WorldWideScience

Sample records for human-induced global climate

  1. Biophysical feedbacks between the Pleistocene megafauna extinction and climate: The first human-induced global warming?

    Science.gov (United States)

    Doughty, Christopher E.; Wolf, Adam; Field, Christopher B.

    2010-08-01

    A large increase in Betula during a narrow 1000 year window, ˜13,800 years before present (YBP) in Alaska and Yukon corresponded in time with the extinction of mammoths and the arrival of humans. Pollen data indicate the increase in Betula during this time was widespread across Siberia and Beringia. We hypothesize that Betula increased due to a combination of a warming climate and reduced herbivory following the extinction of the Pleistocene mega herbivores. The rapid increase in Betula modified land surface albedo which climate-model simulations indicate would cause an average net warming of ˜0.021°C per percent increase in high latitude (53-73°N) Betula cover. We hypothesize that the extinction of mammoths increased Betula cover, which would have warmed Siberia and Beringia by on average 0.2°C, but regionally by up to 1°C. If humans were partially responsible for the extinction of the mammoths, then human influences on global climate predate the origin of agriculture.

  2. Is climate change human induced?

    African Journals Online (AJOL)

    user

    reports follow exhaustive review process, and are widely accepted. In 2007, IPCC's 4th assessment report- 'Climate Change 2007 – Impacts, Adaptation and Vulnerability' came into ... is disturbing regional eco-balance, but increasing vehicular pollution in climate- ... subcontinent by sheltering it from the cold air mass of.

  3. Global review of human-induced earthquakes.

    OpenAIRE

    Foulger, Gillian R.; Wilson, Miles; Gluyas, Jon; Julian, Bruce R.; Davies, Richard

    2017-01-01

    The Human-induced Earthquake Database, HiQuake, is a comprehensive record of earthquake sequences postulated to be induced by anthropogenic activity. It contains over 700 cases spanning the period 1868–2016. Activities that have been proposed to induce earthquakes include the impoundment of water reservoirs, erecting tall buildings, coastal engineering, quarrying, extraction of groundwater, coal, minerals, gas, oil and geothermal fluids, excavation of tunnels, and adding material to the subsu...

  4. Can a Human-Induced Climate Disaster be Avoided?

    Science.gov (United States)

    Watson, R.

    2012-12-01

    Emissions of greenhouse gases (GHG) are one of the greatest threats to our future prosperity. World emissions are currently around 50 billion tonnes of carbon dioxide-equivalent per annum and are growing rapidly. Atmospheric concentrations of GHG emissions in the atmosphere have increased, to over 400ppm of CO2e today, even after taking the offsetting radiative effects of aerosols into account, and are increasing at a rate of around 2.5ppm per year. The world's current lack of "adequate" commitments to reduce emissions are consistent with at least a 3oC rise (50-50 chance) in temperature: a temperature not seen on the planet for around 3 million years, with serious risks of 5oC rise: a temperature not seen on the planet for around 30 million years. So what are the implications of a 3-5oC rise in temperature, with associated changes in, rising sea levels, retreating mountain glaciers, melting of the Greenland ice cap, shrinking Arctic Sea ice, especially in summer, increasing frequency of extreme weather events, such as heat waves, floods, and droughts, and intensification of cyclonic events, such as hurricanes in the Atlantic. Even a 2oC increase in mean surface temperatures will adversely affect freshwater, food and fiber, natural ecosystems, coastal systems and low-lying areas, human health and social systems, especially in developing countries. The impacts of 3-5oC will be extensive, predominantly negative, undermine development and poverty alleviation goals and cut across most sectors. To address human-induced climate change requires a transition to a low carbon economy, which will require rapid technological evolution in the efficiency of energy use, environmentally sound low-carbon renewable energy sources and carbon capture and storage. The longer we wait to transition to a low carbon economy the more we are locked into a high carbon energy system with consequent environmental damage to ecological and socio-economic systems. Unfortunately the political will

  5. Emotions about Teaching about Human-Induced Climate Change

    Science.gov (United States)

    Lombardi, Doug; Sinatra, Gale M.

    2013-01-01

    Global climate change is receiving increasing attention as a classroom topic. At the same time, research has shown that individuals have strong emotions about the topic. Emotions about controversial topics and individuals' dispositions toward knowledge have been shown to influence judgments about these topics. This study examined the relationships among preservice elementary and in-service secondary science teachers' emotions about and plausibility perceptions of climate change, background knowledge of weather and climate distinctions (a principle related to understanding climate change), and dispositions toward knowledge. Teachers' topic emotions (anger and hopelessness) were significant predictors of plausibility perceptions, with more anger associated with lesser plausibility and greater hopelessness associated with higher plausibility. Decisiveness-an urgent desire to reach closure-was also significantly related to plausibility perceptions with greater decisiveness associated with reduced plausibility perceptions. In-service secondary teachers who do not currently teach about climate change exhibited greater anger and decisiveness than preservice elementary teachers and in-service secondary teachers who do teach about climate change. Implications for climate literacy education are discussed.

  6. The Vulnerability of Earth Systems to Human-Induced Global Change and Strategies for Mitigation

    Science.gov (United States)

    Watson, R. T.

    2002-12-01

    Since the IGY, there has been growing evidence that climate is changing in response to human activities. The overwhelming majority of scientific experts, whilst recognizing that scientific uncertainties exist, nonetheless believe that human-induced climate change is inevitable. Indeed, during the last few years, many parts of the world have suffered major heat waves, floods, droughts, fires and extreme weather events leading to significant economic losses and loss of life. While individual events cannot be directly linked to human-induced climate change, the frequency and magnitude of these types of events are predicted to increase in a warmer world. The question is not whether climate will change, but rather how much (magnitude), how fast (the rate of change) and where (regional patterns). It is also clear that climate change and other human-induced modifications to the environment will, in many parts of the world, adversely affect socio-economic sectors, including water resources, agriculture, forestry, fisheries and human settlements, ecological systems (particularly forests and coral reefs), and human health (particularly diseases spread by insects), with developing countries being the most vulnerable. Environmental degradation of all types (i.e., climate change, loss of biodiversity, land degradation, air and water quality) all undermine the challenge of poverty alleviation and sustainable economic growth. One of the major challenges facing humankind is to provide an equitable standard of living for this and future generations: adequate food, water and energy, safe shelter and a healthy environment (e.g., clean air and water). Unfortunately, human-induced climate change, as well as other global environmental issues such as land degradation, loss of biological diversity and stratospheric ozone depletion, threatens our ability to meet these basic human needs. The good news is, however, that the majority of experts believe that significant reductions in net

  7. Simulating Global Climate Summits

    Science.gov (United States)

    Vesperman, Dean P.; Haste, Turtle; Alrivy, Stéphane

    2014-01-01

    One of the most persistent and controversial issues facing the global community is climate change. With the creation of the UN Framework Convention on Climate Change (UNFCCC) in 1992 and the Kyoto Protocol (1997), the global community established some common ground on how to address this issue. However, the last several climate summits have failed…

  8. Simulating Global Climate Summits

    Science.gov (United States)

    Vesperman, Dean P.; Haste, Turtle; Alrivy, Stéphane

    2014-01-01

    One of the most persistent and controversial issues facing the global community is climate change. With the creation of the UN Framework Convention on Climate Change (UNFCCC) in 1992 and the Kyoto Protocol (1997), the global community established some common ground on how to address this issue. However, the last several climate summits have failed…

  9. Regionalizing global climate models

    NARCIS (Netherlands)

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  10. Regionalizing global climate models

    NARCIS (Netherlands)

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  11. Global climate experiment; Globales Klimaexperiment

    Energy Technology Data Exchange (ETDEWEB)

    Quasching, V. [Deutsche Zentrum fuer Luft- und Raumfahrt e.V., Plataforma Solar de Almeria (Spain)

    2003-07-01

    Continued greenhouse gas emissions are part of one of our today's largest scientific experiments. Most scientists agree that anthropogenic influences are responsible for already observed climatic changes. Others demand further investigations and justify continued unlimited use of fossil energy sources. This paper describes generally accepted facts on greenhouse gas emissions and climatic change with focus on part and influence of the global energy industry. [German] Mit dem fortgesetzten Ausstoss von Treibhausgasen wird zurzeit ein globales naturwissenschaftliches Experiment betrieben. Viele Wissenschaftler sind sich einig, dass bereits beobachtete Klimaveraenderungen auf den Einfluss des Menschen zurueckzufuehren sind. Andere fordern hingegen weitere Untersuchungen und halten bis dahin eine weitere uneingeschraenkte Verwendung fossiler Energietraeger fuer gerechtfertigt. Dieser Beitrag fasst weitgehend anerkannte Fakten ueber Treibhausgasemissionen und Klimaveraenderungen zusammen und beschreibt die Rolle und den Einfluss der Energiewirtschaft.

  12. Global Climate Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Hourly Summaries are simple indicators of observational normals which include climatic data summarizations and frequency distributions. These typically...

  13. Strategic Global Climate Command?

    Science.gov (United States)

    Long, J. C. S.

    2016-12-01

    Researchers have been exploring geoengineering because Anthropogenic GHG emissions could drive the globe towards unihabitability for people, wildlife and vegetation. Potential global deployment of these technologies is inherently strategic. For example, solar radiation management to reflect more sunlight might be strategically useful during a period of time where the population completes an effort to cease emissions and carbon removal technologies might then be strategically deployed to move the atmospheric concentrations back to a safer level. Consequently, deployment of these global technologies requires the ability to think and act strategically on the part of the planet's governments. Such capacity most definitely does not exist today but it behooves scientists and engineers to be involved in thinking through how global command might develop because the way they do the research could support the development of a capacity to deploy intervention rationally -- or irrationally. Internationalizing research would get countries used to working together. Organizing the research in a step-wise manner where at each step scientists become skilled at explaining what they have learned, the quality of the information they have, what they don't know and what more they can do to reduce or handle uncertainty, etc. Such a process can increase societal confidence in being able to make wise decisions about deployment. Global capacity will also be enhanced if the sceintific establishment reinvents misssion driven research so that the programs will identify the systemic issues invovled in any proposed technology and systematically address them with research while still encouraging individual creativity. Geoengineering will diverge from climate science in that geoengineering research needs to design interventions for some publically desirable goal and investigates whether a proposed intervention will acheive desired outcomes. The effort must be a systems-engineering design problem

  14. Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE

    Science.gov (United States)

    Felfelani, Farshid; Wada, Yoshihide; Longuevergne, Laurent; Pokhrel, Yadu N.

    2017-10-01

    Hydrological models and the data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have been widely used to study the variations in terrestrial water storage (TWS) over large regions. However, both GRACE products and model results suffer from inherent uncertainties, calling for the need to make a combined use of GRACE and models to examine the variations in total TWS and their individual components, especially in relation to natural and human-induced changes in the terrestrial water cycle. In this study, we use the results from two state-of-the-art hydrological models and different GRACE spherical harmonic products to examine the variations in TWS and its individual components, and to attribute the changes to natural and human-induced factors over large global river basins. Analysis of the spatial patterns of the long-term trend in TWS from the two models and GRACE suggests that both models capture the GRACE-measured direction of change, but differ from GRACE as well as each other in terms of the magnitude over different regions. A detailed analysis of the seasonal cycle of TWS variations over 30 river basins shows notable differences not only between models and GRACE but also among different GRACE products and between the two models. Further, it is found that while one model performs well in highly-managed river basins, it fails to reproduce the GRACE-observed signal in snow-dominated regions, and vice versa. The isolation of natural and human-induced changes in TWS in some of the managed basins reveals a consistently declining TWS trend during 2002-2010, however; significant differences are again obvious both between GRACE and models and among different GRACE products and models. Results from the decomposition of the TWS signal into the general trend and seasonality indicate that both models do not adequately capture both the trend and seasonality in the managed or snow-dominated basins implying that the TWS variations from a

  15. Global climate feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  16. Effective Teacher Practice on the Plausibility of Human-Induced Climate Change

    Science.gov (United States)

    Niepold, F.; Sinatra, G. M.; Lombardi, D.

    2013-12-01

    Climate change education programs in the United States seek to promote a deeper understanding of the science of climate change, behavior change and stewardship, and support informed decision making by individuals, organizations, and institutions--all of which are summarized under the term 'climate literacy.' The ultimate goal of climate literacy is to enable actors to address climate change, both in terms of stabilizing and reducing emissions of greenhouse gases, but also an increased capacity to prepare for the consequences and opportunities of climate change. However, the long-term nature of climate change and the required societal response involve the changing students' ideas about controversial scientific issues which presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). This session will explore how the United States educational efforts focus on three distinct, but related, areas: the science of climate change, the human-climate interaction, and using climate education to promote informed decision making. Each of these approaches are represented in the Atlas of Science Literacy (American Association for the Advancement of Science, 2007) and in the conceptual framework for science education developed at the National Research Council (NRC) in 2012. Instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) has been called for by the Next Generation Science Standards (NGSS) (Achieve, 2013), an innovative and research based way to address climate change education within the decentralized U.S. education system. However, the promise of the NGSS is that students will have more time to build mastery on the subjects, but the form of that instructional practice has been show to be critical. Research has show that effective instructional activities that promote evaluation of evidence improve students' understanding and acceptance toward the scientifically accepted model of human-induced

  17. Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades

    Science.gov (United States)

    Zhu, Qiuan; Peng, Changhui; Liu, Jinxun; Jiang, Hong; Fang, Xiuqin; Chen, Huai; Niu, Zhenguo; Gong, Peng; Lin, Guanghui; Wang, Meng; Wang, Han; Yang, Yanzheng; Chang, Jie; Ge, Ying; Xiang, Wenhua; Deng, Xiangwen; He, Jin-Sheng

    2016-11-01

    Both anthropogenic activities and climate change can affect the biogeochemical processes of natural wetland methanogenesis. Quantifying possible impacts of changing climate and wetland area on wetland methane (CH4) emissions in China is important for improving our knowledge on CH4 budgets locally and globally. However, their respective and combined effects are uncertain. We incorporated changes in wetland area derived from remote sensing into a dynamic CH4 model to quantify the human and climate change induced contributions to natural wetland CH4 emissions in China over the past three decades. Here we found that human-induced wetland loss contributed 34.3% to the CH4 emissions reduction (0.92 TgCH4), and climate change contributed 20.4% to the CH4 emissions increase (0.31 TgCH4), suggesting that decreasing CH4 emissions due to human-induced wetland reductions has offset the increasing climate-driven CH4 emissions. With climate change only, temperature was a dominant controlling factor for wetland CH4 emissions in the northeast (high latitude) and Qinghai-Tibet Plateau (high altitude) regions, whereas precipitation had a considerable influence in relative arid north China. The inevitable uncertainties caused by the asynchronous for different regions or periods due to inter-annual or seasonal variations among remote sensing images should be considered in the wetland CH4 emissions estimation.

  18. Update on global climate change.

    Science.gov (United States)

    Weber, Carol J

    2010-01-01

    Global climate change brings new challenges to the control of infectious diseases. Since many waterborne and vector-borne pathogens are highly sensitive to temperature and rainfall, health risks resulting from a warming and more variable climate are potentially huge. Global climate change involves the entire world, but the poorest countries will suffer the most. Nations are coming together to address what can be done to reduce greenhouse gas emissions and cope with inevitable temperature increases. A key component of any comprehensive mitigation and adaptation plan is a strong public health infrastructure across the world. Nothing less than global public health security is at stake.

  19. Dubya Echoes Confirmation of Human-Induced Global Warming Theory and an Antioxidant Unravels

    Directory of Open Access Journals (Sweden)

    Shauna Haley

    2001-01-01

    Full Text Available U.S. President George W. Bush’s nod to scientific evidence for human industrialization’s major role in the onset of global climate change grabs both top story positions in Nature and Science this week.

  20. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  1. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  2. Modeling human-induced climatic change: A summary for environmental managers

    Energy Technology Data Exchange (ETDEWEB)

    Sulzman, E.W. [National Biological Survey, Washington, DC (United States)]|[University Corporation for Atmospheric Research, Boulder, CO (United States); Poiani, K.A. [Cornell Univ., Ithaca, NY (United States); Kittel, T.G.F. [University Corporation for Atmospheric Research, Boulder, CO (United States)]|[Colorado State Univ., Fort Collins, CO (United States)

    1995-03-01

    The rapid increase in atmospheric concentrations of greenhouse gases has caused concern because of their potential to alter the earth`s radiation budget and disrupt current climate patterns. While there are many uncertainties associated with use of general circulation models (GCMs), GCMs are currently the best available technology to project changes in climate associated with elevated gas concentrations. Results indicate increases in global temperature and changes in global precipitation patterns are likely as a result of doubled CO{sub 2}. GCMs are not reliable for use at the regional scale because local scale processes and geography are not taken into account. Comparison of results from five GCMs in three regions of the United States indicate high variability across regions and among models depending on season and climate variable. Statistical methods of scaling model output and nesting finer resolution models in global models are two techniques that may improve projections. Despite the many limitations in GCMs, they are useful tools to explore climate-earth system dynamics when used in conjunction with water resource and ecosystem models. A variety of water resource models showed significant alteration of region hydrology when run with both GCM-generated and hypothetical climate scenarios, regardless of region or model complexity. Similarly, ecological models demonstrate the sensitivity of ecosystem production, nutrient dynamics, and distribution to changes in climate and CO{sub 2} levels. We recommend the use of GCM-based scenarios in conjunction with water resource and ecosystem models to guide environmental management and policy in a {open_quotes}no-regrets{close_quotes} framework or as part of a precautionary approach to natural resource protection. 174 refs., 4 figs., 5 tabs.

  3. Satellite Remote Sensing Missions for Monitoring Water, Carbon, and global Climate Change

    Science.gov (United States)

    In recent years, the subjects of water, carbon, and global climate change have attracted worldwide attention by scientists and the media. Climate change, whether associated with human- induced or natural variations, has and will continue to be important to policy makers and the public. It is clear t...

  4. Quantifying relative uncertainties in the detection and attribution of human-induced climate change on winter streamflow

    Science.gov (United States)

    Ahn, Kuk-Hyun; Merwade, Venkatesh; Ojha, C. S. P.; Palmer, Richard N.

    2016-11-01

    In spite of recent popularity for investigating human-induced climate change in regional areas, understanding the contributors to the relative uncertainties in the process remains unclear. To remedy this, this study presents a statistical framework to quantify relative uncertainties in a detection and attribution study. Primary uncertainty contributors are categorized into three types: climate data, hydrologic, and detection uncertainties. While an ensemble of climate models is used to define climate data uncertainty, hydrologic uncertainty is defined using a Bayesian approach. Before relative uncertainties in the detection and attribution study are quantified, an optimal fingerprint-based detection and attribution analysis is employed to investigate changes in winter streamflow in the Connecticut River Basin, which is located in the Eastern United States. Results indicate that winter streamflow over a period of 64 years (1950-2013) lies outside the range expected from natural variability of climate alone with a 90% confidence interval in the climate models. Investigation of relative uncertainties shows that the uncertainty linked to the climate data is greater than the uncertainty induced by hydrologic modeling. Detection uncertainty, defined as the uncertainty related to time evolution of the anthropogenic climate change in the historical data (signal) above the natural internal climate variability (noise), shows that uncertainties in natural internal climate variability (piControl) scenarios may be the source of the significant degree of uncertainty in the regional Detection and Attribution study.

  5. State of the Climate - Global Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  6. State of the Climate - Global Hazards

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  7. Global air quality and climate.

    Science.gov (United States)

    Fiore, Arlene M; Naik, Vaishali; Spracklen, Dominick V; Steiner, Allison; Unger, Nadine; Prather, Michael; Bergmann, Dan; Cameron-Smith, Philip J; Cionni, Irene; Collins, William J; Dalsøren, Stig; Eyring, Veronika; Folberth, Gerd A; Ginoux, Paul; Horowitz, Larry W; Josse, Béatrice; Lamarque, Jean-François; MacKenzie, Ian A; Nagashima, Tatsuya; O'Connor, Fiona M; Righi, Mattia; Rumbold, Steven T; Shindell, Drew T; Skeie, Ragnhild B; Sudo, Kengo; Szopa, Sophie; Takemura, Toshihiko; Zeng, Guang

    2012-10-07

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas

  8. Global Air Quality and Climate

    Science.gov (United States)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; hide

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative

  9. Climate Science's Globally Distributed Infrastructure

    Science.gov (United States)

    Williams, D. N.

    2016-12-01

    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  10. College Students' Perceptions about the Plausibility of Human-Induced Climate Change

    Science.gov (United States)

    Lombardi, Doug; Sinatra, Gale M.

    2012-01-01

    Overcoming students' misconceptions may be a challenge when teaching about phenomena such as climate change. Students tend to cite short-term weather effects as evidence to support or refute long-term climate transformations, which displays a fundamental misunderstanding about weather and climate distinctions. Confusion about weather and climate…

  11. Is Forest Restoration in the Southwest China Karst Promoted Mainly by Climate Change or Human-Induced Factors?

    Directory of Open Access Journals (Sweden)

    Hongyan Cai

    2014-10-01

    Full Text Available The Southwest China Karst, the largest continuous karst zone in the world, has suffered serious rock desertification due to the large population pressure in the area. Recent trend analyses have indicated general greening trends in this region. The region has experienced mild climate change, and yet significant land use changes, such as afforestation and reforestation. In addition, out-migration has occurred. Whether climate change or human-induced factors, i.e., ecological afforestation projects and out-migration have primarily promoted forest restoration in this region was investigated in this study, using Guizhou Province as the study area. Based on Moderate-Resolution Imaging Spectroradiometer (MODIS Normalized Difference Vegetation Index (NDVI data, we found general greening trends of the forest from 2000 to 2010. About 89% of the forests have experienced an increase in the annual NDVI, and among which, about 41% is statistically significant. For the summer season, more than 65% of the forests have increases in summer NDVI, and about 16% of the increases are significant. The strongest greening trends mainly occurred in the karst areas. Meanwhile, annual average and summer average temperature in this region have increased and the precipitation in most of the region has decreased, although most of these changes were not statistically significant (p > 0.1. A site-based regression analysis using 19 climate stations with minimum land use changes showed that a warming climate coupled with a decrease in precipitation explained some of the changes in the forest NDVI, but the results were not conclusive. The major changes were attributed to human-induced factors, especially in the karst areas. The implications of an ecological afforestation project and out-migration for forest restoration were also discussed, and the need for further investigations at the household level to better understand the out-migration–environment relationship was identified.

  12. SubArctic Oceans and Global Climate

    Science.gov (United States)

    Rhines, P. B.

    2004-12-01

    The passages connecting the Arctic Ocean with the Atlantic and Pacific, and their `mediterranean' basins, are focal points for the global meridional overturning circulation, and all of the climate impacts which this implies. It is also a difficult region to model accurately: the sensitivity of climate models to subpolar ocean dynamics is well-known. In this talk we stress the need to instrument and analyze the subpolar oceans, and some examples of sustained observations developing there. Results from satellite altimetry, recent Seaglider deployments from Greenland, and mooring arrays will be described. In particular we show the first Seaglider sections of hydrography and bio-optical profiles of the Labrador Sea (one of the first extended deployments of this autonomous undersea vehicle); we discuss the decline during the 1990s of the subpolar gyre circulation of the Atlantic from its great strength during the positive NAO period of the early 1990s, and its relevance to the salinity decline observed over a much longer period; we review observations of the flows at the Iceland-Scotland Ridge and Davis Strait, argued in terms of volume transport plots on the potential temperature/salinity plane; we display maps of the `convection resistance' (related to dynamic height) and its sensitivity to surface low-salinity water masses and their partition between shallow continental shelves and deep ocean. This is a particularly exciting time for climate studies, with fundamental properties of the atmosphere-ocean circulation under debate, even before one considers natural and human-induced variability. Is the four-decade long decline in subArctic salinity the result of increased hydrologic cycle, increased or altered Arctic outflow to the Atlantic, or slowing of the subpolar circulation? Is the basic intensity of the MOC more dependent on high-latitude buoyancy forcing, or wind- or tide-driven mixing in the upwelling branch, or possibly wind-stress at high latitude? Is the

  13. Climate science: Misconceptions of global catastrophe

    Science.gov (United States)

    Rocklöv, Joacim

    2016-04-01

    American attitudes to changing weather, and therefore to climate change, have been analysed on the basis of US migration patterns since the 1970s. The findings have implications for the success of global climate policies. See Letter p.357

  14. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    Science.gov (United States)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  15. Climate change and agricultural production | Offiong | Global ...

    African Journals Online (AJOL)

    Climate change and agricultural production. ... Abstract. The threat of global environmental change has tended to focus on the possible impacts of a changing environment on agriculture and the implications for global food security. From a ...

  16. Energy, atmospheric chemistry, and global climate

    Science.gov (United States)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  17. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China.

    Science.gov (United States)

    He, Chunyang; Tian, Jie; Gao, Bin; Zhao, Yuanyuan

    2015-01-01

    Quantitatively distinguishing grassland degradation due to climatic variations from that due to human activities is of great significance to effectively governing degraded grassland and realizing sustainable utilization. The objective of this study was to differentiate these two types of drivers in the Liao River Basin during 1999-2009 using the residual trend (RESTREND) method and to evaluate the applicability of the method in semiarid and semihumid regions. The relationship between the normalized difference vegetation index (NDVI) and each climatic factor was first determined. Then, the primary driver of grassland degradation was identified by calculating the change trend of the normalized residuals between the observed and the predicted NDVI assuming that climate change was the only driver. We found that the RESTREND method can be used to quantitatively and effectively differentiate climate and human drivers of grassland degradation. We also found that the grassland degradation in the Liao River Basin was driven by both natural processes and human activities. The driving factors of grassland degradation varied greatly across the study area, which included regions having different precipitation and altitude. The degradation in the Horqin Sandy Land, with lower altitude, was driven mainly by human activities, whereas that in the Kungl Prairie, with higher altitude and lower precipitation, was caused primarily by climate change. Therefore, the drivers of degradation and local conditions should be considered in an appropriate strategy for grassland management to promote the sustainability of grasslands in the Liao River Basin.

  18. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances

    NARCIS (Netherlands)

    Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constanti; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Penuelas, Josep

    2015-01-01

    Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual

  19. How Will Climate Change Affect Globalization?

    DEFF Research Database (Denmark)

    Dilyard, John Raymond; Bals, Lydia; Zhuplev, Anatoly;

    2011-01-01

    , it will effect globalization. Businesses, if they want to be sustained, will have to adjust to climate change. This panel will examine two topics within which the relationship between climate change and globalization can be assessed - the sourcing of resources and services when the location of those resources...

  20. Assessing the 20th century performance of global climate models and application to climate change adaptation planning

    Science.gov (United States)

    Geil, Kerrie

    Rapid environmental changes linked to human-induced increases in atmospheric greenhouse gas concentrations have been observed on a global scale over recent decades. Given the relative certainty of continued change across many earth systems, the information output from climate models is an essential resource for adaptation planning. But in the face of many known modeling deficiencies, how confident can we be in model projections of future climate? It stands to reason that a realistic simulation of the present climate is at least a necessary (but likely not sufficient) requirement for a model's ability to realistically simulate the climate of the future. Here, I present the results of three studies that evaluate the 20th century performance of global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). (Abstract shortened by ProQuest.).

  1. National Security and Global Climate Change

    Science.gov (United States)

    2008-01-01

    The uncertainty, confusion, and speculation about the causes, effects, and implications of global climate change (GCC) often paralyze serious...against scientific indications of global climate change , but to consider how it would pose challenges to national security, explore options for facing...generals and admirals, released a report concluding that projected climate change poses a serious threat to America’s national security. This article

  2. Towards a global climate constitution

    NARCIS (Netherlands)

    Weikard, H.P.

    2011-01-01

    In this paper my concern is the study of the incentives of individual countries to sign an international climate agreement that sets the terms of a climate constitution, that is, it establishes emission rights and rules for trading these rights to combat the climate problem effectively and efficient

  3. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances.

    Science.gov (United States)

    Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constantí; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Peñuelas, Josep

    2015-01-01

    Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. International law and global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, R.; Freestone, D. (eds.)

    1991-01-01

    If climatic change is a global problem, it can only have a global solution, which must be brought about through the development of appropriate international law. This book tackles the legal problems that are at the heart of the matter. It has chapters on the following: international law and the protection of the global atmosphere; the precautionary principle; international equity and global warming; tropical forests; development issues; the role of international non-governmental organisations; international law and sea level rise; the international legal protection of wildlife; controlling emissions of greenhouse gases; institutional and legal reponses to global warming; and the negotiation and drafting of the climate change convention. There are a number of appendices containing documents on global climate change. Seven chapters are abstracted separately.

  5. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    Science.gov (United States)

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  6. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    Science.gov (United States)

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  7. Impact of solar panels on global climate

    Science.gov (United States)

    Hu, Aixue; Levis, Samuel; Meehl, Gerald A.; Han, Weiqing; Washington, Warren M.; Oleson, Keith W.; van Ruijven, Bas J.; He, Mingqiong; Strand, Warren G.

    2016-03-01

    Regardless of the harmful effects of burning fossil fuels on global climate, other energy sources will become more important in the future because fossil fuels could run out by the early twenty-second century given the present rate of consumption. This implies that sooner or later humanity will rely heavily on renewable energy sources. Here we model the effects of an idealized large-scale application of renewable energy on global and regional climate relative to a background climate of the representative concentration pathway 2.6 scenario (RCP2.6; ref. ). We find that solar panels alone induce regional cooling by converting incoming solar energy to electricity in comparison to the climate without solar panels. The conversion of this electricity to heat, primarily in urban areas, increases regional and global temperatures which compensate the cooling effect. However, there are consequences involved with these processes that modulate the global atmospheric circulation, resulting in changes in regional precipitation.

  8. Editorial—Global Climate Change and Contaminants

    Directory of Open Access Journals (Sweden)

    Hans Sanderson

    2015-07-01

    Full Text Available This Special Issue in the International Journal of Environmental Research and Public Health focuses on the inter-linkage between the global distribution of contaminants and climate change. [...

  9. Global change and climate-vegetation classification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Three phrases of the quantitative study of climate-vegetation classification and their characteristics are presented based on the review of advance in climate-vegetation interaction, a key issue of "global change and terrestrial ecosystems (GCTE)" which is the core project of International Geosphere-Biosphere Programme (IGBP): (ⅰ) characterized by the correlation between natural vegetation types and climate; (ⅱ) characterized by climatic indices which have obviously been restricted to plant ecophysiology; (ⅲ) characterized by coupling both structure and function of vegetation. Thus, the prospective of climate-vegetation classification for global change study in China was proposed, especially the study coupling climate-vegetation classification models with atmospheric general circulation models (GCMs) was emphasized.

  10. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  11. Global climate change and US agriculture

    Science.gov (United States)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  12. International business and global climate change

    NARCIS (Netherlands)

    Pinkse, J.; Kolk, A.

    2008-01-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and clima

  13. Perspectives on Chemistry and Global Climate Change

    National Research Council Canada - National Science Library

    Zecchini, Fulvio; Tundo, Pietro

    2010-01-01

    ..., updating, adaptation, and distribution of a monograph on global climate change for secondary schools. Read more in the sidebar below. Another IUPAC project, entitled Visualizing and Understanding the Science of Climate Change (2008043-1-050), is currently underway. A project of the Committee on Chemistry Education, it treats the topic from a di...

  14. Selecting global climate models for regional climate change studies

    OpenAIRE

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simula...

  15. Risk-analysis of global climate tipping points

    Energy Technology Data Exchange (ETDEWEB)

    Frieler, Katja; Meinshausen, Malte; Braun, N. [Potsdam Institute for Climate Impact Research e.V., Potsdam (Germany). PRIMAP Research Group] [and others

    2012-09-15

    There are many elements of the Earth system that are expected to change gradually with increasing global warming. Changes might prove to be reversible after global warming returns to lower levels. But there are others that have the potential of showing a threshold behavior. This means that these changes would imply a transition between qualitatively disparate states which can be triggered by only small shifts in background climate (2). These changes are often expected not to be reversible by returning to the current level of warming. The reason for that is, that many of them are characterized by self-amplifying processes that could lead to a new internally stable state which is qualitatively different from before. There are different elements of the climate system that are already identified as potential tipping elements. This group contains the mass losses of the Greenland and the West-Antarctic Ice Sheet, the decline of the Arctic summer sea ice, different monsoon systems, the degradation of coral reefs, the dieback of the Amazon rainforest, the thawing of the permafrost regions as well as the release of methane hydrates (3). Crucially, these tipping elements have regional to global scale effects on human society, biodiversity and/or ecosystem services. Several examples may have a discernable effect on global climate through a large-scale positive feedback. This means they would further amplify the human induced climate change. These tipping elements pose risks comparable to risks found in other fields of human activity: high-impact events that have at least a few percent chance to occur classify as high-risk events. In many of these examples adaptation options are limited and prevention of occurrence may be a more viable strategy. Therefore, a better understanding of the processes driving tipping points is essential. There might be other tipping elements even more critical but not yet identified. These may also lie within our socio-economic systems that are

  16. Does climate directly influence NPP globally?

    Science.gov (United States)

    Chu, Chengjin; Bartlett, Megan; Wang, Youshi; He, Fangliang; Weiner, Jacob; Chave, Jérôme; Sack, Lawren

    2016-01-01

    The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale.

  17. Global genetic change tracks global climate warming in Drosophila subobscura.

    Science.gov (United States)

    Balanyá, Joan; Oller, Josep M; Huey, Raymond B; Gilchrist, George W; Serra, Luis

    2006-09-22

    Comparisons of recent with historical samples of chromosome inversion frequencies provide opportunities to determine whether genetic change is tracking climate change in natural populations. We determined the magnitude and direction of shifts over time (24 years between samples on average) in chromosome inversion frequencies and in ambient temperature for populations of the fly Drosophila subobscura on three continents. In 22 of 26 populations, climates warmed over the intervals, and genotypes characteristic of low latitudes (warm climates) increased in frequency in 21 of those 22 populations. Thus, genetic change in this fly is tracking climate warming and is doing so globally.

  18. A Global Climate Model for Instruction.

    Science.gov (United States)

    Burt, James E.

    This paper describes a simple global climate model useful in a freshman or sophomore level course in climatology. There are three parts to the paper. The first part describes the model, which is a global model of surface air temperature averaged over latitude and longitude. Samples of the types of calculations performed in the model are provided.…

  19. [The global climate: a sick patient

    DEFF Research Database (Denmark)

    Lidegaard, O.; Lidegaard, M.

    2008-01-01

    , and major climatic disasters, including health threats to millions of people, are probable if the CO2 emission increases further. Therefore, serious global initiatives should be taken now in order to prevent global over heating. Denmark should be at the forefront of these initiatives Udgivelsesdato: 2008/8/25...

