A/PR/8/34 (H1N1 genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA and neuraminidase (NA from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and

  2. Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects

    Directory of Open Access Journals (Sweden)

    Momoh Mambu

    2010-11-01

    Full Text Available Abstract Background Lassa hemorrhagic fever (LHF is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV GP1 (sGP1 in vitro resulting from the expression of the glycoprotein complex (GPC gene 12. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV, a filovirus that also causes hemorrhagic fever with nearly 90% fatality rates 345. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH Lassa Fever Ward (LFW, in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. Results It is reasonable to expect that a narrow window exists for

  3. Characterization of a human glycoprotein with a potential role in sperm-egg fusion: cDNA cloning, immunohistochemical localization, and chromosomal assignment of the gene (AEGL1)

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masaru; Fujimoto, Seiichiro; Takano, Hiroko [Hokkaido Univ. School of Medicine, Sapporo (Japan)] [and others

    1996-03-05

    Acidic epididymal glycoprotein (AEG), thus far identified only in rodents, is one of the sperm surface proteins involved in the fusion of the sperm and egg plasma membranes. In the present study, we describe the isolation and characterization of cDNA encoding a human glycoprotein related to AEG. Although this protein, designated ARP (AEG-related protein), is not the ortholog of rodent AEG, it resembles AEG in that it is an epididymal secretory glycoprotein that binds to the postacrosomal region of the sperm head. The fact that no AEG mRNA can be detected in the human epididymis suggests that ARP might be the functional counterpart of rodent AEG. The gene encoding ARP (AEGL1) was mapped by fluorescence in situ hybridization to 6p21.1-p21.2. This result indicates that AEGL1 and the mouse gene for AEG are located in the chromosomal segments with conserved syntenies. 43 refs., 6 figs.

  4. Anti-Platelet Factor 4/Heparin Antibody Formation Occurs Endogenously and at Unexpected High Frequency in Polycythemia Vera

    Directory of Open Access Journals (Sweden)

    Sara C. Meyer

    2017-01-01

    Full Text Available Background. Myeloproliferative neoplasms (MPN encounter thromboses due to multiple known risk factors. Heparin-induced thrombocytopenia (HIT is a thrombotic syndrome mediated by anti-platelet factor 4 (PF4/heparin antibodies with undetermined significance for thrombosis in MPN. We hypothesized that anti-PF4/heparin Ab might occur in MPN and promote thrombosis. Methods. Anti-PF4/heparin antibodies were analyzed in 127 MPN patients including 76 PV and 51 ET. Screening, validation testing, and isotype testing of anti-PF4/heparin Ab were correlated with disease characteristics. Results. Anti-PF4/heparin antibodies were detected in 21% of PV and 12% of ET versus 0.3–3% in heparin-exposed patients. Validation testing confirmed anti-PF4/heparin immunoglobulins in 15% of PV and 10% of ET. Isotype testing detected 9.2% IgG and 5.3% IgM in PV and exclusively IgM in ET. IgG-positive PV patients encountered thromboses in 57.1% suggesting anti-PF4/heparin IgG may contribute to higher risk for thrombosis in MPN. Overall, 45% of PV patients experienced thromboses with 11.8% positive for anti-PF4/heparin IgG versus 7.1% in PV without thrombosis. Conclusion. Anti-PF4/heparin antibodies occur endogenously and more frequently in MPN than upon heparin exposure. Thrombotic risk increases in anti-PF4/heparin IgG-positive PV reflecting potential implications and calling for larger, confirmatory cohorts. Anti-PF4/heparin IgG should be assessed upon thrombosis in PV to facilitate avoidance of heparin in anti-PF4/heparin IgG-positive PV.

  5. Identification of Potential Glycoprotein Biomarkers in Estrogen Receptor Positive (ER+ and Negative (ER- Human Breast Cancer Tissues by LC-LTQ/FT-ICR Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Suzan M. Semaan, Xu Wang, Alan G. Marshall, Qing-Xiang Amy Sang

    2012-01-01

    Full Text Available Breast cancer is the second most fatal cancer in American women. To increase the life expectancy of patients with breast cancer new diagnostic and prognostic biomarkers and drug targets must be identified. A change in the glycosylation on a glycoprotein often causes a change in the function of that glycoprotein; such a phenomenon is correlated with cancerous transformation. Thus, glycoproteins in human breast cancer estrogen receptor positive (ER+ tissues and those in the more advanced stage of breast cancer, estrogen receptor negative (ER- tissues, were compared. Glycoproteins showing differences in glycosylation were examined by 2-dimensional gel electrophoresis with double staining (glyco- and total protein staining and identified by reversed-phase nano-liquid chromatography coupled with a hybrid linear quadrupole ion trap/ Fourier transform ion cyclotron resonance mass spectrometer. Among the identified glycosylated proteins are alpha 1 acid glycoprotein, alpha-1-antitrypsin, calmodulin, and superoxide dismutase mitochondrial precursor that were further verified by Western blotting for both ER+ and ER- human breast tissues. Results show the presence of a possible glycosylation difference in alpha-1-antitrypsin, a potential tumor-derived biomarker for breast cancer progression, which was expressed highest in the ER- samples.

  6. Association between human alpha 2-Heremans Schmidt glycoprotein (AHSG) polymorphism and endometriosis in Korean women.

    Science.gov (United States)

    Kim, Jung Gu; Kim, Hoon; Ku, Seung-Yup; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong

    2004-12-01

    To evaluate the relationship between the alpha 2-Heremans Schmidt glycoprotein (AHSG) gene polymorphism and endometriosis. Case-control study. Department of Obstetrics and Gynecology, Seoul National University Hospital, Korea. Seventy-nine women with endometriosis and 105 women without endometriosis. Determination of AHSG gene polymorphism. Prevalence of AHSG genotypes or alleles. The allele frequencies of AHSG 1 and AHSG 2 were found to be 0.69 and 0.31, respectively. The proportion of noncarriers of the AHSG 2 allele was significantly higher in women with endometriosis than in women without (55.7% vs. 39.0%). Women not carrying the AHSG 2 allele were found to have twice the risk of endometriosis than those carrying at least one copy of this allele. No significant difference was noted in the distribution of the AHSG alleles or AHSG genotypes between early stage endometriosis and late stage endometriosis. Endometriosis is associated with the AHSG gene polymorphism in Korean women.

  7. Strong and weak zinc binding sites in human zinc-α2-glycoprotein.

    Science.gov (United States)

    Kumar, Aditya Arun; Hati, Debolina; Thaker, Thana'a Mohajer; Miah, Layeque; Cunningham, Phil; Domene, Carmen; Bui, Tam T T; Drake, Alex F; McDermott, Lindsay C

    2013-12-11

    Zinc-α2-glycoprotein (ZAG) is an adipokine with an MHC class I-like protein fold. Even though zinc causes ZAG to precipitate from plasma during protein purification, no zinc binding has been identified to date. Using mass spectrometry, we demonstrated that ZAG contains one strongly bound zinc ion, predicted to lie close to the α1 and α2 helical groove. UV, CD and fluorescence spectroscopies detected weak zinc binding to holo-ZAG, which can bind up to 15 zinc ions. Zinc binding to 11-(dansylamino) undecanoic acid was enhanced by holo-ZAG. Zinc binding may be important for ZAG binding to fatty acids and the β-adrenergic receptor. © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. The major surface glycoprotein (gp63) from Leishmania major and Leishmania donovani cleaves CD4 molecules on human T cells

    DEFF Research Database (Denmark)

    Hey, A S; Theander, T G; Hviid, L

    1994-01-01

    The effect of Leishmania major and L. donovani surface protease gp63 on surface markers on human T cells was studied using fluorescence-activated flow cytometry. Purified gp63 (63,000 m.w. glycoprotein) at concentrations above 10 micrograms/ml completely inhibited binding of six different anti-CD...

  9. The antibacterial activity of peptides derived from human beta-2 glycoprotein I is inhibited by protein H and M1 protein from Streptococcus pyogenes

    NARCIS (Netherlands)

    Nilsson, Maria; Wasylik, Sylwia; Mörgelin, Matthias; Olin, Anders I.; Meijers, Joost C. M.; Derksen, Ronald H. W. M.; de Groot, Philip G.; Herwald, Heiko

    2008-01-01

    During the last years, the importance of antibacterial peptides has attracted considerable attention. We report here that peptides derived from the fifth domain of beta-2 glycoprotein I (beta(2)GPI), a human heparin binding plasma protein, have antibacterial activities against Gram-positive and

  10. Typing of core and backbone domains of mucin-type oligosaccharides from human ovarian-cyst glycoproteins by 500-MHz 1H-NMR spectroscopy

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Mutsaers, J.H.G.M.; Halbeek, H. van; Wu, A.M.; Kabat, E.A.

    1986-01-01

    Human blood-group A active glycoproteins from ovarian-cyst fluid were subjected to Smith degradation and subsequent beta-elimination. The resulting oligosaccharide-alditols represent the core and backbone domains of the O-linked carbohydrate chains. Nine of these, ranging in size from disaccharides

  11. Spray-dried solid dispersions containing ferulic acid: comparative analysis of three carriers, in vitro dissolution, antioxidant potential and in vivo anti-platelet effect.

    Science.gov (United States)

    Nadal, Jessica Mendes; Gomes, Mona Lisa Simionatto; Borsato, Débora Maria; Almeida, Martinha Antunes; Barboza, Fernanda Malaquias; Zawadzki, Sônia Faria; Farago, Paulo Vitor; Zanin, Sandra Maria Warumby

    2016-11-01

    This article aimed to improve the relative solubility and dissolution rate of ferulic acid (FA) by the use of spray-dried solid dispersions (SDs) in order to ensure its in vitro antioxidant potential and to enhance its in vivo anti-platelet effect. These SDs were prepared by spray-drying at 10 and 20% of drug concentration using polyvinylpyrrolidone K30 (PVP-K30), polyethylene glycol 6000 (PEG 6000) and poloxamer-188 (PLX-188) as carriers. SDs and physical mixtures (PM) were characterized by SEM, XRPD, FTIR spectroscopy and TGA analysis. Spray-dried SDs containing FA were successfully obtained. Relative solubility of FA was improved with increasing carrier concentration. PVP-K30 and PEG 6000 formulations showed suitable drug content values close to 100%, whereas PLX-188 presented mean values between 70 and 90%. Agglomerates were observed depending on the carrier used. XRPD patterns and thermograms indicated that spray-drying led to drug amorphization and provided appropriate thermal stability, respectively. FTIR spectra demonstrated no remarkable interaction between carrier and drug for PEG 6000 and PLX-188 SDs. PVP-K30 formulations had changes in FTIR spectra, which denoted intermolecular O-H•••O = C bonds. Spray-dried SDs played an important role in enhancing dissolution rate of FA when compared to pure drug. The free radical-scavenging assay confirmed that the antioxidant activity of PEG 6000 10% SDs was kept. This formulation also provided a statistically increased in vivo anti-platelet effect compared to pure drug. In summary, these formulations enhanced relative solubility and dissolution rate of FA and chosen formulation demonstrated suitable in vitro antioxidant activity and improved in vivo anti-platelet effect.

  12. Synthesis of Analogues of Gingerol and Shogaol, the Active Pungent Principles from the Rhizomes of Zingiber officinale and Evaluation of Their Anti-Platelet Aggregation Effects

    Directory of Open Access Journals (Sweden)

    Hung-Cheng Shih

    2014-03-01

    Full Text Available The present study was aimed at discovering novel biologically active compounds based on the skeletons of gingerol and shogaol, the pungent principles from the rhizomes of Zingiber officinale. Therefore, eight groups of analogues were synthesized and examined for their inhibitory activities of platelet aggregation induced by arachidonic acid, collagen, platelet activating factor, and thrombin. Among the tested compounds, [6]-paradol (5b exhibited the most significant anti-platelet aggregation activity. It was the most potent candidate, which could be used in further investigation to explore new drug leads.

  13. Synthesis of Analogues of Gingerol and Shogaol, the Active Pungent Principles from the Rhizomes of Zingiber officinale and Evaluation of Their Anti-Platelet Aggregation Effects

    Science.gov (United States)

    Shih, Hung-Cheng; Chern, Ching-Yuh; Kuo, Ping-Chung; Wu, You-Cheng; Chan, Yu-Yi; Liao, Yu-Ren; Teng, Che-Ming; Wu, Tian-Shung

    2014-01-01

    The present study was aimed at discovering novel biologically active compounds based on the skeletons of gingerol and shogaol, the pungent principles from the rhizomes of Zingiber officinale. Therefore, eight groups of analogues were synthesized and examined for their inhibitory activities of platelet aggregation induced by arachidonic acid, collagen, platelet activating factor, and thrombin. Among the tested compounds, [6]-paradol (5b) exhibited the most significant anti-platelet aggregation activity. It was the most potent candidate, which could be used in further investigation to explore new drug leads. PMID:24599082

  14. Purification and characterization of a heteromultimeric glycoprotein from Artocarpus heterophyllus latex with an inhibitory effect on human blood coagulation.

    Science.gov (United States)

    Siritapetawee, Jaruwan; Thammasirirak, Sompong

    2011-01-01

    Plant latex has many health benefits and has been used in folk medicine. In this study, the biological effect of Artocarpus heterophyllus (jackfruit) latex on human blood coagulation was investigated. By a combination of heat precipitation and ion-exchange chromatography, a heat stable heteromultimeric glycoprotein (HSGPL1) was purified from jackfruit milky latex. The apparent molecular masses of the monomeric proteins on SDS/PAGE were 33, 31 and 29 kDa. The isoelectric points (pIs) of the monomers were 6.63, 6.63 and 6.93, respectively. Glycosylation and deglycosylation tests confirmed that each subunit of HSGPL1 formed the native multimer by sugar-based interaction. Moreover, the multimer of HSGPL1 also resisted 2-mercaptoethanol action. Peptide mass fingerprint analysis indicated that HSGPL1 was a complex protein related to Hsps/chaperones. HSGPL1 has an effect on intrinsic pathways of the human blood coagulation system by significantly prolonging the activated partial thrombin time (APTT). In contrast, it has no effect on the human extrinsic blood coagulation system using the prothrombin time (PT) test. The prolonged APTT resulted from the serine protease inhibitor property of HSGPL1, since it reduced activity of human blood coagulation factors XI(a) and α-XII(a).

  15. Positive and negative elements modulate the promoter of the human liver-specific alpha2-HS-glycoprotein gene.

    Science.gov (United States)

    Banine, F; Gangneux, C; Mercier, L; Le Cam, A; Salier, J P

    2000-02-01

    The human alpha2-HS-glycoprotein (AHSG) and the 63-kDa rat phosphoprotein (pp63) are homologous plasma proteins that belong to the fetuin family. AHSG and pp63 are involved in important functions such as inhibition of insulin receptor tyrosine kinase activity, inhibition of protease activities, and regulation of calcium metabolism and osteogenesis. Studies of the AHSG proximal promoter performed in vitro in rat and human cells indicate that several NF-1 and C/EBP binding sites exert a positive effect on its transcriptional activity. However, until now, no distal elements have been examined in this gene, in either species. We report that the human AHSG gene promoter acts in a liver-specific manner and is further controlled by three distal, 5'-flanking elements. The negative elements III and I are, respectively, located 5' and 3' of the positive element II. All three elements require the natural context of the human AHSG gene to fully exert their negative or positive effect. Element I harbours a single binding site for NF-1. This nuclear factor thus appears to be able to up- or downregulate the AHSG gene depending on the site it binds to. Elements I, II and possibly III are absent in the rodent Ahsg gene encoding pp63.

  16. Binding of recombinant human proacrosin/acrosin to zona pellucida (ZP) glycoproteins. I. Studies with recombinant human ZPA, ZPB, and ZPC.

    Science.gov (United States)

    Furlong, Laura I; Harris, Jeffrey D; Vazquez-Levin, Mónica H

    2005-06-01

    To characterize proacrosin/acrosin interaction with isolated zona pellucida (ZP) components. Prospective study. Basic research laboratory. Recombinant proteins derived from human proacrosin (Rec-40, Rec-30, Rec-20, Rec-10, and Rec-6) and from human ZP glycoproteins (rec-hZPA, ZPB, and ZPC). In vitro binding assay developed to assess proacrosin/acrosin-ZP interaction. Zona pellucida glycoprotein binding to proacrosin/acrosin; estimation of binding affinity. Of all ZP proteins, rec-hZPA demonstrated the highest binding activity toward acrosin (Rec-30) (rec-hZPB: 42% of rec-hZPA; rec-hZPC: 39% of rec-hZPA; PZP components was observed (Kd: 34 nM for rec-hZPA, 38 nM for rec-hZPB, 63 nM for rec-hZPC). The rec-hZPA is the major ZP ligand for human proacrosin/acrosin. The interaction involves mannosyl, fucosyl, and sulfated glycans. Binding sites for rec-hZP would be located both at the N- and C-terminus of proacrosin, revealing a key role of the proenzyme in the interaction.

  17. Inhibition of human immunodeficiency virus type-1 (HIV-1 glycoprotein-mediated cell-cell fusion by immunor (IM28

    Directory of Open Access Journals (Sweden)

    Akoume Marie-Yvonne

    2005-02-01

    Full Text Available Abstract Background Immunor (IM28, an analog of dehydroepiandrosterone (DHEA, inhibits human immunodeficiency virus type-1 (HIV-1 by inhibiting reverse transcriptase. We assessed the ability of IM28 to inhibit the cell-cell fusion mediated by HIV envelope glycoprotein in an in vitro system. For this purpose, we co-cultured TF228.1.16, a T-cell line expressing stably HIV-1 glycoprotein envelopes, with an equal number of 293/CD4+, another T cell line expressing CD4, and with the SupT1 cell line with or without IM28. Results In the absence of IM28, TF228.1.16 fused with 293/CD4+, inducing numerous large syncytia. Syncytia appeared more rapidly when TF228.1.16 was co-cultured with SupT1 cells than when it was co-cultured with the 293/CD4+ cell line. IM28 (1.6 – 45 μg/ml completely inhibits cell-cell fusion. IM28 also prevented the development of new syncytia in infected cells and protected naive SupT1 cells from HIV-1 infection. Evaluation of 50% inhibitory dose (IC50 of IM28 revealed a decrease in HIV-1 replication with an IC50 of 22 mM and 50% cytotoxicity dose (CC50 as determined on MT2 cells was 75 mM giving a selectivity index of 3.4 Conclusions These findings suggest that IM28 exerts an inhibitory action on the env proteins that mediate cell-cell fusion between infected and healthy cells. They also suggest that IM28 interferes with biochemical processes to stop the progression of existing syncytia. This property may lead to the development of a new class of therapeutic drug.

  18. Age-dependent changes of the immunohistochemical distribution of various collagen types and structural glycoproteins in the human uterine tube.

    Science.gov (United States)

    Schultka, R; Göpel, C; Schuppan, D; Schmidt, T

    1993-12-01

    This immunohistochemical investigation deals with the age-dependent localization and distribution of types I, III, IV, V, and VI collagen and the structural glycoproteins undulin, fibronectin, laminin, tenascin, and vitronectin in the connective tissue of the human uterine tube. The stroma of this oviductal region consisted of all collagen types. Collagen types I and VI were distributed throughout the connective tissue of the mucosa reaching the basal membrane. The findings suggest that the amount of these collagen types and type III collagen increases in relation to age, since the coarser fibres of the mucosal stroma in the uterine tubes of older women were strongly labelled by immunohistochemistry. The pattern of undulin reactivity was similar to that of types I and VI collagen. The exact quantitative proportions of age-related oviductal changes for types I, III, and VI as well as of undulin are still unknown. Type V collagen was associated with a fine fibre meshwork in the mucosal stroma. The fibres reached the subepithelial zone which appeared membrane-like. The location of type V collagen-associated fibres and aldehyde fuchsin-positive fibres characterized in our previous studies appears to be identical. Moreover, the structural glycoproteins undulin, fibronectin, laminin, tenascin, and vitronectin were detected in the mucosal stroma. The staining of fibronectin was less pronounced than that of undulin. Laminin was located in the zone of the basal membrane, whereas tenascin was mainly found in the mucosal vessels. Contrary to these findings, tenascin showed a unique distribution in the region near the basis of the mucosal folds in the isthmic part. Vitronectin could be observed in the same region of the isthmic part of uterine tubes obtained from younger women. However, the zonal localization of vitronectin reactivity was absent in the isthmic part of older women.

  19. Polyphosphate binds to human von Willebrand factor in vivo and modulates its interaction with glycoprotein Ib.

    Science.gov (United States)

    Montilla, M; Hernández-Ruiz, L; García-Cozar, F J; Alvarez-Laderas, I; Rodríguez-Martorell, J; Ruiz, F A

    2012-11-01

    Polyphosphate, a phosphate polymer released by activated platelets, has recently been described as a potent modulator of blood coagulation and fibrinolysis. In blood plasma, polyphosphate binds to and alters the biological functions of factor XII, fibrin(ogen), thrombin and factor VII activating protease. The aim of the present study is to investigate whether polyphosphate also binds to von Willebrand factor (VWF) and alters some of its activities. When studying patients with type 1 von Willebrand disease (VWD) and their healthy relatives, we discovered a significant correlation between von Willebrand factor (VWF) and platelet polyphosphate levels. We have also found polyphosphate in preparations of VWF isolated from normal platelets and plasma. Surface plasmon resonance and electrophoretic mobility assays indicated that polyphosphate interacts with VWF in a dose- and time-dependent manner. Treatment of normal plasma with active exopolyphosphatase decreased the VWF ristocetin cofactor (VWF:RCo) activity, a functional measure of VWF binding to platelet glycoprotein receptor Ib. VWF collagen binding and multimerization were unaltered after polyphosphate depletion. Moreover, addition of polyphosphate increased the deficient VWF:RCo activity presented by plasma from patients with type 1 VWD. Our results reveal that a new role is played by polyphosphate in hemostasis by its interaction with VWF, and suggest that this polymer may be effective in the treatment of some types of VWD. © 2012 International Society on Thrombosis and Haemostasis.

  20. Comparison of Methods for the Purification of Alpha-1 Acid Glycoprotein from Human Plasma

    Directory of Open Access Journals (Sweden)

    Teresa R. McCurdy

    2011-01-01

    Full Text Available Alpha-1 acid glycoprotein (AGP is a highly glycosylated, negatively charged plasma protein suggested to have anti-inflammatory and/or immunomodulatory activities. Purification of AGP could be simplified if methods that exploit its high solubility under chemically harsh conditions could be demonstrated to leave the protein in its native conformation. Procedures involving exposure of AGP to hot phenol or sulphosalicylic acid (SSA were compared to solely chromatographic methods. Hot phenol-purified AGP was more rapidly cleared from mice in vivo following intravenous injection than chromatographically purified AGP. In contrast, SSA-purified AGP demonstrated an identical in vivo clearance profile and circular dichroism spectrum to chromatographically purified AGP. Similarly, no differences in susceptibility to enzymatic deglycosylation or reactivity with Sambucus nigra lectin were detected between AGP purified via the two methods. Incorporation of the SSA step in the purification scheme for AGP eliminated the need for a large (4 mL resin/mL of plasma initial chromatographic step and simplified its purification without causing any detectable distortion in the conformation of the protein. Confirmation that this procedure is nondenaturing will simplify AGP purification and investigation of its possible biological roles in laboratory animals.

  1. An HIV-1 envelope glycoprotein trimer with an embedded IL-21 domain activates human B cells.

    Directory of Open Access Journals (Sweden)

    Gözde Isik

    Full Text Available Broadly neutralizing antibodies (bNAbs that target the HIV-1 envelope glycoproteins (Env can prevent virus acquisition, but several Env properties limit its ability to induce an antibody response that is of sufficient quantity and quality. The immunogenicity of Env can be increased by fusion to co-stimulatory molecules and here we describe novel soluble Env trimers with embedded interleukin-4 (IL-4 or interleukin-21 (IL-21 domains, designed to activate B cells that recognize Env. In particular, the chimeric Env(IL-21 molecule activated B cells efficiently and induced the differentiation of antibody secreting plasmablast-like cells. We studied whether we could increase the activity of the embedded IL-21 by designing a chimeric IL-21/IL-4 (ChimIL-21/4 molecule and by introducing amino acid substitutions in the receptor binding domain of IL-21 that were predicted to enhance its binding. In addition, we incorporated IL-21 into a cleavable Env trimer and found that insertion of IL-21 did not impair Env cleavage, while Env cleavage did not impair IL-21 activity. These studies should guide the further design of chimeric proteins and Env(IL-21 may prove useful in improving antibody responses against HIV-1.

  2. Zonal variation in the distribution of an alpha 1-acid glycoprotein glycoform receptor in human adrenal cortex

    DEFF Research Database (Denmark)

    Andersen, U O; Bøg-Hansen, T C; Kirkeby, S

    1999-01-01

    specific receptor. The binding of alpha 1-acid glycoprotein glycoform B and alpha 1-acid glycoprotein glycoform C to the glycoform specific receptor is inhibited by the steroid hormones cortisone, aldosterone, estradiol and progesterone but not by testosterone. The pronounced changes in the distribution...

  3. Effects of dietary ingredients on function and expression of P-glycoprotein in human intestinal epithelial cells.

    Science.gov (United States)

    Okura, Takashi; Ibe, Michiko; Umegaki, Keizo; Shinozuka, Kazumasa; Yamada, Shizuo

    2010-01-01

    The present study was conducted to investigate the functional and transcriptional modulation of P-glycoprotein (MDR-1) by several dietary ingredients (piperine, capsaicin, daidzein, genistein, sesamin, curcumin, taurine) in vinblastine-resistant colon carcinoma LS-180 cells (LS-180V cells). The amount of rhodamine 123 accumulated in LS-180V cells was significantly increased by capsaicin, piperine and sesamin, whereas it was significantly reduced by daidzein and genistein which stimulated the efflux of rhodamine 123. These results suggest that the P-glycoprotein-mediated efflux is inhibited by piperine, capsaicin and sesamin and stimulated by daidzein and genistein. The concurrent addition of piperine and capsaicin seemed to inhibit synergistically the P-glycoprotein-mediated efflux. Pretreatment with sesamin for 48 h caused a significant increase in MDR1 mRNA expression without a significant effect on the expression of P-glycoprotein or accumulation of rhodamine 123. Similar pretreatment with other ingredients had little effect on the expression of MDR1 mRNA or P-glycoprotein, suggesting that they do not cause transcriptional modulation of P-glycoprotein. Piperine, genistein and curcumin have been suggested to stimulate P-glycoprotein-mediated efflux without increasing P-glycoprotein expression. In LS-180V cells, significant increases in mRNA levels of multi-drug resistance associated protein 1 (MRP1) or MRP3 were observed on pretreatment with capsaicin, daidzein, piperine and sesamin. In conclusion, our results suggest that P-glycoprotein-mediated efflux is significantly affected by dietary ingredients. Also, capsaicin, daidzein, piperine and sesamin increased significantly the mRNA expression of MRP1 or MRP3. Thus, the present study provides further evidence that repeated exposure to dietary ingredients can cause drug-food interactions by affecting the function and mRNA expression of intestinal transporters such as P-glycoprotein.

  4. A short cross-linker activates human P-glycoprotein missing a catalytic carboxylate.

    Science.gov (United States)

    Loo, Tip W; Clarke, David M

    2017-12-01

    P-glycoprotein (P-gp) is an ATP-dependent drug pump that protects us from toxic agents and confers multidrug resistance. It has a tweezer-like structure with each arm consisting of a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates bind to sites within the TMDs to activate ATPase activity by promoting a tweezer-like closing of the gap between the NBDs. The catalytic carboxylates may be critical for NBD movements because the E556Q(NBD1) or E1201Q(NBD2) mutation inhibited drug-stimulated ATPase activity. If the catalytic carboxylates were components of the mechanism to bring the NBDs together, then we predicted that insertion of a flexible cross-linker between the arms would increase ATPase activity of the mutants. We found that cross-linking (between L175C(TMD1) and N820C(TMD2)) with a short flexible cross-linker (7.8Å maximum) restored high levels of drug-stimulated ATPase activity of the E556Q or E1201Q mutants. Cross-linking with a longer cross-linker (22Å maximum) however, did not restore activity. Cross-linking could not rescue all ATPase deficient mutants. For example, cross-linking L175C/N820C with short or long cross-linkers did not activate the H-loop mutants H587A or H1232A or the Walker A K433M or K1076M mutants. The results suggest that the E556 and E1201 catalytic carboxylates are part of a spring-like mechanism that is required to facilitate movements between the open and closed conformations of P-gp during ATP hydrolysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys.

    Science.gov (United States)

    Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin

    2017-05-15

    The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (CΔ170). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation.IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect

  6. Anti-platelet and Anti-thrombotic Effects of a Poly-ingredient formulation: In vitro and in vivo experimental evidences

    Science.gov (United States)

    Rafiq, Mohamed; Azeemuddin, Mohammed

    2012-01-01

    Objective The present study was conducted to evaluate the efficacy of Abana® (a poly-ingredient formulation with natural constituents) on in vitro platelet aggregation and occlusion-induced deep venous thrombosis in rats. Methods Anti-platelet property of Abana® was evaluated using ADP (Adenosin 5-diphosphate) and adrenaline-induced platelet aggregation models, and anti-thrombotic activity was evaluated against occlusion-induced deep venous thrombosis model in wistar rats. Results Under the in vitro conditions, Abana® (250, 500 and 1000 µg/ml) alleviated ADP and adrenaline-induced platelet aggregation in a dose-dependent manner. Abana® (1000 µg/ml) inhibited ADP and adrenaline-induced platelet aggregation by as much as 50.69% and 64.83% respectively. Furthermore, 6 days pre-treatment with Abana® (250 and 500 mg/kg, p.o.) in an in vivo study showed significant and dose-dependent protection against occlusion-induced deep venous thrombosis in rats. Conclusion These findings suggest that Abana®, a polyherbal formulation possesses anti-platelet and anti-thrombotic activities in the experimental models of in vitro platelet aggregation and in vivo deep venous thrombosis in rats. PMID:28804574

  7. The crystal structure of the active domain of Anopheles anti-platelet protein, a powerful anti-coagulant, in complex with an antibody.

    Science.gov (United States)

    Sugiyama, Kanako; Iyori, Mitsuhiro; Sawaguchi, Asuka; Akashi, Satoko; Tame, Jeremy R H; Park, Sam-Yong; Yoshida, Shigeto

    2014-06-06

    Blood clotting is a vitally important process that must be carefully regulated to prevent blood loss on one hand and thrombosis on the other. Severe injury and hemophilia may be treated with pro-coagulants, whereas risk of obstructive clotting or embolism may be reduced with anti-coagulants. Anti-coagulants are an extremely important class of drug, one of the most widely used types of medication, but there remains a pressing need for novel treatments, however, as present drugs such as warfarin have significant drawbacks. Nature provides a number of examples of anti-coagulant proteins produced by blood-sucking animals, which may provide templates for the development of new small molecules with similar physiological effects. We have, therefore, studied an Anopheles anti-platelet protein from a malaria vector mosquito and report its crystal structure in complex with an antibody. Overall the protein is extremely sensitive to proteolysis, but the crystal structure reveals a stable domain built from two helices and a turn, which corresponds to the functional region. The antibody raised against Anopheles anti-platelet protein prevents it from binding collagen. Our work, therefore, opens new avenues to the development of both novel small molecule anti-clotting agents and anti-malarials. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Do Beta 2-Glycoprotein I Disulfide Bonds Protect the Human Retina in the Setting of Age-Related Macular Degeneration?

    Science.gov (United States)

    Qi, Miao; Abdelatti, Mahmoud; Krilis, Matthew; Madigan, Michele C; Weaver, James; Guymer, Robyn H; McCluskey, Peter; Wang, Ying; Zhou, Saijun; Krilis, Steven A; Giannakopoulos, Bill

    2016-01-01

    Age-related macular degeneration (AMD) affects the region of the retina that is responsible for high-resolution vision. It is a major cause of blindness in the aging population. This is the first study that examines the association of redox-modified, cysteine-based, post-translational forms of beta 2-glycoprotein I (β2GPI) in the plasma of individuals with early and late stages of patients with AMD compared with controls. Exploration is also undertaken to assess whether the free thiol form of β2GPI versus the oxidized disulfide form have distinct functional properties in the setting of hydrogen peroxide (H(2)O(2))-mediated cell death of an immortalized human retinal pigment epithelium (RPE) cell line. We demonstrate β2GPI in the retina and choroid of patients with AMD. Free thiol β2GPI is shown to protect the immortalized human RPE cell line against H(2)O(2)-induced cell death, whereas the oxidized form of β2GPI and free thiol bovine serum albumin were not protective. Free thiol β2GPI levels were significantly decreased in patients with late AMD compared with early AMD and healthy controls. Our observations lead to the hypothesis that free thiol β2GPI may protect against oxidative stress injury to RPE cells in the early stages of AMD.

  9. Dengue Virus and Its Relation to Human Glycoprotein IIb/IIIa Revealed by Fluorescence Microscopy and Flow Cytometry.

    Science.gov (United States)

    Attatippaholkun, Nattapol; U-Pratya, Yaowalak; Supraditaporn, Panthipa; Lorthongpanich, Chanchao; Pattanapanyasat, Kovit; Issaragrisil, Surapol

    2017-11-01

    Understanding dengue virus (DENV)-induced hemorrhage remains a challenging jigsaw puzzle with many pieces missing to understand the complex interactions between DENV and blood coagulation system. To use flow cytometry studying the interactions between DENV and human platelet aggregation receptor, glycoprotein IIb/IIIa (gpIIb/IIIa), directly conjugated fluorochrome monoclonal antibody (mAb) is essential to facilitate multifluorochrome immunostaining. However, the obstacle was that no directly conjugated fluorochrome-anti-DENV mAb had been commercially available. To overcome, we directly conjugated fluorochrome to a primary anti-DENV mAb using a LYNX rapid conjugation kit. Flow cytometry analysis showed that this conjugated antibody and anti-gpIIb/IIIa mAb were able to detect DENV and CD41a simultaneously. Fluorescence microscopy analysis further demonstrated CD41a superficially and DENV intracellularly. Potentially, this strategy can facilitate virologists for directly conjugating any virus-specific primary antibodies, which are not commercially available with fluorochrome, to study the infectivity in any surface marker-specific hosts through flow cytometry. Together, DENV can interact with both human gpIIb/IIIa(-) and gpIIb/IIIa(+) cells revealed by flow cytometry and fluorescence microscopy for the first time.

  10. Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries

    Directory of Open Access Journals (Sweden)

    Johansson Ingegerd

    2007-06-01

    Full Text Available Abstract Background Bacterial adhesion is an important determinant of colonization and infection, including dental caries. The salivary scavenger receptor cysteine-rich glycoprotein gp-340, which mediates adhesion of Streptococcus mutans (implicated in caries, harbours three major size variants, designated gp-340 I to III, each specific to an individual saliva. Here we have examined the association of the gp-340 I to III polymorphisms with caries experience and adhesion of S. mutans. Methods A case-referent study was performed in 12-year-old Swedish children with high (n = 19 or low (n = 19 caries experiences. We measured the gp-340 I to III saliva phenotypes and correlated those with multiple outcome measures for caries experience and saliva adhesion of S. mutans using the partial least squares (PLS multivariate projection technique. In addition, we used traditional statistics and 2-year caries increment to verify the established PLS associations, and bacterial adhesion to purified gp-340 I to III proteins to support possible mechanisms. Results All except one subject were typed as gp-340 I to III (10, 23 and 4, respectively. The gp-340 I phenotype correlated positively with caries experience (VIP = 1.37 and saliva adhesion of S. mutans Ingbritt (VIP = 1.47. The gp-340 II and III phenotypes tended to behave in the opposite way. Moreover, the gp-340 I phenotype tended to show an increased 2-year caries increment compared to phenotypes II/III. Purified gp-340 I protein mediated markedly higher adhesion of S. mutans strains Ingbritt and NG8 and Lactococcus lactis expressing AgI/II adhesins (SpaP or PAc compared to gp-340 II and III proteins. In addition, the gp-340 I protein appeared over represented in subjects positive for Db, an allelic acidic PRP variant associated with caries, and subjects positive for both gp-340 I and Db tended to experience more caries than those negative for both proteins. Conclusion Gp-340 I behaves as a caries

  11. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120

    Energy Technology Data Exchange (ETDEWEB)

    Nara, P.L.; Robey, W.G.; Gonda, M.A.; Carter, S.G.; Fischinger, P.J.

    1987-06-01

    The presence of antibody-dependent complement-mediated cytotoxicity (ACC) was assessed in humans and chimpanzees, which are capable of infection with human immunodeficiency virus isolate HTLV-IIIb, and examined in the goat after immunization with the major viral glycoprotein (gp120) of HTLV-IIIb. In infected humans no antibody mediating ACC was observed regardless of the status of disease. Even healthy individuals with high-titer, broadly reactive, neutralizing antibodies has no ACC. In contrast, chimpanzees infected with HTLV-IIIb, from whom virus could be isolated, not only had neutralizing antibody but also antibodies broadly reactive in ACC, even against distantly related human immunodeficiency virus isolates, as well as against their own reisolated virus. In the goat, the gp120 of HTLV-IIIb induced a highly type-specific response as measured by both ACC and flow cytofluorometry of live infected H9 cells. Normal human cells were not subject to ACC by animal anti-HTLV-III gp120-specific sera. Induction of ACC and neutralizing antibody were closely correlated in the animal experimental models but not in humans. The presence of ACC in gp120-inoculated goats and HTLV-III-infected chimpanzees represent a qualitative difference that may be important in the quest for the elicitation of a protective immunity in humans.

  12. Lysosome-associated membrane glycoprotein 3 is involved in influenza A virus replication in human lung epithelial (A549 cells

    Directory of Open Access Journals (Sweden)

    Wang Jianwei

    2011-08-01

    Full Text Available Abstract Background Influenza A virus mutates rapidly, rendering antiviral therapies and vaccines directed against virus-encoded targets ineffective. Knowledge of the host factors and molecular pathways exploited by influenza virus will provide further targets for novel antiviral strategies. However, the critical host factors involved in influenza virus infection have not been fully defined. Results We demonstrated that LAMP3, a member of lysosome-associated membrane glycoprotein (LAMP family, was significantly induced in human lung epithelial (A549 cells upon influenza A virus infection. Knockdown of LAMP3 expression by RNA interference attenuated production of viral nucleoprotein (NP as well as virus titers. Confocal microscopy results demonstrated that viral NP is colocalized within LAMP3 positive vesicles at early stages of virus infection. Furthermore, knockdown of LAMP3 expression led to a reduction in nuclear accumulation of viral NP and impeded virus replication. Conclusions LAMP3 is an influenza A virus inducible gene, and plays an important role in viral post-entry steps. Our observations may provide insights into the mechanism of influenza virus replication and potential targets for novel anti-influenza therapeutics.

  13. A Molecular Switch Abrogates Glycoprotein 100 (gp100) T-cell Receptor (TCR) Targeting of a Human Melanoma Antigen.

    Science.gov (United States)

    Bianchi, Valentina; Bulek, Anna; Fuller, Anna; Lloyd, Angharad; Attaf, Meriem; Rizkallah, Pierre J; Dolton, Garry; Sewell, Andrew K; Cole, David K

    2016-04-22

    Human CD8(+) cytotoxic T lymphocytes can mediate tumor regression in melanoma through the specific recognition of HLA-restricted peptides. Because of the relatively weak affinity of most anti-cancer T-cell receptors (TCRs), there is growing emphasis on immunizing melanoma patients with altered peptide ligands in order to induce strong anti-tumor immunity capable of breaking tolerance toward these self-antigens. However, previous studies have shown that these immunogenic designer peptides are not always effective. The melanocyte differentiation protein, glycoprotein 100 (gp100), encodes a naturally processed epitope that is an attractive target for melanoma immunotherapies, in particular peptide-based vaccines. Previous studies have shown that substitutions at peptide residue Glu(3) have a broad negative impact on polyclonal T-cell responses. Here, we describe the first atomic structure of a natural cognate TCR in complex with this gp100 epitope and highlight the relatively high affinity of the interaction. Alanine scan mutagenesis performed across the gp100(280-288) peptide showed that Glu(3) was critically important for TCR binding. Unexpectedly, structural analysis demonstrated that the Glu(3) → Ala substitution resulted in a molecular switch that was transmitted to adjacent residues, abrogating TCR binding and T-cell recognition. These findings help to clarify the mechanism of T-cell recognition of gp100 during melanoma responses and could direct the development of altered peptides for vaccination. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    Science.gov (United States)

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  15. Human Immunodeficiency Virus type 1 group M consensus and mosaic envelope glycoproteins

    Science.gov (United States)

    Korber, Bette T.; Fischer, William; Liao, Hua-Xin; Haynes, Barton F.; Letvin, Norman; Hahn, Beatrice H.

    2017-11-21

    The disclosure relates to nucleic acids mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids are suitable for use in inducing an immune response to HIV-1 in a human.

  16. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

    Science.gov (United States)

    Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

    2008-12-01

    Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

  17. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains.

    Directory of Open Access Journals (Sweden)

    Sofie Ignoul

    and ClC-7 when cotransfected in COS-1 cells. CONCLUSIONS: We conclude that human ClC-6 is an endosomal glycoprotein that partitions in detergent resistant lipid domains. The differential sorting of endogenous (late endosomal versus overexpressed (early and recycling endosomal ClC-6 is reminiscent of that of other late endosomal/lysosomal membrane proteins (e.g. LIMP II, and is consistent with a rate-limiting sorting step for ClC-6 between early endosomes and its final destination in late endosomes.

  18. The human antibody repertoire specific for rabies virus glycoprotein as selected from immune libraries

    NARCIS (Netherlands)

    Kramer, R. Arjen; Marissen, Wilfred E.; Goudsmit, Jaap; Visser, Therese J.; Clijsters-van der Horst, Marieke; Bakker, Arjen Q.; de Jong, Maureen; Jongeneelen, Mandy; Thijsse, Sandra; Backus, Harold H. J.; Rice, Amy B.; Weldon, William C.; Rupprecht, Charles E.; Dietzschold, Bernhard; Bakker, Alexander B. H.; de Kruif, John

    2005-01-01

    Antibody phage display technology was used to identify human monoclonal antibodies that neutralize rabies virus (RV). A phage repertoire was constructed using antibody genes harvested from the blood of vaccinated donors. Selections using this repertoire and three different antigen formats of the RV

  19. The effects of the human MDR1 genotype on the expression of duodenal P-glycoprotein and disposition of the probe drug talinolol.

    Science.gov (United States)

    Siegmund, Werner; Ludwig, Karen; Giessmann, Thomas; Dazert, Peter; Schroeder, Eike; Sperker, Bernhard; Warzok, Rolf; Kroemer, Heyo K; Cascorbi, Ingolf

    2002-11-01

    A single-nucleotide polymorphism (SNP) of the human multidrug-resistance gene in wobble position of exon 26 reportedly predicts expression and function of P-glycoprotein in human enterocytes and lymphocytes. Several other allelic variants of MDR1 have been identified, some of which lead to amino acid exchange with as yet unknown functional relevance. In healthy white volunteers, we investigated the influence of the hereditary variants C3435T in exon 26 and G2677T/A (Ala893Ser/Thr) in exon 21 and the influence of 7 frequent or putative functional SNPs on duodenal MDR1 messenger ribonucleic acid (n = 32) and immunoreactive P-glycoprotein (n = 37) expression. Moreover, the disposition of the probe drug talinolol was evaluated in 55 subjects after oral administration (100 mg) and in 23 subjects after intravenous administration(30 mg). Duodenal MDR1 messenger ribonucleic acid and P-glycoprotein, as assessed by real-time polymerase chain reaction (TaqMan) and immunostaining, were not influenced by any MDR1 polymorphism studied. Talinolol disposition was not affected by the exon 26 mutation C3435T. In carriers of the TT/TA variants of G2677T/A, the area under the serum concentration-time curve values of oral talinolol were slightly but significantly elevated compared with those in carriers of at least 1 wild-type allele (P disposition. We did not identify any influence of MDR1 genotypes on duodenal expression of P-glycoprotein and disposition of talinolol in humans.

  20. In vitro transport profile of carbamazepine, oxcarbazepine, eslicarbazepine acetate, and their active metabolites by human P-glycoprotein.

    Science.gov (United States)

    Zhang, Chunbo; Zuo, Zhong; Kwan, Patrick; Baum, Larry

    2011-10-01

    Antiepileptic drugs (AEDs) are widely used not only in the treatment of epilepsy but also as treatments for psychiatric disorders. Pharmacoresistance of AEDs in the treatment of epilepsy and psychiatric disorders is a serious problem. Transport of antiepileptic drugs by P-glycoprotein (Pgp, ABCB1, or MDR1), which is overexpressed in the blood-brain barrier, may be a mechanism for resistance of AEDs. For most AEDs, conflicting evidence precludes consensus on whether they are substrates of Pgp. The objective of this study was to evaluate whether analogs and metabolites of the AED carbamazepine are substrates of human Pgp. Polarized cell lines MDCKII and LLC transfected with the human MDR1 gene were used in the bidirectional transport assay and concentration equilibrium transport assay. The expression of Pgp was detected by real-time polymerase chain reaction (PCR) and immunofluorescent staining. Rhodamine-123 uptake was also determined. Pgp did not transport carbamazepine, but it did transport its active metabolite carbamazepine-10,11-epoxide. Pgp also pumped eslicarbazepine acetate and oxcarbazepine, as well as their active metabolite (S)-licarbazepine. Transport of the drugs was in the order of ESL>OXC>S-LC>CBZ-E in concentration equilibrium conditions. The transport of these drugs was blocked by Pgp inhibitors tariquidar and verapamil. All carbamazepine analogs or metabolites tested are Pgp substrates, except for carbamazepine. These data suggest that resistance to carbamazepine, oxcarbazepine, or eslicarbazepine acetate may be attributed to increased efflux function of Pgp because they or their active metabolites are Pgp substrates. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  1. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages.

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    Full Text Available HIV protease inhibitor (PI-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR, a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp in HIV PI-mediated accumulation of BBR in macrophages.Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT and human P-gp transfected (MDCK/P-gp cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123 efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp.HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.

  2. NVP-TAE684 reverses multidrug resistance (MDR) in human osteosarcoma by inhibiting P-glycoprotein (PGP1) function.

    Science.gov (United States)

    Ye, Shunan; Zhang, Jianming; Shen, Jacson; Gao, Yan; Li, Ying; Choy, Edwin; Cote, Gregory; Harmon, David; Mankin, Henry; Gray, Nathanael S; Hornicek, Francis J; Duan, Zhenfeng

    2016-02-01

    Increased expression of P-glycoprotein (PGP1) is one of the major causes of multidrug resistance (MDR) in cancer, including in osteosarcoma, which eventually leads to the failure of cancer chemotherapy. Thus, there is an urgent need to develop effective therapeutic strategies to override the expression and function of PGP1 to counter MDR in cancer patients. In an effort to search for new chemical entities targeting PGP1-associated MDR in osteosarcoma, we screened a 500+ compound library of known kinase inhibitors with established kinase selectivity profiles. We aimed to discover potential drug synergistic effects among kinase inhibitors and general chemotherapeutics by combining inhibitors with chemotherapy drugs such as doxorubicin and paclitaxel. The human osteosarcoma MDR cell lines U2OSR2 and KHOSR2 were used for the initial screen and secondary mechanistic studies. After screening 500+ kinase inhibitors, we identified NVP-TAE684 as the most effective MDR reversing agent. NVP-TAE684 significantly reversed chemoresistance when used in combination with doxorubicin, paclitaxel, docetaxel, vincristine, ET-743 or mitoxantrone. NVP-TAE684 itself is not a PGP1 substrate competitive inhibitor, but it can increase the intracellular accumulation of PGP1 substrates in PGP1-overexpressing cell lines. NVP-TAE684 was found to inhibit the function of PGP1 by stimulating PGP1 ATPase activity, a phenomenon reported for other PGP1 inhibitors. The application of NVP-TAE684 to restore sensitivity of osteosarcoma MDR cells to the cytotoxic effects of chemotherapeutics will be useful for further study of PGP1-mediated MDR in human cancer and may ultimately benefit cancer patients. © 2015 The British Pharmacological Society.

  3. Molecular Characterization of the Interactions between Vascular Selectins and Glycoprotein Ligands on Human Hematopoietic Stem/Progenitor Cells

    KAUST Repository

    Abusamra, Dina

    2016-12-01

    The human bone marrow vasculature constitutively expresses both E-selectin and P-selectin where they interact with the cell-surface glycan moiety, sialyl Lewis x, on circulating hematopoietic stem/progenitor cells (HSPCs) to mediate the essential tethering/rolling step. Although several E-selectin glycoprotein ligands (E-selLs) have been identified, the importance of each E-selL on human HSPCs is debatable and requires additional methodologies to advance their specific involvement. The first objective was to fill the knowledge gap in the in vitro characterization of the mechanisms used by selectins to mediate the initial step in the HSPCs homing by developing a real time immunoprecipitation-based assay on a surface plasmon resonance chip. This novel assay bypass the difficulties of purifying ligands, enables the use of natively glycosylated forms of selectin ligands from any model cell of interest and study its binding affinities under flow. We provide the first comprehensive quantitative binding kinetics of two well-documented ligands, CD44 and PSGL-1, with E-selectin. Both ligands bind monomeric E-selectin transiently with fast on- and off-rates while they bind dimeric E-selectin with remarkably slow on- and off-rates with the on-rate, but not the off-rate, is dependent on salt concentration. Thus, suggest a mechanism through which monomeric selectins mediate initial fast-on and -off binding to capture the circulating cells out of shear-flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to slow rolling significantly. The second objective is to fully identify and characterize E/P-selectin ligand candidates expressed on CD34+ HSPCs which cause enhanced migration after intravenous transplantation compared to their CD34- counterparts. CD34 is widely recognized marker of human HSPCs but its natural ligand and function on these cells remain elusive. Proteomics identified CD34 as an E-selL candidate on human HSPCs, whose binding to E

  4. Thieno[2,3-b]pyridine derivatives are potent anti-platelet drugs, inhibiting platelet activation, aggregation and showing synergy with aspirin.

    Science.gov (United States)

    Binsaleh, Naif K; Wigley, Catherine A; Whitehead, Kathryn A; van Rensburg, Michelle; Reynisson, Johannes; Pilkington, Lisa I; Barker, David; Jones, Sarah; Dempsey-Hibbert, Nina C

    2018-01-01

    Drugs which inhibit platelet function are commonly used to prevent blood clot formation in patients with Acute Coronary Syndromes (ACS) or those at risk of stroke. The thieno[3,2-c]pyridine class of therapeutic agents, of which clopidogrel is the most commonly used, target the P2Y12 receptor, and are often used in combination with acetylsalicylic acid (ASA). Six thieno[2,3-b]pyridine were assessed for in vitro anti-platelet activity; all derivatives showed effects on both platelet activation and aggregation, and showed synergy with ASA. Some compounds demonstrated greater activity when compared to clopidogrel. These compounds, therefore, represent potential novel P2Y12 inhibitors for improved treatment for patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Analysis of glycoprotein E-selectin ligANDs on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells

    KAUST Repository

    Merzaban, Jasmeen S.

    2011-06-09

    Although well recognized that expression of E-selectin on marrow microvessels mediates osteotropism of hematopoietic stem/progenitor cells (HSPCs), our knowledge regarding the cognate E-selectin ligand(s) on HSPCs is incomplete. Flow cytometry using E-selectin-Ig chimera (E-Ig) shows that human marrow cells enriched for HSPCs (CD34+ cells) display greater E-selectin binding than those obtained from mouse (lin-/Sca-1+/c-kit+ [LSK] cells). To define the relevant glycoprotein E-selectin ligands, lysates from human CD34+ and KG1a cells and from mouse LSK cells were immunoprecipitated using E-Ig and resolved byWestern blot using E-Ig. In both human and mouse cells, E-selectin ligand reactivity was observed at ∼ 120- to 130-kDa region, which contained two E-selectin ligands, the P-selectin glycoprotein ligand- 1 glycoform "CLA," and CD43. Human, but not mouse, cells displayed a prominent ∼ 100-kDa band, exclusively comprising the CD44 glycoform "HCELL."E-Ig reactivity was most prominent on CLA in mouse cells and on HCELL in human cells. To further assess HCELL\\'s contribution to E-selectin adherence, complementary studies were performed to silence (via CD44 siRNA) or enforce its expression (via exoglycosylation). Under physiologic shear conditions, CD44/HCELL-silenced human cells showed striking decreases (> 50%) in E-selectin binding. Conversely, enforced HCELL expression of LSK cells profoundly increased E-selectin adherence, yielding > 3-fold more marrow homing in vivo. These data define the key glycoprotein E-selectin ligands of human and mouse HSPCs, unveiling critical species-intrinsic differences in both the identity and activity of these structures. © 2011 by The American Society of Hematology.

  6. Spray-dried Eudragit® L100 microparticles containing ferulic acid: Formulation, in vitro cytoprotection and in vivo anti-platelet effect

    Energy Technology Data Exchange (ETDEWEB)

    Nadal, Jessica Mendes; Gomes, Mona Lisa Simionatto [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná (Brazil); Borsato, Débora Maria [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Almeida, Martinha Antunes [Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Paraná (Brazil); Barboza, Fernanda Malaquias [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Zawadzki, Sônia Faria [Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Paraná (Brazil); Kanunfre, Carla Cristine [Postgraduate Program in Biomedical Science, Department of General Biology, State University of Ponta Grossa (Brazil); Farago, Paulo Vitor, E-mail: pvfarago@gmail.com [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Zanin, Sandra Maria Warumby [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná (Brazil)

    2016-07-01

    This paper aimed to obtain new spray-dried microparticles containing ferulic acid (FA) prepared by using a methacrylic polymer (Eudragit® L100). Microparticles were intended for oral use in order to provide a controlled release, and improved in vitro and in vivo biological effects. FA-loaded Eudragit® L100 microparticles were obtained by spray-drying. Physicochemical properties, in vitro cell-based effects, and in vivo platelet aggregation were investigated. FA-loaded Eudragit® L100 microparticles were successfully prepared by spray-drying. Formulations showed suitable encapsulation efficiency, i.e. close to 100%. Microparticles were of spherical and almost-spherical shape with a smooth surface and a mean diameter between 2 and 3 μm. Fourier-transformed infrared spectra demonstrated no chemical bond between FA and polymer. X-ray diffraction and differential scanning calorimetry analyses indicated that microencapsulation led to drug amorphization. FA-loaded microparticles showed a slower dissolution rate than pure drug. The chosen formulation demonstrated higher in vitro cytoprotection, anti-inflammatory and immunomodulatory potential and also improved in vivo anti-platelet effect. These results support an experimental basis for the use of FA spray-dried microparticles as a feasible oral drug delivery carrier for the controlled release of FA and improved cytoprotective and anti-platelet effects. - Highlights: • Ferulic acid-loaded Eudragit® L100 microparticles with high drug-loading were obtained. • Spray-dried Eudragit® L100 microparticles containing ferulic acid showed improved in vitro cytoprotective effect. • Ferulic acid spray-dried microparticles had potential as in vitro anti-inflammatory and immunomodulatory. • In vivo studies demonstrated an enhanced antiplatelet effect for ferulic acid-loaded Eudragit® L100 microparticles.