  20. Global indiscriminate methylation in cell-specific gene promoters following reprogramming into human induced pluripotent stem cells.

    Science.gov (United States)

    Nissenbaum, Jonathan; Bar-Nur, Ori; Ben-David, Eyal; Benvenisty, Nissim

    2013-01-01

    Molecular reprogramming of somatic cells into human induced pluripotent stem cells (iPSCs) is accompanied by extensive changes in gene expression patterns and epigenetic marks. To better understand the link between gene expression and DNA methylation, we have profiled human somatic cells from different embryonic cell types (endoderm, mesoderm, and parthenogenetic germ cells) and the iPSCs generated from them. We show that reprogramming is accompanied by extensive DNA methylation in CpG-poor promoters, sparing CpG-rich promoters. Intriguingly, methylation in CpG-poor promoters occurred not only in downregulated genes, but also in genes that are not expressed in the parental somatic cells or their respective iPSCs. These genes are predominantly tissue-specific genes of other cell types from different lineages. Our results suggest a role of DNA methylation in the silencing of the somatic cell identity by global nonspecific methylation of tissue-specific genes from all lineages, regardless of their expression in the parental somatic cells.

  1. Cave temperatures and global climatic change.

    Directory of Open Access Journals (Sweden)

    Badino Giovanni

    2004-12-01

    Full Text Available The physical processes that establish the cave temperature are briefly discussed, showing that cave temperature is generally strictly connected with the external climate. The Global Climatic changes can then influence also the underground climate. It is shown that the mountain thermal inertia causes a delay between the two climates and then a thermal unbalance between the cave and the atmosphere. As a consequence there is a net energy flux from the atmosphere to the mountain, larger than the geothermal one, which is deposited mainly in the epidermal parts of caves.

  2. Human-induced Arctic moistening.

    Science.gov (United States)

    Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis

    2008-04-25

    The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.

  3. Climate change impacts on global food security.

    Science.gov (United States)

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  4. Model-based assessment of the role of human-induced climate change in the 2005 Caribbean coral bleaching event

    Energy Technology Data Exchange (ETDEWEB)

    Donner, S.D. [Princeton Univ., NJ (United States). Woodrow Wilson School of Public and International Affairs; Knutson, T.R. [National Oceanic and Atmospheric Administration, Princeton, NJ (United States). Geophysical Fluid Dynamics Lab.; Oppenheimer, M. [Princeton Univ., NJ (United States). Dept. of Geosciences

    2007-03-27

    Episodes of mass coral bleaching around the world in recent decades have been attributed to periods of anomalously warm ocean temperatures. In 2005, the sea surface temperature (SST) anomaly in the tropical North Atlantic that may have contributed to the strong hurricane season caused widespread coral bleaching in the Eastern Caribbean. Here, the authors use two global climate models to evaluate the contribution of natural climate variability and anthropogenic forcing to the thermal stress that caused the 2005 coral bleaching event. Historical temperature data and simulations for the 1870-2000 period show that the observed warming in the region is unlikely to be due to unforced climate variability alone. Simulation of background climate variability suggests that anthropogenic warming may have increased the probability of occurrence of significant thermal stress events for corals in this region by an order of magnitude. Under scenarios of future greenhouse gas emissions, mass coral bleaching in the Eastern Caribbean may become a biannual event in 20-30 years. However, if corals and their symbionts can adapt by 1-1.5{sup o}C, such mass bleaching events may not begin to recur at potentially harmful intervals until the latter half of the century. The delay could enable more time to alter the path of greenhouse gas emissions, although long-term 'committed warming' even after stabilization of atmospheric CO{sub 2} levels may still represent an additional long-term threat to corals.

  5. Model-based assessment of the role of human-induced climate change in the 2005 Caribbean coral bleaching event.

    Science.gov (United States)

    Donner, Simon D; Knutson, Thomas R; Oppenheimer, Michael

    2007-03-27

    Episodes of mass coral bleaching around the world in recent decades have been attributed to periods of anomalously warm ocean temperatures. In 2005, the sea surface temperature (SST) anomaly in the tropical North Atlantic that may have contributed to the strong hurricane season caused widespread coral bleaching in the Eastern Caribbean. Here, we use two global climate models to evaluate the contribution of natural climate variability and anthropogenic forcing to the thermal stress that caused the 2005 coral bleaching event. Historical temperature data and simulations for the 1870-2000 period show that the observed warming in the region is unlikely to be due to unforced climate variability alone. Simulation of background climate variability suggests that anthropogenic warming may have increased the probability of occurrence of significant thermal stress events for corals in this region by an order of magnitude. Under scenarios of future greenhouse gas emissions, mass coral bleaching in the Eastern Caribbean may become a biannual event in 20-30 years. However, if corals and their symbionts can adapt by 1-1.5 degrees C, such mass bleaching events may not begin to recur at potentially harmful intervals until the latter half of the century. The delay could enable more time to alter the path of greenhouse gas emissions, although long-term "committed warming" even after stabilization of atmospheric CO(2) levels may still represent an additional long-term threat to corals.

  6. Globalization to amplify economic climate losses

    Science.gov (United States)

    Otto, C.; Wenz, L.; Levermann, A.

    2015-12-01

    Economic welfare under enhanced anthropogenic carbon emissions and associated future warming poses a major challenge for a society with an evolving globally connected economy. Unabated climate change will impact economic output for example through heat-stress-related reductions in productivity. Since meteorologically-induced production reductions can propagate along supply chains, structural changes in the economic network may influence climate-related losses. The role of the economic network evolution for climate impacts has been neither quantified nor qualitatively understood. Here we show that since the beginning of the 21st century the structural change of the global supply network has been such that an increase of spillover losses due to unanticipated climatic events has to be expected. We quantify primary, secondary and higher-order losses from reduced labor productivity under past and present economic and climatic conditions and find that indirect losses are significant and increase with rising temperatures. The connectivity of the economic network has increased in such a way as to foster the propagation of production loss. This supply chain connectivity robustly exhibits the characteristic distribution of self-organized criticality which has been shifted towards higher values since 2001. Losses due to this structural evolution dominated over the effect of comparably weak climatic changes during this decade. Our finding suggests that the current form of globalization may amplify losses due to climatic extremes and thus necessitate structural adaptation that requires more foresight than presently prevalent.

  7. Uncertainty and global climate change research

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.E. [Oak Ridge National Lab., TN (United States); Weiher, R. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1994-06-01

    The Workshop on Uncertainty and Global Climate Change Research March 22--23, 1994, in Knoxville, Tennessee. This report summarizes the results and recommendations of the workshop. The purpose of the workshop was to examine in-depth the concept of uncertainty. From an analytical point of view, uncertainty is a central feature of global climate science, economics and decision making. The magnitude and complexity of uncertainty surrounding global climate change has made it quite difficult to answer even the most simple and important of questions-whether potentially costly action is required now to ameliorate adverse consequences of global climate change or whether delay is warranted to gain better information to reduce uncertainties. A major conclusion of the workshop is that multidisciplinary integrated assessments using decision analytic techniques as a foundation is key to addressing global change policy concerns. First, uncertainty must be dealt with explicitly and rigorously since it is and will continue to be a key feature of analysis and recommendations on policy questions for years to come. Second, key policy questions and variables need to be explicitly identified, prioritized, and their uncertainty characterized to guide the entire scientific, modeling, and policy analysis process. Multidisciplinary integrated assessment techniques and value of information methodologies are best suited for this task. In terms of timeliness and relevance of developing and applying decision analytic techniques, the global change research and policy communities are moving rapidly toward integrated approaches to research design and policy analysis.

  8. Characterization of climate- and human-induced slope, soil and grassland dynamics in Bavarian landscapes under climate change

    Science.gov (United States)

    Waltl, Peter; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    Since the Neolithic Revolution the intensification of agriculture has been causing increased erosion in Bavarian landscapes. The correlated sediments often induce the formation of new colluvial and alluvial soils (WRB: Regic Anthrosol and Fluvisol i.a.). The soils themselves are able to absorb, bind, and store considerable amounts of C- and N-compounds. Therefore, they are important reactors regarding climate-relevant greenhouse-gas balances in the atmosphere. Learning about the exact spatial extent and thickness of these soils in representative landscapes, but also about their geneses and processes is essential. It allows for a detailed quantification and understanding of the current and potential properties and characteristics of these soils in their role of greenhouse-gas reactors. Two research locations were elected as representative Bavarian landscapes composed of different lithology and pedo-chemical environments (limestone versus crystalline setting): Rottenbuch is situated at the Ammer River in the Upper Bavarian pre-alpine forelands (Lkr. Weilheim-Schongau). The Otterbach Creek lies at the southwestern foothills of the Bavarian Forest at the Donaurandbruch tectonic line next to Donaustauf (Lkr. Regensburg). Detailed information on the soil horizons and layers within these research areas are accumulated by sounding or burrowing soil profiles and subsequently analyzing the soil samples in the lab. Geophysical methods, such as electrical resistivity tomography (ERT), seismic refraction tomography (SRT), and ground penetrating radar (GPR), allow for the extension of this point-source information into three dimensions. By repeatedly and regularly applying these methods, also temporal changes such as soil hydrology or freeze and thaw cycles can be monitored and their influence on fluxes and exchanges can be taken into account.

  9. Global climate change and international security.

    Energy Technology Data Exchange (ETDEWEB)

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national and international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.

  10. Selecting global climate models for regional climate change studies.

    Science.gov (United States)

    Pierce, David W; Barnett, Tim P; Santer, Benjamin D; Gleckler, Peter J

    2009-05-26

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures.

  11. Selecting global climate models for regional climate change studies

    Science.gov (United States)

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652

  12. U.S. Global Climate Change Impacts Overview

    Science.gov (United States)

    Karl, T. R.

    2009-12-01

    This past year the US Global Change Research Program released a report that summarized the science of climate change and the impacts of climate change on the United States, now and in the future. The report underscores the importance of measures to reduce climate change. In the context of impacts, the report identifies examples of actions currently being pursued in various sectors and regions to address climate change as well as other environmental problems that could be exacerbated by climate change. This state-of-knowledge report also identifies areas in which scientific uncertainty limits our ability to estimate future climate changes and its impacts. Key findings of the report include: (1) Global warming is unequivocal and primarily human induced. - This statement is stronger than the IPCC (2007) statement because new attribution studies since that report continue to implicate human caused changes over the past 50 years. (2) Climate Changes are underway in the Unites States and are projected to grow. - These include increases in heavy downpours, rising temperature and sea level, rapidly retreating glaciers, thawing permafrost, lengthening growing seasons lengthening ice-free seasons in the oceans and on lakes and rivers, earlier snowmelt and alteration in river flows. (3) Widespread climate-related impacts are occurring now and are expected to increase. - The impacts vary from region to region, but are already affecting many sectors e.g., water, energy, transportation, agriculture, ecosystems, etc. (4) Climate change will stress water resources. - Water is an issue in every region of the US, but the nature of the impacts vary (5) Crop and livestock production will be increasingly challenged. - Warming related to high emission scenarios often negatively affect crop growth and yields levels. Increased pests, water stress, diseases, and weather extremes will pose adaptation challenges for crops and livestock production. (6) Coastal areas are at increased risk from

  13. Climate Change and Global Wine Quality

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.V. [Department of Geography, Southern Oregon University, 1250 Siskiyou Blvd, Ashland, Oregon, 97520 (United States); White, M.A. [Department of Aquatic, Watershed, and Earth Resources, Utah State University, Logan, Utah, 84322 (United States); Cooper, O.R. [Cooperative Institute for Research in Environmental Sciences CIRES, University of Colorado/NOAA Aeronomy Laboratory, Boulder, Colorado, 80305 (United States); Storchmann, K. [Department of Economics, Yale University, New Haven, Connecticut, 06520 (United States)

    2005-12-01

    From 1950 to 1999 the majority of the world's highest quality wine-producing regions experienced growing season warming trends. Vintage quality ratings during this same time period increased significantly while year-to-year variation declined. While improved winemaking knowledge and husbandry practices contributed to the better vintages it was shown that climate had, and will likely always have, a significant role in quality variations. This study revealed that the impacts of climate change are not likely to be uniform across all varieties and regions. Currently, many European regions appear to be at or near their optimum growing season temperatures, while the relationships are less defined in the New World viticulture regions. For future climates, model output for global wine producing regions predicts an average warming of 2C in the next 50 yr. For regions producing high-quality grapes at the margins of their climatic limits, these results suggest that future climate change will exceed a climatic threshold such that the ripening of balanced fruit required for existing varieties and wine styles will become progressively more difficult. In other regions, historical and predicted climate changes could push some regions into more optimal climatic regimes for the production of current varietals. In addition, the warmer conditions could lead to more poleward locations potentially becoming more conducive to grape growing and wine production.

  14. Global Climate Change and Children's Health.

    Science.gov (United States)

    2015-11-01

    Rising global temperatures are causing major physical, chemical, and ecological changes in the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as "climate change," are the result of contemporary human activity. Climate change poses threats to human health, safety, and security, and children are uniquely vulnerable to these threats. The effects of climate change on child health include: physical and psychological sequelae of weather disasters; increased heat stress; decreased air quality; altered disease patterns of some climate-sensitive infections; and food, water, and nutrient insecurity in vulnerable regions. The social foundations of children's mental and physical health are threatened by the specter of far-reaching effects of unchecked climate change, including community and global instability, mass migrations, and increased conflict. Given this knowledge, failure to take prompt, substantive action would be an act of injustice to all children. A paradigm shift in production and consumption of energy is both a necessity and an opportunity for major innovation, job creation, and significant, immediate associated health benefits. Pediatricians have a uniquely valuable role to play in the societal response to this global challenge.

  15. Climate change and the global malaria recession.

    Science.gov (United States)

    Gething, Peter W; Smith, David L; Patil, Anand P; Tatem, Andrew J; Snow, Robert W; Hay, Simon I

    2010-05-20

    The current and potential future impact of climate change on malaria is of major public health interest. The proposed effects of rising global temperatures on the future spread and intensification of the disease, and on existing malaria morbidity and mortality rates, substantively influence global health policy. The contemporary spatial limits of Plasmodium falciparum malaria and its endemicity within this range, when compared with comparable historical maps, offer unique insights into the changing global epidemiology of malaria over the last century. It has long been known that the range of malaria has contracted through a century of economic development and disease control. Here, for the first time, we quantify this contraction and the global decreases in malaria endemicity since approximately 1900. We compare the magnitude of these changes to the size of effects on malaria endemicity proposed under future climate scenarios and associated with widely used public health interventions. Our findings have two key and often ignored implications with respect to climate change and malaria. First, widespread claims that rising mean temperatures have already led to increases in worldwide malaria morbidity and mortality are largely at odds with observed decreasing global trends in both its endemicity and geographic extent. Second, the proposed future effects of rising temperatures on endemicity are at least one order of magnitude smaller than changes observed since about 1900 and up to two orders of magnitude smaller than those that can be achieved by the effective scale-up of key control measures. Predictions of an intensification of malaria in a warmer world, based on extrapolated empirical relationships or biological mechanisms, must be set against a context of a century of warming that has seen marked global declines in the disease and a substantial weakening of the global correlation between malaria endemicity and climate.

  16. The emergence of global climate law

    NARCIS (Netherlands)

    Farber, D.A.; Peeters, Marjan; Farber, Daniel A.; Peeters, Marjan

    2016-01-01

    As the chapters in this Encyclopedia demonstrate, climate law is a dynamic and multidisciplinary field, implicating many diverse fields of law at all levels from municipal planning through multinational treaties. The outlines of an emerging global law can be discerned, including shared principles su

  17. Global Framework for Climate Services (GFCS)

    Science.gov (United States)

    Lúcio, F.

    2012-04-01

    Climate information at global, regional and national levels and in timeframes ranging from the past, present and future climate is fundamental for planning, sustainable development and to help organizations, countries and individuals adopt appropriate strategies to adapt to climate variability and change. Based on this recognition, in 2009, the Heads of States and Governments, Ministers and Heads of Delegation representing more than 150 countries, 34 United Nations Organizations and 36 Governmental and non-Governmental international organizations, and more than 2500 experts present at the Third World Climate Conference (WCC - 3) unanimously agreed to develop the Global Framework for Climate Services (GFCS) to strengthen the production, availability, delivery and application of science-based climate prediction and services. They requested that a taskforce of high-level independent advisors be appointed to prepare a report, including recommendations on the proposed elements of the Framework and the next steps for its implementation. The high-level taskforce produced a report which was endorsed by the Sixteeth World Meteorological Congress XVI in May 2011. A process for the development of the implementation plan and the governance structure of the Global Framework for Climate Services (GFCS) is well under way being led by the World Meteorological Organization within the UN system. This process involves consultations that engage a broad range of stakeholders including governments, UN and international agencies, regional organizations and specific communities of practitioners. These consultations are being conducted to facilitate discussions of key issues related to the production, availability, delivery and application of climate services in the four priority sectors of the framework (agriculture, water, health and disaster risk reduction) so that the implementation plan of the Framework is a true reflection of the aspirations of stakeholders. The GFCS is envisaged as

  18. Asia's changing role in global climate change.

    Science.gov (United States)

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  19. Climate change at the coast: from global to local; Impact du changement climatique sur la cote: de global a local

    Energy Technology Data Exchange (ETDEWEB)

    Watkinson, A.R. [Tyndall Centre for Climate Change Research (United Kingdom); East Anglia Univ., School of East Science, Norwich (United Kingdom)

    2009-07-01

    The IPCC has recently documented substantial changes in the global heat content of the oceans, salinity, sea level, thermal expansion and biogeochemistry. Over the 21. century anticipated climate related changes include: a rise in sea level of up to 0.6 m or more; increases in sea surface temperatures up to 3 deg. C; an intensification of tropical and extra tropical cyclones; larger extreme waves and storm surges; altered precipitation/ run-off; and ocean acidification. The Tyndall Centre has been exploring how to down-scale the global analysis to the local level within the framework of a coastal simulator. The simulator provides information on possible future states of the coast through the 21. Century under a range of climate and socio-economic futures and shoreline management options. It links models within a nested framework, recognizing three scales: (1) global, (2) regional, and (3) local. The linked models describe a range of processes, including marine climate (waves, surges and mean sea level), sand bank morpho-dynamics, wave transformation, shoreline morpho-dynamics, built environment scenarios, ecosystem change, and erosion and flood risk. Analyses from the simulator reinforce conclusions from IPCC WG2: coasts will be exposed to increasing risks over coming decades due to many compounding climate-change factors; the impact of climate change on coasts will be exacerbated by increasing human induced pressures; the unavoidability of sea-level rise even in the longer-term frequently conflicts with present day human development patterns and trends. (author)

  20. The European climate under a 2 degrees C global warming

    OpenAIRE

    Vautard, R.; A. Gobiet; S. Sobolowski; Kjellström, E; Stegehuis, A.; Watkiss, P.; Mendlik, T.; Landgren, O.; Nikulin, G.; Teichmann, C.; D. Jacob

    2014-01-01

    A global warming of 2 °C relative to pre-industrial climate has been considered as a threshold which society should endeavor to remain below, in order to limit the dangerous effects of anthropogenic climate change. The possible changes in regional climate under this target level of global warming have so far not been investigated in detail. Using an ensemble of 15 regional climate simulations downscaling six transient global climate simulations, we identify the respective time periods corresp...

  1. State of the Climate Monthly Overview - Global Snow & Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  2. Deep solar minimum and global climate changes

    Directory of Open Access Journals (Sweden)

    Ahmed A. Hady

    2013-05-01

    Full Text Available This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue.

  3. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    NARCIS (Netherlands)

    Engels, S.; van Geel, B.

    2012-01-01

    Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of t

  4. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    NARCIS (Netherlands)

    Engels, S.; van Geel, B.

    2012-01-01

    Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of t

  5. Global Climate Change: National Security Implications

    Science.gov (United States)

    2008-05-01

    Probably long term, the single most important issue we face as a global community.” Cited in sciencepolicy.colorado.edu/ prometheus /archives/climate_ change...Surface Temperature Monitoring for Malaria Early Warning in Botswana,” American Journal of Tropical Medicine and Hygiene, Vol. 73, No. 1, 2005, pp...1950,” Tropical Medicine and International Health, Vol. 7, No. 8, pp. 657-677, August 2002. 9. Price-Smith, Contagion and Chaos. 10. E. Worral et

  6. Global fish production and climate change.

    Science.gov (United States)

    Brander, K M

    2007-12-11

    Current global fisheries production of approximately 160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but we have low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Niño-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are governed by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipitation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the principal feasible means of reducing the impacts of climate change.

  7. Northern peatlands in global climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J.; Vasander, H. [eds.] [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Northern peatlands are important in regulating the global climate. While sequestering carbon dioxide, these peatlands release ca. 24-39 Tg methane annually to the atmosphere. This is 5-20 % of the annual anthropogenic methane emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level draw-down after land-use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Subsequent emissions of methane would decrease, whereas emissions of carbon dioxide and nitrous oxide would increase. Within the Finnish Research Programme on Climate Change (SILMU), the research project `Carbon Balance of Peatlands and Climate Change` (SUOSILMU) has been under progress since 1990. It is a co-operative research project, with research groups from the Universities of Helsinki and Joensuu, the Finnish Forest Research Institute, the National Public Health Institute and the Finnish Environment Agency. The research consortium of this project organised a workshop entitled `Northern Peatlands in Global Climatic Change - Hyytiaelae Revisited` October 8-12, 1995. The main objective of the workshop was to review the state of the art of the carbon cycling research in natural and managed peatlands. The role of peatlands in the greenhouse effect, their response and feedback to the predicted climate change, and the consequences of land-use changes were assessed, and the future research needs were evaluated. The latest information on the role of peatlands in the atmospheric change was given in 50 posters and 4 key lectures. Results of SUOSILMU projects were demonstrated during a 1-day field excursion to one of the intensive study sites, Lakkasuo near Hyytiaelae

  8. Pliocene oceanic seaways and global climate

    Science.gov (United States)

    Karas, Cyrus; Nürnberg, Dirk; Bahr, André; Groeneveld, Jeroen; Herrle, Jens O.; Tiedemann, Ralf; Demenocal, Peter B.

    2017-01-01

    Tectonically induced changes in oceanic seaways had profound effects on global and regional climate during the Late Neogene. The constriction of the Central American Seaway reached a critical threshold during the early Pliocene ~4.8–4 million years (Ma) ago. Model simulations indicate the strengthening of the Atlantic Meridional Overturning Circulation (AMOC) with a signature warming response in the Northern Hemisphere and cooling in the Southern Hemisphere. Subsequently, between ~4–3 Ma, the constriction of the Indonesian Seaway impacted regional climate and might have accelerated the Northern Hemisphere Glaciation. We here present Pliocene Atlantic interhemispheric sea surface temperature and salinity gradients (deduced from foraminiferal Mg/Ca and stable oxygen isotopes, δ18O) in combination with a recently published benthic stable carbon isotope (δ13C) record from the southernmost extent of North Atlantic Deep Water to reconstruct gateway-related changes in the AMOC mode. After an early reduction of the AMOC at ~5.3 Ma, we show in agreement with model simulations of the impacts of Central American Seaway closure a strengthened AMOC with a global climate signature. During ~3.8–3 Ma, we suggest a weakening of the AMOC in line with the global cooling trend, with possible contributions from the constriction of the Indonesian Seaway.

  9. Pliocene oceanic seaways and global climate.

    Science.gov (United States)

    Karas, Cyrus; Nürnberg, Dirk; Bahr, André; Groeneveld, Jeroen; Herrle, Jens O; Tiedemann, Ralf; deMenocal, Peter B

    2017-01-05

    Tectonically induced changes in oceanic seaways had profound effects on global and regional climate during the Late Neogene. The constriction of the Central American Seaway reached a critical threshold during the early Pliocene ~4.8-4 million years (Ma) ago. Model simulations indicate the strengthening of the Atlantic Meridional Overturning Circulation (AMOC) with a signature warming response in the Northern Hemisphere and cooling in the Southern Hemisphere. Subsequently, between ~4-3 Ma, the constriction of the Indonesian Seaway impacted regional climate and might have accelerated the Northern Hemisphere Glaciation. We here present Pliocene Atlantic interhemispheric sea surface temperature and salinity gradients (deduced from foraminiferal Mg/Ca and stable oxygen isotopes, δ(18)O) in combination with a recently published benthic stable carbon isotope (δ(13)C) record from the southernmost extent of North Atlantic Deep Water to reconstruct gateway-related changes in the AMOC mode. After an early reduction of the AMOC at ~5.3 Ma, we show in agreement with model simulations of the impacts of Central American Seaway closure a strengthened AMOC with a global climate signature. During ~3.8-3 Ma, we suggest a weakening of the AMOC in line with the global cooling trend, with possible contributions from the constriction of the Indonesian Seaway.

  10. Global climate change economics and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Parrino, C.L.

    1996-12-31

    Timothy Wirth, Under Secretary for Global Affairs, recently stated that climate change is probably the most complicated scientific, environmental, economic, and political challenge in history. Developing an effective, flexible climate change policy with over 150 nations, diverse stakeholders and less-than-certain scientific understanding is indeed difficult with so much at stake. Specifically, what the author would like to address are some of the issues states are beginning to consider in response to the national and international discussions. The decisions at the national and international level, starting with the conference in Rio, and most recently in Geneva, will impact regulators directly. On July 17, 1996, the US negotiating team to the Framework Convention on Climate Change stated for the first time that it supports a {open_quotes}verifiable and binding post-2000 emissions target.{close_quotes} This, indeed, caught the authors attention. Until now, as you know, climate change negotiation was based on the 1992 Framework Convention on Climate Change, whereby industrialized countries agreed to a nonbinding aim of reducing green house gas emissions to 1990 levels by the year 2000. It now appears that we may soon be committed to a legally binding emission`s reduction strategy.

  11. Global solar radiation climate of Libya

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S.; Abuain, Taher (Al-Fateh Univ., Tripoli (LY). Dept. of Physics)

    1992-02-01

    This paper presents the general features of the global solar radiation measured by 15 meteorological stations spread over Libya during the 5-yr period, 1981-1986. A number of methods for correlating monthly average daily global radiation with recorded sunshine duration have been attempted. It is found that some well known correlation formulae show large discrepancies in predicting the global radiation of Libya. However, the Dogniaux-Lemoine correlation equation is found to be suitable for the prediction, particularly in the coastal regions. The present analysis indicates that solar radiation in the Libyan climate can be classified into two broad divisions, coastal and desert, with two sub-divisions in each of the divisions. Station-independent correlation parameters for these regions are calculated. (Author).

  12. Assessing Climate Change Impacts on Global Hydropower

    Directory of Open Access Journals (Sweden)

    Aanund Killingtveit

    2012-02-01

    Full Text Available Currently, hydropower accounts for close to 16% of the world’s total power supply and is the world’s most dominant (86% source of renewable electrical energy. The key resource for hydropower generation is runoff, which is dependent on precipitation. The future global climate is uncertain and thus poses some risk for the hydropower generation sector. The crucial question and challenge then is what will be the impact of climate change on global hydropower generation and what are the resulting regional variations in hydropower generation potential? This paper is a study that aims to evaluate the changes in global hydropower generation resulting from predicted changes in climate. The study uses an ensemble of simulations of regional patterns of changes in runoff, computed from global circulation models (GCM simulations with 12 different models. Based on these runoff changes, hydropower generation is estimated by relating the runoff changes to hydropower generation potential through geographical information system (GIS, based on 2005 hydropower generation. Hydropower data obtained from EIA (energy generation, national sites, FAO (water resources and UNEP were used in the analysis. The countries/states were used as computational units to reduce the complexities of the analysis. The results indicate that there are large variations of changes (increases/decreases in hydropower generation across regions and even within regions. Globally, hydropower generation is predicted to change very little by the year 2050 for the hydropower system in operation today. This change amounts to an increase of less than 1% of the current (2005 generation level although it is necessary to carry out basin level detailed assessment for local impacts which may differ from the country based values. There are many regions where runoff and hydropower generation will increase due to increasing precipitation, but also many regions where there will be a decrease. Based on this

  13. Danish and global climate and energy challenges

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, John M. (Risoe DTU, Roskilde (Denmark)); Davidson, O. (Univ. of Sierra Leone, IPCC (Sierra Leone))

    2008-12-15

    The global energy scene is currently dominated by two overriding concerns that are strongly affecting decisions about energy development priorities: 1) Climate change 2) Energy security. This is especially true for industrialized countries and the more rapidly developing economies while many developing countries are facing really basic energy development constraints giving quite a different meaning to the concept of energy security. There is broad global recognition of the need to support these countries in their efforts to increase access to cleaner and more efficient forms of energy for the more than 1,6 billion people currently having no access to electricity and largely relying on traditional forms of biomass for basic energy services, but progress is slow in many regions. The three areas, security, climate and poverty are in several ways interlinked, and ideally national energy policies and development programmes should address all the above issues - or at least not have negative effects in any area. In practice, however, many national policy landscapes have been dominated by just one of these factors. In the political debate the access issue is often seen as a potential climate problem, but most studies indicate that access to basic energy services for the poorest one billion people, even based on fossil resources, will make very marginal contributions to global GHG emissions. The more relevant and pressing political concern is how to limit global emissions and allow the emerging economies to continue their economic growth, but as discussed in this report the technological options will be available and solutions depend on political will and agreements on sharing the technologies and financial resources. (au)

  14. Global climate change and infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Shope, R. (Yale Univ. School of Medicine, New Haven, CT (United States))

    1991-12-01

    The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in North America. Vibrio cholera is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help as to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. 12 refs., 1 tab.

  15. Global projections and climate stabilisation targets

    Science.gov (United States)

    Friedlingstein, Pierre

    2014-05-01

    The Summary for policy makers of the 5th Assessment Report of the Working Group 1 of IPCC has a figure that has no equivalent in previous IPCC assessment reports. This new figure shows the change in global average surface temperature as a function of cumulative anthropogenic emissions of CO2. In this talk I will describe how the concept of transient climate response to cumulative emissions (TCRE) that supports that figure emerged from the literature over the recent years and what are the fundamental physical and biogeochemical processes that explain this relationship and its linearity. I will also explore the implication of TCRE for long-term climate change and mitigation strategies as well as the limitations of the concept of TCRE.

  16. Hurricane Footprints in Global Climate Models

    Directory of Open Access Journals (Sweden)

    Francisco J. Tapiador

    2008-11-01

    Full Text Available This paper addresses the identification of hurricanes in low-resolution global climate models (GCM. As hurricanes are not fully resolvable at the coarse resolution of the GCMs (typically 2.5 × 2.5 deg, indirect methods such as analyzing the environmental conditions favoring hurricane formation have to be sought. Nonetheless, the dynamical cores of the models have limitations in simulating hurricane formation, which is a far from fully understood process. Here, it is shown that variations in the specific entropy rather than in dynamical variables can be used as a proxy of the hurricane intensity as estimated by the Accumulated Cyclone Energy (ACE. The main application of this research is to ascertain the changes in the hurricane frequency and intensity in future climates.

  17. Tectonic Movement and Global Climate Change

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexiang; Chen Dianyou

    2000-01-01

    Glaciation between northern hemisphere and southern hemisphere were synchronous, the ice age occurred not in high but in low value of the eccentricity of the earth's orbit. Such facts went against the precession principle of the astronomical theory of ice age. The inhomogeneous distribution of climate consisted with the inhomogeneous distribution of ocean and continent. The north/south antisymmetry may be attributed to southward deviation of the thermal center and northward deviation of the mass center within the mantle demonstrated by seismic tomography. The core - mantle angular momentum makes rotational energy into thermal energy and mantle plumes erupt in the ocean bottom. The earth's deformation by tidal force makes the eruption of mantle plumes strong. They are the reason that glaciation between the Northern Hemisphere and Southern Hemisphere are synchronous and the ice age occurred in low value of the eccentricity of the earth' s orbit. The tectonic movement is playing a most important part in global climate change.

  18. Global Climate Models of the Terrestrial Planets

    Science.gov (United States)

    Forget, F.; Lebonnois, S.

    On the basis of the global climate models (GCMs) originally developed for Earth, several teams around the world have been able to develop GCMs for the atmospheres of the other terrestrial bodies in our solar system: Venus, Mars, Titan, Triton, and Pluto. In spite of the apparent complexity of climate systems and meteorology, GCMs are based on a limited number of equations. In practice, relatively complete climate simulators can be developed by combining a few components such as a dynamical core, a radiative transfer solver, a parameterization of turbulence and convection, a thermal ground model, and a volatile phase change code, possibly completed by a few specific schemes. It can be shown that many of these GCM components are "universal" so that we can envisage building realistic climate models for any kind of terrestrial planets and atmospheres that we can imagine. Such a tool is useful for conducting scientific investigations on the possible climates of terrestrial extrasolar planets, or to study past environments in the solar system. The ambition behind the development of GCMs is high: The ultimate goal is to build numerical simulators based only on universal physical or chemical equations, yet able to reproduce or predict all the available observations on a given planet, without any ad hoc forcing. In other words, we aim to virtually create in our computers planets that "behave" exactly like the actual planets themselves. In reality, of course, nature is always more complex than expected, but we learn a lot in the process. In this chapter we detail some lessons learned in the solar system: In many cases, GCMs work. They have been able to simulate many aspects of planetary climates without difficulty. In some cases, however, problems have been encountered, sometimes simply because a key process has been forgotten in the model or is not yet correctly parameterized, but also because sometimes the climate regime seems to be result of a subtle balance between

  19. Global Climate Change: Role of Livestock

    Directory of Open Access Journals (Sweden)

    S.M.K. Naqvi

    2011-01-01

    Full Text Available Climate change is seen as a major threat to the survival of many species, ecosystems and the sustainability of livestock production systems in many parts of the world. Green house gases (GHG are released in the atmosphere both by natural sources and anthropogenic (human related activities. An attempt has been made in this article to understand the contribution of ruminant livestock to climate change and to identify the mitigation strategies to reduce enteric methane emission in livestock. The GHG emissions from the agriculture sector account for about 25.5% of total global radiative forcing and over 60% of anthropogenic sources. Animal husbandry accounts for 18% of GHG emissions that cause global warming. Reducing the increase of GHG emissions from agriculture, especially livestock production should therefore be a top priority, because it could curb warming fairly rapidly. Among the GHGs, CH4 is considered to be the largest potential contributor to the global warming phenomenon. Ruminant livestock such as cattle, buffalo, sheep and goats contributes the major proportion of total agricultural emission of methane. Indian livestock system is a large contributor to GHGs and therefore also to the global warming phenomenon. Methane emission from enteric fermentation from Indian livestock ranged from 7.26 to 10.4 MT/year. In India more than 90% of the total methane emission from enteric fermentation is being contributed by the large ruminants (cattle and buffalo and rest from small ruminants and others. Generally CH4 reduction strategies can be grouped under two broad categories such as management and nutritional strategies. Although the reduction in GHG emissions from livestock industries are seen as high priorities, strategies for reducing emissions should not reduce the economic viability of enterprises if they are to find industry acceptability.

  20. Global metabolic impacts of recent climate warming.

    Science.gov (United States)

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  1. Sustainable biochar to mitigate global climate change

    Science.gov (United States)

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen

    2010-01-01

    Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722

  2. White House Conference on Global Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    President Clinton has directed the White House office on Environmental Policy to coordinate an interagency process to develop a plan to fulfill the commitment he made in his Earth Day address on April 21, 1993. This plan will become the cornerstone of the Climate Change Plan that will be completed shortly after the Rio Accord enters into force. The Office on Environmental Policy established the Interagency Climate Change Mitigation Group to draw on the expertise of federal agencies including the National Economic Council; the Council of Economic Advisors; the Office of Science and Technology Policy; the Office of Management and Budget; the National Security Council; the Domestic Policy Council; the Environmental Protection Agency; and the Departments of Energy, Transportation, Agriculture, Interior, Treasury, Commerce, and State. Working groups have been established to examine six key policy areas: energy demand, energy supply, joint implementation, methane and other gases, sinks, and transportation. The purpose of the White House Conference on Global Climate Change was to ``tap the real-world experiences`` of diverse participants and seek ideas and information for meeting the President`s goals. During the opening session, senior administration officials defined the challenge ahead and encouraged open and frank conversation about the best possible ways to meet it.

  3. Studies of dynamical processes affecting global climate

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C.; Cooper, D.; Eichinger, W. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  4. Climate-driven or human-induced: Indicating severe water scarcity in the Moulouya river basin (Morocco)

    OpenAIRE

    Vera Tekken; Jürgen P. Kropp

    2012-01-01

    Many agriculture-based economies are increasingly under stress from climate change and socio-economic pressures. The excessive exploitation of natural resources still represents the standard procedure to achieve socio-economic development. In the area of the Moulouya river basin, Morocco, natural water availability represents a key resource for all economic activities. Agriculture represents the most important sector, and frequently occurring water deficits are aggravated by climate change. O...

  5. Joint science academies' statement:Global response to climate change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Climate change is real There will always be uncertainty in understanding a system as complex as the world's climate. However there is now strong evidence that significant global warming is occurring1.

  6. Globally Gridded Satellite observations for climate studies

    Science.gov (United States)

    Knapp, K.R.; Ansari, S.; Bain, C.L.; Bourassa, M.A.; Dickinson, M.J.; Funk, C.; Helms, C.N.; Hennon, C.C.; Holmes, C.D.; Huffman, G.J.; Kossin, J.P.; Lee, H.-T.; Loew, A.; Magnusdottir, G.

    2011-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them that no central archive of geostationary data for all international satellites exists, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multisatellite climate studies. The International Satellite Cloud Climatology Project (ISCCP) set the stage for overcoming these issues by archiving a subset of the full-resolution geostationary data at ~10-km resolution at 3-hourly intervals since 1983. Recent efforts at NOAA's National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in Network Common Data Format (netCDF) using standards that permit a wide variety of tools and libraries to process the data quickly and easily. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  7. Climate Change in New England | Energy and Global Climate ...

    Science.gov (United States)

    2017-04-10

    EPA Region 1's Energy and Climate Unit and Oceans and Coastal Unit provide information and technical assistance on climate change impacts and adaptation, resilience and preparedness to climate disruptions

  8. Climate changes instead of global warming

    Directory of Open Access Journals (Sweden)

    Radovanović Milan M.

    2014-01-01

    Full Text Available Air temperature changes on Earth in recent years are the subject of numerous and increasingly interdisciplinary research. In contrast to, conditionally speaking, generally accepted views that these changes are conditioned primarily by anthropogenic activity, more results appear to suggest that it is dominant natural processes about. Whether because of the proven existence of areas in which downtrends are registered or the stagnation of air temperature, as opposed to areas where the increase is determined, in scientific papers, as well as the media, the increasingly present is the use of the term climate changes instead of the global warming. In this paper, we shall try to present arguments for the debate relating to the official view of the IPCC, as well as research indicating the opposite view.

  9. Climate-Driven or Human-Induced: Indicating Severe Water Scarcity in the Moulouya River Basin (Morocco 

    Directory of Open Access Journals (Sweden)

    Vera Tekken

    2012-12-01

    Full Text Available Many agriculture-based economies are increasingly under stress from climate change and socio-economic pressures. The excessive exploitation of natural resources still represents the standard procedure to achieve socio-economic development. In the area of the Moulouya river basin, Morocco, natural water availability represents a key resource for all economic activities. Agriculture represents the most important sector, and frequently occurring water deficits are aggravated by climate change. On the basis of historical trends taken from CRU TS 2.1, this paper analyses the impact of climate change on the per capita water availability under inclusion of population trends. The Climatic Water Balance (CWB shows a significant decrease for the winter period, causing adverse effects for the main agricultural season. Further, moisture losses due to increasing evapotranspiration rates indicate problems for the annual water budget and groundwater recharge. The per capita blue water availability falls below a minimum threshold of 500 m3 per year, denoting a high regional vulnerability to increasing water scarcity assuming a no-response scenario. Regional development focusing on the water-intense sectors of agriculture and tourism appears to be at risk. Institutional capacities and policies need to address the problem, and the prompt implementation of innovative water production and efficiency measures is recommended.

  10. "It's Not a Political Issue!" The Interaction of Subject and Politics on Professors' Beliefs in Human-Induced Climate Change

    Science.gov (United States)

    Nussbaum, E. Michael; Owens, Marissa C.; Cordova, Jacqueline R.

    2016-01-01

    This study examines the interaction of political orientation with academic discipline on beliefs in anthropogenic climate change (ACC) among higher education faculty. Over 300 faculty members at two research institutions in the United States were surveyed on topics concerning ACC and the results were analyzed with multiple regression. Even among…

  11. Global analysis theory of climate system and its applications

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The idea and main theoretical results of the global analysis theory of climate system are briefly summarized in this paper. A theorem on the global behavior of climate system is given, i.e. there exists a global attractor in the dynamical equations of climate, any state of climate system will be evolved into the global attractor as time increases, indicating the nonlinear adjustment process of climate system to external forcing. The different effects of external forcing, dissipation and nonlinearity on the long-term behavior of solutions are pointed out, and some main applications of the global analysis theory are also introduced. Especially, three applications, the adjustment and evolution processes of climate, the principle of numerical model design and the optimally numerical integration, are discussed.

  12. Earth as Humans’ Habitat: Global Climate Change and the Health of Populations

    Directory of Open Access Journals (Sweden)

    Anthony J McMichael

    2014-01-01

    Full Text Available Human-induced climate change, with such rapid and continuing global-scale warming, is historically unprecedented and signifies that human pressures on Earth’s life-supporting natural systems now exceed the planet’s bio-geo-capacity. The risks from climate change to health and survival in populations are diverse, as are the social and political ramifications. Although attributing observed health changes in a population to the recent climatic change is difficult, a coherent pattern of climate- and weather-associated changes is now evident in many regions of the world. The risks impinge unevenly, especially on poorer and vulnerable regions, and are amplified by pre-existing high rates of climate-sensitive diseases and conditions. If, as now appears likely, the world warms by 3-5oC by 2100, the health consequences, directly and via massive social and economic disruption, will be severe. The health sector has an important message to convey, comparing the health risks and benefits of enlightened action to avert climate change and to achieve sustainable ways of living versus the self-interested or complacent inaction.

  13. Earth as humans' habitat: global climate change and the health of populations.

    Science.gov (United States)

    McMichael, Anthony J

    2014-01-01

    Human-induced climate change, with such rapid and continuing global-scale warming, is historically unprecedented and signifies that human pressures on Earth's life-supporting natural systems now exceed the planet's bio-geo-capacity. The risks from climate change to health and survival in populations are diverse, as are the social and political ramifications. Although attributing observed health changes in a population to the recent climatic change is difficult, a coherent pattern of climate- and weather-associated changes is now evident in many regions of the world. The risks impinge unevenly, especially on poorer and vulnerable regions, and are amplified by pre-existing high rates of climate-sensitive diseases and conditions. If, as now appears likely, the world warms by 3-5oC by 2100, the health consequences, directly and via massive social and economic disruption, will be severe. The health sector has an important message to convey, comparing the health risks and benefits of enlightened action to avert climate change and to achieve sustainable ways of living versus the self-interested or complacent inaction.

  14. Climate change adaptation: where does global health fit in the agenda?

    Science.gov (United States)

    Bowen, Kathryn J; Friel, Sharon

    2012-05-27

    Human-induced climate change will affect the lives of most populations in the next decade and beyond. It will have greatest, and generally earliest, impact on the poorest and most disadvantaged populations on the planet. Changes in climatic conditions and increases in weather variability affect human wellbeing, safety, health and survival in many ways. Some impacts are direct-acting and immediate, such as impaired food yields and storm surges. Other health effects are less immediate and typically occur via more complex causal pathways that involve a range of underlying social conditions and sectors such as water and sanitation, agriculture and urban planning. Climate change adaptation is receiving much attention given the inevitability of climate change and its effects, particularly in developing contexts, where the effects of climate change will be experienced most strongly and the response mechanisms are weakest. Financial support towards adaptation activities from various actors including the World Bank, the European Union and the United Nations is increasing substantially. With this new global impetus and funding for adaptation action come challenges such as the importance of developing adaptation activities on a sound understanding of baseline community needs and vulnerabilities, and how these may alter with changes in climate. The global health community is paying heed to the strengthening focus on adaptation, albeit in a slow and unstructured manner. The aim of this paper is to provide an overview of adaptation and its relevance to global health, and highlight the opportunities to improve health and reduce health inequities via the new and additional funding that is available for climate change adaptation activities.

  15. Global Responses to Potential Climate Change: A Simulation.

    Science.gov (United States)

    Williams, Mary Louise; Mowry, George

    This interdisciplinary five-day unit provides students with an understanding of the issues in the debate on global climate change. Introductory lessons enhance understanding of the "greenhouse gases" and their sources with possible global effects of climate change. Students then roleplay negotiators from 10 nations in a simulation of the…

  16. Methane, vegetation and global climate change; Methan, Pflanzen und Klimawandel

    Energy Technology Data Exchange (ETDEWEB)

    Keppler, F. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany); Roeckmann, T. [Utrecht Univ. (Netherlands). Inst. fuer Meeres- und Atmosphaerenforschung

    2007-05-15

    In a recent publication, the authors were able to prove that plants produce and emit methane. This means a major change in the global emission balance of this climate-relevant gas. Plants are not involved in global climate change, however. (orig.)

  17. Thermohaline circulations and global climate change. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, H.P.

    1996-10-01

    This report discusses results from the project entitled Thermohaline Circulations and Global Climate Change. Results are discussed in three sections related to the development of the Miami Isopycnic Coordinate Ocean Model (MICOM), surface forcing of the ocean by the atmosphere, and experiments with the MICOM related to the problem of the ocean`s response to global climate change. It will require the use of a global, coupled ocean-atmospheric climate model to quantify the feedbacks between ocean and atmosphere associated with climate changes. The results presented here do provide guidance for such studies in the future.

  18. Assessing Elementary Science Methods Students' Understanding about Global Climate Change

    Science.gov (United States)

    Lambert, Julie L.; Lindgren, Joan; Bleicher, Robert

    2012-01-01

    Global climate change, referred to as climate change in this paper, has become an important planetary issue, and given that K-12 students have numerous alternative conceptions or lack of prior knowledge, it is critical that teachers have an understanding of the fundamental science underlying climate change. Teachers need to understand the natural…

  19. International Peer Collaboration to Learn about Global Climate Changes

    Science.gov (United States)

    Korsager, Majken; Slotta, James D.

    2015-01-01

    Climate change is not local; it is global. This means that many environmental issues related to climate change are not geographically limited and hence concern humans in more than one location. There is a growing body of research indicating that today's increased climate change is caused by human activities and our modern lifestyle. Consequently,…

  20. Mass support for global climate agreements depends on institutional design

    OpenAIRE

    Bechtel, Michael M.; Kenneth F. Scheve

    2013-01-01

    Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation—costs and distribution, participation, and enforcement—affect individuals’ willingn...

  1. Effects of expected global climate change on marine faunas.

    Science.gov (United States)

    Fields, P A; Graham, J B; Rosenblatt, R H; Somero, G N

    1993-10-01

    Anthropogenically induced global climate change is likely to have a major impact on marine ecosystems, affecting both biodiversity and productivity. These changes will, in turn, have a large impact on humankind's interactions with the sea. By examining the effects of past climate changes on the ocean, as well as by determining how shifts in physical parameters of the ocean may affect physiology, biochemistry and community interactions, scientists are beginning to explore the possible effects of global climate change on marine biota.

  2. Multi-decadal responses of a cod (Gadus morhua) population to human-induced trophic changes, fishing, and climate

    DEFF Research Database (Denmark)

    Eero, Margit; MacKenzie, Brian; Köster, Fritz

    2011-01-01

    Understanding how human impacts have interacted with natural variability to affect populations and ecosystems is required for sustainable management and conservation. The Baltic Sea is one of the few large marine ecosystems worldwide where the relative contribution of several key forcings...... to changes in fish populations can be analyzed with empirical data. In this study we investigate how climate variability and multiple human impacts (fishing, marine mammal hunting, eutrophication) have affected multi-decadal scale dynamics of cod in the Baltic Sea during the 20th century.We document......-average cod productivity coupled to a temporary reduction in fishing pressure. The Baltic cod example demonstrates how combinations of different forcings can have synergistic effects and consequently dramatic impacts on population dynamics. Our results highlight the potential and limitations of human...

  3. Environmental health implications of global climate change.

    Science.gov (United States)

    Watson, Robert T; Patz, Jonathan; Gubler, Duane J; Parson, Edward A; Vincent, James H

    2005-09-01

    This paper reviews the background that has led to the now almost-universally held opinion in the scientific community that global climate change is occurring and is inescapably linked with anthropogenic activity. The potential implications to human health are considerable and very diverse. These include, for example, the increased direct impacts of heat and of rises in sea level, exacerbated air and water-borne harmful agents, and--associated with all the preceding--the emergence of environmental refugees. Vector-borne diseases, in particular those associated with blood-sucking arthropods such as mosquitoes, may be significantly impacted, including redistribution of some of those diseases to areas not previously affected. Responses to possible impending environmental and public health crises must involve political and socio-economic considerations, adding even greater complexity to what is already a difficult challenge. In some areas, adjustments to national and international public health practices and policies may be effective, at least in the short and medium terms. But in others, more drastic measures will be required. Environmental monitoring, in its widest sense, will play a significant role in the future management of the problem.

  4. Talking about Climate Change and Global Warming.

    Science.gov (United States)

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined.

  5. Talking about Climate Change and Global Warming

    Science.gov (United States)

    Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  6. Environmental health implications of global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Robert T.; Patz, Jonathan; Gubler, Duane J.; Parson, Edward A.; Vincent, James H.

    2005-07-01

    This paper reviews the background that has led to the now almost-universally held opinion in the scientific community that global climate change is occurring and is inescapably linked with anthropogenic activity. The potential implications to human health are considerable and very diverse. These include, for example, the increased direct impacts of heat and of rises in sea level, exacerbated air and water-borne harmful agents, and - associated with all the preceding - the emergence of environmental refugees. Vector-borne diseases, in particular those associated with blood-sucking arthropods such as mosquitoes, may be significantly impacted, including redistribution of some of those diseases to areas not previously affected. Responses to possible impending environmental and public health crises must involve political and socio-economic considerations, adding even greater complexity to what is already a difficult challenge. In some areas, adjustments to national and international public health practices and policies may be effective, at least in the short and medium terms. But in others, more drastic measures will be required. Environmental monitoring, in its widest sense, will play a significant role in the future management of the problem. (Author)

  7. Talking about Climate Change and Global Warming.

    Directory of Open Access Journals (Sweden)

    Maurice Lineman

    Full Text Available The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV patterns for global warming (GW and Climate change (CC to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined.

  8. Climate change hotspots in the CMIP5 global climate model ensemble

    OpenAIRE

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-01

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots thro...

  9. A climatic stability approach to prioritizing global conservation investments.

    Directory of Open Access Journals (Sweden)

    Takuya Iwamura

    Full Text Available Climate change is impacting species and ecosystems globally. Many existing templates to identify the most important areas to conserve terrestrial biodiversity at the global scale neglect the future impacts of climate change. Unstable climatic conditions are predicted to undermine conservation investments in the future. This paper presents an approach to developing a resource allocation algorithm for conservation investment that incorporates the ecological stability of ecoregions under climate change. We discover that allocating funds in this way changes the optimal schedule of global investments both spatially and temporally. This allocation reduces the biodiversity loss of terrestrial endemic species from protected areas due to climate change by 22% for the period of 2002-2052, when compared to allocations that do not consider climate change. To maximize the resilience of global biodiversity to climate change we recommend that funding be increased in ecoregions located in the tropics and/or mid-elevation habitats, where climatic conditions are predicted to remain relatively stable. Accounting for the ecological stability of ecoregions provides a realistic approach to incorporating climate change into global conservation planning, with potential to save more species from extinction in the long term.

  10. Cooperation and discord in global climate policy

    Science.gov (United States)

    Keohane, Robert O.; Victor, David G.

    2016-06-01

    Effective mitigation of climate change will require deep international cooperation, which is much more difficult to organize than the shallow coordination observed so far. Assessing the prospects for effective joint action on climate change requires an understanding of both the structure of the climate change problem and national preferences for policy action. Preferences have become clearer in light of the United Nations Framework Convention on Climate Change Conference of the Parties in December 2015. Although deep cooperation remains elusive, many partial efforts could build confidence and lead to larger cuts in emissions. This strategy of decentralized policy coordination will not solve the climate problem, but it could lead incrementally to deeper cooperation.

  11. EFFECTS OF GLOBAL CLIMATE CHANGE ON POVERTY AND SOLUTION SUGGESTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sermin Atak, Melike Erdogan, Asli Yoenten

    2008-09-30

    Most environmental risks including global warming are accepted as ''manufactured risks'' as well. Climate change, as manufactured risk, occurs due to human activities such as energy usage, industrialization, agricultural activities, pollination and forest damage which broke down the combination of global atmosphere in addition to nature sourced climate change which can be stated as external risk. Global climate change, as manufactured risk, has environmental and socio-economic effects in the subjects like water shortage, drought, highness in water levels, decrease in biological diversity, nutrition and food shortage. The effect of global climate change, as manufactured risk, on society's poverty has been classified as horizontal and vertical effect in this study. It's possible to say that horizontal effect of global climate change, as manufactured risk, on poverty will come out in the way ''expansion of poverty''. It's possible to state the vertical effect of global climate change, as manufactured risk, on poverty as the ''deepening of poverty'' and ''intensifying of poverty''. Horizontal and vertical effects of climate change on poverty can not be evaluated interdependently. The multiplier effect and the cross interaction that these two effects form together bring along the process of increasing of poverty and the solution's getting difficult. Global climate change, as manufactured risk, affects all parts but the most powerful effect of it is over the poor. The studies in the direction of decreasing the poverty effect of global climate change necessitate global cooperation. National and international solutions should be considered together. In addition to global cooperation, individual, institutional, domestic and regional applications must have complementary qualities in decreasing the effects of global climate change. Global and individual studies made for

  12. Global imprint of climate change on marine life

    DEFF Research Database (Denmark)

    Poloczanska, Elvira S.; Brown, Christopher J.; Sydeman, William J.;

    2013-01-01

    Past meta-analyses of the response of marine organisms to climate change have examined a limited range of locations1,2, taxonomic groups2–4 and/or biological responses5,6. This has precluded a robust overview of the effect of climate change in the global ocean. Here, we synthesized all available...... studies of the consistency of marine ecological observations with expectations under climate change. This yielded a metadatabase of 1,735 marine biological responses for which either regional or global climate change was considered as a driver. Included were instances of marine taxa responding as expected...

  13. Impacts of climate change on the global forest sector

    Science.gov (United States)

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors

  14. Scientist's Perceptions of Uncertainty During Discussions of Global Climate

    Science.gov (United States)

    Romanello, S.; Fortner, R.; Dervin, B.

    2003-04-01

    This research examines the nature of disagreements between natural and social scientists during discussions of global climate change. In particular, it explores whether the disagreements between natural and social scientists are related to the ontological, epistemological, or methodological nature of the uncertainty of global climate change during these discussions. A purposeful sample of 30 natural and social scientists recognized as experts in global climate change by the United States Global Change Research Program (USGCRP) and National Academies Committee on Global Change were interviewed to elicit their perceptions of disagreements during their three most troublesome discussions on global climate change. A mixed-method (qualitative plus quantitative research) approach with three independent variables was used to explore nature of uncertainty as a mediating variable in the relationships between academic training, level of sureness, level of knowledge, and position on global climate change, and the nature of disagreements and bridging strategies of natural and social scientists (Patton, 1997; Frechtling et al., 1997). This dissertation posits that it is the differences in the nature of uncertainty communicated by natural and social scientists and not sureness, knowledge, and position on global climate change that causes disagreements between the groups. By describing the nature of disagreements between natural and social scientists and illuminating bridging techniques scientists use during these disagreements, it is hoped that information collected from this research will create a better dialogue between the scientists studying global climate change by providing communication strategies which will allow those versed in one particular area to speak to non-experts whether they be other scientists, media officials, or the public. These tangible strategies can then be used by government agencies to create better communications and education plans, which can

  15. Global Climate Responses to Anthropogenic Groundwater Exploitation

    Science.gov (United States)

    Zeng, Y.; Xie, Z.

    2015-12-01

    In this study, a groundwater exploitation scheme is incorporated into the earth system model, Community Earth System Model 1.2.0 (CESM1.2.0), which is called CESM1.2_GW, and the climatic responses to anthropogenic groundwater withdrawal are then investigated on global scale. The scheme models anthropogenic groundwater exploitation and consumption, which are then divided into agricultural irrigation, industrial use and domestic use. A group of 41-year ensemble groundwater exploitation simulations with six different initial conditions, and a group of ensemble control simulations without exploitation are conducted using the developed model CESM1.2_GW with water supplies and demands estimated. The results reveal that the groundwater exploitation and water consumption cause drying effects on soil moisture in deep layers and wetting effects in upper layers, along with a rapidly declining groundwater table in Central US, Haihe River Basin in China and Northern India and Pakistan where groundwater extraction are most severe in the world. The atmosphere also responds to anthropogenic groundwater exploitation. Cooling effects on lower troposphere appear in large areas of North China Plain and of Northern India and Pakistan. Increased precipitation occurs in Haihe River Basin due to increased evapotranspiration from irrigation. Decreased precipitation occurs in Northern India because water vapor here is taken away by monsoon anomalies induced by anthropogenic alteration of groundwater. The local reducing effects of anthropogenic groundwater exploitation on total terrestrial water storage evinces that water resource is unsustainable with the current high exploitation rate. Therefore, a balance between slow groundwater withdrawal and rapid human economic development must be achieved to maintain a sustainable water resource, especially in over-exploitation regions such as Central US, Northern China, India and Pakistan.

  16. Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar

    Directory of Open Access Journals (Sweden)

    Gupta Manoj K

    2010-09-01

    Full Text Available Abstract Background Functional and molecular integrity of cardiomyocytes (CMs derived from induced pluripotent stem (iPS cells is essential for their use in tissue repair, disease modelling and drug screening. In this study we compared global transcriptomes of beating clusters (BCs microdissected from differentiating human iPS cells and embryonic stem (ES cells. Results Hierarchical clustering and principal component analysis revealed that iPS-BCs and ES-BCs cluster together, are similarly enriched for cardiospecific genes and differ in expression of only 1.9% of present transcripts. Similarly, sarcomeric organization, electrophysiological properties and calcium handling of iPS-CMs were indistinguishable from those of ES-CMs. Gene ontology analysis revealed that among 204 genes that were upregulated in iPS-BCs vs ES-BCs the processes related to extracellular matrix, cell adhesion and tissue development were overrepresented. Interestingly, 47 of 106 genes that were upregulated in undifferentiated iPS vs ES cells remained enriched in iPS-BCs vs ES-BCs. Most of these genes were found to be highly expressed in fibroblasts used for reprogramming and 34% overlapped with the recently reported iPS cell-enriched genes. Conclusions These data suggest that iPS-BCs are transcriptionally highly similar to ES-BCs. However, iPS-BCs appear to share some somatic cell signature with undifferentiated iPS cells. Thus, iPS-BCs may not be perfectly identical to ES-BCs. These minor differences in the expression profiles may occur due to differential cellular composition of iPS-BCs and ES-BCs, due to retention of some genetic profile of somatic cells in differentiated iPS cell-derivatives, or both.

  17. Global Climate Change: Threat Multiplier for AFRICOM?

    Science.gov (United States)

    2007-11-06

    Vaclav Klaus , President of the Czech Republic, as quoted in Notes for the speech of the President of the Czech Republic at the UN Climate Change...63 Vaclav Klaus , UN Climate Change Conference, 2. 64 Ibid., 1. 65 Aaron T. Wolf, and Annika Kramer, and Alexander...2007). Klaus , Vaclav , President of the Czech Republic. Notes for the Speech of the President of the Czech Republic at the UN Climate Change

  18. Development of a ground hydrology model suitable for global climate modeling using soil morphology and vegetation cover, and an evaluation of remotely sensed information

    Science.gov (United States)

    Zobler, L.; Lewis, R.

    1988-01-01

    The long-term purpose was to contribute to scientific understanding of the role of the planet's land surfaces in modulating the flows of energy and matter which influence the climate, and to quantify and monitor human-induced changes to the land environment that may affect global climate. Highlights of the effort include the following: production of geo-coded, digitized World Soil Data file for use with the Goddard Institute for Space Studies (GISS) climate model; contribution to the development of a numerical physically-based model of ground hydrology; and assessment of the utility of remote sensing for providing data on hydrologically significant land surface variables.

  19. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2013-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  20. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2013-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  1. Global warming: China’s contribution to climate change

    Science.gov (United States)

    Spracklen, Dominick V.

    2016-03-01

    Carbon dioxide emissions from fossil-fuel use in China have grown dramatically in the past few decades, yet it emerges that the country's relative contribution to global climate change has remained surprisingly constant. See Letter p.357

  2. Climate Change: Global Risks, Challenges and Decisions

    NARCIS (Netherlands)

    Richardson, K.; Steffen, W.; Liverman, D.; Barker, T.; Jotzo, F.; Kammen, D.M.; Leemans, R.; Lenton, T.M.; Munasinghe, M.; Osman-Elasha, B.; Schellnhuber, H.J.; Stern, N.; Vogel, C.; Waever, O.

    2011-01-01

    Providing an up-to-date synthesis of knowledge relevant to the climate change issue, this book ranges from the basic science documenting the need for policy action to the technologies, economic instruments and political strategies that can be employed in response to climate change. Ethical and cultu

  3. Climate Change: Global Risks, Challenges and Decisions

    NARCIS (Netherlands)

    Richardson, K.; Steffen, W.; Liverman, D.; Barker, T.; Jotzo, F.; Kammen, D.M.; Leemans, R.; Lenton, T.M.; Munasinghe, M.; Osman-Elasha, B.; Schellnhuber, H.J.; Stern, N.; Vogel, C.; Waever, O.

    2011-01-01

    Providing an up-to-date synthesis of knowledge relevant to the climate change issue, this book ranges from the basic science documenting the need for policy action to the technologies, economic instruments and political strategies that can be employed in response to climate change. Ethical and

  4. Global Climate Change and Infectious Diseases

    Directory of Open Access Journals (Sweden)

    EK Shuman

    2010-12-01

    Full Text Available Climate change is occurring as a result of warming of the earth’s atmosphere due to human activity generating excess amounts of greenhouse gases. Because of its potential impact on the hydrologic cycle and severe weather events, climate change is expected to have an enormous effect on human health, including on the burden and distribution of many infectious diseases. The infectious diseases that will be most affected by climate change include those that are spread by insect vectors and by contaminated water. The burden of adverse health effects due to these infectious diseases will fall primarily on developing countries, while it is the developed countries that are primarily responsible for climate change. It is up to governments and individuals to take the lead in halting climate change, and we must increase our understanding of the ecology of infectious diseases in order to protect vulnerable populations.

  5. Global climate change impacts on forests and markets

    Science.gov (United States)

    Tian, Xiaohui; Sohngen, Brent; Kim, John B.; Ohrel, Sara; Cole, Jefferson

    2016-03-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, the MC2 model. The results suggest that climate change will cause forest outputs (such as timber) to increase by approximately 30% over the century. Aboveground forest carbon storage also is projected to increase, by approximately 26 Pg C by 2115, as a result of climate change, potentially providing an offset to emissions from other sectors. The effects of climate mitigation policies in the energy sector are then examined. When climate mitigation in the energy sector reduces warming, we project a smaller increase in forest outputs over the timeframe of the analysis, and we project a reduction in the sink capacity of forests of around 12 Pg C by 2115.

  6. CONSTABLE: A Global Climate Model for Classroom Use.

    Science.gov (United States)

    Cerveny, Randall S.; And Others

    1985-01-01

    Described is the global climate model CONSTABLE (Climatic One-Dimensional Numerical Simulation of the Annual Balance of Latitudinal Energy), which can be used in undergraduate and graduate level climatology courses. Classroom exercises that can be used with the model are also included. (RM)

  7. Disorderly Deliberation? Generative Dynamics of Global Climate Justice

    Directory of Open Access Journals (Sweden)

    James Goodman

    2011-12-01

    Full Text Available Theorisations of global governance invariably conceive of it as bringing order to disorder, whether by increasing the ‘density’ of interstate society, or by expressing the leverage of global civil society. This paper seeks to invert the frame, and to take seriously the active disordering of governance, as a generative challenge, that creates new justice claims, and opens-up new fields of public deliberation. Global climate governance is a particularly powerful context in which to track these dynamics. Climate change imposes its own pace of policy reform, forcing new imperatives; it also imposes its own remarkable scope, in terms of global reach and all-encompassing depth. The paper seeks-out generative disjunctures, where existing justice principles that underpin climate governance are challenged, disestablished, and reordered. The paper explores these themes as a way of mapping contending and conflicting trajectories in the development of climate justice as a principle of governance. The disordering effects of climate governance, the social and political forces that arise out of them and their roles in producing contender principles and practices are highlighted. We may then arrive at a conceptualization of climate governance as a necessarily disorderly process, which addresses cumulative and unanticipated challenges of climate change through successive reorientations in its modus operandi. As such, climate governance may be enabled to proceed through and beyond immediate accommodations, to offer new possibilities grounded in new rules of the game that widen realms of engagement and more effectively apprehend the challenges posed.

  8. Salt Marshes as Potential Indicatore of Global Climate Change

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairens, David; Jung, S.H.;

    2011-01-01

    Coastal scientists postulate that salt marshes are significantly affected by dynamics of global climate. However, few studies have explicitly proposed a perspective that regards salt marshes as potential indicators of climate change. This review article evaluates the possibility of salt marshes a...

  9. A Tale of Two Minds: Psychology and Global Climate Change

    Science.gov (United States)

    Howard, George S.

    2010-01-01

    The American Psychological Association recently released its Presidential Task Force report on Psychology and Global Climate Change. Its principles and proposals would inaugurate a long and productive program of psychological research on climate change. But is it too little, too late? Climatologists have been growing progressively gloomier over…

  10. Global food security under climate change

    OpenAIRE

    Schmidhuber, J; Tubiello, F.N.

    2007-01-01

    This article reviews the potential impacts of climate change on food security. It is found that of the four main elements of food security, i.e., availability, stability, utilization, and access, only the first is routinely addressed in simulation studies. To this end, published results indicate that the impacts of climate change are significant, however, with a wide projected range (between 5 million and 170 million additional people at risk of hunger by 2080) strongly depending on assumed s...

  11. Climate change and the biosphere

    Science.gov (United States)

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  12. Effects of expected global climate change on marine faunas

    Energy Technology Data Exchange (ETDEWEB)

    Fields, P.A.; Graham, J.B.; Rosenblatt, R.H.; Somero, G.N. (University of California San Diego, La Jolla, CA (United States). Scripps Institute of Oceanography)

    1993-10-01

    Anthropogenically induced global climate change is likely to have a major impact on marine ecosystems, affecting both biodiversity and productivity. These changes will, in turn, have a large impact on humankind's interactions with the sea. By examining the effects of past climate changes on the ocean, as well as by determining how shifts in physical parameters of the ocean may affect physiology, biochemistry and community interactions, scientists are beginning to explore the possible effects of global climate change on marine biota.

  13. Understanding global climate change scenarios through bioclimate stratification

    Science.gov (United States)

    Soteriades, A. D.; Murray-Rust, D.; Trabucco, A.; Metzger, M. J.

    2017-08-01

    Despite progress in impact modelling, communicating and understanding the implications of climatic change projections is challenging due to inherent complexity and a cascade of uncertainty. In this letter, we present an alternative representation of global climate change projections based on shifts in 125 multivariate strata characterized by relatively homogeneous climate. These strata form climate analogues that help in the interpretation of climate change impacts. A Random Forests classifier was calculated and applied to 63 Coupled Model Intercomparison Project Phase 5 climate scenarios at 5 arcmin resolution. Results demonstrate how shifting bioclimate strata can summarize future environmental changes and form a middle ground, conveniently integrating current knowledge of climate change impact with the interpretation advantages of categorical data but with a level of detail that resembles a continuous surface at global and regional scales. Both the agreement in major change and differences between climate change projections are visually combined, facilitating the interpretation of complex uncertainty. By making the data and the classifier available we provide a climate service that helps facilitate communication and provide new insight into the consequences of climate change.

  14. What does global mean temperature tell us about local climate?

    Science.gov (United States)

    Sutton, Rowan; Suckling, Emma; Hawkins, Ed

    2015-11-13

    The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies.

  15. Global Climate Change. Selected Annotated Bibliography. Second Edition.

    Science.gov (United States)

    Jones, Douglas E.

    This annotated bibliography on global climate change contains 27 articles designed to expand the breadth and depth of information presented in the Global Change Information Packet. Most articles were chosen from journals likely to be available in most medium-sized public or college libraries. The articles cover a variety of topics related to…

  16. Global travel within the 2°C climate target

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Deetman, S.

    2012-01-01

    Long-term scenarios generally project a steep increase in global travel demand, leading to an rapid rise in CO 2 emissions. Major driving forces are the increasing car use in developing countries and the global growth in air travel. Meeting the 2°C climate target, however, requires a deep cut in CO

  17. Mass support for global climate agreements depends on institutional design

    Science.gov (United States)

    Bechtel, Michael M.; Scheve, Kenneth F.