  7. Targeting antibody responses to the membrane proximal external region of the envelope glycoprotein of human immunodeficiency virus.

    Directory of Open Access Journals (Sweden)

    Donatien Kamdem Toukam

    Full Text Available Although human immunodeficiency type 1 (HIV-1 infection induces strong antibody responses to the viral envelope glycoprotein (Env only a few of these antibodies possess the capacity to neutralize a broad range of strains. The induction of such antibodies represents an important goal in the development of a preventive vaccine against the infection. Among the broadly neutralizing monoclonal antibodies discovered so far, three (2F5, Z13 and 4E10 target the short and hidden membrane proximal external region (MPER of the gp41 transmembrane protein. Antibody responses to MPER are rarely observed in HIV-infected individuals or after immunization with Env immunogens. To initiate antibody responses to MPER in its membrane-embedded native conformation, we generated expression plasmids encoding the membrane-anchored ectodomain of gp41 with N-terminal deletions of various sizes. Following transfection of these plasmids, the MPER domains are displayed on the cell surface and incorporated into HIV virus like particles (VLP. Transfected cells displaying MPER mutants bound as efficiently to both 2F5 and 4E10 as cells transfected with a plasmid encoding full-length Env. Mice immunized with VLPs containing the MPER mutants produced MPER-specific antibodies, the levels of which could be increased by the trimerization of the displayed proteins as well as by a DNA prime-VLP boost immunization strategy. Although 2F5 competed for binding to MPER with antibodies in sera of some of the immunized mice, neutralizing activity could not be detected. Whether this is due to inefficient binding of the induced antibodies to MPER in the context of wild type Env or whether the overall MPER-specific antibody response induced by the MPER display mutants is too low to reveal neutralizing activity, remains to be determined.

  8. Linkage of two human pregnancy-specific. beta. sub 1 -glycoprotein genes: One is associated with hydatidiform mole

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, K.K.; Watanabe, Shuichiro; Lei, Kejian; Chou, D.Y.; Plouzek, C.A.; Deng, Hweichuang; Torres, J.; Chou, J.Y. (National Institutes of Health, Bethesda, MD (USA))

    1990-08-01

    A genomic clone containing two linked human pregnancy-specific {beta}{sub 1}-glycoprotein (PS{beta}G) genes has been isolated and characterized. The two genes are arranged in the same 5{prime} {yields} 3{prime} orientation; the 3{prime} region (including the A2 and B-C exons) of the upstream gene, PSGGA, is linked to the 5{prime} region (including the 5{prime}/L and L/N exons) of PSGGB, the downstream gene. Depending upon the domains compared, PSGGA and PSGGB share 92-98% nucleotide and 86-95% amino acid sequence identity with PSG93, the most abundant PS{beta}G transcript. Northern blot hybridization performed with a PSGGB-specific oligonucleotide probe to the N domain revealed that PSGGB or a PSGGB-like gene encodes a major 1.7-kilobase mRNA in hydatidiform mole tissues and a major 2.0-kilobase mRNA in term placenta tissues. Moreover, the PSGGB-specific probe hybridized most strongly with mRNA from molar trophoblastic tissue, suggesting that the PSGGB-like species may be the gene preferentially expressed in gestational trophoblastic disease. Additionally, the sequence of a 2,315-base-pair PS{beta}G cDNA (PSG95) that contains an N-A1-A2-B2-C domain arrangement is reported. The coding region of PSG95 is identical to the previously reported cDNA clones PSG1d and FL-NCA, but PSG95 contains an additional 518 and 523 base pairs in the 3{prime} end as compared with PSG1d and FL-NCA, respectively.

  9. Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Yiu-Wing Kam

    Full Text Available BACKGROUND: Entry of enveloped viruses into host cells requires the activation of viral envelope glycoproteins through cleavage by either intracellular or extracellular proteases. In order to gain insight into the molecular basis of protease cleavage and its impact on the efficiency of viral entry, we investigated the susceptibility of a recombinant native full-length S-protein trimer (triSpike of the severe acute respiratory syndrome coronavirus (SARS-CoV to cleavage by various airway proteases. METHODOLOGY/PRINCIPAL FINDINGS: PURIFIED TRISPIKE PROTEINS WERE READILY CLEAVED IN VITRO BY THREE DIFFERENT AIRWAY PROTEASES: trypsin, plasmin and TMPRSS11a. High Performance Liquid Chromatography (HPLC and amino acid sequencing analyses identified two arginine residues (R667 and R797 as potential protease cleavage site(s. The effect of protease-dependent enhancement of SARS-CoV infection was demonstrated with ACE2 expressing human bronchial epithelial cells 16HBE. Airway proteases regulate the infectivity of SARS-CoV in a fashion dependent on previous receptor binding. The role of arginine residues was further shown with mutant constructs (R667A, R797A or R797AR667A. Mutation of R667 or R797 did not affect the expression of S-protein but resulted in a differential efficacy of pseudotyping into SARS-CoVpp. The R667A SARS-CoVpp mutant exhibited a lack of virus entry enhancement following protease treatment. CONCLUSIONS/SIGNIFICANCE: These results suggest that SARS S-protein is susceptible to airway protease cleavage and, furthermore, that protease mediated enhancement of virus entry depends on specific conformation of SARS S-protein upon ACE2 binding. These data have direct implications for the cell entry mechanism of SARS-CoV along the respiratory system and, furthermore expand the possibility of identifying potential therapeutic agents against SARS-CoV.

  10. Human alpha 2-HS-glycoprotein: the A and B chains with a connecting sequence are encoded by a single mRNA transcript.

    OpenAIRE

    Lee, C C; Bowman, B H; Yang, F M

    1987-01-01

    The alpha 2-HS-glycoprotein (AHSG) is a plasma protein reported to play roles in bone mineralization and in the immune response. It is composed of two subunits, the A and B chains. Recombinant plasmids containing human cDNA AHSG have been isolated by screening an adult human liver library with a mixed oligonucleotide probe. The cDNA clones containing AHSG inserts span approximately 1.5 kilobase pairs and include the entire AHSG coding sequence, demonstrating that the A and B chains are encode...

  11. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets.

    Science.gov (United States)

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro; Rodríguez-Enríquez, Sara

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3-38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation.

  12. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Science.gov (United States)

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667

  13. Expression of peanut agglutinin-binding mucin-type glycoprotein in human esophageal squamous cell carcinoma as a marker

    Directory of Open Access Journals (Sweden)

    Balakrishnan Ramathilakam

    2003-11-01

    Full Text Available Abstract Background The TF (Thomson – Friedenreich blood group antigen behaves as an onco-foetal carcinoma-associated antigen, showing increased expression in malignancies and its detection and quantification can be used in serologic diagnosis mainly in adenocarcinomas. This study was undertaken to analyze the sera and tissue level detectable mucin-type glycoprotein (TF-antigen by Peanut agglutinin (PNA and its diagnostic index in serum as well tissues of human esophageal squamous cell carcinoma as marker. Results We examined 100 patients for serological analysis by Enzyme Linked Lectin Assay (ELISA and demonstrated a sensitivity of 87.5%, specificity of 90% and a positive predictive value of 95%. The immuno-histochemical localization of TF antigen by Fluorescence Antigen Technique (FAT in 25 specimens of normal esophageal squamous epithelium specimens and 92 specimens with different grades of, allowed a quicker and more precise identification of its increased expression and this did not correlate with gender and tumor size. There was a positive correlation between membrane bound TF antigen expression with different histological progression, from well differentiated to poorly differentiated, determined by PNA binding. Specimens showed morphological changes and a pronounced increase in PNA binding in Golgi apparatus, secretory granules of the cytosol of well differentiated and an increased cell membrane labeling in moderately and poorly differentiated, when compared with ESCC and normal tissues. Conclusion The authors propose that the expression of TF-antigen in human may play an important role during tumorigenesis establishing it as a chemically well-defined carcinoma-associated antigen. Identification of the circulating TF-antigen as a reactive form and as a cryptic form in the healthy individuals, using PNA-ELLA and Immunohistochemical analysis of TF antigen by FAT is positively correlated with the different histological grades as a simple

  14. CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells.

    Science.gov (United States)

    Aigner, S; Sthoeger, Z M; Fogel, M; Weber, E; Zarn, J; Ruppert, M; Zeller, Y; Vestweber, D; Stahel, R; Sammar, M; Altevogt, P

    1997-05-01

    P-selectin (CD62P) is a Ca2+-dependent endogenous lectin that can be expressed by vascular endothelium and platelets. The major ligand for P-selectin on leukocytes is P-selectin glycoprotein ligand-1 (PSGL-1). P-selectin can also bind to carcinoma cells, but the nature of the ligand(s) on these cells is unknown. Here we investigated the P-selectin binding to a breast and a small cell lung carcinoma cell line that are negative for PSGL-1. We report that CD24, a mucin-type glycosylphosphatidylinositol-linked cell surface molecule on human neutrophils, pre B lymphocytes, and many tumors can promote binding to P-selectin. Latex beads coated with purified CD24 from the two carcinoma cell lines but also neutrophils could bind specifically to P-selectin-IgG. The binding was dependent on divalent cations and was abolished by treatment with O-sialoglycoprotein endopeptidase but not endoglycosidase F or sialidase. The beads were stained with a monoclonal antibody (MoAb) to CD57 (HNK-1 carbohydrate epitope) but did not react with MoAbs against the sialylLe(x/a) epitope. The carcinoma cells and CD24-beads derived from these cells could bind to activated platelets or P-selectin transfected Chinese hamster ovary cells (P-CHO) in a P-selectin-dependent manner and this binding was blocked by soluble CD24. Transfection of human adenocarcinoma cells with CD24 enhanced the P-selectin-dependent binding to activated platelets. Treatment of the carcinoma cells or the CD24 transfectant with phosphatidylinositol-specific phospholipase C reduced CD24 expression and P-selectin-IgG binding concomitantly. These results establish a role of CD24 as a novel ligand for P-selectin on tumor cells. The CD24/P-selectin binding pathway could be important in the dissimination of tumor cells by facilitating the interaction with platelets or endothelial cells.

  15. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells

    Directory of Open Access Journals (Sweden)

    Amal J. Ali

    2017-05-01

    Full Text Available Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1 and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL. Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.

  16. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells

    KAUST Repository

    Ali, Amal J.

    2017-05-03

    Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL). Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.

  17. Prediction of exposed domains of envelope glycoprotein in Indian HIV-1 isolates and experimental confirmation of their immunogenicity in humans

    Directory of Open Access Journals (Sweden)

    Mohabatkar H.

    2004-01-01

    Full Text Available We describe the impact of subtype differences on the seroreactivity of linear antigenic epitopes in envelope glycoprotein of HIV-1 isolates from different geographical locations. By computer analysis, we predicted potential antigenic sites of envelope glycoprotein (gp120 and gp4l of this virus. For this purpose, after fetching sequences of proteins of interest from data banks, values of hydrophilicity, flexibility, accessibility, inverted hydrophobicity, and secondary structure were considered. We identified several potential antigenic epitopes in a B subtype strain of envelope glycoprotein of HIV-1 (IIIB. Solid- phase peptide synthesis methods of Merrifield and Fmoc chemistry were used for synthesizing peptides. These synthetic peptides corresponded mainly to the C2, V3 and CD4 binding sites of gp120 and some parts of the ectodomain of gp41. The reactivity of these peptides was tested by ELISA against different HIV-1-positive sera from different locations in India. For two of these predicted epitopes, the corresponding Indian consensus sequences (LAIERYLKQQLLGWG and DIIGDIRQAHCNISEDKWNET (subtype C were also synthesized and their reactivity was tested by ELISA. These peptides also distinguished HIV-1-positive sera of Indians with C subtype infections from sera from HIV-negative subjects.

  18. Isolation and Identification of Concanavalin A Binding Glycoproteins from Human Seminal Plasma: A Step Towards Identification of Male Infertility Marker Proteins

    Directory of Open Access Journals (Sweden)

    Anil Kumar Tomar

    2011-01-01

    Full Text Available Human seminal plasma contains a large array of proteins of clinical importance which are essentially needed to maintain the reproductive physiology of spermatozoa and for successful fertilization. Thus, isolation and identification of seminal plasma proteins is of paramount significance for their biophysical characterization and functional analysis in reproductive physiological processes. In this study, we have isolated Concanavalin-A binding glycoproteins from human seminal plasma and subsequently identified them by MALDI-TOF/MS analysis. The major proteins, as identified in this study, are Aminopeptidase N, lactoferrin, prostatic acid phosphatase, zinc-alpha-2-glycoprotein, prostate specific antigen, progestagen-associated endometrial protein, Izumo sperm-egg fusion protein and prolactin inducible protein. This paper also reports preliminary studies to identify altered expression of these proteins in oligospermia and azoospermia in comparison to normospermia. In oligospermia, five proteins were found to be downregulated while in azoospermia, four proteins were downregulated and two proteins were upregulated. Thus, this study is of immense biomedical interest towards identification of potential male infertility marker proteins in seminal plasma.

  19. Biochemical characterization and crystalization of human Zn-α2-glycoprotein, a soluble class I major histocompatibility complex homolog

    OpenAIRE

    Sánchez, Luis M; López-Otín, Carlos; Bjorkman, Pamela J.

    1997-01-01

    Zn-α2-glycoprotein (ZAG) is a 41-kDa soluble protein that is present in most bodily fluids. In addition, ZAG accumulates in fluids from breast cysts and in 40% of breast carcinomas, which suggests that ZAG plays a role in the development of breast diseases. However, the function of ZAG under physiological and cancerous conditions remains unknown. Because ZAG shares 30–40% sequence identity with the heavy chains of class I major histocompatibility complex (MHC) proteins, we compared the bioche...

  20. Computational identification of epitopes in the glycoproteins of novel bunyavirus (SFTS virus) recognized by a human monoclonal antibody (MAb 4-5)

    Science.gov (United States)

    Zhang, Wenshuai; Zeng, Xiaoyan; Zhang, Li; Peng, Haiyan; Jiao, Yongjun; Zeng, Jun; Treutlein, Herbert R.

    2013-06-01

    In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the "multiple copy simultaneous search" (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen-antibody recognition based on the distributions of MCSS minima of different functional groups.

  1. Cleavage of a Neuroinvasive Human Respiratory Virus Spike Glycoprotein by Proprotein Convertases Modulates Neurovirulence and Virus Spread within the Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Alain Le Coupanec

    Full Text Available Human coronaviruses (HCoV are respiratory pathogens that may be associated with the development of neurological diseases, in view of their neuroinvasive and neurotropic properties. The viral spike (S glycoprotein is a major virulence factor for several coronavirus species, including the OC43 strain of HCoV (HCoV-OC43. In an attempt to study the role of this protein in virus spread within the central nervous system (CNS and neurovirulence, as well as to identify amino acid residues important for such functions, we compared the sequence of the S gene found in the laboratory reference strain HCoV-OC43 ATCC VR-759 to S sequences of viruses detected in clinical isolates from the human respiratory tract. We identified one predominant mutation at amino acid 758 (from RRSR↓ G758 to RRSR↓R758, which introduces a putative furin-like cleavage (↓ site. Using a molecular cDNA infectious clone to generate a corresponding recombinant virus, we show for the first time that such point mutation in the HCoV-OC43 S glycoprotein creates a functional cleavage site between the S1 and S2 portions of the S protein. While the corresponding recombinant virus retained its neuroinvasive properties, this mutation led to decreased neurovirulence while potentially modifying the mode of virus spread, likely leading to a limited dissemination within the CNS. Taken together, these results are consistent with the adaptation of HCoV-OC43 to the CNS environment, resulting from the selection of quasi-species harboring mutations that lead to amino acid changes in viral genes, like the S gene in HCoV-OC43, which may contribute to a more efficient establishment of a less pathogenic but persistent CNS infection. This adaptative mechanism could potentially be associated with human encephalitis or other neurological degenerative pathologies.

  2. Comparison of the chemical profiles and anti-platelet aggregation effects of two "Dragon's Blood" drugs used in traditional Chinese medicine.

    Science.gov (United States)

    Yi, Tao; Chen, Hu-Biao; Zhao, Zhong-Zhen; Yu, Zhi-Ling; Jiang, Zhi-Hong

    2011-01-27

    "Dragon's Blood" has been used as a medicine since ancient times by many cultures. In traditional Chinese medicine, the resin obtained from Daemonorops draco (RDD) and the resin from Dracaena cochinchinensis (RDC) are equally prescribed as "Dragon's Blood" for facilitating blood circulation. To verify the traditional efficacy and elucidate the mechanism, the present study compared the chemical profiles and the pharmacological effects of two species of "Dragon's Blood" mainly used in China. A UPLC-MS fingerprinting method was developed to compare the chemical profiles of the two medicines. The anti-platelet aggregation effects of the two medicines induced by arachidonic acid (AA) were investigated. The chemical profiles of these two species of "Dragon's Blood" were significantly different. The characteristic constituents were found to be: flavanes in RDD and stilbenes in RDC. In the in vivo platelet inhibition test, performed with the dose of 200 mg/kg on rats, the peak inhibitory effects of RDD and RDC were 35.8% and 27.6%, respectively, compared with the control group. With the in vitro concentrations of 0.2, 0.4 and 0.8 mg/ml, RDD exerted significant inhibition of aggregation by 18.7%, 20.0%, and 61.6%, respectively, and RDC exerted significant inhibition of aggregation by 13.3%, 20.2%, and 31.6%, respectively. The fingerprinting method used here is suitable for distinguishing them. All pharmacological tests indicated that RDD was more potent than RDC against platelet aggregation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Anti-Platelet Therapy is Associated With Decreased Transfusion-Associated Risk of Lung Dysfunction, Multiple Organ Failure, and Mortality in Trauma Patients

    Science.gov (United States)

    Harr, Jeffrey N.; Moore, Ernest E.; Johnson, Jeffrey; Chin, Theresa L.; Wohlauer, Max V.; Maier, Ronald; Cuschieri, Joseph; Sperry, Jason; Banerjee, Anirban; Silliman, Christopher C.; Sauaia, Angela

    2012-01-01

    Objective To determine whether pre-hospital anti-platelet therapy (APT) was associated with reduced incidence of acute lung dysfunction, multiple organ failure (MOF), and mortality in blunt trauma patients. Design Secondary analysis of a cohort enrolled in the NIGMS Trauma Glue Grant database. Setting Multicenter study including 9 US level-1 trauma centers. Patients A total of 839 severely injured blunt trauma patients at risk for MOF (age >45 years, base deficit > 6 mEq/L or systolic blood pressure head injuries were excluded. Measurements and Main Results Primary outcomes were lung dysfunction (defined as grades 2–3 by the Denver MOF score), MOF (Denver MOF score>3), and mortality. Patients were documented as on APT if taking acetylsalicylic acid, clopidogrel, and/or ticlopidine. Fifteen percent were taking APT prior to injury. Median injury severity score (ISS) was 30 (interquartile range, IQR: 22–51), mean age 61 ± 0.4 years and median red blood cells (RBC) volume transfused was 1700 ml (IQR: 800–3150ml). Overall, 63% developed lung dysfunction, 19% had MOF, and 21% died. After adjustment for age, gender, comorbidities, blood products, crystalloid/12hrs, presence of any head injury, ISS, and 12hrs base deficit >8 mEq/L, 12 hrs RBC transfusion was associated with a significantly smaller risk of lung dysfunction and MOF among the group receiving APT compared to those not receiving it (lung dysfunction p=0.0116, MOF p=0.0291). In addition, APT had a smaller risk (albeit not significant, p=0.06) of death for patients receiving RBC compared to those not on APT after adjustment for confounders, Conclusions Pre-injury APT therapy is associated with a decreased risk of lung dysfunction, MOF, and possibly mortality in high-risk blunt trauma patients who received blood transfusions. These findings suggest platelets have a role in organ dysfunction development and have potential therapeutic implications. PMID:23263579

  4. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    Science.gov (United States)

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-08-27

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  5. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2010-08-01

    Full Text Available P-glycoprotein (Pgp, encoded by the multidrug resistance 1 (MDR1 gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  6. Crosstalk in human brain between globoid cell leucodystrophy and zinc-α-2-glycoprotein (ZAG), a biomarker of lipid catabolism.

    Science.gov (United States)

    Maślińska, Danuta; Laure-Kamionowska, Milena; Maśliński, Sławomir

    2013-01-01

    Zinc-alpha-2-glycoprotein (ZAG) is a protein identified as a lipid-mobilizing factor participating in a lipid catabolism. In spite of intensive studies conducted during last five decades, the role of this protein in processes of neurodegeneration remains unclear. The aim of our study was to examine the presence of ZAG protein in the brain of patients with Krabbe's disease, which is considered as a psychosine lipidosis caused by a mutation of a known gene. We found intracellular and extracellular localization of ZAG in the brain of Krabbe's disease patients but in the brain of control age-matched patients, ZAG was not detected. Distribution of ZAG in the brain suggests that the influx of ZAG into the brain involved a blood-brain barrier mechanism and adenoreceptors localized on astrocytes and some neurons.

  7. Cysteine-rich secretory protein 3 is a ligand of alpha1B-glycoprotein in human plasma

    DEFF Research Database (Denmark)

    Udby, Lene; Sørensen, Ole E; Pass, Jesper

    2004-01-01

    (28 kDa), we hypothesized that CRISP-3 in plasma was bound to another component. This was supported by size-exclusion chromatography and immunoprecipitation of plasma proteins. The binding partner was identified by mass spectrometry as alpha(1)B-glycoprotein (A1BG), which is a known plasma protein...... and is held together by strong electrostatic forces. Similar complexes have been described between toxins from snake venom and A1BG-like plasma proteins from opossum species. In these cases, complex formation inhibits the toxic effect of snake venom metalloproteinases or myotoxins and protects the animal from...... of unknown function and a member of the immunoglobulin superfamily. We demonstrate that CRISP-3 is a specific and high-affinity ligand of A1BG with a dissociation constant in the nanomolar range as evidenced by surface plasmon resonance. The A1BG-CRISP-3 complex is noncovalent with a 1:1 stoichiometry...

  8. Replacement of in vivo human rabies vaccine potency testing by in vitro glycoprotein quantification using ELISA - Results of an international collaborative study.

    Science.gov (United States)

    Morgeaux, Sylvie; Poirier, Bertrand; Ragan, C Ian; Wilkinson, Dianna; Arabin, Ulrich; Guinet-Morlot, Françoise; Levis, Robin; Meyer, Heidi; Riou, Patrice; Shaid, Shahjahan; Volokhov, Dmitriy; Tordo, Noël; Chapsal, Jean-Michel

    2017-02-07

    Three different ELISAs quantifying rabies glycoprotein were evaluated as in vitro alternatives to the National Institutes of Health (NIH) in vivo potency test for batch release of human rabies vaccines. The evaluation was carried out as an international collaborative study supported by the European Partnership for Alternatives to Animal Testing (EPAA). This pre-validation study, the results of which are presented in this paper, compared three different ELISA designs, assessing their within- and between-laboratory precision. One of the ELISA designs was proposed to the European Directorate for the Quality of Medicines & HealthCare (EDQM) and accepted for an international collaborative study under the umbrella of the Biological Standardisation Programme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Human galectin-3 (Mac-2 antigen): Defining molecular switches of affinity to natural glycoproteins, structural and dynamic aspects of glycan binding by flexible ligand docking and putative regulatory sequences in the proximal promoter region

    NARCIS (Netherlands)

    Krzeminski, M.N.; Singh, T.; André, S.; Lensch, M.; Wu, A.M.; Bonvin, A.M.J.J.; Gabius, H.-J.

    2011-01-01

    Background: Human galectin-3 (Mac-2 antigen) is a cell-type-specific multifunctional effector owing to selective binding of distinct cell-surface glycoconjugates harboring β-galactosides. The structural basis underlying the apparent preferences for distinct glycoproteins and for expression is so far

  10. The Glycoproteins of All Filovirus Species Use the Same Host Factors for Entry into Bat and Human Cells but Entry Efficiency Is Species Dependent.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Ebola and marburgviruses, members of the family Filoviridae, can cause severe hemorrhagic fever in humans. The ongoing Ebola virus (EBOV disease epidemic in Western Africa claimed more than 11,300 lives and was associated with secondary cases outside Africa, demonstrating that filoviruses pose a global health threat. Bats constitute an important natural reservoir of filoviruses, including viruses of the recently identified Cuevavirus genus within the Filoviridae family. However, the interactions of filoviruses with bat cells are incompletely understood. Here, we investigated whether filoviruses employ different strategies to enter human and bat cells. For this, we examined host cell entry driven by glycoproteins (GP from all filovirus species into cell lines of human and fruit bat origin. We show that all GPs were able to mediate entry into human and most fruit bat cell lines with roughly comparable efficiency. In contrast, the efficiency of entry into the cell line EidNi/41 derived from a straw-colored fruit bat varied markedly between the GPs of different filovirus species. Furthermore, inhibition studies demonstrated that filoviruses employ the same host cell factors for entry into human, non-human primate and fruit bat cell lines, including cysteine proteases, two pore channels and NPC1 (Niemann-Pick C1 molecule. Finally, processing of GP by furin and the presence of the mucin-like domain in GP were dispensable for entry into both human and bat cell lines. Collectively, these results show that filoviruses rely on the same host cell factors for entry into human and fruit bat cells, although the efficiency of the usage of these factors might differ between filovirus species.

  11. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways

    National Research Council Canada - National Science Library

    Scull, Margaret A; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S; Pickles, Raymond J

    2009-01-01

    .... Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C...

  12. Human cytomegalovirus prevalence and distribution of glycoprotein B, O genotypes among hospitalized children with respiratory infections in West China, 2009-2014.

    Science.gov (United States)

    Chen, Jia-Yi; Zheng, Tian-Li; Zhou, Tao; Hu, Peng-Wei; Huang, Meng-Jiao; Xu, Xin; Pei, Xiao-Fang

    2016-11-01

    Human cytomegalovirus (HCMV) is an important pathogen causing morbidity and mortality in children. HCMV prevalence in children with respiratory infections has not been investigated in West China. Previous studies have suggested that glycoproteins genotypes may be associated with different clinical presentations, but the associations were controversial. The aim of this study was to determine the prevalence of HCMV infection in children with respiratory infections, the distributions of gB, gO genotypes among these isolates and their potential predictive roles for the development of symptoms in children. A total of 1709 respiratory specimens were obtained from hospitalised children with respiratory symptoms from 2009 to 2014 for the confirmation of HCMV infection. Glycoprotein B,O genotyping was carried out by multiplex nested PCR and sequencing. The overall infection rate was 10.8%, and dominant genotypes were gB1 (74.2%) and gO1 (37.1%). Clinical characteristics differed between infants and children >1 year of age. Infants infected with HCMV had a higher frequency of fever (P < 0.001), cough (P < 0.001), rhinorrhea (P < 0.001), expectoration (P = 0.001) and diarrhoea (P = 0.005). Children <1 year age infected with gB1 had a higher rate of cough (P = 0.0192). Infants infected with HCMV had a severe clinical outcome. gB1 may negatively associate with clinical presentations and quality of life in these children. The prevalence of HCMV infection and genotype distribution emphasises the importance of HCMV screening, vaccination and control for transmission. © 2016 John Wiley & Sons Ltd.

  13. Evodiamine synergizes with doxorubicin in the treatment of chemoresistant human breast cancer without inhibiting P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Shengpeng Wang

    Full Text Available Drug resistance is one of the main hurdles for the successful treatment of breast cancer. The synchronous targeting of apoptosis resistance and survival signal transduction pathways may be a promising approach to overcome drug resistance. In this study, we determined that evodiamine (EVO, a major constituent of the Chinese herbal medicine Evodiae Fructus, could induce apoptosis of doxorubicin (DOX-sensitive MCF-7 and DOX-resistant MCF-7/ADR cells in a caspase-dependent manner, as confirmed by significant increases of cleaved poly(ADP-ribose polymerase (PARP, caspase-7/9, and caspase activities. Notably, the reversed phenomenon of apoptosis resistance by EVO might be attributed to its ability to inhibit the Ras/MEK/ERK pathway and the expression of inhibitors of apoptosis (IAPs. Furthermore, our results indicated that EVO enhanced the apoptotic action of DOX by inhibiting the Ras/MEK/ERK cascade and the expression of IAPs without inhibiting the expression and activity of P-glycoprotein (P-gp. Taken together, our data indicate that EVO, a natural product, may be useful applied alone or in combination with DOX for the treatment of resistant breast cancer.

  14. Selective Inhibition of ADAM17 Efficiently Mediates Glycoprotein Ibα Retention During Ex Vivo Generation of Human Induced Pluripotent Stem Cell-Derived Platelets.

    Science.gov (United States)

    Hirata, Shinji; Murata, Takahiko; Suzuki, Daisuke; Nakamura, Sou; Jono-Ohnishi, Ryoko; Hirose, Hidenori; Sawaguchi, Akira; Nishimura, Satoshi; Sugimoto, Naoshi; Eto, Koji

    2016-10-05

    : Donor-independent platelet concentrates for transfusion can be produced in vitro from induced pluripotent stem cells (iPSCs). However, culture at 37°C induces ectodomain shedding on platelets of glycoprotein Ibα (GPIbα), the von Willebrand factor receptor critical for adhesive function and platelet lifetime in vivo, through temperature-dependent activation of a disintegrin and metalloproteinase 17 (ADAM17). The shedding can be suppressed by using inhibitors of panmetalloproteinases and possibly of the upstream regulator p38 mitogen-activated protein kinase (p38 MAPK), but residues of these inhibitors in the final platelet products may be accompanied by harmful risks that prevent clinical application. Here, we optimized the culture conditions for generating human iPSC-derived GPIbα(+) platelets, focusing on culture temperature and additives, by comparing a new and safe selective ADAM17 inhibitor, KP-457, with previous inhibitors. Because cultivation at 24°C (at which conventional platelet concentrates are stored) markedly diminished the yield of platelets with high expression of platelet receptors, 37°C was requisite for normal platelet production from iPSCs. KP-457 blocked GPIbα shedding from iPSC platelets at a lower half-maximal inhibitory concentration than panmetalloproteinase inhibitor GM-6001, whereas p38 MAPK inhibitors did not. iPSC platelets generated in the presence of KP-457 exhibited improved GPIbα-dependent aggregation not inferior to human fresh platelets. A thrombus formation model using immunodeficient mice after platelet transfusion revealed that iPSC platelets generated with KP-457 exerted better hemostatic function in vivo. Our findings suggest that KP-457, unlike GM-6001 or p38 MAPK inhibitors, effectively enhances the production of functional human iPSC-derived platelets at 37°C, which is an important step toward their clinical application. This study is a tip for overcoming a practical but critical barrier for manufacturing human

  15. Functionalized Magnetic Resonance Contrast Agent Selectively Binds to Glycoprotein IIb/IIIa on Activated Human Platelets under Flow Conditions and Is Detectable at Clinically Relevant Field Strengths

    Directory of Open Access Journals (Sweden)

    Constantin von zur Mühlen

    2008-03-01

    Full Text Available Recent progress in molecular magnetic resonance imaging (MRI provides the opportunity to image cells and cellular receptors using microparticles of iron oxide (MPIOs. However, imaging targets on vessel walls remains challenging owing to the quantity of contrast agents delivered to areas of interest under shear stress conditions. We evaluated ex vivo binding characteristics of a functional MRI contrast agent to ligand-induced binding sites (LIBSs on activated glycoprotein IIb/IIIa receptors of human platelets, which were lining rupture-prone atherosclerotic plaques and could therefore facilitate detection of platelet-mediated pathology in atherothrombotic disease. MPIOs were conjugated to anti-LIBS single-chain antibodies (LIBS-MPIO or control antibodies (control MPIO. Ex vivo binding to human platelet-rich clots in a dose-dependent manner was confirmed on a 3 T clinical MRI scanner and by histology (p < .05 for LIBS-MPIO vs control MPIO. By using a flow chamber setup, significant binding of LIBS-MPIO to a platelet matrix was observed under venous and arterial flow conditions, but not for control MPIO (p < .001. A newly generated MRI contrast agent detects activated human platelets at clinically relevant magnetic field strengths and binds to platelets under venous and arterial flow conditions, conveying high payloads of contrast to specific molecular targets. This may provide the opportunity to identify vulnerable, rupture-prone atherosclerotic plaques via noninvasive MRI.

  16. Identification of gp17 glycoprotein and characterization of prostatic acid phosphatase (PAP) and carboxypeptidase E (CPE) fragments in a human seminal plasma fraction interacting with concanavalin A.

    Science.gov (United States)

    Marquínez, A C; Andreetta, A M; González, N; Wolfenstein-Todel, C; Scacciati de Cerezo, J M

    2003-07-01

    The decapacitating fraction of human seminal plasma, which strongly interacts with concanavalin A, is constituted by high mannose-type N-linked glycoproteins, most of them of less than 44 kDa. Each component with apparent molecular mass of 30, 18, and 17 kDa respectively, as judged by SDS-PAGE, was submitted to "in gel" digestion with trypsin followed by HPLC separation of the peptides and sequencing. They were characterized at microscale as gp17, an aspartyl protease that possibly contributes to liquefaction of the seminal plasma coagulum, two fragments of human acid phosphatase (17 and 30 kDa, respectively), and a 17-kDa fragment of carboxypeptidase E. Neither the fragments of prostatic acid phosphatase nor that of carboxypeptidase E had been described before in the human seminal fluid. Very weak bands, of apparent molecular masses 44 and 52 kDa, are consistent with presence of small amounts of parent compounds, prostatic acid phosphatase and carboxypeptidase E.

  17. Human alpha 2-HS-glycoprotein: the A and B chains with a connecting sequence are encoded by a single mRNA transcript.

    Science.gov (United States)

    Lee, C C; Bowman, B H; Yang, F M

    1987-01-01

    The alpha 2-HS-glycoprotein (AHSG) is a plasma protein reported to play roles in bone mineralization and in the immune response. It is composed of two subunits, the A and B chains. Recombinant plasmids containing human cDNA AHSG have been isolated by screening an adult human liver library with a mixed oligonucleotide probe. The cDNA clones containing AHSG inserts span approximately 1.5 kilobase pairs and include the entire AHSG coding sequence, demonstrating that the A and B chains are encoded by a single mRNA transcript. The cDNA sequence predicts an 18-amino-acid signal peptide, followed by the A-chain sequence of AHSG. A heretofore unseen connecting sequence of 40 amino acids was deduced between the A- and B-chain sequences. The connecting sequence demonstrates the unique amino acid doublets and collagen triplets found in the A and B chains; it is not homologous with other reported amino acid sequences. The connecting sequence may be cleaved in a posttranslational step by limited proteolysis before mature AHSG is released into the circulation or may vary in its presence because of alternative processing. The AHSG cDNA was utilized for mapping the AHSG gene to the 3q21----qter region of human chromosome 3. The availability of the AHSG cDNA clone will facilitate the analysis of its genetic control and gene expression during development and bone formation. Images PMID:3474608

  18. cDNA cloning of a snake venom metalloproteinase from the eastern diamondback rattlesnake (Crotalus adamanteus), and the expression of its disintegrin domain with anti-platelet effects.

    Science.gov (United States)

    Suntravat, Montamas; Jia, Ying; Lucena, Sara E; Sánchez, Elda E; Pérez, John C

    2013-03-15

    A 5' truncated snake venom metalloproteinase was identified from a cDNA library constructed from venom glands of an eastern diamondback rattlesnake (Crotalus adamanteus). The 5'-rapid amplification of cDNA ends (RACE) was used to obtain the 1865 bp full-length cDNA sequence of a snake venom metalloproteinase (CamVMPII). CamVMPII encodes an open reading frame of 488 amino acids, which includes a signal peptide, a pro-domain, a metalloproteinase domain, a spacer, and an RGD-disintegrin domain. The predicted amino acid sequence of CamVMPII showed a 91%, 90%, 83%, and 82% sequence homology to the P-II class enzymes of C. adamanteus metalloproteinase 2, Crotalus atrox CaVMP-II, Gloydius halys agkistin, and Protobothrops jerdonii jerdonitin, respectively. Disintegrins are potent inhibitors of both platelet aggregation and integrin-dependent cell adhesion. Therefore, the disintegrin domain (Cam-dis) of CamVMPII was amplified by PCR, cloned into a pET-43.1a vector, and expressed in Escherichia coli BL21. Affinity purified recombinantly modified Cam-dis (r-Cam-dis) with a yield of 8.5 mg/L culture medium was cleaved from the fusion tags by enterokinase cleavage. r-Cam-dis was further purified by two-step chromatography consisting of HiTrap™ Benzamidine FF column, followed by Talon Metal affinity column with a final yield of 1 mg/L culture. r-Cam-dis was able to inhibit all three processes of platelet thrombus formation including platelet adhesion with an estimated IC(50) of 1 nM, collagen- and ADP-induced platelet aggregation with the estimated IC(50)s of 18 and 6 nM, respectively, and platelet function on clot retraction. It is a potent anti-platelet inhibitor, which should be further investigated for drug discovery to treat stroke patients or patients with thrombotic disorders. Published by Elsevier Ltd.

  19. Tratamiento perioperatorio del paciente con antiagregación o anticoagulación Peri-operative management of patients with anti-platelet or anticoagulation treatment

    Directory of Open Access Journals (Sweden)

    Juan C Déaz M

    2012-10-01

    Full Text Available El tratamiento del paciente que recibe terapias que afectan la hemostasia normal (anticoagulantes y/o antiagregantes plaquetarios y que será sometido a un procedimiento quirúrgico, es uno de los retos que se presentan cada vez con mayor frecuencia en los servicios de cardiología. La toma de la mejor opción terapéutica en este grupo de pacientes requiere un profundo conocimiento sobre los riesgos de sangrado en caso de continuarse el tratamiento, frente a los riesgos de trombosis o embolismo en caso de suspenderlo. Por tradición, esa decisión se ha basado más en el temor al riesgo de sangrado, por lo cual en muchos casos se ha suspendido dicha terapia de manera innecesaria. En los últimos años, la aparición de la evidencia que indica que no sólo no es alto el riesgo de sangrado sino que además la continuación de estos medicamentos en muchos casos disminuye desenlaces adversos mayores, ha llevado a replantear esta conducta. En este artículo se revisará la evidencia actual existente al respecto y se suministrarán pautas que permitan la toma de una decisión adecuada.Treatment of patients receiving therapies that affect normal hemostasis (anticoagulants and / or anti-platelet aggregators and that will undergo surgery, is one of the challenges that arise with increasing frequency in the cardiology services. Making the best therapeutic option in these patients requires a thorough understanding of the risks of bleeding in case of continuing the treatment against the risks of thrombosis or embolism in case of stopping it. By tradition, this decision has been based more on fear to the risk of bleeding, whereby in many cases this therapy has been suspended unnecessarily. In recent years, the emergence of evidence indicates that the risk of bleeding is not high and that continuation of these drugs in many cases reduce major adverse outcomes. This has led to redefine this behavior. In this article we review the current evidence available on

  20. Optimal duration of dual anti-platelet therapy after percutaneous coronary intervention: 2016 consensus position of the Italian Society of Cardiology.

    Science.gov (United States)

    Barillà, Francesco; Pelliccia, Francesco; Borzi, Mauro; Camici, Paolo; Cas, Livio Dei; Di Biase, Matteo; Indolfi, Ciro; Mercuro, Giuseppe; Montemurro, Vincenzo; Padeletti, Luigi; Filardi, Pasquale Perrone; Vizza, Carmine D; Romeo, Francesco

    2017-01-01

    Definition of the optimal duration of dual anti-platelet therapy (DAPT) is an important clinical issue, given the large number of patients having percutaneous coronary intervention (PCI), the costs and risks of pharmacologic therapy, the consequences of stent thrombosis, and the potential benefits of DAPT in preventing ischaemic outcomes beyond stent thrombosis. Nowadays, the rationale for a prolonged duration of DAPT should be not only the prevention of stent thrombosis, but also the prevention of ischaemic events unrelated to the coronary stenosis treated with index PCI. A higher predisposition to athero-thrombosis may persist for years after an acute myocardial infarction, and even stable patients with a history of prior myocardial infarction are at high risk for major adverse cardiovascular events. Recently, results of pre-specified post-hoc analyses of randomized clinical trials, including the PEGASUS-TIMI 54 trial, have shed light on strategies of DAPT in various clinical situations, and should impact the next rounds of international guidelines, and also routine practice. Accordingly, the 2015 to 2016 the Board of the Italian Society of Cardiology addressed newer recommendations on duration of DAPT based on most recent scientific information. The document states that physicians should decide duration of DAPT on an individual basis, taking into account ischaemic and bleeding risks of any given patient. Indeed, current controversy surrounding optimal duration of DAPT clearly reflects the fact that, nowadays, a one size fits all strategy cannot be reliably applied to patients treated with PCI. Indeed, patients usually have factors for both increased ischaemic and bleeding risks that must be carefully evaluated to assess the benefit/risk ratio of prolonged DAPT. Personalized management of DAPT must be seen as a dynamic prescription with regular re-evaluations of the risk/benefit to the patient according to changes in his/her clinical profile. Also, in order to

  1. Role of Human Breast Cancer Related Protein versus P-Glycoprotein as an Efflux Transporter for Benzylpenicillin: Potential Importance at the Blood-Brain Barrier.

    Science.gov (United States)

    Li, Yangfang; Wu, Qian; Li, Chen; Liu, Ling; Du, Kun; Shen, Jin; Wu, Yuqin; Zhao, Xiaofen; Zhao, Mei; Bao, Lingyun; Gao, Jin; Keep, Richard F; Xiang, Jianming

    2016-01-01

    While the blood-brain barrier (BBB) protects the brain by controlling the access of solutes and toxic substances to brain, it also limits drug entry to treat central nervous system disorders. Many drugs are substrates for ATP-binding cassette (ABC) transporters at the BBB that limit their entry into the brain. The role of those transporters in limiting the entry of the widely prescribed therapeutic, benzylpenicillin, has produced conflicting results. This study investigated the possible potential involvement of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), two ABC transporters, in benzylpenicillin transport at BBB in human using MDCKII cells overexpressing those transporters as well as pharmacological inhibition. MDCKII cells overexpressing human BCRP (MDCKII-BCRP) but not those overexpressing human P-gp (MDCKII-MDR cells) had reduced [3H]benzylpenicillin uptake. Similarly, inhibiting BCRP increased [3H]benzylpenicillin uptake in MDCKII-BCRP cells, while inhibiting P-gp in MDCKII-MDR cells had no effect on uptake although there was evidence that benzylpenicillin is a substrate for canine P-gp. While inhibiting BCRP affected [3H]benzylpenicillin cell concentrations it did not affect transepithelial flux in MDCKII-BCRP cells. In summary, the results indicate that human BCRP and not human P-gp is involved in benzylpenicillin transport. However, targeting BCRP alone was not sufficient to alter transepithelial flux in MDCKII cells. Whether it would be sufficient to alter blood-to-brain flux at the human BBB remains to be investigated.

  2. Interaction of the recently approved anticancer drug nintedanib with human acute phase reactant α 1-acid glycoprotein

    Science.gov (United States)

    Abdelhameed, Ali Saber; Ajmal, Mohammad Rehan; Ponnusamy, Kalaiarasan; Subbarao, Naidu; Khan, Rizwan Hasan

    2016-07-01

    A comprehensive study of the interaction of the newly approved tyrosine kinase inhibitor, Nintedanib (NTB) and Alpha-1 Acid Glycoprotein (AAG) has been carried out by utilizing UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism, dynamic light scattering and molecular docking techniques. The obtained results showed enhancement of the UV-Vis peak of the protein upon binding to NTB with the fluorescence intensity of AAG is being quenched by NTB via the formation of ground state complex (i.e. Static quenching). Forster distance (Ro) obtained from fluorescence resonance energy transfer (FRET) is found to be 2.3 nm. The calculated binding parameters from the modified Stern-Volmer equation showed that NTB binds to AAG with a binding constant in the order of 103. Conformational alteration of the protein upon its binding to NTB was confirmed by the circular dichroism. Dynamic light scattering results showed that the binding interaction of NTB leads to the reduction in hydrodynamic radii of AAG. Dynamic molecular docking results showed that the NTB fits into the central binding cavity in AAG and hydrophobic interaction played the key role in the binding process also the docking studies were performed with methotrexate and clofarabine drugs to look into the common binding regions of these drugs on AAG molecule, it was found that five amino acid residues namely Phe 113, Arg 89, Tyr 126, Phe 48 and Glu 63 were common among the binding regions of three studied drugs this phenomenon of overlapping binding regions may influence the drug transport by the carrier molecule in turn affecting the metabolism of the drug and treatment outcome.

  3. Functional stability of unliganded envelope glycoprotein spikes among isolates of human immunodeficiency virus type 1 (HIV-1.

    Directory of Open Access Journals (Sweden)

    Nitish Agrawal

    Full Text Available The HIV-1 envelope glycoprotein (Env spike is challenging to study at the molecular level, due in part to its genetic variability, structural heterogeneity and lability. However, the extent of lability in Env function, particularly for primary isolates across clades, has not been explored. Here, we probe stability of function for variant Envs of a range of isolates from chronic and acute infection, and from clades A, B and C, all on a constant virus backbone. Stability is elucidated in terms of the sensitivity of isolate infectivity to destabilizing conditions. A heat-gradient assay was used to determine T(90 values, the temperature at which HIV-1 infectivity is decreased by 90% in 1 h, which ranged between ∼40 to 49°C (n = 34. For select Envs (n = 10, the half-lives of infectivity decay at 37°C were also determined and these correlated significantly with the T(90 (p = 0.029, though two 'outliers' were identified. Specificity in functional Env stability was also evident. For example, Env variant HIV-1(ADA was found to be labile to heat, 37°C decay, and guanidinium hydrochloride but not to urea or extremes of pH, when compared to its thermostable counterpart, HIV-1(JR-CSF. Blue native PAGE analyses revealed that Env-dependent viral inactivation preceded complete dissociation of Env trimers. The viral membrane and membrane-proximal external region (MPER of gp41 were also shown to be important for maintaining trimer stability at physiological temperature. Overall, our results indicate that primary HIV-1 Envs can have diverse sensitivities to functional inactivation in vitro, including at physiological temperature, and suggest that parameters of functional Env stability may be helpful in the study and optimization of native Env mimetics and vaccines.

  4. Attenuated Human Parainfluenza Virus Type 1 (HPIV1) Expressing the Fusion Glycoprotein of Human Respiratory Syncytial Virus (RSV) as a Bivalent HPIV1/RSV Vaccine

    Science.gov (United States)

    Mackow, Natalie; Amaro-Carambot, Emérito; Liang, Bo; Surman, Sonja; Lingemann, Matthias; Yang, Lijuan; Collins, Peter L.

    2015-01-01

    ABSTRACT Live attenuated recombinant human parainfluenza virus type 1 (rHPIV1) was investigated as a vector to express the respiratory syncytial virus (RSV) fusion (F) glycoprotein, to provide a bivalent vaccine against RSV and HPIV1. The RSV F gene was engineered to include HPIV1 transcription signals and inserted individually into three gene locations in each of the two attenuated rHPIV1 backbones. Each backbone contained a single previously described attenuating mutation that was stabilized against deattenuation, specifically, a non-temperature-sensitive deletion mutation involving 6 nucleotides in the overlapping P/C open reading frames (ORFs) (CΔ170) or a temperature-sensitive missense mutation in the L ORF (LY942A). The insertion sites in the genome were pre-N (F1), N-P (F2), or P-M (F3) and were identical for both backbones. In vitro, the presence of the F insert reduced the rate of virus replication, but the final titers were the same as the final titer of wild-type (wt) HPIV1. High levels of RSV F expression in cultured cells were observed with rHPIV1-CΔ170-F1, -F2, and -F3 and rHPIV1-LY942A-F1. In hamsters, the rHPIV1-CΔ170-F1, -F2, and -F3 vectors were moderately restricted in the nasal turbinates, highly restricted in lungs, and genetically stable in vivo. Among the CΔ170 vectors, the F1 virus was the most immunogenic and protective against wt RSV challenge. The rHPIV1-LY942A vectors were highly restricted in vivo and were not detectably immunogenic or protective, indicative of overattenuation. The CΔ170-F1 construct appears to be suitably attenuated and immunogenic for further development as a bivalent intranasal pediatric vaccine. IMPORTANCE There are no vaccines for the pediatric respiratory pathogens RSV and HPIV. We are developing live attenuated RSV and HPIV vaccines for use in virus-naive infants. Live attenuated RSV strains in particular are difficult to develop due to their poor growth and physical instability, but these obstacles could be

  5. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V.; Xia, Di

    2016-07-27

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space groupP1), with unit-cell parametersa= 40.67,b= 44.91,c= 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  6. Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1).

    Science.gov (United States)

    Kwong, P D; Wyatt, R; Desjardins, E; Robinson, J; Culp, J S; Hellmig, B D; Sweet, R W; Sodroski, J; Hendrickson, W A

    1999-02-12

    The extensive glycosylation and conformational mobility of gp120, the envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1), pose formidable barriers for crystallization. To surmount these difficulties, we used probability analysis to determine the most effective crystallization approach and derive equations which show that a strategy, which we term variational crystallization, substantially enhances the overall probability of crystallization for gp120. Variational crystallization focuses on protein modification as opposed to crystallization screening. Multiple variants of gp120 were analyzed with an iterative cycle involving a limited set of crystallization conditions and biochemical feedback on protease sensitivity, glycosylation status, and monoclonal antibody binding. Sources of likely conformational heterogeneity such as N-linked carbohydrates, flexible or mobile N and C termini, and variable internal loops were reduced or eliminated, and ligands such as CD4 and antigen-binding fragments (Fabs) of monoclonal antibodies were used to restrict conformational mobility as well as to alter the crystallization surface. Through successive cycles of manipulation involving 18 different variants, we succeeded in growing six different types of gp120 crystals. One of these, a ternary complex composed of gp120, its receptor CD4, and the Fab of the human neutralizing monoclonal antibody 17b, diffracts to a minimum Bragg spacing of at least 2.2 A and is suitable for structural analysis.

  7. Circular dichroism and absorption spectroscopic data reveal binding of the natural cis-carotenoid bixin to human alpha1-acid glycoprotein.

    Science.gov (United States)

    Zsila, Ferenc; Molnár, Péter; Deli, József; Lockwood, Samuel F

    2005-08-01

    Using circular dichroism (CD) and electronic absorption spectroscopy techniques, interaction of the natural dietary cis-carotenoid bixin with an important human plasma protein in vitro was demonstrated for the first time. The induced CD spectra of bixin obtained under physiological conditions (pH 7.4, 37 degrees C) revealed its binding to the serum acute-phase reactant alpha(1)-acid glycoprotein (AGP), a member of the lipocalin protein family. Spectral features of the extrinsic Cotton effects of bixin suggested the inclusion of a single, chirally distorted ligand molecule into the asymmetric protein environment. Compared with the absorption spectra obtained in ethanol and benzene, the strong red shift of the main absorption peak of AGP-bound bixin indicated that the proposed binding site was rich in aromatic residues, and also suggested that hydrophobic interactions were involved in the binding. Using the data obtained from the CD titration experiments, the association constant (Ka=4.5x10(5)M-1) and stoichiometry of the binding (0.15) were calculated. The low value of the stoichiometry was attributed to the structural polymorphism of AGP. To the authors' knowledge, the current study represents the first human lipocalin protein for which carotenoid binding affinity has been explored in vitro with these techniques.

  8. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells.

    Directory of Open Access Journals (Sweden)

    Meron Mengistu

    2015-03-01

    Full Text Available The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step

  9. Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds.

    Science.gov (United States)

    Madani, Navid; Princiotto, Amy M; Easterhoff, David; Bradley, Todd; Luo, Kan; Williams, Wilton B; Liao, Hua-Xin; Moody, M Anthony; Phad, Ganesh E; Vázquez Bernat, Néstor; Melillo, Bruno; Santra, Sampa; Smith, Amos B; Karlsson Hedestam, Gunilla B; Haynes, Barton; Sodroski, Joseph

    2016-05-15

    The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus

  10. Genetic Mapping and Functional Studies of a Natural Inhibitor of the Insulin Receptor Tyrosine Kinase: The Mouse Ortholog of Human α2-HS Glycoprotein

    Science.gov (United States)

    Cintrón, Vivian J.; Ko, Minoru S. H.; Chi, Kenneth D.; Gross, Jason P.; Srinivas, Pothur R.; Goustin, Anton Scott

    2000-01-01

    Fetuin/α2-HS glycoprotein (α2-HSG) homologs have been identified in several species including rat, sheep, pig, rabbit, guinea pig, cattle, mouse and human. Multiple physiological roles for these homologs have been suggested, including ability to bind to hydroxyapatite crystals and to specifically inhibit the tyrosine kinase (TK) activity of the insulin receptor (IR). In this study we report the identification, cloning, and characterization of the mouse Ahsg gene and its function as an IR-TK inhibitor. Genomic clones derived from a mouse Svj 129 genomic library were sequenced in order to characterize the intron–exon organization of the mouse Ahsg gene, including an 875 bp subclone containing 154 bp upstream from the transcription start site, the first exon, and part of the first intron. A second genomic subclone harboring a 3.45 kb Bgl II fragment contained exons 2, 3 and 4 in addition to two adjacent elements within the first intron-a repetitive element of the B1 family (92 bp) and a 271 bp tract of (T,C)n * (A,G)n. We have mapped mouse Ahsg at 16 cM adjacent to the Diacylglycerol kinase 3 (Dagk3) gene on chromosome 16 by genotyping interspecific backcross panels between C57BL/6J and Mus spretus. The position is syntenic with human chromosome 3q27, where the human AHSG gene resides. Using recombinant mouse α2-HSG expressed from a recombinant baculovirus, we demonstrate that mouse α2-HSG inhibits insulin–stimulated IR autophosphorylation and IR-TKA in vitro. In addition, mouse α2-HSG (25μg/ml) completely abolishes insulin-induced DNA synthesis in H-35 rat hepatoma cells. Based on the sequence data and functional analysis, we conclude that the mouse Ahsg gene is the true ortholog of the human AHSG gene. PMID:11467416

  11. Introduction of Exogenous Epitopes in the Variable Regions of the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein: Effect on Viral Infectivity and the Neutralization Phenotype▿

    Science.gov (United States)

    Wallace, Aaron; Stamatatos, Leonidas

    2009-01-01

    In this study we examined whether human immunodeficiency virus type 1 (HIV-1) is equally susceptible to neutralization by a given antibody when the epitope of this antibody is introduced at different positions within the viral envelope glycoprotein (Env). To this end, we introduced two exogenous “epitope tags” at different locations within three major Env regions in two distinct HIV-1 isolates. We examined how the introduction of the exogenous epitopes affects Env expression, Env incorporation into virions, Env fusogenic potential, and viral susceptibility to neutralization. Our data indicate that even within the same Env region, the exact positioning of the epitope impacts the susceptibility of the virus to neutralization by the antibody that binds to that epitope. Our data also indicate that even if the same epitope is introduced in the exact same position on two different Envs, its exposure and, as a result, the neutralization susceptibility of the virus, can be very different. In contrast to the findings of previous studies conducted with HIV-1 isolates other than those used here, but in agreement with results obtained with simian immunodeficiency virus, we observed that tagging of the fourth variable region of Env (V4) did not result in neutralization by the anti-tag antibodies. Our data indicate that epitopes in V4 are not properly exposed within the functional HIV-1 trimeric Env spike, suggesting that V4 may not be a good target for vaccine-elicited neutralizing antibodies. PMID:19494007

  12. Introduction of exogenous epitopes in the variable regions of the human immunodeficiency virus type 1 envelope glycoprotein: effect on viral infectivity and the neutralization phenotype.