    2013-01-01

    Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation—costs and distribution, participation, and enforcement—affect individuals’ willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals’ beliefs about the potential effectiveness of specific agreements. PMID:23886666

  18. Visualizing a global crisis. Constructing climate, future and present

    Directory of Open Access Journals (Sweden)

    Elisabeth Eide

    2012-10-01

    Full Text Available This article examines the visualization of climate change through two empirical studies. First, a quantitative overview of the visuals emerging in newspapers in 15 different countries before, during and after the Copenhagen climate summit in 2009. The findings demonstrate a variety of visual topics as well as genres, and a global diversity having to do with press conventions as well as access to resources. Then follows an in-depth study of a small number of cartoons published in the same period addressing global conflict, most of them linked to framing the Global North as responsible for the development of climate change. Leaning on Barthes and supplemented by other scholars who have studied media visualization, the article discusses the particular challenges of climate change as an often unseen phenomenon.

  19. Scope of work: Effects of global climate change on agroecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.L.

    1989-08-01

    The U.S. Environmental Protection Agency, Office of Research and Development (ORD), is initiating a Global Climate Change Program to evaluate the potential environmental effects of climate change. This document describes one project, Effects of Global Climate Change on Agroecosystems, which will be administered at the EPA Environmental Research Laboratory-Corvallis as part of the ORD program. The document describes the areas in which research will be undertaken in the project over the next five years. The document presents the scientific questions that must be addressed in order to answer important public-policy needs concerning the potential environmental effects of global climate change on agroecosystems and it describes the general-research approaches that will be used to answer the scientific questions.

  20. Ozone, Climate, and Global Atmospheric Change.

    Science.gov (United States)

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  1. Global imprint of climate change on marine life

    DEFF Research Database (Denmark)

    Poloczanska, Elvira S.; Brown, Christopher J.; Sydeman, William J.

    2013-01-01

    Past meta-analyses of the response of marine organisms to climate change have examined a limited range of locations1,2, taxonomic groups2–4 and/or biological responses5,6. This has precluded a robust overview of the effect of climate change in the global ocean. Here, we synthesized all available...... studies of the consistency of marine ecological observations with expectations under climate change. This yielded a metadatabase of 1,735 marine biological responses for which either regional or global climate change was considered as a driver. Included were instances of marine taxa responding as expected......, in a manner inconsistent with expectations, and taxa demonstrating no response. From this database, 81–83% of all observations for distribution, phenology, community composition, abundance, demography and calcification across taxa and ocean basins were consistent with the expected impacts of climate change...

  2. Convergence of terrestrial plant production across global climate gradients.

    Science.gov (United States)

    Michaletz, Sean T; Cheng, Dongliang; Kerkhoff, Andrew J; Enquist, Brian J

    2014-08-07

    Variation in terrestrial net primary production (NPP) with climate is thought to originate from a direct influence of temperature and precipitation on plant metabolism. However, variation in NPP may also result from an indirect influence of climate by means of plant age, stand biomass, growing season length and local adaptation. To identify the relative importance of direct and indirect climate effects, we extend metabolic scaling theory to link hypothesized climate influences with NPP, and assess hypothesized relationships using a global compilation of ecosystem woody plant biomass and production data. Notably, age and biomass explained most of the variation in production whereas temperature and precipitation explained almost none, suggesting that climate indirectly (not directly) influences production. Furthermore, our theory shows that variation in NPP is characterized by a common scaling relationship, suggesting that global change models can incorporate the mechanisms governing this relationship to improve predictions of future ecosystem function.

  3. Global climate change: A strategic issue facing Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Womeldorff, P.J.

    1995-12-31

    This paper discusses global climate change, summarizes activities related to climate change, and identifies possible outcomes of the current debate on the subject. Aspects of climate change related to economic issues are very briefly summarized; it is suggested that the end result will be a change in lifestyle in developed countries. International activities, with an emphasis on the Framework Convention on Climate Change, and U.S. activities are outlined. It is recommended that the minimum action required is to work to understand the issue and prepare for possible action.

  4. The global atmospheric electrical circuit and climate

    CERN Document Server

    Harrison, R G

    2004-01-01

    Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultrafine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution ca...

  5. Illinois task force on global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, B.S. [Illinois Dept. of Natural Resources, Springfield, IL (United States)

    1996-12-31

    The purpose of this report is to document progress in the areas of national policy development, emissions reduction, research and education, and adaptation, and to identify specific actions that will be undertaken to implement the Illinois state action plan. The task force has been tracking national and international climate change policy, and helping shape national policy agenda. Identification and implementation of cost-effective mitigation measures has been performed for emissions reduction. In the area of research and education, the task force is developing the capacity to measure climate change indicators, maintaining and enhancing Illinois relevant research, and strengthening climate change education. Activities relevant to adaptation to new policy include strengthening water laws and planning for adaptation. 6 figs., 4 tabs.

  6. Global food security under climate change.

    Science.gov (United States)

    Schmidhuber, Josef; Tubiello, Francesco N

    2007-12-11

    This article reviews the potential impacts of climate change on food security. It is found that of the four main elements of food security, i.e., availability, stability, utilization, and access, only the first is routinely addressed in simulation studies. To this end, published results indicate that the impacts of climate change are significant, however, with a wide projected range (between 5 million and 170 million additional people at risk of hunger by 2080) strongly depending on assumed socio-economic development. The likely impacts of climate change on the other important dimensions of food security are discussed qualitatively, indicating the potential for further negative impacts beyond those currently assessed with models. Finally, strengths and weaknesses of current assessment studies are discussed, suggesting improvements and proposing avenues for new analyses.

  7. Global trade and climate policy scenarios. Impact on Finland

    Energy Technology Data Exchange (ETDEWEB)

    Honkatukia, J.; Kaitila, V.; Kotilainen, M.; Niemi, J.

    2012-09-15

    In this study we use the dynamic version of the GTAP model to analyse the effects of global trade policy changes and their interaction with different global climate policy regimes from Finland's point of view, and in particular, implications for Finnish export sectors. Scenarios explore further trade liberalisation as well as effects of higher-than-current tariffs on world markets. As a complementary dimension we analyse the impact of a global climate agreement that will lead to an additional improvement in energy efficiency and impose limitations to GHG emissions. We find a general trend towards a greater weight of services sector in Finland's total exports volume, whilst the share of traditionally important heavy industry and electronics industries declines. These trends are amplified by further trade liberalisation and slowed down by new barriers for trade. The global coverage of climate policy is particularly significant for energy-intensive industries. (orig.)

  8. The Impact of Global Warming on the Global Climate

    OpenAIRE

    Abdulnaser S. Alseni

    2017-01-01

    Global warming is the gradual rise in environmental temperature due to depletion of the Ozone layer. The increase in the environmental temperatures is due to amplified rate of industrial development. In this case, most industries have contributed to the dangers associated with warming. The paper seeks to discuss global warming from various perspectives. It commences with an introduction highlighting the general information about the topic. The second part focuses on both natural and artificia...

  9. Climatic change controls productivity variation in global grasslands.

    Science.gov (United States)

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A; Li, Yue

    2016-05-31

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2-71.2% during 1982-2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms.

  10. Global comparison of three greenhouse climate models

    NARCIS (Netherlands)

    Bavel, van C.H.M.; Takakura, T.; Bot, G.P.A.

    1985-01-01

    Three dynamic simulation models for calculating the greenhouse climate and its energy requirements for both heating and cooling were compared by making detailed computations for each of seven sets of data. The data sets ranged from a cold winter day, requiring heating, to a hot summer day, requiring

  11. Marine viruses and global climate change

    NARCIS (Netherlands)

    Danovaro, R.; Corinaldesi, C.; Dell'Anno, A.; Fuhrman, J.A.; Middelburg, J.J.; Noble, R.T.; Suttle, C.A.

    2011-01-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface

  12. Global temperate drylands climate change vulnerability

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in distribution and...

  13. IPCC - the global climate monopoly; IPCC - det globale klimatmonopolet

    Energy Technology Data Exchange (ETDEWEB)

    Wellander, Dag

    2006-07-01

    IPCC has a dominant, almost monopolistic position when it comes to making statements about the environment and climatic change. A critical assessment of the institution is made, and attention is drawn to the fact that IPCC is not an organization with solely a scientific mission, but a hybrid between science and politics. Some of the objections from the scientific community against IPCC's models and predictions are presented.

  14. Governing Global Climate Change: Past Achievements, Future Prospects

    Directory of Open Access Journals (Sweden)

    Ella Kokotsis

    2014-11-01

    Full Text Available The cumulative effects of a significantly changing climate are projected to have disastrous implications on the world’s natural habitats, and along with that, are projected to drastically increase the rate and likelihood of violent conflict globally, particularly in high-density, urban, poverty hotspots. Limiting the effects of a changing climate is thus critical in influencing multiple societal goals including equitable sustainable development, human health, biodiversity, food security and access to reliable energy sources. This paper argues that the G7/8 has led global climate governance in ways other international environmental institu­tions have largely failed to do. It has done so largely by placing climate protection at the forefront of its policy objectives, alongside economic, health, energy and security goals, and reaching consensus repeatedly amongst its leaders on the impor­tance of stabilizing emissions through energy efficiency, conservation, investment and technological innovation. Moreover, this chapter argues that the summit’s predominant capability, its constricted participation, democratic convergence and political cohesion – as well as the combined effects of global shocks – have all had positive impacts on the G7/8’s success in mitigating climate change. Following a detailed process-tracing exercise over the summit’s 40-year history in which clear surges and retreats on global climate governance are outlined, this paper concludes by assessing the G7/8’s accountability record on climate mitigation and outlines a set of prescriptive recommendations, allowing for the delivery of a more tangible, coherent, results-driven accountability process for global climate governance.

  15. Importance of Sea Ice for Validating Global Climate Models

    Science.gov (United States)

    Geiger, Cathleen A.

    1997-01-01

    Reproduction of current day large-scale physical features and processes is a critical test of global climate model performance. Without this benchmark, prognoses of future climate conditions are at best speculation. A fundamental question relevant to this issue is, which processes and observations are both robust and sensitive enough to be used for model validation and furthermore are they also indicators of the problem at hand? In the case of global climate, one of the problems at hand is to distinguish between anthropogenic and naturally occuring climate responses. The polar regions provide an excellent testing ground to examine this problem because few humans make their livelihood there, such that anthropogenic influences in the polar regions usually spawn from global redistribution of a source originating elsewhere. Concomitantly, polar regions are one of the few places where responses to climate are non-anthropogenic. Thus, if an anthropogenic effect has reached the polar regions (e.g. the case of upper atmospheric ozone sensitivity to CFCs), it has most likely had an impact globally but is more difficult to sort out from local effects in areas where anthropogenic activity is high. Within this context, sea ice has served as both a monitoring platform and sensitivity parameter of polar climate response since the time of Fridtjof Nansen. Sea ice resides in the polar regions at the air-sea interface such that changes in either the global atmospheric or oceanic circulation set up complex non-linear responses in sea ice which are uniquely determined. Sea ice currently covers a maximum of about 7% of the earth's surface but was completely absent during the Jurassic Period and far more extensive during the various ice ages. It is also geophysically very thin (typically global climate.

  16. Global Deliberative Democracy and Climate Change: Insights from World Wide Views on Global Warming in Australia

    Directory of Open Access Journals (Sweden)

    Chris Riedy

    2011-12-01

    Full Text Available On 26 September 2009, approximately 4,000 citizens in 38 countries participated in World Wide Views on Global Warming (WWViews. WWViews was an ambitious first attempt to convene a deliberative mini-public at a global scale, giving people from around the world an opportunity to deliberate on international climate policy and to make recommendations to the decision-makers meeting at the United Nations Climate Change Conference in Copenhagen (COP-15 in December 2009. In this paper, we examine the role that deliberative mini-publics can play in facilitating the emergence of a global deliberative system for climate change response. We pursue this intent through a reflective evaluation of the Australian component of the World Wide Views on Global Warming project (WWViews. Our evaluation of WWViews is mixed. The Australian event was delivered with integrity and feedback from Australian participants was almost universally positive. Globally, WWViews demonstrated that it is feasible to convene a global mini-public to deliberate on issues of global relevance, such as climate change. On the other hand, the contribution of WWViews towards the emergence of a global deliberative system for climate change response was limited and it achieved little influence on global climate change policy. We identify lessons for future global mini-publics, including the need to prioritise the quality of deliberation and provide flexibility to respond to cultural and political contexts in different parts of the world. Future global mini-publics may be more influential if they seek to represent discourse diversity in addition to demographic profiles, use designs that maximise the potential for transmission from public to empowered space, run over longer time periods to build momentum for change and experiment with ways of bringing global citizens together in a single process instead of discrete national events.

  17. Global Climate Change and Ocean Education

    Science.gov (United States)

    Spitzer, W.; Anderson, J.

    2011-12-01

    The New England Aquarium, collaborating with other aquariums across the country, is leading a national effort to enable aquariums and related informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine animals, habitats and ecosystems. Our goal is to build on visitors' emotional connection with ocean animals, connect to their deeply held values, help them understand causes and effects of climate change and motivate them to embrace effective solutions. Our objectives are to: (1) Build a national coalition of aquariums and related informal education institutions collaborating on climate change education; (2) Develop an interpretive framework for climate change and the ocean that is scientifically sound, research-based, field tested and evaluated; and (3) Build capacity of aquariums to interpret climate change via training for interpreters, interactive exhibits and activities and communities of practice for ongoing support. Centers of informal learning have the potential to bring important environmental issues to the public by presenting the facts, explaining the science, connecting with existing values and interests, and motivating concern and action. Centers that work with live animals (including aquariums, zoos, nature centers, national parks, national marine sanctuaries, etc.) are unique in that they attract large numbers of people of all ages (over 140 million in the US), have strong connections to the natural, and engage many visitors who may not come with a primary interest in science. Recent research indicates that that the public expects and trusts aquariums, zoos, and museums to communicate solutions to environmental and ocean issues, and to advance ocean conservation, and that climate change is the environmental issue of most concern to the public; Ironically, however, most people do not associate climate change with ocean health, or understand the critical role that the ocean plays in

  18. The Impact of Global Warming on the Global Climate

    Directory of Open Access Journals (Sweden)

    Abdulnaser S. Alseni

    2017-06-01

    Full Text Available Global warming is the gradual rise in environmental temperature due to depletion of the Ozone layer. The increase in the environmental temperatures is due to amplified rate of industrial development. In this case, most industries have contributed to the dangers associated with warming. The paper seeks to discuss global warming from various perspectives. It commences with an introduction highlighting the general information about the topic. The second part focuses on both natural and artificial causes while the last part discusses the effects on both humans and atmosphere

  19. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    Science.gov (United States)

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  20. Climate Change - Global Risks, Challenges & Decisions

    DEFF Research Database (Denmark)

    Richardson, Katherine; Steffen, Will; Schellnhuber, Hans J.

    negotiations is the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), published in 2007. The IPCC report has already been instrumental in increasing both public and political awareness of the societal risks associated with unchecked emission of greenhouse gases. Since...... and environment, and the many tools and approaches available to deal effectively with the challenge of climate change. The report has been produced by a writing team comprised of members of the Scientific Steering Committee for the IARU Congress and individuals invited to give the writing team academic...... of this volume. The writing team has, in addition to presentations at the Congress, drawn upon recent publications in the scientific literature to create this synthesis. This report has been critically reviewed by representatives of the Earth System Science Partnership (ESSP), by the parallel session chairs...

  1. Statistical structure of intrinsic climate variability under global warming

    Science.gov (United States)

    Zhu, Xiuhua; Bye, John; Fraedrich, Klaus

    2017-04-01

    Climate variability is often studied in terms of fluctuations with respect to the mean state, whereas the dependence between the mean and variability is rarely discussed. We propose a new climate metric to measure the relationship between means and standard deviations of annual surface temperature computed over non-overlapping 100-year segments. This metric is analyzed based on equilibrium simulations of the Max Planck Institute-Earth System Model (MPI-ESM): the last millennium climate (800-1799), the future climate projection following the A1B scenario (2100-2199), and the 3100-year unforced control simulation. A linear relationship is globally observed in the control simulation and thus termed intrinsic climate variability, which is most pronounced in the tropical region with negative regression slopes over the Pacific warm pool and positive slopes in the eastern tropical Pacific. It relates to asymmetric changes in temperature extremes and associates fluctuating climate means with increase or decrease in intensity and occurrence of both El Niño and La Niña events. In the future scenario period, the linear regression slopes largely retain their spatial structure with appreciable changes in intensity and geographical locations. Since intrinsic climate variability describes the internal rhythm of the climate system, it may serve as guidance for interpreting climate variability and climate change signals in the past and the future.

  2. Global climate changes, natural disasters, and travel health risks.

    Science.gov (United States)

    Diaz, James H

    2006-01-01

    Whether the result of cyclical atmospheric changes, anthropogenic activities, or combinations of both, authorities now agree that the earth is warming from a variety of climatic effects, including the cascading effects of greenhouse gas emissions to support human activities. To date, most reports of the public health outcomes of global warming have been anecdotal and retrospective in design and have focused on heat stroke deaths following heat waves, drowning deaths in floods and tsunamis, and mosquito-borne infectious disease outbreaks following tropical storms and cyclones. Accurate predictions of the true public health outcomes of global climate change are confounded by several effect modifiers including human acclimatization and adaptation, the contributions of natural climatic changes, and many conflicting atmospheric models of climate change. Nevertheless, temporal relationships between environmental factors and human health outcomes have been identified and may be used as criteria to judge the causality of associations between the human health outcomes of climate changes and climate-driven natural disasters. Travel medicine physicians are obligated to educate their patients about the known public health outcomes of climate changes, about the disease and injury risk factors their patients may face from climate-spawned natural disasters, and about the best preventive measures to reduce infectious diseases and injuries following natural disasters throughout the world.

  3. Nature–Culture Relations: Early Globalization, Climate Changes, and System Crisis

    Directory of Open Access Journals (Sweden)

    Sing C. Chew

    2016-01-01

    Full Text Available Globalization has been on everyone’s lips in light of the contemporary conditions. It has been viewed mostly as a stage reached as a result of long-term societal changes over the course of world history. For us, globalization has been an ongoing process for at least the last 5000 years. Little attention has been paid to the socioeconomic and natural processes that led to the current transformation. With the exception of historical sociologists, there is less interest in examining the long-term past as it is often assumed that the past has nothing to teach us, and it is the future that we have to turn our intellectual gaze. This paper will argue the opposite. We believe a long-term tracing of the socioeconomic and political processes of the making of the modern world will allow us to have a more incisive understanding of the current trajectory of world development and transformations. To plead our case, we outline the emergence of the first Eurasian World Economy linking seven regions (Europe, the Arabian Peninsula, East Africa, the Persian Gulf, Central Asia, South Asia, Ceylon, Southeast Asia, and China of the world, with the exception of the Americas, starting as early as 200 BC, and the sequence of structural crises and transformations (trading networks and commodities that has circumscribed the structures and trends of the current global system. Such consideration in our view is limited if we do not also include the relations between social systems and Nature, and the rhythms of the climate. For the latter, an awareness of the natural rhythms of the climate as well as human induced changes or climate forcing have triggered system-wide level collapses during certain early historical periods.

  4. Global climate change: Social and economic research issues

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.; Snow, J.; Jacobson, H. [eds.

    1992-05-01

    This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussions may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available. Individual papers are processed separately for the database.

  5. USGCRP assessments: Meeting the challenges of climate and global change

    Science.gov (United States)

    Dickinson, T.; Kuperberg, J. M.

    2016-12-01

    The United States Global Change Research Program (USGCRP) is a confederation of the research arms of 13 Federal departments and agencies. Its mission is to build a knowledge base that informs human responses to climate and global change through coordinated and integrated Federal programs of research, education, communication, and decision support. USGCRP has supported several initiatives to promote better understanding of climate change impacts on health, support responses, and build on the progress of the 2014 National Climate Assessment. Most recently, USGCRP released a new report, "The Impacts of Climate Change on Human Health: A Scientific Assessment". This presentation will provide an overview of USGCRP, highlight the importance of assessments, and introduce ways in which assessment findings and underlying data can be translated into critical tools to build resilience.

  6. The rogue nature of hiatuses in a global warming climate

    Science.gov (United States)

    Sévellec, F.; Sinha, B.; Skliris, N.

    2016-08-01

    The nature of rogue events is their unlikelihood and the recent unpredicted decade-long slowdown in surface warming, the so-called hiatus, may be such an event. However, given decadal variability in climate, global surface temperatures were never expected to increase monotonically with increasing radiative forcing. Here surface air temperature from 20 climate models is analyzed to estimate the historical and future likelihood of hiatuses and "surges" (faster than expected warming), showing that the global hiatus of the early 21st century was extremely unlikely. A novel analysis of future climate scenarios suggests that hiatuses will almost vanish and surges will strongly intensify by 2100 under a "business as usual" scenario. For "CO2 stabilisation" scenarios, hiatus, and surge characteristics revert to typical 1940s values. These results suggest to study the hiatus of the early 21st century and future reoccurrences as rogue events, at the limit of the variability of current climate modelling capability.

  7. Implications of climate change (global warming) for the healthcare system.

    Science.gov (United States)

    Raffa, R B; Eltoukhy, N S; Raffa, K F

    2012-10-01

    Temperature-sensitive pathogenic species and their vectors and hosts are emerging in previously colder regions as a consequence of several factors, including global warming. As a result, an increasing number of people will be exposed to pathogens against which they have not previously needed defences. We illustrate this with a specific example of recent emergence of Cryptococcus gattii infections in more temperate climates. The outbreaks in more temperate climates of the highly virulent--but usually tropically restricted--C. gattii is illustrative of an anticipated growing challenge for the healthcare system. There is a need for preparedness by healthcare professionals in anticipation and for management of such outbreaks, including other infections whose recent increased prevalence in temperate climates can be at least partly associated with global warming. (Re)emergence of temperature-sensitive pathogenic species in more temperate climates will present new challenges for healthcare systems. Preparation for outbreaks should precede their occurrence. © 2012 Blackwell Publishing Ltd.

  8. Climate Controls AM Fungal Distributions from Global to Local Scales

    Science.gov (United States)

    Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.

    2016-12-01

    Arbuscular mycorrhizal (AM) fungi have key functions in terrestrial biogeochemical processes; thus, determining the relative importance of climate, edaphic factors, and plant community composition on their geographic distributions can improve predictions of their sensitivity to global change. Local adaptation by AM fungi to plant hosts, soil nutrients, and climate suggests that all of these factors may control fungal geographic distributions, but their relative importance is unknown. We created species distribution models for 142 AM fungal taxa at the global scale with data from GenBank. We compared climate variables (BioClim and soil moisture), edaphic variables (phosphorus, carbon, pH, and clay content), and plant variables using model selection on models with (1) all variables, (2) climatic variables only (including soil moisture) and (3) resource-related variables only (all other soil parameters and NPP) using the MaxEnt algorithm evaluated with ENMEval. We also evaluated whether drivers of AM fungal distributions were phylogenetically conserved. To test whether global correlates of AM fungal distributions were reflected at local scales, we then surveyed AM fungi in nine plant hosts along three elevation gradients in the Upper Gunnison Basin, Colorado, USA. At the global scale, the distributions of 55% of AM fungal taxa were affected by both climate and soil resources, whereas 16% were only affected by climate and 29% were only affected by soil resources. Even for AM fungi that were affected by both climate and resources, the effects of climatic variables nearly always outweighed those of resources. Soil moisture and isothermality were the main climatic and NPP and soil carbon the main resource related factors influencing AM fungal distributions. Distributions of closely related AM fungal taxa were similarly affected by climate, but not by resources. Local scale surveys of AM fungi across elevations confirmed that climate was a key driver of AM fungal

  9. Global climate change and vector-borne diseases

    Science.gov (United States)

    Ginsberg, H.S.

    2002-01-01

    Global warming will have different effects on different diseases because of the complex and idiosynchratic interactions between vectors, hosts, and pathogens that influence transmission dynamics of each pathogen. Human activities, including urbanization, rapid global travel, and vector management, have profound effects on disease transmission that can operate on more rapid time scales than does global climate change. The general concern about global warming encouraging the spread of tropical diseases is legitimate, but the effects vary among diseases, and the ecological implications are difficult to predict.

  10. GLOBAL CLIMATE CHANGE--THE TECHNOLOGY CHALLENGE

    Science.gov (United States)

    Anthropogenic emissions of greenhouse gases, such as carbon dioxide, have led to increasing atmospheric concentrations which are at least partly responsible for the roughly 0.7% degree C global warming earth has experienced since the industrial revolution. With industrial activit...

  11. Global Climate and the Security of the European Union

    Science.gov (United States)

    2012-03-15

    precipitation suggest that climatic zones could shift several hundred kilometers towards the poles over the next fifty years. The report indicates...Romania, Slovakia, Slovenia and the Northern part of France,  Mediterranean Countries (MCEU) – Cyprus, Greece, Italy, Malta , Portugal, Spain, and the...global climate change. Precipitation is expected to decrease and draughts to increase. Egypt, Jordan, Lebanon and the Palestinian Territory will mostly

  12. Increasing Diversity in Global Climate Change Research for Undergraduates

    Science.gov (United States)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Peteet, D. M.; Rosenzweig, C.; Druyan, L. M.; Fulakeza, M.; Gaffin, S.; Austin, S. A.; Cheung, T. D.; Damas, M. C.; Boxe, C.; Prince, T.; Ng, C.; Frost, J.

    2014-12-01

    Global Climate Change and the ability to predict the effects of forcings and feedback mechanisms on global and local climate are critical to the survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies towards advanced degrees and pursue careers related to climate change. This is best accomplished by involving undergraduates in global climate change research. This Research Experience for Undergraduates (REU) initiative is based at the City University of New York (CUNY) and the Goddard Institute for Space Studies (GISS), and is supported by NASA and NSF. Mentors for the primarily summer research experiences include CUNY faculty and GISS scientists. Research topics include the Wetland Carbon Project, The Cooling Power Of Urban Vegetation, Internal Ocean Mixing, El Niño Southern Oscillation, Pollution Transport and Tropospheric Ozone. Students are recruited from CUNY colleges and other colleges and universities. The program maintains an emphasis on under-represented minorities and females. Approximately sixty percent of the undergraduate students are under-represented minorities and forty percent are female. The project is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research.

  13. Projected change in global fisheries revenues under climate change.

    Science.gov (United States)

    Lam, Vicky W Y; Cheung, William W L; Reygondeau, Gabriel; Sumaila, U Rashid

    2016-09-07

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries' vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.

  14. Projected change in global fisheries revenues under climate change

    Science.gov (United States)

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-09-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.

  15. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  16. Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change

    Science.gov (United States)

    Liu, Zhao; Anderson, Bruce; Yan, Kai; Dong, Weihua; Liao, Hua; Shi, Peijun

    2017-03-01

    The frequency and intensity of extreme heat wave events have increased in the past several decades and are likely to continue to increase in the future under the influence of human-induced climate change. Exposure refers to people, property, systems, or other elements present in hazard zones that are thereby subject to potential losses. Exposure to extreme heat and changes therein are not just determined by climate changes but also population changes. Here we analyze output for three scenarios of greenhouse gas emissions and socio-economic growth to estimate future exposure change taking account of both climate and population factors. We find that for the higher emission scenario (RCP8.5-SSP3), the global exposure increases nearly 30-fold by 2100. The average exposure for Africa is over 118 times greater than it has been historically, while the exposure for Europe increases by only a factor of four. Importantly, in the absence of climate change, exposure is reduced by 75–95% globally and across all geographic regions, as compared with exposure under the high emission scenario. Under lower emission scenarios RCP4.5-SSP2 and RCP2.6-SSP1, the global exposure is reduced by 65% and 85% respectively, highlighting the efficacy of mitigation efforts in reducing exposure to extreme heat.

  17. Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change.

    Science.gov (United States)

    Liu, Zhao; Anderson, Bruce; Yan, Kai; Dong, Weihua; Liao, Hua; Shi, Peijun

    2017-03-07

    The frequency and intensity of extreme heat wave events have increased in the past several decades and are likely to continue to increase in the future under the influence of human-induced climate change. Exposure refers to people, property, systems, or other elements present in hazard zones that are thereby subject to potential losses. Exposure to extreme heat and changes therein are not just determined by climate changes but also population changes. Here we analyze output for three scenarios of greenhouse gas emissions and socio-economic growth to estimate future exposure change taking account of both climate and population factors. We find that for the higher emission scenario (RCP8.5-SSP3), the global exposure increases nearly 30-fold by 2100. The average exposure for Africa is over 118 times greater than it has been historically, while the exposure for Europe increases by only a factor of four. Importantly, in the absence of climate change, exposure is reduced by 75-95% globally and across all geographic regions, as compared with exposure under the high emission scenario. Under lower emission scenarios RCP4.5-SSP2 and RCP2.6-SSP1, the global exposure is reduced by 65% and 85% respectively, highlighting the efficacy of mitigation efforts in reducing exposure to extreme heat.

  18. Global Climate Change: Three Policy Perspectives

    Science.gov (United States)

    2008-11-26

    ecological approach was given global scope by the “ Brundtland Report ” of the World Commission on Environment and Development. Articulating the goal of...Environmental Policy Resources, Science, and Industry Division Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for...Directorate for Information Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that

  19. Talking about Climate Change and Global Warming

    OpenAIRE

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warmin...

  20. Global and Arctic climate engineering: numerical model studies.

    Science.gov (United States)

    Caldeira, Ken; Wood, Lowell

    2008-11-13

    We perform numerical simulations of the atmosphere, sea ice and upper ocean to examine possible effects of diminishing incoming solar radiation, insolation, on the climate system. We simulate both global and Arctic climate engineering in idealized scenarios in which insolation is diminished above the top of the atmosphere. We consider the Arctic scenarios because climate change is manifesting most strongly there. Our results indicate that, while such simple insolation modulation is unlikely to perfectly reverse the effects of greenhouse gas warming, over a broad range of measures considering both temperature and water, an engineered high CO2 climate can be made much more similar to the low CO2 climate than would be a high CO2 climate in the absence of such engineering. At high latitudes, there is less sunlight deflected per unit albedo change but climate system feedbacks operate more powerfully there. These two effects largely cancel each other, making the global mean temperature response per unit top-of-atmosphere albedo change relatively insensitive to latitude. Implementing insolation modulation appears to be feasible.

  1. Hot house global climate change and the human condition

    CERN Document Server

    Strom, Robert G

    2007-01-01

    Global warming is addressed by almost all sciences including many aspects of geosciences, atmospheric, the biological sciences, and even astronomy. It has recently become the concern of other diverse disciplines such as economics, agriculture, demographics and population statistics, medicine, engineering, and political science. This book addresses these complex interactions, integrates them, and derives meaningful conclusions and possible solutions. The text provides an easy-to-read explanation of past and present global climate change, causes and possible solutions to the problem, including t

  2. Climate change impacts on global rainfed agricultural land availability

    Science.gov (United States)

    Zhang, X.; Cai, X.

    2010-12-01

    Global rainfed agricultural land availability can be subject to significant changes in both magnitude and spatial distribution due to climate change. We assess the possible changes using current and projected climate data from thirteen general circulation models (GCMs) under two emission scenarios, A1B & B1, together with global databases on land, including soil properties and slope. Two ensemble methods with the set of GCMs, Simple Average Method (SAM) and Root Mean Square Error Ensemble Method (RMSEMM), are employed to abate uncertainty involved in global GCM projections for assembling regional climate. Fuzzy logic, which handles land classification in an approximate yet efficient way, is adopted to estimate the land suitability through empirically determined membership functions and fuzzy rules chosen through a learning process based on remote sensed crop land products. Land suitability under five scenarios, which include the present-climate baseline scenario and four projected scenarios, A1B-SAM, A1B-RMSEMM, B1-SAM, and B1-RMSEMM, are assessed for both global and seven important agricultural regions in the world, Africa, China, India, Europe (excluding Russia), Russia, South America, and U.S. It is found that countries at the high latitudes of north hemisphere are more likely to benefit from climate change with respect to agricultural land availability; while countries at mid- and low latitudes may suffer different levels of loss of potential arable land. Expansions of the gross potential arable land are likely to occur in regions at the north high latitudes, including Russia, North China and U.S., while land shrinking can be expected in South America, Africa, India and Europe. Although the greatest potential for agricultural expansion lies in Africa and South America, with current cultivated land accounting for 20% and 13% respectively of the net potential arable land, negative effects from climate change may decline the potential. In summary, climate change

  3. Understanding coupled climatic and ecosystem responses to global climate change in the Central Grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Falkner, M.B.; Detling, J.; Ojima, D.; Pielke, R.A.; Stohlgren, T.J. (Colorado State Univ., Ft. Collins (United States)); Kittel, T.G.F. (Colorado State Univ., Ft. Collins (United States) UCAR, Boulder, CO (United States)); Lenihan, J.; Neilson, R. (Oregon State Univ., Corvallis (United States)); Reiners, W. (Univ. of Wyoming, Laramie (United States))

    1993-06-01

    A long-term National Park Service research program to assess the potential effect of global climate change on the Central Grasslands Biogeographic Area is underway. The program consists of two integrated projects: Projecting climate and vegetation change at regional to landscape scales; and Predicting the effect of global change on vegetation in park landscapes at the plot to landscape scales. Together, these integrated field and modeling studies establish a means to validate mesoscale and landscape vegetation models, a central goal of the NPS Global Change Research Program. Vegetation life form modeling suggests that under climate change scenarios the distribution of grassland vegetation zones will undergo major shifts. Results indicate that climate change impacts that reduce water availability will more severely depress productivity of C[sub 3] grass communities relative to C[sub 4] grass communities.

  4. Impact of climate change on global malaria distribution.

    Science.gov (United States)

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M; Morse, Andrew P; Colón-González, Felipe J; Stenlund, Hans; Martens, Pim; Lloyd, Simon J

    2014-03-04

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.

  5. Using Updated Climate Accounting to Slow Global Warming Before 2035

    Science.gov (United States)

    Schultz, T.