    Science.gov (United States)

    Wallace, Aaron; Stamatatos, Leonidas

    2009-08-01

    In this study we examined whether human immunodeficiency virus type 1 (HIV-1) is equally susceptible to neutralization by a given antibody when the epitope of this antibody is introduced at different positions within the viral envelope glycoprotein (Env). To this end, we introduced two exogenous "epitope tags" at different locations within three major Env regions in two distinct HIV-1 isolates. We examined how the introduction of the exogenous epitopes affects Env expression, Env incorporation into virions, Env fusogenic potential, and viral susceptibility to neutralization. Our data indicate that even within the same Env region, the exact positioning of the epitope impacts the susceptibility of the virus to neutralization by the antibody that binds to that epitope. Our data also indicate that even if the same epitope is introduced in the exact same position on two different Envs, its exposure and, as a result, the neutralization susceptibility of the virus, can be very different. In contrast to the findings of previous studies conducted with HIV-1 isolates other than those used here, but in agreement with results obtained with simian immunodeficiency virus, we observed that tagging of the fourth variable region of Env (V4) did not result in neutralization by the anti-tag antibodies. Our data indicate that epitopes in V4 are not properly exposed within the functional HIV-1 trimeric Env spike, suggesting that V4 may not be a good target for vaccine-elicited neutralizing antibodies.

  13. Human MHC-II with Shared Epitope Motifs Are Optimal Epstein-Barr Virus Glycoprotein 42 Ligands—Relation to Rheumatoid Arthritis

    Science.gov (United States)

    Trier, Nicole; Izarzugaza, Jose; Chailyan, Anna; Marcatili, Paolo; Houen, Gunnar

    2018-01-01

    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder of unknown etiology, which is characterized by inflammation in the synovium and joint damage. Although the pathogenesis of RA remains to be determined, a combination of environmental (e.g., viral infections) and genetic factors influence disease onset. Especially genetic factors play a vital role in the onset of disease, as the heritability of RA is 50–60%, with the human leukocyte antigen (HLA) alleles accounting for at least 30% of the overall genetic risk. Some HLA-DR alleles encode a conserved sequence of amino acids, referred to as the shared epitope (SE) structure. By analyzing the structure of a HLA-DR molecule in complex with Epstein-Barr virus (EBV), the SE motif is suggested to play a vital role in the interaction of MHC II with the viral glycoprotein (gp) 42, an essential entry factor for EBV. EBV has been repeatedly linked to RA by several lines of evidence and, based on several findings, we suggest that EBV is able to induce the onset of RA in predisposed SE-positive individuals, by promoting entry of B-cells through direct contact between SE and gp42 in the entry complex. PMID:29361739

  14. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120.

    Science.gov (United States)

    Milligan, E D; Mehmert, K K; Hinde, J L; Harvey, L O; Martin, D; Tracey, K J; Maier, S F; Watkins, L R

    2000-04-07

    Astrocytes and microglia in the spinal cord have recently been reported to contribute to the development of peripheral inflammation-induced exaggerated pain states. Both lowering of thermal pain threshold (thermal hyperalgesia) and lowering of response threshold to light tactile stimuli (mechanical allodynia) have been reported. The notion that spinal cord glia are potential mediators of such effects is based on the disruption of these exaggerated pain states by drugs thought to preferentially affect glial function. Activation of astrocytes and microglia can release many of the same substances that are known to mediate thermal hyperalgesia and mechanical allodynia. The aim of the present series of studies was to determine whether exaggerated pain states could also be created in rats by direct, intraspinal immune activation of astrocytes and microglia. The immune stimulus used was peri-spinal (intrathecal, i.t.) application of the Human Immunodeficiency Virus type 1 (HIV-1) envelope glycoprotein, gp120. This portion of HIV-1 is known to bind to and activate microglia and astrocytes. Robust thermal hyperalgesia (tail-flick, TF, and Hargreaves tests) and mechanical allodynia (von Frey and touch-evoked agitation tests) were observed in response to i.t. gp120. Heat denaturing of the complex protein structure of gp120 blocked gp120-induced thermal hyperalgesia. Lastly, both thermal hyperalgesia and mechanical allodynia to i.t. gp120 were blocked by spinal pretreatment with drugs (fluorocitrate and CNI-1493) thought to preferentially disrupt glial function.

  15. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga [Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid (Spain); CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain); Luque, Daniel; Terrón, María C. [Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain); Calder, Lesley J. [National Institute for Medical Research, MRC, Mill Hill, London NW7 1AA (United Kingdom); Melero, José A., E-mail: jmelero@isciii.es [Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid (Spain); CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain)

    2014-07-15

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV{sub F} occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV{sub F}, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV{sub F} at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy.

  16. Insights into the molecular mechanism of action of Celastraceae sesquiterpenes as specific, non-transported inhibitors of human P-glycoprotein.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Reyes, Carolina P; Pérez-Lomas, Antonio L; Jiménez, Ignacio A; Gamarro, Francisco; Castanys, Santiago

    2006-01-01

    Dihydro-beta-agarofuran sesquiterpenes from Celastraceae have been recently shown to bind to human P-glycoprotein (Pgp), functioning as specific, mixed-type inhibitors of its drug transport activity, as well as multidrug resistance (MDR) modulators in vitro. However, nothing is known about whether such compounds are themselves transported by Pgp, or whether they affect Pgp expression as well as its activity, or about the location of their binding site within the protein. We performed transport experiments with a newly synthesized fluorescent sesquiterpene derivative, which retains the anti-Pgp activity of its natural precursor. This probe was poorly transported by Pgp, MRP1, MRP2 and BCRP transporters, compared with classical MDR substrates. Moreover, Pgp did not confer cross-resistance to the most potent dihydro-beta-agarofurans, which did not affect Pgp expression levels in several MDR cell lines. Finally, we observed competitive and non-competitive interactions between one of such dihydro-beta-agarofurans (Mama12) and classical Pgp modulators such as cyclosporin A, verapamil, progesterone, vinblastine and GF120918. These findings suggest that multidrug ABC transporters do not confer resistance to dihydro-beta-agarofurans and could not affect their absorption and biodistribution in the body. Moreover, we mapped their binding site(s) within Pgp, which may prove useful for the rational design of improved modulators based on the structure of dihydro-beta-agarofurans.

  17. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    Science.gov (United States)

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-11-04

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization.

  18. ANTIPSYCHOTICS REVERSE P-GLYCOPROTEIN-MEDIATED DOXORUBICIN RESISTANCE IN HUMAN UTERINE SARCOMA MES-SA/Dx5 CELLS: A NOVEL APPROACH TO CANCER CHEMOTHERAPY.

    Science.gov (United States)

    Angelini, A; Ciofani, G; Conti, P

    2015-01-01

    Multidrug resistance (MDR) mediated by P-glycoprotein (Pgp) remains one of the major obstacles to effective cancer chemotherapy. Several chemosensitizers have been used in vivo and in vitro to reverse MDR but have exhibited several unwanted side effects. Antipsychotics are often administered to treat psychiatric disorders such as delirium, anxiety and sleep disorders in cancer patients during chemotherapy. The present in vitro study, examined the effects of two common antipsychotic compounds, haloperidol and risperidone, and a natural compound such as theobromine on reversing MDR Pgp-mediated, to evaluate their potential use as chemosensitizing agents. The human doxorubicin (doxo) resistant uterine sarcoma cells (MES-SA/Dx5) that overexpress Pgp (100-fold), were treated with the antipsychotic alone (1, 10 and 20 μM) or in combination with different concentrations of doxo (2, 4 and 8 μM). The accumulation and cytotoxicity of doxo (MTT assay) and cellular GSH content (GSH assay) in comparison with verapamil, a well-known Pgp inhibitor, used as reference molecule were examined. It was found that the three compounds significantly enhanced the intracellular accumulation of doxo in resistant cancer cells, when compared with cells receiving doxo alone (p 30%) in resistant cells, when compared to untreated control cells (ptheobromine showed to be an effective Pgp inhibitor with the lowest toxicity.

  19. Alpha2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans.

    Science.gov (United States)

    Stefan, Norbert; Hennige, Anita M; Staiger, Harald; Machann, Jürgen; Schick, Fritz; Kröber, Stefan M; Machicao, Fausto; Fritsche, Andreas; Häring, Hans-Ulrich

    2006-04-01

    The alpha(2)-Heremans-Schmid glycoprotein (AHSG; fetuin-A in animals) impairs insulin signaling in vitro and in rodents. Whether AHSG is associated with insulin resistance in humans is under investigation. In an animal model of diet-induced obesity that is commonly associated with hepatic steatosis, an increase in Ahsg mRNA expression was observed in the liver. Therefore, we hypothesized that the AHSG plasma protein, which is exclusively secreted by the liver in humans, may not only be associated with insulin resistance but also with fat accumulation in the liver. Data from 106 healthy Caucasians without type 2 diabetes were included in cross-sectional analyses. A subgroup of 47 individuals had data from a longitudinal study. Insulin sensitivity was measured by a euglycemic-hyperinsulinemic clamp, and liver fat was determined by (1)H magnetic resonance spectroscopy. AHSG plasma levels, adjusted for age, sex, and percentage of body fat, were higher in subjects with impaired glucose tolerance compared with subjects with normal glucose tolerance (P = 0.006). AHSG plasma levels were negatively associated with insulin sensitivity (r = -0.22, P = 0.03) in cross-sectional analyses. Moreover, they were positively associated with liver fat (r = 0.27, P = 0.01). In longitudinal analyses, under weight loss, a decrease in liver fat was accompanied by a decrease in AHSG plasma concentrations. Furthermore, high AHSG levels at baseline predicted less increase in insulin sensitivity (P = 0.02). We found that high AHSG plasma levels are associated with insulin resistance in humans. Moreover, AHSG plasma levels are elevated in subjects with fat accumulation in the liver. This is consistent with a potential role of AHSG as a link between fatty liver and insulin resistance.

  20. Zinc-α2-Glycoprotein Modulates AKT-Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase.

    Science.gov (United States)

    Ceperuelo-Mallafré, Victòria; Ejarque, Miriam; Duran, Xavier; Pachón, Gisela; Vázquez-Carballo, Ana; Roche, Kelly; Núñez-Roa, Catalina; Garrido-Sánchez, Lourdes; Tinahones, Francisco J; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.

  1. Zinc-α2-Glycoprotein Modulates AKT-Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase.

    Directory of Open Access Journals (Sweden)

    Victòria Ceperuelo-Mallafré

    Full Text Available Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes.ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR.ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG.ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.

  2. Salivary Mucin 19 Glycoproteins

    Science.gov (United States)

    Culp, David J.; Robinson, Bently; Cash, Melanie N.; Bhattacharyya, Indraneel; Stewart, Carol; Cuadra-Saenz, Giancarlo

    2015-01-01

    Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19−/− mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19−/− mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19−/− mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19−/− mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed. PMID:25512380

  3. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Russell, Rodney S.; Goossens, Vera

    2008-01-01

    The relative importance of humoral and cellular immunity in the prevention or clearance of hepatitis C virus (HCV) infection is poorly understood. However, there is considerable evidence that neutralizing antibodies are involved in disease control. Here we describe the detailed analysis of human...

  4. Novel interactions of domain III from the envelope glycoprotein of dengue 2 virus with human plasma proteins.

    Science.gov (United States)

    Huerta, Vivian; Ramos, Yassel; Yero, Alexis; Pupo, Dianne; Martín, Dayron; Toledo, Patricia; Fleitas, Noralvis; Gallien, Sebastien; Martín, Alejandro M; Márquez, Gabriel J; Pérez-Riverol, Yasset; Sarría, Mónica; Guirola, Osmany; González, Luis J; Domon, Bruno; Chinea, Glay

    2016-01-10

    Blood cells and plasma are important media for the four serotypes of dengue virus (DENV1-4) spreading into an infected person. Thus, interactions with human plasma proteins are expected to be decisive in the course of the viral infection. Affinity purification followed by MS analysis (AP/MS) was used to isolate and identify plasma-derived proteins capable to interact with a recombinant protein comprising the domain III of the envelope protein of DENV2 (DIIIE2). The elution of the AP potently inhibits DENV2 infection. Twenty-nine proteins were identified using a label-free approach as specifically captured by DIIIE2. Of these, a direct interaction with C reactive protein, thrombin and Inter-alpha-inhibitor complexes was confirmed by ELISA. Results provide further evidence of a significant representation of proteins from complement and coagulation cascades on DENV2 interactome in human plasma and stand out the domain III of the viral envelope protein as participant on these interactions. A functional clustering analysis highlights the presence of three structural motifs among putative DIIIE2-binding proteins: hydroxylation and EGF-like calcium-binding- and Gla domains. Early cycles of dengue virus replication take place in human blood cells. Thus, the characterization of the interactome of dengue virus proteins in human plasma can lead to the identification of pivotal interactions for the infection that can eventually constitute the target for the development of methods to control dengue virus-caused disease. In this work we identified 29 proteins from human plasma that potentially interact with the envelope protein of dengue 2 virus either directly or through co-complex formation. C reactive protein, thrombin and Inter-alpha-inhibitor complexes were validated as interactors of the domain III of the envelope protein of dengue 2. Results highlight the presence of three structural motifs among putative DIIIE2-binding proteins: hydroxylation and EGF-like calcium

  5. Modulation of P-glycoprotein by Stemona alkaloids in human multidrug resistance leukemic cells and structural relationships.

    Science.gov (United States)

    Umsumarng, Sonthaya; Pitchakarn, Pornsiri; Yodkeeree, Supachai; Punfa, Wanisa; Mapoung, Sariya; Ramli, Rosdayati Alino; Pyne, Stephen G; Limtrakul, Pornngarm

    2017-10-15

    Multidrug resistance (MDR) is a major reason for the failure of chemotherapy in the treatment of cancer patients. P-gp over-expression in MDR cancer cells is a multifactorial phenomenon with biochemical resistance mechanisms. Stemofoline (STF), isolated from Stemona bukillii, has been reported to be an MDR reversing compound. This study investigated whether other Stemona alkaloids that had been purified from Stemonaceae plants exerted MDR modulation activity. MTT assay was performed to determine the MDR reversing property of the alkaloids. Modulation of P-gp function by these compounds was investigated using cell cycle analysis and P-gp fluorescent substrate accumulation assays. P-gp expression was determined by Western blot analysis. We preliminarily examined the safety of these compounds in normal human fibroblasts and human peripheral blood mononuclear cells (PBMCs) using the MTT assay, and in red blood cells (human and rat) through in vitro hemolysis assays. Three of the eight alkaloids tested, isostemofoline (ISTF), 11Z -didehydrostemofoline (11Z-DSTF) and 11E-didehydrostemofoline (11E-DSTF), enhanced the chemotherapeutic sensitivity of MDR leukemic K562/Adr cells, which overexpressed P-gp. The P-gp functional studies showed that these three alkaloids increased the accumulation of P-gp substrates, calcein-AM (C-AM) and rhodamine123 (Rho 123) in K562/Adr cells, while this effect was not seen in drug sensitive parental K562 cells. Whereas, the alkaloids did not alter P-gp expression as was determined by Western blotting analysis. The alkaloids reversed MDR via the inhibition of P-gp function. For pharmaceutical safety testing, the alkaloids were found to be not toxic to normal human fibroblasts and PBMCs. Moreover, the effective compounds did not induce hemolysis in either human or rat erythrocytes. These compounds may be introduced as potential candidate molecules for treating cancers exhibiting P-gp-mediated MDR. Copyright © 2017 Elsevier GmbH. All rights

  6. Salivary mucin 19 glycoproteins: innate immune functions in Streptococcus mutans-induced caries in mice and evidence for expression in human saliva.

    Science.gov (United States)

    Culp, David J; Robinson, Bently; Cash, Melanie N; Bhattacharyya, Indraneel; Stewart, Carol; Cuadra-Saenz, Giancarlo

    2015-01-30

    Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19(-/-) mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19(-/-) mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19(-/-) mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19(-/-) mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Enhanced and sustained activation of human B cells by anti-immunoglobulin conjugated to the EBV glycoprotein gp350.

    Science.gov (United States)

    Goeckeritz, B E; Lees, A; Vos, Q; Tsokos, G C; Kuhlbusch, K; Mond, J J

    2000-03-01

    We coupled a monoclonal anti-human IgD to the gp350 gylcoprotein of Epstein-Barr virus, which has been shown to bind to the complement receptor 2 (CR2), and compared its B cell stimulatory ability to that of anti-Ig and to a multivalent anti-Ig-dextran conjugate. The anti-Ig-gp350 conjugate stimulated higher levels of human B cell proliferation in vitro than did anti-Ig or anti-Ig conjugated to control viral protein, comparable to the proliferation stimulated by the multivalent anti-Ig-dextran. This enhanced proliferation was dependent on binding of the conjugate to CR2, inasmuch as an anti-CD2 antibody blocked the enhanced proliferative response. This enhanced proliferative response was associated with prolonged elevations of intracellular ionized calcium, which was comparable to the response stimulated by anti-Ig-dextran. These findings suggest the use of gp350 as a carrier molecule for weakly immunogenic peptides or antigens which, when bound to gp350, would enhance B cell clonal expansion and activation of antigen-specific B cells.

  8. Attenuated Human Parainfluenza Virus Type 1 Expressing the Respiratory Syncytial Virus (RSV) Fusion (F) Glycoprotein from an Added Gene: Effects of Prefusion Stabilization and Packaging of RSV F.

    Science.gov (United States)

    Liu, Xiang; Liang, Bo; Ngwuta, Joan; Liu, Xueqiao; Surman, Sonja; Lingemann, Matthias; Kwong, Peter D; Graham, Barney S; Collins, Peter L; Munir, Shirin

    2017-11-15

    Human respiratory syncytial virus (RSV) is the most prevalent worldwide cause of severe respiratory tract infection in infants and young children. Human parainfluenza virus type 1 (HPIV1) also causes severe pediatric respiratory illness, especially croup. Both viruses lack vaccines. Here, we describe the preclinical development of a bivalent RSV/HPIV1 vaccine based on a recombinant HPIV1 vector, attenuated by a stabilized mutation, that expresses RSV F protein modified for increased stability in the prefusion (pre-F) conformation by previously described disulfide bond (DS) and hydrophobic cavity-filling (Cav1) mutations. RSV F was expressed from the first or second gene position as the full-length protein or as a chimeric protein with its transmembrane and cytoplasmic tail (TMCT) domains substituted with those of HPIV1 F in an effort to direct packaging in the vector particles. All constructs were recovered by reverse genetics. The TMCT versions of RSV F were packaged in the rHPIV1 particles much more efficiently than their full-length counterparts. In hamsters, the presence of the RSV F gene, and in particular the TMCT versions, was attenuating and resulted in reduced immunogenicity. However, the vector expressing full-length RSV F from the pre-N position was immunogenic for RSV and HPIV1. It conferred complement-independent high-quality RSV-neutralizing antibodies at titers similar to those of wild-type RSV and provided protection against RSV challenge. The vectors exhibited stable RSV F expression in vitro and in vivo In conclusion, an attenuated rHPIV1 vector expressing a pre-F-stabilized form of RSV F demonstrated promising immunogenicity and should be further developed as an intranasal pediatric vaccine.IMPORTANCE RSV and HPIV1 are major viral causes of acute pediatric respiratory illness for which no vaccines or suitable antiviral drugs are available. The RSV F glycoprotein is the major RSV neutralization antigen. We used a rHPIV1 vector, bearing a

  9. CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line

    Directory of Open Access Journals (Sweden)

    Leyla Norouzi-Barough

    2018-02-01

    Full Text Available Objective(s: Multidrug resistance (MDR is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp, a member of ATP-binding cassette (ABC transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression in adriamycin resistant (A2780/ADR ovarian cancer cell line and evaluate the sensitivity changes to doxorubicin. Materials and Methods: Three single-guide RNAs (sgRNAs targeting the fourth and fifth exons of human ABCB1 gene were designed in this study. Expression level of ABCB1 was detected using quantitative real time PCR (qRT-PCR after co-transfection of all three sgRNAs into A2780/ADR cell line and subsequent antibiotic selection. Drug sensitivity to doxorubicin was determined by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results: The results showed that CRISPR/Cas9 system could significantly reduce the expression of P-gp. The dramatic decline in ABCB1 gene expression was associated with increased sensitivity of cells transfected with sgRNAs to doxorubicin. Conclusion: Based on the results of this study, it is concluded that the CRISPR-based systems, used in the present study, effectively down-regulated the target gene and acted as an ideal and cost-effective tool for gene editing of A2780/ADR cell line resulting in restoration of nonmalignant phenotype.

  10. Development and Validation of an In-Cell Western for Quantifying P-Glycoprotein Expression in Human Brain Microvascular Endothelial (hCMEC/D3) Cells.

    Science.gov (United States)

    McInerney, Mitchell P; Pan, Yijun; Short, Jennifer L; Nicolazzo, Joseph A

    2017-09-01

    An in-cell western (ICW) protocol detecting the relative expression of P-glycoprotein (P-gp) in human cerebro-microvascular endothelial cells (hCMEC/D3) was developed and optimized, with the intention of improving throughput relative to western blotting (WB). For validation of the ICW protocol, hCMEC/D3 cells were incubated with known P-gp upregulators (10 μM rifampicin and 5 μM SR12813) and treated with siRNA targeted against MDR1, before measuring changes in P-gp expression, using both ICW and WB in parallel. To confirm a relationship between the detected P-gp expression and function, the uptake of the P-gp substrate rhodamine-123 was assessed following SR12813 treatment. Rifampicin and SR12813 significantly upregulated P-gp expression (1.5-fold and 1.9-fold, respectively) compared to control, as assessed by the ICW protocol. WB analysis of the same treatments revealed 1.4-fold and 1.5-fold upregulations. MDR1 siRNA reduced P-gp abundance by 20% and 35% when assessed by ICW and WB, respectively. SR12813 treatment reduced rhodamine-123 uptake by 18%, indicating that the observed changes in P-gp expression by ICW were associated with comparable functional changes. The correlation of P-gp upregulation by WB, rhodamine-123 uptake, and the ICW protocol provide validation of a new ICW method as an alternative method for quantification of P-gp in hCMEC/D3 cells. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  11. Zinc-α2-Glycoprotein Is Associated With Insulin Resistance in Humans and Is Regulated by Hyperglycemia, Hyperinsulinemia, or Liraglutide Administration

    Science.gov (United States)

    Yang, Mengliu; Liu, Rui; Li, Shu; Luo, Yu; Zhang, Yali; Zhang, Lili; Liu, Dongfang; Wang, Yaxu; Xiong, Zhengai; Boden, Guenther; Chen, Shirong; Li, Ling; Yang, Gangyi

    2013-01-01

    OBJECTIVE Zinc-α2-glycoprotein (ZAG) has been proposed to play a role in the pathogenesis of insulin resistance. Previous studies in humans and in rodents have produced conflicting results regarding the link between ZAG and insulin resistance. The objective of this study was to examine the relationships between ZAG and insulin resistance in cross-sectional and interventional studies. RESEARCH DESIGN AND METHODS Serum ZAG (determined with ELISA) was compared with various parameters related to insulin resistance in subjects with normal glucose tolerance, impaired glucose tolerance (IGT), and newly diagnosed type 2 diabetes mellitus (T2DM), and in women with or without polycystic ovary syndrome (PCOS). Euglycemic-hyperinsulinemic clamps were performed in healthy and PCOS women. Real-time RT-PCR and Western blotting were used to assess mRNA and protein expression of ZAG. The effect of a glucagon-like peptide-1 agonist on ZAG was studied in a 12-week liraglutide treatment trial. RESULTS Circulating ZAG was lower in patients with IGT and newly diagnosed T2DM than in controls. Circulating ZAG correlated positively with HDL cholesterol and adiponectin, and correlated inversely with BMI, waist-to-hip ratio, body fat percentage, triglycerides, fasting blood glucose, fasting insulin, HbA1c, and homeostasis model assessment of insulin resistance (HOMA-IR). On multivariate analysis, ZAG was independently associated with BMI, HOMA-IR, and adiponectin. ZAG mRNA and protein were decreased in adipose tissue of T2DM patients. Moreover, circulating ZAG levels were lower in women with PCOS than in women with high insulin sensitivity. Liraglutide treatment for 12 weeks significantly increased circulating ZAG levels. CONCLUSIONS We conclude that ZAG may be an adipokine associated with insulin resistance. PMID:23275352

  12. Crystal structure of the novel complex formed between zinc alpha2-glycoprotein (ZAG) and prolactin-inducible protein (PIP) from human seminal plasma.

    Science.gov (United States)

    Hassan, Md Imtaiyaz; Bilgrami, Sameeta; Kumar, Vijay; Singh, Nagendra; Yadav, Savita; Kaur, Punit; Singh, T P

    2008-12-19

    This is the first report on the formation of a complex between zinc alpha2-glycoprotein (ZAG) and prolactin-inducible protein (PIP). The complex was purified from human seminal plasma and crystallized using 20% polyethylene glycol 9000 and 5% hexaethylene glycol. The structure of the complex has been determined using X-ray crystallographic method and refined to an R(cryst) of 0.199 (R(free)=0.239). The structure of ZAG is broadly similar to the structure of serum ZAG. The scaffolding of PIP consists of seven beta-strands that are organized in the form of two antiparallel beta-pleated sheets, resulting in the formation of a sandwiched beta-sheet. The amino acid sequence of PIP contains one potential N-glycosylation site at Asn77, and the same is found glycosylated with four sugar residues. The structure of the complex shows that the beta-structure of PIP is ideally aligned with the beta-structure of domain alpha3 of ZAG to form a long interface between two proteins. The proximal beta-strands at the long interface are arranged in an antiparallel manner. There are 12 hydrogen bonds and three salt bridges between ZAG and PIP. At the two ends of vertical interface, two salt bridges are formed between pairs of Lys41-Asp233 and Lys68-Glu229. On the perpendicular interface involving alpha1-alpha2 domains of ZAG and a loop of PIP, another salt bridge is formed. The internal space at the corner of the L-shaped structure is filled with solvent molecules including a carbonate ion. The overall buried area in the complex is approximately 914 A(2), which is considerably higher than the 660 A(2) reported for the class I major histocompatibility complex structures.

  13. Distribution and localization of vinculin-talin-integrin system and dystrophin-glycoprotein complex in human skeletal muscle. Immunohistochemical study using confocal laser scanning microscopy.

    Science.gov (United States)

    Anastasi, G; Amato, A; Tarone, G; Vita, G; Monici, M C; Magaudda, L; Brancaccio, M; Sidoti, A; Trimarchi, F; Favaloro, A; Cutroneo, G

    2003-01-01

    The vinculin-talin-integrin system and the dystrophin-glycoprotein complex (DGC) are two protein systems with structural and signaling functions, allowing interaction between muscle fibers and extracellular matrix. Although numerous studies have been conducted on these systems, their localization and distribution patterns along the nonjunctional sarcolemma are not clear. On this basis, we carried out an indirect immunofluorescence study on the vastus lateralis muscle of human adults not affected by neuromuscular diseases to better define these patterns. Our results showed that all tested proteins of the two systems have a costameric distribution; all tested proteins of the two systems colocalize with each other (about 90-95% of the cases); only alpha-sarcoglycan in a few cases (about 6%) does not colocalize with other proteins; in about 9-10% of the cases, dystrophin and beta-dystroglycan colocalize partially with other proteins; all tested proteins can be localized in different fibers, both in the region of the sarcolemma over I or A bands. The colocalization between the vinculin-talin-integrin and DGC systems may imply their functional interaction involving the structural aspect, by providing a stronger adhesion between sarcolemma and extracellular matrix in well-defined regions of the muscle fiber. Besides, their colocalization may suggest the existence of a mechanism of mutual modulation of the transmitted signals. This reciprocal control may determine, in different conditions, the prevalence of one system over another with a consequent transmission of different messages to the sarcolemma-associated cytoskeleton. Copyright 2003 S. Karger AG, Basel

  14. Increasing BMI is associated with reduced expression of P-glycoprotein (ABCB1 gene) in the human brain with a stronger association in African-Americans than Caucasians

    DEFF Research Database (Denmark)

    Nielsen, Julie Vendelbo; Olesen, Rasmus Hansen; Lauridsen, Jesper Krogh

    2016-01-01

    The efflux pump, p-glycoprotein, controls bioavailability and excretion of pharmaceutical compounds. In the blood-brain barrier, p-glycoprotein regulates the delivery of pharmaceutical substances to the brain, influencing efficacy and side effects for some drugs notably antipsychotics. Common side....... Using microarray data analysis from 145 neurologically sound adults, this study investigated the association between body mass index (BMI) and ABCB1 expression in the frontal cortex. Increasing BMI values were associated with a statistically significantly reduced expression of ABCB1. Investigation...

  15. Active human Cytomegalovirus infection and Glycoprotein B genotypes in Brazilian pediatric renal or hematopoietic stem cell transplantation patients

    Directory of Open Access Journals (Sweden)

    Débora de Campos Dieamant

    2010-03-01

    Full Text Available A prospective analysis of active Human Cytomegalovirus infection (HCMV was conducted on 33 pediatric renal or hematopoietic stem cell post-transplant patients. The HCMV-DNA positive samples were evaluated for the prevalence of different gB subtypes and their subsequent correlation with clinical signs. The surveillance of HCMV active infection was based on the monitoring of antigenemia (AGM and on a nested polymerase chain reaction (N-PCR for the detection of HCMV in the patients studied. Using restriction analysis of the gB gene sequence by PCR-RFLP (Restriction Fragment Length Polymorphism, different HCMV strains could be detected and classified in at least four HCMV genotypes. Thirty-three pediatric recipients of renal or bone marrow transplantation were monitored. Twenty out of thirty-three (60.6% patients demonstrated active HCMV infection. gB1 and gB2 genotypes were more frequent in this population. In this study, we observed that gB2 had correlation with reactivation of HCMV infection and that patients with mixture of genotypes did not show any symptoms of HCMV disease. Future studies has been made to confirm this.

  16. Alteration of N-glycan expression profile and glycan pattern of glycoproteins in human hepatoma cells after HCV infection.

    Science.gov (United States)

    Xiang, Tian; Yang, Ganglong; Liu, Xiaoyu; Zhou, Yidan; Fu, Zhongxiao; Lu, Fangfang; Gu, Jianguo; Taniguchi, Naoyuki; Tan, Zengqi; Chen, Xi; Xie, Yan; Guan, Feng; Zhang, Xiao-Lian

    2017-05-01

    Hepatitis C virus (HCV) infection causes chronic liver diseases, liver fibrosis and even hepatocellular carcinoma (HCC). However little is known about any information of N-glycan pattern in human liver cell after HCV infection. The altered profiles of N-glycans in HCV-infected Huh7.5.1 cell were analyzed by using mass spectrometry. Then, lectin microarray, lectin pull-down assay, reverse transcription-quantitative real time PCR (RT-qPCR) and western-blotting were used to identify the altered N-glycosylated proteins and glycosyltransferases. Compared to uninfected cells, significantly elevated levels of fucosylated, sialylated and complex N-glycans were found in HCV infected cells. Furthermore, Lens culinaris agglutinin (LCA)-binding glycoconjugates were increased most. Then, the LCA-agarose was used to precipitate the specific glycosylated proteins and identify that fucosylated modified annexin A2 (ANXA2) and heat shock protein 90 beta family member 1 (HSP90B1) was greatly increased in HCV-infected cells. However, the total ANXA2 and HSP90B1 protein levels remained unchanged. Additionally, we screened the mRNA expressions of 47 types of different glycosyltransferases and found that α1,6-fucosyltransferase 8 (FUT8) was the most up-regulated and contributed to strengthen the LCA binding capability to fucosylated modified ANXA2 and HSP90B1 after HCV infection. HCV infection caused the altered N-glycans profiles, increased expressions of FUT8, fucosylated ANXA2 and HSP90B1 as well as enhanced LCA binding to Huh7.5.1. Our results may lay the foundation for clarifying the role of N-glycans and facilitate the development of novel diagnostic biomarkers and therapeutic targets based on the increased FUT8, fucosylated ANXA2 and HSP90B1 after HCV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chimpanzee GB virus C and GB virus A E2 envelope glycoproteins contain a peptide motif that inhibits human immunodeficiency virus type 1 replication in human CD4+ T-cells

    Science.gov (United States)

    McLinden, James H.; Stapleton, Jack T.; Klinzman, Donna; Murthy, Krishna K.; Chang, Qing; Kaufman, Thomas M.; Bhattarai, Nirjal

    2013-01-01

    GB virus type C (GBV-C) is a lymphotropic virus that can cause persistent infection in humans. GBV-C is not associated with any disease, but is associated with reduced mortality in human immunodeficiency virus type 1 (HIV-1)-infected individuals. Related viruses have been isolated from chimpanzees (GBV-Ccpz) and from New World primates (GB virus type A, GBV-A). These viruses are also capable of establishing persistent infection. We determined the nucleotide sequence encoding the envelope glycoprotein (E2) of two GBV-Ccpz isolates obtained from the sera of captive chimpanzees. The deduced GBV-Ccpz E2 protein differed from human GBV-C by 31 % at the amino acid level. Similar to human GBV-C E2, expression of GBV-Ccpz E2 in a tet-off human CD4+ Jurkat T-cell line significantly inhibited the replication of diverse HIV-1 isolates. This anti-HIV-replication effect of GBV-Ccpz E2 protein was reversed by maintaining cells in doxycycline to reduce E2 expression. Previously, we found a 17 aa region within human GBV-C E2 that was sufficient to inhibit HIV-1. Although GBV-Ccpz E2 differed by 3 aa differences in this region, the chimpanzee GBV-C 17mer E2 peptide inhibited HIV-1 replication. Similarly, the GBV-A peptide that aligns with this GBV-C E2 region inhibited HIV-1 replication despite sharing only 5 aa with the human GBV-C E2 sequence. Thus, despite amino acid differences, the peptide region on both the GBV-Ccpz and the GBV-A E2 protein inhibit HIV-1 replication similar to human GBV-C. Consequently, GBV-Ccpz or GBV-A infection of non-human primates may provide an animal model to study GB virus–HIV interactions. PMID:23288422

  18. HIV-1 envelope glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  19. Drug-induced trafficking of p-glycoprotein in human brain capillary endothelial cells as demonstrated by exposure to mitomycin C.

    Science.gov (United States)

    Noack, Andreas; Noack, Sandra; Hoffmann, Andrea; Maalouf, Katia; Buettner, Manuela; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette; Alms, Dana; Römermann, Kerstin; Naim, Hassan Y; Löscher, Wolfgang

    2014-01-01

    P-glycoprotein (Pgp; ABCB1/MDR1) is a major efflux transporter at the blood-brain barrier (BBB), restricting the penetration of various compounds. In other tissues, trafficking of Pgp from subcellular stores to the cell surface has been demonstrated and may constitute a rapid way of the cell to respond to toxic compounds by functional membrane insertion of the transporter. It is not known whether drug-induced Pgp trafficking also occurs in brain capillary endothelial cells that form the BBB. In this study, trafficking of Pgp was investigated in human brain capillary endothelial cells (hCMEC/D3) that were stably transfected with a doxycycline-inducible MDR1-EGFP fusion plasmid. In the presence of doxycycline, these cells exhibited a 15-fold increase in Pgp-EGFP fusion protein expression, which was associated with an increased efflux of the Pgp substrate rhodamine 123 (Rho123). The chemotherapeutic agent mitomycin C (MMC) was used to study drug-induced trafficking of Pgp. Confocal fluorescence microscopy of single hCMEC/D3-MDR1-EGFP cells revealed that Pgp redistribution from intracellular pools to the cell surface occurred within 2 h of MMC exposure. Pgp-EGFP exhibited a punctuate pattern at the cell surface compatible with concentrated regions of the fusion protein in membrane microdomains, i.e., lipid rafts, which was confirmed by Western blot analysis of biotinylated cell surface proteins in Lubrol-resistant membranes. MMC exposure also increased the functionality of Pgp as assessed in three functional assays with Pgp substrates (Rho123, eFluxx-ID Gold, calcein-AM). However, this increase occurred with some delay after the increased Pgp expression and coincided with the release of Pgp from the Lubrol-resistant membrane complexes. Disrupting rafts by depleting the membrane of cholesterol increased the functionality of Pgp. Our data present the first direct evidence of drug-induced Pgp trafficking at the human BBB and indicate that Pgp has to be released from lipid

  20. Immunization of rabbits with highly purified, soluble, trimeric human immunodeficiency virus type 1 envelope glycoprotein induces a vigorous B cell response and broadly cross-reactive neutralization.

    Directory of Open Access Journals (Sweden)

    Gerald V Quinnan

    Full Text Available Previously we described induction of cross-reactive HIV-1 neutralizing antibody responses in rabbits using a soluble HIV-1 gp140 envelope glycoprotein (Env in an adjuvant containing monophosphoryl lipid A (MPL and QS21 (AS02A. Here, we compared different forms of the same HIV-1 strain R2 Env for antigenic and biophysical characteristics, and in rabbits characterized the extent of B cell induction for specific antibody expression and secretion and neutralizing responses. The forms of this Env that were produced in and purified from stably transformed 293T cells included a primarily dimeric gp140, a trimeric gp140 appended to a GCN4 trimerization domain (gp140-GCN4, gp140-GCN4 with a 15 amino acid flexible linker between the gp120 and gp41 ectodomain (gp140-GCN4-L, also trimeric, and a gp140 with the flexible linker purified from cell culture supernatants as either dimer (gp140-L(D or monomer (gp140-L(M. Multimeric states of the Env proteins were assessed by native gel electrophoresis and analytical ultracentrifugation. The different forms of gp140 bound broadly cross-reactive neutralizing (BCN human monoclonal antibodies (mAbs similarly in ELISA and immunoprecipitation assays. All Envs bound CD4i mAbs in the presence and absence of sCD4, as reported for the R2 Env. Weak neutralization of some strains of HIV-1 was seen after two additional doses in AS02A. Rabbits that were given a seventh dose of gp140-GCN4-L developed BCN responses that were weak to moderate, similar to our previous report. The specificity of these responses did not appear similar to that of any of the known BCN human mAbs. Induction of spleen B cell and plasma cells producing immunoglobulins that bound trimeric gp140-GCN4-L was vigorous, based on ELISpot and flow cytometry analyses. The results demonstrate that highly purified gp140-GCN4-L trimer in adjuvant elicits BCN responses in rabbits accompanied by vigorous B cell induction.

  1. Specific glycan elements determine differential binding of individual egg glycoproteins of the human parasite Schistosoma mansoni by host C-type lectin receptors

    NARCIS (Netherlands)

    Meevissen, M.H.J.; Driessen, N.N.; Smits, H.H.; Versteegh, R.; van Vliet, S.J.; van Kooijk, Y.; Schramm, G.; Deelder, A.M.; de Haas, H.; Yazdanbakhsh, M.; Hokke, C.H.

    2012-01-01

    During infection with the blood fluke Schistosoma mansoni, glycan motifs present on glycoproteins of the parasite's eggs mediate immunomodulatory effects on the host. The recognition of these glycan motifs is primarily mediated by C-type lectin receptors on dendritic cells and other cells of the

  2. Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein

    DEFF Research Database (Denmark)

    Keck, Zhenyong; Wang, Wenyan; Wang, Yong

    2013-01-01

    A challenge for hepatitis C virus (HCV) vaccine development is defining conserved epitopes that induce protective antibodies against this highly diverse virus. An envelope glycoprotein (E2) segment located at amino acids (aa) 412 to 423 contains highly conserved neutralizing epitopes. While...

  3. Human MHC-II with Shared Epitope Motifs Are Optimal Epstein-Barr Virus Glycoprotein 42 Ligands—Relation to Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Trier, Nicole; Gonzalez-Izarzugaza, Jose Maria; Chailyan, Anna

    2018-01-01

    to as the shared epitope (SE) structure. By analyzing the structure of a HLA-DR molecule in complex with Epstein-Barr virus (EBV), the SE motif is suggested to play a vital role in the interaction of MHC II with the viral glycoprotein (gp) 42, an essential entry factor for EBV. EBV has been repeatedly linked to RA...

  4. Effects of the I559P gp41 change on the conformation and function of the human immunodeficiency virus (HIV-1 membrane envelope glycoprotein trimer.

    Directory of Open Access Journals (Sweden)

    Nirmin Alsahafi

    Full Text Available The mature human immunodeficiency virus (HIV-1 envelope glycoprotein (Env trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env

  5. Genetic variation of the human α-2-Heremans-Schmid glycoprotein (AHSG) gene associated with the risk of SARS-CoV infection.

    Science.gov (United States)

    Zhu, Xiaohui; Wang, Yan; Zhang, Hongxing; Liu, Xuan; Chen, Ting; Yang, Ruifu; Shi, Yuling; Cao, Wuchun; Li, Ping; Ma, Qingjun; Zhai, Yun; He, Fuchu; Zhou, Gangqiao; Cao, Cheng

    2011-01-01

    Genetic background may play an important role in the process of SARS-CoV infection and SARS development. We found several proteins that could interact with the nucleocapsid protein of the SARS coronavirus (SARS-CoV). α-2-Heremans-Schmid Glycoprotein (AHSG), which is required for macrophage deactivation by endogenous cations, is associated with inflammatory regulation. Cytochrome P450 Family 3A (CYP4F3A) is an ω-oxidase that inactivates Leukotriene B4 (LTB4) in human neutrophils and the liver. We investigated the association between the polymorphisms of these two inflammation-associated genes and SARS development. The linkage disequilibrium (LD) maps of these two genes were built with Haploview using data on CHB+JPT (version 2) from the HapMap. A total of ten tag SNPs were selected and genotyped. In the Guangzhou cohort study, after adjusting for age and sex, two AHSG SNPs and one CYP4F3 SNP were found to be associated with SARS susceptibility: rs2248690 (adjusted odds ratio [AOR] 2.42; 95% confidence interval [CI] 1.30-4.51); rs4917 (AOR 1.84; 95% CI 1.02-3.34); and rs3794987 (AOR 2.01; 95% CI 1.10-3.68). To further validate the association, the ten tag SNPs were genotyped in the Beijing cohort. After adjusting for age and sex, only rs2248690 (AOR, 1.63; 95% CI, 1.30-2.04) was found to be associated with SARS susceptibility. The combined analysis of the two studies confirmed tag SNP rs2248690 in AHSG as a susceptibility variant (AOR 1.70; 95% CI 1.37-2.09). The statistical analysis of the rs2248690 genotype data among the patients and healthy controls in the HCW cohort, who were all similarly exposed to the SARS virus, also supported the findings. Further, the SNP rs2248690 affected the transcriptional activity of the AHSG promoter and thus regulated the AHSG serum level. Therefore, our study has demonstrated that the AA genotype of rs2268690, which leads to a higher AHSG serum concentration, was significantly associated with protection against SARS development.

  6. Genetic variation of the human α-2-Heremans-Schmid glycoprotein (AHSG gene associated with the risk of SARS-CoV infection.

    Directory of Open Access Journals (Sweden)

    Xiaohui Zhu

    Full Text Available Genetic background may play an important role in the process of SARS-CoV infection and SARS development. We found several proteins that could interact with the nucleocapsid protein of the SARS coronavirus (SARS-CoV. α-2-Heremans-Schmid Glycoprotein (AHSG, which is required for macrophage deactivation by endogenous cations, is associated with inflammatory regulation. Cytochrome P450 Family 3A (CYP4F3A is an ω-oxidase that inactivates Leukotriene B4 (LTB4 in human neutrophils and the liver. We investigated the association between the polymorphisms of these two inflammation-associated genes and SARS development. The linkage disequilibrium (LD maps of these two genes were built with Haploview using data on CHB+JPT (version 2 from the HapMap. A total of ten tag SNPs were selected and genotyped. In the Guangzhou cohort study, after adjusting for age and sex, two AHSG SNPs and one CYP4F3 SNP were found to be associated with SARS susceptibility: rs2248690 (adjusted odds ratio [AOR] 2.42; 95% confidence interval [CI] 1.30-4.51; rs4917 (AOR 1.84; 95% CI 1.02-3.34; and rs3794987 (AOR 2.01; 95% CI 1.10-3.68. To further validate the association, the ten tag SNPs were genotyped in the Beijing cohort. After adjusting for age and sex, only rs2248690 (AOR, 1.63; 95% CI, 1.30-2.04 was found to be associated with SARS susceptibility. The combined analysis of the two studies confirmed tag SNP rs2248690 in AHSG as a susceptibility variant (AOR 1.70; 95% CI 1.37-2.09. The statistical analysis of the rs2248690 genotype data among the patients and healthy controls in the HCW cohort, who were all similarly exposed to the SARS virus, also supported the findings. Further, the SNP rs2248690 affected the transcriptional activity of the AHSG promoter and thus regulated the AHSG serum level. Therefore, our study has demonstrated that the AA genotype of rs2268690, which leads to a higher AHSG serum concentration, was significantly associated with protection against SARS

  7. Quantitative analysis of N-glycans from human alfa-acid-glycoprotein using stable isotope labeling and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry as tool for pancreatic disease diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Giménez, Estela, E-mail: estelagimenez@ub.edu [Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Balmaña, Meritxell [Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus Montilivi s/n, 17071 Girona (Spain); Figueras, Joan [Department of Surgery, Dr. Josep Trueta University Hospital, IdlBGi, 17007 Girona (Spain); Fort, Esther [Digestive Unit, Dr. Josep Trueta University Hospital, 17007 Girona (Spain); Bolós, Carme de [Gastroesophagic Cancer Research Group, Research Programme in Cancer, Hospital del Mar Medical Research Institute (IMIM), Dr. Aiguader, 88, 08003 Barcelona (Spain); Sanz-Nebot, Victòria [Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Peracaula, Rosa [Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus Montilivi s/n, 17071 Girona (Spain); Rizzi, Andreas [Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna (Austria)

    2015-03-25

    Highlights: • The method enables relative quantitation of hAGP glycans from pathological samples • Pancreatic cancer samples clearly showed an increase of hAGP fucosylated glycans. • Fucosylated glycans could be potential biomarkers for diagnosing pancreatic cancer. • The established method could be extremely useful to find novel glycoprotein biomarkers - Abstract: In this work we demonstrate the potential of glycan reductive isotope labeling (GRIL) using [{sup 12}C]- and [{sup 13}C]-coded aniline and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry (μZIC-HILIC-ESI-MS) for relative quantitation of glycosylation variants in selected glycoproteins present in samples from cancer patients. Human α{sub 1}-acid-glycoprotein (hAGP) is an acute phase serum glycoprotein whose glycosylation has been described to be altered in cancer and chronic inflammation. However, it is not clear yet whether some particular glycans in hAGP can be used as biomarker for differentiating between these two pathologies. In this work, hAGP was isolated by immunoaffinity chromatography (IAC) from serum samples of healthy individuals and from those suffering chronic pancreatitis and different stages of pancreatic cancer, respectively. After de-N-glycosylation, relative quantitation of the hAGP glycans was carried out using stable isotope labeling and μZIC-HILIC-ESI-MS analysis. First, protein denaturing conditions prior to PNGase F digestion were optimized to achieve quantitative digestion yields, and the reproducibility of the established methodology was evaluated with standard hAGP. Then, the proposed method was applied to the analysis of the clinical samples (control vs. pathological). Pancreatic cancer samples clearly showed an increase in the abundance of fucosylated glycans as the stage of the disease increases and this was unlike to samples from chronic pancreatitis. The results gained here indicate the mentioned glycan in h

  8. Localization of a membrane glycoprotein in benign fibrocystic disease and infiltrating duct carcinomas of the human breast with the use of a monoclonal antibody to guinea pig milk fat globule membrane.

    Science.gov (United States)

    Greenwalt, D. E.; Johnson, V. G.; Kuhajda, F. P.; Eggleston, J. C.; Mather, I. H.

    1985-01-01

    With monoclonal antibody D-274, raised against guinea pig milk fat globule membrane, the distribution of mucinlike glycoproteins of Mrs greater than or equal to 400,000 was determined in benign fibrocystic disease and infiltrating duct carcinoma of the human breast. These glycoproteins, called collectively PAS-I, were detected in 19 out of 20 cases of benign fibrocystic disease and in at least 26 out of 47 cases of infiltrating duct carcinoma. PAS-I was concentrated on luminal surfaces of ducts and alveoli in morphologically differentiated regions of the tumors. In areas where the glandular nature of the tissue was less evident in infiltrating duct carcinoma, the PAS-I determinant recognized by antibody D-274 was present on irregular luminal surfaces and in the cytoplasm. There was a negative correlation between the short-term recurrence (less than 2 years) of infiltrating duct carcinoma and the detection of strong positive staining with antibody D-274. The results are discussed with reference to recent studies on PAS-I in human breast tissue using monoclonal antibodies raised against human milk fat globule membrane. Images Figure 1 Figure 2 Figure 3 PMID:2579563

  9. Human brain imaging and radiation dosimetry of 11C-N-desmethyl-loperamide, a PET radiotracer to measure the function of P-glycoprotein.

    Science.gov (United States)

    Seneca, Nicholas; Zoghbi, Sami S; Liow, Jeih-San; Kreisl, William; Herscovitch, Peter; Jenko, Kimberly; Gladding, Robert L; Taku, Andrew; Pike, Victor W; Innis, Robert B

    2009-05-01

    P-glycoprotein (P-gp) is a membrane-bound efflux pump that limits the distribution of drugs to several organs of the body. At the blood-brain barrier, P-gp blocks the entry of both loperamide and its metabolite, N-desmethyl-loperamide (N-dLop), and thereby prevents central opiate effects. Animal studies have shown that (11)C-dLop, compared with (11)C-loperamide, is an especially promising radiotracer because it generates negligible radiometabolites that enter the brain. The purposes of this study were to determine whether (11)C-dLop is a substrate for P-gp at the blood-brain barrier in humans and to measure the distribution of radioactivity in the entire body to estimate radiation exposure. Brain PET scans were acquired in 4 healthy subjects for 90 min and included concurrent measurements of the plasma concentration of unchanged radiotracer. Time-activity data from the whole brain were quantified using a 1-tissue-compartment model to estimate the rate of entry (K(1)) of radiotracer into the brain. Whole-body PET scans were acquired in 8 healthy subjects for 120 min. For brain imaging, after the injection of (11)C-dLop the concentration of radioactivity in the brain was low (standardized uptake value, approximately 15%) and stable after approximately 20 min. In contrast, uptake of radioactivity in the pituitary was about 50-fold higher than that in the brain. The plasma concentration of (11)C-dLop declined rapidly, but the percentage composition of plasma was unusually stable, with the parent radiotracer constituting 85% of total radioactivity after approximately 5 min. The rate of brain entry was low (K(1) = 0.009 +/- 0.002 mL.cm(-3).min(-1); n = 4). For whole-body imaging, as a measure of radiation exposure to the entire body the effective dose of (11)C-dLop was 7.8 +/- 0.6 muSv/MBq (n = 8). The low brain uptake of radioactivity is consistent with (11)C-dLop being a substrate for P-gp in humans and confirms that this radiotracer generates negligible quantities of

  10. Genetic polymorphism of alpha 2HS-glycoprotein.

    OpenAIRE

    Cox, D W; Andrews, B J; Wills, D E

    1986-01-01

    A genetic polymorphism of the human serum glycoprotein, alpha 2HS-glycoprotein, can be recognized using isoelectric focusing in polyacrylamide, followed by silver-stain immunofixation. In a North American Caucasian population, two common alleles and one rare allele have been recognized, with frequencies as follows: AHSG*1: .6419, AHSG*2: .3535, and AHSG*3: .0046; polymorphism information content (PIC): .36. A black population from various islands of the Caribbean has the two most common allel...