    2015-12-01

    The current and projected worsening of climate impacts make clear the urgency of limiting the global mean temperature to 2°C over preindustrial levels. But while mitigation policy today may slow global warming at the end of the century, it will not keep global warming within these limits. This failure arises in large part from the climate accounting system used to inform this policy, which does not factor in several scientific findings from the last two decades, including: The urgent need to slow global warming before 2035. This can postpone the time the +1.5°C limit is passed, and is the only way to avoid the most serious long-term climate disruptions. That while it may mitigate warming by the end of the century, reducing emissions of CO2 alone, according to UNEP/WMO[1], will do "little to mitigate warming over the next 20-30 years," and "may temporarily enhance near-term warming as sulfate [cooling] is reduced." That the only emissions reductions that can slow warming before 2035 are focused on short-lived climate pollutants. A small increase in current mitigation funding could fund these projects, the most promising of which target emissions in regional climate "hot spots" like the Arctic and India.[2] To ensure policies can effectively slow global warming before 2035, a new climate accounting system is needed. Such an updated system is being standardized in the USA,[3] and has been proposed for use in ISO standards. The key features of this updated system are: consideration of all climate pollutants and their multi-faceted climate effects; use of time horizons which prioritize mitigation of near-term warming; a consistent and accurate accounting for "biogenic" CO2; protocols ensuring that new scientific findings are incorporated; and a distinct accounting for emissions affecting regional "hot spots". This accounting system also considers environmental impacts outside of climate change, a feature necessary to identify "win-win" projects with climate benefits

  6. Climate Change - Global Risks, Challenges & Decisions

    DEFF Research Database (Denmark)

    Richardson, Katherine; Steffen, Will; Schellnhuber, Hans J.;

    and environment, and the many tools and approaches available to deal effectively with the challenge of climate change. The report has been produced by a writing team comprised of members of the Scientific Steering Committee for the IARU Congress and individuals invited to give the writing team academic...... and geographic breadth. It is based on the 16 plenary talks given at the Congress as well as input from over 80 chairs and cochairs of the 58 parallel sessions held at the Congress. The names of the plenary speakers and the chairs and co-chairs of the parallel sessions can be found on the inside cover...... of this volume. The writing team has, in addition to presentations at the Congress, drawn upon recent publications in the scientific literature to create this synthesis. This report has been critically reviewed by representatives of the Earth System Science Partnership (ESSP), by the parallel session chairs...

  7. Global Climatic Controls On Leaf Size

    Science.gov (United States)

    Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.

    2015-12-01

    Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.

  8. Linking the Mediterranean regional and the global climate change

    Science.gov (United States)

    Lionello, Piero; Scarascia, Luca

    2017-04-01

    This contribution analyzes 22 CMIP5 global climate projections to show how is the regional climate change in the Mediterranean related to the global climate change. The aim is to use these recent results to revisit evidences suggesting that the Mediterranean region is a climate change hot spot. Results show that future increase of temperature in the Mediterranean region has a strong seasonal connotation, with summer warming at a pace 40% larger than the global mean. This future trend is consistent with the global reduction of the meridional temperature gradient that is produced by climate change. However spatial distribution of changes shows a strong a sub-regional modulation depending of the land-sea contrast, the role of soil moisture feedback and changes of large scale atmospheric circulation leading to increased subsidence conditions. Projections show that precipitation decrease will affect most of the region, but with a strong difference between southern and northern areas, where CMIP5 projections suggest a 7% and 3% decrease of annual precipitation for each degree of global warming, respectively. For both Mediterranean temperature and precipitation, the dependence is substantially linear in the range up to 40C of global warming. Interannual variability and intermodel differences are a substantial source of uncertainty for precipitation (while there is a robust consensus for temperature changes). Therefore, future precipitation changes are still a controversial issue, in terms of intensity and precise location of the transition belt that separates the decrease of precipitation over the MR from areas in central and northern Europe, where precipitation is expected to increase. On this respect, though the overall drying trend appears consolidated in the scientific literature, its precise evaluation remains to some extent controversial.

  9. Climate change hotspots in the CMIP5 global climate model ensemble.

    Science.gov (United States)

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21(st) century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20(th)-century baseline), but not at the higher levels of global warming that occur in the late-21(st)-century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  10. Global climate change is confounding species conservation strategies.

    Science.gov (United States)

    Koopowitz, Harold; Hawkins, Bradford A

    2012-06-01

    Most organisms face similar problems with respect to their conservation in the face of global climate change. Here, we examine probable effects of climate change on the hyperdiverse plant family Orchidaceae. In the 20th century, the major concerns for orchid conservation revolved around unsustainable harvest for the orchid trade and, more importantly, land conversion from natural ecosystems to those unable to support wild orchid populations. Land conversion included logging, fire regimes and forest conversions to agricultural systems. Although those forms of degradation continue, an additional suite of threats has emerged, fueled by global climate change. Global climate change involves more than responses of orchid populations to increases in ambient temperature. Increasing temperature induces secondary effects that can be more significant than simple changes in temperature. Among these new threats are extended and prolonged fire seasons, rising sea levels, increases in cyclonic storms, seasonal climate shifts, changes in orthographic wind dew point and increased drought. The long-term outlook for orchid biodiversity in the wild is dismal, as it is for many animal groups, and we need to start rethinking strategies for conservation in a rapidly changing world.

  11. Climate-induced forest dieback: An escalating global phenomenon?

    Science.gov (United States)

    Allen, C.D.

    2009-01-01

    The impacts of growing human populations and economies are both rapidly and directly transforming forests in many areas. However, little known are the pervasive effects of the ongoing climatic changes on the condition and status of forests around the world. Global patterns are now evident with the global tree mortality that is now above its usual mortality levels as it is affected by drought and heat-related forest stress and dieback. Thus, the possibility of an increased risk of climate-induced dieback is now being considered within many of the forests and woodlands of today. A focus will be given on the climatic water stress that is driven by both drought and warm temperatures. However, studying the trends in forest mortality and predictions has its limitations with such a number of information gaps and scientific uncertainties. First is the absence of an adequate global data on forest health status, followed by the fact that only a few tree species have the researchers an adequate quantitative knowledge with regards to its physiological thresholds of individual tree mortality from chronic or acute water stress. Lastly, the adequate knowledge of the feedback and non-linear interactions between climate-induced forest stress and other climate-related disturbance processes are lacking among the current scientists.

  12. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.

    2015-09-23

    Explosive volcanic eruptions are magnificent events that in many ways affect the Earth\\'s natural processes and climate. They cause sporadic perturbations of the planet\\'s energy balance, activating complex climate feedbacks and providing unique opportunities to better quantify those processes. We know that explosive eruptions cause cooling in the atmosphere for a few years, but we have just recently realized that volcanic signals can be seen in the subsurface ocean for decades. The volcanic forcing of the previous two centuries offsets the ocean heat uptake and diminishes global warming by about 30%. The explosive volcanism of the twenty-first century is unlikely to either cause any significant climate signal or to delay the pace of global warming. The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial aerosol layer in the lower stratosphere to counteract global warming. In this chapter we aim to discuss these recently discovered volcanic effects and specifically pay attention to how we can learn about the hidden Earth-system mechanisms activated by explosive volcanic eruptions. To demonstrate these effects we use our own model results when possible along with available observations, as well as review closely related recent publications.

  13. The role of nursing science in global climate ghange

    Directory of Open Access Journals (Sweden)

    Ourania Gourvelou

    2010-10-01

    Full Text Available Global climate change has had and will have considerable effects on human health. Nursing must become more centrally involved in mitigation, reducing the acidity and response efforts of the problem. Aim: The review of contemporary literature available data regarding the role it can play in nursing science to global climate change. Material and Method: The method used to search electronic databases (MEDLINE, CINAHL, SCOPUS for review of foreign language literature in 2009. The search took place in December 2009. As eligible for the literature review, the studies found that developing a framework for modern professional nursing action to address and reduce the acidity of global climate change. Results: The main modes of action can be taken by nursing to reduce the acidity of the problem is a common tactics, which may be followed by all nurses, leading by example, giving advice and taking political action, b to determine the specificity and the contribution of nursing in specific areas of general health systems, c right priority of sites, namely the geographical environment is critical and determines the nature of the professional response and d public surveys and studies on which nurses need to base their decisions because the nursing needs a dedicated area for research to support environmentally activity. Conclusions: The nursing should be linked closely with other professions and sectors in order to maximize national and international efforts to mitigate and combat climate change. The profession's response to climate change should be as varied as the sector itself, and from all countries.

  14. Linking Urban Air Pollution to Global Tropospheric Chemistry and Climate

    Science.gov (United States)

    Wang, Chien

    2005-01-01

    The two major tasks of this project are to study: (a) the impact of urban nonlinear chemistry on chemical budgets of key pollutants in non-urban areas; and (b) the influence of air pollution control strategies in selected metropolitan areas, particularly of emerging economies in East and South Asia, on tropospheric chemistry and hence on regional and global climate.

  15. Climate impacts on global hot spots of marine biodiversity

    Science.gov (United States)

    Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S.; Chiaradia, André

    2017-01-01

    Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world’s richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation. PMID:28261659

  16. Global water resources affected by human interventions and climate change

    Science.gov (United States)

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  17. Seventh Grade Students' Conceptions of Global Warming and Climate Change

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Choi, Soyoung; Charusombat, Umarporn

    2009-01-01

    The purpose of this study was to investigate seventh grade students' conceptions of global warming and climate change. The study was descriptive in nature and involved the collection of qualitative data from 91 seventh grade students from three different schools in the Midwest, USA. An open response and draw and explain assessment instrument was…

  18. Knowledge of Global Climate Change: View of Iranian University Students

    Science.gov (United States)

    Salehi, Sadegh; Nejad, Zahra Pazuki; Mahmoudi, Hossein; Burkart, Stefan

    2016-01-01

    This article assesses students' understanding of global climate change (GCC) and social factors affecting it. It was hypothesized that students who demonstrate pro-environmental attitudes are more likely to possess higher knowledge of GCC. It was further hypothesized that trust and personal efficiency would have a positive effect on the knowledge…

  19. Trends in global wildfire potential in a changing climate

    Science.gov (United States)

    Y. Liu; J.A. Stanturf; S.L. Goodrick

    2009-01-01

    The trend in global wildfire potential under the climate change due to the greenhouse effect is investigated. Fire potential is measured by the Keetch-Byram Drought Index (KBDI), which is calculated using the observed maximum temperature and precipitation and projected changes at the end of this century (2070–2100) by general circulation models (GCMs) for present and...

  20. Seventh Grade Students' Conceptions of Global Warming and Climate Change

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Choi, Soyoung; Charusombat, Umarporn

    2009-01-01

    The purpose of this study was to investigate seventh grade students' conceptions of global warming and climate change. The study was descriptive in nature and involved the collection of qualitative data from 91 seventh grade students from three different schools in the Midwest, USA. An open response and draw and explain assessment instrument was…

  1. Global water resources affected by human interventions and climate change.

    Science.gov (United States)

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  2. Quantifying Contributions of Climate Feedbacks to Global Warming Pattern Formation

    Science.gov (United States)

    Song, X.; Zhang, G. J.; Cai, M.

    2013-12-01

    The ';';climate feedback-response analysis method'' (CFRAM) was applied to the NCAR CCSM3.0 simulation to analyze the strength and spatial distribution of climate feedbacks and to quantify their contributions to global and regional surface temperature changes in response to a doubling of CO2. Instead of analyzing the climate sensitivity, the CFRAM directly attributes the temperature change to individual radiative and non-radiative feedbacks. The radiative feedback decomposition is based on hourly model output rather than monthly mean data that are commonly used in climate feedback analysis. This gives a more accurate quantification of the cloud and albedo feedbacks. The process-based decomposition of non-radiative feedback enables us to understand the roles of GCM physical and dynamic processes in climate change. The pattern correlation, the centered root-mean-square (RMS) difference and the ratio of variations (represented by standard deviations) between the partial surface temperature change due to each feedback process and the total surface temperature change in CCSM3.0 simulation are examined to quantify the roles of each feedback process in the global warming pattern formation. The contributions of climate feedbacks to the regional warming are also discussed.

  3. Emissions and climate forcing from global and Arctic fishing vessels

    Science.gov (United States)

    McKuin, B.; Campbell, J. E.

    2016-12-01

    Fishing vessels were recently found to be the largest source of black carbon ship emissions in the Arctic, suggesting that the fishing sector should be a focus for future studies. Here we developed a global and Arctic emissions inventory for fishing vessel emissions of short-lived and long-lived climate forcers based on data from a wide range of vessel sizes, fuel sulfur contents, engine types, and operational characteristics. We found that previous work generally underestimated emissions of short-lived climate forcers due to a failure to account for small fishing vessels as well as variability in emission factors. In particular, global black carbon emissions were underestimated by an order of magnitude. Furthermore, our order of magnitude estimate of the net climate effect from these fishing vessel emissions suggests that short-lived climate forcing may be particularly important in regions where fuel has a low sulfur content. These results have implications for proposed maritime policies and provide a foundation for future climate simulations to forecast climate change impacts in the Arctic.

  4. Global climate change adaptation priorities for biodiversity and food security.

    Science.gov (United States)

    Hannah, Lee; Ikegami, Makihiko; Hole, David G; Seo, Changwan; Butchart, Stuart H M; Peterson, A Townsend; Roehrdanz, Patrick R

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services.

  5. Biophysical climate impacts of recent changes in global forest cover.

    Science.gov (United States)

    Alkama, Ramdane; Cescatti, Alessandro

    2016-02-01

    Changes in forest cover affect the local climate by modulating the land-atmosphere fluxes of energy and water. The magnitude of this biophysical effect is still debated in the scientific community and currently ignored in climate treaties. Here we present an observation-driven assessment of the climate impacts of recent forest losses and gains, based on Earth observations of global forest cover and land surface temperatures. Our results show that forest losses amplify the diurnal temperature variation and increase the mean and maximum air temperature, with the largest signal in arid zones, followed by temperate, tropical, and boreal zones. In the decade 2003-2012, variations of forest cover generated a mean biophysical warming on land corresponding to about 18% of the global biogeochemical signal due to CO2 emission from land-use change.

  6. Global Monsoon and Long-Term climate Changes

    Institute of Scientific and Technical Information of China (English)

    WANG Pinxian

    2009-01-01

    @@ The core in the current "Global Warming" debate is how to discriminate the anthropogenic from natural warming. To answer this question, we have to know the natural trend of climate changes, an issue on which scientists' opinions diverge incredibly. Some scientists tell us that the next ice age will not come in some 50 thousands years (Berger & Loutre, 2002), but others believe that new glaciation would have been upon us several thousands years ago, should it be not postponed by early human impact (Ruddiman, 2003). Climatologists now talking on "global warming" warned about "global cooling" over 30 years ago.

  7. The impact of the permafrost carbon feedback on global climate

    Science.gov (United States)

    Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.; Schuur, Edward A. G.; Witt, Ronald

    2014-08-01

    Degrading permafrost can alter ecosystems, damage infrastructure, and release enough carbon dioxide (CO2) and methane (CH4) to influence global climate. The permafrost carbon feedback (PCF) is the amplification of surface warming due to CO2 and CH4 emissions from thawing permafrost. An analysis of available estimates PCF strength and timing indicate 120 ± 85 Gt of carbon emissions from thawing permafrost by 2100. This is equivalent to 5.7 ± 4.0% of total anthropogenic emissions for the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathway (RCP) 8.5 scenario and would increase global temperatures by 0.29 ± 0.21 °C or 7.8 ± 5.7%. For RCP4.5, the scenario closest to the 2 °C warming target for the climate change treaty, the range of cumulative emissions in 2100 from thawing permafrost decreases to between 27 and 100 Gt C with temperature increases between 0.05 and 0.15 °C, but the relative fraction of permafrost to total emissions increases to between 3% and 11%. Any substantial warming results in a committed, long-term carbon release from thawing permafrost with 60% of emissions occurring after 2100, indicating that not accounting for permafrost emissions risks overshooting the 2 °C warming target. Climate projections in the IPCC Fifth Assessment Report (AR5), and any emissions targets based on those projections, do not adequately account for emissions from thawing permafrost and the effects of the PCF on global climate. We recommend the IPCC commission a special assessment focusing on the PCF and its impact on global climate to supplement the AR5 in support of treaty negotiation.

  8. Global climate change model natural climate variation: Paleoclimate data base, probabilities and astronomic predictors

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, G.; Gavin, J. [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Geological Observatory

    1994-05-01

    This report was prepared at the Lamont-Doherty Geological Observatory of Columbia University at Palisades, New York, under subcontract to Pacific Northwest Laboratory it is a part of a larger project of global climate studies which supports site characterization work required for the selection of a potential high-level nuclear waste repository and forms part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work under the PASS Program is currently focusing on the proposed site at Yucca Mountain, Nevada, and is under the overall direction of the Yucca Mountain Project Office US Department of Energy, Las Vegas, Nevada. The final results of the PNL project will provide input to global atmospheric models designed to test specific climate scenarios which will be used in the site specific modeling work of others. The primary purpose of the data bases compiled and of the astronomic predictive models is to aid in the estimation of the probabilities of future climate states. The results will be used by two other teams working on the global climate study under contract to PNL. They are located at and the University of Maine in Orono, Maine, and the Applied Research Corporation in College Station, Texas. This report presents the results of the third year`s work on the global climate change models and the data bases describing past climates.

  9. Climate Discovery: NCAR Online Education Climate and Global Change Professional Development Program

    Science.gov (United States)

    Ward, D. L.; Johnson, R. M.; Foster, S.; Henderson, S.; Gardiner, L.; Russell, R.; Meymaris, K.; Hatheway, B.

    2007-12-01

    The National Center for Atmospheric Research (NCAR) is offering middle and high school teachers an opportunity to learn about the science of climate and how current research is advancing our understanding through Climate Discovery, a series of three online professional development courses. The goals of the Climate Discovery online course series are to provide climate science content relevant to National Science Education Standards, to share easy to implement, hands-on classroom activities that facilitate student understanding of climate and global change, and to provide a broad overview of Earth system science to educator-leaders who are teaching sciences at the middle and high school levels. The first course in the series, Introduction to Earth's Climate, explores climate science and serves as the introduction to the Climate Discovery series. The second course, Earth System Science: A Climate Change Perspective, explores Earth as a system from the perspective of climate and global change, describing the interactions between the various parts of the Earth system, and how they all affect our climate. The final course, Understanding Climate Change Today, provides an opportunity to learn about the impacts of global change as well as exploring how climate models are developed and used to understand likely scenarios of future climate and how current scientific research is improving the quality of climate predictions. The online courses, instructed by science education specialists, combine information about current research and modeling efforts with classroom-tested science inquiry activities. The online course experience features a high level of interactivity, tools for assessment, and effective community-building interactive technologies. We encourage teachers immediately apply their learning by enriching their existing standards-aligned science curriculum, bringing the science of Earth's climate to their students. In this presentation, course developers and

  10. Climatic irregular staircases: generalized acceleration of global warming.

    Science.gov (United States)

    De Saedeleer, Bernard

    2016-01-27

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  11. Climatic irregular staircases: generalized acceleration of global warming

    Science.gov (United States)

    de Saedeleer, Bernard

    2016-01-01

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr — not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth’s climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates — except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  12. Engaging the Global South on climate engineering research

    Science.gov (United States)

    Winickoff, David E.; Flegal, Jane A.; Asrat, Asfawossen

    2015-07-01

    The Global South is relatively under-represented in public deliberations about solar radiation management (SRM), a controversial climate engineering concept. This Perspective analyses the outputs of a deliberative exercise about SRM, which took place at the University of California-Berkeley and involved 45 mid-career environmental leaders, 39 of whom were from the Global South. This analysis identifies and discusses four themes from the Berkeley workshop that might inform research and governance in this arena: (1) the 'moral hazard' problem should be reframed to emphasize 'moral responsibility'; (2) climate models of SRM deployment may not be credible as primary inputs to policy because they cannot sufficiently address local concerns such as access to water; (3) small outdoor experiments require some form of international public accountability; and (4) inclusion of actors from the Global South will strengthen both SRM research and governance.

  13. Prospects of Russian Agriculture development under global climate and technological changes

    Science.gov (United States)

    Valentini, Riccardo; Vasenev, Ivan

    2015-04-01

    Despite the great progresses of the last century in the agricultural sector and food supply, still about 820 million of people in developing countries are facing food scarcity and malnutrition. More than 180 million children are underweight. Except in Africa, 80 percent of the production gains came from increased yields in major cereal crops. The area cultivated has actually begun to decline in some regions. From now on, however, even Africa, which has always relied on cultivation of new land for production increases, will have to count on yield gains or pay high financial and ecological costs for expansion into areas not yet cultivated. The global scenario is changing fast. The technological, climatic and human-induced factors are creating long-lasting effects on the lives of people and on economic activities around the globe. In particular, climate change and/or variability is exacerbating rural increasing heat stress to natural habitats and human settlements, increasing climatic extremes, including drought and impacting food production. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage. Changes in total seasonal precipitation or in its pattern of variability are both important. The occurrence of moisture stress during flowering, pollination, and grain-filling is harmful to most crops and particularly so to corn, soybeans, and wheat. Increased evaporation from the soil and accelerated transpiration in the plants themselves will cause moisture stress; as a result there will be a need to develop crop varieties with greater drought tolerance. These climate change effects are particularly harmful in tropical regions of South America, Africa and South East Asia where food production is feeding a large part of world countries and poses serious risks to global food security in the future. Despite global projected climate change will affect a general decline of

  14. Global Framework for Climate Services (GFCS): status of implementation

    Science.gov (United States)

    Lucio, Filipe

    2014-05-01

    The GFCS is a global partnership of governments and UN and international agencies that produce and use climate information and services. WMO, which is leading the initiative in collaboration with UN ISDR, WHO, WFP, FAO, UNESCO, UNDP and other UN and international partners are pooling their expertise and resources in order to co-design and co-produce knowledge, information and services to support effective decision making in response to climate variability and change in four priority areas (agriculture and fod security, water, health and disaster risk reduction). To address the entire value chain for the effective production and application of climate services the GFCS main components or pillars are being implemented, namely: • User Interface Platform — to provide ways for climate service users and providers to interact to identify needs and capacities and improve the effectiveness of the Framework and its climate services; • Climate Services Information System — to produce and distribute climate data, products and information according to the needs of users and to agreed standards; • Observations and Monitoring - to generate the necessary data for climate services according to agreed standards; • Research, Modelling and Prediction — to harness science capabilities and results and develop appropriate tools to meet the needs of climate services; • Capacity Building — to support the systematic development of the institutions, infrastructure and human resources needed for effective climate services. Activities are being implemented in various countries in Africa, the Caribbean and South pacific Islands. This paper will provide details on the status of implementation of the GFCS worldwider.

  15. Towards a unified Global Weather-Climate Prediction System

    Science.gov (United States)

    Lin, S. J.

    2016-12-01

    The Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions and kilometer scale regional climate simulations within a unified global modeling system. The foundation of this flexible modeling system is the nonhydrostatic Finite-Volume Dynamical Core on the Cubed-Sphere (FV3). A unique aspect of FV3 is that it is "vertically Lagrangian" (Lin 2004), essentially reducing the equation sets to two dimensions, and is the single most important reason why FV3 outperforms other non-hydrostatic cores. Owning to its accuracy, adaptability, and computational efficiency, the FV3 has been selected as the "engine" for NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched grid, a two-way regional-global nested grid, and an optimal combination of the stretched and two-way nests capability, making kilometer-scale regional simulations within a global modeling system feasible. Our main scientific goal is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that, with the FV3, it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornado-like vortices using a global model that was originally designed for climate simulations. The development and tuning strategy between traditional weather and climate models are fundamentally different due to different metrics. We were able to adapt and use traditional "climate" metrics or standards, such as angular momentum conservation, energy conservation, and flux balance at top of the atmosphere, and gain insight into problems of traditional weather prediction model for medium-range weather prediction, and vice versa. Therefore, the

  16. Global climate change: an unequivocal reality; Cambio climatico global: una realidad inequivoca

    Energy Technology Data Exchange (ETDEWEB)

    Raynal-Villasenor, J.A. [Universidad de las Americas, Puebla, Puebla (Mexico)]. E-mail: josea.raynal@udlap.mx

    2011-10-15

    During several years, a long discussion has taken place over the reality of global climate change phenomenon and, if there is one, what could be its cause. Once the 4th Assessment Report of the Intergovernmental Panel on Climatic Change (IPCC, 2007) - IPCC is part the United Nations Organization (UN) - was published, it was stated that there is a developing global climatic change and that the cause is unequivocally related with the human activity in the planet Earth. In this paper, relevant information is given about the development of global climatic change issues and some actions are mentioned that each human being of this planet can implement to mitigate it, since it has been accepted that it's impossible to stop it. [Spanish] Durante varios anos se ha discutido si existe un cambio climatico global y, si lo hay, cual es su causa. Una vez publicado el 4o. Reporte de Valoracion del Panel Intergubernamental sobre Cambio Climatico (IPCC, 2007) - el IPCC es parte de la Organizacion de las Naciones Unidas (ONU) - se preciso que hay un cambio climatico global en desarrollo y la causa inequivoca que lo esta produciendo es la actividad humana en el planeta Tierra, tambien se hablo en el IPCC de las causas naturales por las cuales el planeta se esta calentando. En el presente articulo, se da informacion relevante al cambio climatico global en desarrollo y se mencionan algunas acciones que cada ser humano de este planeta puede implementar para mitigarlo, ya que es imposible detenerlo.

  17. The economics of long-term global climate change

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report is intended to provide an overview of economic issues and research relevant to possible, long-term global climate change. It is primarily a critical survey, not a statement of Administration or Department policy. This report should serve to indicate that economic analysis of global change is in its infancy few assertions about costs or benefits can be made with confidence. The state of the literature precludes any attempt to produce anything like a comprehensive benefit-cost analysis. Moreover, almost all the quantitative estimates regarding physical and economic effects in this report, as well as many of the qualitative assertions, are controversial. Section I provides background on greenhouse gas emissions and their likely climatic effects and on available policy instruments. Section II considers the costs of living with global change, assuming no substantial efforts to reduce greenhouse gas emissions. Section III considers costs of reducing these emissions, though the available literature does not contain estimates of the costs of policies that would, on the assumptions of current climate models, prevent climate change altogether. The individual sections are not entirely compartmentalized, but can be read independently if necessary.

  18. Shifting global invasive potential of European plants with climate change.

    Directory of Open Access Journals (Sweden)

    A Townsend Peterson

    Full Text Available Global climate change and invasions by nonnative species rank among the top concerns for agents of biological loss in coming decades. Although each of these themes has seen considerable attention in the modeling and forecasting communities, their joint effects remain little explored and poorly understood. We developed ecological niche models for 1804 species from the European flora, which we projected globally to identify areas of potential distribution, both at present and across 4 scenarios of future (2055 climates. As expected from previous studies, projections based on the CGCM1 climate model were more extreme than those based on the HadCM3 model, and projections based on the a2 emissions scenario were more extreme than those based on the b2 emissions scenario. However, less expected were the highly nonlinear and contrasting projected changes in distributional areas among continents: increases in distributional potential in Europe often corresponded with decreases on other continents, and species seeing expanding potential on one continent often saw contracting potential on others. In conclusion, global climate change will have complex effects on invasive potential of plant species. The shifts and changes identified in this study suggest strongly that biological communities will see dramatic reorganizations in coming decades owing to shifting invasive potential by nonnative species.

  19. Global patterns in endemism explained by past climatic change.

    Science.gov (United States)

    Jansson, Roland

    2003-03-22

    I propose that global patterns in numbers of range-restricted endemic species are caused by variation in the amplitude of climatic change occurring on time-scales of 10-100 thousand years (Milankovitch oscillations). The smaller the climatic shifts, the more probable it is that palaeoendemics survive and that diverging gene pools persist without going extinct or merging, favouring the evolution of neoendemics. Using the change in mean annual temperature since the last glacial maximum, estimated from global circulation models, I show that the higher the temperature change in an area, the fewer endemic species of mammals, birds, reptiles, amphibians and vascular plants it harbours. This relationship was robust to variation in area (for areas greater than 10(4) km2), latitudinal position, extent of former glaciation and whether or not areas are oceanic islands. Past climatic change was a better predictor of endemism than annual temperature range in all phylads except amphibians, suggesting that Rapoport's rule (i.e. species range sizes increase with latitude) is best explained by the increase in the amplitude of climatic oscillations towards the poles. Globally, endemic-rich areas are predicted to warm less in response to greenhouse-gas emissions, but the predicted warming would cause many habitats to disappear regionally, leading to species extinctions.

  20. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  1. Fracking in the face of global climate change

    Science.gov (United States)

    Peterson, P.; Gautier, C.

    2015-12-01

    Until recently, "peak oil" was regarded as imminent. Now, however, the recent rapid increase in US oil and gas production from shale exploitation has delayed peak oil. This delay raises grave climate concerns. The development of new technologies (such as horizontal drilling) means that enormous unconventional reserves distributed worldwide may be readily recoverable, with large negative consequences on the global greenhouse gas emissions trajectory. If even a small portion of these unconventional reserves were exploited, it is highly likely that limiting global Earth warming to 2ºC, a goal being discussed for COP 21, will be impossible. Instead, tipping points in the climate system will likely be reached, with serious effects, including greatly accelerated ice melting, leading to large and unstoppable global sea level rise. The enthusiasm for shale gas stems in part from its potential role as a bridge fuel to wean the country from coal until low-carbon alternatives come into full play. However, shale gas and oil production entail direct adverse environmental impacts (air and water pollution, induced earthquakes and public health risks) that are only now coming to light. Gas production through fracking also has severe impacts on climate through the release of methane, a potent greenhouse gas that leaks from production sites. In intensive fracking regions, high methane concentrations are measured on the ground and are now detectable in satellite data. Proponents of gas fracking argue that with the right policies to protect communities and the environment, natural gas can be harnessed as part of a broad climate strategy. But opponents of gas fracking believe that no regulation will be adequate to protect communities and the local environment. They also fear that natural gas produced through fracking will delay progress toward a carbon-free future. We will explore the consequences for the global climate of exploiting these very large oil and gas resources.

  2. Global climate and the distribution of plant biomes.

    Science.gov (United States)

    Woodward, F I; Lomas, M R; Kelly, C K

    2004-10-29

    Biomes are areas of vegetation that are characterized by the same life-form. Traditional definitions of biomes have also included either geographical or climatic descriptors. This approach describes a wide range of biomes that can be correlated with characteristic climatic conditions, or climatic envelopes. The application of remote sensing technology to the frequent observation of biomes has led to a move away from the often subjective definition of biomes to one that is objective. Carefully characterized observations of life-form, by satellite, have been used to reconsider biome classification and their climatic envelopes. Five major tree biomes can be recognized by satellites based on leaf longevity and morphology: needleleaf evergreen, broadleaf evergreen, needleleaf deciduous, broadleaf cold deciduous and broadleaf drought deciduous. Observations indicate that broadleaf drought deciduous vegetation grades substantially into broadleaf evergreen vegetation. The needleleaf deciduous biome occurs in the world's coldest climates, where summer drought and therefore a drought deciduous biome are absent. Traditional biome definitions are quite static, implying no change in their life-form composition with time, within their particular climatic envelopes. However, this is not the case where there has been global ingress of grasslands and croplands into forested vegetation. The global spread of grasses, a new super-biome, was probably initiated 30-45 Myr ago by an increase in global aridity, and was driven by the natural spread of the disturbances of fire and animal grazing. These disturbances have been further extended over the Holocene era by human activities that have increased the land areas available for domestic animal grazing and for growing crops. The current situation is that grasses now occur in most, if not all biomes, and in many areas they dominate and define the biome. Croplands are also increasing, defining a new and relatively recent component to the

  3. Managing Identifiers for Elements of Provenance of the Third National Climate Assessment in the Global Change Information System (Invited)

    Science.gov (United States)

    Tilmes, C.; Aulenbach, S.; Duggan, B.; Goldstein, J.

    2013-12-01

    A Federal Advisory Committee (The "National Climate Assessment and Development Advisory Committee" or NCADAC) has overseen the development of a draft climate report that after extensive review will be considered by the Federal Government in the Third National Climate Assessment (NCA). This comprehensive report (1) Integrates, evaluates, and interprets the findings of the Program and discusses the scientific uncertainties associated with such findings; (2) Analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and (3) Analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The U.S. Global Change Program (USGCRP), composed of the 13 federal agencies most concerned with global change, is building a Global Change Information System (GCIS) that will ultimately organize access to all of the research, data, and information about global change from across the system. A prototype of the system has been constructed that captures and presents all of the elements of provenance of the NCA through a coherent data model and friendly front end web site. This work will focus on the globally unique and persistent identifiers used to reference and organize those items. These include externally referenced items, such as DOIs used by scientific journal publishers for research articles or by agencies as dataset identifiers, as well as our own internal approach to identifiers, our overall data model and experiences managing persistent identifiers within the GCIS.

  4. The gender perspective in climate change and global health

    Directory of Open Access Journals (Sweden)

    Birgitta Evengård

    2010-12-01

    Full Text Available Background: Population health is a primary goal of sustainable development. United Nations international conferences like the Beijing Platform for Action have highlighted the key role of women in ensuring sustainable development. In the context of climate change, women are affected the most while they display knowledge and skills to orient themselves toward climate adaptation activities within their societies. Objective: To investigate how the gender perspective is addressed as an issue in research and policy-making concerning climate change and global health. Methods: A broad literature search was undertaken using the databases Pubmed and Web of Science to explore the terms ‘climate change,’ ‘health,’ ‘gender,’ and ‘policy.’ Climate change and health-related policy documents of the World Health Organization (WHO and National Communications and National Adaptation Programs of Action reports submitted to the United Nations Framework Convention on Climate Change of selected countries were studied. Assessment guidelines to review these reports were developed from this study's viewpoint. Results: The database search results showed almost no articles when the four terms were searched together. The WHO documents lacked a gender perspective in their approach and future recommendations on climate policies. The reviewed UN reports were also neutral to gender perspective except one of the studied documents. Conclusion: Despite recognizing the differential effects of climate change on health of women and men as a consequence of complex social contexts and adaptive capacities, the study finds gender to be an underrepresented or non-existing variable both in research and studied policy documents in the field of climate change and health.

  5. Intercomparison of hydrologic processes in global climate models

    Science.gov (United States)

    Lau, W. K.-M.; Sud, Y. C.; Kim, J.-H.

    1995-01-01

    In this report, we address the intercomparison of precipitation (P), evaporation (E), and surface hydrologic forcing (P-E) for 23 Atmospheric Model Intercomparison Project (AMIP) general circulation models (GCM's) including relevant observations, over a variety of spatial and temporal scales. The intercomparison includes global and hemispheric means, latitudinal profiles, selected area means for the tropics and extratropics, ocean and land, respectively. In addition, we have computed anomaly pattern correlations among models and observations for different seasons, harmonic analysis for annual and semiannual cycles, and rain-rate frequency distribution. We also compare the joint influence of temperature and precipitation on local climate using the Koeppen climate classification scheme.

  6. Global climate change and cryospheric evolution in China

    Directory of Open Access Journals (Sweden)

    Qin D.

    2009-02-01

    Full Text Available Major outcomes of Working Group I, IPCC AR4 (2007, as well as the recent understandings from our regional climatic assessments in China were summarized. Changes of cryosphere in China, one of the major components in regional climate system, is specifically reviewed. Under the global/regional warming, all components of cryosphere in China (Tibetan Plateau and surroundings including glaciers, frozen ground (including permafrost and snow cover show rapid decay in the last decades. These changes have big socioeconomic impacts in west China, thus encourages both government and scientists pay more and more attention to this field.

  7. The Arctic Ocean in the global climate system (review)

    OpenAIRE

    Alekseev,G. V./Ivanov,V. V./Zakharov,V. F./Yanes,A. V.

    1996-01-01

    The oceanic portion of the Arctic climate system has a strong influence on global climate change. This is because, first, the Arctic Ocean can change its capacity for redistribution of solar heat in consequence of the changes of thermohaline structure of the upper layer and the sea ice area on its surface, second; the vertical oceanic circulation in high latitudes is very sensitive to changes of the fresh water balance on the ocean surface that can cause a profound effect on the production of...

  8. Global Framework for Climate Services (GFCS): status of implementation

    Science.gov (United States)

    Lucio, Filipe

    2015-04-01

    The World Climate Conference-3 (Geneva 2009) unanimously decided to establish the Global Framework for Climate Services (GFCS), a UN-led initiative spearheaded by WMO to guide the development and application of science-based climate information and services in support of decision-making in climate sensitive sectors. By promoting science-based decision-making, the GFCS is empowering governments, communities and companies to build climate resilience, reduce vulnerabilities and adapt to impacts. The initial priority areas of GFCS are Agriculture and Food Security; Disaster Risk Reduction; Health; and Water Resources. The implementation of GFCS is well underway with a governance structure now fully established. The governance structure of GFCS includes the Partner Advisory Committee (PAC), which is GFCS's stakeholder engagement mechanism. The membership of the PAC allows for a broad participation of stakeholders. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the European Commission (EC), the Food and Agriculture Organization of the UN (FAO), the Global Water Partnership (GWP), the International Federation of Red Cross and Red Crescent Societies (IFRC), the International Union of Geodesy and Geophysics (IUGG), United Nations Environment Programme (UNEP), the United Nations Institute for Training and Research (UNITAR), the World Business Council for Sustainable Development (WBCSD), the World Food Programme (WFP) and WMO have already joined the PAC. Activities are being implemented in various countries in Africa, the Caribbean, Asia and Pacific Small Islands Developing States through flagship projects and activities in the four priority areas of GFCS to enable the development of a Proof of Concept. The focus at national level is on strengthening institutional capacities needed for development of capacities for co-design and co-production of climate services and their application in support of decision-making in climate sensitive

  9. Thermodynamic contributions of deforestation to global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A.

    2009-07-01

    This paper examines a portion of the thermodynamics of global warming. The calculations use the endothermic photosynthesis reaction and yearly measures of CO{sub 2} uptake to determine the amount of energy that is absorbed by forest cover each year. The energy absorption value of forest coverage determines the yearly cost of deforestation. The calculations reveal that 3.92 * 10{sup 15} kJ less solar energy is absorbed by global forest coverage because of deforestation each year. The energy is enough to warm the atmosphere by 0.00008 °C / year. By comparison the same amount of energy represents 0.001 % of the atmospheric energy gains between 1995 and 2003. The results of this paper raise questions about the nature of global warming and the possibility that thermodynamic contributions to global climate change are significant. (author)

  10. State of the Climate Monthly Overview - Global El Niño/Southern Oscillation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  11. Climate change denial, freedom of speech and global justice

    Directory of Open Access Journals (Sweden)

    Trygve Lavik

    2016-10-01

    Full Text Available In this paper I claim that there are moral reasons for making climate denialism illegal . First I define climate denialism, and then I discuss its impact on society and its reception in the media.  I build my philosophical arguments mainly on John Stuart Mill and Thomas M. Scanlon.  According to Mill’s utilitarian justification of free speech, even untrue opinions are valuable in society’s pursuit of more truth. Consequently one might think that Mill’s philosophy would justify climate denialists’ right to free speech.  A major section of the paper argues against that view. The main arguments are: Climate denialism is not beneficial because its main goal is to produce doubt, and not truth. Climate denialism is not sincerely meant, which is a necessary condition for Mill to accept utterances. Climate denialists bring harm, by blocking necessary action on climate change.  Primarily they harm future generations and people in developing countries. Hence the case can be made in terms of global justice: Would future generations and people in developing countries support my claim? I think so, or so I argue. My argument from global justice is built on Scanlon’s distinction between the interests of participants, the interests of audiences, and the interests of bystanders.  The climate denialists have participant interests ‘in being able to call something to the attention of a wide audience’. Audience interests consist in ‘having access to expressions that we wish to hear or read, and even in being exposed to some degree to expressions we have not chosen’. Future generations and people in poor countries are bystanders to the climate debate. If the debate postpones necessary actions, it is the bystanders who must pay the price. I argue that bystanders’ costs outweigh participants’ and audiences’ interests, and that this is an argument for a statutory ban on climate denialism.Article first published online: 21 DEC 2015 

  12. Climate and Global Change: Programs and Services Reaching Public and K-12 Audiences at a National Research Laboratory

    Science.gov (United States)

    Foster, S. Q.; Johnson, R. M.; Carbone, L.; Eastburn, T.; Munoz, R.; Lu, G.; Ammann, C.

    2004-05-01

    The study of climate and global change is an important on-going focal area for scientists at the National Center for Atmospheric Research (NCAR). Programs overseen by the University Corporation for Atmospheric Research Office of Education and Outreach (UCAR-EO) help to translate NCAR's scientific programs, methodologies, and technologies, and their societal benefits to over 80,000 visitors to the NCAR Mesa Laboratory each year. This is accomplished through the implementation of exhibits, guided tours, an audiotour, programs for school groups, and a teachers' guide to exhibits which is currently in development. The Climate Discovery Exhibit unveiled in July 2003 offers visitors a visually engaging and informative overview of information, graphics, artifacts, and interactives describing the Earth system's dynamic processes that contribute to and mediate climate change, the history of our planet's changing climate, and perspectives on geographic locations and societies around the world that have potential to be impacted by a changing climate. Climate Futures, an addition to this exhibit to open in the summer of 2004, will help visitors to understand why scientists seek to model the global climate system and how information about past and current climate are used to validate models and build scenarios for Earth's future climate, while clarifying the effects of natural and human-induced contributions to these predictions. UCAR-EO further strives to enhance public understanding and to dispel misconceptions about climate change by bringing scientists' explanations to visitors who learn about atmospheric sciences while on staff-guided tours and/or while using an audiotour developed in 2003 with a grant from the National Science Foundation. With advanced reservations, a limited number of visitors may experience demonstrations of climate models in the NCAR Visualization Laboratory. An instructional module for approximately 5,000 visiting school children and a teachers guide

  13. Is This Global Warming? Communicating the Intangibles of Climate Change

    Science.gov (United States)

    Warner, L.; Henson, R.

    2004-05-01

    Unlike weather, which is immediate, tangible, and relevant on a daily basis, climate change is long-term, slow to evolve, and often difficult to relate to the public's daily concerns. By explaining global-change research to wide and diverse audiences through a variety of vehicles, including publications, exhibits, Web sites, and television B-roll, UCAR has gained experience and perspective on the challenges involved. This talk will explore some of the lessons learned and some of the key difficulties that face global-change communicators, including: --The lack of definitive findings on regional effects of global change -- The long time frame in which global change plays out, versus the short attention span of media, the public, and policy makers --The use of weather events as news pegs (they pique interest, but they may not be good exemplars of global change and are difficult to relate directly to changes in greenhouse-gas emissions) --The perils of the traditional journalistic technique of point-counterpoint in discussing climate change --The presence of strong personal/political convictions among various interest groups and how these affect the message(s) conveyed

  14. Implications of global warming for the climate of African rainforests.

    Science.gov (United States)

    James, Rachel; Washington, Richard; Rowell, David P

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions.

  15. Using a Global Climate Model in an On-line Climate Change Course

    Science.gov (United States)

    Randle, D. E.; Chandler, M. A.; Sohl, L. E.

    2012-12-01

    Seminars on Science: Climate Change is an on-line, graduate-level teacher professional development course offered by the American Museum of Natural History. It is an intensive 6-week course covering a broad range of global climate topics, from the fundamentals of the climate system, to the causes of climate change, the role of paleoclimate investigations, and a discussion of potential consequences and risks. The instructional method blends essays, videos, textbooks, and linked websites, with required participation in electronic discussion forums that are moderated by an experienced educator and a course scientist. Most weeks include additional assignments. Three of these assignments employ computer models, including two weeks spent working with a full-fledged 3D global climate model (GCM). The global climate modeling environment is supplied through a partnership with Columbia University's Educational Global Climate Modeling Project (EdGCM). The objective is to have participants gain hands-on experience with one of the most important, yet misunderstood, aspects of climate change research. Participants in the course are supplied with a USB drive that includes installers for the software and sample data. The EdGCM software includes a version of NASA's global climate model fitted with a graphical user interface and pre-loaded with several climate change simulations. Step-by-step assignments and video tutorials help walk people through these challenging exercises and the course incorporates a special assignment discussion forum to help with technical problems and questions about the NASA GCM. There are several takeaways from our first year and a half of offering this course, which has become one of the most popular out of the twelve courses offered by the Museum. Participants report a high level of satisfaction in using EdGCM. Some report frustration at the initial steps, but overwhelmingly claim that the assignments are worth the effort. Many of the difficulties that

  16. U.S. Global Climate Change Impacts Report, Adaptation

    Science.gov (United States)

    Pulwarty, R.

    2009-12-01

    Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The

  17. Global Framework for Climate Services (GFCS): implementation approach

    Science.gov (United States)

    Lucio, Filipe

    2013-04-01

    The Extraordinary Session of the World Meteorological Congress, held from 29 to 31 October 2012, adopted the Implementation Plan of the Global Framework for Climate Services, for the subsequent consideration by the Intergovernmental Board on Climate Services, which will host its first session in July 2013. The Extraordinary Congress called for an immediate move to action, so that the work undertaken can result in activities on the ground which will benefit, in particular, vulnerable countries. The development of the GFCS through a broad consultation process accross the pillars of the GFCS (User Interface Platform; Observations and Monitoring; Climate Services Information System; Research, Modelling and Prediction; and Capacity Development) and the initial four priority areas (Agriculture and Food Security; Water; Health and Disaster Risk Reductio) identified a number of challenges, which in some cases constitute barries to implementation: - Accessibility: many countries do not have climate services at all, and all countries have scope to improve access to such services; - Capacity: many countries lack the capacity to anticipate and managed climate-related risks and opportunities; - Data: the current availability and quality of climate observations and impacts data are inadequate for large parts of the globe; - Partnerships: mechanisms to enhance interaction between climate users and providers are not always well developed, and user requirements are not always adequately understood and addressed; - Quality: operational climate services are lagging advances in climate and applications science, and the spatial and temporal resolution of information to support decision-making is often insufficient to match user requirements. To address these challenges, the Implementation Plan of the GFCS identified initial implementation projects and activities. The initial priority is to establish the leadership and management capacity to take the GFCS forward at all levels. Capacity

  18. Andean Uplift in the Context of Global Climate Change

    Science.gov (United States)

    Jeffery, Louise; Poulsen, Chris; Ehlers, Todd; Insel, Nadja

    2010-05-01

    The two primary causes of South American climate change over the last 40 million years are global climate change and the uplift of the Andes Mountains. Quantifying spatial and temporal variations in climate over the duration of Andean surface uplift is necessary for interpreting palaeoclimate, erosion and palaeoelevation records from the region. This study utilises an atmospheric general circulation model (GCM) to investigate the magnitude and relative importance of 1) global climate and 2) Andean surface uplift to South American climate during the last 40Ma. Combined with knowledge from the geologic record, the results constrain the controls on, and timing of, landscape development. Three different atmospheric CO2 levels (1, 2 and 4x pre-industrial levels - 280ppm) are used to simulate the range of global climate since the early Cenozoic. Surface uplift of the Andes is examined with simulations at three different Andean elevations (100%, 50% and 5% of modern heights). The importance of feedbacks associated with global climate change is assessed with additional simulations incorporating 1) no Antarctic Ice Sheet and 2) an equilibrium vegetation model coupled to the climate model. Initial results show that the elevation of the Andes exerts a much stronger control on South American precipitation than does the atmospheric CO2 level. The presence of the Andes leads to an increase in annual average precipitation rates of up to 8 mm/day at 20⁰S on the eastern flanks of the mountain range. An increase in CO2 levels from 1x to 4x pre-industrial levels increases the intensity of the global hydrological cycle with annual average precipitation rates increasing by up to 5mm/day. At 50% and 5% Andean elevation, precipitation patterns over South America are independent of atmospheric CO2 concentration. However, at 100% Andean elevation South American precipitation is sensitive to high (4x) CO2 levels. Most large-scale circulation patterns over South America are consistent

  19. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  20. A fast multipole transformation for global climate calculations

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, J.A.; Wang, Z.; Drake, J.B.; Lyon, B.F.; Chen, W.T.

    1996-01-01

    A fast multipole transformation is adapted to the evaluation of summations that occur in global climate calculations when transforming between spatial and spherical harmonic representations. For each summation, the timing of the fast multipole transformation scales linearly with the number of latitude gridpoints, but the timing for direct evaluations scales quadratically. In spite of a larger computational overhead, this scaling advantage renders the fast multipole method faster than direct evaluation for transformations involving greater than approximately 300 to 500 gridpoints. Convergence of the fast multipole transformation is accurate to machine precision. As the resolution in global climate calculations continues to increase, an increasingly large fraction of the computational work involves the transformation between spatial and spherical harmonic representations. The fast multipole transformation offers a significant reduction in computational time for these high-resolution cases.

  1. The effect of eurasian snow cover on global climate.

    Science.gov (United States)

    Barnett, T P; Dümenil, L; Schlese, U; Roeckner, E

    1988-01-29

    Numerical simulations with a global atmospheric circulation model suggest that largescale variations in the amount of snowfall over Eurasia in the springtime are linked to the subsequent strength of the Asian summer monsoon. Large-scale changes in Eurasian snow cover are coupled to larger scale changes in the global climate system. There is a large, strong teleconnection to the atmospheric field over North America. The model results also show snow cover effects to subsequently alter other climatic fields known to be intimately associated with the El Niño-Southern Oscillation (ENSO) phenomenon. Thus the model results seem to challenge the current dogma that the ENSO phenomenon is solely the result of close coupling between the atmosphere and ocean by suggesting that processes over continental land masses may also have to be considered.

  2. Climate trends and global crop production since 1980.

    Science.gov (United States)

    Lobell, David B; Schlenker, Wolfram; Costa-Roberts, Justin

    2011-07-29

    Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.

  3. The New Phase of the Global Policy on Climate Change

    Directory of Open Access Journals (Sweden)

    Paul Calanter

    2012-05-01

    Full Text Available Climate change, a phenomenon that occurs worldwide, is one of the great challenges of our times.The scientific community has repeatedly drawn policy makers attention to the imperative need to adopt ofpreventive, mitigation and adaptation measures to what constitutes a threat to the normal course of life onEarth. Adoption and entry into force of the Kyoto Protocol, with its ratification by Russia, in February 2005represented a major step forward in the global struggle against climate change. In this moment, however, theconclusion in 2012 of the commitment period for reducing emissions of greenhouse gases provided by theProtocol, and the brokenness of this period, put in front of the international community the need for furtherpolicy measures to prevent and combating climate change and its effects.

  4. Land Use Change and Global Adaptations to Climate Change

    Directory of Open Access Journals (Sweden)

    Roxana Juliá

    2013-12-01

    Full Text Available This paper uses the World Trade Model with Climate Sensitive Land (WTMCL to evaluate possible future land-use changes associated with adaptations to climate change in a globalized world. In this approach, changes in regional agricultural production, which are based on comparative advantage, define patterns of land use change in agriculture in all regions of the world. We evaluate four scenarios that combine assumptions about future increases in food demand and future changes in land endowments of different productivities associated with climatic conditions: each scenario generates distinct patterns of regional specialization in the production of agricultural commodities and associated land-use change. The analysis also projects future food availability under the simulated conditions and the direction of likely changes in prices of the major agricultural commodity groups.

  5. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  6. Ways to Include Global Climate Change in Courses for Prospective Teachers

    Science.gov (United States)

    van Zee, Emily; Grobart, Emma; Roberts-Harris, Deborah

    2016-01-01

    What responsibility do science teacher educators have for engaging students in learning about global climate change in courses? How can the topic of global climate change be added to an already packed course curriculum? The authors have begun assembling instructional resources and learning ways others have incorporated global climate change in…

  7. Climate Change, Global Food Markets, and Urban Unrest

    Science.gov (United States)

    2013-02-01

    stability in Kenya , they typically focus on climatic conditions in Kenya . Yet just as El Niño in the tropical Pacific can lead to colder and wetter...global food prices in constant dollar terms, as well as the proportion of cereal staples (maize, rice , wheat, etc.) traded as a percent of total...populous countries run large rice trade surpluses – such as Thailand and Vietnam – the region as a whole is import dependent.18 Over time, Africa and

  8. Ensuring Credibility of the Third National Climate Assessment through Provenance Traceability in the Global Change Information System (Invited)

    Science.gov (United States)

    Tilmes, C.; Aulenbach, S.; Duggan, B.; Goldstein, J.

    2013-12-01

    A Federal Advisory Committee (The "National Climate Assessment and Development Advisory Committee" or NCADAC) has overseen the development of a draft climate report that after extensive review will be considered by the Federal Government in the Third National Climate Assessment (NCA). This comprehensive report (1) Integrates, evaluates, and interprets the findings of the Program and discusses the scientific uncertainties associated with such findings; (2) Analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and (3) Analyzes current trends in global change, both human- induced and natural, and projects major trends for the subsequent 25 to 100 years. The U.S. Global Change Research Program (USGCRP), composed of the 13 federal agencies most concerned with global change, is building a Global Change Information System (GCIS) that will ultimately organize access to all the program-wide research, data, and information about global change. A prototype of the system has been constructed that captures and presents all of the elements of provenance of the NCA through a coherent data model and friendly front end web site. This work will focus on the documentation of the provenance of the NCA report and our general approach and data model for capturing, archiving, and presenting that provenance information. We will demonstrate how our approach contributes to the general credibility of the scientific results synthesized through the report. We will also present plans for longer term curation of the material stored in the GCIS and how it can support preservation and stewardship goals throughout the contributing federal agencies.

  9. Global Climate Change and Society: Scientific, Policy, and Philosophic Themes

    Science.gov (United States)

    Frodeman, R.; Bullock, M. A.

    2001-12-01

    The summer of 2001 saw the inauguration of the Global Climate Change and Society Program (GCCS), an eight week, NSF-funded experiment in undergraduate pedagogy held at the University of Colorado and the National Center for Atmospheric Research. Acknowledging from the start that climate change is more than a scientific problem, GCCS began with the simultaneous study of basic atmospheric physics, classical and environmental philosophy, and public policy. In addition to lectures and discussions on these subjects, our twelve undergraduates (majoring in the physical sciences, social sciences, and humanities) also participated in internships with scholars and researchers at NCAR, University of Colorado's Center of the American West, and the Colorado School of Mines, on specific issues in atmospheric science, science policy, and ethics and values. This talk will discuss the outcomes of GCCS: specifically, new insights into interdisciplinary pedagogy and the student creation of an extraordinary "deliverable," a group summary assessment of the global climate change debate. The student assessment called for an integrated discussion of both the science of climate change and the human values related to how we inhabit the world. The problems facing society today cannot be addressed through the single-minded adherence to science and technology; instead, society must develop new means of integrating the humanities and science in a meaningful dialogue about our common future.

  10. A global climate reconstruction of the past eight glacial cycles

    Science.gov (United States)

    Timmermann, A.; Friedrich, T.

    2016-12-01

    Climate variability over the past 8 glacial cycles can be regarded as a superposition of externally forced orbital-scale variations and internally generated centennial/millennial-scale fluctuations. To better understand the nature, timing and pattern of these anomalies in paleo-climate records, we developed a novel paleo-climate hindcast covering the past 8 glacial cycles that captures both types of variability. We blend an externally forced transient earth system model simulation, which responds to orbital forcing, greenhouse gas and ice-sheet changes, with an empirical estimate of the Dansgaard-Oeschger continuum. The latter is obtained as the product of a normalized high-resolution North Atlantic SST record and the millennial-scale regression patterns derived from a transient Dansgaard-Oeschger hindcast simulation. We will demonstrate the skill of this global paleoclimate reconstruction through comparison with a plethora of high-resolution temperature and hydroclimate paleo records and discuss the most prominent patterns atmospheric teleconnection patterns. The global climate reconstruction can be used to force offline paleo-proxy models, ice-sheet models and human migration simulations. It also provides an easy means to synchronize paleo-proxy records from different sites in a physically consistent manner.

  11. Climate velocity and the future global redistribution of marine biodiversity

    Science.gov (United States)

    García Molinos, Jorge; Halpern, Benjamin S.; Schoeman, David S.; Brown, Christopher J.; Kiessling, Wolfgang; Moore, Pippa J.; Pandolfi, John M.; Poloczanska, Elvira S.; Richardson, Anthony J.; Burrows, Michael T.

    2016-01-01

    Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management but remains a critical knowledge gap. Here, we use climate velocity trajectories, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.

  12. Evaluation of global and regional climate simulations over Africa

    Science.gov (United States)

    Nikulin, Grigory; Jones, Colin; Kjellström, Erik; Gbobaniyi, Emiola

    2013-04-01

    Two ensembles of climate simulations, one global and one regional, are evaluated and inter-compared over the Africa-CORDEX domain. The global ensemble includes eight coupled atmosphere ocean general circulation models (AOGCMs) from the CMIP5 project with horizontal resolution varying from about 1° to 3°, namely CanESM2, CNRM-CM5, HadGEM2-ES, NorESM1-M, EC-EARTH, MIROC5, GFDL-ESM2M and MPI-ESM-LR. In the regional ensemble all 8 AOGCMs are downscaled over the Africa-CORDEX domain at the Rossby Centre (SMHI) by a regional climate model - RCA4 at 0.44° resolution. The main focus is on ability of both global and regional ensembles to simulate precipitation in different climate zones of Africa. Precipitation climatology is characterized by seasonal means, inter-annual variability and by various characteristics of the rainy season: onset, cessation, mean intensity and intra-seasonal variability. To see potential benefits of higher resolution in the regional downscaling all precipitation statistics are inter-compared between the individual AOGCM-RCA4(AOGCM) pairs and between the two multi-model ensemble averages. A special attention in the study is on how the AOGCMs simulate teleconnection patterns of large-scale internal variability and how these teleconnection pattern are reproduced in the downscaled regional simulations.

  13. Hurricanes and Climate Change: Global Systems and Local Impacts

    Science.gov (United States)

    Santer, J.

    2011-12-01

    With funding from NOAA, the Miami Science Museum has been working with exhibit software developer Ideum to create an interactive exhibit exploring the global dimensions and local impacts of climate change. A particular focus is on climate-related impacts on coastal communities, including the potential effects on South Florida of ocean acidification, rising sea level, and the possibility of more intense hurricanes. The exhibit is using a 4-foot spherical display system in conjunction with a series of touchscreen kiosks and accompanying flat screens to create a user-controlled, multi-user interface that lets visitors control the sphere and choose from a range of global and local content they wish to explore. The exhibit has been designed to promote engagement of diverse, multigenerational audiences through development of a fully bilingual user interface that promotes social interaction and conversation among visitors as they trade off control of global content on the sphere and related local content on the flat screens. The open-source learning module will be adaptable by other museums, to explore climate impacts specific to their region.

  14. The implications of climate policy for the impacts of climate change on global water resources

    NARCIS (Netherlands)

    Arnell, N.W.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; Isaac, M.

    2011-01-01

    This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4 °C by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at

  15. The implications of climate policy for the impacts of climate change on global water resources

    NARCIS (Netherlands)

    Arnell, N.W.; van Vuuren, D.P.; Isaac, M.

    2011-01-01

    This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4 °C by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at

  16. Structural Design Feasibility Study for the Global Climate Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lewin,K.F.; Nagy, J.

    2008-12-01

    Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal

  17. Effects of global irrigation on the near-surface climate

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, William J. [University of Wisconsin-Madison, Center for Sustainability and the Global Environment, Madison, WI (United States); Cook, Benjamin I. [Lamont-Doherty Earth Observatory, Ocean and Climate Physics, Palisades, NY (United States); NASA Goddard Institute for Space Studies, New York, NY (United States); Buenning, Nikolaus [University of Colorado-Boulder, Department of Atmospheric and Oceanic Sciences and Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States); Levis, Samuel [National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO (United States); Helkowski, Joseph H. [Earth Tech, Miami, FL (United States)

    2009-08-15

    Irrigation delivers about 2,600 km{sup 3} of water to the land surface each year, or about 2% of annual precipitation over land. We investigated how this redistribution of water affects the global climate, focusing on its effects on near-surface temperatures. Using the Community Atmosphere Model (CAM) coupled to the Community Land Model (CLM), we compared global simulations with and without irrigation. To approximate actual irrigation amounts and locations as closely as possible, we used national-level census data of agricultural water withdrawals, disaggregated with maps of croplands, areas equipped for irrigation, and climatic water deficits. We further investigated the sensitivity of our results to the timing and spatial extent of irrigation. We found that irrigation alters climate significantly in some regions, but has a negligible effect on global-average near-surface temperatures. Irrigation cooled the northern mid-latitudes; the central and southeast United States, portions of southeast China and portions of southern and southeast Asia cooled by {proportional_to}0.5 K averaged over the year. Much of northern Canada, on the other hand, warmed by {proportional_to}1 K. The cooling effect of irrigation seemed to be dominated by indirect effects like an increase in cloud cover, rather than by direct evaporative cooling. The regional effects of irrigation were as large as those seen in previous studies of land cover change, showing that changes in land management can be as important as changes in land cover in terms of their climatic effects. Our results were sensitive to the area of irrigation, but were insensitive to the details of irrigation timing and delivery. (orig.)

  18. Global Assessment of Exploitable Surface Reservoir Storage under Climate Change

    Science.gov (United States)

    Liu, L.; Parkinson, S.; Gidden, M.; Byers, E.; Satoh, Y.; Riahi, K.

    2016-12-01

    Surface water reservoirs provide us with reliable water supply systems, hydropower generation, flood control, and recreation services. Reliable reservoirs can be robust measures for water security and can help smooth out challenging seasonal variability of river flows. Yet, reservoirs also cause flow fragmentation in rivers and can lead to flooding of upstream areas, thereby displacing existing land-uses and ecosystems. The anticipated population growth, land use and climate change in many regions globally suggest a critical need to assess the potential for appropriate reservoir capacity that can balance rising demands with long-term water security. In this research, we assessed exploitable reservoir potential under climate change and human development constraints by deriving storage-yield relationships for 235 river basins globally. The storage-yield relationships map the amount of storage capacity required to meet a given water demand based on a 30-year inflow sequence. Runoff data is simulated with an ensemble of Global Hydrological Models (GHMs) for each of five bias-corrected general circulation models (GCMs) under four climate change pathways. These data are used to define future 30-year inflows in each river basin for time period between 2010 and 2080. The calculated capacity is then combined with geographical information of environmental and human development exclusion zones to further limit the storage capacity expansion potential in each basin. We investigated the reliability of reservoir potentials across different climate change scenarios and Shared Socioeconomic Pathways (SSPs) to identify river basins where reservoir expansion will be particularly challenging. Preliminary results suggest large disparities in reservoir potential across basins: some basins have already approached exploitable reserves, while some others display abundant potential. Exclusions zones pose significant impact on the amount of actual exploitable storage and firm yields

  19. Ocean Global Warming Impacts on the South America Climate

    Science.gov (United States)

    Ramos-Da-Silva, Renato

    2016-03-01

    The global Ocean-Land-Atmosphere Model (OLAM) model was used to estimate the impacts of the global oceanic warming on the climate projections for the 21st Century focusing on the South America region. This new model is able to represent simultaneously the global and regional scales using a refining grid approach for the region of interest. First, the model was run for a 31-year control period consisting on the years 1960-1990 using the monthly Sea Surface Temperature (SST) from the Atmospheric Model Intercomparison Project (AMIP) data as a driver for the ocean fluxes. Then, the model was run for the period 2010-2100 using the monthly projected SST from the Hadley Center model (HadCM3) as a driver for the oceanic changes. The model was set up with an icosahedral triangular global grid having about 250 km of grid spacing and with a refining grid resolution with the cells reaching about 32 km over the South America region. The results show an overall temperature increase mainly over the center of the Amazon basin caused by the increase of the greenhouse effect of the water vapor; a decrease on precipitation mainly over the northeast Brazil and an increase in the south and over the western Amazon region; and a major increase on the near surface wind speed. These results are similar to the global coupled models; however, OLAM has a novel type of grid that can provide the interaction between the global and regional scales simultaneously.

  20. Decadal modulation of global surface temperature by internal climate variability

    Science.gov (United States)

    Dai, Aiguo; Fyfe, John C.; Xie, Shang-Ping; Dai, Xingang

    2015-06-01

    Despite a steady increase in atmospheric greenhouse gases (GHGs), global-mean surface temperature (T) has shown no discernible warming since about 2000, in sharp contrast to model simulations, which on average project strong warming. The recent slowdown in observed surface warming has been attributed to decadal cooling in the tropical Pacific, intensifying trade winds, changes in El Niño activity, increasing volcanic activity and decreasing solar irradiance. Earlier periods of arrested warming have been observed but received much less attention than the recent period, and their causes are poorly understood. Here we analyse observed and model-simulated global T fields to quantify the contributions of internal climate variability (ICV) to decadal changes in global-mean T since 1920. We show that the Interdecadal Pacific Oscillation (IPO) has been associated with large T anomalies over both ocean and land. Combined with another leading mode of ICV, the IPO explains most of the difference between observed and model-simulated rates of decadal change in global-mean T since 1920, and particularly over the so-called `hiatus' period since about 2000. We conclude that ICV, mainly through the IPO, was largely responsible for the recent slowdown, as well as for earlier slowdowns and accelerations in global-mean T since 1920, with preferred spatial patterns different from those associated with GHG-induced warming or aerosol-induced cooling. Recent history suggests that the IPO could reverse course and lead to accelerated global warming in the coming decades.

  1. Ocean Global Warming Impacts on the South America Climate

    Directory of Open Access Journals (Sweden)

    Renato eRamos-Da-Silva

    2016-03-01

    Full Text Available The global Ocean-Land-Atmosphere Model (OLAM model was used to estimate the impacts of the global oceanic warming on the climate projections for the 21st Century focusing on the South America region. This new model is able to represent simultaneously the global and regional scales using a refining grid approach for the region of interest. First, the model was run for a 31-year control period consisting on the years 1960-1990 using the monthly Sea Surface Temperature (SST from the Atmospheric Model Intercomparison Project (AMIP data as a driver for the ocean fluxes. Then, the model was run for the period 2010-2100 using the monthly projected SST from the Hadley Center model (HadCM3 as a driver for the oceanic changes. The model was set up with an icosahedral triangular global grid having about 250 km of grid spacing and with a refining grid resolution with the cells reaching about 32 km over the South America region. The results show an overall temperature increase mainly over the center of the Amazon basin caused by the increase of the greenhouse effect of the water vapor; a decrease on precipitation mainly over the northeast Brazil and an increase in the south and over the western Amazon region; and a major increase on the near surface wind speed. These results are similar to the global coupled models; however, OLAM has a novel type of grid that can provide the interaction between the global and regional scales simultaneously.

  2. Global warming and climate change with reference to South Africa. Some perspectives

    Directory of Open Access Journals (Sweden)

    Gawie de Villiers

    2008-09-01

    Full Text Available According to the geological history of the earth, climate change is an integral part of environmental changes that occurred over time. Sufficient evidence is provided of recurrent wet and dry and cold and hot periods due to natural circumstances. Since the industrial revolution human activities increasingly contribute to air pollution by releasing huge volumes of carbon dioxide and other gasses into the atmosphere, so much so that it is generally accepted that increase in global warming the past decades is directly linked to human activities. Observable signs of human induced climate change include increasing average temperatures at many places, melting ice caps in polar areas, rising sea levels on a global scale and coastal disturbances and damages due to storm surges on coastal areas in various countries, also in South Africa. Consensus from a number of hydrological-meteorological circulation models show, for South Africa, a rise in average annual winter and summer temperatures of between 1.5 and 3.0 degrees Centigrade the following number of decades with a strong possibility of an increase in rainfall in the eastern parts and a decrease in rainfall in the western parts. Bigger floods and longer droughts should occur more frequently as well as severe sea onslaught activities along the eastern and south-eastern coastal areas. The net impact of the predictions on the community is negative. There is though other scientists who indicate that no concrete proof of climate change in South Africa exists; including changes with regard to river floods and droughts. According to more beneficial than detrimental. Despite the differences in opinion about the relative contribution of natural and human activities to the present global warming, changes in hydrological and characteristics of floods in several parts of South Africa in the immediate past, necessitate modifications to available models and approaches to flood damage management and control. Flood

  3. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Science.gov (United States)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  4. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  5. Global Wildfire Forecasts Using Large Scale Climate Indices

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu

    2016-04-01

    Using weather readings, fire early warning can provided forecast 4-6 hour in advance to minimize fire loss. The benefit would be dramatically enhanced if relatively accurate long-term projection can be also provided. Here we present a novel method for predicting global fire season severity (FSS) at least three months in advance using multiple large-scale climate indices (CIs). The predictive ability is proven effective for various geographic locations and resolution. Globally, as well as in most continents, the El Niño Southern Oscillation (ENSO) is the dominant driving force controlling interannual FSS variability, whereas other CIs also play indispensable roles. We found that a moderate El Niño event is responsible for 465 (272-658 as interquartile range) Tg carbon release and an annual increase of 29,500 (24,500-34,800) deaths from inhalation exposure to air pollutants. Southeast Asia accounts for half of the deaths. Both intercorrelation and interaction of WPs and CIs are revealed, suggesting possible climate-induced modification of fire responses to weather conditions. Our models can benefit fire management in response to climate change.

  6. Global Crop Yields, Climatic Trends and Technology Enhancement

    Science.gov (United States)

    Najafi, E.; Devineni, N.; Khanbilvardi, R.; Kogan, F.