  11. Increased platelet expression of glycoprotein IIIa following aspirin treatment in aspirin-resistant but not aspirin-sensitive subjects

    Science.gov (United States)

    Floyd, Christopher N; Goodman, Timothy; Becker, Silke; Chen, Nan; Mustafa, Agnesa; Schofield, Emma; Campbell, James; Ward, Malcolm; Sharma, Pankaj; Ferro, Albert

    2014-01-01

    Aims Aspirin is widely used as an anti-platelet agent for cardiovascular prophylaxis. Despite aspirin treatment, many patients experience recurrent thrombotic events, and aspirin resistance may contribute to this. We examined the prevalence of aspirin resistance in a healthy population, and investigated whether the platelet proteome differed in aspirin-resistant subjects. Methods Ninety-three healthy subjects received aspirin 300 mg daily for 28 days. Before and at the end of treatment, urine was taken to determine 11-dehydrothromboxane B2, and blood was taken to measure arachidonic acid (AA)-induced aggregation of platelet-rich plasma and to interrogate the platelet proteome by mass spectrometric analysis with further confirmation of findings using Western blotting. Results In two of the 93 subjects, neither AA-induced aggregation nor urinary 11-dehydrothromboxane B2 was effectively suppressed by aspirin, despite measurable plasma salicylate concentrations, suggesting the presence of true aspirin resistance. Despite no detectable differences in the platelet proteome at baseline, following aspirin a marked increase was seen in platelet glycoprotein IIIa expression in the aspirin-resistant but not aspirin-sensitive subjects. An increase in platelet glycoprotein IIIa expression with aspirin resistance was confirmed in a separate cohort of 17 patients with stable coronary artery disease on long term aspirin treatment, four of whom exhibited aspirin resistance. Conclusions In a healthy population, true aspirin resistance is uncommon but exists. Resistance is associated with an increase in platelet glycoprotein IIIa expression in response to aspirin. These data shed new light on the mechanism of aspirin resistance, and provide the potential to identify aspirin-resistant subjects using a novel biomarker. PMID:25099258

  12. Characterization of the hepatic cellular uptake of α(1) -acid glycoprotein (AGP), part 1: a peptide moiety of human AGP is recognized by the hemoglobin β-chain on mouse liver parenchymal cells.

    Science.gov (United States)

    Nishi, Koji; Komori, Hisakazu; Kikuchi, Mari; Uehara, Nao; Fukunaga, Naoko; Matsumoto, Kazuaki; Watanabe, Hiroshi; Nakajou, Keisuke; Misumi, Shogo; Suenaga, Ayaka; Maruyama, Toru; Otagiri, Masaki

    2012-04-01

    Human α(1) -acid glycoprotein (AGP), a serum glycoprotein, is known to have anti-inflammatory activity. We recently reported that AGP was mainly incorporated into the liver in mice via a receptor-mediated pathway, although the mechanism for this was largely unknown. The objective of this study was to identify the specific cellular surface protein that recognizes the peptide moiety of AGP. Pharmacokinetic studies of (111) In-AGP and (111) In -recombinant glycan-deficient AGP (rAGP) in mice demonstrated that both AGPs are mainly distributed to the liver and kidney, but hepatic and renal uptake clearance of rAGP was higher than that for AGP. Hepatic uptake of rAGP was inhibited in the presence of 100-fold excess of unlabeled AGP, indicating that the hepatic uptake of rAGP shared a common route with that of AGP and that it recognized the peptide moiety of AGPs. In ligand blotting analyses using crude cellular membrane fraction of mice liver, a band corresponding to a 16 kDa protein was observed to bind to both AGPs. Interestingly, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry MALDI-TOF-MS and western blotting analyses indicated that this 16 kDa protein is the hemoglobin β-chain (HBB). It, therefore, appears that HBB is associated with the hepatic uptake of AGP via a direct interaction with its peptide moiety. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  13. Epstein-Barr virus envelope glycoprotein gp350 induces NF-kappaB activation and IL-1beta synthesis in human monocytes-macrophages involving PKC and PI3-K.

    Science.gov (United States)

    D'Addario, M; Ahmad, A; Xu, J W; Menezes, J

    1999-12-01

    Epstein-Barr virus (EBV) is a highly immunotropic human herpesvirus with oncogenic potential and is involved in numerous pathologies. EBV utilizes its major envelope glycoprotein gp350 to bind to its receptor CR2/CD21 on target cells for initiating the infection. We have previously shown that EBV is able to modulate transcription and translation of a number of cytokine genes via its gp350-mediated binding to this receptor. However, the effects of the binding of purified gp350 to CR2/CD21 on plastic-adherent monocyte-macrophages (AMM) have not been investigated. These cells are a rich source of potent proinflammatory and immune-modulating cytokines, and express low levels of CR2/CD21. We show here for the first time that recombinant gp350 (rgp350) causes production of the potent proinflammatory cytokine IL-1beta in human AMM. Surprisingly, rgp350 is comparable in this capacity to the phorbol ester 12-0-tetradecanoylphorbol 13-acetate. This induction of IL-1beta production was accompanied by increased steady-state levels of its mRNA in gp350-treated AMM, and was dependent on the specific binding of rgp350 to the EBV receptor CR2/CD21. We also show that the signaling pathways resulting in the induction of IL-1beta synthesis by rgp350 required protein kinase C and phosphatidylinositol 3,4,5 triphosphate kinase activities and occurred via activation of the NF-kappaB family of transcription factors.-D'Addario, M., Ahmad, A., Xu, J. W., Menezes, J. Epstein-Barr virus envelope glycoprotein gp350 induces NF-kappaB activation and IL-1beta synthesis in human monocytes-macrophages involving PKC and PI3-K.

  14. Impact of glycoprotein B genotype and naturally occurring ORF UL56 polymorphisms upon susceptibility of clinical human cytomegalovirus isolates to letermovir.

    Science.gov (United States)

    Lischka, Peter; Zhang, Douglas; Holder, Daniel; Zimmermann, Holger

    2016-08-01

    Letermovir is a novel anti-HCMV drug in Phase III development that targets the UL56 subunit of the viral terminase complex. In immunocompromised patients four major glycoprotein B (gB) subtypes are known and may influence pathogenesis and thus disease outcomes. Using a panel of 74 letermovir-naïve, low-passage, clinical HCMV isolates, we examined the potential impact of i) gB genotype and ii) naturally occurring UL56 sequence variations upon susceptibility to letermovir. Our data show that letermovir's potency is independent of gB subtype and show that naturally-occurring letermovir-resistance is rare or possibly absent. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans

    DEFF Research Database (Denmark)

    Law, John Lok Man; Chen, Chao; Wong, Jason

    2013-01-01

    genotypes. Although observed in only a minority of vaccinees, our results prove the key concept that a vaccine derived from a single strain of HCV can elicit broad cross-neutralizing antibodies against all known major genotypes of HCV and provide considerable encouragement for the further development......Although a cure for HCV is on the near horizon, emerging drug cocktails will be expensive, associated with side-effects and resistance making a global vaccine an urgent priority given the estimated high incidence of infection around the world. Due to the highly heterogeneous nature of HCV......, an effective HCV vaccine which could elicit broadly cross-neutralizing antibodies has represented a major challenge. In this study, we tested for the presence of cross-neutralizing antibodies in human volunteers who were immunized with recombinant glycoproteins gpE1/gpE2 derived from a single HCV strain (HCV1...

  16. Prediction of conserved sites and domains in glycoproteins B, C and D of herpes viruses.

    Science.gov (United States)

    Rasheed, Muhammad Asif; Ansari, Abdur Rahman; Ihsan, Awais; Navid, Muhammad Tariq; Ur-Rehman, Shahid; Raza, Sohail

    2018-01-17

    Glycoprotein B (gB), C (gC) and D (gD) of herpes simplex virus are implicated in virus adsorption and penetration. The gB, gC and gD are glycoproteins for different processes of virus binding and attachment to the host cells. Moreover, their expression is necessary and sufficient to induce cell fusion in the absence of other glycoproteins. Egress of herpes simplex virus (HSV) and other herpes viruses from cells involves extensive modification of cellular membranes and sequential envelopment, de-envelopment and re-envelopment steps. Viral glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Hence, we target the 3 important glycoproteins (B, C and D) of eight different herpes viruses of different species. These species include human (HSV1 and 2), bovine (BHV1), equine (EHV1 and 4), chicken (ILT1 and MDV2) and pig (PRV1). By applying different bioinformatics tools, we highlighted the conserved sites in these glycoproteins which might be most significant regarding attachment and infection of the viruses. Moreover the conserved domains in these glycoproteins are also highlighted. From this study, we will able to analyze the role of different viral glycoproteins of different species during herpes virus adsorption and penetration. Moreover, this study will help to construct the antivirals that target the glycoproteins of different herpes viruses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Epstein-Barr Virus and its glycoprotein-350 upregulate IL-6 in human B-lymphocytes via CD21, involving activation of NF-kappaB and different signaling pathways.

    Science.gov (United States)

    D'Addario, M; Libermann, T A; Xu, J; Ahmad, A; Menezes, J

    2001-05-04

    Epstein-Barr virus (EBV) is a ubiquitous and highly immunotropic gamma herpesvirus that infects more than 90 % of humans worldwide. Its pathogenicity leads to a number of diseases including tumors that result from EBV's ability to readily transform B-lymphocytes and, to a lesser extent, epithelial cells. EBV utilizes CD21/CR2 as its receptor on B cells to initiate the infection process. EBV binds to CR2 through its major envelope glycoprotein-350 (gp350) and is also a remarkable immunomodulating agent. We had previously shown that EBV is capable of modulating the synthesis of a number of cytokines. We now show that while both purified recombinant gp350 (rgp350) and EBV upregulate IL-6 mRNA synthesis in B cells, EBV-induced IL-6 gene activation occurs for a significantly longer period of time (i.e. 12 hours for EBV as compared to 6 hours for rgp350). Moreover, the half-life of EBV-induced IL-6 mRNA was also significantly longer (10 hours) than that of mRNA induced by rgp350 (about 6 hours). Both EBV and gp350 enhance the binding of the NF-kappaB transcription factor, as determined by band-shift and augment NF-kappaB-mediated activation of a CAT reporter plasmid. Furthermore, we demonstrate that while the activation of IL-6 gene expression by gp350 is mediated primarily by the protein kinase C pathway, EBV can mediate its effects through multiple signaling pathways. To our knowledge this is the first report showing that the binding of a herpesvirus envelope glycoprotein to CR2 on human B cells results in the activation of the NF-kappaB transcription factor leading to the upregulation of IL-6 gene expression in these lymphocytes. Copyright 2001 Academic Press.

  18. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways: e1000424

    National Research Council Canada - National Science Library

    Margaret A Scull; Laura Gillim-Ross; Celia Santos; Kim L Roberts; Elena Bordonali; Kanta Subbarao; Wendy S Barclay; Raymond J Pickles

    2009-01-01

    .... Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37°C...

  19. Determination of the human antibody response to the neutralization epitopes encompassing amino acids 313-327 and 432-443 of hepatitis C virus E1E2 glycoproteins.

    Directory of Open Access Journals (Sweden)

    Ruyu Liu

    Full Text Available It has been reported that monoclonal antibodies (MAbs to the E1E2 glycoproteins may have the potential to prevent hepatitis C virus (HCV infection. The protective epitopes targeted by these MAbs have been mapped to the regions encompassing amino acids 313-327 and 432-443. In this study, we synthesized these two peptides and tested the reactivity of serum samples from 336 patients, 210 of which were from Chronic Hepatitis C (CHC patients infected with diverse HCV genotypes. The remaining 126 samples were isolated from patients who had spontaneously cleared HCV infection. In the chronic HCV-infected group (CHC group, the prevalence of human serum antibodies reactive to epitopes 313-327 and 432-443 was 24.29% (51 of 210 and 4.76% (10 of 210, respectively. In the spontaneous clearance group (SC group, the prevalence was 0.79% (1 of 126 and 12.70% (16 of 126, respectively. The positive serum samples that contained antibodies reactive to epitope 313-327 neutralized HCV pseudoparticles (HCVpp bearing the envelope glycoproteins of genotypes 1a or 1b and/or 4, but genotypes 2a, 3a, 5 and 6 were not neutralized. The neutralizing activity of these serum samples could not be inhibited by peptide 313-327. Six samples (SC17, SC38, SC86, SC92, CHC75 and CHC198 containing antibodies reactive to epitope 432-443 had cross-genotype neutralizing activities. The neutralizing activity of SC38, SC86, SC92 and CHC75 was partially inhibited by peptide 432-443. However, the neutralizing activity of sample SC17 for genotype 4HCVpp and sample CHC198 for genotype 1b HCVpp were not inhibited by the peptide. This study identifies the neutralizing ability of endogenous anti-HCV antibodies and warrants the exploration of antibodies reactive to epitope 432-443 as sources for future antibody therapies.

  20. The effect of lycopene on cytochrome P450 isoenzymes and P-glycoprotein by using human liver microsomes and Caco-2 cell monolayer model.

    Science.gov (United States)

    Kong, Lingti; Song, Chunli; Ye, Linhu; Xu, Jian; Guo, Daohua; Shi, Qingping

    2018-01-11

    Lycopene is widely used as a dietary supplement. However, the effects of lycopene on cytochrome P450 (CYP) enzymes or P-glycoprotein (P-gp) are not comprehensive. The present study was performed to investigate the effects of lycopene on the CYP enzymes and P-gp activity. A cocktail method was used to evaluate the activities of CYP3A4, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. Caco-2 cell monolayer model was carried out to assay lycopene on P-gp activity. The results indicated that lycopene had a moderate inhibitory effect on CYP2E1, with IC50 value of 43.65 μM, whereas no inhibitory effects on CYP3A4, CYP2C19, CYP2D6 and CYP2E1, with IC50 values all over 100 μM. In addition, lycopene showed almost no inhibitory effect on rhodamine-123 efflux and uptake (p > .05), indicated no effects on P-gp activity. In conclusion, there should be required attention when lycopene are coadministered with other drugs that are metabolised by CYP2E1.

  1. Induction of interleukin-6 after stimulation of human B-cell CD21 by Epstein-Barr virus glycoproteins gp350 and gp220.

    Science.gov (United States)

    Tanner, J E; Alfieri, C; Chatila, T A; Diaz-Mitoma, F

    1996-01-01

    The cellular receptor for Epstein-Barr virus (EBV) is the type 2 complement receptor, CD21. At initial infection, EBV virion glycoproteins gp350 and gp220 bind to CD21. We report here that the cross-linking of CD21 by gp350/220 results in increased amounts of interleukin 6 (IL-6) RNA and IL-6 protein. This effect could be blocked with anti-gp350/220 and anti-CD21 monoclonal antibodies. Induction of IL-6 in B cells by EBV could be mimicked by treatment with the protein kinase C (PKC) activator phorbol 12,13-dibutyrate but not with the calcium ionophore ionomycin. IL-6 induction by EBV was inhibited with the PKC-specific inhibitor bisindolylmaleimide or the protein tyrosine kinase inhibitors methyl 2,5-dihydroxycinnamate and herbimycin A, indicating that the induction of IL-6 following CD21 cross-linking is mediated through PKC- and protein tyrosine kinase-dependent pathways.

  2. Comparative cellular processing of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp160 by the mammalian subtilisin/kexin-like convertases.

    Science.gov (United States)

    Vollenweider, F; Benjannet, S; Decroly, E; Savaria, D; Lazure, C; Thomas, G; Chrétien, M; Seidah, N G

    1996-01-01

    We present here the pulse and pulse-chase analysis of the biosynthesis of the envelope glycoprotein gp160 and its intracellular processing by the subtilisin/kexin-like convertases furin, PACE4, PC1, PC5 and its isoform PC5/6-B. We demonstrate that furin and to a much lesser extent PACE4, PC5/6-B and PC1 are candidate enzymes capable of processing gp160 intracellularly. Furthermore we show that furin can also process gp160/gp120 into gp77/gp53 products by cleavage at the sequence RIQR/GPGR just preceding the conserved GPGR structure found at the tip of the hypervariable V3 loop. The results show that processing into gp120 could occur at or before the trans-Golgi network (TGN) where sulphation of the oligosaccharide moieties of gp160 was detected. In contrast, the formation of gp77/gp53 by furin is a late event occurring after exit from the TGN. Our data also revealed that the alpha glucosidase I inhibitor N-butyldeoxynojirimycin, although affecting the oligosaccharide composition of gp160, does not impair the processing of either gp160 or gp120 by either furin or PACE4. Finally, the co-expression of the [Arg355, Arg358]-alpha-1-antitrypsin Portland variant was shown to potently inhibit the processing of both gp160 and gp120 by these convertases. PMID:8670066

  3. Induction of IL-12 Production in Human Peripheral Monocytes by Trypanosoma cruzi Is Mediated by Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins and Potentiated by IFN-γ and CD40-CD40L Interactions

    Directory of Open Access Journals (Sweden)

    Lúcia Cristina Jamli Abel

    2014-01-01

    Full Text Available Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, is characterized by immunopathology driven by IFN-γ secreting Th1-like T cells. T. cruzi has a thick coat of mucin-like glycoproteins covering its surface, which plays an important role in parasite invasion and host immunomodulation. It has been extensively described that T. cruzi or its products—like GPI anchors isolated from GPI-anchored mucins from the trypomastigote life cycle stage (tGPI-mucins—are potent inducers of proinflammatory responses (i.e., cytokines and NO production by IFN-γ primed murine macrophages. However, little is known about whether T. cruzi or GPI-mucins exert a similar action in human cells. We therefore decided to further investigate the in vitro cytokine production profile from human mononuclear cells from uninfected donors exposed to T. cruzi as well as tGPI-mucins. We observed that both living T. cruzi trypomastigotes and tGPI-mucins are potent inducers of IL-12 by human peripheral blood monocytes and this effect depends on CD40-CD40L interaction and IFN-γ. Our findings suggest that the polarized T1-type cytokine profile seen in T. cruzi infected patients might be a long-term effect of IL-12 production induced by lifelong exposure to T. cruzi tGPI-mucins.

  4. Induction of IL-12 Production in Human Peripheral Monocytes by Trypanosoma cruzi Is Mediated by Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins and Potentiated by IFN-γ and CD40-CD40L Interactions

    Science.gov (United States)

    Abel, Lúcia Cristina Jamli; Ferreira, Ludmila Rodrigues Pinto; Cunha Navarro, Isabela; Baron, Monique Andrade; Kalil, Jorge; Gazzinelli, Ricardo Tostes; Rizzo, Luiz Vicente; Cunha-Neto, Edecio

    2014-01-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is characterized by immunopathology driven by IFN-γ secreting Th1-like T cells. T. cruzi has a thick coat of mucin-like glycoproteins covering its surface, which plays an important role in parasite invasion and host immunomodulation. It has been extensively described that T. cruzi or its products—like GPI anchors isolated from GPI-anchored mucins from the trypomastigote life cycle stage (tGPI-mucins)—are potent inducers of proinflammatory responses (i.e., cytokines and NO production) by IFN-γ primed murine macrophages. However, little is known about whether T. cruzi or GPI-mucins exert a similar action in human cells. We therefore decided to further investigate the in vitro cytokine production profile from human mononuclear cells from uninfected donors exposed to T. cruzi as well as tGPI-mucins. We observed that both living T. cruzi trypomastigotes and tGPI-mucins are potent inducers of IL-12 by human peripheral blood monocytes and this effect depends on CD40-CD40L interaction and IFN-γ. Our findings suggest that the polarized T1-type cytokine profile seen in T. cruzi infected patients might be a long-term effect of IL-12 production induced by lifelong exposure to T. cruzi tGPI-mucins. PMID:25120285

  5. The convertases furin and PC1 can both cleave the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp160 into gp120 (HIV-1 SU) and gp41 (HIV-I TM).

    Science.gov (United States)

    Decroly, E; Vandenbranden, M; Ruysschaert, J M; Cogniaux, J; Jacob, G S; Howard, S C; Marshall, G; Kompelli, A; Basak, A; Jean, F

    1994-04-22

    Intracellular proteolytic processing of human immunodeficiency virus envelope glycoprotein precursor (gp160) is an essential step for virus infectivity. Northern blot analysis provided evidence that furin and PC1, but not PC2, are expressed in the CD4+ human lymphoblastoid H9 cell line, suggesting the possible participation of these convertases in human immunodeficiency virus (HIV) gp160 proteolytic processing. Purified PC1 and furin cleaved specifically in vitro gp160 into gp120 (HIV-I SU) and gp41 (HIV-I TM). NH2-terminal sequence analysis of the produced gp41 (HIV-I TM) demonstrated that the cleavage occurred within the sequence Arg-Glu-Lys-Arg decreases Ala-Val-Gly-Ile, which is identical to the bond cleaved in vivo. Transition state analog peptides were designed and tested in vitro for their ability to inhibit the PC1- or furin-mediated gp160 cleavage. The best inhibitor was decanoyl-Arg-Lys-Arg-Arg-psi [CH2NH]-Phe-Leu-Gly-Phe-NH2.

  6. Acrosome reaction: relevance of zona pellucida glycoproteins

    OpenAIRE

    Gupta, Satish K; Bhandari, Beena

    2010-01-01

    During mammalian fertilisation, the zona pellucida (ZP) matrix surrounding the oocyte is responsible for the binding of the spermatozoa to the oocyte and induction of the acrosome reaction (AR) in the ZP-bound spermatozoon. The AR is crucial for the penetration of the ZP matrix by spermatozoa. The ZP matrix in mice is composed of three glycoproteins designated ZP1, ZP2 and ZP3, whereas in humans, it is composed of four (ZP1, ZP2, ZP3 and ZP4). ZP3 acts as the putative primary sperm receptor a...

  7. [Lactoferrin - a glycoprotein of great therapeutic potentials].

    Science.gov (United States)

    Lauterbach, Ryszard; Kamińska, Ewa; Michalski, Piotr; Lauterbach, Jan Paweł

    2016-01-01

    Lactoferrin is an iron-binding glycoprotein, which is present in most biological fluids with particularly high levels in colostrum and in mammalian milk. Bovine lactoferrin is more than 70% homologous with human lactoferrin. Most of the clinical trials have used bovine lactoferrin for supplementation. This review summarizes the recent advances in explaining the mechanisms, which are responsible for the multifunctional roles of lactoferrin, and presents its potential prophylactic and therapeutic applications. On the ground of the results of preliminary clinical observations, authors suggest beneficial effect of lactoferrin supplementation on the prevalence of necrotizing enterocolitis in infants with birth weight below 1250 grams.

  8. Interrogation of multidrug resistance (MDR1) P-glycoprotein (ABCB1) expression in human pancreatic carcinoma cells: correlation of 99mTc-Sestamibi uptake with western blot analysis.

    Science.gov (United States)

    Harpstrite, Scott E; Gu, Hannah; Natarajan, Radhika; Sharma, Vijay

    2014-10-01

    Histopathological studies indicate that ∼63% of pancreatic tumors express multidrug resistance (MDR1) P-glycoprotein (Pgp) and its polymorphic variants. However, Pgp expression detected at the mRNA or protein level does not always correlate with functional transport activity. Because Pgp transport activity is affected by specific mutations and the phosphorylation state of the protein, altered or less active forms of Pgp may also be detected by PCR or immunohistochemistry, which do not accurately reflect the status of tumor cell resistance. To interrogate the status of the functional expression of MDR1 Pgp in MiaPaCa-2 and PANC-1 cells, cellular transport studies using Tc-Sestamibi were performed and correlated with western blot analysis. Biochemical transport assays in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells, human epidermal carcinoma drug-sensitive KB-3-1 cells, and human breast carcinoma MCF-7 cells (negative controls), and human epidermal carcinoma drug-resistant KB-8-5 cells, human breast carcinoma stably transfected with Pgp MCF-7/MDR1Pgp cells, and liver carcinoma HepG2 cells (positive controls) were performed. Protein levels were determined using a monoclonal antibody C219. Tc-Sestamibi demonstrates accumulation in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells. Uptake profiles are not affected by treatment with LY335979, a Pgp inhibitor, and correlate with western blot analysis. These cellular transport studies indicate an absence of Pgp at a functional level in MiaPaCa-2 and PANC-1 cells. Because major pancreatic tumors originate from the pancreatic duct and Tc-Sestamibi undergoes a dominant hepatobiliary mode of excretion, it would not be a sensitive probe for imaging pancreatic adenocarcinomas. Following interrogation of the functional status of Pgp in other pancreatic carcinoma cells, chemotherapeutic drugs that are also MDR1 substrates could offer alternative therapeutics for treating pancreatic adenocarcinomas.

  9. Identification and characterization of isomeric N-glycans of human alfa-acid-glycoprotein by stable isotope labelling and ZIC-HILIC-MS in combination with exoglycosidase digestion

    Energy Technology Data Exchange (ETDEWEB)

    Mancera-Arteu, Montserrat; Giménez, Estela, E-mail: estelagimenez@ub.edu; Barbosa, José; Sanz-Nebot, Victòria

    2016-10-12

    In this study, a ZIC-HILIC-MS methodology for the analysis of N-glycan isomers was optimized to obtain greater detection sensitivity and thus identify more glycan structures in hAGP. In a second step, this method was combined with glycan reductive isotope labelling (GRIL) through [{sup 12}C{sub 6}]/[{sup 13}C{sub 6}]-aniline and exoglycosidase digestion to characterize the different glycan isomers. The GRIL method allows the peak areas resulting from two different labelled samples to be compared, since neither retention time shifts nor variations in the ionization of glycans between these samples are obtained. First, sialic acid linkage assignations were performed for most hAGP glycan isomers with α2-3 sialidase digestion. Bi-, tri- and tetraantennary glycan isomers with different terminal sialic acid linkages to galactose (α2-3 or α2-6) were assigned, and the potential of this technique for the structural characterization of isobaric isomers was therefore demonstrated. Furthermore, fucose linkage isomers of hAGP glycans were also characterized using this isotope-labelling approach in combination with α1-3,4 fucosidase and β1-4 galactosidase digestion. α1-3 antennary fucoses and α1-6 core fucosylation were detected in hAGP fucosylated glycans. These established methodologies can be extremely useful for patho-glycomic studies to characterize glycoproteins of biomedical interest and find novel glycan isomers that could be used as biomarkers in cancer research. - Highlights: • Enhanced sensitivity is obtained in the detection of glycan isomers. • GRIL strategy with exoglycosidase digestion reliably characterize glycan isomers. • Sialic acids and fucoses linkage-type were assigned in hAGP glycan isomers.

  10. Intracellular localization of Crimean-Congo Hemorrhagic Fever (CCHF virus glycoproteins

    Directory of Open Access Journals (Sweden)

    Fernando Lisa

    2005-04-01

    Full Text Available Abstract Background Crimean-Congo Hemorrhagic Fever virus (CCHFV, a member of the genus Nairovirus, family Bunyaviridae, is a tick-borne pathogen causing severe disease in humans. To better understand the CCHFV life cycle and explore potential intervention strategies, we studied the biosynthesis and intracellular targeting of the glycoproteins, which are encoded by the M genome segment. Results Following determination of the complete genome sequence of the CCHFV reference strain IbAr10200, we generated expression plasmids for the individual expression of the glycoproteins GN and GC, using CMV- and chicken β-actin-driven promoters. The cellular localization of recombinantly expressed CCHFV glycoproteins was compared to authentic glycoproteins expressed during virus infection using indirect immunofluorescence assays, subcellular fractionation/western blot assays and confocal microscopy. To further elucidate potential intracellular targeting/retention signals of the two glycoproteins, GFP-fusion proteins containing different parts of the CCHFV glycoprotein were analyzed for their intracellular targeting. The N-terminal glycoprotein GN localized to the Golgi complex, a process mediated by retention/targeting signal(s in the cytoplasmic domain and ectodomain of this protein. In contrast, the C-terminal glycoprotein GC remained in the endoplasmic reticulum but could be rescued into the Golgi complex by co-expression of GN. Conclusion The data are consistent with the intracellular targeting of most bunyavirus glycoproteins and support the general model for assembly and budding of bunyavirus particles in the Golgi compartment.

  11. Estrogen increases the transcription of human α2-Heremans-Schmid-glycoprotein by an interplay of estrogen receptor α and activator protein-1.

    Science.gov (United States)

    Qiu, C; Liu, X; Wang, J; Zhao, Y; Fu, Q

    2014-04-01

    The expression of α2-Heremans-Schmid-glycoprotein (AHSG) was estrogen responsive in oophorectomized (OVX) osteopenic rats and HepG2 cells. Estrogen receptor α (ERα) interacted with the c-Jun/c-Fos heterodimer and indirectly associated with the -1488/-1482 activator protein-1 (AP-1) motif of the AHSG promoter. Estrogen increased c-Jun/c-Fos expression via the mitogen-activated protein kinase (MAPK) pathway. AHSG is a hepatic secretory protein implicated in the regulation of bone homeostasis. Serum AHSG in women has been reported to decrease after menopause and increase with estrogen therapy. The detailed regulatory mechanism of estrogen on AHSG is unclear. A postmenopausal osteoporosis model was generated in OVX rats. Skeletal parameters were determined by automatic biochemical analysis and dual X-ray absorptiometry. The expression of AHSG was evaluated by ELISA, real-time PCR, and Western blot. The 1.5-kb 5'-promoter region of AHSG was analyzed by serial truncation and luciferase assays. The putative -1488/-1482 AP-1 responsive element was identified by electrophoresis mobility shift assay (EMSA). Chromatin immunoprecipitation (ChIP), re-ChIP, and co-immunoprecipitation (Co-IP) were used to characterize the interaction of ERα and AP-1 at the -1488/-1482 AP-1 binding site. The MAPK pathway was evaluated using a specific inhibitor and active transfection. The expression of AHSG was estrogen responsive in both OVX rats and estradiol (E2)/ERα-treated HepG2 cells. E2/ERα most prominently increased luciferase activity of a construct with a putative -1488/-1482 AP-1 binding element. ERα interacted with the c-Jun/c-Fos heterodimer and indirectly associated with the -1488/-1482 AP-1 motif of the AHSG promoter. c-Jun/c-Fos expression was increased via the MAPK pathway by E2/ERα. Estrogen activated the transcription of AHSG through an indirect binding of ERα to the -1488/-1482 AP-1 binding element, with the c-Jun/c-Fos heterodimers.

  12. Determination of site-specific glycan heterogeneity on glycoproteins

    DEFF Research Database (Denmark)

    Kolarich, Daniel; Jensen, Pia Hønnerup; Altmann, Friedrich

    2012-01-01

    )peptides are analyzed by capillary/nano-liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). If required, specific glycopeptide enrichment steps, such as hydrophilic interaction liquid chromatography (HILIC), can also be performed. Particular emphasis is placed on data interpretation......The comprehensive analysis of protein glycosylation is a major requirement for understanding glycoprotein function in biological systems, and is a prerequisite for producing recombinant glycoprotein therapeutics. This protocol describes workflows for the characterization of glycopeptides...... and their site-specific heterogeneity, showing examples of the analysis of recombinant human erythropoietin (rHuEPO), α1-proteinase inhibitor (A1PI) and immunoglobulin (IgG). Glycoproteins of interest can be proteolytically digested either in solution or in-gel after electrophoretic separation, and the (glyco...

  13. Rabies virus-specific human T cell clones provide help for an in vitro antibody response against neutralizing antibody-inducing determinants of the viral glycoprotein.

    NARCIS (Netherlands)

    H. Bunschoten; R.J. Klapmuts; I.J.Th.M. Claassen (Ivo); S.D. Reijneveld; A.D.M.E. Osterhaus (Albert); F.G.C.M. Uytdehaag (Fons)

    1989-01-01

    textabstractHuman T cell clones were prepared from peripheral blood mononuclear cells from a vaccinated human donor and kept in culture in the presence of rabies virus antigen and growth factors. Phenotypic analysis of the T cell clones revealed expression of the CD3 and CD4 cell surface markers,

  14. A Functional Henipavirus Envelope Glycoprotein Pseudotyped Lentivirus Assay System

    Directory of Open Access Journals (Sweden)

    Broder Christopher C

    2010-11-01

    Full Text Available Abstract Background Hendra virus (HeV and Nipah virus (NiV are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4 containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP gene encoding human immunodeficiency virus type-1 (HIV-1 genome in conjunction with the HeV and NiV fusion (F and attachment (G glycoproteins. Results Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2 peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F

  15. Antibodies to the envelope glycoprotein of human T cell leukemia virus type 1 robustly activate cell-mediated cytotoxic responses and directly neutralize viral infectivity at multiple steps of the entry process

    National Research Council Canada - National Science Library

    Kuo, Chien-Wen S; Mirsaliotis, Antonis; Brighty, David W

    2011-01-01

    ... fusion of the viral and cellular membranes. The envelope glycoproteins are recognized by neutralizing Abs and CTL following a protective immune response, and therefore, represent attractive components for a HTLV-1 vaccine...

  16. Insertion of a ligand to HER2 in gB retargets HSV tropism and obviates the need for activation of the other entry glycoproteins.(human epidermal growth factor receptor 2)

    National Research Council Canada - National Science Library

    Petrovic, Biljana; Gianni, Tatiana; Gatta, Valentina; Campadelli-Fiume, Gabriella

    2017-01-01

    Herpes simplex virus (HSV) entry into the cells requires glycoproteins gD, gH/gL and gB, activated in a cascade fashion by conformational modifications induced by cognate receptors and intermolecular signaling...

  17. Characterization of hepatic cellular uptake of α1-acid glycoprotein (AGP), part 2: involvement of hemoglobin β-chain on plasma membranes in the uptake of human AGP by liver parenchymal cells.

    Science.gov (United States)

    Komori, Hisakazu; Nishi, Koji; Uehara, Nao; Watanabe, Hiroshi; Shuto, Tsuyoshi; Suenaga, Ayaka; Maruyama, Toru; Otagiri, Masaki

    2012-04-01

    Human α(1) -acid glycoprotein (AGP), a lipocalin family member, serves as a carrier for basic drugs and endogenous hormones. It is mainly distributed in the liver and also has anti-inflammatory effects. We previously discovered a protein in liver parenchymal cells that interacts with AGP and it was identified as hemoglobin β-chain (HBB). The purpose of this study was to clarify the role of HBB in the hepatic cellular uptake of AGP. Ligand blotting experiments showed that the interaction of (125) I-AGP with hemoglobin was saturable and was significantly suppressed in the presence of excess unlabeled AGP. In addition, the cellular uptake of fluorescein isothiocianate-AGP by HepG2 cells was saturable and temperature dependent. This uptake was inhibited by fillipin and methyl-β-cyclodextrin, but not chlorpromazine, suggesting that AGP is taken up via caveolae/lipid rafts endocytic pathway. Immunostaining showed that HBB and caveolin-1, exclusively expressed in caveolae, were partially colocalized on the plasma membranes of HepG2 cells. HBB knockdown with siRNA decreased the uptake of AGP by HepG2 cells by 40%, and exogenous hemoglobin inhibited the uptake by 40%-50%. These findings indicate that HBB is located on the liver plasma membrane and that it contributes to the intracellular uptake of AGP. Copyright © 2012 Wiley Periodicals, Inc.

  18. Human fetuin/alpha2HS-glycoprotein level as a novel indicator of liver cell function and short-term mortality in patients with liver cirrhosis and liver cancer.

    Science.gov (United States)

    Kalabay, László; Jakab, Lajos; Prohászka, Zoltán; Füst, George; Benkö, Zsuzsa; Telegdy, László; Lörincz, Zsolt; Závodszky, Péter; Arnaud, Philippe; Fekete, Béla

    2002-04-01

    Human fetuin/alpha2HS-glycoprotein (AHSG) is synthesized by hepatocytes. We intended to determine whether liver dysfunction or acute phase reaction is dominant in the regulation of its serum concentrations and to see if decreased AHGS levels are associated with short-term mortality. We determined the serum AHSG levels in patients with acute alcoholic, acute A, B, and Epstein-Barr virus hepatitis, alcoholic cirrhosis, and hepatocellular cancer and correlated them to conventional laboratory parameters of inflammation and liver function. Patients were followed for 1 month. Serum AHSG was determined by radial immunodiffusion. Compared to controls, significantly lower AHSG levels were found in patients with liver cirrhosis and hepatocellular cancer but not the acute viral hepatitides. Strong positive correlation with serum transferrin, albumin and prothrombin was found. Febrile episodes were not associated with significantly decreased AHSG levels. Concentrations below 300 microg/ml were associated with high mortality rate (52.0%; relative risk, 5.497; 95% confidence interval, 2.472-12.23; P AHSG levels showed the greatest difference between deceased and survived patients with cirrhosis and cancer. Moreover, other acute phase reactants did not differ significantly. The multiple logistic regression analysis indicated that the decrease of serum AHSG is independent of all other variables that were found decreased in deceased patients. Decreased serum AHSG concentration is due rather to hepatocellular dysfunction than the acute phase reaction and is an outstanding predictor of short-term mortality in patients with liver cirrhosis and liver cancer.

  19. Detailed genetic analysis of hemagglutinin-neuraminidase glycoprotein gene in human parainfluenza virus type 1 isolates from patients with acute respiratory infection between 2002 and 2009 in Yamagata prefecture, Japan

    Directory of Open Access Journals (Sweden)

    Mizuta Katsumi

    2011-12-01

    Full Text Available Abstract Background Human parainfluenza virus type 1 (HPIV1 causes various acute respiratory infections (ARI. Hemagglutinin-neuraminidase (HN glycoprotein of HPIV1 is a major antigen. However, the molecular epidemiology and genetic characteristics of such ARI are not exactly known. Recent studies suggested that a phylogenetic analysis tool, namely the maximum likelihood (ML method, may be applied to estimate the evolutionary time scale of various viruses. Thus, we conducted detailed genetic analyses including homology analysis, phylogenetic analysis (using both the neighbor joining (NJ and ML methods, and analysis of the pairwise distances of HN gene in HPIV1 isolated from patients with ARI in Yamagata prefecture, Japan. Results A few substitutions of nucleotides in the second binding site of HN gene were observed among the present isolates. The strains were classified into two major clusters in the phylogenetic tree by the NJ method. Another phylogenetic tree constructed by the ML method showed that the strains diversified in the late 1980s. No positively selected sites were found in the present strains. Moreover, the pairwise distance among the present isolates was relatively short. Conclusions The evolution of HN gene in the present HPIV1 isolates was relatively slow. The ML method may be a useful phylogenetic method to estimate the evolutionary time scale of HPIV and other viruses.

  20. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    Directory of Open Access Journals (Sweden)

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  1. Demonstration of glucuronic acid on brain glycoproteins which react with HNK-1 antibody.

    Science.gov (United States)

    Shashoua, V E; Daniel, P F; Moore, M E; Jungalwala, F B

    1986-07-31

    Ependymins, a family of extracellular glycoproteins of goldfish and mammalian brain, were shown to contain N-linked complex glycan chains. These glycoproteins reacted with a monoclonal antibody, HNK-1 which recognizes a membrane antigen on a subset of human lymphocytes, myelin-associated glycoprotein glycoprotein epitope reacting with HNK-1 antibody was previously shown to include a terminal 3-sulfoglucuronosyl residue present in certain glycolipids of the nervous tissue (Chou et al., Biochem. Biophys. Res. Commun. 1985, 128, 383-388). In this report, the presence of glucuronic acid in ependymins was demonstrated by gas-liquid chromatography and mass spectrometry. We suggest that a 3-sulfoglucuronosyl residue may be the common epitope on HNK-1-reactive glycoproteins.

  2. Blood serum glycoproteins in men exposed to carbon disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Bobnis, W.; Kosmider, K.; Millo, B.; Wojcicki, J.

    1980-01-01

    In 48 men occupationally exposed to CS2 the following glycoproteins were estimated in blood serum, using radial immunodiffusion on M-Partigen plates: alpha1-acid glycoprotein, alpha1-antitrypsin, alpha2-HS-glycoprotein, alpha2-macroglobulin, Gc glycoprotein, hemopexin, haptoglobin, ceruluplasmin and beta2-glycoprotein I. The studies indicated a highly statistically significant increase of: alpha1-acid--glycoprotein and Gc glycoprotein, and decrease of: alpha1-antitrypsins, alpha2-HS--glycoprotein and beta2-glycoprotein. The level of the remaining glycoproteins was normal.

  3. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  4. Adipokine zinc-α2-glycoprotein regulated by growth hormone and linked to insulin sensitivity.

    Science.gov (United States)

    Balaz, Miroslav; Ukropcova, Barbara; Kurdiova, Timea; Gajdosechova, Lucia; Vlcek, Miroslav; Janakova, Zuzana; Fedeles, Jozef; Pura, Mikulas; Gasperikova, Daniela; Smith, Steven R; Tkacova, Ruzena; Klimes, Iwar; Payer, Juraj; Wolfrum, Christian; Ukropec, Jozef

    2015-02-01

    Hypertrophic obesity is associated with impaired insulin sensitivity and lipid-mobilizing activity of zinc-α2-glycoprotein. Adipose tissue (AT) of growth hormone (GH) -deficient patients is characterized by extreme adipocyte hypertrophy due to defects in AT lipid metabolism. It was hypothesized that zinc-α2-glycoprotein is regulated by GH and mediates some of its beneficial effects in AT. AT from patients with GH deficiency and individuals with obesity-related GH deficit was obtained before and after 5-year and 24-month GH supplementation therapy. GH action was tested in primary human adipocytes. Relationships of GH and zinc-α2-glycoprotein with adipocyte size and insulin sensitivity were evaluated in nondiabetic patients with noncancerous cachexia and hypertrophic obesity. AT in GH-deficient adults displayed a substantial reduction of zinc-α2-glycoprotein. GH therapy normalized AT zinc-α2-glycoprotein. Obesity-related relative GH deficit was associated with almost 80% reduction of zinc-α2-glycoprotein mRNA in AT. GH increased zinc-α2-glycoprotein mRNA in both AT of obese men and primary human adipocytes. Interdependence of GH and zinc-α2-glycoprotein in regulating AT morphology and metabolic phenotype was evident from their relationship with adipocyte size and AT-specific and whole-body insulin sensitivity. The results demonstrate that GH is involved in regulation of AT zinc-α2-glycoprotein; however, the molecular mechanism linking GH and zinc-α2-glycoprotein in AT is yet unknown. © 2014 The Obesity Society.

  5. Expression of the Surface Glycoproteins of Human Parainfluenza Virus Type 3 by Bovine Parainfluenza Virus Type 3, a Novel Attenuated Virus Vaccine Vector

    Science.gov (United States)

    Haller, Aurelia A.; Miller, Tessa; Mitiku, Misrach; Coelingh, Kathleen

    2000-01-01

    Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive phenotype for growth in tissue culture at 39°C and was attenuated in the lungs of Syrian golden hamsters. In order to test whether r-bPIV3 could serve as a vector, the fusion and hemagglutinin-neuraminidase genes of bPIV3 were replaced with those of hPIV3. The resulting bovine/human PIV3 was temperature sensitive for growth in Vero cells at 37°C. The replication of bovine/human PIV3 was also restricted in the lungs of hamsters, albeit not as severely as was observed for r-bPIV3. Despite the attenuation phenotypes observed for r-bPIV3 and bovine/human PIV3, both of these viruses protected hamsters completely upon challenge with hPIV3. In summary, bPIV3 was shown to function as a virus vector that may be especially suitable for vaccination of infants and children against PIV3 and other viruses. PMID:11090161

  6. Maturation of HIV envelope glycoprotein precursors by cellular endoproteases.

    Science.gov (United States)

    Moulard, M; Decroly, E

    2000-11-10

    The entry of enveloped viruses into its host cells is a crucial step for the propagation of viral infection. The envelope glycoprotein complex controls viral tropism and promotes the membrane fusion process. The surface glycoproteins of enveloped viruses are synthesized as inactive precursors and sorted through the constitutive secretory pathway of the infected cells. To be infectious, most of the viruses require viral envelope glycoprotein maturation by host cell endoproteases. In spite of the strong variability of primary sequences observed within different viral envelope glycoproteins, the endoproteolytical cleavage occurs mainly in a highly conserved domain at the carboxy terminus of the basic consensus sequence (Arg-X-Lys/Arg-Arg downward arrow). The same consensus sequence is recognized by the kexin/subtilisin-like serine proteinases (so called convertases) in many cellular substrates such as prohormones, proprotein of receptors, plasma proteins, growth factors and bacterial toxins. Therefore, several groups of investigators have evaluated the implication of convertases in viral envelope glycoprotein cleavage. Using the vaccinia virus overexpression system, furin was first shown to mediate the proteolytic maturation of both human immunodeficiency virus (HIV-1) and influenza virus envelope glycoproteins. In vitro studies demonstrated that purified convertases directly and specifically cleave viral envelope glycoproteins. Although these studies suggested the participation of several enzymes belonging to the convertases family, recent data suggest that other protease families may also participate in the HIV envelope glycoprotein processing. Their role in the physiological maturation process is still hypothetical and the molecular mechanism of the cleavage is not well documented. Crystallization of the hemagglutinin precursor (HA0) of influenza virus allowed further understanding of the molecular interaction between viral precursors and the cellular endoproteases

  7. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......- and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4...

  8. A prominent role of the human cytomegalovirus UL8 glycoprotein restraining pro-inflammatory cytokine production by myeloid cells at late times during infection.

    Science.gov (United States)

    Pérez-Carmona, Natàlia; Martínez-Vicente, Pablo; Farré, Domènec; Gabaev, Ildar; Messerle, Martin; Engel, Pablo; Angulo, Ana

    2018-02-21

    Human cytomegalovirus (HCMV) persistence in infected individuals relies on a plethora of mechanisms to efficiently reduce host immune responses. To that end, HCMV commits a variety of gene products, some of which have not been identified yet. Here we characterized the UL8 gene, which consists of two exons, sharing the first with the HCMV RL11 family member UL7 UL8 is a transmembrane protein with an N-terminal immunoglobulin (Ig)-like domain in common with UL7 but with an extended stalk and a distinctive cytoplasmic tail. The UL8 open reading frame gives rise to a heavily glycosylated protein, predominantly expressed on the cell surface, from where it can be partially endocytosed and subsequently degraded. Infections with UL8-tagged viruses indicated that UL8 was synthesized with late phase kinetics. By virtue of its highly conserved Ig-like domain, this viral protein interacted with a surface molecule present on activated neutrophils. Notably, when ectopically expressed in THP-1 myeloid cells, UL8 was able to significantly reduce the production of a variety of pro-inflammatory cytokines. Mutations in UL8 indicated that this functional effect was mediated by the cell surface expression of its Ig-like domain. To investigate the impact of the viral protein in the infection context, we engineered HCMVs lacking the UL8 gene, and demonstrated that UL8 decreases the release of a large number of pro-inflammatory factors at late times after infection of THP-1 cells. Our data indicate that UL8 may exert an immunosuppressive role key for HCMV survival in the host. IMPORTANCE Human cytomegalovirus (HCMV) is a major pathogen that causes life-threatening diseases and disabilities in infected newborns and immunocompromised individuals. Containing one of the largest genomes among all reported human viruses, HCMV encodes an impressive repertoire of gene products. However, the functions of a large proportion of them remain still unknown, a fact that complicates the design of new

  9. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......- and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4......), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...

  10. Secondary structure of gp160 and gp120 envelope glycoproteins of human immunodeficiency virus type 1: a Fourier transform infrared spectroscopic study.

    Science.gov (United States)

    Decroly, E; Cornet, B; Martin, I; Ruysschaert, J M; Vandenbranden, M

    1993-06-01

    The secondary structure of the precursor (gp160) of the envelope protein of human immunodeficiency virus type 1 (BH10) and its receptor-binding subunit (gp120) was studied by Fourier-transformed attenuated total reflection spectroscopy. A higher alpha-helix/beta-sheet ratio in the gp120 subunit than in the precursor indicates a structural heterogeneity between the two subunits (gp120 and gp41), in agreement with classical secondary-structure predictions. The secondary structure of gp41 was estimated and compared with existing models. The high alpha-helical content in gp41 and the dominant beta-sheet content in gp120 resemble the distribution in influenza virus hemagglutinin subunits.

  11. Protein binding and stability of norepinephrine in human blood plasma. Involvement of prealbumin,. cap alpha. /sub 1/-acid glycoprotein and albumin

    Energy Technology Data Exchange (ETDEWEB)

    de Vera, N.; Cristofol, R.M.; Farre, R.

    1988-01-01

    The binding of norepinephrine (NE) to plasma proteins of fresh human blood obtained from healthy volunteers was studied by ultrafiltration at different NE concentrations and incubation times at 37/sup 0/C. At 1.7 nM L-(/sup 3/H)-NE binding was approx. 25%. The binding was rapid and was not influenced by the incubation time. (/sup 3/H)-NE could be dissociated from its binding sites by acid precipitation and, after HPLC, showed to be unchanged NE. No difference in NE binding was found between plasma collected in EGTA-GSH or heparin solution. There was no degradation of NE when incubated in plasma at 37/sup 0/C for 10 h, even without the addition of antioxidants. Therefore, in the present study, binding represented interaction of unchanged NE with plasma proteins. The whole plasma binding was saturable over the range of 0.66 nM to 0.59 mM of NE. Scatchard plot of specific binding revealed high-affinity sites with a Kd of 5.4 nM and a Bmax of 3.9 fmoles x mg/sup -1/ protein, and low-affinity sites with a Kd of 2.7 ..mu..M and a Bmax of 3.3 pmoles x mg/sup -1/ protein. Electrophoretic characterization of NE-binding proteins showed that about 60% of bound NE was associated to albumin, and 20% to prealbumin. Ne binding to pure human plasma proteins was also studied using ultrafiltration.

  12. Kinetic evaluation and test-retest reproducibility of [11C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans.

    Science.gov (United States)

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Mercier, Joël; Lin, Shu-Fei; Chen, Ming-Kai; Matuskey, David; Gallezot, Jean-Dominique; Henry, Shannan; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2017-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is ubiquitously present in presynaptic terminals. Here we report kinetic modeling and test-retest reproducibility assessment of the SV2A positron emission tomography (PET) radioligand [ 11 C]UCB-J in humans. Five volunteers were examined twice on the HRRT after bolus injection of [ 11 C]UCB-J. Arterial blood samples were collected for measurements of radiometabolites and free fraction. Regional time-activity curves were analyzed with 1-tissue (1T) and 2-tissue (2T) compartment models to estimate volumes of distribution ( V T ). Parametric maps were generated using the 1T model. [ 11 C]UCB-J metabolized fairly quickly, with parent fraction of 36 ± 13% at 15 min after injection. Plasma free fraction was 32 ± 1%. Regional time-activity curves displayed rapid kinetics and were well described by the 1T model, except for the cerebellum and hippocampus. V T values estimated with the 2T model were similar to 1T values. Parametric maps were of high quality and V T values correlated well with time activity curve (TAC)-based estimates. Shortening of acquisition time from 120 min to 60 min had a negligible effect on V T values. The mean absolute test-retest reproducibility for V T was 3-9% across regions. In conclusion, [ 11 C]UCB-J exhibited excellent PET tracer characteristics and has potential as a general purpose tool for measuring synaptic density in neurodegenerative disorders.

  13. Global alteration of the drug-binding pocket of human P-glycoprotein (ABCB1) by substitution of fifteen conserved residues reveals a negative correlation between substrate size and transport efficiency.

    Science.gov (United States)

    Vahedi, Shahrooz; Chufan, Eduardo E; Ambudkar, Suresh V

    2017-11-01

    P-glycoprotein (P-gp), an ATP-dependent efflux pump, is linked to the development of multidrug resistance in cancer cells. However, the drug-binding sites and translocation pathways of this transporter are not yet well-characterized. We recently demonstrated the important role of tyrosine residues in regulating P-gp ATP hydrolysis via hydrogen bond formations with high affinity modulators. Since tyrosine is both a hydrogen bond donor and acceptor, and non-covalent interactions are key in drug transport, in this study we investigated the global effect of enrichment of tyrosine residues in the drug-binding pocket on the drug binding and transport function of P-gp. By employing computational analysis, 15 conserved residues in the drug-binding pocket of human P-gp that interact with substrates were identified and then substituted with tyrosine, including 11 phenylalanine (F72, F303, F314, F336, F732, F759, F770, F938, F942, F983, F994), two leucine (L339, L975), one isoleucine (I306), and one methionine (M949). Characterization of the tyrosine-rich P-gp mutant in HeLa cells demonstrated that this major alteration in the drug-binding pocket by introducing fifteen additional tyrosine residues is well tolerated and has no measurable effect on total or cell surface expression of this mutant. Although the tyrosine-enriched mutant P-gp could transport small to moderate size (transport large (>1000 Daltons) substrates such as NBD-cyclosporine A, Bodipy-paclitaxel and Bodipy-vinblastine was significantly decreased. This was further supported by the physico-chemical characterization of seventeen tested substrates, which revealed a negative correlation between drug transport and molecular size for the tyrosine-enriched P-gp mutant. Published by Elsevier Inc.

  14. Zinc-α2-glycoprotein is associated with insulin resistance in humans and is regulated by hyperglycemia, hyperinsulinemia, or liraglutide administration: cross-sectional and interventional studies in normal subjects, insulin-resistant subjects, and subjects with newly diagnosed diabetes.

    Science.gov (United States)

    Yang, Mengliu; Liu, Rui; Li, Shu; Luo, Yu; Zhang, Yali; Zhang, Lili; Liu, Dongfang; Wang, Yaxu; Xiong, Zhengai; Boden, Guenther; Chen, Shirong; Li, Ling; Yang, Gangyi

    2013-05-01

    Zinc-α2-glycoprotein (ZAG) has been proposed to play a role in the pathogenesis of insulin resistance. Previous studies in humans and in rodents have produced conflicting results regarding the link between ZAG and insulin resistance. The objective of this study was to examine the relationships between ZAG and insulin resistance in cross-sectional and interventional studies. Serum ZAG (determined with ELISA) was compared with various parameters related to insulin resistance in subjects with normal glucose tolerance, impaired glucose tolerance (IGT), and newly diagnosed type 2 diabetes mellitus (T2DM), and in women with or without polycystic ovary syndrome (PCOS). Euglycemic-hyperinsulinemic clamps were performed in healthy and PCOS women. Real-time RT-PCR and Western blotting were used to assess mRNA and protein expression of ZAG. The effect of a glucagon-like peptide-1 agonist on ZAG was studied in a 12-week liraglutide treatment trial. Circulating ZAG was lower in patients with IGT and newly diagnosed T2DM than in controls. Circulating ZAG correlated positively with HDL cholesterol and adiponectin, and correlated inversely with BMI, waist-to-hip ratio, body fat percentage, triglycerides, fasting blood glucose, fasting insulin, HbA1c, and homeostasis model assessment of insulin resistance (HOMA-IR). On multivariate analysis, ZAG was independently associated with BMI, HOMA-IR, and adiponectin. ZAG mRNA and protein were decreased in adipose tissue of T2DM patients. Moreover, circulating ZAG levels were lower in women with PCOS than in women with high insulin sensitivity. Liraglutide treatment for 12 weeks significantly increased circulating ZAG levels. We conclude that ZAG may be an adipokine associated with insulin resistance.

  15. HIV-1 envelope glycoprotein resistance to monoclonal antibody 2G12 is subject-specific and context-dependent in macaques and humans.

    Science.gov (United States)

    Malherbe, Delphine C; Sanders, Rogier W; van Gils, Marit J; Park, Byung; Gomes, Michelle M; Schuitemaker, Hanneke; Barnett, Susan; Haigwood, Nancy L

    2013-01-01

    HIV-1 Envelope (Env) protein is the sole target of neutralizing antibodies (NAbs) that arise during infection to neutralize autologous variants. Under this immune pressure, HIV escape variants are continuously selected and over the course of infection Env becomes more neutralization resistant. Many common alterations are known to affect sensitivity to NAbs, including residues encoding potential N-linked glycosylation sites (PNGS). Knowledge of Env motifs associated with neutralization resistance is valuable for the design of an effective Env-based vaccine so we characterized Envs isolated longitudinally from a SHIV(SF162P4) infected macaque for sensitivity to neutralizing monoclonal antibodies (MAbs) B12, 2G12, 4E10 and 2F5. The early Env, isolated from plasma at day 56 after infection, was the most sensitive and the late Env, from day 670, was the most resistant to MAbs. We identified four PNGS in these Envs that accumulated over time at positions 130, 139, 160 and 397. We determined that removal of these PNGS significantly increased neutralization sensitivity to 2G12, and conversely, we identified mutations by in silico analyses that contributed resistance to 2G12 neutralization. In order to expand our understanding of these PNGS, we analyzed Envs from clade B HIV-infected human subjects and identified additional glycan and amino acid changes that could affect neutralization by 2G12 in a context-dependent manner. Taken together, these in vitro and in silico analyses of clade B Envs revealed that 2G12 resistance is achieved by previously unrecognized PNGS substitutions in a context-dependent manner and by subject-specific pathways.

  16. HIV-1 envelope glycoprotein resistance to monoclonal antibody 2G12 is subject-specific and context-dependent in macaques and humans.

    Directory of Open Access Journals (Sweden)

    Delphine C Malherbe

    Full Text Available HIV-1 Envelope (Env protein is the sole target of neutralizing antibodies (NAbs that arise during infection to neutralize autologous variants. Under this immune pressure, HIV escape variants are continuously selected and over the course of infection Env becomes more neutralization resistant. Many common alterations are known to affect sensitivity to NAbs, including residues encoding potential N-linked glycosylation sites (PNGS. Knowledge of Env motifs associated with neutralization resistance is valuable for the design of an effective Env-based vaccine so we characterized Envs isolated longitudinally from a SHIV(SF162P4 infected macaque for sensitivity to neutralizing monoclonal antibodies (MAbs B12, 2G12, 4E10 and 2F5. The early Env, isolated from plasma at day 56 after infection, was the most sensitive and the late Env, from day 670, was the most resistant to MAbs. We identified four PNGS in these Envs that accumulated over time at positions 130, 139, 160 and 397. We determined that removal of these PNGS significantly increased neutralization sensitivity to 2G12, and conversely, we identified mutations by in silico analyses that contributed resistance to 2G12 neutralization. In order to expand our understanding of these PNGS, we analyzed Envs from clade B HIV-infected human subjects and identified additional glycan and amino acid changes that could affect neutralization by 2G12 in a context-dependent manner. Taken together, these in vitro and in silico analyses of clade B Envs revealed that 2G12 resistance is achieved by previously unrecognized PNGS substitutions in a context-dependent manner and by subject-specific pathways.

  17. Efficient transduction of neurons using Ross River glycoprotein-pseudotyped lentiviral vectors

    DEFF Research Database (Denmark)

    Jakobsson, J; Nielsen, T Tolstrup; Staflin, K

    2006-01-01

    and human glial fibrillary acidic protein, we demonstrated cell-specific transgene expression in the desired cell type. Ross River virus glycoprotein-pseudotyped lentiviral vectors also transduced human neural progenitor cells in vitro, showing that receptors for the RRV-G are present on human neural cells....

  18. Evaluation of the expression of P-glycoprotein in propoxur-resistant Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Shabnam Yazdian

    2014-10-01

    Full Text Available There is a great concern about the effect of propoxur, as one of the more common N-methyl carbamate pesticides, on human health due to its extensive use in agricultural and non-agricultural applications. Caco-2 cells became resistant to propoxur, and the resistance was confirmed through MTT assay. Then the cell membrane integrity and P-glycoprotein expression were measured by LDH assay and western blot analysis, respectively and compared to the parent cells.  Contrary to what was expected, the expression of P-glycoprotein in propoxur resistant cells was lower than parent cells.This study indicates that the resistance to propoxur may not be related to P-glycoprotein expression directly, since P-glycoprotein expression has decreased in these cells.

  19. A plasma membrane 'vacuum cleaner' for daunorubicin in non-P-glycoprotein multidrug-resistant SW-1573 human non-small cell lung carcinoma cells. A study using fluorescence resonance energy transfer.

    Science.gov (United States)

    Mülder, H S; van Grondelle, R; Westerhoff, H V; Lankelma, J

    1993-12-15

    A multidrug resistant (MDR) human non-small cell lung carcinoma cell line, SW-1573/2R120 (2R120), not containing the drug-efflux pump P-glycoprotein (PgP), has been studied for the transport of daunorubicin (DN) across the cellular plasma membrane. Earlier, reduced initial DN-uptake rates and lower cellular DN steady-state concentrations were found for this cell line, when it was compared to the SW-1573 wild-type cell line. This finding was an indication for the presence of another cellular drug-efflux pump. However, we found similar DN-efflux rates in drug-free medium for the two cell lines, while for Pgp-containing MDR SW-1573/2R160 (2R160) cells the efflux rate was increased compared to wild-type cells. In order to elucidate differences in DN transport across the cellular plasma membrane, the association of DN with plasma membranes of intact cells was investigated, using fluorescence-resonance-energy transfer. For this purpose, the plasma-membrane probe 1-(4-trimethyl-ammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) was chosen since, because of the overlap between the emission spectrum of TMA-DPH and the excitation spectrum of DN, transfer of energy can be achieved from TMA-DPH to DN. Cells were loaded with TMA-DPH and, after addition of 10 microM DN, the TMA-DPH fluorescence was quenched. Rapid initial quenching proved to be similar in the MDR 2R160 (Pgp-containing) cells and in the SW-1573 wild-type cells (21 +/- 1% and 20 +/- 2%, respectively), but was less in the MDR 2R120 cells not containing Pgp (14 +/- 1%). This finding correlated with a lowered amount of DN dissolved in the plasma membrane of 2R120 cells. We interpret these data to be the result of a 'vacuum-cleaner' pumping system other than Pgp which removes DN from a plasma membrane compartment and equilibrates relatively slowly with the interior of the cell.

  20. Chimeric bovine/human parainfluenza virus type 3 expressing respiratory syncytial virus (RSV) F glycoprotein: effect of insert position on expression, replication, immunogenicity, stability, and protection against RSV infection.

    Science.gov (United States)

    Liang, Bo; Munir, Shirin; Amaro-Carambot, Emerito; Surman, Sonja; Mackow, Natalie; Yang, Lijuan; Buchholz, Ursula J; Collins, Peter L; Schaap-Nutt, Anne

    2014-04-01

    A recombinant chimeric bovine/human parainfluenza type 3 virus (rB/HPIV3) vector expressing the respiratory syncytial virus (RSV) fusion F glycoprotein previously exhibited disappointing levels of RSV F immunogenicity and genetic stability in children (D. Bernstein et al., Pediatr. Infect. Dis. J. 31:109-114, 2012; C.-F. Yang et al., Vaccine 31:2822-2827, 2013). To investigate parameters that might affect vaccine performance and stability, we constructed and characterized rB/HPIV3 viruses expressing RSV F from the first (pre-N), second (N-P), third (P-M), and sixth (HN-L) genome positions. There was a 30- to 69-fold gradient in RSV F expression from the first to the sixth position. The inserts moderately attenuated vector replication in vitro and in the upper and lower respiratory tracts of hamsters: this was not influenced by the level of RSV F expression and syncytium formation. Surprisingly, inserts in the second, third, and sixth positions conferred increased temperature sensitivity: this was greatest for the third position and was the most attenuating in vivo. Each rB/HPIV3 vector induced a high titer of neutralizing antibodies in hamsters against RSV and HPIV3. Protection against RSV challenge was greater for position 2 than for position 6. Evaluation of insert stability suggested that RSV F is under selective pressure to be silenced during vector replication in vivo, but this was not exacerbated by a high level of RSV F expression and generally involved a small percentage of recovered vector. Vector passaged in vitro accumulated mutations in the HN open reading frame, causing a dramatic increase in plaque size that may have implications for vaccine production and immunogenicity. The research findings presented here will be instrumental for improving the design of a bivalent pediatric vaccine for respiratory syncytial virus and parainfluenza virus type 3, two major causes of severe respiratory tract infection in infants and young children. Moreover, this

  1. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains.

    Science.gov (United States)

    Lusso, Paolo; Earl, Patricia L; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A; Burastero, Samuele E

    2005-06-01

    The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on

  2. Non-random escape pathways from a broadly neutralizing human monoclonal antibody map to a highly conserved region on the hepatitis C virus E2 glycoprotein encompassing amino acids 412-423.

    Science.gov (United States)

    Keck, Zhen-yong; Angus, Allan G N; Wang, Wenyan; Lau, Patrick; Wang, Yong; Gatherer, Derek; Patel, Arvind H; Foung, Steven K H

    2014-08-01

    A challenge for hepatitis C virus (HCV) vaccine development is to define epitopes that are able to elicit protective antibodies against this highly diverse virus. The E2 glycoprotein region located at residues 412-423 is conserved and antibodies to 412-423 have broadly neutralizing activities. However, an adaptive mutation, N417S, is associated with a glycan shift in a variant that cannot be neutralized by a murine but by human monoclonal antibodies (HMAbs) against 412-423. To determine whether HCV escapes from these antibodies, we analyzed variants that emerged when cell culture infectious HCV virions (HCVcc) were passaged under increasing concentrations of a specific HMAb, HC33.1. Multiple nonrandom escape pathways were identified. Two pathways occurred in the context of an N-glycan shift mutation at N417T. At low antibody concentrations, substitutions of two residues outside of the epitope, N434D and K610R, led to variants having improved in vitro viral fitness and reduced sensitivity to HC33.1 binding and neutralization. At moderate concentrations, a S419N mutation occurred within 412-423 in escape variants that have greatly reduced sensitivity to HC33.1 but compromised viral fitness. Importantly, the variants generated from these pathways differed in their stability. N434D and K610R-associated variants were stable and became dominant as the virions were passaged. The S419N mutation reverted back to N419S when immune pressure was reduced by removing HC33.1. At high antibody concentrations, a mutation at L413I was observed in variants that were resistant to HC33.1 neutralization. Collectively, the combination of multiple escape pathways enabled the virus to persist under a wide range of antibody concentrations. Moreover, these findings pose a different challenge to vaccine development beyond the identification of highly conserved epitopes. It will be necessary for a vaccine to induce high potency antibodies that prevent the formation of escape variants, which

  3. Differential mode of interaction of ThioflavinT with native β structural motif in human α 1-acid glycoprotein and cross beta sheet of its amyloid: Biophysical and molecular docking approach

    Science.gov (United States)

    Ajmal, Mohammad Rehan; Nusrat, Saima; Alam, Parvez; Zaidi, Nida; Badr, Gamal; Mahmoud, Mohamed H.; Rajpoot, Ravi Kant; Khan, Rizwan Hasan

    2016-08-01

    The present study details the interaction mechanism of Thioflavin T (ThT) to Human α1-acid glycoprotein (AAG) applying various spectroscopic and molecular docking methods. Fluorescence quenching data revealed the binding constant in the order of 104 M-1 and the standard Gibbs free energy change value, ΔG = -6.78 kcal mol-1 for the interaction between ThT and AAG indicating process is spontaneous. There is increase in absorbance of AAG upon the interaction of ThT that may be due to ground state complex formation between ThT and AAG. ThT impelled rise in β-sheet structure in AAG as observed from far-UV CD spectra while there are minimal changes in tertiary structure of the protein. DLS results suggested the reduction in AAG molecular size, ligand entry into the central binding pocket of AAG may have persuaded the molecular compaction in AAG. Isothermal titration calorimetric (ITC) results showed the interaction process to be endothermic with the values of standard enthalpy change ΔH0 = 4.11 kcal mol-1 and entropy change TΔS0 = 10.82 kcal.mol- 1. Moreover, docking results suggested hydrophobic interactions and hydrogen bonding played the important role in the binding process of ThT with F1S and A forms of AAG. ThT fluorescence emission at 485 nm was measured for properly folded native form and for thermally induced amyloid state of AAG. ThT fluorescence with native AAG was very low, while on the other hand with amyloid induced state of the protein AAG showed a positive emission peak at 485 nm upon the excitation at 440 nm, although it binds to native state as well. These results confirmed that ThT binding alone is not responsible for enhancement of ThT fluorescence but it also required beta stacked sheet structure found in protein amyloid to give proper signature signal for amyloid. This study gives the mechanistic insight into the differential interaction of ThT with beta structures found in native state of the proteins and amyloid forms, this study reinforce

  4. Chimeric Bovine/Human Parainfluenza Virus Type 3 Expressing Respiratory Syncytial Virus (RSV) F Glycoprotein: Effect of Insert Position on Expression, Replication, Immunogenicity, Stability, and Protection against RSV Infection

    Science.gov (United States)

    Munir, Shirin; Amaro-Carambot, Emerito; Surman, Sonja; Mackow, Natalie; Yang, Lijuan; Buchholz, Ursula J.; Collins, Peter L.; Schaap-Nutt, Anne

    2014-01-01

    ABSTRACT A recombinant chimeric bovine/human parainfluenza type 3 virus (rB/HPIV3) vector expressing the respiratory syncytial virus (RSV) fusion F glycoprotein previously exhibited disappointing levels of RSV F immunogenicity and genetic stability in children (D. Bernstein et al., Pediatr. Infect. Dis. J. 31:109–114, 2012; C.-F. Yang et al., Vaccine 31:2822–2827, 2013). To investigate parameters that might affect vaccine performance and stability, we constructed and characterized rB/HPIV3 viruses expressing RSV F from the first (pre-N), second (N-P), third (P-M), and sixth (HN-L) genome positions. There was a 30- to 69-fold gradient in RSV F expression from the first to the sixth position. The inserts moderately attenuated vector replication in vitro and in the upper and lower respiratory tracts of hamsters: this was not influenced by the level of RSV F expression and syncytium formation. Surprisingly, inserts in the second, third, and sixth positions conferred increased temperature sensitivity: this was greatest for the third position and was the most attenuating in vivo. Each rB/HPIV3 vector induced a high titer of neutralizing antibodies in hamsters against RSV and HPIV3. Protection against RSV challenge was greater for position 2 than for position 6. Evaluation of insert stability suggested that RSV F is under selective pressure to be silenced during vector replication in vivo, but this was not exacerbated by a high level of RSV F expression and generally involved a small percentage of recovered vector. Vector passaged in vitro accumulated mutations in the HN open reading frame, causing a dramatic increase in plaque size that may have implications for vaccine production and immunogenicity. IMPORTANCE The research findings presented here will be instrumental for improving the design of a bivalent pediatric vaccine for respiratory syncytial virus and parainfluenza virus type 3, two major causes of severe respiratory tract infection in infants and young

  5. Marine Natural Products with P-Glycoprotein Inhibitor Properties

    Directory of Open Access Journals (Sweden)

    Dioxelis Lopez

    2014-01-01

    Full Text Available P-glycoprotein (P-gp is a protein belonging to the ATP-binding cassette (ABC transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters.

  6. Due to interleukin-6 type cytokine redundancy only glycoprotein 130 receptor blockade efficiently inhibits myeloma growth

    Science.gov (United States)

    Burger, Renate; Günther, Andreas; Klausz, Katja; Staudinger, Matthias; Peipp, Matthias; Penas, Eva Maria Murga; Rose-John, Stefan; Wijdenes, John; Gramatzki, Martin

    2017-01-01

    Interleukin-6 has an important role in the pathophysiology of multiple myeloma where it supports the growth and survival of the malignant plasma cells in the bone marrow. It belongs to a family of cytokines which use the glycoprotein 130 chain for signal transduction, such as oncostatin M or leukemia inhibitory factor. Targeting interleukin-6 in plasma cell diseases is currently evaluated in clinical trials with monoclonal antibodies. Here, efforts were made to elucidate the contribution of interleukin-6 and glycoprotein 130 signaling in malignant plasma cell growth in vivo. In the xenograft severe combined immune deficiency model employing our interleukin-6-dependent plasma cell line INA-6, the lack of human interleukin-6 induced autocrine interleukin-6 production and a proliferative response to other cytokines of the glycoprotein 130 family. Herein, mice were treated with monoclonal antibodies against human interleukin-6 (elsilimomab/B-E8), the interleukin-6 receptor (B-R6), and with an antibody blocking glycoprotein 130 (B-R3). While treatment of mice with interleukin-6 and interleukin-6 receptor antibodies resulted in a modest delay in tumor growth, the development of plasmacytomas was completely prevented with the anti-glycoprotein 130 antibody. Importantly, complete inhibition was also achieved using F(ab’)2-fragments of monoclonal antibody B-R3. Tumors harbor activated signal transducer and activator of transcription 3, and in vitro, the antibody inhibited leukemia inhibitory factor stimulated signal transducer and activator of transcription 3 phosphorylation and cell growth, while being less effective against interleukin-6. In conclusion, the growth of INA-6 plasmacytomas in vivo under interleukin-6 withdrawal remains strictly dependent on glycoprotein 130, and other glycoprotein 130 cytokines may substitute for interleukin-6. Antibodies against glycoprotein 130 are able to overcome this redundancy and should be explored for a possible therapeutic window

  7. Acrosome reaction: relevance of zona pellucida glycoproteins

    Science.gov (United States)

    Gupta, Satish K; Bhandari, Beena

    2011-01-01

    During mammalian fertilisation, the zona pellucida (ZP) matrix surrounding the oocyte is responsible for the binding of the spermatozoa to the oocyte and induction of the acrosome reaction (AR) in the ZP-bound spermatozoon. The AR is crucial for the penetration of the ZP matrix by spermatozoa. The ZP matrix in mice is composed of three glycoproteins designated ZP1, ZP2 and ZP3, whereas in humans, it is composed of four (ZP1, ZP2, ZP3 and ZP4). ZP3 acts as the putative primary sperm receptor and is responsible for AR induction in mice, whereas in humans (in addition to ZP3), ZP1 and ZP4 also induce the AR. The ability of ZP3 to induce the AR resides in its C-terminal fragment. O-linked glycans are critical for the murine ZP3-mediated AR. However, N-linked glycans of human ZP1, ZP3 and ZP4 have important roles in the induction of the AR. Studies with pharmacological inhibitors showed that the ZP3-induced AR involves the activation of the Gi-coupled receptor pathway, whereas ZP1- and ZP4-mediated ARs are independent of this pathway. The ZP3-induced AR involves the activation of T-type voltage-operated calcium channels (VOCCs), whereas ZP1- and ZP4-induced ARs involve both T- and L-type VOCCs. To conclude, in mice, ZP3 is primarily responsible for the binding of capacitated spermatozoa to the ZP matrix and induction of the AR, whereas in humans (in addition to ZP3), ZP1 and ZP4 also participate in these stages of fertilisation. PMID:21042299

  8. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum

    Science.gov (United States)

    Ferris, Sean P.; Jaber, Nikita S.; Molinari, Maurizio; Arvan, Peter; Kaufman, Randal J.

    2013-01-01

    Protein folding in the endoplasmic reticulum (ER) is error prone, and ER quality control (ERQC) processes ensure that only correctly folded proteins are exported from the ER. Glycoproteins can be retained in the ER by ERQC, and this retention contributes to multiple human diseases, termed ER storage diseases. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) acts as a central component of glycoprotein ERQC, monoglucosylating deglucosylated N-glycans of incompletely folded glycoproteins and promoting subsequent reassociation with the lectin-like chaperones calreticulin and calnexin. The extent to which UGGT1 influences glycoprotein folding, however, has only been investigated for a few selected substrates. Using mouse embryonic fibroblasts lacking UGGT1 or those with UGGT1 complementation, we investigated the effect of monoglucosylation on the soluble/insoluble distribution of two misfolded α1-antitrypsin (AAT) variants responsible for AAT deficiency disease: null Hong Kong (NHK) and Z allele. Whereas substrate solubility increases directly with the number of N-linked glycosylation sites, our results indicate that additional solubility is conferred by UGGT1 enzymatic activity. Monoglucosylation-dependent solubility decreases both BiP association with NHK and unfolded protein response activation, and the solubility increase is blocked in cells deficient for calreticulin. These results suggest that UGGT1-dependent monoglucosylation of N-linked glycoproteins promotes substrate solubility in the ER. PMID:23864712

  9. Genetic polymorphism of alpha 2HS-glycoprotein.

    Science.gov (United States)

    Cox, D W; Andrews, B J; Wills, D E

    1986-01-01

    A genetic polymorphism of the human serum glycoprotein, alpha 2HS-glycoprotein, can be recognized using isoelectric focusing in polyacrylamide, followed by silver-stain immunofixation. In a North American Caucasian population, two common alleles and one rare allele have been recognized, with frequencies as follows: AHSG*1: .6419, AHSG*2: .3535, and AHSG*3: .0046; polymorphism information content (PIC): .36. A black population from various islands of the Caribbean has the two most common alleles, plus a variant (B) not found in the white population. Allele frequencies in the blacks were: AHSG*1: .6901, AHSG*2: .2606, AHSG*B: .0493; PIC: .396. Family studies confirmed the allele designations. Alleles in both populations were in Hardy-Weinberg equilibrium. This polymorphism will be useful as a marker on chromosome 3q and for forensic studies. The serum concentration associated with AHSG*1 may be somewhat greater than that associated with AHSG*2. Differences between the allele products remained after removal of sialic acid from the glycoprotein with neuraminidase. The silver-stain immunofixation technique used for this polymorphism has wide application for the study of polymorphisms where the protein is present in low concentration or where only low titer antiserum is available. Images Fig. 1 Fig. 2 PMID:3717159

  10. Chimpanzee GB virus C and GB virus A E2 envelope glycoproteins contain a peptide motif that inhibits human immunodeficiency virus type 1 replication in human CD4+ T-cells

    OpenAIRE

    McLinden, James H.; Stapleton, Jack T.; Klinzman, Donna; Murthy, Krishna K.; Chang, Qing; Kaufman, Thomas M.; Bhattarai, Nirjal; Xiang, Jinhua

    2013-01-01

    GB virus type C (GBV-C) is a lymphotropic virus that can cause persistent infection in humans. GBV-C is not associated with any disease, but is associated with reduced mortality in human immunodeficiency virus type 1 (HIV-1)-infected individuals. Related viruses have been isolated from chimpanzees (GBV-Ccpz) and from New World primates (GB virus type A, GBV-A). These viruses are also capable of establishing persistent infection. We determined the nucleotide sequence encoding the envelope glyc...

  11. Human serum fetuin A/α2HS-glycoprotein level is associated with long-term survival in patients with alcoholic liver cirrhosis, comparison with the Child-Pugh and MELD scores

    OpenAIRE

    Prohászka Zoltán; Fekete Béla; Telegdy László; Benkő Zsuzsa; Jakab László; Vörös Krisztián; Gráf László; Kalabay László; Füst George

    2007-01-01

    Abstract Background Serum concentration of fetuin A/α2HS-glycoprotein (AHSG) is a good indicator of liver cell function and 1-month mortality in patients with alcoholic liver cirrhosis and liver cancer. We intended to determine whether decreased serum AHSG levels are associated with long-term mortality and whether the follow-up of serum AHSG levels can add to the predictive value of the Child-Pugh (CP) and MELD scores. Methods We determined serum AHSG concentrations in 89 patients by radial i...

  12. Glycoprotein 130 polymorphism predicts soluble glycoprotein 130 levels.

    Science.gov (United States)

    Wonnerth, Anna; Katsaros, Katharina M; Krychtiuk, Konstantin A; Speidl, Walter S; Kaun, Christoph; Thaler, Kylie; Huber, Kurt; Wojta, Johann; Maurer, Gerald; Seljeflot, Ingebjorg; Arnesen, Harald; Weiss, Thomas W

    2014-05-01

    Interleukin-6 (IL-6) is a key cytokine in inflammatory diseases. It exerts its biological function via binding to a homodimer of its signal transducer glycoprotein 130 (gp130). Soluble gp130 (sgp130) is the natural inhibitor of IL-6 trans-signalling. The aim of this study was to test a possible influence of the gp130 genotype on sgp130 serum levels. In two separate populations, subjects were genotyped for the gp130 polymorphism G148C. Sgp130, IL-6 and soluble interleukin-6 receptor (sIL-6R) levels were measured. The OSLO population consisted of 546 male subjects at high risk for CAD. The VIENNA population consisted of 299 male subjects with angiographically proven CAD. In the OSLO population, 124 (22.7%) subjects were hetero- or homozygote for the rare C allele. Individuals carrying the polymorphism had significantly higher levels of sgp130. In a multivariate linear regression model this association remained significant (adjusted p=0.001). In the VIENNA population, 48 (16.1%) subjects were hetero- or homozygote for the rare C allele. Consistent with the former study, sgp130 levels were significantly higher in carriers of the polymorphism compared to wildtype carriers (adjusted p=0.038). In the VIENNA population, sgp130 levels were significantly higher in diabetic patients. In the OSLO population, sgp130 was higher in patients with increased body mass index and in smokers (p<0.05). Sgp130 serum levels are significantly higher in subjects carrying the gp130 polymorphism G148C compared to wildtype carriers. This finding proposes a possible genetical influence on sgp130 levels which may alter individual coping mechanisms in inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E

    1991-01-01

    The highly glycosylated envelope glycoprotein (gp 160) of human immunodeficiency virus (HIV) interacts with the CD4 molecule present on the membrane of CD4+ cells and is involved in the pathobiology of HIV infection. Lectins bind glycoproteins through non-covalent interactions with specific hexose...... of the binding of rgp160 to the CD4 receptor on CEM 13 cells, as demonstrated by FACS analyses. These results indicate that conglutinin may inhibit the infection with HIV-1 through its interaction with the viral envelope glycoprotein....

  14. The Role of the MHV Receptor and Related Glycoproteins in Murine Hepatitis Virus Infection of Murine Cell Lines

    Science.gov (United States)

    1995-04-13

    colipids, as does that of bovine coronavirus (Vlasak, et al ., 1988) . The interaction of HE protein wi th its cellular l igand is not sufficient to...glycoprotein of human parainfluenza virus type 3 is required for virus spread and virus -mediated membrane fusion (Moscona, et al., 1992). The relative...affinity for sialic acid of the hemagglutinin- neuraminidase glycoproteins of different parainfluenza virus type 3 variants correlates with their

  15. The Role of the Hendra Virus and Nipah Virus Attachment Glycoproteins in Receptor Binding and Antibody Neutralization

    Science.gov (United States)

    2014-01-31

    The Role of the Hendra Virus and Nipah Virus Attachment Glycoproteins in Receptor Binding and Antibody Neutralization by...Henipavirus mediated membrane fusion, virus entry and targeted therapeutics. Viruses 4:280-308. and Bossart KN, Fusco DL, Broder CC. 2013. Paramyxovirus...of the hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody. PLoS pathogens 9:e1003684

  16. Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages.

    Science.gov (United States)

    Zhu, R; Zacharias, L; Wooding, K M; Peng, W; Mechref, Y

    2017-01-01

    Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted. © 2017 Elsevier Inc. All rights reserved.

  17. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections

    NARCIS (Netherlands)

    Xiong, Xiaoli; Tortorici, M Alejandra; Snijder, Joost|info:eu-repo/dai/nl/338018328; Yoshioka, Craig; Walls, Alexandra C; Li, Wentao|info:eu-repo/dai/nl/411296272; McGuire, Andrew T; Rey, Félix A; Bosch, Berend-Jan|info:eu-repo/dai/nl/273306049; Veesler, David

    2017-01-01

    Coronaviruses recently emerged as major human pathogens causing outbreaks of severe acute respiratory syndrome and Middle-East respiratory syndrome. They utilize the spike (S) glycoprotein anchored in the viral envelope to mediate host attachment and fusion of the viral and cellular membranes to

  18. Characterization of P-glycoprotein and multidrug resistance proteins in rat kidney and intestinal cell lines.

    NARCIS (Netherlands)

    Water, F.M. van de; Boleij, J.M.; Peters, J.G.P.; Russel, F.G.M.; Masereeuw, R.

    2007-01-01

    The activity of P-glycoprotein (Pgp/MDR1/ABCB1) and multidrug resistance proteins (MRP/ABCC) influence the pharmacokinetics and bioavailability of many drugs. Few suitable cell lines for the study of drug transport exist. Additional non-human cell lines may help clarify species differences and

  19. Engineered CHO cells for production of diverse, homogeneous glycoproteins

    DEFF Research Database (Denmark)

    Yang, Zhang; Wang, Shengjun; Halim, Adnan

    2015-01-01

    Production of glycoprotein therapeutics in Chinese hamster ovary (CHO) cells is limited by the cells' generic capacity for N-glycosylation, and production of glycoproteins with desirable homogeneous glycoforms remains a challenge. We conducted a comprehensive knockout screen of glycosyltransferase...

  20. Structural, antigenic and immunogenic features of respiratory syncytial virus glycoproteins relevant for vaccine development

    Science.gov (United States)

    Melero, José A.; Mas, Vicente; McLellan, Jason S.

    2016-01-01

    Extraordinary progress in the structure and immunobiology of the human respiratory syncytial virus glycoproteins has been accomplished during the last few years. Determination of the fusion (F) glycoprotein structure folded in either the prefusion or the postfusion conformation was an inspiring breakthrough not only to understand the structural changes associated with the membrane fusion process but additionally to appreciate the antigenic intricacies of the F molecule. Furthermore, these developments have opened new avenues for structure-based designs of promising hRSV vaccine candidates. Finally, recent advances in our knowledge of the attachment (G) glycoprotein and its interaction with cell-surface receptors have revitalized interest in this molecule as a vaccine, as well as its role in hRSV immunobiology. PMID:27692522

  1. Identification of a mouse synaptic glycoprotein gene in cultured neurons.

    Science.gov (United States)

    Yu, Albert Cheung-Hoi; Sun, Chun Xiao; Li, Qiang; Liu, Hua Dong; Wang, Chen Ran; Zhao, Guo Ping; Jin, Meilei; Lau, Lok Ting; Fung, Yin-Wan Wendy; Liu, Shuang

    2005-10-01

    Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.

  2. Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins.

    Directory of Open Access Journals (Sweden)

    Vinca Icard

    Full Text Available The density of circulating hepatitis C virus (HCV particles in the blood of chronically infected patients is very heterogeneous. The very low density of some particles has been attributed to an association of the virus with apolipoprotein B (apoB positive and triglyceride rich lipoproteins (TRL likely resulting in hybrid lipoproteins known as lipo-viro-particles (LVP containing the viral envelope glycoproteins E1 and E2, capsid and viral RNA. The specific infectivity of these particles has been shown to be higher than the infectivity of particles of higher density. The nature of the association of HCV particles with lipoproteins remains elusive and the role of apolipoproteins in the synthesis and assembly of the viral particles is unknown. The human intestinal Caco-2 cell line differentiates in vitro into polarized and apoB secreting cells during asymmetric culture on porous filters. By using this cell culture system, cells stably expressing E1 and E2 secreted the glycoproteins into the basal culture medium after one week of differentiation concomitantly with TRL secretion. Secreted glycoproteins were only detected in apoB containing density fractions. The E1-E2 and apoB containing particles were unique complexes bearing the envelope glycoproteins at their surface since apoB could be co-immunoprecipitated with E2-specific antibodies. Envelope protein secretion was reduced by inhibiting the lipidation of apoB with an inhibitor of the microsomal triglyceride transfer protein. HCV glycoproteins were similarly secreted in association with TRL from the human liver cell line HepG2 but not by Huh-7 and Huh-7.5 hepatoma cells that proved deficient for lipoprotein assembly. These data indicate that HCV envelope glycoproteins have the intrinsic capacity to utilize apoB synthesis and lipoprotein assembly machinery even in the absence of the other HCV proteins. A model for LVP assembly is proposed.

  3. Bioactivity of proteins isolated from Lactobacillus plantarum L67 treated with Zanthoxylum piperitum DC glycoprotein.

    Science.gov (United States)

    Song, S; Oh, S; Lim, K-T

    2015-06-01

    Lactobacilli in the human gastrointestinal tract have beneficial effects on the health of their host. To enhance these effects, the bioactivity of lactobacilli can be fortified through exogenous dietary or pharmacological agents, such as glycoproteins. To elucidate the inductive effect of Zanthoxylum piperitum DC (ZPDC) glycoprotein on Lactobacillus plantarum L67, we evaluated the radical-scavenging activity, anti-oxidative enzymes (SOD, GPx and CAT), growth rate, ATPase activity and β-galactosidase activity of this strain. When Lact. plantarum L67 was treated with ZPDC glycoprotein at different concentrations, the intensities of a few SDS-PAGE bands were slightly changed. The amount of a 23 kDa protein was increased upon treatment with increasing concentrations of ZPDC glycoprotein. The results of this study indicate that the radical-scavenging activity for O2(-) and OH¯, but not for the DPPH radical, increased in a concentration-dependent manner after treatment with ZPDC glycoprotein. The activation of anti-oxidative enzymes (SOD, GPx and CAT), growth rate and β-galactosidase activity also increased in a concentration-dependent manner in response to ZPDC glycoprotein treatment, whereas ATPase activity was decreased. In summary, ZPDC glycoprotein stimulated an increase in the bioactivity of Lact. plantarum L67. Significance and impact of the study: This study demonstrated that Lactobacillus plantarum L67 possesses anti-oxidative activity. This strain of lactic bacteria has been known to have various probiotic uses, such as yogurt starters and dietary additional supplements. We found, through this experiment, that the protein has a strong anti-oxidative character, and the activity can be enhanced by treatment with Zanthoxylum piperitum DC (ZPDC) glycoprotein. This study may be application of Lact. plantarum L67 treated by ZPDC glycoprotein in yogurt fermentation. It could be one of the avenues of minimizing yogurt postacidification during storage. In addition

  4. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  5. Hepatic disposition of glycoproteins and associated drugs

    OpenAIRE

    Sluijs, Pieter van der

    1987-01-01

    Studies reported herein were aimed to investigate hepatic transport mechanisms of glycoproteins and associated drugs. This not only might improve current understanding of hepatic physiology but alsocould provide a rational base for liver specific targeting of therapeutic agents, using carriers that are selectively interiorized by the liver. ... Zie: Summary

  6. Hepatic disposition of glycoproteins and associated drugs

    NARCIS (Netherlands)

    Sluijs, Pieter van der

    1987-01-01

    Studies reported herein were aimed to investigate hepatic transport mechanisms of glycoproteins and associated drugs. This not only might improve current understanding of hepatic physiology but alsocould provide a rational base for liver specific targeting of therapeutic agents, using carriers that

  7. Platelet receptor expression and shedding: glycoprotein Ib-IX-V and glycoprotein VI.

    Science.gov (United States)

    Gardiner, Elizabeth E; Andrews, Robert K

    2014-04-01

    Quantity, quality, and lifespan are 3 important factors in the physiology, pathology, and transfusion of human blood platelets. The aim of this review is to discuss the proteolytic regulation of key platelet-specific receptors, glycoprotein(GP)Ib and GPVI, involved in the function of platelets in hemostasis and thrombosis, and nonimmune or immune thrombocytopenia. The scope of the review encompasses the basic science of platelet receptor shedding, practical aspects related to laboratory analysis of platelet receptor expression/shedding, and clinical implications of using the proteolytic fragments as platelet-specific biomarkers in vivo in terms of platelet function and clearance. These topics can be relevant to platelet transfusion regarding both changes in platelet receptor expression occurring ex vivo during platelet storage and/or clinical use of platelets for transfusion. In this regard, quantitative analysis of platelet receptor profiles on blood samples from individuals could ultimately enable stratification of bleeding risk, discrimination between causes of thrombocytopenia due to impaired production vs enhanced clearance, and monitoring of response to treatment prior to change in platelet count. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Human serum fetuin A/α2HS-glycoprotein level is associated with long-term survival in patients with alcoholic liver cirrhosis, comparison with the Child-Pugh and MELD scores

    Directory of Open Access Journals (Sweden)

    Prohászka Zoltán

    2007-03-01

    Full Text Available Abstract Background Serum concentration of fetuin A/α2HS-glycoprotein (AHSG is a good indicator of liver cell function and 1-month mortality in patients with alcoholic liver cirrhosis and liver cancer. We intended to determine whether decreased serum AHSG levels are associated with long-term mortality and whether the follow-up of serum AHSG levels can add to the predictive value of the Child-Pugh (CP and MELD scores. Methods We determined serum AHSG concentrations in 89 patients by radial immunodiffusion. Samples were taken at the time of enrolment and in the 1st, 3rd, 6th, and the 12th month thereafter. Results Forty-one patients died during the 1-year follow-up period, 37 of them had liver failure. Data of these patients were analysed further. Deceased patients had lower baseline AHSG levels than the 52 patients who survived (293 ± 77 vs. 490 ± 106 μg/ml, mean ± SD, p Conclusion Serum AHSG concentration is a reliable and sensitive indicator of 1-year mortality in patients with alcoholic liver cirrhosis that compares well to the predictive value of CP score and may further improve that of MELD score.

  9. A novel function of N-linked glycoproteins, alpha-2-HS-glycoprotein and hemopexin: Implications for small molecule compound-mediated neuroprotection

    Science.gov (United States)

    Kanno, Takuya; Yasutake, Kaori; Tanaka, Kazunori; Ikeda, Joh-E

    2017-01-01

    Therapeutic agents to the central nervous system (CNS) need to be efficiently delivered to the target site of action at appropriate therapeutic levels. However, a limited number of effective drugs for the treatment of neurological diseases has been developed thus far. Further, the pharmacological mechanisms by which such therapeutic agents can protect neurons from cell death have not been fully understood. We have previously reported the novel small-molecule compound, 2-[mesityl(methyl)amino]-N-[4-(pyridin-2-yl)-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316), as a unique neuroprotectant against oxidative injury and a highly promising remedy for the treatment of amyotrophic lateral sclerosis (ALS). One of the remarkable characteristics of WN1316 is that its efficacious doses in ALS mouse models are much less than those against oxidative injury in cultured human neuronal cells. It is also noted that the WN1316 cytoprotective activity observed in cultured cells is totally dependent upon the addition of fetal bovine serum in culture medium. These findings led us to postulate some serum factors being tightly linked to the WN1316 efficacy. In this study, we sieved through fetal bovine serum proteins and identified two N-linked glycoproteins, alpha-2-HS-glycoprotein (AHSG) and hemopexin (HPX), requisites to exert the WN1316 cytoprotective activity against oxidative injury in neuronal cells in vitro. Notably, the removal of glycan chains from these molecules did not affect the WN1316 cytoprotective activity. Thus, two glycoproteins, AHSG and HPX, represent a pivotal glycoprotein of the cytoprotective activity for WN1316, showing a concrete evidence for the novel glycan-independent function of serum glycoproteins in neuroprotective drug efficacy. PMID:29016670

  10. A novel function of N-linked glycoproteins, alpha-2-HS-glycoprotein and hemopexin: Implications for small molecule compound-mediated neuroprotection.

    Directory of Open Access Journals (Sweden)

    Takuya Kanno

    Full Text Available Therapeutic agents to the central nervous system (CNS need to be efficiently delivered to the target site of action at appropriate therapeutic levels. However, a limited number of effective drugs for the treatment of neurological diseases has been developed thus far. Further, the pharmacological mechanisms by which such therapeutic agents can protect neurons from cell death have not been fully understood. We have previously reported the novel small-molecule compound, 2-[mesityl(methylamino]-N-[4-(pyridin-2-yl-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316, as a unique neuroprotectant against oxidative injury and a highly promising remedy for the treatment of amyotrophic lateral sclerosis (ALS. One of the remarkable characteristics of WN1316 is that its efficacious doses in ALS mouse models are much less than those against oxidative injury in cultured human neuronal cells. It is also noted that the WN1316 cytoprotective activity observed in cultured cells is totally dependent upon the addition of fetal bovine serum in culture medium. These findings led us to postulate some serum factors being tightly linked to the WN1316 efficacy. In this study, we sieved through fetal bovine serum proteins and identified two N-linked glycoproteins, alpha-2-HS-glycoprotein (AHSG and hemopexin (HPX, requisites to exert the WN1316 cytoprotective activity against oxidative injury in neuronal cells in vitro. Notably, the removal of glycan chains from these molecules did not affect the WN1316 cytoprotective activity. Thus, two glycoproteins, AHSG and HPX, represent a pivotal glycoprotein of the cytoprotective activity for WN1316, showing a concrete evidence for the novel glycan-independent function of serum glycoproteins in neuroprotective drug efficacy.

  11. Chemoselective approaches to glycoprotein assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Howard C.; Bertozzi, Carolyn R.

    2001-02-23

    Oligosaccharides on proteins and lipids play central roles in human health and disease. The molecular analysis of glycoconjugate function has benefited tremendously from new methods for their chemical synthesis, which provides homogeneous material not attainable from biosynthetic systems. Still, glycoconjugate synthesis requires the manipulation of multiple stereocenters and protecting groups and remains the domain of a few expert laboratories around the world. This account summarizes chemoselective approaches for assembling homogeneous glycoconjugates that attempt to reduce the barriers to their synthesis. The objective of these methods is to make glycoconjugate synthesis accessible to a broader community, thereby accelerating progress in glycobiology.

  12. Human serum fetuin A/α2HS-glycoprotein level is associated with long-term survival in patients with alcoholic liver cirrhosis, comparison with the Child-Pugh and MELD scores

    Science.gov (United States)

    Kalabay, László; Gráf, László; Vörös, Krisztián; Jakab, László; Benkő, Zsuzsa; Telegdy, László; Fekete, Béla; Prohászka, Zoltán; Füst, George

    2007-01-01

    Background Serum concentration of fetuin A/α2HS-glycoprotein (AHSG) is a good indicator of liver cell function and 1-month mortality in patients with alcoholic liver cirrhosis and liver cancer. We intended to determine whether decreased serum AHSG levels are associated with long-term mortality and whether the follow-up of serum AHSG levels can add to the predictive value of the Child-Pugh (CP) and MELD scores. Methods We determined serum AHSG concentrations in 89 patients by radial immunodiffusion. Samples were taken at the time of enrolment and in the 1st, 3rd, 6th, and the 12th month thereafter. Results Forty-one patients died during the 1-year follow-up period, 37 of them had liver failure. Data of these patients were analysed further. Deceased patients had lower baseline AHSG levels than the 52 patients who survived (293 ± 77 vs. 490 ± 106 μg/ml, mean ± SD, p AHSG level, CP and MELD scores showed the greatest difference between deceased and survived patients. The cutoff AHSG level 365 μg/ml could differentiate between deceased and survived patients (AUC: 0.937 ± 0.025, p AHSG concentrations AHSG concentration proved to be a strong indicator of mortality (relative risk: 9.257, 95% C.I.: 3.945–21.724, p AHSG concentration was independent of all variables that differed between survived and deceased patients during univariate analysis. Multivariate analysis showed that correlation of low serum AHSG levels with mortality was stronger than that with CP and MELD scores. Patients with AHSG AHSG concentration is a reliable and sensitive indicator of 1-year mortality in patients with alcoholic liver cirrhosis that compares well to the predictive value of CP score and may further improve that of MELD score. PMID:17394649

  13. Human serum fetuin A/alpha2HS-glycoprotein level is associated with long-term survival in patients with alcoholic liver cirrhosis, comparison with the Child-Pugh and MELD scores.

    Science.gov (United States)

    Kalabay, László; Gráf, László; Vörös, Krisztián; Jakab, László; Benko, Zsuzsa; Telegdy, László; Fekete, Béla; Prohászka, Zoltán; Füst, George

    2007-03-29

    Serum concentration of fetuin A/alpha2HS-glycoprotein (AHSG) is a good indicator of liver cell function and 1-month mortality in patients with alcoholic liver cirrhosis and liver cancer. We intended to determine whether decreased serum AHSG levels are associated with long-term mortality and whether the follow-up of serum AHSG levels can add to the predictive value of the Child-Pugh (CP) and MELD scores. We determined serum AHSG concentrations in 89 patients by radial immunodiffusion. Samples were taken at the time of enrollment and in the 1st, 3rd, 6th, and the 12th month thereafter. Forty-one patients died during the 1-year follow-up period, 37 of them had liver failure. Data of these patients were analysed further. Deceased patients had lower baseline AHSG levels than the 52 patients who survived (293 +/- 77 vs. 490 +/- 106 microg/ml, mean +/- SD, p AHSG level, CP and MELD scores showed the greatest difference between deceased and survived patients. The cutoff AHSG level 365 microg/ml could differentiate between deceased and survived patients (AUC: 0.937 +/- 0.025, p AHSG concentrations or = 365 microg/ml (9.3%). Fourteen out of these 37 fatalities occurred during the first month of observation. During months 1-12 low AHSG concentration proved to be a strong indicator of mortality (relative risk: 9.257, 95% C.I.: 3.945-21.724, p AHSG concentration was independent of all variables that differed between survived and deceased patients during univariate analysis. Multivariate analysis showed that correlation of low serum AHSG levels with mortality was stronger than that with CP and MELD scores. Patients with AHSG or = 20 (p AHSG concentration is a reliable and sensitive indicator of 1-year mortality in patients with alcoholic liver cirrhosis that compares well to the predictive value of CP score and may further improve that of MELD score.

  14. Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1.

    Science.gov (United States)

    Wang, Kening; Tomaras, Georgia D; Jegaskanda, Sinthujan; Moody, M Anthony; Liao, Hua-Xin; Goodman, Kyle N; Berman, Phillip W; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Kaewkungwal, Jaranit; Haynes, Barton F; Cohen, Jeffrey I

    2017-10-01

    The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice. IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were

  15. Dimers of beta 2-glycoprotein I mimic the in vitro effects of beta 2-glycoprotein I-anti-beta 2-glycoprotein I antibody complexes

    NARCIS (Netherlands)

    Lutters, B. C.; Meijers, J. C.; Derksen, R. H.; Arnout, J.; de Groot, P. G.

    2001-01-01

    Anti-beta(2)-glycoprotein I antibodies are thought to cause lupus anticoagulant activity by forming bivalent complexes with beta(2)-glycoprotein I (beta(2)GPI). To test this hypothesis, chimeric fusion proteins were constructed of the dimerization domain (apple 4) of factor XI and beta(2)GPI. Both a

  16. Structure of the Epstein-Barr virus major envelope glycoprotein.

    Science.gov (United States)

    Szakonyi, Gerda; Klein, Michael G; Hannan, Jonathan P; Young, Kendra A; Ma, Runlin Z; Asokan, Rengasamy; Holers, V Michael; Chen, Xiaojiang S

    2006-11-01

    Epstein-Barr virus (EBV) infection of B cells is associated with lymphoma and other human cancers. EBV infection is initiated by the binding of the viral envelope glycoprotein (gp350) to the cell surface receptor CR2. We determined the X-ray structure of the highly glycosylated gp350 and defined the CR2 binding site on gp350. Polyglycans shield all but one surface of the gp350 polypeptide, and we demonstrate that this glycan-free surface is the receptor-binding site. Deglycosylated gp350 bound CR2 similarly to the glycosylated form, suggesting that glycosylation is not important for receptor binding. Structure-guided mutagenesis of the glycan-free surface disrupted receptor binding as well as binding by a gp350 monoclonal antibody, a known inhibitor of virus-receptor interactions. These results provide structural information for developing drugs and vaccines to prevent infection by EBV and related viruses.

  17. Expression and Immunogenicity of Two Recombinant Fusion Proteins Comprising Foot-and-Mouth Disease Virus Structural Protein VP1 and DC-SIGN-Binding Glycoproteins

    OpenAIRE

    Xinsheng Liu; Jianliang Lv; Yuzhen Fang; Peng Zhou; Yanzhen Lu; Li Pan; Zhongwang Zhang; Junwu Ma; Yongguang Zhang; Yonglu Wang

    2017-01-01

    Improving vaccine immunogenicity by targeting antigens to dendritic cells has recently emerged as a new design strategy in vaccine development. In this study, the VP1 gene of foot-and-mouth disease virus (FMDV) serotype A was fused with the gene encoding human immunodeficiency virus (HIV) membrane glycoprotein gp120 or C2-V3 domain of hepatitis C virus (HCV) envelope glycoprotein E2, both of which are DC-SIGN-binding glycoproteins. After codon optimization, the VP1 protein and the two recombi...

  18. Cell wall O-glycoproteins and N-glycoproteins: biosynthesis and some functional aspects.

    Directory of Open Access Journals (Sweden)

    Eric eNguema-Ona

    2014-10-01

    Full Text Available Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensin, the O-glycan chains of arabinogalactan proteins are highly heterogeneous consisting mostly of (i a short oligo-arabinoside chain of three to four residues, and (ii a larger -1,3-linked galactan backbone with -1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core 1,2-xylose, core 1,3-fucose residues and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins only extensin and arabinogalactan proteins are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review.

  19. Paramyxovirus Glycoprotein Incorporation, Assembly and Budding: A Three Way Dance for Infectious Particle Production

    Directory of Open Access Journals (Sweden)

    Farah El Najjar

    2014-08-01

    Full Text Available Paramyxoviruses are a family of negative sense RNA viruses whose members cause serious diseases in humans, such as measles virus, mumps virus and respiratory syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein complex and the surface glycoproteins at the plasma membrane of infected cells and subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the attachment protein and the fusion protein, promote attachment of the virus to host cells and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into infectious progeny particles requires coordinated interplay between the three viral structural components, driven primarily by the matrix protein. In this review, we discuss recent progress in understanding the contributions of the matrix protein and glycoproteins in driving paramyxovirus assembly and budding while focusing on the viral protein interactions underlying this process and the intracellular trafficking pathways for targeting viral components to assembly sites. Differences in the mechanisms of particle production among the different family members will be highlighted throughout.

  20. Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B

    Energy Technology Data Exchange (ETDEWEB)

    Backovic, Marija [Northwestern Univ., Evanston, IL (United States); Longnecker, Richard [Northwestern Univ., Chicago, IL (United States); Jardetzky, Theodore S [Northwestern Univ., Evanston, IL (United States)

    2009-03-16

    Epstein-Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the structure of gB from Herpes simplex virus 1 (HSV-1) is available. Here, we report the crystal structure of the secreted EBV gB ectodomain, which forms 16-nm long spike-like trimers, structurally homologous to the postfusion trimers of the fusion protein G of vesicular stomatitis virus (VSV). Comparative structural analyses of EBV gB and VSV G, which has been solved in its pre and postfusion states, shed light on gB residues that may be involved in conformational changes and membrane fusion. Also, the EBV gB structure reveals that, despite the high sequence conservation of gB in herpesviruses, the relative orientations of individual domains, the surface charge distributions, and the structural details of EBV gB differ from the HSV-1 protein, indicating regions and residues that may have important roles in virus-specific entry.

  1. Novel Cross-Reactive Monoclonal Antibodies against Ebolavirus Glycoproteins Show Protection in a Murine Challenge Model.

    Science.gov (United States)

    Duehr, James; Wohlbold, Teddy John; Oestereich, Lisa; Chromikova, Veronika; Amanat, Fatima; Rajendran, Madhusudan; Gomez-Medina, Sergio; Mena, Ignacio; tenOever, Benjamin R; García-Sastre, Adolfo; Basler, Christopher F; Munoz-Fontela, Cesar; Krammer, Florian

    2017-08-15

    Out of an estimated 31,100 cases since their discovery in 1976, ebolaviruses have caused approximately 13,000 deaths. The vast majority (∼11,000) of these occurred during the 2013-2016 West African epidemic. Three out of five species in the genus are known to cause Ebola Virus Disease in humans. Several monoclonal antibodies against the ebolavirus glycoprotein are currently in development as therapeutics. However, there is still a paucity of monoclonal antibodies that can cross-react between the glycoproteins of different ebolavirus species, and the mechanism of these monoclonal antibody therapeutics is still not understood in detail. Here, we generated a panel of eight murine monoclonal antibodies (MAbs) utilizing a prime-boost vaccination regimen with a Zaire ebolavirus glycoprotein expression plasmid followed by infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. We tested the binding breadth of the resulting monoclonal antibodies using a set of recombinant surface glycoproteins from Reston, Taï Forest, Bundibugyo, Zaire, Sudan, and Marburg viruses and found two antibodies that showed pan-ebolavirus binding. An in vivo Stat2-/- mouse model was utilized to test the ability of these MAbs to protect from infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. Several of our antibodies, including the broadly binding ones, protected mice from mortality despite lacking neutralization capability in vitro, suggesting their protection may be mediated by Fc-FcR interactions. Indeed, three antibodies displayed cellular phagocytosis and/or antibody-dependent cell-mediated cytotoxicity in vitro Our antibodies, specifically the two identified cross-reactive monoclonal antibodies (KL-2E5 and KL-2H7), might add to the understanding of anti-ebolavirus humoral immunity.IMPORTANCE This study describes the generation of a panel of novel anti-ebolavirus glycoprotein monoclonal antibodies, including two

  2. A Comprehensive Review of Our Current Understanding of Red Blood Cell (RBC Glycoproteins

    Directory of Open Access Journals (Sweden)

    Takahiko Aoki

    2017-09-01

    Full Text Available Human red blood cells (RBC, which are the cells most commonly used in the study of biological membranes, have some glycoproteins in their cell membrane. These membrane proteins are band 3 and glycophorins A–D, and some substoichiometric glycoproteins (e.g., CD44, CD47, Lu, Kell, Duffy. The oligosaccharide that band 3 contains has one N-linked oligosaccharide, and glycophorins possess mostly O-linked oligosaccharides. The end of the O-linked oligosaccharide is linked to sialic acid. In humans, this sialic acid is N-acetylneuraminic acid (NeuAc. Another sialic acid, N-glycolylneuraminic acid (NeuGc is present in red blood cells of non-human origin. While the biological function of band 3 is well known as an anion exchanger, it has been suggested that the oligosaccharide of band 3 does not affect the anion transport function. Although band 3 has been studied in detail, the physiological functions of glycophorins remain unclear. This review mainly describes the sialo-oligosaccharide structures of band 3 and glycophorins, followed by a discussion of the physiological functions that have been reported in the literature to date. Moreover, other glycoproteins in red blood cell membranes of non-human origin are described, and the physiological function of glycophorin in carp red blood cell membranes is discussed with respect to its bacteriostatic activity.