    2016-12-01

    During the last decades the global agricultural production has soared up and technology enhancement is still making positive contribution to yield growth. However, continuing population, water crisis, deforestation and climate change threaten the global food security. Attempts to predict food availability in the future around the world can be partly understood from the impact of changes to date. A new multilevel model for yield prediction at the country scale using climate covariates and technology trend is presented in this paper. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling and/or clustering to automatically group and reduce estimation uncertainties. El Niño Southern Oscillation (ENSO), Palmer Drought Severity Index (PDSI), Geopotential height (GPH), historical CO2 level and time-trend as a relatively reliable approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2007. Results show that these indicators can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications.

  7. The real ecological fallacy: epidemiology and global climate change.

    Science.gov (United States)

    Krieger, Nancy

    2015-08-01

    Prompted by my participation in the People's Climate March held in New York City on 21 September 2014, as part of the 'Harvard Divest' contingent, in this brief essay I reflect on the late 20th century development of--and debates over--the necessity of ecological thinking in epidemiology, and also the still limited engagement of our field with work on the health impact of global climate change. Revisiting critiques about the damaging influence of methodological individualism on our field, I extend critique of the still influential notion of 'ecological fallacy,' including its wilful disregard for ecology itself as being pertinent to people's ways of living--and dying. Indeed, the real 'ecological fallacy' is to think epidemiologists or others could ever understand the people's health except in societal and ecological, and hence historical, context. I conclude by urging all of us, as members of the broader scientific community, whether or not we directly study the health impacts of the planetary emergency of global climate change, to step up by joining the call for universities to divest from fossil fuels.

  8. Act locally, trade globally. Emissions trading for climate policy

    Energy Technology Data Exchange (ETDEWEB)

    none

    2005-07-01

    Climate policy raises a number of challenges for the energy sector, the most significant being the transition from a high to a low-CO2 energy path in a few decades. Emissions trading has become the instrument of choice to help manage the cost of this transition, whether used at international or at domestic level. Act Locally, Trade Globally, offers an overview of existing trading systems, their mechanisms, and looks into the future of the instrument for limiting greenhouse gas emissions. Are current markets likely to be as efficient as the theory predicts? What is, if any, the role of governments in these markets? Can domestic emissions trading systems be broadened to activities other than large stationary energy uses? Can international emissions trading accommodate potentially diverse types of emissions targets and widely different energy realities across countries? Are there hurdles to linking emissions trading systems based on various design features? Can emissions trading carry the entire burden of climate policy, or will other policy instruments remain necessary? In answering these questions, Act Locally, Trade Globally seeks to provide a complete picture of the future role of emissions trading in climate policy and the energy sector.

  9. Sensitivity of global terrestrial ecosystems to climate variability.

    Science.gov (United States)

    Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J

    2016-03-10

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  10. Sensitivity of global terrestrial ecosystems to climate variability

    Science.gov (United States)

    Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.

    2016-03-01

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  11. Testing empirical relationships between global sea-level and global temperature in long climate model simulations

    Science.gov (United States)

    von Storch, H.; Zorita, E.; Gonzalez-Rouco, F.

    2009-04-01

    Estimations of future global sea-level rise brought about by increasing concentrations of atmospheric greenhouse gases of anthropogenic origin are based on simulations with coarse-resolution global climate models, which imposes some limitations on the skill of future projections because some of the processes that modulate the heat and fresh water flux into may not be adequately represented. To fill this gap, and until more complex climate models are available, some ad-hoc methods have been proposed that link the rise in global average temperature with the global mean sea-level rise. The statistical methods can be calibrated with observations and applied to the future global temperature rise simulated by climate models. This methods can be tested in the virtual reality simulated by global atmosphere.ocean models. Thereby, deficiencies can be identified and improvement suggested. The output of 1000-year long climate model simulation with the coupled atmosphere-ocean model ECHO-G over the past millennium has been used to determine the skill of different predictors to describe the variations of the rate of sea-level change in the simulation. These predictor variables comprise the global mean near-surface temperature, its rate of change with time and the heat-flux into the ocean. It is found that, in the framework of this climate simulation, global mean temperature is not a good predictor for the rate-of-change of sea-level. The correlation between both variables is not stable along the simulations and even its sign changes. A better predictor is the rate-of-change of temperature. Its correlation with the rate-of-change of sea-level is much more stable, it is always positive along the simulation, and there exists a lead-lag relationship between both that can be understood in simple physical terms. The best predictor among those tested is the heat-flux into the ocean. Its correlation is higher and there exists no time lag to the rate-of-change of sea-level, as expected

  12. Values and uncertainties in the predictions of global climate models.

    Science.gov (United States)

    Winsberg, Eric

    2012-06-01

    Over the last several years, there has been an explosion of interest and attention devoted to the problem of Uncertainty Quantification (UQ) in climate science-that is, to giving quantitative estimates of the degree of uncertainty associated with the predictions of global and regional climate models. The technical challenges associated with this project are formidable, and so the statistical community has understandably devoted itself primarily to overcoming them. But even as these technical challenges are being met, a number of persistent conceptual difficulties remain. So why is UQ so important in climate science? UQ, I would like to argue, is first and foremost a tool for communicating knowledge from experts to policy makers in a way that is meant to be free from the influence of social and ethical values. But the standard ways of using probabilities to separate ethical and social values from scientific practice cannot be applied in a great deal of climate modeling, because the roles of values in creating the models cannot be discerned after the fact-the models are too complex and the result of too much distributed epistemic labor. I argue, therefore, that typical approaches for handling ethical/social values in science do not work well here.

  13. Equilibrium of global amphibian species distributions with climate.

    Science.gov (United States)

    Munguía, Mariana; Rahbek, Carsten; Rangel, Thiago F; Diniz-Filho, Jose Alexandre F; Araújo, Miguel B

    2012-01-01

    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions.

  14. Formulation of an ocean model for global climate simulations

    Directory of Open Access Journals (Sweden)

    S. M. Griffies

    2005-01-01

    Full Text Available This paper summarizes the formulation of the ocean component to the Geophysical Fluid Dynamics Laboratory's (GFDL climate model used for the 4th IPCC Assessment (AR4 of global climate change. In particular, it reviews the numerical schemes and physical parameterizations that make up an ocean climate model and how these schemes are pieced together for use in a state-of-the-art climate model. Features of the model described here include the following: (1 tripolar grid to resolve the Arctic Ocean without polar filtering, (2 partial bottom step representation of topography to better represent topographically influenced advective and wave processes, (3 more accurate equation of state, (4 three-dimensional flux limited tracer advection to reduce overshoots and undershoots, (5 incorporation of regional climatological variability in shortwave penetration, (6 neutral physics parameterization for representation of the pathways of tracer transport, (7 staggered time stepping for tracer conservation and numerical efficiency, (8 anisotropic horizontal viscosities for representation of equatorial currents, (9 parameterization of exchange with marginal seas, (10 incorporation of a free surface that accomodates a dynamic ice model and wave propagation, (11 transport of water across the ocean free surface to eliminate unphysical ``virtual tracer flux' methods, (12 parameterization of tidal mixing on continental shelves. We also present preliminary analyses of two particularly important sensitivities isolated during the development process, namely the details of how parameterized subgridscale eddies transport momentum and tracers.

  15. Response of seafloor ecosystems to abrupt global climate change

    Science.gov (United States)

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-04-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to 1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  16. Response of seafloor ecosystems to abrupt global climate change.

    Science.gov (United States)

    Moffitt, Sarah E; Hill, Tessa M; Roopnarine, Peter D; Kennett, James P

    2015-04-14

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to 1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  17. International regime formation: Ozone depletion and global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Busmann, N.E.

    1994-03-01

    Two theoretical perspectives, neorealism and neoliberal institutionalism, dominate in international relations. An assessment is made of whether these perspectives provide compelling explanations of why a regime with specific targets and timetables was formed for ozone depletion, while a regime with such specificity was not formed for global climate change. In so doing, the assumptions underlying neorealism and neoliberal institutionalism are examined. A preliminary assessment is offered of the policymaking and institutional bargaining process. Patterns of interstate behavior are evolving toward broader forms of cooperation, at least with regard to global environmental issues, although this process is both slow and cautious. State coalitions on specific issues are not yet powerful enough to create a strong community of states in which states are willing to devolve power to international institutions. It is shown that regime analysis is a useful analytic framework, but it should not be mistaken for theory. Regime analysis provides an organizational framework offering a set of questions regarding the principles and norms that govern cooperation and conflict in an issue area, and whether forces independent of states exist which affect the scope of state behavior. An examination of both neorealism and neoliberal institutionalism, embodied by four approaches to regime formation, demonstrates that neither has sufficient scope to account for contextual dynamics in either the ozone depletion or global climate change regime formation processes. 261 refs.

  18. Global climate forcing of aerosols embodied in international trade

    Science.gov (United States)

    Lin, Jintai; Tong, Dan; Davis, Steven; Ni, Ruijing; Tan, Xiaoxiao; Pan, Da; Zhao, Hongyan; Lu, Zifeng; Streets, David; Feng, Tong; Zhang, Qiang; Yan, Yingying; Hu, Yongyun; Li, Jing; Liu, Zhu; Jiang, Xujia; Geng, Guannan; He, Kebin; Huang, Yi; Guan, Dabo

    2016-10-01

    International trade separates regions consuming goods and services from regions where goods and related aerosol pollution are produced. Yet the role of trade in aerosol climate forcing attributed to different regions has never been quantified. Here, we contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols, including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers such as Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences between consumption- and production-related radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions.

  19. Global Air Quality and Climate Impacts of Mitigating Short-lived Climate Pollution in China

    Science.gov (United States)

    Harper, K.; Unger, N.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Wagner, F.

    2014-12-01

    China is a major emitter of harmful air pollutants, including the short-lived climate pollutants (SLCPs) and their precursors. Implementation of pollution control technologies provides a mechanism for simultaneously protecting human and ecosystem health and achieving near-term climate co-benefits; however, predicting the outcomes of technical and policy interventions is challenging because the SLCPs participate in both climate warming and cooling and share many common emission sources. Here, we present the results of a combined regional integrated assessment and global climate modeling study aimed at quantifying the near-term climate and air quality co-benefits of selective control of Chinese air pollution emissions. Results from IIASA's Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) integrated assessment model indicate that methane emission reductions make up > 75% of possible CO2-equivalent emission reductions of the SLCPs and their precursors in China in 2030. A multi-pollutant emission reduction scenario incorporating the 2030 Chinese pollution control measures with the highest potential for future climate impact is applied to the NASA ModelE2 - Yale Interactive Terrestrial Biosphere (NASA ModelE2-YIBs) global carbon - chemistry - climate model to assess the regional and long-range impacts of Chinese SLCP mitigation measures. Using model simulations that incorporate dynamic methane emissions and photosynthesis-dependent isoprene emissions, we quantify the impacts of Chinese reductions of the short-lived air pollutants on radiative forcing and on surface ozone and particulate air pollution. Present-day modeled methane mole fractions are evaluated against SCIAMACHY methane columns and NOAA ESRL/GMD surface flask measurements.

  20. The local, remote, and global consequences of climate feedbacks

    Science.gov (United States)

    Feldl, Nicole

    Climate feedbacks offer a powerful framework for revealing the energetic pathways by which the system adjusts to an imposed forcing, such as an increase in atmospheric CO2. We investigate how local atmospheric feedbacks, such as those associated with Arctic sea ice and the Walker circulation, affect both global climate sensitivity and spatial patterns of warming. Emphasis is placed on a general circulation model with idealized boundary conditions, for the clarity it provides. For this aquaplanet simulation, we account for rapid tropospheric adjustments to CO2 and explicitly diagnose feedbacks (using radiative kernels) and forcing for this precise model set-up. In particular, a detailed closure of the energy budget within a clean experimental set-up allows us to consider nonlinear interactions between feedbacks. The inclusion of a tropical Walker circulation is found to prime the Hadley Circulation for a larger deceleration under CO2 doubling, by altering subtropical stratus decks and the meridional feedback gradient. We perform targeted experiments to isolate the atmospheric processes responsible for the variability in climate sensitivity, with implications for high-sensitivity paleoclimates. The local climate response is characterized in terms of the meridional structure of feedbacks, atmospheric heat transport, nonlinearities, and forcing. Our results display a combination of positive subtropical feedbacks and polar amplified warming. These two factors imply a critical role for transport and nonlinear effects, with the latter acting to substantially reduce global climate sensitivity. At the hemispheric scale, a rich picture emerges: anomalous divergence of heat flux away from positive feedbacks in the subtropics; clear-sky nonlinearities that reinforce the pattern of tropical cooling and high-latitude warming tendencies; and strong ice-line feedbacks that drive further amplification of polar warming. These results have implications for regional climate

  1. The organization of global negotiations: constructing the climate change regime

    Energy Technology Data Exchange (ETDEWEB)

    Depledge, Joanna

    2005-02-15

    The basic assumption of this book is that the organization of a negotiation process matters. The global negotiations on climate change involve over 180 countries and innumerable observers and other participants, addressing enormously complex and economically vital issues with conflicting agendas. For the UN to create an effective and well-supported international regime has required enormous and very skilful organization: factors such as the role of the Chair, the choice of negotiating arenas, the rules for the conduct of business and the approach of negotiating texts are usually taken for granted, and rarely attract attention until something goes wrong. This book explores how the negotiations were organized to produce the Kyoto Protocol to the Climate Change Convention and the subsequent Bonn Agreements and Marrakesh Accords. The author draws out the lessons and implications for other intricate and far-reaching negotiations, not all of which have succeeded so far, such as the WTO trade negotiations at Seattle and Cancun. (Author)

  2. Assessing the observed impact of anthropogenic climate change

    NARCIS (Netherlands)

    Hansen, G.E.

    2015-01-01

    Assessing the observed impact of anthropogenic climate change Gerrit Hansen Global climate change is unequivocal, and greenhouse gas emissions continue rising despite international mitigation efforts. Hence whether and to what extent the impacts of human induced climate change are a

  3. Global Food Security in a Changing Climate: Considerations and Projections

    Science.gov (United States)

    Walsh, M. K.; Brown, M. E.; Backlund, P. W.; Antle, J. M.; Carr, E. R.; Easterling, W. E.; Funk, C. C.; Murray, A.; Ngugi, M.; Barrett, C. B.; Ingram, J. S. I.; Dancheck, V.; O'Neill, B. C.; Tebaldi, C.; Mata, T.; Ojima, D. S.; Grace, K.; Jiang, H.; Bellemare, M.; Attavanich, W.; Ammann, C. M.; Maletta, H.

    2015-12-01

    Global food security is an elusive challenge and important policy focus from the community to the globe. Food is provisioned through food systems that may be simple or labyrinthine, yet each has vulnerabilities to climate change through its effects on food production, transportation, storage, and other integral food system activities. At the same time, the future of food systems is sensitive to socioeconomic trajectories determined by choices made outside of the food system, itself. Constrictions for any reason can lead to decreased food availability, access, utilization, or stability - that is, to diminished food security. Possible changes in trade and other U.S. relationships to the rest of the world under changing conditions to the end of the century are considered through integrated assessment modelling under a range of emissions scenarios. Climate change is likely to diminish continued progress on global food security through production disruptions leading to local availability limitations and price increases, interrupted transport conduits, and diminished food safety, among other causes. In the near term, some high-latitude production export regions may benefit from changes in climate. The types and price of food imports is likely to change, as are export demands, affecting U.S. consumers and producers. Demands placed on foreign assistance programs may increase, as may demand for advanced technologies. Adaptation across the food system has great potential to manage climate change effects on food security, and the complexity of the food system offers multiple potential points of intervention for decision makers at every level. However, effective adaptation is subject to highly localized conditions and socioeconomic factors, and the technical feasibility of an adaptive intervention is not necessarily a guarantee of its application if it is unaffordable or does not provide benefits within a relatively short time frame.

  4. Invasive termites in a changing climate: A global perspective.

    Science.gov (United States)

    Buczkowski, Grzegorz; Bertelsmeier, Cleo

    2017-02-01

    Termites are ubiquitous insects in tropical, subtropical, and warm temperate regions and play an important role in ecosystems. Several termite species are also significant economic pests, mainly in urban areas where they attack human-made structures, but also in natural forest habitats. Worldwide, approximately 28 termite species are considered invasive and have spread beyond their native ranges, often with significant economic consequences. We used predictive climate modeling to provide the first global risk assessment for 13 of the world's most invasive termites. We modeled the future distribution of 13 of the most serious invasive termite species, using two different Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, and two projection years (2050 and 2070). Our results show that all but one termite species are expected to significantly increase in their global distribution, irrespective of the climatic scenario and year. The range shifts by species (shift vectors) revealed a complex pattern of distributional changes across latitudes rather than simple poleward expansion. Mapping of potential invasion hotspots in 2050 under the RCP 4.5 scenario revealed that the most suitable areas are located in the tropics. Substantial parts of all continents had suitable environmental conditions for more than four species simultaneously. Mapping of changes in the number of species revealed that areas that lose many species (e.g., parts of South America) are those that were previously very species-rich, contrary to regions such as Europe that were overall not among the most important invasion hotspots, but that showed a great increase in the number of potential invaders. The substantial economic and ecological damage caused by invasive termites is likely to increase in response to climate change, increased urbanization, and accelerating economic globalization, acting singly or interactively.

  5. Uncertainty in runoff based on Global Climate Model precipitation and temperature data – Part 1: Assessment of Global Climate Models

    Directory of Open Access Journals (Sweden)

    T. A. McMahon

    2014-05-01

    Full Text Available Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between Global Climate Models (GCMs and within a GCM. Uncertainty between GCM projections of future climate can be assessed through analysis of runs of a given scenario from a wide range of GCMs. Within GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The objective of this, the first of two complementary papers, is to reduce between-GCM uncertainty by identifying and removing poorly performing GCMs prior to the analysis presented in the second paper. Here we assess how well 46 runs from 22 Coupled Model Intercomparison Project phase 3 (CMIP3 GCMs are able to reproduce observed precipitation and temperature climatological statistics. The performance of each GCM in reproducing these statistics was ranked and better performing GCMs identified for later analyses. Observed global land surface precipitation and temperature data were drawn from the CRU 3.10 gridded dataset and re-sampled to the resolution of each GCM for comparison. Observed and GCM based estimates of mean and standard deviation of annual precipitation, mean annual temperature, mean monthly precipitation and temperature and Köppen climate type were compared. The main metrics for assessing GCM performance were the Nash–Sutcliffe efficiency index and RMSE between modelled and observed long-term statistics. This information combined with a literature review of the performance of the CMIP3 models identified the following five models as the better performing models for the next phase of our analysis in assessing the uncertainty in runoff estimated from GCM projections of precipitation and temperature: HadCM3 (Hadley Centre for Climate Prediction and Research, MIROCM (Center for Climate System Research (The University of Tokyo, National

  6. Studies of climate dynamics with innovative global-model simulations

    Science.gov (United States)

    Shi, Xiaoming

    Climate simulations with different degrees of idealization are essential for the development of our understanding of the climate system. Studies in this dissertation employ carefully designed global-model simulations for the goal of gaining theoretical and conceptual insights into some problems of climate dynamics. Firstly, global warming-induced changes in extreme precipitation are investigated using a global climate model with idealized geography. The precipitation changes over an idealized north-south mid-latitude mountain barrier at the western margin of an otherwise flat continent are studied. The intensity of the 40 most intense events on the western slopes increases by about ~4°C of surface warming. In contrast, the intensity of the top 40 events on the eastern mountain slopes increases at about ~6°C. This higher sensitivity is due to enhanced ascent during the eastern-slope events, which can be explained in terms of linear mountain-wave theory relating to global warming-induced changes in the upper-tropospheric static stability and the tropopause level. Dominated by different dynamical factors, changes in the intensity of extreme precipitation events over plains and oceans might differ from changes over mountains. So the response of extreme precipitation over mountains and flat areas are further compared using larger data sets of simulated extreme events over the two types of surfaces. It is found that the sensitivity of extreme precipitation to increases in global mean surface temperature is 3% per °C lower over mountains than over the oceans or the plains. The difference in sensitivity among these regions is not due to thermodynamic effects, but rather to differences between the gravity-wave dynamics governing vertical velocities over the mountains and the cyclone dynamics governing vertical motions over the oceans and plains. The strengthening of latent heating in the storms over oceans and plains leads to stronger ascent in the warming climate

  7. Environmental health risk assessment and management for global climate change

    Science.gov (United States)

    Carter, P.

    2014-12-01

    This environmental health risk assessment and management approach for atmospheric greenhouse gas (GHG) pollution is based almost entirely on IPCC AR5 (2014) content, but the IPCC does not make recommendations. Large climate model uncertainties may be large environmental health risks. In accordance with environmental health risk management, we use the standard (IPCC-endorsed) formula of risk as the product of magnitude times probability, with an extremely high standard of precaution. Atmospheric GHG pollution, causing global warming, climate change and ocean acidification, is increasing as fast as ever. Time is of the essence to inform and make recommendations to governments and the public. While the 2ºC target is the only formally agreed-upon policy limit, for the most vulnerable nations, a 1.5ºC limit is being considered by the UNFCCC Secretariat. The Climate Action Network International (2014), representing civil society, recommends that the 1.5ºC limit be kept open and that emissions decline from 2015. James Hansen et al (2013) have argued that 1ºC is the danger limit. Taking into account committed global warming, its millennial duration, multiple large sources of amplifying climate feedbacks and multiple adverse impacts of global warming and climate change on crops, and population health impacts, all the IPCC AR5 scenarios carry extreme environmental health risks to large human populations and to the future of humanity as a whole. Our risk consideration finds that 2ºC carries high risks of many catastrophic impacts, that 1.5ºC carries high risks of many disastrous impacts, and that 1ºC is the danger limit. IPCC AR4 (2007) showed that emissions must be reversed by 2015 for a 2ºC warming limit. For the IPCC AR5 only the best-case scenario RCP2.6, is projected to stay under 2ºC by 2100 but the upper range is just above 2ºC. It calls for emissions to decline by 2020. We recommend that for catastrophic environmental health risk aversion, emissions decline

  8. Global Climate Change: Federal Research on Possible Human Health Effects

    Science.gov (United States)

    2006-02-10

    conditioning systems.”20 A recent rise in one measure of poverty in the United States is argued by some to suggest that there may be more poor ...conclusions are common to several studies on possible health effects of climate change: the infirm, the elderly, and the poor may be disproportionately...Global Change Research Program, op. cit. 20 Ibid. 21 Madrick, Jeff. A Rise in Child Poverty Rates Is At Risk In U.S., the New York Times on the Web, June

  9. The Effect of Tide on the Global Climate Change

    Institute of Scientific and Technical Information of China (English)

    YANG Xuexiang; CHEN Zhen; CHEN Dianyou; Qiao Qiyuan

    2002-01-01

    The differential rotation between the solid and fluid spheres caused by tidal force could explain the 1500 to 1800-year cycle of the world's temperature. Strong tide increases the vertical and horizontal mixing of water in the oceans, drawing the cold Pacific water from the depths to the surface and the warm water from the west to the east, where it cools or warms the atmosphere above, absorbs or releases CO2 to decrease or increase greenhouse effect and to make La Nina or El Nino occur in the global. The moon's declination and obliquity of the ecliptic affect the tidal intensity. The exchange of tidal energy and tide-generating force caused by the sun, moon and major planets makes the earth's layers rotate in different speeds. The differenti-al rotation between solid and fluid of the earth is the basic reason for El Nino and global climate change.

  10. Global warning : an ethnography of the encounter between global and local climate-change discourses in the Bamenda Grassfields, Cameroon

    NARCIS (Netherlands)

    Wit, de S.

    2015-01-01

    Moving beyond existing approaches that largely deal with the biophysical consequences of climate change realities in Africa, this book explores an alternative perspective that traces climate change as a travelling idea. It focuses on how globally constructed discourses on climate change find their w

  11. Engaging Undergraduates in Methods of Communicating Global Climate Change

    Science.gov (United States)

    Hall, C.; Colgan, M. W.; Humphreys, R. R.

    2010-12-01

    Global Climate Change has become a politically contentious issue in large part because of the failure of scientists to effectively communicate this complex subject to the general public. In a Global Change class, offered within a science department and therefore focused primarily on the underlying science, we have incorporated a citizen science module into the course to raise awareness among future scientists to the importance of communicating information to a broad and diverse audience. The citizen science component of this course focuses on how the predicted climate changes will alter the ecologic and economic landscape of the southeastern region. Helping potential scientists to learn to effectively communicate with the general public is particularly poignant for this predominate southern student body. A Pew Research Center for the People and the Press study found that less than 50% of Southerners surveyed felt that global warming is a very serious problem and over 30% of Southerners did not believe that there was any credible evidence that the Earth is warming. This interdisciplinary and topical nature of the course attracts student from a variety of disciplines, which provides the class with a cross section of students not typically found in most geology classes. This mixture provides a diversity of skills and interest that leads to success of the Citizen Science component. This learning approach was adapted from an education module developed through the Earth System Science Education Alliance and a newly developed component to that program on citizen science. Student teams developed several citizen science-related public service announcements concerning projected global change effects on Charleston and the South Carolina area. The scenario concerned the development of an information campaign for the City of Charleston, culminating with the student presentations on their findings to City officials. Through this real-life process, the students developed new

  12. PERSPECTIVE: Climate change, biofuels, and global food security

    Science.gov (United States)

    Cassman, Kenneth G.

    2007-03-01

    There is a new urgency to improve the accuracy of predicting climate change impact on crop yields because the balance between food supply and demand is shifting abruptly from surplus to deficit. This reversal is being driven by a rapid rise in petroleum prices and, in response, a massive global expansion of biofuel production from maize, oilseed, and sugar crops. Soon the price of these commodities will be determined by their value as feedstock for biofuel rather than their importance as human food or livestock feed [1]. The expectation that petroleum prices will remain high and supportive government policies in several major crop producing countries are providing strong momentum for continued expansion of biofuel production capacity and the associated pressures on global food supply. Farmers in countries that account for a majority of the world's biofuel crop production will enjoy the promise of markedly higher commodity prices and incomesNote1. In contrast, urban and rural poor in food-importing countries will pay much higher prices for basic food staples and there will be less grain available for humanitarian aid. For example, the developing countries of Africa import about 10 MMt of maize each year; another 3 5 MMt of cereal grains are provided as humanitarian aid (figure 1). In a world where more than 800 million are already undernourished and the demand for crop commodities may soon exceed supply, alleviating hunger will no longer be solely a matter of poverty alleviation and more equitable food distribution, which has been the situation for the past thirty years. Instead, food security will also depend on accelerating the rate of gain in crop yields and food production capacity at both local and global scales. Maize imports and cereal donations as humanitarian aid to the developing countries of Africa Figure 1. Maize imports (yellow bar) and cereal donations as humanitarian aid to the developing countries of Africa, 2001 2003. MMT = million metric tons. Data

  13. Controls on the Archean climate system investigated with a global climate model.

    Science.gov (United States)

    Wolf, E T; Toon, O B

    2014-03-01

    The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred.

  14. An essay on global carbon budget approaches-Are we ready to deal with global climate changes now?

    Institute of Scientific and Technical Information of China (English)

    Qian YE

    2011-01-01

    In this paper,a simple analysis is conducted for the purpose of addressing a simple but fundamental question,i.e.,does the world have the capability in sciences,economics and governance to deal with the global climate change today and what should we do? By pointing out that although understanding of multidimensionality and nonlinearity of global changes from both natural and social sciences has been advanced significantly,it is extremely difficult,if not impossible,to find a single solution for global climate change because of the multi-dimensionality of social components and the nonlinearity of natural elements inherent in the global climate systems.

  15. Global Catastrophes in Perspective: Asteroid Impacts vs Climate Change

    Science.gov (United States)

    Boslough, M. B.; Harris, A. W.

    2008-12-01

    When allocating resources to address threats, decision makers are best served by having objective assessments of the relative magnitude of the threats in question. Asteroids greater than about 1 km in diameter are assumed by the planetary impact community to exceed a "global catastrophe threshold". Impacts from smaller objects are expected to cause local or regional destruction, and would be the proximate cause of most associated fatalities. Impacts above the threshold would be expected to alter the climate, killing billions of people and causing a collapse of civilization. In this apocalyptic scenario, only a small fraction of the casualties would be attributable to direct effects of the impact: the blast wave, thermal radiation, debris, ground motion, or tsunami. The vast majority of deaths would come later and be due to indirect causes: starvation, disease, or violence as a consequence of societal disruption related to the impact-induced global climate change. The concept of a catastrophe threshold comes from "nuclear winter" studies, which form the basis for quantitative estimates of the consequences of a large impact. The probability estimates come from astronomical observations and statistical analysis. Much of the impact threat, at its core, is a climate-change threat. Prior to the Spaceguard Survey of Near-Earth Objects (NEOs), the chance of dying from an asteroid impact was estimated to be 1 in 25,000 (Chapman & Morrison, 1994). Most of the large asteroids have now been discovered, and none is on an impact trajectory. Moreover, new data show that mid-sized asteroids (tens to hundreds of meters across) are less abundant than previously thought, by a factor of three. We now estimate that the lifetime odds of being killed by the impact of one of the remaining undiscovered NEOs are about one in 720,000 for individuals with a life expectancy of 80 years (Harris, 2008). One objective way to compare the relative magnitude of the impact threat to that of

  16. Climate Change and National Security

    Science.gov (United States)

    2013-02-01

    atmosphere, which is causing warming of global temperatures as well as more extreme and less predictable weather patterns. While this issue is debated in...develop unique, policy-relevant solutions to complex global challenges. About the CCAPS Program The Climate Change and African Political Stability...political circles, scientists overwhelmingly agree that human-induced or anthropogenic climate change is real. Given the complexity of the issue, there

  17. THE IMPACT OF THERMAL ENGINEERING RESEARCH ON GLOBAL CLIMATE CHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, Patrick [Arizona State University; Abdelaziz, Omar [ORNL; Otanicar, Todd [University of Tulsa; Phelan, Bernadette [Phelan Research Solutions, Inc.; Prasher, Ravi [Arizona State University; Taylor, Robert [University of New South Wales, Sydney, Australia; Tyagi, Himanshu [Indian Institute of Technology Ropar, India

    2014-01-01

    Global climate change is recognized by many people around the world as being one of the most pressing issues facing our society today. The thermal engineering research community clearly plays an important role in addressing this critical issue, but what kind of thermal engineering research is, or will be, most impactful? In other words, in what directions should thermal engineering research be targeted in order to derive the greatest benefit with respect to global climate change? To answer this question we consider the potential reduction in greenhouse gas (GHG) emissions, coupled with potential economic impacts, resulting from thermal engineering research. Here a new model framework is introduced that allows a technological, sector-by-sector analysis of GHG emissions avoidance. For each sector, we consider the maximum reduction in CO2 emissions due to such research, and the cost effectiveness of the new efficient technologies. The results are normalized on a country-by-country basis, where we consider the USA, the European Union, China, India, and Australia as representative countries or regions. Among energy supply-side technologies, improvements in coal-burning power generation are seen as having the most beneficial CO2 and economic impacts. The one demand-side technology considered, residential space cooling, offers positive but limited impacts. The proposed framework can be extended to include additional technologies and impacts, such as water consumption.

  18. Fast-slow climate dynamics and peak global warming

    Science.gov (United States)

    Seshadri, Ashwin K.

    2016-06-01

    The dynamics of a linear two-box energy balance climate model is analyzed as a fast-slow system, where the atmosphere, land, and near-surface ocean taken together respond within few years to external forcing whereas the deep-ocean responds much more slowly. Solutions to this system are approximated by estimating the system's time-constants using a first-order expansion of the system's eigenvalue problem in a perturbation parameter, which is the ratio of heat capacities of upper and lower boxes. The solution naturally admits an interpretation in terms of a fast response that depends approximately on radiative forcing and a slow response depending on integrals of radiative forcing with respect to time. The slow response is inversely proportional to the "damping-timescale", the timescale with which deep-ocean warming influences global warming. Applications of approximate solutions are discussed: conditions for a warming peak, effects of an individual pulse emission of carbon dioxide (CO2 ), and metrics for estimating and comparing contributions of different climate forcers to maximum global warming.

  19. Biogeophysical effects of CO2 fertilization on global climate

    Science.gov (United States)

    Bala, G.; Caldeira, K.; Mirin, A.; Wickett, M.; Delire, C.; Phillips, T. J.

    2006-11-01

    CO2 fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO2-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multicentury simulations: a `Control' simulation with no emissions and a `Physiol-noGHG' simulation where physiological changes occur as a result of prescribed CO2 emissions, but where CO2-induced greenhouse warming is not included. In our simulations, CO2 fertilization produces warming; we obtain an annual- and global-mean warming of about 0.65 K (and land-only warming of 1.4 K) after 430 yr. This century-scale warming is mostly due to a decreased surface albedo associated with the expansion of the Northern Hemisphere boreal forests. On decadal timescales, the CO2 uptake by afforestation should produce a cooling effect that exceeds this albedo-based warming; but if the forests remain in place, the CO2-enhanced-greenhouse effect would diminish as the ocean equilibrates with the atmosphere, whereas the albedo effect would persist. Thus, on century timescales, there is the prospect for net warming from CO2 fertilization of the land biosphere. Further study is needed to confirm and better quantify our results.

  20. B\\"o\\"ogg Bang drives global climate change

    CERN Document Server

    Brennwald, M S; Kipfer, R

    2011-01-01

    The B\\"o\\"ogg is a large model of a snowman, constructed of inflammable materials and filled with explosives. During the traditional festival of Sechsel\\"auten, which takes place each spring in Zurich, Switzerland, the B\\"o\\"ogg is placed atop a wooden pyre, which is set alight. According to popular legend, the time that elapses until the B\\"o\\"ogg's head explodes (the "head-bang" time) is said to give a rough forecast of local weather conditions prevailing during the following summer. However, recent research has questioned the validity of this prediction. To study the B\\"o\\"ogg's predictive powers, we analyzed the B\\"o\\"ogg head-bang time record from 1965-2010 within the context of global climate change. Our analysis shows that the B\\"o\\"ogg head-bang time is a good predictor not of short-term local weather, as might be expected from the legend, but of the behavior of the entire global climate system.

  1. Fast-slow climate dynamics and peak global warming

    Science.gov (United States)

    Seshadri, Ashwin K.

    2017-04-01

    The dynamics of a linear two-box energy balance climate model is analyzed as a fast-slow system, where the atmosphere, land, and near-surface ocean taken together respond within few years to external forcing whereas the deep-ocean responds much more slowly. Solutions to this system are approximated by estimating the system's time-constants using a first-order expansion of the system's eigenvalue problem in a perturbation parameter, which is the ratio of heat capacities of upper and lower boxes. The solution naturally admits an interpretation in terms of a fast response that depends approximately on radiative forcing and a slow response depending on integrals of radiative forcing with respect to time. The slow response is inversely proportional to the "damping-timescale", the timescale with which deep-ocean warming influences global warming. Applications of approximate solutions are discussed: conditions for a warming peak, effects of an individual pulse emission of carbon dioxide (CO2), and metrics for estimating and comparing contributions of different climate forcers to maximum global warming.