  3. A randomized comparison of platinum chromium-based everolimus-eluting stents versus cobalt chromium-based Zotarolimus-Eluting stents in all-comers receiving percutaneous coronary intervention: HOST-ASSURE (harmonizing optimal strategy for treatment of coronary artery stenosis-safety & effectiveness of drug-eluting stents & anti-platelet regimen), a randomized, controlled, noninferiority trial.

    Science.gov (United States)

    Park, Kyung Woo; Kang, Si-Hyuck; Kang, Hyun-Jae; Koo, Bon-Kwon; Park, Byoung-Eun; Cha, Kwang Soo; Rhew, Jay Young; Jeon, Hui-Kyoung; Shin, Eun-Seok; Oh, Ju Hyeon; Jeong, Myung-Ho; Kim, Sanghyun; Hwang, Kyung-Kuk; Yoon, Jung-Han; Lee, Sung Yun; Park, Tae-Ho; Moon, Keon Woong; Kwon, Hyuck-Moon; Hur, Seung-Ho; Ryu, Jae-Kean; Lee, Bong-Ryul; Park, Yong Whi; Chae, In-Ho; Kim, Hyo-Soo

    2014-07-01

    This study sought to test whether the newly developed platinum chromium (PtCr)-based everolimus-eluting stent (EES) is noninferior to the cobalt chromium (CoCr)-based zotarolimus-eluting stent (ZES) in all-comers receiving percutaneous coronary intervention (PCI). PtCr provides improved radial strength, conformability, and visibility compared with the CoCr alloy, but PtCr-based stents have not been tested in a wide range of patients receiving PCI. Also, recent case series have raised the issue of longitudinal stent deformation (LSD) with newer drug-eluting stents. We randomly assigned 3,755 all-comers receiving PCI to PtCr-EES or CoCr-ZES. The primary outcome was target lesion failure (TLF) at 1-year post-PCI, defined as the composite of cardiac death, nonfatal target vessel-related myocardial infarction, and ischemia-driven target lesion revascularization. Post-hoc angiographic analysis was performed to qualitatively and quantitatively analyze LSD. At 1 year, TLF occurred in 2.9% and 2.9% of the population in the PtCr-EES and CoCr-ZES groups, respectively (superiority p = 0.98, noninferiority p = 0.0247). There were no significant differences in the individual components of TLF as well as the patient-oriented clinical outcome. Of 5,010 stents analyzed, LSD occurred in 0.2% and 0% in the PtCr-EES and CoCr-ZES groups, respectively (p = 0.104). There was no significant difference in post-deployment stent length ratio between the 2 stents (p = 0.352). At 1 year, PtCr-EES was noninferior to CoCr-ZES in all-comers receiving PCI. Although LSD was observed only in PtCr-EES, both the stent length ratio and the frequency of LSD were not significantly different between the 2 stent types, and PtCr-EES was not associated with adverse clinical outcomes. (Harmonizing Optimal Strategy for Treatment of Coronary Artery Stenosis-SAfety & EffectiveneSS of Drug-ElUting Stents & Anti-platelet REgimen [HOST-ASSURE]; NCT01267734). Copyright © 2014 American College of Cardiology

  4. Anti-Platelet Fraction Isolated from Galega Officinalis

    Directory of Open Access Journals (Sweden)

    Atanasov A.

    2016-10-01

    Full Text Available A fraction from crude extract of Galega officinalis has been purified by column chromatography on Sephadex G-25, Sepharose 4B, DEAE-Cellulose and Sephadex G-100. The final purification factor of the fraction is 120. The peak in elution profile after Sephadex G-150 shows a molecular weight of 100-140 kDa. The isolated fraction appears to have 74% polysaccharides and 23% of proteins. No loss of activity of the final fraction is observed after storage for several months at 4°C and in lyophilized condition. The fraction compounds inhibit platelet aggregation induced by ADP, collagen and thrombin.

  5. Anti-platelet aggregation of mixtures of betulinic oleanolic and ...

    African Journals Online (AJOL)

    as stroke, deep venous thrombosis, heart attack and pulmonary embolism [1]. Endogenous agonists such as collagen, epinephrine, ADP, and thrombin induce ... mesh) column chromatography (20 x 5.5 mm) using a gradient of n-hexane and ethylacetate. (8:2 to 7:3) as the solvent system. A total of 77 fractions of eluates (20 ...

  6. Anti-platelet aggregation of mixtures of betulinic oleanolic and ...

    African Journals Online (AJOL)

    NMR, both carbon 13 and hydrogen 1) (NMR), infra-red (FTIR) and mass spectroscopy ... Conclusion: BAA/OAA demonstrate the best antiplatelet potential and low cytotoxicity of in all the tests, and therefore can serve as safer antiplatelet agents.

  7. Oral anti platelet drugs in dermatology | Al Aboud | Sudanese ...

    African Journals Online (AJOL)

    An up-to-date overview of antithrombotic drugs, with their currently reported beneficial cutaneous effects and skin side effect, is presented. Attempts to balance traditional pharmacodynamic concepts with the newly described empiric benefits are made. A concise, current and useful reference for dermatologists with an ...

  8. Understanding the Process of Envelope Glycoprotein Incorporation into Virions in Simian and Feline Immunodeficiency Viruses

    Directory of Open Access Journals (Sweden)

    José L. Affranchino

    2014-01-01

    Full Text Available The lentiviral envelope glycoproteins (Env mediate virus entry by interacting with specific receptors present at the cell surface, thereby determining viral tropism and pathogenesis. Therefore, Env incorporation into the virions formed by assembly of the viral Gag polyprotein at the plasma membrane of the infected cells is a key step in the replication cycle of lentiviruses. Besides being useful models of human immunodeficiency virus (HIV infections in humans and valuable tools for developing AIDS therapies and vaccines, simian and feline immunodeficiency viruses (SIV and FIV, respectively are relevant animal retroviruses; the study of which provides important information on how lentiviral replication strategies have evolved. In this review, we discuss the molecular mechanisms underlying the incorporation of the SIV and FIV Env glycoproteins into viral particles.

  9. Use of the photoaffinity cross-linking agent N-hydroxysuccinimidyl-4-azidosalicylic acid to characterize salivary-glycoprotein-bacterial interactions.

    OpenAIRE

    Bergey, E J; LeVine, M. J.; M S Reddy; Bradway, S D; Al-Hashimi, I

    1986-01-01

    The present study has utilized the iodinatable cross-linking agent N-hydroxysuccinimidyl-4-azidosalicylic acid (ASA) to examine the specific interaction between the proline-rich glycoprotein (PRG) of human parotid saliva and Streptococcus sanguis G9B. The binding of 125I-ASA-PRG to Streptococcus sanguis G9B displayed saturation kinetics, reversibility and was inhibited by unlabelled PRG. Inhibition studies with other glycoproteins and saccharides indicated that binding was mediated by a bacte...

  10. Mechanism of Binding to Ebola Virus Glycoprotein by the ZMapp, ZMAb, and MB-003 Cocktail Antibodies

    OpenAIRE

    Davidson, Edgar; Bryan, Christopher; Fong, Rachel H.; Barnes, Trevor; Pfaff, Jennifer M.; Mabila, Manu; Rucker, Joseph B.; Doranz, Benjamin J.

    2015-01-01

    Cocktails of monoclonal antibodies (MAbs) that target the surface glycoprotein (GP) of Ebola virus (EBOV) are effective in nonhuman primate models and have been used under emergency compassionate-treatment protocols in human patients. However, the amino acids that form the detailed binding epitopes for the MAbs in the ZMapp, ZMAb, and the related MB-003 cocktails have yet to be identified. Other binding properties that define how each MAb functionally interacts with GP—such as affinity, epito...

  11. Exocytosis of Alphaherpesvirus Virions, Light Particles, and Glycoproteins Uses Constitutive Secretory Mechanisms.

    Science.gov (United States)

    Hogue, Ian B; Scherer, Julian; Enquist, Lynn W

    2016-06-07

    Many molecular and cell biological details of the alphaherpesvirus assembly and egress pathway remain unclear. Recently we developed a live-cell fluorescence microscopy assay of pseudorabies virus (PRV) exocytosis, based on total internal reflection fluorescence (TIRF) microscopy and a virus-encoded pH-sensitive fluorescent probe. Here, we use this assay to distinguish three classes of viral exocytosis in a nonpolarized cell type: (i) trafficking of viral glycoproteins to the plasma membrane, (ii) exocytosis of viral light particles, and (iii) exocytosis of virions. We find that viral glycoproteins traffic to the cell surface in association with constitutive secretory Rab GTPases and exhibit free diffusion into the plasma membrane after exocytosis. Similarly, both virions and light particles use these same constitutive secretory mechanisms for egress from infected cells. Furthermore, we show that viral light particles are distinct from cellular exosomes. Together, these observations shed light on viral glycoprotein trafficking steps that precede virus particle assembly and reinforce the idea that virions and light particles share a biogenesis and trafficking pathway. The alphaherpesviruses, including the important human pathogens herpes simplex virus 1 (HSV-1), HSV-2, and varicella-zoster virus (VZV), are among the few viruses that have evolved to exploit the mammalian nervous system. These viruses typically cause mild recurrent herpetic or zosteriform lesions but can also cause debilitating herpes encephalitis, more frequently in very young, old, immunocompromised, or nonnatural hosts. Importantly, many of the molecular and cellular mechanisms of viral assembly and egress remain unclear. This study addresses the trafficking of viral glycoproteins to the plasma membrane, exocytosis of light particles, and exocytosis of virions. Trafficking of glycoproteins affects immune evasion and pathogenesis and may precede virus particle assembly. The release of light

  12. Structural and quantitative comparison of cerebrospinal fluid glycoproteins in Alzheimer's disease patients and healthy individuals.

    NARCIS (Netherlands)

    Sihlbom, C.; Davidsson, P.; Sjogren, M.; Wahlund, L.O.; Nilsson, C.L.

    2008-01-01

    Glycoproteins in cerebrospinal fluid (CSF) are altered in Alzheimer's Disease (AD) patients compared to control individuals. We have utilized albumin depletion prior to 2D gel electrophoresis to enhance glycoprotein concentration for image analysis as well as structural glycoprotein determination

  13. Viral Glycoprotein Complex Formation, Essential Function and Immunogenicity in the Guinea Pig Model for Cytomegalovirus

    Science.gov (United States)

    Maddux, Sarah; Choi, K. Yeon; McGregor, Alistair

    2015-01-01

    Development of a cytomegalovirus (CMV) vaccine is a major public health priority due to the risk of congenital infection. A key component of a vaccine is thought to be an effective neutralizing antibody response against the viral glycoproteins necessary for cell entry. Species specificity of human CMV (HCMV) precludes direct studies in an animal model. The guinea pig is the only small animal model for congenital cytomegalovirus infection. Analysis of the guinea pig CMV (GPCMV) genome indicates that it potentially encodes homologs to the HCMV glycoproteins (including gB, gH, gL, gM, gN and gO) that form various cell entry complexes on the outside of the virus: gCI (gB); gCII (gH/gL/gO); gCIII (gM/gN). The gB homolog (GP55) has been investigated as a candidate subunit vaccine but little is known about the other homolog proteins. GPCMV glycoproteins were investigated by transient expression studies which indicated that homolog glycoproteins to gN and gM, or gH, gL and gO were able to co-localize in cells and generate respective homolog complexes which could be verified by immunoprecipitation assays. ELISA studies demonstrated that the individual complexes were highly immunogenic in guinea pigs. The gO (GP74) homolog protein has 13 conserved N-glycosylation sites found in HCMV gO. In transient expression studies, only the glycosylated protein is detected but in virus infected cells both N-glycosylated and non-glycosylated gO protein were detected. In protein interaction studies, a mutant gO that lacked N-glycosylation sites had no impact on the ability of the protein to interact with gH/gL which indicated a potential alternative function associated with these sites. Knockout GPCMV BAC mutagenesis of the respective glycoprotein genes (GP55 for gB, GP75 for gH, GP115 for gL, GP100 for gM, GP73 for gN and GP74 for gO) in separate reactions was lethal for virus regeneration on fibroblast cells which demonstrated the essential nature of the GPCMV glycoproteins. The gene

  14. In silico-based vaccine design against Ebola virus glycoprotein

    Directory of Open Access Journals (Sweden)

    Dash R

    2017-03-01

    Full Text Available Raju Dash,1 Rasel Das,2 Md Junaid,3 Md Forhad Chowdhury Akash,4 Ashekul Islam,5 SM Zahid Hosen1 1Molecular Modeling and Drug Design Laboratory (MMDDL, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR, Chittagong, Bangladesh; 2Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur, Malaysia; 3Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; 4Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh; 5Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh Abstract: Ebola virus (EBOV is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154–162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV. Keywords: Ebola virus, epitope, glycoprotein, vaccine design

  15. Effects of Rho1, a small GTPase on the production of recombinant glycoproteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Xu, Sha; Zhang, Ge-Yuan; Zhang, Huijie; Kitajima, Toshihiko; Nakanishi, Hideki; Gao, Xiao-Dong

    2016-10-21

    To humanize yeast N-glycosylation pathways, genes involved in yeast specific hyper-mannosylation must be disrupted followed by the introduction of genes catalyzing the synthesis, transport, and addition of human sugars. However, deletion of these genes, for instance, OCH1, which initiates hyper-mannosylation, could cause severe defects in cell growth, morphogenesis and response to environmental challenges. In this study, overexpression of RHO1, which encodes the Rho1p small GTPase, is confirmed to partially recover the growth defect of Saccharomyces cerevisiae Δalg3Δoch1 double mutant strain. In addition, transmission electron micrographs indicated that the cell wall structure of RHO1-expressed cells have an enhanced glucan layer and also a recovered mannoprotein layer, revealing the effect of Rho1p GTPase on cell wall biosynthesis. Similar complementation phenotypes have been confirmed by overexpression of the gene that encodes Fks2 protein, a catalytic subunit of a 1,3-β-glucan synthase. Besides the recovery of cell wall structure, the RHO1-overexpressed Δalg3Δoch1 strain also showed improved abilities in temperature tolerance, osmotic potential and drug sensitivity, which were not observed in the Δalg3Δoch1-FKS2 cells. Moreover, RHO1 overexpression could also increase N-glycan site occupancy and the amount of secreted glycoproteins. Overexpression of RHO1 in 'humanized' glycoprotein producing yeasts could significantly facilitate its future industrial applications for the production of therapeutic glycoproteins.

  16. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions.

    Science.gov (United States)

    The human efflux transporter P-glycoprotein (P-gp; MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  17. Induction of interferon-alpha by glycoprotein D of herpes simplex virus : A possible role of chemokine receptors

    NARCIS (Netherlands)

    Ankel, H; Westra, DF; Welling-Wester, S; Lebon, P

    1998-01-01

    The induction of type I interferons by most RNA viruses is initiated by virus-derived double-stranded (ds)RNA. However, retro- and DNA-viruses, which do not synthesize dsRNA, must rely on different mechanisms of induction. For human immunodeficiency virus type 1 (HIV-1), recombinant glycoproteins

  18. A kinetic description of antifreeze glycoprotein activity.

    Science.gov (United States)

    Burcham, T S; Osuga, D T; Yeh, Y; Feeney, R E

    1986-05-15

    The antifreeze glycoproteins (AFGP) of polar fish have the ability to depress the freezing temperature of water approximately 500 times the amount expected based on the number of AFGP molecules in solution; yet AFGP solutions have a purely colligative melting point depression. The difference of solution melting and freezing temperatures is the antifreeze activity of AFGP. One characteristic of AFGP activity that requires further examination is the effect of concentration on antifreeze activity, especially whether the activity saturates at high concentrations or the measured activity increases ad infinitum. This study first surveys the activity of the various antifreeze components from both Pagothenia borchgrevinki and the Arg-containing antifreeze glycoprotein from Eleginus gracilis (EgAF). It was found that all AFGP components examined have a plateau in activity at high concentration, but the actual value of the plateau activity differs between the different length AFGP components and between AFGP and EgAF. While the low molecular weight components of both AFGP and EgAF lose activity at deep supercooling, at high concentration activity is restored. The activity data is then shown to fit a reversible kinetic model of AFGP activity, and the coefficients obtained are used to compare the activity differences between AFGP components and between AFGP and EgAF. The model is also shown to describe the activity of the antifreeze protein of the fish Pseudopleuronectes americanus and the thermal hysteresis protein of the insect, Tenebrio molitor.

  19. Bioinformatics Analysis of Envelope Glycoprotein E epitopes of ...

    African Journals Online (AJOL)

    The E glycoprotein of dengue virus is responsible for the viral binding to the receptor. The crystal structure of envelope glycoprotein has already been determined. However, where the well-defined Bcell and T-cell epitopes are located is still a question. Because of the large variations among the four dengue genotypes, it is ...

  20. Isolation and partial characterization of rat gastric mucous glycoprotein

    NARCIS (Netherlands)

    Spee-Brand, R.; Strous, G.J.A.M.; Kramer, M.F.

    1980-01-01

    Mucus glycoproteins from the rat stomach were characterized after their isolation from homogenates of the superficial gastric mucosa by equilibrium centrifugation in CsCl density gradients. Water-soluble as well as water-insoluble glycoproteins were studied. The latter were solubilized by

  1. Ammonia transport in the kidney by Rhesus glycoproteins

    Science.gov (United States)

    Verlander, Jill W.

    2014-01-01

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4+ with a new model in which specific and regulated transport of both NH3 and NH4+ across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. PMID:24647713

  2. Optimization of Unnicked β2-Glycoprotein I and High Avidity Anti-β2-Glycoprotein I Antibodies Isolation

    Directory of Open Access Journals (Sweden)

    Andrej Artenjak

    2014-01-01

    Full Text Available Patient biological material for isolation of β2-glycoprotein I (β2GPI and high avidity IgG anti-β2-glycoprotein I antibodies (HAv anti-β2GPI dictates its full utilization. The aim of our study was to evaluate/improve procedures for isolation of unnicked β2GPI and HAv aβ2GPI to gain unmodified proteins in higher yields/purity. Isolation of β2GPI from plasma was a stepwise procedure combining nonspecific and specific methods. For isolation of polyclonal HAv aβ2GPI affinity chromatographies with immobilized protein G and human β2GPI were used. The unknown protein found during isolation was identified by liquid chromatography electrospray ionization mass spectrometry and the nonredundant National Center for Biotechnology Information database. The average mass of the isolated unnicked purified β2GPI increased from 6.56 mg to 9.94 mg. In the optimized isolation procedure the high molecular weight protein (proteoglycan 4 was successfully separated from β2GPI in the 1st peaks with size exclusion chromatography. The average efficiency of the isolation procedure for polyclonal HAv anti-β2GPI from different matrixes was 13.8%, as determined by our in-house anti-β2GPI ELISA. We modified the in-house isolation and purification procedures of unnicked β2GPI and HAv anti-β2GPI, improving the purity of antigen and antibodies as well as increasing the number of tests routinely performed with the in-house ELISA by ~50%.

  3. Solubilization of glycoproteins of envelope viruses by detergents

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, V.E.; Zaides, V.M.; Artamsnov, A.F.; Isaeva, E.S.; Zhdanov, V.M.

    1986-11-20

    The action of a number of known ionic and nonionic detergents, as well as the new nonionic detergent MESK, on envelope viruses was investigated. It was shown that the nonionic detergents MESK, Triton X-100, and octyl-..beta..-D-glucopyranoside selectively solubilize the outer glycoproteins of the virus particles. The nonionic detergent MESK has the mildest action. Using MESK, purified glycoproteins of influenza, parainfluenza, Venezuelan equine encephalomyelitis, vesicular stomatitis, rabies, and herpes viruses were obtained. The procedure for obtaining glycoproteins includes incubation of the virus suspension with the detergent MESK, removal of subvirus structures by centrifuging, and purification of glycoproteins from detergents by dialysis. Isolated glycoproteins retain a native structure and biological activity and possess high immunogenicity. The detergent MESK is promising for laboratory tests and with respect to the production of subunit vaccines.

  4. Specific enrichment of glycoproteins with polymer monolith functionalized with glycocluster grafted β-cyclodextrin.

    Science.gov (United States)

    Zheng, Hai-Jiao; Ma, Jiu-Tong; Feng, Wei; Jia, Qiong

    2017-08-25

    The low abundance of glycoproteins in complex samples results in the prerequisite role of efficient and selective enrichment of them. In the present work, we designed a new kind of glycosylation poly(hydroxyethyl methacrylate-pentaerythritol triacrylate) monolith functionalized with glycocluster grafted β-cyclodextrin for the enrichment of glycoproteins. The introduced modifiers endowed the monolithic material with enhanced hydrophilicity and surface area, which benefitted to improve the enrichment selectivity and extraction efficiency for glycopeptides. By combining with MALDI-MS detections, 22 glycopeptides from horseradish peroxidase digest were captured with the developed monolith while 4 glycopeptides were enriched by commercially available agarose matrix column. LOD of 6.6pmol was attained. When applied to the enrichment of glycopeptides from complex protein samples and human lymphoma (U937) cell line, the prepared monolith exhibited high selectivity for glycopeptides. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Biochemical and immunologic heterogeneity of Ia glycoproteins isolated from a chronic lymphocytic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Letarte, M. (Hospital for Sick Children, Toronto); Falk, J.

    1982-01-01

    Ia glycoproteins have been isolated from human chronic lymphocytic leukemic cells (CLL) by Lens culinaris chromatography and by filtration on ACA-34 Ultrogel. Ia antigenic activity, measured by inhibition of the cellular radioimmunoassay, was separated by gel filtration into 2 fractions, peak I and II. Monoclonal antibodies, produced against peak II glycoproteins, appear to recognize different antigenic determinants of Ia molecules. Monoclonal antibody 18a4 reacted with Ia molecules of peaks I and II, whereas monoclonal antibodies 18c2 and 18d5 reacted almost exclusively with peak II molecules both in the cellular radioimmunoassay and by immunoprecipitation. In addition to antigenic differences, minor variations in the apparent m.w. of the Ia polypeptide chains were observed between peaks I and II. These results indicate the existence of antigenically distinct subsets of Ia molecules that are separated by gel filtration.

  6. Raman optical activity of proteins and glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, E

    2000-03-01

    Raman optical activity (ROA), measured in this project as a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarised incident laser light, offers the potential to provide more information about the structure of biological molecules in aqueous solution than conventional spectroscopic techniques. Chapter one contains a general discussion of the relative merits of different spectroscopic techniques for structure determination of biomolecules, as well as a brief introduction to ROA. In Chapter two a theoretical analysis of ROA is developed, which extends the discussion in chapter one. The spectrometer setup and sample preparation is then discussed in chapter three. Instrument and sample conditions are monitored to ensure that the best results are obtained. As with any experimental project problems occur, which may result in a degradation of the spectra obtained. The cause of these problems was explored and remedied whenever possible. Chapter four introduces a brief account of protein, glycoprotein and carbohydrate structure and function, with a particular emphasis on the structure of proteins. In the remaining chapters experimental ROA results on proteins and glycoproteins, with some carbohydrate samples, from a wide range of sources are examined. For example, in chapter five some {beta}-sheet proteins are examined. Structural features in these proteins are examined in the extended amide III region of their ROA spectra, revealing that ROA is sensitive to the rigidity or flexibility inherent in proteins. Chapter six concentrates on a group of proteins (usually glycoproteins) known as the serine proteinase inhibitors (serpins). Medically, the serpins are one of the most important groups of proteins of current interest, with wide-ranging implications in conditions such as Down's syndrome, Alzheimer's disease, and emphysema with associated cirrhosis of the liver. With favourable samples and conditions ROA

  7. Pumping of drugs by P-glycoprotein

    DEFF Research Database (Denmark)

    Litman, Thomas; Skovsgaard, Torben; Stein, Wilfred D

    2003-01-01

    The apparent inhibition constant, Kapp, for the blockade of P-glycoprotein (P-gp) by four drugs, verapamil, cyclosporin A, XR9576 (tariquidar), and vinblastine, was measured by studying their ability to inhibit daunorubicin and calcein-AM efflux from four strains of Ehrlich cells with different...... levels of drug resistance and P-gp content. For daunorubicin as a transport substrate, Kapp was independent of [P-gp] for verapamil but increased strictly linearly with [P-gp] for vinblastine, cyclosporin A, and XR9576. A theoretical analysis of the kinetics of drug pumping and its reversal shows...... but rather, in serial, i.e., a drug that is pumped from the cytoplasmic phase has to pass the preemptive route upon leaving the cell. Our results are consistent with the Sauna-Ambudkar two-step model for pumping by P-gp. We suggest that the vinblastine/cyclosporin A/XR9576-binding site accepts daunorubicin...

  8. Structural studies on the glycoproteins from bovine cervical mucus.

    Science.gov (United States)

    Roberts, G P

    1978-09-01

    The depolymerization of bovine cervical glycoprotein resulting from cleavage of disulphide bonds. Pronase digestion and both procedures sequentially was assessed by using gel filtration. Cleavage of disulphide bonds followed by Pronase digestion produced more extensive depolymerization than did either treatment alone, and gel filtration of the products resulted in two major peaks of glycosylated material on Sepharose CL-2B and Sepharose 4B. The glycopolypeptides in both peaks had similar sugar and sulphate compositions, but they migrated to different extents on gel electrophoresis. Electrophoretic studies indicated that both glycopolypeptides were derived from the same glycoprotein molecule and not from a mixture of two similar glycoproteins. Pronase digestion of glycoproteins in which the disulphide bonds had been labelled with iodo-[1-14C]acetamide revealed that most of the cysteine residues were situated in regions susceptible to Pronase. The results show the presence of two types of structural regions in bovine cervical glycoprotein, namely 'naked' peptide or non-glycosylated regions and glycopolypeptide subunit regions in which glycopolypeptides of two different sizes predominate. Comparison of the cervical glycoproteins isolated from mucus secreted during oestrus and pregnancy, by the methods outlined above, did not reveal any structural differences in the glycoproteins to explain the different physical properties of the mucus secreted under these conditions.

  9. The effect of ginger extract on glycoproteins of Raji cells.

    Science.gov (United States)

    Zamani, Zahra; Nassir-Ud-Din; Kohan, Haleemeh Kabini; Kadivar, Mehdi; Kalyee, Zahra; Rad, Behzad Laame; Iravani, Ayda; Rahimi, Nourooz Ali; Wahabi, Farideh; Sadeghi, Sedigheh; Pourfallah, Fatemeh; Arjmand, Mohammad

    2014-01-15

    Protein glycosylation is associated with the development and progression of specific diseases, including cancers. The ginger rhizome is known to have anti-cancer and anti-fungal properties. This investigation was carried out to study the effect of ginger on glycoproteins of Raji cells. A 10% yield of ginger extract was mixed with 0.01% DMSO and added to 6 x 10(4) Raji cells at different concentrations for 24, 48 and 72 h at 37 degrees C. Their half maximal inhibitory concentration (IC50) was determined and analyzed statistically using Graphpad prism software. Cell extracts were prepared and their glycoproteins purified using lectin-affinity chromatography (Q proteome total glycoprotein and O glycoprotein kits) and SDS PAGE was carried out. IC50 of ginger extract on Raji cells was 20 microg mL(-1) at 72 h with < 0.01 significance. Silver staining of purified glycoprotiens in Raji cells indicated the presence of O-glycans and N-glycans. N-linked mannose and N-linked sialic acids were detected with the total glycoprotein kit. O-linked galactose and O-linked sialic acids were identified with the O-glycoprotein. Ginger reduced the expression of O-linked sialic acid and also N-linked mannose on Raji cells but had no effect on other glycoproteins. Sialic acid is now well known as a cancer marker and investigations are on to use it as a drug-target in cancerous tissues.

  10. Human chimera-type galectin-3: defining the critical tail length for high-affinity glycoprotein/cell surface binding and functional competition with galectin-1 in neuroblastoma cell growth regulation.

    Science.gov (United States)

    Kopitz, Jürgen; Vértesy, Sabine; André, Sabine; Fiedler, Sabine; Schnölzer, Martina; Gabius, Hans-Joachim

    2014-09-01

    Many human proteins have a modular design with receptor and structural domains. Using adhesion/growth-regulatory galectin-3 as model, we describe an interdisciplinary strategy to define the functional significance of its tail established by nine non-triple helical collagen-like repeats (I-IX) and the N-terminal peptide. Genetic engineering with sophisticated mass spectrometric product analysis provided the tools for biotesting, i.e. eight protein variants with different degrees of tail truncation. Evidently,various aspects of galectin-3 activity (cis binding and cell bridging) are affected by tail shortening in a different manner. Thus, this combined approach reveals an unsuspected complexity of structure-function relationship, encouraging further application beyond this chimera-type galectin. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. A general protease digestion procedure for optimal protein sequence coverage and post-translational modifications analysis of recombinant glycoproteins: application to the characterization of human lysyl oxidase-like 2 glycosylation.

    Science.gov (United States)

    Rebecchi, Kathryn R; Go, Eden P; Xu, Li; Woodin, Carrie L; Mure, Minae; Desaire, Heather

    2011-11-15

    Using recombinant DNA technology for expression of protein therapeutics is a maturing field of pharmaceutical research and development. As recombinant proteins are increasingly utilized as biotherapeutics, improved methodologies ensuring the characterization of post-translational modifications (PTMs) are needed. Typically, proteins prepared for PTM analysis are proteolytically digested and analyzed by mass spectrometry. To ensure full coverage of the PTMs on a given protein, one must obtain complete sequence coverage of the protein, which is often quite challenging. The objective of the research described here is to design a protocol that maximizes protein sequence coverage and enables detection of post-translational modifications, specifically N-linked glycosylation. To achieve this objective, a highly efficient proteolytic digest protocol using trypsin was designed by comparing the relative merits of denaturing agents (urea and Rapigest SF), reducing agents [dithiothreitol (DTT) and tris(2-carboxyethyl)phophine (TCEP)], and various concentrations of alkylating agent [iodoacetamide (IAM)]. After analysis of human apo-transferrin using various protease digestion protocols, ideal conditions were determined to contain 6 M urea for denaturation, 5 mM TCEP for reduction, 10 mM IAM for alkylation, and 10 mM DTT, to quench excess IAM before the addition of trypsin. This method was successfully applied to a novel recombinant protein, human lysyl oxidase-like 2. Furthermore, the glycosylation PTMs were readily detected at two glycosylation sites in the protein. These digestion conditions were specifically designed for PTM analysis of recombinant proteins and biotherapeutics, and the work described herein fills an unmet need in the growing field of biopharmaceutical analysis.

  12. Carbohydrate profiling and protein identification of tegumental and excreted/secreted glycoproteins of adult Schistosoma bovis worms.

    Science.gov (United States)

    Ramajo-Hernández, Alicia; Oleaga, Ana; Ramajo-Martín, Vicente; Pérez-Sánchez, Ricardo

    2007-03-15

    Schistosoma bovis is a parasite of wild and domestic ruminants that is broadly distributed throughout many tropical and temperate regions of the old world. S. bovis causes severe health problems and significant economic losses in livestock, but in contrast to human schistosomes, S. bovis has been little investigated at a molecular level. Since schistosome glycans and glycoproteins can play important roles in the host-parasite interplay, the aims of the present work were: (i) to characterize the glycans expressed by adult S. bovis worms on their excreted/secreted (ES) and tegumental (TG) glycoproteins and (ii) to identify their carrier protein backbones by mass spectrometry. Using a panel of lectins and monoclonal and polyclonal anti-glycan antibodies, we observed: (i) the absence of sialic acid in S. bovis; (ii) the presence of complex-type N-glycans and LDN antennae on ES glycoproteins; (iii) the presence of glycans containing the Fucalpha1-2Galbeta motif in many TG glycoproteins, and (iv) the presence of glycans containing the Fucalpha1-3GlcNAc motif on many ES and TG glycoproteins but, simultaneously, the absence of the F-LDN(-F) glycans from both the ES and TG glycoproteins. Interestingly, we also found the Lewis(X) and Lewis(Y) antigens co-expressed on several TG isoforms of ATP:guanidino kinase and glyceraldehyde-3-phosphate dehydrogenase. Finally, by ELISA we observed the presence of antibodies against Lewis(X), Lewis(Y) and F-LDN(-F) in the sera of sheep experimentally infected with S. bovis.

  13. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  14. Analysis on effect of separation and purification of glycoprotein extracted from Camellia seeds and its functional activity as basis for the economic development of Camellia oleifera industry

    Directory of Open Access Journals (Sweden)

    Feng Aiguo

    2016-06-01

    Full Text Available Taking Camellia oleifera seeds as raw materials, this study explored extraction and purification of glycoprotein separated from Camellia seeds as well as its antitumor activity, aiming to provide a theoretical basis for the economic development of Camellia oleifera industry. Key impact factors of Camellia seed glycoprotein were extracted using buffer solution method and water extraction method and a regression model was set up. Methyl thiazolyl tetrazolium was used to evaluate the in vitro antitumor activity of glycoprotein extracted from Camellia seeds and Differential Scanning Calorimetry (DSC was used to measure its denaturation enthalpy value. Results indicated that protein and sugar yields were 8.96% and 17.05% respectively under optimal conditions when water extraction method was used. Crude glycoprotein extracted from Camellia oleifera had a certain inhibitory effect on human hepatoma cell HepG2, gastric cancer cell MGC-803 and breast cancer cell MCF-7 and crude glycoprotein extracted from Camellia oleifera by water-extraction and alcohol-precipitation method had a strong antitumor effect. Crude glycoprotein obtained in the two different ways was capable of scavenging DPPH, •OH and O2g- free radicals and also showed good reducing capacity. DSC measurement results revealed that specific rotation of COGP2a[α]n20${\\rm{COGP}}2{\\rm{a}}\\left[ \\alpha \\right]_n^{20} $ was - 32.5. Antitumor experiment in vitro showed that glycoprotein extracted from Camellia seeds in the two different ways had a certain inhibitory effect on HepG2, MGC-803 and MCF-7, which has important theoretical and realistic significances to promoting utilization value of camellia resources, strengthening Camellia oleifera’s comprehensive development and utilization of high added value as well as enriching types and functions of active glycoprotein.

  15. Glycoprotein CA19.9-specific monoclonal antibodies recognize sialic acid-independent glycotope.

    Science.gov (United States)

    Chugh, Manoj; Piskarev, Vladimir; Galanina, Oxana; Khasbiullina, Nailya; Kadam, Pallavi; Shilova, Nadezhda; Pazynina, Galina; Dobrochaeva, Kira; Bhanushali, Paresh; Kozlov, Nikolay; Tupitsin, Nikolay; Bovin, Nicolai

    2017-10-01

    A repertoire of monoclonal antibodies was generated by immunization of mice with cancer-associated glycoprotein CA19.9, and two of them were selected as optimal capture and detecting counterparts for sandwich test system for detection of CA19.9. Fine epitope specificity of the antibodies was determined using printed glycan array, enzyme-linked immunosorbent assay, and inhibitory enzyme-linked immunosorbent assay. Unexpectedly, both immunoglobulins did not bind key epitope of CA19.9 glycoprotein, tetrasaccharide SiaLeA, as well as its defucosylated form sialyl LeC (known as CA-50 epitope). The antibodies were found to have different glycan-binding profiles; however, they recognized similar glycotopes with common motif Galβ1-3GlcNAcβ (LeC), thus resembling specificity of human natural cancer-associated anti-LeC antibodies. We propose that cancer-specific glycopeptide epitope includes Galβ1-3GlcNAcβ fragment of a glycoprotein O-chain in combination with proximal hydrophobic amino acid(s) of the polypeptide chain.

  16. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Hirokazu [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Nakamura, Masatoshi [National Institute of Agrobiological Sciences, Genetic Resources Conservation Research Unit, Genetic Resources Center (Japan); Yokoyama, Jun [Taiyo Nippon Sanso Corporation, Tsukuba Laboratories (Japan); Zhang, Ying; Yamaguchi, Takumi [National Institutes of Natural Sciences, Institute for Molecular Science and Okazaki Institute for Integrative Bioscience (Japan); Kondo, Sachiko [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Kobayashi, Jun [Yamaguchi University, Department of Biological and Environmental Sciences, Faculty of Agriculture (Japan); Kato, Tatsuya; Park, Enoch Y. [Shizuoka University, Laboratory of Biotechnology, Research Institute of Green Science and Technology (Japan); Nakazawa, Shiori [Nagoya University, Sugashima Marine Biological Laboratory, Graduate School of Science (Japan); Hashii, Noritaka; Kawasaki, Nana [National Institute of Health Sciences, Division of Biological Chemistry and Biologicals (Japan); Kato, Koichi, E-mail: kkato@phar.nagoya-cu.ac.jp [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan)

    2015-06-15

    Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing {sup 15}N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a {sup 15}N-enrichment ratio of approximately 80 %. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies.

  17. Cytoplasmic tail domain of glycoprotein B is essential for HHV-6 infection

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Nora F. [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Faculty of Pharmacy, Suez Canal University, Ismailia (Egypt); Jasirwan, Chyntia [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Division of Hepatobiliary, Department of Internal Medicine, Faculty of Medicine, University of Indonesia (Indonesia); Kanemoto, Satoshi; Wakata, Aika; Wang, Bochao; Hata, Yuuki [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Nagamata, Satoshi [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe (Japan); Kawabata, Akiko [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Tang, Huamin [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Immunology, Nanjing Medical University, Nanjing (China); Mori, Yasuko, E-mail: ymori@med.kobe-u.ac.jp [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan)

    2016-03-15

    Human herpesvirus 6 (HHV-6) glycoprotein B (gB) is an abundantly expressed viral glycoprotein required for viral entry and cell fusion, and is highly conserved among herpesviruses. The present study examined the function of HHV-6 gB cytoplasmic tail domain (CTD). A gB CTD deletion mutant was constructed which, in contrast to its revertant, could not be reconstituted. Moreover, deletion of gB cytoplasmic tail impaired the intracellular transport of gB protein to the trans-Golgi network (TGN). Taken together, these results suggest that gB CTD is critical for HHV-6 propagation and important for intracellular transportation. - Highlights: • Glycoprotein B (gB) is highly conserved among herpesviruses. • HHV-6 gB is also abundantly expressed in virions. • In the present study, we showed the function of HHV-6 gB cytoplasmic tail domain (CTD). • We found that deletion of gB CTD impairs the intracellular transport of gB protein to the trans-Golgi network (TGN), and CTD of gB is critical for HHV-6 propagation.

  18. Autophagy and the Effects of Its Inhibition on Varicella-Zoster Virus Glycoprotein Biosynthesis and Infectivity

    Science.gov (United States)

    Buckingham, Erin M.; Carpenter, John E.; Jackson, Wallen

    2014-01-01

    Autophagy and the effects of its inhibition or induction were investigated during the entire infectious cycle of varicella-zoster virus (VZV), a human herpesvirus. As a baseline, we first enumerated the number of autophagosomes per cell after VZV infection compared with the number after induction of autophagy following serum starvation or treatment with tunicamycin or trehalose. Punctum induction by VZV was similar in degree to punctum induction by trehalose in uninfected cells. Treatment of infected cells with the autophagy inhibitor 3-methyladenine (3-MA) markedly reduced the viral titer, as determined by assays measuring both cell-free virus and infectious foci (P < 0.0001). We next examined a virion-enriched band purified by density gradient sedimentation and observed that treatment with 3-MA decreased the amount of VZV gE, while treatment with trehalose increased the amount of gE in the same band. Because VZV gE is the most abundant glycoprotein, we selected gE as a representative viral glycoprotein. To further investigate the role of autophagy in VZV glycoprotein biosynthesis as well as confirm the results obtained with 3-MA inhibition, we transfected cells with ATG5 small interfering RNA to block autophagosome formation. VZV-induced syncytium formation was markedly reduced by ATG5 knockdown (P < 0.0001). Further, we found that both expression and glycan processing of VZV gE were decreased after ATG5 knockdown, while expression of the nonglycosylated IE62 tegument protein was unchanged. Taken together, our cumulative results not only documented abundant autophagy within VZV-infected cells throughout the infectious cycle but also demonstrated that VZV-induced autophagy facilitated VZV glycoprotein biosynthesis and processing. PMID:24198400

  19. Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion.

    Directory of Open Access Journals (Sweden)

    Daniel L Glauser

    Full Text Available Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4 entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.

  20. [Vesicular and pronuclear glycoproteins in the pathogenesis of cholesterol lithiasis].

    Science.gov (United States)

    Jirsa, M; Smíd, F; Marecek, Z

    1998-01-26

    Several biliary proteins have been known to accelerate fusion of cholesterol rich phospholipid vesicles. Some of them are present in vesicular membrane, localisation of other proteins is unknown. Biliary glycoprotein has not been studied in consequence with pathogenesis of cholesterol lithiasis. Low molecular extravesicular proteins were separated from vesicles by gel filtration on a 1200mm column of Sephacryl S-300 HR. Immunoglobulins IgM, IgA, haptoglobin, biliary glycoprotein I (BGP I) and nonspecific crossreactive antigen were eluted along with vesicles. Albumin and alpha 1-acid glycoprotein were eluted later and must be extravesicular. Fact that BGP I (85 kDa membrane glycoprotein) eluted along with vesicles and not in albumin fraction suggests that it might be bound in vesicular membrane. As a known adhesion molecule it could thus play an important role in pathogenesis of cholesterol cholelithiasis.

  1. Comparative Studies of Vertebrate Platelet Glycoprotein 4 (CD36

    Directory of Open Access Journals (Sweden)

    Roger S. Holmes

    2012-09-01

    Full Text Available Platelet glycoprotein 4 (CD36 (or fatty acyl translocase [FAT], or scavenger receptor class B, member 3 [SCARB3] is an essential cell surface and skeletal muscle outer mitochondrial membrane glycoprotein involved in multiple functions in the body. CD36 serves as a ligand receptor of thrombospondin, long chain fatty acids, oxidized low density lipoproteins (LDLs and malaria-infected erythrocytes. CD36 also influences various diseases, including angiogenesis, thrombosis, atherosclerosis, malaria, diabetes, steatosis, dementia and obesity. Genetic deficiency of this protein results in significant changes in fatty acid and oxidized lipid uptake. Comparative CD36 amino acid sequences and structures and CD36 gene locations were examined using data from several vertebrate genome projects. Vertebrate CD36 sequences shared 53–100% identity as compared with 29–32% sequence identities with other CD36-like superfamily members, SCARB1 and SCARB2. At least eight vertebrate CD36 N-glycosylation sites were conserved which are required for membrane integration. Sequence alignments, key amino acid residues and predicted secondary structures were also studied. Three CD36 domains were identified including cytoplasmic, transmembrane and exoplasmic sequences. Conserved sequences included N- and C-terminal transmembrane glycines; and exoplasmic cysteine disulphide residues; TSP-1 and PE binding sites, Thr92 and His242, respectively; 17 conserved proline and 14 glycine residues, which may participate in forming CD36 ‘short loops’; and basic amino acid residues, and may contribute to fatty acid and thrombospondin binding. Vertebrate CD36 genes usually contained 12 coding exons. The human CD36 gene contained transcription factor binding sites (including PPARG and PPARA contributing to a high gene expression level (6.6 times average. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate CD36 gene with vertebrate

  2. Four glycoproteins are expressed in the cat zona pellucida.

    Science.gov (United States)

    Stetson, I; Avilés, M; Moros, C; García-Vázquez, F A; Gimeno, L; Torrecillas, A; Aliaga, C; Bernardo-Pisa, M V; Ballesta, J; Izquierdo-Rico, M J

    2015-04-15

    The mammalian oocyte is surrounded by a matrix called the zona pellucida (ZP). This envelope participates in processes such as acrosome reaction induction, sperm binding and may be involved in speciation. In cat (Felis catus), this matrix is composed of at least three glycoproteins called ZP2, ZP3, and ZP4. However, recent studies have pointed to the presence of a fourth protein in several mammals (rat, human, hamster or rabbit), meaning that a reevaluation of cat ZP is needed. For this reason, the objective of this research was to analyze the protein composition of cat ZP by means of proteomic analysis. Using ZP from ovaries and oocytes, several peptides corresponding to four proteins were detected, yielding a coverage of 33.17%, 71.50%, 50.23%, and 49.64% for ZP1, ZP2, ZP3, and ZP4, respectively. Moreover, the expression of four genes was confirmed by molecular analysis. Using total RNA isolated from cat ovaries, the complementary deoxyribonucleic acids encoding cat ZP were partially amplified by reverse-transcribed polymerase chain reaction. Furthermore, ZP1 was totally amplified for the first time in this species. As far as we are aware, this is the first study that confirms the presence of four proteins in cat ZP. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Urine Glycoprotein Profile Reveals Novel Markers for Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Anuradha Vivekanandan-Giri

    2011-01-01

    Full Text Available Chronic kidney disease (CKD is a significant public health problem, and progression to end-stage renal disease leads to dramatic increases in morbidity and mortality. The mechanisms underlying progression of disease are poorly defined, and current noninvasive markers incompletely correlate with disease progression. Therefore, there is a great need for discovering novel markers for CKD. We utilized a glycoproteomic profiling approach to test the hypothesis that the urinary glycoproteome profile from subjects with CKD would be distinct from healthy controls. N-linked glycoproteins were isolated and enriched from the urine of healthy controls and subjects with CKD. This strategy identified several differentially expressed proteins in CKD, including a diverse array of proteins with endopeptidase inhibitor activity, protein binding functions, and acute-phase/immune-stress response activity supporting the proposal that inflammation may play a central role in CKD. Additionally, several of these proteins have been previously linked to kidney disease implicating a mechanistic role in disease pathogenesis. Collectively, our observations suggest that the human urinary glycoproteome may serve as a discovery source for novel mechanism-based biomarkers of CKD.

  4. An extensive endoplasmic reticulum-localised glycoprotein family in trypanosomatids

    Directory of Open Access Journals (Sweden)

    Harriet Allison

    2014-10-01

    Full Text Available African trypanosomes are evolutionarily highly divergent parasitic protozoa, and as a consequence the vast majority of trypanosome membrane proteins remain uncharacterised in terms of location, trafficking or function. Here we describe a novel family of type I membrane proteins which we designate ‘invariant glycoproteins’ (IGPs. IGPs are trypanosome-restricted, with extensive, lineage-specific paralogous expansions in related taxa. In T. brucei three IGP subfamilies, IGP34, IGP40 and IGP48 are recognised; all possess a putative C-type lectin ectodomain and are ER-localised, despite lacking a classical ER-retention motif. IGPs exhibit highest expression in stumpy stage cells, suggesting roles in developmental progression, but gene silencing in mammalian infective forms suggests that each IGP subfamily is also required for normal proliferation. Detailed analysis of the IGP48 subfamily indicates a role in maintaining ER morphology, while the ER lumenal domain is necessary and sufficient for formation of both oligomeric complexes and ER retention. IGP48 is detected by antibodies from T. b. rhodesiense infected humans. We propose that the IGPs represent a trypanosomatid-specific family of ER-localised glycoproteins, with potential contributions to life cycle progression and immunity, and utilise oligomerisation as an ER retention mechanism.

  5. Contribution of intrinsic reactivity of the HIV-1 envelope glycoproteins to CD4-independent infection and global inhibitor sensitivity.

    Directory of Open Access Journals (Sweden)

    Hillel Haim

    2011-06-01

    Full Text Available Human immunodeficiency virus (HIV-1 enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the "intrinsic reactivity" of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant ("Tier 2-like" viruses, globally sensitive ("Tier 1" viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of

  6. Contribution of Intrinsic Reactivity of the HIV-1 Envelope Glycoproteins to CD4-Independent Infection and Global Inhibitor Sensitivity

    Science.gov (United States)

    Haim, Hillel; Strack, Bettina; Kassa, Aemro; Madani, Navid; Wang, Liping; Courter, Joel R.; Princiotto, Amy; McGee, Kathleen; Pacheco, Beatriz; Seaman, Michael S.; Smith, Amos B.; Sodroski, Joseph

    2011-01-01

    Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the “intrinsic reactivity” of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant (“Tier 2-like”) viruses, globally sensitive (“Tier 1”) viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of

  7. Binding of pertussis toxin to eucaryotic cells and glycoproteins.

    Science.gov (United States)

    Witvliet, M H; Burns, D L; Brennan, M J; Poolman, J T; Manclark, C R

    1989-01-01

    The binding of pertussis toxin and its subunits to cell surface receptors and purified glycoproteins was examined. The interaction of pertussis toxin with components of two variant Chinese hamster ovary (CHO) cell lines was studied. These cell lines are deficient in either sialic acid residues (LEC 2) or sialic acid and galactose residues (LEC 8) on cell surface macromolecules. The binding of pertussis toxin to components of these cells differed from the binding of the toxin to wild-type components. Although the toxin bound to a 165,000-dalton glycoprotein found in N-octylglucoside extracts of wild-type cells, it did not bind to components found in extracts of LEC 2 cells. In contrast, the toxin bound to components found in extracts of LEC 8 cells, which are variant cells that contain increased amounts of terminal N-acetylglucosamine residues on cell surface macromolecules. These results suggest that the receptor for pertussis toxin on CHO cells contains terminal acetamido-containing sugars. The cytopathic effect of the toxin on both types of variant cells was much reduced compared with its effects on wild-type cells. Thus, optimal functional binding of pertussis toxin appears to require a complete sialyllactosamine (NeuAc----Gal beta 4GlcNAc) sequence on surface macromolecules. In addition to studying the nature of the eucaryotic receptor for pertussis toxin, we examined corresponding binding sites for glycoproteins on the toxin molecule. Binding of both S2-S4 and S3-S4 dimers of the toxin to cellular components and purified glycoproteins was observed. The two dimers bound to a number of glycoproteins containing N-linked oligosaccharides but not O-linked oligosaccharides, and differences in the binding of the two dimers to some glycoproteins was noted. These data indicate that the holotoxin molecule contains at least two glycoprotein-binding sites which may have slightly different specificities for glycoproteins. Images PMID:2478471

  8. KDN-containing glycoprotein from loach skin mucus.

    Science.gov (United States)

    Nakagawa, H; Hama, Y; Sumi, T; Li, S C; Li, Y T

    2001-01-01

    It has been widely recognized that the mucus coat of fish plays a variety of important physical, chemical, and physiological functions. One of the major constituents of the mucus coat is mucus glycoprotein. We found that sialic acids in the skin mucus of the loach, Misgurnus anguillicaudatus, consisted predominantly of KDN. Subsequently, we isolated KDN-containing glycoprotein from loach skin mucus and characterized its chemical nature and structure. Loach mucus glycoprotein was purified from the Tris-HCl buffer extract of loach skin mucus by DEAE-cellulose chromatography, Nuclease P1 treatment, and Sepharose CL-6B gel filtration. The purified mucus glycoprotein was found to contain 38.5 KDN, 0.5% NeuAc, 25.0% GalNAc, 3.5% Gal, 0.5% GlcNAc and 28% amino acids. Exhaustive Actinase digestion of the glycoprotein yielded a glycopeptide with a higher sugar content and higher Thr and Ser contents. The molecular size of this glycopeptide was approximately 1/12 of the intact glycoprotein. These results suggest that approximately 11 highly glycosylated polypeptide units are linked in tandem through nonglycosylated peptides to form the glycoporotein molecule. The oligosaccharide alditols liberated from the loach mucus glycoprotein by alkaline borohydride treatment were separated by Sephadex G-25 gel filtration and HPLC. The purified sugar chains were analyzed b --> 6GalNAc-ol, KDNalpha2 --> 3(GalNAcbeta1 --> 14)GalNAc-ol, KDNalpha2 --> 6(GalNAcalpha1 --> 3)GalNAc-ol, KDNalpha2 --> 6(Gal3alpha1--> 3)GalNAc-ol, and NeuAcalpha2 --> 6Gal NAc-ol. It is estimated that one loach mucus glycoprotein molecule contains more than 500 KDN-containing sugar chains that are linked to Thr and Ser residues of the protein core through GalNAc.

  9. Role of the long cytoplasmic domain of the SIV Env glycoprotein in early and late stages of infection

    Directory of Open Access Journals (Sweden)

    Khaoustov Vladimir

    2007-12-01

    Full Text Available Abstract Background The Env glycoproteins of retroviruses play an important role in the initial steps of infection involving the binding to cell surface receptors and entry by membrane fusion. The Env glycoprotein also plays an important role in viral assembly at a late step of infection. Although the Env glycoprotein interacts with viral matrix proteins and cellular proteins associated with lipid rafts, its possible role during the early replication events remains unclear. Truncation of the cytoplasmic tail (CT of the Env glycoprotein is acquired by SIV in the course of adaptation to human cells, and is known to be a determinant of SIV pathogenicity. Results We compared SIV viruses with full length or truncated (T Env glycoproteins to analyze possible differences in entry and post-entry events, and assembly of virions. We observed that early steps in replication of SIV with full length or T Env were similar in dividing and non-dividing cells. However, the proviral DNA of the pathogenic virus clone SIVmac239 with full length Env was imported to the nucleus about 20-fold more efficiently than proviral DNA of SIVmac239T with T Env, and 100-fold more efficiently than an SIVmac18T variant with a single mutation A239T in the SU subunit and with a truncated cytoplasmic tail (CT. In contrast, proviral DNA of SIVmac18 with a full length CT and with a single mutation A239T in the SU subunit was imported to the nucleus about 50-fold more efficiently than SIVmac18T. SIV particles with full length Env were released from rhesus monkey PBMC, whereas a restriction of release of virus particles was observed from human 293T, CEMx174, HUT78 or macrophages. In contrast, SIV with T Envs were able to overcome the inhibition of release in human HUT78, CEMx174, 293T or growth-arrested CEMx174 cells and macrophages resulting in production of infectious particles. We found that the long CT of the Env glycoprotein was required for association of Env with lipid rafts. An

  10. Immunohistochemical Distribution of a Breast Cancer-Associated Glycoprotein

    Directory of Open Access Journals (Sweden)

    P. D. Rye

    1993-01-01

    Full Text Available The tissue distribution and specificity of a glycoprotein of Mr 230 OOOkDa which has previously been identified from breast carcinomas in culture and shown to be tumour-associated, has been assessed using a polyclonal antiserum. A wide range of tissues has been examined immunohistochemically. The tissue distribution of the glycoprotein show differences between normal, benign and malignant breast and other epithelial tissues, and are clearly specific for epithelial cells. This glycoprotein as detected by the polyclonal antiserum P5252-2, was either absent or showed a minimal presence in normal breast tissues. Evidence of the expression of the glycoprotein in hyperplastic breast was observed but was considerably less than that seen for carcinomas, for which 70% had greater than 50% of cells exhibiting reactivity with P5252-2. There was no relationship with grade or node status. Similar striking differences in glycoprotein expression between non-neoplastic and neoplastic tissue were observed for stomach, large intestine, thyroid and to lesser extent ovary. The di fferences in the expression of this glycoprotein between normal and malignant tissues is of obvious clinical and pathological potential.

  11. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.

    1980-01-01

    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  12. Antifreeze glycoprotein agents: structural requirements for activity.

    Science.gov (United States)

    Carvajal-Rondanelli, Patricio A; Marshall, Sergio H; Guzman, Fanny

    2011-11-01

    Antifreeze glycoproteins (AFGPs) are considered to be the most efficient means to reduce ice damage to cell tissues since they are able to inhibit growth and crystallization of ice. The key element of antifreeze proteins is to act in a non-colligative manner which allows them to function at concentrations 300-500 times lowers than other dissolved solutes. During the past decade, AFGPs have demonstrated tremendous potential for many pharmaceutical and food applications. Presently, the only route to obtain AFGPs involves the time consuming and expensive process of isolation and purification from deep-sea polar fishes. Unfortunately, it is not amenable to mass production and commercial applications. The lack of understanding of the mechanism through which the AFGPs inhibit ice growth has also hampered the realization of industrial and biotechnological applications. Here we report the structural motifs that are essential for antifreeze activity of AFGPs, and propose a unified mechanism based on both recent studies of short alanine peptides and structure activity relationship of synthesized AFGPs. Copyright © 2011 Society of Chemical Industry.

  13. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang

    2013-02-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  14. Comparative Analysis of the Glycosylation Profiles of Membrane-Anchored HIV-1 Envelope Glycoprotein Trimers and Soluble gp140

    Science.gov (United States)

    Go, Eden P.; Herschhorn, Alon; Gu, Christopher; Castillo-Menendez, Luis; Zhang, Shijian; Mao, Youdong; Chen, Haiyan; Ding, Haitao; Wakefield, John K.; Hua, David; Liao, Hua-Xin; Kappes, John C.; Sodroski, Joseph

    2015-01-01

    ABSTRACT The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, which consists of the gp120 and gp41 subunits, is the focus of multiple strategies for vaccine development. Extensive Env glycosylation provides HIV-1 with protection from the immune system, yet the glycans are also essential components of binding epitopes for numerous broadly neutralizing antibodies. Recent studies have shown that when Env is isolated from virions, its glycosylation profile differs significantly from that of soluble forms of Env (gp120 or gp140) predominantly used in vaccine discovery research. Here we show that exogenous membrane-anchored Envs, which can be produced in large quantities in mammalian cells, also display a virion-like glycan profile, where the glycoprotein is extensively decorated with high-mannose glycans. Additionally, because we characterized the glycosylation with a high-fidelity profiling method, glycopeptide analysis, an unprecedented level of molecular detail regarding membrane Env glycosylation and its heterogeneity is presented. Each glycosylation site was characterized individually, with about 500 glycoforms characterized per Env protein. While many of the sites contain exclusively high-mannose glycans, others retain complex glycans, resulting in a glycan profile that cannot currently be mimicked on soluble gp120 or gp140 preparations. These site-level studies are important for understanding antibody-glycan interactions on native Env trimers. Additionally, we report a newly observed O-linked glycosylation site, T606, and we show that the full O-linked glycosylation profile of membrane-associated Env is similar to that of soluble gp140. These findings provide new insight into Env glycosylation and clarify key molecular-level differences between membrane-anchored Env and soluble gp140. IMPORTANCE A vaccine that protects against human immunodeficiency virus type 1 (HIV-1) infection should elicit antibodies that bind to the surface

  15. Alternative promoter usage of the membrane glycoprotein CD36

    Directory of Open Access Journals (Sweden)

    Whatling Carl

    2006-03-01

    Full Text Available Abstract Background CD36 is a membrane glycoprotein involved in a variety of cellular processes such as lipid transport, immune regulation, hemostasis, adhesion, angiogenesis and atherosclerosis. It is expressed in many tissues and cell types, with a tissue specific expression pattern that is a result of a complex regulation for which the molecular mechanisms are not yet fully understood. There are several alternative mRNA isoforms described for the gene. We have investigated the expression patterns of five alternative first exons of the CD36 gene in several human tissues and cell types, to better understand the molecular details behind its regulation. Results We have identified one novel alternative first exon of the CD36 gene, and confirmed the expression of four previously known alternative first exons of the gene. The alternative transcripts are all expressed in more than one human tissue and their expression patterns vary highly in skeletal muscle, heart, liver, adipose tissue, placenta, spinal cord, cerebrum and monocytes. All alternative first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins. The alternative promoters lack TATA-boxes and CpG islands. The upstream region of exon 1b contains several features common for house keeping gene and monocyte specific gene promoters. Conclusion Tissue-specific expression patterns of the alternative first exons of CD36 suggest that the alternative first exons of the gene are regulated individually and tissue specifically. At the same time, the fact that all first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins may suggest that the alternative first exons are coregulated in this cell type and environmental condition. The molecular mechanisms regulating CD36 thus appear to be unusually complex, which might reflect the multifunctional role of the gene in different tissues and cellular conditions.

  16. HIV envelope glycoprotein imaged at high resolution | Center for Cancer Research

    Science.gov (United States)

    The outer surface of the human immunodeficiency virus (HIV) is surrounded by an envelope studded with spike-shaped glycoproteins called Env that help the deadly virus identify, bind, and infect cells. When unbound, Env exists in a “closed” conformational state. Upon binding with target cells, such as CD4+ T cells, the protein transitions to an “open” configuration. Given that Env is the only viral protein expressed on HIV’s surface, knowing its detailed structure—especially in the unbound state—may be critical for designing antibodies and vaccines against HIV.

  17. Adipocytokine zinc α2 glycoprotein (ZAG) as a novel urinary biomarker for normo-albuminuric diabetic nephropathy.

    Science.gov (United States)

    Lim, S C; Liying, D Q; Toy, W C; Wong, M; Yeoh, L Y; Tan, C; Lau, D; Tan, C; Subramaniam, T; Sum, C F

    2012-07-01

    A substantial proportion of diabetic nephropathy individuals are non-albuminuric. Using a proteomic approach, we searched for novel urinary biomarkers. We studied three groups (n = 6 per group) of males with Type 2 diabetes: (1) normal renal function; (2) classical diabetic nephropathy (urinary albumin-creatinine ratio > 1000 mg/g and glomerular filtration rate 2.5-fold, P < 0.05). In the non-albuminuric subjects, in addition to previously reported α(1) -microglobulin, the next most interesting spot (upregulated 3.44-fold, P = 0.0026) was human zinc-α(2) -glycoprotein, a novel adipose-cytokine associated with glomerular injury. This was confirmed by western blot and replicated in female diabetic nephropathy subjects. From our preliminary results, human zinc-α(2) -glycoprotein may be a novel urinary biomarker for non-albuminuric diabetic nephropathy. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  18. Immunization with cytomegalovirus envelope glycoprotein M and glycoprotein N DNA vaccines can provide mice with complete protection against a lethal murine cytomegalovirus challenge.

    Science.gov (United States)

    Wang, Huadong; Yao, Yanfeng; Huang, Chaoyang; Chen, Quanjiao; Chen, Jianjun; Chen, Ze

    2013-06-01

    Human cytomegalovirus virions contain three major glycoprotein complexes (gC I, II, III), all of which are required for CMV infectivity. These complexes also represent major antigenic targets for anti-viral immune responses. The gC II complex consists of two glycoproteins, gM and gN. In the current study, DNA vaccines expressing the murine cytomegalovirus (MCMV) homologs of the gM and gN proteins were evaluated for protection against lethal MCMV infection in a mouse model. Humoral and cellular immune responses, spleen viral titers, and mice survival and body-weight changes were examined. The results showed that immunization with gM or gN DNA vaccine alone was not able to offer good protection, whereas co-immunization with both gM and gN induced an effective neutralizing antibody response and cellular immune response, and provided mice with complete protection against a lethal MCMV challenge. This study provides the first in vivo evidence that the gC II (gM-gN) complex may be able to serve as a protective subunit antigen for future HCMV vaccine development.

  19. Immunochemical and chemical investigations of the structure of glycoprotein fragments obtained from epiglycanin, a glycoprotein at the surface of the TA3-Ha cancer cell.

    Science.gov (United States)

    Codington, J F; Linsley, K B; Jeanloz, R W; Irimura, T; Osawa, T

    1975-03-01

    The structures of the carbohydrate chains present in fragments of a large-molecular-weight glycoprotein, epiglycanin, cleaved from the surface of viable TA3-Ha murine mammary carcinoma ascites cells and purified by gel filtration, were studied by immunochemical and chemical methods. Inhibitory activities for neuraminidase-treated and untreated glycoprotein material in the hemagglutination of NN-specific human erythrocytes by eight purified lectins were determined. Excellent inhibition was obtained in the Bauhinia purpurea, Arachis hypogaea, Iberis amara, and Wistaria floribunda systems, and weak inhibition against the Ricinus communis and Glycine max lectins. No activity against hemagglutination by the Phaseolus vulgaris and Phaseolus limensis lectins was observed. These results, when compared with those obtained by periodate oxidation, alkaline borohydride reduction, and partial methylation, suggest the possible presence of six different carbohydrate chains of 1 to 5 components in length, having as terminal groups N-acetylneuraminic acid, galactose, and 2-acetamido-2-deoxygalactose. All chains are attached to a single polypeptide chain by O-glycosyl bonds involving a 2-acetamido-2-deoxygalactose residue and a serine or threonine residue. It is suggested that the native molecule of epiglycanin of molecular weight 500,000 contains more than 500 carbohydrate chains attached to a single polypeptide chain of similar to 1,300 amino acid units.

  20. Facile synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins.

    Science.gov (United States)

    Li, Xin-Ge; Zhang, Fei; Gao, Ya; Zhou, Qing-Meng; Zhao, Ye; Li, Yan; Huo, Jian-Zhong; Zhao, Xiao-Jun

    2016-12-15

    As an emerging class of fluorescent probes, copper nanoclusters (Cu NCs) have been considered as an intriguing candidate for detecting biomoleculars due to their outstanding fluorescent properties, excellent biocompatibility and low cost. Herein, we fabricated bovine serum albumin (BSA) protected Cu NCs (BSA-Cu NCs) and further functionalized them with 3-aminophenylboronic acid (APBA) for selectively discerning glycoproteins. In aqueous solution, Cu(2+) ions were directly reduced into BSA-Cu NCs by hydrazine hydrate (N2H4·H2O) at room-temperature using BSA as the capping agent. The synthetic process was very rapid, simple and easy for controlling due to the lack of any other complicated procedure such as heating and adjusting the pH value of the reactive mixture. The APBA-Cu NCs showed strong fluorescent emission at 630nm in the red range. So it can effectively avoid the disturbance of auto-fluorescence in biosamples. The fluorescence of the APBA-Cu NCs was obviously quenched by glycoprotein samples. Then, the APBA-Cu NCs were employed as a probe for selective capture and sensitive detection of glycoproteins with a wide linear range of 5-220nM and a low detection limit of 2.60nM owing to the covalent reaction between the boric acid group of APBA and the cis-glycol groups of the glycoproteins. The developed method was also successfully applied to determine glycoproteins in egg white of chickens and human urine samples with quantitative spike recoveries from 95% to 104%. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cryo-electron Microscopy Structure of the Native Prototype Foamy Virus Glycoprotein and Virus Architecture.

    Science.gov (United States)

    Effantin, Grégory; Estrozi, Leandro F; Aschman, Nick; Renesto, Patricia; Stanke, Nicole; Lindemann, Dirk; Schoehn, Guy; Weissenhorn, Winfried

    2016-07-01

    Foamy viruses (FV) belong to the genus Spumavirus, which forms a distinct lineage in the Retroviridae family. Although the infection in natural hosts and zoonotic transmission to humans is asymptomatic, FVs can replicate well in human cells making it an attractive gene therapy vector candidate. Here we present cryo-electron microscopy and (cryo-)electron tomography ultrastructural data on purified prototype FV (PFV) and PFV infected cells. Mature PFV particles have a distinct morphology with a capsid of constant dimension as well as a less ordered shell of density between the capsid and the membrane likely formed by the Gag N-terminal domain and the cytoplasmic part of the Env leader peptide gp18LP. The viral membrane contains trimeric Env glycoproteins partly arranged in interlocked hexagonal assemblies. In situ 3D reconstruction by subtomogram averaging of wild type Env and of a Env gp48TM- gp80SU cleavage site mutant showed a similar spike architecture as well as stabilization of the hexagonal lattice by clear connections between lower densities of neighboring trimers. Cryo-EM was employed to obtain a 9 Å resolution map of the glycoprotein in its pre-fusion state, which revealed extensive trimer interactions by the receptor binding subunit gp80SU at the top of the spike and three central helices derived from the fusion protein subunit gp48TM. The lower part of Env, presumably composed of interlaced parts of gp48TM, gp80SU and gp18LP anchors the spike at the membrane. We propose that the gp48TM density continues into three central transmembrane helices, which interact with three outer transmembrane helices derived from gp18LP. Our ultrastructural data and 9 Å resolution glycoprotein structure provide important new insights into the molecular architecture of PFV and its distinct evolutionary relationship with other members of the Retroviridae.

  2. Cryo-electron Microscopy Structure of the Native Prototype Foamy Virus Glycoprotein and Virus Architecture.

    Directory of Open Access Journals (Sweden)

    Grégory Effantin

    2016-07-01

    Full Text Available Foamy viruses (FV belong to the genus Spumavirus, which forms a distinct lineage in the Retroviridae family. Although the infection in natural hosts and zoonotic transmission to humans is asymptomatic, FVs can replicate well in human cells making it an attractive gene therapy vector candidate. Here we present cryo-electron microscopy and (cryo-electron tomography ultrastructural data on purified prototype FV (PFV and PFV infected cells. Mature PFV particles have a distinct morphology with a capsid of constant dimension as well as a less ordered shell of density between the capsid and the membrane likely formed by the Gag N-terminal domain and the cytoplasmic part of the Env leader peptide gp18LP. The viral membrane contains trimeric Env glycoproteins partly arranged in interlocked hexagonal assemblies. In situ 3D reconstruction by subtomogram averaging of wild type Env and of a Env gp48TM- gp80SU cleavage site mutant showed a similar spike architecture as well as stabilization of the hexagonal lattice by clear connections between lower densities of neighboring trimers. Cryo-EM was employed to obtain a 9 Å resolution map of the glycoprotein in its pre-fusion state, which revealed extensive trimer interactions by the receptor binding subunit gp80SU at the top of the spike and three central helices derived from the fusion protein subunit gp48TM. The lower part of Env, presumably composed of interlaced parts of gp48TM, gp80SU and gp18LP anchors the spike at the membrane. We propose that the gp48TM density continues into three central transmembrane helices, which interact with three outer transmembrane helices derived from gp18LP. Our ultrastructural data and 9 Å resolution glycoprotein structure provide important new insights into the molecular architecture of PFV and its distinct evolutionary relationship with other members of the Retroviridae.

  3. Myelin Oligodendrocyte Glycoprotein: Deciphering a Target in Inflammatory Demyelinating Diseases

    Directory of Open Access Journals (Sweden)

    Patrick Peschl

    2017-05-01

    Full Text Available Myelin oligodendrocyte glycoprotein (MOG, a member of the immunoglobulin (Ig superfamily, is a myelin protein solely expressed at the outermost surface of myelin sheaths and oligodendrocyte membranes. This makes MOG a potential target of cellular and humoral immune responses in inflammatory demyelinating diseases. Due to its late postnatal developmental expression, MOG is an important marker for oligodendrocyte maturation. Discovered about 30 years ago, it is one of the best-studied autoantigens for experimental autoimmune models for multiple sclerosis (MS. Human studies, however, have yielded controversial results on the role of MOG, especially MOG antibodies (Abs, as a biomarker in MS. But with improved detection methods using different expression systems to detect Abs in patients’ samples, this is meanwhile no longer the case. Using cell-based assays with recombinant full-length, conformationally intact MOG, several recent studies have revealed that MOG Abs can be found in a subset of predominantly pediatric patients with acute disseminated encephalomyelitis (ADEM, aquaporin-4 (AQP4 seronegative neuromyelitis optica spectrum disorders (NMOSD, monophasic or recurrent isolated optic neuritis (ON, or transverse myelitis, in atypical MS and in N-methyl-d-aspartate receptor-encephalitis with overlapping demyelinating syndromes. Whereas MOG Abs are only transiently observed in monophasic diseases such as ADEM and their decline is associated with a favorable outcome, they are persistent in multiphasic ADEM, NMOSD, recurrent ON, or myelitis. Due to distinct clinical features within these diseases it is controversially disputed to classify MOG Ab-positive cases as a new disease entity. Neuropathologically, the presence of MOG Abs is characterized by MS-typical demyelination and oligodendrocyte pathology associated with Abs and complement. However, it remains unclear whether MOG Abs are a mere inflammatory bystander effect or truly pathogenetic

  4. Zinc alpha-2 glycoprotein is overproduced in Cushing's syndrome.

    Science.gov (United States)

    Escoté, Xavier; Aranda, Gloria B; Mora, Mireia; Casals, Gregori; Enseñat, Joaquim; Vidal, Oscar; Esteban, Yaiza; Halperin, Irene; Hanzu, Felicia A

    2017-01-01

    Cushing syndrome (CS), an endogenous hypercortisolemic condition with increased cardiometabolic morbidity, leads to development of abdominal obesity, insulin resistance, diabetes and proatherogenic dyslipidemia. Zinc alpha-2 glycoprotein (ZAG) is a recently characterized lipolytic adipokine implicated in regulation of adipose tissue metabolism and fat distribution. In vitro and animal studies suggest that glucocorticoids interact with ZAG secretion and action. To assess the relationship between ZAG and glucocorticoids in a human model of hypercortisolism, circulating ZAG levels were tested in patients with CS and its counterpart controls. An observational, cross-sectional study on 39 women, 13 with active CS and 26 controls matched by age and body mass index. Plasma ZAG levels (μg/ml) were measured by ELISA and correlated with hypercortisolism, metabolic, and phenotypic parameters. Plasma ZAG levels were significantly higher in patients with CS compared to controls (64.3±16.6 vs. 44.0±16.1, p=0.002). In a univariate analysis, ZAG levels positively correlated to 24-h urinary free cortisol (p=0.001), body mass index (p=0.02), non-esterified fatty acids (p=0.05), glucose (p=0.003), LDL-C (p=0.028), and type 2 diabetes mellitus (p=0.016), and were inversely related to total adiponectin levels (p=0.035). In a multivariate analysis, after adjusting for CS, ZAG levels only correlated with body mass index (p=0.012), type 2 diabetes mellitus (p=0.004), and glucose (p<0.001). This study provides initial evidence that plasma ZAG levels are higher in patients with CS as compared to controls. The close relationship of ZAG with metabolic and phenotypic changes in CS suggests that ZAG may play a significant role in adipose tissue changes in hypercortisolism. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Myelin Oligodendrocyte Glycoprotein: Deciphering a Target in Inflammatory Demyelinating Diseases

    Science.gov (United States)

    Peschl, Patrick; Bradl, Monika; Höftberger, Romana; Berger, Thomas; Reindl, Markus

    2017-01-01

    Myelin oligodendrocyte glycoprotein (MOG), a member of the immunoglobulin (Ig) superfamily, is a myelin protein solely expressed at the outermost surface of myelin sheaths and oligodendrocyte membranes. This makes MOG a potential target of cellular and humoral immune responses in inflammatory demyelinating diseases. Due to its late postnatal developmental expression, MOG is an important marker for oligodendrocyte maturation. Discovered about 30 years ago, it is one of the best-studied autoantigens for experimental autoimmune models for multiple sclerosis (MS). Human studies, however, have yielded controversial results on the role of MOG, especially MOG antibodies (Abs), as a biomarker in MS. But with improved detection methods using different expression systems to detect Abs in patients’ samples, this is meanwhile no longer the case. Using cell-based assays with recombinant full-length, conformationally intact MOG, several recent studies have revealed that MOG Abs can be found in a subset of predominantly pediatric patients with acute disseminated encephalomyelitis (ADEM), aquaporin-4 (AQP4) seronegative neuromyelitis optica spectrum disorders (NMOSD), monophasic or recurrent isolated optic neuritis (ON), or transverse myelitis, in atypical MS and in N-methyl-d-aspartate receptor-encephalitis with overlapping demyelinating syndromes. Whereas MOG Abs are only transiently observed in monophasic diseases such as ADEM and their decline is associated with a favorable outcome, they are persistent in multiphasic ADEM, NMOSD, recurrent ON, or myelitis. Due to distinct clinical features within these diseases it is controversially disputed to classify MOG Ab-positive cases as a new disease entity. Neuropathologically, the presence of MOG Abs is characterized by MS-typical demyelination and oligodendrocyte pathology associated with Abs and complement. However, it remains unclear whether MOG Abs are a mere inflammatory bystander effect or truly pathogenetic. This article

  6. P-glycoprotein and Its Role in Treatment Resistance

    Directory of Open Access Journals (Sweden)

    Isil Gogcegoz Gul

    2016-03-01

    Full Text Available Polypharmacy which has often used to increase efficacy of treatment and to prevent resistance in psychiatry may lead to pharmacokinetic and pharmacodynamic drug interactions. One of the inten-sively studied topic in recent years to clarify the mechanism of drug interactions, in the pharmacoki-netic area is p-glycoprotein related drug-drug and drug-food interactions. The interactions of some drugs with p-glycoprotein which is a carrier protein, can lead to a decrease in the bioavailability of these drugs and reduction in passage through the blood-brain barrier. In this review, the role of p-glycoprotein on drug pharmacokinetics and bioavailability of psychiatric drugs are discussed. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(1: 19-31

  7. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    this antigen is a good candidate for development as a vaccine to prevent or control P. carinii infection. We have cloned and sequenced seven related but unique genes encoding the major surface glycoprotein of rat P. carinii. Partial amino acid sequencing confirmed the identity of these genes. Based on Southern...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...... hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development...

  8. Glycoproteins and Glycosylation Site Assignments in Cereal seed Proteomes

    DEFF Research Database (Denmark)

    Dedvisitsakul, Plaipol

    aleurone layer and 47 glycoproteins were identified. Sequence homology search against allergen database reveals that many glycoproteins identified from wheat and barley share similarity with known food allergens and may therefore be targets in search of novel allergens from wheat flour........ Glycosylation is one of the most common PTMs of protein that is involved in many physiological functions and biological pathways. The aim of this Ph.D. project is mainly to screen and identify N-glycosylated proteins from barley and wheat. A HILIC-based glycopeptide enrichment technqiue was first developed...... by supplementing cotton wool with ZIC-HILIC in a microcolumn (called ZIC-cotton). This approach reduced co-enrichment of non-glycosylated peptides and allowed glycoppeptide identification from large protein mixtures. It was applied for glycoprotein identification and glycosylation site assignment in wheat albumin...

  9. Data-driven homology modelling of P-glycoprotein in the ATP-bound state indicates flexibility of the transmembrane domains

    NARCIS (Netherlands)

    Stockner, T.; de Vries, S.J.|info:eu-repo/dai/nl/304837717; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238; Ecker, G.F.; Chiba, P.

    2009-01-01

    Human P-glycoprotein is an ATP-binding cassette transporter that plays an important role in the defence against potentially harmful molecules from the environment. It is involved in conferring resistance against cancer therapeutics and plays an important role for the pharmacokinetics of drugs. The

  10. Genetic transfer of non-P-glycoprotein-mediated multidrug resistance (MDR) in somatic cell fusion : Dissection of a compound MDR phenotype

    NARCIS (Netherlands)

    EIJDEMS, EWHM; BORST, P; JONGSMA, APM; de Jong, Steven; DEVRIES, EGE; VANGROENIGEN, M; VERSANTVOORT, CHM; NIEUWINT, AWM; BAAS, F

    1992-01-01

    A non-P-glycoprotein-mediated mechanism of multidrug resistance (non-Pgp MDR) bas been identified in doxorubicin-selected sublines of the human non-small cell lung carcinoma cell lines SW-1573. These sublines are cross-resistant to daunorubicin, VP16-213, Vinca alkaloids, colchicine, gramicidin D,

  11. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  12. Boronate affinity monolith with a gold nanoparticle-modified hydrophilic polymer as a matrix for the highly specific capture of glycoproteins.

    Science.gov (United States)

    Wu, Ci; Liang, Yu; Zhao, Qun; Qu, Yanyan; Zhang, Shen; Wu, Qi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2014-07-07

    As low abundance is the great obstacle for glycoprotein analysis, the development of materials with high efficiency and selectivity for glycoprotein enrichment is a prerequisite in glycoproteome research. Herein, we report a new kind of hydrophilic boronate affinity monolith by attaching 4-mercaptophenylboronic acid (MPBA) with 2-mercaptoethylamine (MPA) on the gold nanoparticle-modified poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate)) monolith for glycoprotein enrichment. With poly(ethylene glycol) diacrylate as the cross-linker and the further modification of gold nanoparticles, the matrix has advantages of good hydrophilicity and enhanced surface area, which are beneficial to improve the enrichment selectivity and efficiency for glycoproteins. The attachment of MPBA and MPA provide intramolecular BN coordination, which could further enhance the specificity of glycoprotein capture. Such a boronate affinity monolith was applied to enrich horseradish peroxidase (HRP) from the mixture of HRP and bovine serum albumin (BSA), and high selectivity was obtained even at a mass ratio of 1:1000. In addition, the binding capacity of ovalbumin on such monolith reached 390 μg g(-1) . Furthermore, the average recovery of HRP on the prepared affinity monoliths was (84.8±1.9) %, obtained in three times enrichment with the same column. Finally, the boronate affinity monolith was successfully applied for the human-plasma glycoproteome analysis. As a result, 160 glycoproteins were credibly identified from 9 μg of human plasma, demonstrating the great potential of such a monolith for large-scale glycoproteome research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Characterization of the Bas-Congo virus glycoprotein and its function in pseudotyped viruses.

    Science.gov (United States)

    Steffen, Imke; Liss, Nathan M; Schneider, Bradley S; Fair, Joseph N; Chiu, Charles Y; Simmons, Graham

    2013-09-01

    Bas-Congo virus (BASV) is a novel rhabdovirus recently identified from a patient with acute hemorrhagic fever in the Bas-Congo province of the Democratic Republic of Congo (DRC). Here we show that the BASV glycoprotein (BASV-G) can be successfully used to pseudotype glycoprotein-deficient vesicular stomatitis virus (VSV), allowing studies of BASV-G-driven membrane fusion and viral entry into target cells without replication-competent virus. BASV-G displayed broad tissue and species tropism in vitro, and BASV-G-mediated membrane fusion was pH dependent. The conformational changes induced in BASV-G by acidification were fully reversible and did not lead to inactivation of the viral fusion protein. Our data combined with comparative sequence similarity analyses suggest that BASV-G shares structural and functional features with other rhabdovirus glycoproteins and falls into the group of class III viral fusion proteins. However, activation of BASV-G-driven fusion required a lower pH and higher temperatures than did VSV-G-mediated fusion. Moreover, in contrast to VSV-G, mature BASV-G in VSV pseudotypes consists of a mixture of high-mannose and complex glycans that enables it to bind to certain C-type lectins, thereby enhancing its attachment to target cells. Taken together, the results presented in this study will facilitate future investigations of BASV-G-mediated cell entry and its inhibition in the absence of an infectious cell culture assay for BASV and at lower biosafety levels. Moreover, serology testing based on BASV-G pseudotype neutralization can be used to uncover the prevalence and importance of BASV as a potential novel human pathogen in the DRC and throughout Central Africa.

  14. Beta2-glycoprotein I dependent anticardiolipin antibodies and lupus anticoagulant in patients with recurrent pregnancy loss.

    Science.gov (United States)

    Kumar, K S D; Jyothy, A; Prakash, M S; Rani, H S; Reddy, P P

    2002-01-01

    The present study was aimed to define the incidence of antiphospholipid antibodies of different types lupus anticoagulant (LAC), venereal disease research laboratory test (VDRL) and Beta2-glycoprotein I dependent anticardiolipin antibodies Beta2 I aCL) in our cohort of population experiencing recurrent pregnancy loss (RPL) from Andhra Pradesh, South India. A referral case-control study at a tertiary centre over a period of 5 years. 150 couples experiencing 3 or more recurrent pregnancy losses with similar number of matched controls. LAC activity was measured by the activated partial thromboplastin time (aPTT) according to the method of Proctor and Rapaport with relevant modifications. VDRL analysis was performed by the kit method supplied by Ranbaxy Diagnostics Limited and Beta2 Glycoprotein I dependent anticardiolipin antibodies were estimated by ELISA kit (ORGen Tech, GmbH, Germany) with human Beta2 Glycoprotein I as co-factor. Statistical analysis was performed using Student's t test. LAC activity was found positive in 11 women (10.28%). The mean +/- SE Beta2 I aCL concentration in the study group was 14.53 (micro/ml) +/- 1.79 (range 0 to 90.4 micro/ml) which was higher than the control group with a mean +/- SE of 7.26 (micro/ml) +/- 0.40 (range 0 to 18 u/ml). The binding of the antibodies to the antigen was observed in 40.24% (n=33) of the cases compared to 6.09% (n=5) in controls. VDRL test was positive in 7(2.34%) individuals (3 couples and 1 male partner) and none among controls. The present study indicates the importance of antiphospholipid antibodies in women experiencing RPL and suggests the usefulness of screening for these antibodies as a mandatory routine for instituting efficient therapeutic regimens for a successful outcome of pregnancy.

  15. Expression and characterization of a soluble form of tomato spotted wilt virus glycoprotein GN.

    Science.gov (United States)

    Whitfield, Anna E; Ullman, Diane E; German, Thomas L

    2004-12-01

    Tomato spotted wilt virus (TSWV), a member of the Tospovirus genus within the Bunyaviridae, is an economically important plant pathogen with a worldwide distribution. TSWV is transmitted to plants via thrips (Thysanoptera: Thripidae), which transmit the virus in a persistent propagative manner. The envelope glycoproteins, G(N) and G(C), are critical for the infection of thrips, but they are not required for the initial infection of plants. Thus, it is assumed that the envelope glycoproteins play important roles in the entry of TSWV into the insect midgut, the first site of infection. To directly test the hypothesis that G(N) plays a role in TSWV acquisition by thrips, we expressed and purified a soluble, recombinant form of the G(N) protein (G(N)-S). The expression of G(N)-S allowed us to examine the function of G(N) in the absence of other viral proteins. We detected specific binding to thrips midguts when purified G(N)-S was fed to thrips in an in vivo binding assay. The TSWV nucleocapsid protein and human cytomegalovirus glycoprotein B did not bind to thrips midguts, indicating that the G(N)-S-thrips midgut interaction is specific. TSWV acquisition inhibition assays revealed that thrips that were concomitantly fed purified TSWV and G(N)-S had reduced amounts of virus in their midguts compared to thrips that were fed TSWV only. Our findings that G(N)-S binds to larval thrips guts and decreases TSWV acquisition provide evidence that G(N) may serve as a viral ligand that mediates the attachment of TSWV to receptors displayed on the epithelial cells of the thrips midgut.

  16. Dimeric architecture of the Hendra virus attachment glycoprotein: evidence for a conserved mode of assembly.

    Science.gov (United States)

    Bowden, Thomas A; Crispin, Max; Harvey, David J; Jones, E Yvonne; Stuart, David I

    2010-06-01

    Hendra virus is a negative-sense single-stranded RNA virus within the Paramyxoviridae family which, together with Nipah virus, forms the Henipavirus genus. Infection with bat-borne Hendra virus leads to a disease with high mortality rates in humans. We determined the crystal structure of the unliganded six-bladed beta-propeller domain and compared it to the previously reported structure of Hendra virus attachment glycoprotein (HeV-G) in complex with its cellular receptor, ephrin-B2. As observed for the related unliganded Nipah virus structure, there is plasticity in the Glu579-Pro590 and Lys236-Ala245 ephrin-binding loops prior to receptor engagement. These data reveal that henipaviral attachment glycoproteins undergo common structural transitions upon receptor binding and further define the structural template for antihenipaviral drug design. Our analysis also provides experimental evidence for a dimeric arrangement of HeV-G that exhibits striking similarity to those observed in crystal structures of related paramyxovirus receptor-binding glycoproteins. The biological relevance of this dimer is further supported by the positional analysis of glycosylation sites from across the paramyxoviruses. In HeV-G, the sites lie away from the putative dimer interface and remain accessible to alpha-mannosidase processing on oligomerization. We therefore propose that the overall mode of dimer assembly is conserved for all paramyxoviruses; however, while the geometry of dimerization is rather closely similar for those viruses that bind flexible glycan receptors, significant (up to 60 degrees ) and different reconfigurations of the subunit packing (associated with a significant decrease in the size of the dimer interface) have accompanied the independent switching to high-affinity protein receptor binding in Hendra and measles viruses.

  17. Beta2-glycoprotein I dependent anticardiolipin antibodies and lupus anticoagulant in patients with recurrent pregnancy loss.

    Directory of Open Access Journals (Sweden)

    Kumar K

    2002-01-01

    Full Text Available AIM: The present study was aimed to define the incidence of antiphospholipid antibodies of different types lupus anticoagulant (LAC, venereal disease research laboratory test (VDRL and Beta2-glycoprotein I dependent anticardiolipin antibodies Beta2 I aCL in our cohort of population experiencing recurrent pregnancy loss (RPL from Andhra Pradesh, South India. SETTING AND DESIGN: A referral case-control study at a tertiary centre over a period of 5 years. PARTICIPANTS: 150 couples experiencing 3 or more recurrent pregnancy losses with similar number of matched controls. MATERIAL AND METHODS: LAC activity was measured by the activated partial thromboplastin time (aPTT according to the method of Proctor and Rapaport with relevant modifications. VDRL analysis was performed by the kit method supplied by Ranbaxy Diagnostics Limited and Beta2 Glycoprotein I dependent anticardiolipin antibodies were estimated by ELISA kit (ORGen Tech, GmbH, Germany with human Beta2 Glycoprotein I as co-factor. STATISTICAL ANALYSIS: Statistical analysis was performed using Student′s t test. RESULTS: LAC activity was found positive in 11 women (10.28%. The mean +/- SE Beta2 I aCL concentration in the study group was 14.53 (micro/ml +/- 1.79 (range 0 to 90.4 micro/ml which was higher than the control group with a mean +/- SE of 7.26 (micro/ml +/- 0.40 (range 0 to 18 u/ml. The binding of the antibodies to the antigen was observed in 40.24% (n=33 of the cases compared to 6.09% (n=5 in controls. VDRL test was positive in 7(2.34% individuals (3 couples and 1 male partner and none among controls. CONCLUSIONS: The present study indicates the importance of antiphospholipid antibodies in women experiencing RPL and suggests the usefulness of screening for these antibodies as a mandatory routine for instituting efficient therapeutic regimens for a successful outcome of pregnancy.

  18. Serological diagnosis and prognosis of severe acute pancreatitis by analysis of serum glycoprotein 2.

    Science.gov (United States)

    Roggenbuck, Dirk; Goihl, Alexander; Hanack, Katja; Holzlöhner, Pamela; Hentschel, Christian; Veiczi, Miklos; Schierack, Peter; Reinhold, Dirk; Schulz, Hans-Ulrich

    2017-05-01

    Glycoprotein 2 (GP2), the pancreatic major zymogen granule membrane glycoprotein, was reported to be elevated in acute pancreatitis in animal models. Enzyme-linked immunosorbent assays (ELISAs) were developed to evaluate human glycoprotein 2 isoform alpha (GP2a) and total GP2 (GP2t) as specific markers for acute pancreatitis in sera of 153 patients with acute pancreatitis, 26 with chronic pancreatitis, 125 with pancreatic neoplasms, 324 with non-pancreatic neoplasms, 109 patients with liver/biliary disease, 67 with gastrointestinal disease, and 101 healthy subjects. GP2a and GP2t levels were correlated with procalcitonin and C-reactive protein in 152 and 146 follow-up samples of acute pancreatitis patients, respectively. The GP2a ELISA revealed a significantly higher assay accuracy in contrast to the GP2t assay (sensitivity ≤3 disease days: 91.7%, specificity: 96.7%, positive likelihood ratio [LR+]: 24.6, LR-: 0.09). GP2a and GP2t levels as well as prevalences were significantly elevated in early acute pancreatitis (≤3 disease days) compared to all control cohorts (ppancreatitis at admission compared with mild cases (ppancreatitis with lethal outcome was 7.8 on admission (p=0.0222). GP2a and GP2t levels were significantly correlated with procalcitonin [Spearman's rank coefficient of correlation (ρ)=0.21, 0.26; p=0.0110, 0.0012; respectively] and C-reactive protein (ρ=0.37, 0.40; ppancreatitis and analysis of GP2a can aid in the differential diagnosis of acute upper abdominal pain and prognosis of severe acute pancreatitis.

  19. Ebola virus glycoprotein needs an additional trigger, beyond proteolytic priming for membrane fusion.

    Directory of Open Access Journals (Sweden)

    Shridhar Bale

    2011-11-01

    Full Text Available Ebolavirus belongs to the family filoviridae and causes severe hemorrhagic fever in humans with 50-90% lethality. Detailed understanding of how the viruses attach to and enter new host cells is critical to development of medical interventions. The virus displays a trimeric glycoprotein (GP(1,2 on its surface that is solely responsible for membrane attachment, virus internalization and fusion. GP(1,2 is expressed as a single peptide and is cleaved by furin in the host cells to yield two disulphide-linked fragments termed GP1 and GP2 that remain associated in a GP(1,2 trimeric, viral surface spike. After entry into host endosomes, GP(1,2 is enzymatically cleaved by endosomal cathepsins B and L, a necessary step in infection. However, the functional effects of the cleavage on the glycoprotein are unknown.We demonstrate by antibody binding and Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS of glycoproteins from two different ebolaviruses that although enzymatic priming of GP(1,2 is required for fusion, the priming itself does not initiate the required conformational changes in the ectodomain of GP(1,2. Further, ELISA binding data of primed GP(1,2 to conformational antibody KZ52 suggests that the low pH inside the endosomes also does not trigger dissociation of GP1 from GP2 to effect membrane fusion.The results reveal that the ebolavirus GP(1,2 ectodomain remains in the prefusion conformation upon enzymatic cleavage in low pH and removal of the glycan cap. The results also suggest that an additional endosomal trigger is necessary to induce the conformational changes in GP(1,2 and effect fusion. Identification of this trigger will provide further mechanistic insights into ebolavirus infection.

  20. Alphavirus vector-based replicon particles expressing multivalent cross-protective Lassa virus glycoproteins.

    Science.gov (United States)

    Wang, Min; Jokinen, Jenny; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S

    2018-01-29

    Lassa virus (LASV) is the most prevalent rodent-borne arenavirus circulated in West Africa. With population at risk from Senegal to Nigeria, LASV causes Lassa fever and is responsible for thousands of deaths annually. High genetic diversity of LASV is one of the challenges for vaccine R&D. We developed multivalent virus-like particle vectors (VLPVs) derived from the human Venezuelan equine encephalitis TC-83 IND vaccine (VEEV) as the next generation of alphavirus-based bicistronic RNA replicon particles. The genes encoding VEEV structural proteins were replaced with LASV glycoproteins (GPC) from distantly related clades I and IV with individual 26S promoters. Bicistronic RNA replicons encoding wild-type LASV GPC (GPCwt) and C-terminally deleted, non-cleavable modified glycoprotein (ΔGPfib), were encapsidated into VLPV particles using VEEV capsid and glycoproteins provided in trans. In transduced cells, VLPVs induced simultaneous expression of LASV GPCwt and ΔGPfib from 26S alphavirus promoters. LASV ΔGPfib was predominantly expressed as trimers, accumulated in the endoplasmic reticulum, induced ER stress and apoptosis promoting antigen cross-priming. VLPV vaccines were immunogenic and protective in mice and upregulated CD11c + /CD8 + dendritic cells playing the major role in cross-presentation. Notably, VLPV vaccination resulted in induction of cross-reactive multifunctional T cell responses after stimulation of immune splenocytes with peptide cocktails derived from LASV from clades I-IV. Multivalent RNA replicon-based LASV vaccines can be applicable for first responders, international travelers visiting endemic areas, military and lab personnel. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. The adipokine zinc-alpha2-glycoprotein (ZAG) is downregulated with fat mass expansion in obesity.

    Science.gov (United States)

    Mracek, T; Ding, Q; Tzanavari, T; Kos, K; Pinkney, J; Wilding, J; Trayhurn, P; Bing, C

    2010-03-01

    Zinc-alpha2-glycoprotein (ZAG) is a novel adipokine, which may act locally to influence adipocyte metabolism. This study assessed the effect of increased adiposity on ZAG expression in adipose tissue in human subjects. The study also examined the association between ZAG and adiponectin expression in human adipose tissue, and whether ZAG modulates adiponectin secretion by human adipocytes. Adipose tissue (visceral and subcutaneous) was collected from human subjects with a wide range of BMIs. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were used for in vitro studies. ZAG mRNA levels were quantified by real-time PCR and protein by Western blotting. In human subjects, ZAG mRNA level was negatively correlated with BMI (r = -0.61, P ZAG mRNA and insulin resistance parameters including plasma insulin (r = -0.65, P ZAG mRNA was positively correlated with adiponectin (r = 0.5, P ZAG secretion by differentiated human adipocytes was abundant. Addition of recombinant ZAG stimulated adiponectin release from human adipocytes. ZAG gene expression in adipose tissue is downregulated with increased adiposity and circulating insulin. ZAG mRNA is positively correlated with adiponectin mRNA, and ZAG enhances adiponectin production by human adipocytes. We suggest that ZAG is linked to obesity and obesity-related insulin resistance.

  2. Molecular cloning of S1 glycoprotein gene of infectious bronchitis ...

    African Journals Online (AJOL)

    In vitro protein expression is an important method of obtaining large amounts of viral proteins to investigate their biological properties. The S1 glycoprotein of infectious bronchitis virus, due to its effective immune-dominant role is an appropriate candidate for production of recombinant vaccine against infectious bronchitis ...

  3. Glycoprotein expression by adenomatous polyps of the colon

    Science.gov (United States)

    Roney, Celeste A.; Xie, Jianwu; Xu, Biying; Jabour, Paul; Griffiths, Gary; Summers, Ronald M.

    2008-03-01

    Colon cancer is the second leading cause of cancer related deaths in the United States. Specificity in diagnostic imaging for detecting colorectal adenomas, which have a propensity towards malignancy, is desired. Adenomatous polyp specimens of the colon were obtained from the mouse model of colorectal cancer called adenomatous polyposis coli-multiple intestinal neoplasia (APC Min). Histological evaluation, by the legume protein Ulex europaeus agglutinin I (UEA-1), determined expression of the glycoprotein α-L-fucose. FITC-labelled UEA-1 confirmed overexpression of the glycoprotein by the polyps on fluorescence microscopy in 17/17 cases, of which 13/17 included paraffin-fixed mouse polyp specimens. In addition, FITC-UEA-1 ex vivo multispectral optical imaging of 4/17 colonic specimens displayed over-expression of the glycoprotein by the polyps, as compared to non-neoplastic mucosa. Here, we report the surface expression of α-L-fucosyl terminal residues by neoplastic mucosal cells of APC specimens of the mouse. Glycoprotein expression was validated by the carbohydrate binding protein UEA-1. Future applications of this method are the development of agents used to diagnose cancers by biomedical imaging modalities, including computed tomographic colonography (CTC). UEA-1 targeting to colonic adenomas may provide a new avenue for the diagnosis of colorectal carcinoma by CT imaging.

  4. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods.

    Science.gov (United States)

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  5. Glycoprotein Ibalpha signalling in platelet apoptosis and clearance

    NARCIS (Netherlands)

    van der Wal, E.

    2010-01-01

    Storage of platelets at low temperature reduces bacterial growth and might better preserve the haemostatic function of platelets than current procedures. Incubation at 0C is known to expose ?-N-acetyl-D-glucosamine-residues on glycoprotein (GP)Ibalpha inducing receptor-clustering and platelet

  6. Characterization and mapping of a nonessential pseudorabies virus glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Wathen, M.W.; Wathen, L.M.K.

    1986-04-01

    Antigenic variants of pseudorabies virus (PRV) containing mutations in a viral glycoprotein with a molecular weight of 82,000 (gIII) were isolated by selecting for resistance to a complement-dependent neutralizing monoclonal antibody (MCA82-2) directed against gIII. These mutants were completely resistant to neutralization with MCA82-2 in the presence of complement. Two mutants selected for further studies either did not express gIII or expressed an improperly processed form of the glycoproteins. The mutations were also associated with an altered plaque morphology (syncytium formation). The gIII gene was mapped by the marker rescue of a gIII/sup -/ mutant with cloned restriction enzyme fragments to the long unique region of the PRV genome between 0.376 and 0.383 map units. This corresponds to the map location of a glycoprotein described by Robbins et al. Since gIII is nonessential for viral replication in cell culture and has several other characteristics in common with the herpes simplex virus glycoprotein gC, gIII may represent the PRV equivalent to herpes simplex virus gC.

  7. Spinosad is a potent inhibitor of canine P-glycoprotein

    NARCIS (Netherlands)

    Schrickx, Johannes A|info:eu-repo/dai/nl/30483114X

    Inhibition of the drug transporter P-glycoprotein (P-gp) by the oral flea preventative spinosad has been suggested as the underlying cause of the drug-drug interaction with ivermectin. In this study, an in vitro model consisting of canine cells was validated to describe the inhibitory effect of

  8. Cereal n-glycoproteins enrichment by lectin affinity monolithic chromatography

    Czech Academy of Sciences Publication Activity Database

    Flodrová, Dana; Bobálová, Janette; Laštovičková, Markéta

    2016-01-01

    Roč. 44, č. 2 (2016), s. 286-297 ISSN 0133-3720 R&D Projects: GA ČR(CZ) GPP503/12/P395 Institutional support: RVO:68081715 Keywords : barley * wheat * glycoprotein * mass spectrometry * lectin chromatography Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.496, year: 2016

  9. Cancer Biomarker Discovery: Lectin-Based Strategies Targeting Glycoproteins

    Directory of Open Access Journals (Sweden)

    David Clark

    2012-01-01

    Full Text Available Biomarker discovery can identify molecular markers in various cancers that can be used for detection, screening, diagnosis, and monitoring of disease progression. Lectin-affinity is a technique that can be used for the enrichment of glycoproteins from a complex sample, facilitating the discovery of novel cancer biomarkers associated with a disease state.

  10. Mechanism for maturation-related reorganization of flavivirus glycoproteins.

    Science.gov (United States)

    Plevka, Pavel; Battisti, Anthony J; Sheng, Ju; Rossmann, Michael G

    2014-01-01

    Flaviviruses, such as dengue, West Nile, and yellow fever viruses, assemble as fusion-incompetent particles and subsequently undergo a large reorganization of their glycoprotein envelope resulting in formation of mature infectious virions. Here we used a combination of three-dimensional cryo-electron tomography and two-dimensional image analysis to study pleomorphic maturation intermediates of dengue virus 2. Icosahedral symmetries of immature and mature regions within one particle were mismatched relative to each other. Furthermore, the orientation of the two regions relative to each other differed among particles. Therefore, there cannot be a specific pathway determining the maturation of all particles. Instead, the region with mature structure expands when glycoproteins on its boundary acquire suitable orientation and conformation to allow them to become a stable part of the mature region. This type of maturation is possible because the envelope glycoproteins are anchored to the phospholipid bilayer that is a part of flavivirus virions and are thus restricted to movement on the two-dimensional surface of the particle. Therefore, compounds that limit movement of the glycoproteins within the virus membrane might be used as inhibitors of flavivirus maturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Rift Valley Fever Virus Glycoproteins, Key to Entry and Control

    NARCIS (Netherlands)

    de Boer, S.M.

    2013-01-01

    In this thesis we have focussed on the RVFV Gn and Gc glycoproteins, the keys for virus entry and virus control. RVFV is an emerging virus that has already spread across the African continent and to the Arabian Peninsula. Outbreaks of RVFV are characterized by abortion storms and high mortality,

  12. A recombinant Hendra virus G glycoprotein subunit vaccine protects nonhuman primates against Hendra virus challenge.

    Science.gov (United States)

    Mire, Chad E; Geisbert, Joan B; Agans, Krystle N; Feng, Yan-Ru; Fenton, Karla A; Bossart, Katharine N; Yan, Lianying; Chan, Yee-Peng; Broder, Christopher C; Geisbert, Thomas W

    2014-05-01

    Hendra virus (HeV) is a zoonotic emerging virus belonging to the family Paramyxoviridae. HeV causes severe and often fatal respiratory and/or neurologic disease in both animals and humans. Currently, there are no licensed vaccines or antiviral drugs approved for human use. A number of animal models have been developed for studying HeV infection, with the African green monkey (AGM) appearing to most faithfully reproduce the human disease. Here, we assessed the utility of a newly developed recombinant subunit vaccine based on the HeV attachment (G) glycoprotein in the AGM model. Four AGMs were vaccinated with two doses of the HeV vaccine (sGHeV) containing Alhydrogel, four AGMs received the sGHeV with Alhydrogel and CpG, and four control animals did not receive the sGHeV vaccine. Animals were challenged with a high dose of infectious HeV 21 days after the boost vaccination. None of the eight specifically vaccinated animals showed any evidence of clinical illness and survived the challenge. All four controls became severely ill with symptoms consistent with HeV infection, and three of the four animals succumbed 8 days after exposure. Success of the recombinant subunit vaccine in AGMs provides pivotal data in supporting its further preclinical development for potential human use. A Hendra virus attachment (G) glycoprotein subunit vaccine was tested in nonhuman primates to assess its ability to protect them from a lethal infection with Hendra virus. It was found that all vaccinated African green monkeys were completely protected against subsequent Hendra virus infection and disease. The success of this new subunit vaccine in nonhuman primates provides critical data in support of its further development for future human use.

  13. In vitro assessment of anti-HCV, antioxidant, cytotoxic and hypolipidemic activities of glycoprotein isolated from Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Azza Abdelmageed Matloub

    2017-11-01

    % and had scavenging efficacy against nitric oxide 67.57%–62.16% at the concentration of 100–500 µg/mL. While, SHEM exhibited cytotoxic activity against Hep G2 human cell line with IC50 of 69.49 µg/mL. Conclusions: Polysaccharide bounded protein (glycoprotein isolated from cold water extract of S. platensis might become increasingly important in drug development for treatment hepatic disease.

  14. C-terminus glycans with critical functional role in the maturation of secretory glycoproteins.

    Directory of Open Access Journals (Sweden)

    Daniela Cioaca

    Full Text Available The N-glycans of membrane glycoproteins are mainly exposed to the extracellular space. Human tyrosinase is a transmembrane glycoprotein with six or seven bulky N-glycans exposed towards the lumen of subcellular organelles. The central active site region of human tyrosinase is modeled here within less than 2.5 Å accuracy starting from Streptomyces castaneoglobisporus tyrosinase. The model accounts for the last five C-terminus glycosylation sites of which four are occupied and indicates that these cluster in two pairs--one in close vicinity to the active site and the other on the opposite side. We have analyzed and compared the roles of all tyrosinase N-glycans during tyrosinase processing with a special focus on the proximal to the active site N-glycans, s6:N337 and s7:N371, versus s3:N161 and s4:N230 which decorate the opposite side of the domain. To this end, we have constructed mutants of human tyrosinase in which its seven N-glycosylation sites were deleted. Ablation of the s6:N337 and s7:N371 sites arrests the post-translational productive folding process resulting in terminally misfolded mutants subjected to degradation through the mannosidase driven ERAD pathway. In contrast, single mutants of the other five N-glycans located either opposite to the active site or into the N-terminus Cys1 extension of tyrosinase are temperature-sensitive mutants and recover enzymatic activity at the permissive temperature of 31°C. Sites s3 and s4 display selective calreticulin binding properties. The C-terminus sites s7 and s6 are critical for the endoplasmic reticulum retention and intracellular disposal. Results herein suggest that individual N-glycan location is critical for the stability, regional folding control and secretion of human tyrosinase and explains some tyrosinase gene missense mutations associated with oculocutaneous albinism type I.

  15. Bioreactor-Based Production of Glycoproteins in Plant Cell Suspension Cultures.

    Science.gov (United States)

    Holland, Tanja; Buyel, Johannes Felix

    2018-01-01

    Recombinant glycoproteins such as monoclonal antibodies have a major impact on modern healthcare systems, e.g., as the active pharmaceutical ingredients in anticancer drugs. A specific glycan profile is often necessary to achieve certain desirable activities, such as the effector functions of an antibody, receptor binding or a sufficient serum half-life. However, many expression systems produce glycan profiles that differ substantially from the preferred form (usually the form found in humans) or produce a diverse array of glycans with a range of in vivo activities, thus necessitating laborious and costly separation and purification processes. In contrast, protein glycosylation in plant cells is much more homogeneous than other systems, with only one or two dominant forms. Additionally, these glycan profiles tend to remain stable when the process and cultivation conditions are changed, making plant cells an ideal expression system to produce recombinant glycoproteins with uniform glycan profiles in a consistent manner. This chapter describes a protocol that uses fermentations using plant cell cultures to produce glycosylated proteins using two different types of bioreactors, a classical autoclavable STR 3-L and a wave reactor.

  16. Glycoprotein Targeted Therapeutics: A New Era of Anti-Herpes Simplex Virus-1 Therapeutics

    Science.gov (United States)

    Antoine, Thessicar; Park, Paul J.; Shukla, Deepak

    2013-01-01

    Herpes simplex virus type-1 (HSV-1) is among the most common human pathogens worldwide. Its entry into host cells is an intricate process that relies heavily on the ability of the viral glycoproteins to bind host cellular proteins and to efficiently mediate fusion of the virus envelope with the cell membrane. Acquisition of HSV-1 results in a lifelong latent infection. Due to the cycles of reactivation from a latent state, much emphasis has been placed on the management of infection through the use of DNA synthesis inhibitors. However, new methods are needed to provide more effective treatment at earlier phases of the viral infection and to prevent the development of drug resistance by the virus. This review outlines the infection process and the common therapeutics currently used against the fundamental stages of HSV-1 replication and fusion. The remainder of this article will focus on a new approach for HSV-1 infection control and management, the concept of glycoprotein-receptor targeting. PMID:23440920

  17. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  18. Deglycosylated Filovirus Glycoproteins as Effective Vaccine Immunogens

    Science.gov (United States)

    2015-11-01

    and infectious recombinant viruses, such as human parainfluenza virus type 3, 62 rabies virus and vesicular stomatitis virus (VSV) (reviewed in (7...Dulbecco’s 110 Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) and 1% 111 penicillin/streptomycin. The pcDNA3.1 expression plasmids...ImmunoReagent, Inc). Plates were blocked for 1h at room temperature with PBS with 2% 198 bovine serum albumin (BSA), incubated with serial dilutions (1

  19. Control of Epstein-Barr virus infection in vitro by T helper cells specific for virion glycoproteins.

    Science.gov (United States)

    Adhikary, Dinesh; Behrends, Uta; Moosmann, Andreas; Witter, Klaus; Bornkamm, Georg W; Mautner, Josef

    2006-04-17

    Epstein-Barr virus (EBV) establishes lifelong persistent infections in humans by latently infecting B cells, with occasional cycles of reactivation, virus production, and reinfection. Protective immunity against EBV is mediated by T cells, but the role of EBV-specific T helper (Th) cells is still poorly defined. Here, we study the Th response to the EBV lytic cycle proteins BLLF1 (gp350/220), BALF4 (gp110), and BZLF1 and show that glycoprotein-specific Th cells recognize EBV-positive cells directly; surprisingly, a much higher percentage of target cells than those expressing lytic cycle proteins were recognized. Antigen is efficiently transferred to bystander B cells by receptor-mediated uptake of released virions, resulting in recognition of target cells incubated with virus entry before latency is established. Glycoprotein-specific Th cells are cytolytic and inhibit proliferation of lymphoblastoid cell lines (LCL) and the outgrowth of LCL after infection of primary B cells with EBV. These results establish a novel role for glycoprotein-specific Th cells in the control of EBV infection and identify virion proteins as important immune targets. These findings have implications for the treatment of diseases associated with EBV and potentially other coated viruses infecting MHC class II-positive cells.

  20. The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization.

    Science.gov (United States)

    Schwarzer, Roland; Levental, Ilya; Gramatica, Andrea; Scolari, Silvia; Buschmann, Volker; Veit, Michael; Herrmann, Andreas

    2014-10-01

    Enveloped viruses often use membrane lipid rafts to assemble and bud, augment infection and spread efficiently. However, the molecular bases and functional consequences of the partitioning of viral glycoproteins into microdomains remain intriguing questions in virus biology. Here, we measured Foerster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) to study the role of distinct membrane proximal regions of the human immunodeficiency virus glycoprotein gp41 for lipid raft partitioning in living Chinese hamster ovary cells (CHO-K1). Gp41 was labelled with a fluorescent protein at the exoplasmic face of the membrane, preventing any interference of the fluorophore with the proposed role of the transmembrane and cytoplasmic domains in lateral organization of gp41. Raft localization was deduced from interaction with an established raft marker, a fluorescently tagged glycophosphatidylinositol anchor and the cholesterol recognition amino acid consensus (CRAC) was identified as the crucial lateral sorting determinant in CHO-K1 cells. Interestingly, the raft association of gp41 indicates a substantial cell-to-cell heterogeneity of the plasma membrane microdomains. In complementary fluorescence polarization microscopy, a distinct CRAC requirement was found for the oligomerization of the gp41 variants. Our data provide further insight into the molecular basis and biological implications of the cholesterol dependent lateral sorting of viral glycoproteins for virus assembly at cellular membranes. © 2014 John Wiley & Sons Ltd.

  1. Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant

    Energy Technology Data Exchange (ETDEWEB)

    Whitt, M.A.; Chong, L.; Rose, J.K. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1989-09-01

    The authors have used transient expression of the wild-type vesicular stomatitis virus (VSV) glycoprotein (G protein) from cloned cDNA to rescue a temperature-sensitive G protein mutant of VSV in cells at the nonpermissive temperature. Using cDNAs encoding G proteins with deletions in the normal 29-amino-acid cytoplasmic domain, they determined that the presence of either the membrane-proximal 9 amino acids or the membrane-distal 12 amino acids was sufficient for rescue of the temperature-sensitive mutant. G proteins with cytoplasmic domains derived from other cellular or viral G proteins did not rescue the mutant, nor did G proteins with one or three amino acids of the normal cytoplasmic domain. Rescue correlated directly with the ability of the G proteins to be incorporated into virus particles. This was shown by analysis of radiolabeled particles separated on sucrose gradients as well as by electron microscopy of rescued virus after immunogold labeling. Quantitation of surface expression showed that all of the mutated G proteins were expressed less efficiently on the cell surface than was wild-type G protein. However, they were able to correct for differences in rescue efficiency resulting from differences in the level of surface expression by reducing wild-type G protein expression to levels equivalent to those observed for the mutated G proteins. The results provide evidence that at least a portion of the cytoplasmic domain is required for efficient assembly of the VSV G protein into virions during virus budding.

  2. Fucosylated Glycoproteins as Markers of Liver Disease

    Directory of Open Access Journals (Sweden)

    Anand Mehta

    2008-01-01

    Full Text Available Changes in N-linked glycosylation are known to occur during the development of various diseases. For example, increased branching of oligosaccharides has been associated with cancer metastasis and has been correlated to tumor progression in human cancers of the breast, colon and melanomas. Increases in core fucosylation have also been associated with the development of hepatocellular carcinoma (HCC. Recently, changes in both the total serum glycome and the glycosylation of specific IgG molecules have been observed in people with liver fibrosis and cirrhosis. The mechanisms by which changes in glycosylation are observed and their use as biomarkers of disease will be discussed.

  3. Ice growth in supercooled solutions of antifreeze glycoprotein.

    Science.gov (United States)

    Harrison, K; Hallett, J; Burcham, T S; Feeney, R E; Kerr, W L; Yeh, Y

    Inhibition of ice growth in supercooled solution by certain proteins is vital to the survival of many living organisms. Some fish, native to both subzero northern and southern waters, have special proteins or glycoproteins in their blood serum that inhibit ice formation. Whereas these proteins have only a very small effect on the melting temperature of ice, the temperature of these fish can fall to nearly 1 K below the melting point before ice crystals grow. This phenomenon is called freezing hysteresis, in contrast to the normal colligative effect of solutes that depresses the equilibrium temperature, around which small changes lead to crystal growth or melting depending on sign. Some insects also exhibit a serum freezing hysteresis. We report the effects of different degrees of supercooling on the habit and rates of growth of ice crystals from solutions of these antifreeze glycoproteins (AFGPs). We find that the crystallization rate is up to five times greater than that in pure water.

  4. TROPHOBLASTIC β1 – GLYCOPROTEIN SYNTHESIS IN SEROPOSITIVE PREGNANT WOMEN

    Directory of Open Access Journals (Sweden)

    R. N. Bogdanovich

    2005-01-01

    Full Text Available Abstract. The level of trophoblastic β1 – glycoprotein (SP–1 was determined in the blood sera of 200 healthy pregnant women and 184 women with threatened abortions in term till 20 weeks of pregnancy. In group of women experiencing recurrent abortions in 38 % cases antibodies to chorionic gonadotropin, in 39,5 % cases antibodies to phospholipids, in 25,5 % – antibodies to tireoglobulin were revealed in significant amounts. In 20,65 % lupus anticoagulant was found. The majority of women in this group had changes in homeostasis. The presence of autoantibodies during pregnancy is the unfavourable factor in the development of placental insufficiency. This is proved by the decreased secretion of trophoblastic β1 – glycoprotein – a marker of the fetal part of placenta. (Med. Immunol., 2005, vol.7, № 1, pp. 85588

  5. Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions

    Science.gov (United States)

    Ujike, Makoto; Taguchi, Fumihiro

    2015-01-01

    The envelopes of coronaviruses (CoVs) contain primarily three proteins; the two major glycoproteins spike (S) and membrane (M), and envelope (E), a non-glycosylated protein. Unlike other enveloped viruses, CoVs bud and assemble at the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). For efficient virion assembly, these proteins must be targeted to the budding site and to interact with each other or the ribonucleoprotein. Thus, the efficient incorporation of viral envelope proteins into CoV virions depends on protein trafficking and protein–protein interactions near the ERGIC. The goal of this review is to summarize recent findings on the mechanism of incorporation of the M and S glycoproteins into the CoV virion, focusing on protein trafficking and protein–protein interactions. PMID:25855243

  6. Frostbite protection in mice expressing an antifreeze glycoprotein.

    Directory of Open Access Journals (Sweden)

    Martin Heisig

    Full Text Available Ectotherms in northern latitudes are seasonally exposed to cold temperatures. To improve survival under cold stress, they use diverse mechanisms to increase temperature resistance and prevent tissue damage. The accumulation of anti-freeze proteins that improve cold hardiness occurs in diverse species including plants, arthropods, fish, and amphibians. We previously identified an Ixodes scapularis anti-freeze glycoprotein, named IAFGP, and demonstrated its cold protective function in the natural tick host and in a transgenic Drosophila model. Here we show, in a transgenic mouse model expressing an anti-freeze glycoprotein, that IAFGP protects mammalian cells and mice from cold shock and frostbite respectively. Transgenic skin samples showed reduced cell death upon cold storage ex vivo and transgenic mice demonstrated increased resistance to frostbite injury in vivo. IAFGP actively protects mammalian tissue from freezing, suggesting its application for the prevention of frostbite, and other diseases associated with cold exposure.

  7. Antigiardial activity of glycoproteins and glycopeptides from Ziziphus honey.

    Science.gov (United States)

    Mohammed, Seif Eldin A; Kabashi, Ahmed S; Koko, Waleed S; Azim, M Kamran

    2015-01-01

    Natural honey contains an array of glycoproteins, proteoglycans and glycopeptides. Size-exclusion chromatography fractionated Ziziphus honey proteins into five peaks with molecular masses in the range from 10 to >200 kDa. The fractionated proteins exhibited in vitro activities against Giardia lamblia with IC50 values ≤ 25 μg/mL. Results indicated that honey proteins were more active as antiprotozoal agents than metronidazole. This study indicated the potential of honey proteins and peptides as novel antigiardial agents.

  8. Glycoprotein Analysis Using Protein Microarrays and Mass Spectrometry

    Science.gov (United States)

    Patwa, Tasneem; Li, Chen; Simeone, Diane M.; Lubman, David M.

    2009-01-01

    Protein glycosylation plays an important role in a multitude of biological processes such as cell-cell recognition, growth, differentiation, and cell death. It has been shown that specific glycosylation changes are key in disease progression, and can have diagnostic value for a variety of disease types such as cancer and inflammation. The complexity of carbohydrate structures and their derivatives makes their study a real challenge. Improving the isolation, separation, and characterization of carbohydrates and their glycoproteins is a subject of increasing scientific interest. With development of new stationary phases and molecules that have affinity properties for glycoproteins, the isolation and separation of these compounds have advanced significantly. In addition to detection with mass spectrometry, the microarray platform has become an essential tool to characterize glycan structure and to study glycosylation-related biological interactions, by using probes as a means to interrogate the spotted or captured glycosylated molecules on the arrays. Furthermore, the high-throughput and reproducible nature of microarray platforms have been highlighted by its extensive applications in the field of biomarker validation, where a large number of samples must be analyzed multiple times. This review covers a brief survey of the other experimental methodologies that are currently being developed and used to study glycosylation, and emphasizes methodologies that involve the use of microarray platforms. This review describes recent advances in several options of microarray platforms used in glycoprotein analysis, including glycoprotein arrays, glycan arrays, lectin arrays, and antibody/lectin arrays. The translational use of these arrays in applications related to characterization of cells and biomarker discovery is also included. PMID:20077480

  9. Alpha-2-HS-glycoprotein phenotype frequencies in Cook Islanders.

    Science.gov (United States)

    Abe, S; Kurisaki, E; Mizusawa, I; Hiraiwa, K

    1991-01-01

    The polymorphism of the alpha 2-HS-glycoprotein (A2HS) was analysed in Rarotonga and Mangaia, the Cook Islands. The A2HS*2 frequency was found to be the highest value among all populations studied up to now. There was a significant difference in A2HS*2 gene frequencies between the two populations, Rarotonga (0.62) and Mangaia (0.76).

  10. Frostbite Protection in Mice Expressing an Antifreeze Glycoprotein

    OpenAIRE

    Martin Heisig; Sarah Mattessich; Alison Rembisz; Ali Acar; Martin Shapiro; Booth, Carmen J.; Girish Neelakanta; Erol Fikrig

    2015-01-01

    Ectotherms in northern latitudes are seasonally exposed to cold temperatures. To improve survival under cold stress, they use diverse mechanisms to increase temperature resistance and prevent tissue damage. The accumulation of anti-freeze proteins that improve cold hardiness occurs in diverse species including plants, arthropods, fish, and amphibians. We previously identified an Ixodes scapularis anti-freeze glycoprotein, named IAFGP, and demonstrated its cold protective function in the natur...

  11. A double responsive smart upconversion fluorescence sensing material for glycoprotein.

    Science.gov (United States)

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo

    2016-11-15

    A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Glycoprotein fucosylation is increased in seminal plasma of subfertile men

    Directory of Open Access Journals (Sweden)

    Beata Olejnik

    2015-04-01

    Full Text Available Fucose, the monosaccharide frequent in N- and O-glycans, is a part of Lewis-type antigens that are known to mediate direct sperm binding to the zona pellucida. Such interaction was found to be inhibited in vitroby fucose-containing oligo- and polysaccharides, as well as neoglycoproteins. The objective of this study was to screen seminal plasma proteins of infertile/subfertile men for the content and density of fucosylated glycoepitopes, and compare them to samples of fertile normozoospermic subjects. Seminal proteins were separated in polyacrylamide gel electrophoresis and blotted onto nitrocellulose membrane and probed with fucose-specific Aleuria aurantia lectin (AAL. Twelve electrophoretic bands were selected for quantitative densitometric analysis. It was found that the content, and especially the density of fucosylated glycans, were higher in glycoproteins present in seminal plasma of subfertile men. No profound differences in fucosylation density were found among the groups of normozoospermic, oligozoospermic, asthenozoospermic, and oligoasthenozoospermic subfertile men. According to the antibody probing, AAL-reactive bands can be attributed to male reproductive tract glycoproteins, including prostate-specific antigen, prostatic acid phosphatase, glycodelin and chorionic gonadotropin. Fibronectin, α1 -acid glycoprotein, α1 -antitrypsin, immunoglobulin G and antithrombin III may also contribute to this high fucosylation. It is suggested that the abundant fucosylated glycans in the sperm environment could interfere with the sperm surface and disturb the normal course of the fertilization cascade.

  13. Extracellular Glycoproteins in Embryogenic Culture of Pumpkin (Cucurbita pepo L.

    Directory of Open Access Journals (Sweden)

    Hana Čipčić Paljetak

    2011-01-01

    Full Text Available The extracellular proteins in three distinctly induced embryogenic lines of pumpkin (Cucurbita pepo L. cultivated in four MS media modified regarding the nitrogen composition or auxin presence/absence have been analyzed. Extracellular glycoproteins containing α-D-mannose were specifically detected by the lectine concavalin A. During the cultivation of embryogenic tissue in the medium supplemented with reduced nitrogen, the embryos were mostly arrested at preglobular and globular developmental stages, which coincide with the absence of protein secretion. Secreted glycoproteins of 76, 68, 37 and 34 kDa were detected only if any of the three lines were cultivated in the medium that stimulates embryo development, irrespectively of the addition of 2,4-dichlorophenoxyacetic acid or tunicamycin. The glycoprotein of 64 kDa was detected in all lines cultivated in hormone-free MS medium with conventional nitrogen sources and it appears to be associated with embryo maturation. Tunicamycin treatment did not influence embryogenesis, although it specifically affected glycosylation of proteins in the investigated lines. Our results show that besides auxin, the source of nitrate is of great importance for proper protein glycosylation, excretion and developmental transition of pumpkin somatic embryos.

  14. Alpha-2-HS-glycoprotein (AHSG) polymorphism in semen and saliva.

    Science.gov (United States)

    Yasuda, T; Takeshita, H; Tsubota, E; Sawazaki, K; Iida, R; Nadano, D; Kishi, K

    1996-04-01

    Polymorphism of alpha-2-HS-glycoprotein (AHSG) was demonstrated in human semen and whole saliva samples by thin-layer polyacrylamide gel isoelectric focusing (IEF) and immunoblotting. Although the seminal AHSG IEF patterns were found to differ from those of plasma AHSG from the corresponding donors, incorporation of Nonidet P-40 into the IEF gel (pH 4.2-4.9) enabled us to phenotype seminal AHSG correctly. Salivary AHSG, however, exhibited IEF patterns similar to those of the corresponding plasma AHSG. By treating the samples with neuraminidase, it was possible to determine the AHSG types using 2-5 microL semen and 50-100 microL whole saliva samples. The AHSG types determined separately in 47 sets of semen, whole saliva, urine and plasma samples from the same donors correlated perfectly with each other. AHSG typing could, therefore, provide an additional discriminant characteristic in the forensic examination of semen and saliva samples.

  15. Flow cytometry protocol to evaluate ionizing radiation effects on P-glycoprotein activity

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Neyliane Goncalves dos; Amaral, Ademir; Cavalcanti, Mariana Brayner [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear]. E-mail; neylisantos@yahoo.com.br; Neves, Maria Amelia Batista; Machado, Cintia Gonsalves de Faria [Fundacao de Hematologia e Hemoterapia de Pernambuco, Recife, PE (Brazil). Unidade de Laboratorios Especializados. Lab. de Imunofenotipagem

    2008-12-15

    The aim of this work was to establish a protocol to evaluate ionizing radiation effects on P-glycoprotein (P-gp) activity. For this, human peripheral blood samples were irradiated in vitro with different doses and P-gp activity was analyzed for CD4 and CD8 T lymphocytes through rhodamine123-efflux assay by flow cytometry. By simultaneous employment of percentage and mean fluorescence index parameters, subject-by-subject analysis pointed out changes in P-gp activity for some individuals and irradiated samples. Based on this work, the proposed protocol was considered adequate for evaluating P-gp activity on cells after radioactive stress. Besides, this research suggests that P-gp activity could be an important factor to define patient-specific protocols in combined chemo- and radiotherapy, particularly when radiation exposure precedes chemical treatment. (author)

  16. Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Lawrence J Druhan

    Full Text Available Leucine-rich α2 glycoprotein (LRG1, a serum protein produced by hepatocytes, has been implicated in angiogenesis and tumor promotion. Our laboratory previously reported the expression of LRG1 in murine myeloid cell lines undergoing neutrophilic granulocyte differentiation. However, the presence of LRG1 in primary human neutrophils and a role for LRG1 in regulation of hematopoiesis have not been previously described. Here we show that LRG1 is packaged into the granule compartment of human neutrophils and secreted upon neutrophil activation to modulate the microenvironment. Using immunofluorescence microscopy and direct biochemical measurements, we demonstrate that LRG1 is present in the peroxidase-negative granules of human neutrophils. Exocytosis assays indicate that LRG1 is differentially glycosylated in neutrophils, and co-released with the secondary granule protein lactoferrin. Like LRG1 purified from human serum, LRG1 secreted from activated neutrophils also binds cytochrome c. We also show that LRG1 antagonizes the inhibitory effects of TGFβ1 on colony growth of human CD34+ cells and myeloid progenitors. Collectively, these data invoke an additional role for neutrophils in innate immunity that has not previously been reported, and suggest a novel mechanism whereby neutrophils may modulate the microenvironment via extracellular release of LRG1.

  17. The Ebola Virus Glycoprotein Contributes to but Is Not Sufficient for Virulence In Vivo

    Science.gov (United States)

    Groseth, Allison; Marzi, Andrea; Hoenen, Thomas; Herwig, Astrid; Gardner, Don; Becker, Stephan; Ebihara, Hideki; Feldmann, Heinz

    2012-01-01

    Among the Ebola viruses most species cause severe hemorrhagic fever in humans; however, Reston ebolavirus (REBOV) has not been associated with human disease despite numerous documented infections. While the molecular basis for this difference remains unclear, in vitro evidence has suggested a role for the glycoprotein (GP) as a major filovirus pathogenicity factor, but direct evidence for such a role in the context of virus infection has been notably lacking. In order to assess the role of GP in EBOV virulence, we have developed a novel reverse genetics system for REBOV, which we report here. Together with a previously published full-length clone for Zaire ebolavirus (ZEBOV), this provides a unique possibility to directly investigate the role of an entire filovirus protein in pathogenesis. To this end we have generated recombinant ZEBOV (rZEBOV) and REBOV (rREBOV), as well as chimeric viruses in which the glycoproteins from these two virus species have been exchanged (rZEBOV-RGP and rREBOV-ZGP). All of these viruses could be rescued and the chimeras replicated with kinetics similar to their parent virus in tissue culture, indicating that the exchange of GP in these chimeric viruses is well tolerated. However, in a mouse model of infection rZEBOV-RGP demonstrated markedly decreased lethality and prolonged time to death when compared to rZEBOV, confirming that GP does indeed contribute to the full expression of virulence by ZEBOV. In contrast, rREBOV-ZGP did not show any signs of virulence, and was in fact slightly attenuated compared to rREBOV, demonstrating that GP alone is not sufficient to confer a lethal phenotype or exacerbate disease in this model. Thus, while these findings provide direct evidence that GP contributes to filovirus virulence in vivo, they also clearly indicate that other factors are needed for the acquisition of full virulence. PMID:22876185

  18. Characterization of a surface glycoprotein from Echinococcus multilocularis and its mucosal vaccine potential in dogs.

    Directory of Open Access Journals (Sweden)

    Hirokazu Kouguchi

    Full Text Available Alveolar echinococcosis is a refractory disease caused by the metacestode stage of Echinococcus multilocularis. The life cycle of this parasite is maintained primarily between foxes and many species of rodents; thus, dogs are thought to be a minor definitive host except in some endemic areas. However, dogs are highly susceptible to E. multilocularis infection. Because of the close contact between dogs and humans, infection of dogs with this parasite can be an important risk to human health. Therefore, new measures and tools to control and prevent parasite transmission required. Using 2-dimensional electrophoresis followed by western blot (2D-WB analysis, a large glycoprotein component of protoscoleces was identified based on reactivity to intestinal IgA in dogs experimentally infected with E. multilocularis. This component, designated SRf1, was purified by gel filtration using a Superose 6 column. Glycosylation analysis and immunostaining revealed that SRf1 could be distinguished from Em2, a major mucin-type antigen of E. multilocularis. Dogs (n=6 were immunized intranasally with 500 µg of SRf1 with cholera toxin subunit B by using a spray syringe, and a booster was given orally using an enteric capsule containing 15 mg of the same antigen. As a result, dogs immunized with this antigen showed an 87.6% reduction in worm numbers compared to control dogs (n=5 who received only PBS administration. A weak serum antibody response was observed in SRf1-immunized dogs, but there was no correlation between antibody response and worm number. We demonstrated for the first time that mucosal immunization using SRf1, a glycoprotein component newly isolated from E. multilocularis protoscoleces, induced a protection response to E. multilocularis infection in dogs. Thus, our data indicated that mucosal immunization using surface antigens will be an important tool to facilitate the development of practical vaccines for definitive hosts.

  19. Identification of N-glycans from Ebola virus glycoproteins by matrix-assisted laser desorption/ionisation time-of-flight and negative ion electrospray tandem mass spectrometry

    Science.gov (United States)

    Ritchie, Gayle; Harvey, David J.; Stroeher, Ute; Feldmann, Friederike; Feldmann, Heinz; Wahl-Jensen, Victoria; Royle, Louise; Dwek, Raymond A.; Rudd, Pauline M.

    2012-01-01

    The larger fragment of the transmembrane glycoprotein (GP1) and the soluble glycoprotein (sGP) of Ebola virus were expressed in human embryonic kidney cells and the secreted products were purified from the supernatant for carbohydrate analysis. The N-glycans were released with PNGase F from within sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS-PAGE) gels. Identification of the glycans was made with normal-phase high-performance liquid chromatography (HPLC), matrix-assisted laser desorption/ionisation mass spectrometry, negative ion electrospray ionisation fragmentation mass spectrometry and exoglycosidase digestion. Most glycans were complex bi-, tri-and tetra-antennary compounds with reduced amounts of galactose. No bisected compounds were detected. Triantennary glycans were branched on the 6-antenna; fucose was attached to the core GlcNAc residue. Sialylated glycans were present on sGP but were largely absent from GP1, the larger fragment of the transmembrane glycoprotein. Consistent with this was the generally higher level of processing of carbohydrates found on sGP as evidenced by a higher percentage of galactose and lower levels of high-mannose glycans than were found on GP1. These results confirm and expand previous findings on partial characterisation of the Ebola virus transmembrane glycoprotein. They represent the first detailed data on carbohydrate structures of the Ebola virus sGP. PMID:20131323

  20. Glycoproteins of mouse vaginal epithelium: differential expression related to estrous cyclicity

    DEFF Research Database (Denmark)

    Horvat, B; Multhaupt, H A; Damjanov, I

    1993-01-01

    in proestrus, coincident with the transformation of two superficial layers of vaginal squamous epithelium into mucinous cuboidal cells. Electron microscopic lectin histochemistry revealed the glycoproteins in the mucinous granules of surface cuboidal cells and in the lumen of the vagina. Our results illustrate...... the complexity of glycoconjugate synthesis in mouse vagina and reveal the distinct cycle-specific patterns of individual glycoprotein expression. These cyclic glycoproteins could serve as vaginal biochemical markers for the specific phases of the estrous cycle....

  1. Isolation and characterization of calcium binding glycoproteins of cardiac sarcolemmal vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, M.; Fliegel, L.; Wlasichuk, K. (Univ. of Alberta, Edmonton (Canada))

    1990-04-05

    Two major Ca2(+)-binding glycoproteins Mr 120,000 and 100,000 were isolated from 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonic acid -solubilized bovine heart sarcolemma membrane. Peroxidase-conjugated concanavalin A and wheat germ agglutinin lectins bind strongly to the isolated 120- and 100-kDa glycoproteins. Treatment with endoglycosidase F resulted in conversion of the 120-kDa glycoprotein to a form migrating at about 97 kDa. Treatment of the 100-kDa band with endoglycosidase F produced form of about 80 kDa. Endoglycosidase H digestion removes only 5% of the mass of both glycoproteins. the carbohydrate structure of both glycoproteins, is therefore, predicted to be at least 75% complex structure and 25% high mannose or hybrid structure. The 120- and 100-kDa glycoproteins are the major Ca2(+)-binding proteins in the sarcolemma membranes. Intact and endoglycosidase-treated glycoproteins bind 45Ca2+ as analyzed by a 45Ca2+ overlay technique. Using polyclonal antibodies, the 120- and 100-kDa glycoproteins were identified in muscle plasma membranes (ventricles, atria, and uterus smooth muscle). They were, however, not present in non-muscle tissues such as pancreas, liver, and kidney. The 120- and 100-kDa glycoproteins appear to be homologous molecules as judged by their similar V8 protease peptide maps, cross-reactivity with polyclonal antibody, and other physicochemical properties.

  2. Analysis of lectin-bound glycoproteins in snake venom from the Elapidae and Viperidae families.

    Science.gov (United States)

    Nawarak, Jiraporn; Phutrakul, Suree; Chen, Shui-Tein

    2004-01-01

    This paper describes an efficient method of studying the glycoproteins found in snake venom. The glycosylation profiles of the Elapidae and Viperidae snake families were analyzed using FITC-labeled lectin glycoconjugates. The Con A-agarose affinity enrichment technique was used to fractionate glycoproteins from the N. naja kaouthia venom. The results revealed a large number of Con A binding glycoproteins, most of which have moderate to high molecular weights. To identify the proteins, the isolated glycoprotein fractions were subjected to two-dimensional electrophoresis and MALDI-TOF MS. Protein sequences were compared with published protein databases to determine for their biological functions.

  3. The use of an E1-deleted, replication-defective adenovirus recombinant expressing the rabies virus glycoprotein for early vaccination of mice against rabies virus.

    OpenAIRE

    Wang, Y.; Xiang, Z.; Pasquini, S; Ertl, H C

    1997-01-01

    An E1-deleted, replication-defective adenovirus recombinant of the human strain 5 expressing the rabies virus glycoprotein, termed Adrab.gp, was tested in young mice. Mice immunized at birth with the Adrab.gp construct developed antibodies to rabies virus and cytokine-secreting lymphocytes and were protected against subsequent challenge. Maternal immunity to rabies virus strongly interferes with vaccination of the offspring with a traditional inactivated rabies virus vaccine. The immune respo...

  4. Effect of P-glycoprotein on flavopiridol sensitivity

    OpenAIRE

    Boerner, S. A.; Tourne, M E; Kaufmann, S H; Bible, K C

    2001-01-01

    Flavopiridol is the first potent inhibitor of cyclin-dependent kinases (CDKs) to enter clinical trials. Little is known about mechanisms of resistance to this agent. In order to determine whether P-glycoprotein (Pgp) might play a role in flavopiridol resistance, we examined flavopiridol sensitivity in a pair of Chinese hamster ovary cell lines differing with respect to level of Pgp expression. The IC 50 s of flavopiridol in parental AuxB1 (lower Pgp) and colchicine-selected CHRC5 (higher Pgp)...

  5. (Hydroxyproline-rich glycoproteins of the plant cell wall)

    Energy Technology Data Exchange (ETDEWEB)

    Varner, J.E.

    1990-01-01

    We are studying the chemistry and architecture of plant cells walls, the extracellular matrices that taken together shape the plant and provide mechanical support for the plant. Cell walls are dynamic structures that regulate, or are the site of, many physiological processes, in addition to being the cells' first line of defense against invading pathogens. In the past year we have examined the role of the cell wall enzyme ascorbic acid oxidase as related to the structure of the wall and its possible interactions with hydroxyproline-rich glycoproteins of the wall.

  6. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    Directory of Open Access Journals (Sweden)

    Ruben R Bender

    2016-06-01

    Full Text Available Receptor-targeted lentiviral vectors (LVs can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance. Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4 was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.

  7. Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai; Rajashankar, Kanagalaghatta R.; Chan, Yee-Peng; Himanen, Juha P.; Broder, Christopher C.; Nikolov, Dimitar B. (USUHS); (Cornell); (MSKCC)

    2008-07-28

    Nipah virus (NiV) and Hendra virus are the type species of the highly pathogenic paramyxovirus genus Henipavirus, which can cause severe respiratory disease and fatal encephalitis infections in humans, with case fatality rates approaching 75%. NiV contains two envelope glycoproteins, the receptor-binding G glycoprotein (NiV-G) that facilitates attachment to host cells and the fusion (F) glycoprotein that mediates membrane merger. The henipavirus G glycoproteins lack both hemagglutinating and neuraminidase activities and, instead, engage the highly conserved ephrin-B2 and ephrin-B3 cell surface proteins as their entry receptors. Here, we report the crystal structures of the NiV-G both in its receptor-unbound state and in complex with ephrin-B3, providing, to our knowledge, the first view of a paramyxovirus attachment complex in which a cellular protein is used as the virus receptor. Complex formation generates an extensive protein-protein interface around a protruding ephrin loop, which is inserted in the central cavity of the NiV-G {beta}-propeller. Analysis of the structural data reveals the molecular basis for the highly specific interactions of the henipavirus G glycoproteins with only two members (ephrin-B2 and ephrin-B3) of the very large ephrin family and suggests how they mediate in a unique fashion both cell attachment and the initiation of membrane fusion during the virus infection processes. The structures further suggest that the NiV-G/ephrin interactions can be effectively targeted to disrupt viral entry and provide the foundation for structure-based antiviral drug design.

  8. Identification and characterization of DC-SIGN-binding glycoproteins in allergenic foods.

    Science.gov (United States)

    Kamalakannan, M; Chang, L M; Grishina, G; Sampson, H A; Masilamani, M

    2016-08-01

    DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin) is a C-type lectin receptor expressed on macrophages and dendritic cells. DC-SIGN has high affinity for fucosylated glycans in several plant glycoproteins and pathogens. DC-SIGN is thought to be crucial for the development of allergic sensitization. However, the precise role of DC-SIGN in food allergy pathogenesis is not yet understood. We sought to characterize DC-SIGN-binding glycoproteins in a panel of allergenic and non-allergenic foods. Fluorescent-labeled peanut and soy extracts were used to test protein binding to human monocyte-derived dendritic cells (DCs) by flow cytometry. DC-SIGN-blocking assays were performed by incubating DCs with food extracts followed by staining with anti-DC-SIGN antibody. Using a DC-SIGN-Fc chimera, food extracts were tested for binding by ELISA and autoradiography. IgE immunoblotting was performed with pooled sera from food-allergic subjects. DC activation and maturation were assessed by flow cytometry. We demonstrate that peanut agglutinin, a minor peanut allergen, is a novel ligand for DC-SIGN. Peanut agglutinin activates DCs to induce the expression of costimulatory molecules in vitro. We present a comprehensive report on the characterization of DC-SIGN-binding proteins in common allergenic foods such as peanut, soy, tree nuts, egg, and milk. Foods that rarely induce allergy, such as pine nuts, chickpea, and corn, showed no binding to DC-SIGN. Several DC-SIGN-binding proteins show reactivity in serum IgE immunoblots. We have also identified novel non-IgE-binding proteins that interact with DC-SIGN; these proteins may be important for regulating immune responses to these foods. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Secreted glycoprotein myocilin is a component of the myelin sheath in peripheral nerves.

    Science.gov (United States)

    Ohlmann, Andreas; Goldwich, Andreas; Flügel-Koch, Cassandra; Fuchs, Anne V; Schwager, Konrad; Tamm, Ernst R

    2003-08-01

    The structure of the myelin sheath in peripheral nerves requires the expression of a specific set of proteins. In the present study, we report that myocilin, a member of the olfactomedin protein family, is a component of the myelin sheath in peripheral nerves. Myocilin is a secreted glycoprotein that forms multimers and contains a leucine zipper and an olfactomedin domain. Mutations in myocilin are responsible for some forms of glaucoma, a neurodegenerative disease that is characterized by a continuous loss of optic nerve axons. Myocilin mRNA was detected by Northern blotting in RNA from the rat sciatic and ophthalmic nerves. By one- and two-dimensional gel electrophoresis of proteins from the rat and human sciatic nerves, myocilin was found to migrate at an isoelectric point (pI) of 5.2-5.3 and a molecular weight of 55-57 kDa. Immunohistochemistry showed immunoreactivity for myocilin in paranodal terminal loops of the nodes of Ranvier and outer mesaxons and basal/abaxonal regions of the myelin sheath. Double-labeling experiments with antibodies against myelin basic protein showed no overlapping, while overlapping immunoreactivity was observed with antibodies against myelin-associated glycoprotein. The expression of myocilin in the sciatic nerve became detectable at postnatal day (P) 15 and reached adult levels at P20. No or minor expression of myocilin mRNA was found in brain, spinal cord, and optic nerve. mRNA of myocilin was detected in schwannoma cells in situ, but at considerably lower levels than in myelinated nerves. Myocilin might significantly contribute to the structure of the myelin sheath in peripheral nerves. Copyright 2003 Wiley-Liss, Inc.

  10. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  11. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion.

    Science.gov (United States)

    Suenaga, Tadahiro; Matsumoto, Maki; Arisawa, Fuminori; Kohyama, Masako; Hirayasu, Kouyuki; Mori, Yasuko; Arase, Hisashi

    2015-08-07

    Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Inhibitory effects of neochamaejasmin B on P-glycoprotein in MDCK-hMDR1 cells and molecular docking of NCB binding in P-glycoprotein

    National Research Council Canada - National Science Library

    Pan, Lanying; Hu, Haihong; Wang, Xiangjun; Yu, Lushan; Jiang, Huidi; Chen, Jianzhong; Lou, Yan; Zeng, Su

    2015-01-01

    .... Studies were carried out to characterize the inhibition of neochamaejasmin B (NCB) on P-glycoprotein (P-gp, ABCB1, MDR1). Rhodamine-123 (R-123) transport and accumulation studies were performed in MDCK-hMDR1 cells...

  13. Measles virus glycoprotein-based lentiviral targeting vectors that avoid neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Sabrina Kneissl

    Full Text Available Lentiviral vectors (LVs are potent gene transfer vehicles frequently applied in research and recently also in clinical trials. Retargeting LV entry to cell types of interest is a key issue to improve gene transfer safety and efficacy. Recently, we have developed a targeting method for LVs by incorporating engineered measles virus (MV glycoproteins, the hemagglutinin (H, responsible for receptor recognition, and the fusion protein into their envelope. The H protein displays a single-chain antibody (scFv specific for the target receptor and is ablated for recognition of the MV receptors CD46 and SLAM by point mutations in its ectodomain. A potential hindrance to systemic administration in humans is pre-existing MV-specific immunity due to vaccination or natural infection. We compared transduction of targeting vectors and non-targeting vectors pseudotyped with MV glycoproteins unmodified in their ectodomains (MV-LV in presence of α-MV antibody-positive human plasma. At plasma dilution 1:160 MV-LV was almost completely neutralized, whereas targeting vectors showed relative transduction efficiencies from 60% to 90%. Furthermore, at plasma dilution 1:80 an at least 4-times higher multiplicity of infection (MOI of MV-LV had to be applied to obtain similar transduction efficiencies as with targeting vectors. Also when the vectors were normalized to their p24 values, targeting vectors showed partial protection against α-MV antibodies in human plasma. Furthermore, the monoclonal neutralizing antibody K71 with a putative epitope close to the receptor binding sites of H, did not neutralize the targeting vectors, but did neutralize MV-LV. The observed escape from neutralization may be due to the point mutations in the H ectodomain that might have destroyed antibody binding sites. Furthermore, scFv mediated cell entry via the target receptor may proceed in presence of α-MV antibodies interfering with entry via the natural MV receptors. These results are

  14. O-linked glycosylation of the mucin domain of the herpes simplex virus type 1-specific glycoprotein gC-1 is temporally regulated in a seed-and-spread manner

    DEFF Research Database (Denmark)

    Nordén, Rickard; Halim, Adnan; Nyström, Kristina

    2015-01-01

    The herpes simplex virus type 1 (HSV-1) glycoprotein gC-1, participating in viral receptor interactions and immunity interference, harbors a mucin-like domain with multiple clustered O-linked glycans. Using HSV-1-infected diploid human fibroblasts, an authentic target for HSV-1 infection, and a p...

  15. Strategies in the crystallization of glycoproteins and protein complexes

    Science.gov (United States)

    Stura, Enrico A.; Nemerow, Glen R.; Wilson, Ian A.

    1992-08-01

    Modern biochemical and molecular biological techniques have provided new opportunities to investigate the structure of more complex biomolecules and have opened new paths for the crystallization of complexes. Desialation, deglycosylation and modification of glycoproteins are techniques being investigated as a means of making glycosylated more amenable for crystallization. A simple solubility screen based on a limited set of precipitants has been extensively used in the comparison of various protein preparations and in the crystallization of macromolecular complexes. Antibodies, or their Fabs or Fab' fragments, can also be utilized in the crystallization of glycoproteins or other proteins which have proved difficult to crystallize by themselves. Fab complexes can provide different surfaces for lattices to form and may increase the likelihood of crystallizing a given protein. This method can be extended by the addition of an epitope tag, such as a short peptide sequence, to a protein by genetic engineering methods. The same panel of anti-peptide antibodies can then be utilized in both the purification and crystallization of different expressed proteins, making this a potential general method for protein crystallization.

  16. Characterization of monomeric intermediates during VSV glycoprotein structural transition.

    Directory of Open Access Journals (Sweden)

    Aurélie A Albertini

    2012-02-01

    Full Text Available Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV glycoprotein G ectodomain (G(th, aa residues 1-422, the fragment that was previously crystallized. While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, G(th is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition.

  17. Characterization of monomeric intermediates during VSV glycoprotein structural transition.

    Science.gov (United States)

    Albertini, Aurélie A; Mérigoux, Cécile; Libersou, Sonia; Madiona, Karine; Bressanelli, Stéphane; Roche, Stéphane; Lepault, Jean; Melki, Ronald; Vachette, Patrice; Gaudin, Yves

    2012-02-01

    Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV) glycoprotein G ectodomain (G(th), aa residues 1-422, the fragment that was previously crystallized). While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, G(th) is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition.

  18. Enhancing comparative rabies DNA vaccine effectiveness through glycoprotein gene modifications.

    Science.gov (United States)

    Osinubi, M O V; Wu, X; Franka, R; Niezgoda, M; Nok, A J; Ogunkoya, A B; Rupprecht, C E

    2009-11-27

    Enhancing DNA vaccine effectiveness remains a challenge, especially if the desired goal is immunization efficacy after a single dose. The glycoprotein gene from the rabies virus Evelyn-Rokitnicki-Abelseth (ERA) strain was modified by mutation at amino acid residue 333 from arginine to glutamine. The modified and original unmodified glycoprotein genes were cloned separately and developed as DNA vaccines for immunization in mice. The intramuscular (IM) route using a single dose (100 microg) of a modified DNA vaccine showed virus neutralizing antibody induction by d30, and 80% of the mice survived a challenge in which 100% of unvaccinated controls succumbed. Similar results were obtained using a single dose (10 microg) by the intradermal (ID) route with one-tenth amount of the DNA administered. Administration of single dose of DNA vaccine with unmodified G did not result in the production of detectable levels of virus neutralizing antibody by d30. The results of the IM and the ID routes of administration were statistically significant (Prabies virus strain may be an ideal candidate for DNA vaccine efficacy enhancement.

  19. Internalization and Axonal Transport of the HIV Glycoprotein gp120

    Science.gov (United States)

    Berth, Sarah; Caicedo, Hector Hugo; Sarma, Tulika; Morfini, Gerardo

    2015-01-01

    The HIV glycoprotein gp120, a neurotoxic HIV glycoprotein that is overproduced and shed by HIV-infected macrophages, is associated with neurological complications of HIV such as distal sensory polyneuropathy, but interactions of gp120 in the peripheral nervous system remain to be characterized. Here, we demonstrate internalization of extracellular gp120 in a manner partially independent of binding to its coreceptor CXCR4 by F11 neuroblastoma cells and cultured dorsal root ganglion neurons. Immunocytochemical and pharmacological experiments indicate that gp120 does not undergo trafficking through the endolysosomal pathway. Instead, gp120 is mainly internalized through lipid rafts in a cholesterol-dependent manner, with a minor fraction being internalized by fluid phase pinocytosis. Experiments using compartmentalized microfluidic chambers further indicate that, after internalization, endocytosed gp120 selectively undergoes retrograde but not anterograde axonal transport from axons to neuronal cell bodies. Collectively, these studies illuminate mechanisms of gp120 internalization and axonal transport in peripheral nervous system neurons, providing a novel framework for mechanisms for gp120 neurotoxicity. PMID:25636314

  20. The variable surface glycoproteins of Trypanosoma equiperdum are phosphorylated.

    Science.gov (United States)

    Baltz, T; Giroud, C; Baltz, D; Duvillier, G; Degand, P; Demaille, J; Pautrizel, R

    1982-01-01

    The phosphoproteins from three Trypanosoma equiperdum variants were studied by labelling the parasites in vivo with 32P. Phosphoprotein analysis reveals the presence of a 58 000 mol. wt. phosphoprotein ( pp58 ) which is absent when live trypanosomes are pre-treated with proteinase K under conditions where only the surface coat containing the variable surface glycoprotein (VSG) is removed. Immunological and fingerprint analysis on labelled pp58 , purified from these variants by affinity chromatography on Concanavalin A-Sepharose, clearly identify this component as the VSG. Furthermore, the VSGs seem to be phosphorylated to the extent of 1 mol phosphate per mol glycoprotein. The phosphorylated region is located in the extreme C-terminal region representing approximately 10% of the total molecule. The phosphorylated residue is not an aliphatic or aromatic ester of serine, threonine, or tyrosine, nor an acyl phosphate involving an aspartyl or glutamyl residue, nor phosphohistidine. The evidence that VSGs are phosphorylated could have considerable implications for the transfer and function of these structures.

  1. Macroporous silica particles derivatized for enhanced lectin affinity enrichment of glycoproteins.

    Science.gov (United States)

    Mann, Benjamin F

    2015-01-01

    This chapter details procedures for (1) functionalizing macroporous silica particles with lectins, a class of proteins that have affinity for the glycan moieties on glycoproteins, and (2) utilizing the lectin-silica material for high-performance affinity chromatography (HPAC) to enrich glycoproteins from small volumes of biological sample materials.

  2. Screening for the P-Glycoprotein Inhibitory Pump Activity of Plant ...

    African Journals Online (AJOL)

    7(1) 16-22. Screening for the P-Glycoprotein Inhibitory Pump Activity of Plant Extracts that are Used in. Tanzanian Traditional Medicine ... 6G as the fluorescent probe and reserpine, a known inhibitor of P-glycoprotein pump, was used as a reference drug. .... The resistant s ublines are isolated and r e-incubated with higher ...

  3. Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene B; Halim, Adnan; Joshi, Hiren Jitendra

    2013-01-01

    The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin-glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O-Man glycos...

  4. Filamentous fungi as production organisms for glycoproteins of bio-medical interest

    NARCIS (Netherlands)

    Maras, M.; Die, I. van; Contreras, R.; Hondel, C.A.M.J.J. van den

    1999-01-01

    Filamentous fungi are commonly used in the fermentation industry for large scale production of glycoproteins. Several of these proteins can be produced in concentrations up to 20-40 g per litre. The production of heterologous glycoproteins is at least one or two orders of magnitude lower but

  5. Establishment of a fluorescence-based method to evaluate endocytosis of desialylated glycoproteins in vitro.

    Science.gov (United States)

    Luo, Cheng; Chen, Song; Xu, Na; Sai, Wen Bo; Zhao, Wei; Li, Ying Chun; Hu, Xiao Jing; Tian, Hong; Gao, Xiang Dong; Yao, Wen Bing

    2017-04-01

    Insufficient sialylation can result in rapid clearance of therapeutic glycoproteins by intracellular degradation, which is mainly mediated by asialoglycoprotein receptors (ASGPRs) on hepatic cells. In contrast, for glycoproteins, a long half-life is often related to high level of terminal sialic acid. These could be extremely important for insufficient sialylated biomedicines in clinic, and development of therapeutic glycoproteins in laboratory. However, how the desialylated glycoproteins are removed and how to evaluate the ASGPRs mediated endocytosis in vitro needs further investigate. Herein we described an integrative characterization of ASGPRs in vitro to elucidate its endocytosis properties. The endocytosis was determined by a fluorescence-based quantization method. The results showed that the ASGPRs could bind to poorly sialylated glycoproteins including asialofetuin and low sialylated recombinant Factor VIIa with a relatively higher ASGPRs binding affinity, and induce a more rapid endocytosis in vitro. Moreover, the mechanism under the internalization of ASGPRs was also investigated, which was found to depend on clathrin and caveolin. Utilizing the relative fluorescence quantification can be suitable for measurement of insufficient sialylated glycoprotein endocytosis and quality control of therapeutic glycoproteins, which could be useful for the understanding of the development of therapeutic glycoproteins. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Salivary antibodies to cytomegalovirus (CMV) glycoprotein B accurately predict CMV infections among preschool children.

    OpenAIRE

    Wang, J. B.; Adler, S P

    1996-01-01

    Among preschool children, we found an association between cytomegalovirus (CMV) infection and salivary immunoglobulin G antibodies to CMV glycoprotein B. All of the 20 infected children had immunoglobulin G to CMV glycoprotein B in their saliva, whereas 38 of 38 uninfected children lacked these antibodies. Testing saliva provides a sensitive and specific alternative to obtaining serum.

  7. Targeting Extracellular Matrix Glycoproteins in Metastases for Tumor-Initiating Cell Therapy

    Science.gov (United States)

    2016-04-01

    AWARD NUMBER: W81XWH-14-1-0041 TITLE: Targeting Extracellular Matrix Glycoproteins in Metastases for Tumor- Initiating Cell Therapy PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Extracellular Matrix Glycoproteins in Metastases for Tumor-Initiating Cell Therapy 5b. GRANT

  8. Nerve growth factor inhibits metalloproteinase-disintegrins and blocks ectodomain shedding of platelet glycoprotein VI.

    Science.gov (United States)

    Wijeyewickrema, Lakshmi C; Gardiner, Elizabeth E; Gladigau, Elsa L; Berndt, Michael C; Andrews, Robert K

    2010-04-16

    Nerve growth factor (NGF) plays an important role in regulating mammalian neuronal/embryonic development, angiogenesis, and other physiological processes and has recently been investigated as a potential treatment for the neurodegenerative disorder, Alzheimer disease. In this study, we provide evidence that human NGF may also function as a metalloproteinase inhibitor, based on studies of NGF from snake venom. Originally, our aim was to isolate snake venom metalloproteinases targeting platelet receptors and/or ligands relevant to hemostasis and thrombosis, using Ni(2+)-agarose as a purification step based on the conserved metal ion-coordination motif in venom metalloproteinases. However, subsequent analysis of cobra (Naja kaouthia) venom led to the unexpected discovery that cobra venom NGF bound to Ni(2+)-agarose, eluting at approximately 15 mm imidazole, enabling a one-step purification. The identity of the purified protein was confirmed by mass spectrometry and N-terminal sequence analysis. Partial co-purification of NGF within metalloproteinase-enriched venom fractions led us to test whether NGF affected metalloproteinase activity. Venom NGF potently inhibited metalloproteinases isolated from the same or different venom and specifically bound to purified Nk metalloproteinase immobilized on agarose beads. Human NGF also interacted with human metalloproteinases because it blocked metalloproteinase-mediated shedding of the platelet collagen receptor, glycoprotein (GP)VI, and associated with recombinant ADAM10 by surface plasmon resonance. Together, these results suggest that NGF can function as a metalloproteinase inhibitor.

  9. Nerve Growth Factor Inhibits Metalloproteinase-Disintegrins and Blocks Ectodomain Shedding of Platelet Glycoprotein VI*

    Science.gov (United States)

    Wijeyewickrema, Lakshmi C.; Gardiner, Elizabeth E.; Gladigau, Elsa L.; Berndt, Michael C.; Andrews, Robert K.

    2010-01-01

    Nerve growth factor (NGF) plays an important role in regulating mammalian neuronal/embryonic development, angiogenesis, and other physiological processes and has recently been investigated as a potential treatment for the neurodegenerative disorder, Alzheimer disease. In this study, we provide evidence that human NGF may also function as a metalloproteinase inhibitor, based on studies of NGF from snake venom. Originally, our aim was to isolate snake venom metalloproteinases targeting platelet receptors and/or ligands relevant to hemostasis and thrombosis, using Ni2+-agarose as a purification step based on the conserved metal ion-coordination motif in venom metalloproteinases. However, subsequent analysis of cobra (Naja kaouthia) venom led to the unexpected discovery that cobra venom NGF bound to Ni2+-agarose, eluting at ∼15 mm imidazole, enabling a one-step purification. The identity of the purified protein was confirmed by mass spectrometry and N-terminal sequence analysis. Partial co-purification of NGF within metalloproteinase-enriched venom fractions led us to test whether NGF affected metalloproteinase activity. Venom NGF potently inhibited metalloproteinases isolated from the same or different venom and specifically bound to purified Nk metalloproteinase immobilized on agarose beads. Human NGF also interacted with human metalloproteinases because it blocked metalloproteinase-mediated shedding of the platelet collagen receptor, glycoprotein (GP)VI, and associated with recombinant ADAM10 by surface plasmon resonance. Together, these results suggest that NGF can function as a metalloproteinase inhibitor. PMID:20164177

  10. Vitronectin in human breast carcinomas

    DEFF Research Database (Denmark)

    Aaboe, Mads; Offersen, Birgitte Vrou; Christensen, Anni

    2003-01-01

    We have analysed the occurrence of the extracellular glycoprotein vitronectin in carcinomas and normal tissue of human breast. Immunohistochemical analysis of carcinomas revealed a strong vitronectin accumulation in extracellular matrix (ECM) around some cancer cell clusters and in the subendothe......We have analysed the occurrence of the extracellular glycoprotein vitronectin in carcinomas and normal tissue of human breast. Immunohistochemical analysis of carcinomas revealed a strong vitronectin accumulation in extracellular matrix (ECM) around some cancer cell clusters...... of the role of vitronectin in tumour biology in interaction with the plasminogen activation system and integrins....

  11. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system.

    Science.gov (United States)

    Feng, Bo; Mills, Jessica B; Davidson, Ralph E; Mireles, Rouchelle J; Janiszewski, John S; Troutman, Matthew D; de Morais, Sonia M

    2008-02-01

    Thirty-one structurally diverse marketed central nervous system (CNS)-active drugs, one active metabolite, and seven non-CNS-active compounds were tested in three P-glycoprotein (P-gp) in vitro assays: transwell assays using MDCK, human MDR1-MDCK, and mouse Mdr1a-MDCK cells, ATPase, and calcein AM inhibition. Additionally, the permeability for these compounds was measured in two in vitro models: parallel artificial membrane permeation assay and apical-to-basolateral apparent permeability in MDCK. The exposure of the same set of compounds in brain and plasma was measured in P-gp knockout (KO) and wild-type (WT) mice after subcutaneous administration. One drug and its metabolite, risperidone and 9-hydroxyrisperidone, of the 32 CNS compounds, and 6 of the 7 non-CNS drugs were determined to have positive efflux using ratio of ratios in MDR1-MDCK versus MDCK transwell assays. Data from transwell studies correlated well with the brain-to-plasma area under the curve ratios between P-gp KO and WT mice for the 32 CNS compounds. In addition, 3300 Pfizer compounds were tested in MDR1-MDCK and Mdr1a-MDCK transwell assays, with a good correlation (R(2) = 0.92) between the efflux ratios in human MDR1-MDCK and mouse Mdr1a-MDCK cells. Permeability data showed that the majority of the 32 CNS compounds have moderate to high passive permeability. This work has demonstrated that in vitro transporter assays help in understanding the role of P-gp-mediated efflux activity in determining the disposition of CNS drugs in vivo, and the transwell assay is a valuable in vitro assay to evaluate human P-gp interaction with compounds for assessing brain penetration of new chemical entities to treat CNS disorders.

  12. Rapid characterization of asparagine-linked oligosaccharides isolated from glycoproteins using a carbohydrate analyzer.

    Science.gov (United States)

    Anumula, K R; Taylor, P B

    1991-01-01

    Chromatographic methods were developed for the separation and characterization of acidic (sialylated) and neutral (asialo-complex and high-mannose) oligosaccharides released from glycoproteins with peptide N-glycosidase F. en