  2. Insensitivity of Global Neolithic Transition Patterns On Climatic Change

    Science.gov (United States)

    Wirtz, K. W.

    Aiming to assess the relative importance of climate events on human history through- out the Holocene here a recently build model is employed. In the model 196 world regions are resolved which mainly differ in their food extraction potential (FEP) and potential number of agricultures. Both regional features are estimated using exist- ing vegetation maps. An array of state variables describes farming to foraging ratio, domestication success, technological and organizational development and population density. Deterministic rules for their time evolution are derived from a growth func- tion, an adaptation principle and a diffusion submodel. Overall model validity can be demonstrated by a striking similarity of simulated patterns and archaeological evi- dence. It is demonstrated that abrupt as well as smooth climatic changes, induced by FEP modifications, do not significantly affect development trajectories of Neolithic communities or global transition patterns. The stability of this result is tested through conducting numerical experiments based on massive parameter variation. However, population density always reacts sensitively, leading to the emergence of distinct mi- gration waves. An in-depth analysis of the differential model behavior provides new arguments in the face of recent or established theories linking climatic factors with human development.

  3. Global agricultural intensification during climate change: a role for genomics.

    Science.gov (United States)

    Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Bryant, John; Cai, Hongwei; Cockram, James; de Oliveira, Antonio Costa; Cseke, Leland J; Dempewolf, Hannes; De Pace, Ciro; Edwards, David; Gepts, Paul; Greenland, Andy; Hall, Anthony E; Henry, Robert; Hori, Kiyosumi; Howe, Glenn Thomas; Hughes, Stephen; Humphreys, Mike; Lightfoot, David; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Yano, Masahiro

    2016-04-01

    Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.

  4. Cooperation in global climate policy: potentialities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, D.; Roesch, R.; Scheffran, J. [Technical University of Darmstadt, Darmstadt (Germany). Institut fuer Volkswirtschaftslehre

    2001-03-01

    Since the Kyoto conference the role of the major developing countries (DCs) has been an issue involving a number of conflicting interests. While on the one hand we understand the reasons prompting DCs to refuse obligations to reduce climate gases, their sheer size makes at least the biggest DCs (China, India) major sources of climate gas emissions. Our intention here is to analyze the potentialities for a cooperative solution to this conflict. A conflict model is used to discuss the diverging interests of major DCs and industrialized countries (IC). Concentrating on the power-generation sector, we investigate the conditions for cooperation, i.e. for the DCs' voluntary participation in climate policy in their own interests. In the case of DCs with local environmental goals and DCs interested in joint implementation, secondary benefits provide he basis for cooperation. Thus, the DC's choice of technology becomes the crucial factor in conflict resolution. This enables us to formulate the conditions of cooperation interrelating the DC's choice of technology and the DCs' investment in joint implementation in such a way as to fulfill both global environmental goals and the DCs' national goals. The example of PR of China illustrates our reasoning. 29 refs., 6 figs., 3 tabs.

  5. Global change and marine communities: Alien species and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Occhipinti-Ambrogi, Anna [DET - Dip. di Ecologia del Territorio, Sezione di Ecologia, Universita degli Studi di Pavia, Via S. Epifanio 14, I-27100 Pavia (Italy)]. E-mail: occhipin@unipv.it

    2007-07-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  6. Advancing Collaborative Climate Studies through Globally Distributed Geospatial Analysis

    Science.gov (United States)

    Singh, R.; Percivall, G.

    2009-12-01

    (note: acronym glossary at end of abstract) For scientists to have confidence in the veracity of data sets and computational processes not under their control, operational transparency must be much greater than previously required. Being able to have a universally understood and machine-readable language for describing such things as the completeness of metadata, data provenance and uncertainty, and the discrete computational steps in a complex process take on increased importance. OGC has been involved with technological issues associated with climate change since 2005 when we, along with the IEEE Committee on Earth Observation, began a close working relationship with GEO and GEOSS (http://earthobservations.org). GEO/GEOS provide the technology platform to GCOS who in turn represents the earth observation community to UNFCCC. OGC and IEEE are the organizers of the GEO/GEOSS Architecture Implementation Pilot (see http://www.ogcnetwork.net/AIpilot). This continuing work involves closely working with GOOS (Global Ocean Observing System) and WMO (World Meteorological Organization). This session reports on the findings of recent work within the OGC’s community of software developers and users to apply geospatial web services to the climate studies domain. The value of this work is to evolve OGC web services, moving from data access and query to geo-processing and workflows. Two projects will be described, the GEOSS API-2 and the CCIP. AIP is a task of the GEOSS Architecture and Data Committee. During its duration, two GEO Tasks defined the project: AIP-2 began as GEO Task AR-07-02, to lead the incorporation of contributed components consistent with the GEOSS Architecture using a GEO Web Portal and a Clearinghouse search facility to access services through GEOSS Interoperability Arrangements in support of the GEOSS Societal Benefit Areas. AIP-2 concluded as GEOS Task AR-09-01b, to develop and pilot new process and infrastructure components for the GEOSS Common

  7. Changing patterns in insect pests on trees in The Netherlands since 1946 in relation to human induced habitat changes and climate factors - an analysis of historical data

    NARCIS (Netherlands)

    Moraal, L.G.; Jagers Op Akkerhuis, G.A.J.M.

    2011-01-01

    In The Netherlands, insect pests on trees and shrubs are being monitored continuously since 1946. During these years, almost all insect pest populations showed marked changes, which may be the result of changes in forest management, shifts in forest composition, climate change and the arrival of new

  8. At a global scale, do climate change threatened species also face a greater number of non-climatic threats?

    Science.gov (United States)

    Fortini, Lucas; Dye, Kaipo

    2017-01-01

    For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21% more non-climatic threats than species not threatened by climate change. Across all species, this pattern is related to IUCN risk status, where endangered species threatened by climate change face 33% more non-climatic threats than endangered species not threatened by climate change. With the clear challenges of assessing current and projected impacts of climate change on species and ecosystems, research often requires reductionist approaches that result in downplaying this multi-threat context. This cautionary note bears relevance beyond climate change threatened species as we also

  9. Implication of global climate change on the distribution and activity of Phytophthora ramorum

    Science.gov (United States)

    Robert C. Venette

    2009-01-01

    Global climate change is predicted to alter the distribution and activity of several forest pathogens. Boland et al. (2004) suggested that climate change might affect pathogen establishment, rate of disease progress, and the duration of...

  10. EUROPEAN UNION IN GLOBAL CLIMATE GOVERNANCE: TO PARIS AND BEYOND

    Directory of Open Access Journals (Sweden)

    E. V. Savorskaya

    2016-01-01

    Full Text Available Since the 1990s, the European Union is aspiring global leadership in the area of climate change, which is refl ected in its active participation in the negotiations on the international climate change regime. However, those ambitions have not always turned out to be appropriate or justifi ed. Despite the fact that the European Union was able to achieve certain results during the Kyoto Protocol negotiations and even more signifi cant results in the process of its ratifi cation, for the most part EU negotiation strategy based on normative considerations, had not been successful, it was especially evident during the 2009 United Nations Climate Change Conference in Copenhagen. Partly the disappointing results of EU performance during the Copenhagen negotiations are to be blamed on some of the key features of EU functioning logic, for example, the overall tendency to rely on scientifi c evidence in policy-making, which did not allow the EU to assess other parties’ interests adequately. As the results of the negotiations of parties to the UNFCCC in December 2015 in Paris have shown, the European Union did manage to work out its previous mistakes and build a broad informal international coalition. Contrary to the pessimistic expectations, the agreement was adopted and it took into account quite a few of the EU proposals. However, the Paris Treaty has a number of fl aws and inaccuracies, so the ability to eliminate them in a timely manner by the international community and the EU in particular, will determine the future of the new international climate change regime.

  11. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    Science.gov (United States)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  12. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    Science.gov (United States)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  13. Projected changes in medicanes in the HadGEM3 N512 high-resolution global climate model

    Science.gov (United States)

    Tous, M.; Zappa, G.; Romero, R.; Shaffrey, L.; Vidale, P. L.

    2016-09-01

    Medicanes or "Mediterranean hurricanes" represent a rare and physically unique type of Mediterranean mesoscale cyclone. There are similarities with tropical cyclones with regard to their development (based on the thermodynamical disequilibrium between the warm sea and the overlying troposphere) and their kinematic and thermodynamical properties (medicanes are intense vortices with a warm core and even a cloud-free eye). Although medicanes are smaller and their wind speeds are lower than in tropical cyclones, the severity of their winds can cause substantial damage to islands and coastal areas. Concern about how human-induced climate change will affect extreme events is increasing. This includes the future impacts on medicanes due to the warming of the Mediterranean waters and the projected changes in regional atmospheric circulation. However, most global climate models do not have high enough spatial resolution to adequately represent small features such as medicanes. In this study, a cyclone tracking algorithm is applied to high resolution global climate model data with a horizontal grid resolution of approximately 25 km over the Mediterranean region. After a validation of the climatology of general Mediterranean mesoscale cyclones, changes in medicanes are determined using climate model experiments with present and future forcing. The magnitude of the changes in the winds, frequency and location of medicanes is assessed. While no significant changes in the total number of Mediterranean mesoscale cyclones are found, medicanes tend to decrease in number but increase in intensity. The model simulation suggests that medicanes tend to form more frequently in the Gulf of Lion-Genoa and South of Sicily.

  14. Expansion of global drylands under a warming climate

    Directory of Open Access Journals (Sweden)

    S. Feng

    2013-06-01

    Full Text Available Global drylands encompassing hyper-arid, arid, semiarid, and dry subhumid areas cover about 41% of the earth's terrestrial surface and are home to more than a third of the world's population. By analyzing observations for 1948–2008 and climate model simulations for 1948–2100, we show that global drylands have expanded in last sixty years and will continue to expand in the 21st century. By the end of this century, the world's drylands under a high greenhouse gas emission scenario are projected to be 5.8 × 106 km2 (or 10% larger than in the 1961–1990 climatology. The major expansion of arid regions will occur over southwest North America, the northern fringe of Africa, southern Africa, and Australia, while major expansions of semiarid regions will occur over the north side of the Mediterranean, southern Africa, and North and South America. The global dryland expansions will increase the population affected by water scarcity and land degradations.

  15. Investigating uncertainties in global gridded datasets of climate extremes

    Directory of Open Access Journals (Sweden)

    R. J. H. Dunn

    2014-05-01

    Full Text Available We assess the effects of different methodological choices made during the construction of gridded datasets of climate extremes, focusing primarily on HadEX2. Using global timeseries of the indices and their coverage, as well as uncertainty maps, we show that the choices which have the greatest effect are those relating to the station network used or which drastically change the values for individual grid boxes. The latter are most affected by the number of stations required in or around a grid box and the gridding method used. Most parametric changes have a small impact, on global and on grid box scales, whereas structural changes to the methods or input station networks may have large effects. On grid box scales, trends in temperature indices are very robust to most choices, especially in areas which have high station density (e.g. North America, Europe and Asia. Precipitation trends, being less spatially coherent, can be more susceptible to methodological changes, but are still clear in regions of high station density. Regional trends from all indices derived from areas with few stations should be treated with care. On a global scale, the linear trends over 1951–2010 from almost all choices fall within the statistical range of trends from HadEX2. This demonstrates the robust nature of HadEX2 and related datasets to choices in the creation method.

  16. Expansion of global drylands under a warming climate

    Directory of Open Access Journals (Sweden)

    S. Feng

    2013-10-01

    Full Text Available Global drylands encompassing hyper-arid, arid, semiarid, and dry subhumid areas cover about 41 percent of the earth's terrestrial surface and are home to more than a third of the world's population. By analyzing observations for 1948–2008 and climate model simulations for 1948–2100, we show that global drylands have expanded in the last sixty years and will continue to expand in the 21st~century. By the end of this century, the world's drylands (under a high greenhouse gas emission scenario are projected to be 5.8 × 106 km2 (or 10% larger than in the 1961–1990 climatology. The major expansion of arid regions will occur over southwest North America, the northern fringe of Africa, southern Africa, and Australia, while major expansions of semiarid regions will occur over the north side of the Mediterranean, southern Africa, and North and South America. The global dryland expansions will increase the population affected by water scarcity and land degradations.

  17. Using Argumentation to Foster Learning about Global Climate Change

    Science.gov (United States)

    Golden, B. W.

    2012-12-01

    Given the complexity of the science involving climate change (IPCC, 2007), its lack of curricular focus within US K-12 schooling (Golden, 2009), and the difficulty in effecting conceptual change in science (Vosniadou, 2007), we sought to research middle school students' conceptions about climate change, in addition to how those conceptions changed during and as a result of a deliberately designed global climate change (GCC) unit. In a sixth grade classroom, a unit was designed which incorporated Argumentation-Driven Inquiry (Sampson & Grooms, 2010). That is, students were assigned to groups and asked to make sense of standard GCC data such as paleoclimate data from ice cores, direct temperature measurement, and Keeling curves, in addition to learning about the greenhouse effect in a modeling lesson (Hocking, et al, 1993). The students were then challenged, in groups, to create, on whiteboards, explanations and defend these explanations to and with their peers. They did two iterations of this argumentation. The first iteration focused on the simple identification of climate change patterns. The second focused on developing causal explanations for those patterns. After two rounds of such argumentation, the students were then asked to write (individually) a "final" argument which accounted for the given data. Interview and written data were analyzed prior to the given unit, during it, and after it, in order to capture complicated nuance that might escape detection by simpler research means such as surveys. Several findings emerged which promised to be of interest to climate change educators. The first is that many students tended to "know" many "facts" about climate change, but were unable to connect these disparate facts in any meaningful ways. A second finding is that while no students changed their entire belief systems, even after a robust unit which would seemingly challenge such, each student engaged did indeed modify the manner in which they discussed the

  18. Toward Seamless Weather-Climate Prediction with a Global Cloud Resolving Model

    Science.gov (United States)

    2016-01-14

    distribution is unlimited. TOWARD SEAMLESS WEATHER- CLIMATE PREDICTION WITH A GLOBAL CLOUD RESOLVING MODEL PI: Tim Li IPRC/SOEST, University of Hawaii at...under global warming This study uses the MRI high-resolution Atmospheric Climate Model to determine whether environmental parameters that control...ENSO Amplitude under Global Warming in Four CMIP5 Models , J. Climate , 28 (8), 3250-3274. 6. Chung, P.-H., and T. Li, 2015: Characteristics of tropical

  19. A global assessment of the impact of climate change\\ud on water scarcity

    OpenAIRE

    Gosling, Simon N.; Arnell, Nigel

    2013-01-01

    This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are es...

  20. Land-use change and global climate policies; Usage des terres et politiques climatiques globales

    Energy Technology Data Exchange (ETDEWEB)

    Gitz, V

    2004-03-15

    This PhD thesis assess the role of land-use dynamics and carbon sequestration within climate policies. First, it describes the emergence, from the Rio-1992 to the Marrakech Accords (2001), of diplomatic controversies upon carbon sinks, in the context of the progressive constitution of a scientific basis on terrestrial carbon sinks. It questions the ability of the actual form of international climate regime to generate the appropriate incentives to sequester within the forestry sector in developed countries, or to control tropical deforestation. Second, the contribution of land-use change to atmospheric CO{sub 2} rise is quantified using a newly designed model of the global carbon cycle and regional land-use (OSCAR). We show that carbon emitted via land-use is not equivalent to fossil carbon emission in respect to atmospheric CO{sub 2} rise. This effect, all the more than land-use emissions are increasing, requires a greater mitigation effort to stabilize atmospheric CO{sub 2}. Finally, optimal timing of mixed climate policies involving fossil emissions mitigation and biological sequestration is assessed within an inter temporal cost-benefit framework. We show that the social value of sequestered carbon depends on anticipating future climate damages. Within optimal control models, this links the timing of sequestration to fossil effort and to the evolution of climate damages; if the latter are uncertain, but might be revealed at a later date, then it might be optimal to reserve part of the limited sequestration potential to cut off an eventual future abatement cost peak, were a climate surprise to finally imply stringent concentration ceilings. (author)

  1. Global Climate Change, Food Security, and Local Sustainability: Increasing Climate Literacy in Urban Students

    Science.gov (United States)

    Boger, R. A.; Low, R.; Gorokhovich, Y.

    2011-12-01

    Three higher education institutions, University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, are working together to share expertise and resources to expand climate change topics offered to undergraduate and graduate students in New York City (NYC). This collaboration combines existing UNL educational learning resources and infrastructure in virtual coursework. It will supply global climate change education and locally-based research experiences to the highly diverse undergraduate students of Brooklyn and Lehman Colleges and to middle and high school teachers in NYC. Through the university partnership, UNL materials are being adapted and augmented to include authentic research experiences for undergraduates and teachers using NASA satellite data, geographic information system (GIS) tools, and/or locally collected microclimate data from urban gardens. Learners download NASA data, apply an Earth system approach, and employ GIS in the analysis of food production landscapes in a dynamically changing climate system. The resulting course will be offered via Blackboard courseware, supported by Web 2.0 technologies designed specifically to support dialogue, data, and web publication sharing between partners, teachers and middle school, high school and undergraduate student researchers. NYC is in the center of the urban farming movement. By exploring water and food topics of direct relevance to students' lives and community, we anticipate that students will be motivated and more empowered to make connections between climate change and potential impacts on the health and happiness of people in their community, in the United States and around the world. Final course will be piloted in 2012.

  2. Geomagnetism, volcanoes, global climate change, and predictability. A progress report

    Directory of Open Access Journals (Sweden)

    G. P. Gregori

    1994-06-01

    Full Text Available A model is investigated, by which the encounters of the solar system with dense interstellar clouds ought to trigger either geomagnetic field reversals or excursions, that produce extra electric currents within the Earth dynamo, that cause extra Joule's heating, that supplies volcanoes and endogenous processes. Volcanoes increase the Earth degassing into the atmosphere, hence the concentration of the minor atmospheric constituents, including the greenhouse gases, hence they affect climate temperature, glacier melting, sea level and global change. This investigation implies both theoretical studies and observational data handling on different time scales, including present day phenomena, instrumental data series, historical records, proxy data, and geological and palaeontological evidences. The state of the art is briefly outlined, mentioning some already completed achievements, investigations in progress, and future perspectives.

  3. Biogeophysical effects of CO2-fertilization on global climate

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C; Phillips, T J

    2006-04-26

    CO{sub 2}-fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO{sub 2}-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multi-century simulations: a ''Control'' simulation with no emissions, and a ''Physiol-noGHG'' simulation where physiological changes occur as a result of prescribed CO{sub 2} emissions, but where CO{sub 2}-induced greenhouse warming is not included. In our simulations, CO{sub 2}-fertilization produces warming; we obtain an annual- and global-mean warming of about 0.65 K (and land-only warming of 1.4 K) after 430 years. This century-scale warming is mostly due to a decreased surface albedo associated with the expansion of the Northern Hemisphere boreal forests. On decadal time scales, the CO{sub 2} uptake by afforestation should produce a cooling effect that exceeds this albedo-based warming; but if the forests remain in place, the CO{sub 2}-enhanced-greenhouse effect would diminish as the ocean equilibrates with the atmosphere, whereas the albedo effect would persist. Thus, on century time scales, there is the prospect for net warming from CO{sub 2}-fertilization of the land biosphere. Further study is needed to confirm and better quantify our results.

  4. Drought Duration Biases in Current Global Climate Models

    Science.gov (United States)

    Moon, Heewon; Gudmundsson, Lukas; Seneviratne, Sonia

    2016-04-01

    Several droughts in the recent past are characterized by their increased duration and intensity. In particular, substantially prolonged droughts have brought major societal and economic losses in certain regions, yet climate change projections of such droughts in terms of duration is subject to large uncertainties. This study analyzes the biases of drought duration in state-of-the-art global climate model (GCM) simulations from the 5th phase of Coupled Model Intercomparison Project (CMIP5). Drought durations are defined as negative precipitation anomalies and evaluated with three observation-based datasets in the period of 1901-2010. Large spread in biases of GCMs is commonly found in all regions, with particular strong biases in North East Brazil, Africa, Northern Australia, Central America, Central and Northern Europe, Sahel and Asia. Also in most regions, the interquartile range of bias lies below 0, meaning that the GCMs tend to underestimate drought durations. Meanwhile in some regions such as Western South America, the Amazon, Sahel, West and South Africa, and Asia, considerable inconsistency among the three observation-based datasets were found. These results indicate substantial uncertainties and errors in current GCMs for simulating drought durations as well as a large spread in observation-based datasets, both of which are found to be particularly strong in those regions that are often considered to be hot spots of projected future drying. The underlying sources of these uncertainties need to be identified in further study and will be applied to constrain GCM-based drought projections under climate change.

  5. Langmuir mixing effects on global climate: WAVEWATCH III in CESM

    Science.gov (United States)

    Li, Qing; Webb, Adrean; Fox-Kemper, Baylor; Craig, Anthony; Danabasoglu, Gokhan; Large, William G.; Vertenstein, Mariana

    2016-07-01

    Large-Eddy Simulations (LES) have shown the effects of ocean surface gravity waves in enhancing the ocean boundary layer mixing through Langmuir turbulence. Neglecting this Langmuir mixing process may contribute to the common shallow bias in mixed layer depth in regions of the Southern Ocean and the Northern Atlantic in most state-of-the-art climate models. In this study, a third generation wave model, WAVEWATCH III, has been incorporated as a component of the Community Earth System Model, version 1.2 (CESM1.2). In particular, the wave model is now coupled with the ocean model through a modified version of the K-Profile Parameterization (KPP) to approximate the influence of Langmuir mixing. Unlike past studies, the wind-wave misalignment and the effects of Stokes drift penetration depth are considered through empirical scalings based on the rate of mixing in LES. Wave-Ocean only experiments show substantial improvements in the shallow biases of mixed layer depth in the Southern Ocean. Ventilation is enhanced and low concentration biases of pCFC-11 are reduced in the Southern Hemisphere. A majority of the improvements persist in the presence of other climate feedbacks in the fully coupled experiments. In addition, warming of the subsurface water over the majority of global ocean is observed in the fully coupled experiments with waves, and the cold subsurface ocean temperature biases are reduced.

  6. From climate to global change: Following the footprint of Prof. Duzheng YE's research

    Science.gov (United States)

    Fu, Congbin

    2017-10-01

    To commemorate 100 years since the birth of Professor Duzheng YE, this paper reviews the contribution of Ye and his research team to the development from climate to global change science in the past 30 or so years, including: (1) the role of climate change in global change; (2) the critical time scales and predictability of global change; (3) the sensitive regions of global change—transitional zones of climate and ecosystems; and (4) orderly human activities and adaptation to global change, with a focus on the development of a proactive strategy for adaptation to such change.

  7. "we cannot Wait to ACT!" Simulating Global Climate Summits with Gifted and Talented Students

    Science.gov (United States)

    Haste, T.; Vesperman, D.; Alrivy, S.

    2012-12-01

    Students simulated the 2011 Durban Climate Summit in order to experience two roles: global diplomats attempting to solve a significant global problem and scientists as contributors of knowledge. Together, they worked to develop a framework to provide global solutions as world leaders. This project demonstrated [highlighted?] student work from the climate summit, describing how students promoted dialogue and provided climate science information to their diplomatic peers, who then used this information in diplomatic negotiations. By focusing on increasing student climate literacy, students engaged in both climate science and global diplomacy through meaningful simulations to understand the global and political issues surrounding Climate Change mitigation. Three classes of international middle school students attending Johns Hopkins Center for Talented Youth summer programs enacted the 2011 Durban Model United Nations meeting. One class developed a deep understanding of climate and climate science by working with computer models and data to represent members of the IPCC. Members of this class collaborated with climate scientists, conducted experiments, and developed a well-rounded understanding of paleoclimate, current climatic trends, carbon cycling, and modeling future outcomes. Two additional classes took on the roles of UN diplomats, researched their respective nations, engaged in practice UN simulations, and developed a working understanding of the diplomatic process. Students representing the IPCC assisted their diplomatic peers in developing and proposing possible UN resolutions. All three classes worked together to enact the Durban Climate Summit with the underlying focus of developing diplomatic Climate Change mitigation strategies and ultimately resolutions for member nations.

  8. Cyclones and extreme windstorm events over Europe under climate change: Global and regional climate model diagnostics

    Science.gov (United States)

    Leckebusch, G. C.; Ulbrich, U.

    2003-04-01

    More than any changes of the climate system mean state conditions, the development of extreme events may influence social, economic and legal aspects of our society. This linkage results from the impact of extreme climate events (natural hazards) on environmental systems which again are directly linked to human activities. Prominent examples from the recent past are the record breaking rainfall amounts of August 2002 in central Europe which produced widespread floodings or the wind storm Lothar of December 1999. Within the MICE (Modelling the Impact of Climate Extremes) project framework an assessment of the impact of changes in extremes will be done. The investigation is carried out for several different impact categories as agriculture, energy use and property damage. Focus is laid on the diagnostics of GCM and RCM simulations under different climate change scenarios. In this study we concentrate on extreme windstorms and their relationship to cyclone activity in the global HADCM3 as well as in the regional HADRM3 model under two climate change scenarios (SRESA2a, B2a). In order to identify cyclones we used an objective algorithm from Murry and Simmonds which was widely tested under several different conditions. A slight increase in the occurrence of systems is identified above northern parts of central Europe for both scenarios. For more severe systems (core pressure wind events can be defined via different percentile values of the windspeed (e.g. above the 95 percentile). By this means the relationship between strong wind events and cyclones is also investigated. For several regions (e.g. Germany, France, Spain) a shift to more deep cyclones connected with an increasing number of strong wind events is found.

  9. Global reductions in seafloor biomass in response to climate change.

    Science.gov (United States)

    Jones, Daniel O B; Yool, Andrew; Wei, Chih-Lin; Henson, Stephanie A; Ruhl, Henry A; Watson, Reg A; Gehlen, Marion

    2014-06-01

    Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091-2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006-2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide. © 2013 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  10. Globally synchronous climate change 2800 years ago: Proxy data from peat in South America

    Science.gov (United States)

    Chambers, Frank M.; Mauquoy, Dmitri; Brain, Sally A.; Blaauw, Maarten; Daniell, John R. G.

    2007-01-01

    Initial findings from high-latitude ice-cores implied a relatively unvarying Holocene climate, in contrast to the major climate swings in the preceding late-Pleistocene. However, several climate archives from low latitudes imply a less than equable Holocene climate, as do recent studies on peat bogs in mainland north-west Europe, which indicate an abrupt climate cooling 2800 years ago, with parallels claimed in a range of climate archives elsewhere. A hypothesis that this claimed climate shift was global, and caused by reduced solar activity, has recently been disputed. Until now, no directly comparable data were available from the southern hemisphere to help resolve the dispute. Building on investigations of the vegetation history of an extensive mire in the Valle de Andorra, Tierra del Fuego, we took a further peat core from the bog to generate a high-resolution climate history through the use of determination of peat humification and quantitative leaf-count plant macrofossil analysis. Here, we present the new proxy-climate data from the bog in South America. The data are directly comparable with those in Europe, as they were produced using identical laboratory methods. They show that there was a major climate perturbation at the same time as in northwest European bogs. Its timing, nature and apparent global synchronicity lend support to the notion of solar forcing of past climate change, amplified by oceanic circulation. This finding of a similar response simultaneously in both hemispheres may help validate and improve global climate models. That reduced solar activity might cause a global climatic change suggests that attention be paid also to consideration of any global climate response to increases in solar activity. This has implications for interpreting the relative contribution of climate drivers of recent 'global warming'.

  11. Acting locally, developing knowledge globally: a transitions perspective on designing climate change adaptation strategies

    NARCIS (Netherlands)

    Grin, J.; Driessen, J.; Leroy, P.; van Vierssen, W.

    2010-01-01

    Climate change, from many perspectives and for many reasons, is a complex issue: scientifically, politically, and in terms of global justice. As such, climate change might be the global societal and political challenge of the 21st century. Dealing with it, either via mitigation or via adaptation, wi

  12. Re-Examining the Relationship between Tillage Regime and Global Climate Change

    Science.gov (United States)

    Hammons, Sarah K.

    2009-01-01

    It is known that anthropogenic greenhouse gas emissions are a major contributor to global climate change and that reducing our emissions will stem its acceleration (Baker et al., 2007). Aside from emission reductions, another method for stemming global climate change is to reduce the levels of greenhouse gases already in the atmosphere by storing…

  13. Global forest sector modeling: application to some impacts of climate change

    Science.gov (United States)

    Joseph. Buongiorno

    2016-01-01

    This paper explored the potential long-term effects of a warming climate on the global wood sector, based on Way and Oren's synthesis (Tree Physiology 30,669-688) indicating positive responses of tree growth to higher temperature in boreal and temperative climates, and negative responses in the topics. Changes in forest productivity were introduced in the Global...

  14. Climate-induced variations in global wildfire danger from 1979 to 2013

    Science.gov (United States)

    W. Matt Jolly; Mark A. Cochrane; Patrick H. Freeborn; Zachary A. Holden; Timothy J. Brown; Grant J. Williamson; David M. J. S. Bowman

    2015-01-01

    Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have...

  15. Differential climate impacts for policy-relevant limits to global warming

    NARCIS (Netherlands)

    Schleussner, Carl Friedrich; Lissner, Tabea K.; Fischer, Erich M.; Wohland, Jan; Perrette, Mahé; Golly, Antonius; Rogelj, Joeri; Childers, Katelin; Schewe, Jacob; Frieler, Katja; Mengel, Matthias; Hare, William; Schaeffer, Michiel

    2016-01-01

    Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. The 2015 Paris Agreement includes a two-headed temperature goal: "holding the increase in the global average

  16. Re-Examining the Relationship between Tillage Regime and Global Climate Change

    Science.gov (United States)

    Hammons, Sarah K.

    2009-01-01

    It is known that anthropogenic greenhouse gas emissions are a major contributor to global climate change and that reducing our emissions will stem its acceleration (Baker et al., 2007). Aside from emission reductions, another method for stemming global climate change is to reduce the levels of greenhouse gases already in the atmosphere by storing…

  17. Differential climate impacts for policy-relevant limits to global warming

    NARCIS (Netherlands)

    Schleussner, Carl Friedrich; Lissner, Tabea K.; Fischer, Erich M.; Wohland, Jan; Perrette, Mahé; Golly, Antonius; Rogelj, Joeri; Childers, Katelin; Schewe, Jacob; Frieler, Katja; Mengel, Matthias; Hare, William; Schaeffer, Michiel

    2016-01-01

    Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. The 2015 Paris Agreement includes a two-headed temperature goal: "holding the increase in the global average

  18. The Polar Regions and Martian Climate: Studies with a Global Climate Model

    Science.gov (United States)

    Wilson, R. J.; Richardson, M. I.; Smith, M. D.

    2003-01-01

    Much of the interest in the polar regions centers on the fact that they likely contain the best record of Martian climate change on time scales from years to eons. This expectation is based upon the observed occurrence of weathering product deposits and volatile reservoirs that are coupled to the climate. Interpretation and understanding of these records requires understanding of the mechanisms that involve the exchange of dust, water, and carbon dioxide between the surface and atmosphere, and the atmospheric redistribution of these species. We will summarize our use of the GFDL Mars general circulation model (MGCM), to exploration aspects of the interaction between the global climate and the polar regions. For example, our studies have shown that while the northern polar cap is the dominant seasonal source for water, it can act as a net annual source or sink for water, depending upon the cap temperatures and the bulk humidity of the atmosphere. This behavior regulates the annual and global average humidity of the atmosphere, as the cap acts as a sink if the atmosphere is too wet and a source if it is too dry. We will then focus our presentation on the ability of the MGCM to simulate the observed diurnal variations of surface temperature. We are particularly interested in assessing the influence of dust aerosol and water ice clouds on simulated surface temperature and the comparison with observations. Surface thermal inertia and albedo are critical boundary inputs for MGCM simulations. Thermal inertia is also of intrinsic interest as it may be related to properties of the surface such as particle size and surface character.

  19. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2013-10-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature change (ΔTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere–Ocean General Circulation Models (AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  20. 1.2 million years of climate change, globally and in the Mediterranean

    NARCIS (Netherlands)

    Konijnendijk, T.Y.M.

    2015-01-01

    In this thesis we make a detailed reconstruction of climate changes based on materials from the Mediterranean Sea. Not only does this provide new insights in climate changes in the Mediterranean region, the aim is to improve our understanding of global climate changes as well. We created a single re

  1. Modeling and Analysis of Global and Regional Climate Change in Relation to Atmospheric Hydrologic Processes

    Science.gov (United States)

    Johnson, Donald R.

    2001-01-01

    This research was directed to the development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. An additional objective was to investigate the accuracy and theoretical limits of global climate predictability which are imposed by the inherent limitations of simulating trace constituent transport and the hydrologic processes of condensation, precipitation and cloud life cycles.

  2. Role of Pakistan in Global Climate Change through Greenhouse Gas Emissions (GHGs)

    OpenAIRE

    Wajeeha Malik; Hajra Shahid; Rabeea Zafar; Zaheer Uddin; Zafar Wazir; Zubair Anwar; Jabar Zaman Khan Khattak; Syed Shahid Ali

    2012-01-01

    The increasing concentration of Greenhouse Gases (GHGs) is warming the earth’s atmosphere and the phenomenon is known as Climate Change or Global Warming. The major factors contributing to the global climate change include polluted emissions by excessive burning of fossil fuels and deforestation. Pakistan contributes very little to the overall Greenhouse Gas (GHG) emissions however it remains severely impacted by the negative effects of climate change. Pakistan, in particular is estimated to ...

  3. Educating About Global Climate Change With A Cultural Perspective

    Science.gov (United States)

    Valdez, C.; Fessenden, J.; Kanjorski, N.; Hall, M. K.

    2004-12-01

    Predominantly minority populated schools in Northern New Mexico are plagued by low standardized test scores and high drop-out rates. The school system is currently failing students, and success in science is reliant on self-motivation among students. In order for students to gain momentum in a system where exposure to science is not prevalent, it is important for them to get outside support that catalyzes their interest. Collaboration between Los Alamos National Laboratory (LANL), Science Education Solutions (SES), and local schools has been established to identify student needs and provide them with the opportunity to engage in science through hands-on experience with world-class scientists. Students are being introduced to the prospects of a scientific career while getting the unique chance to explore different aspects of several LANL scientists' research. This initiative also incorporates cultural awareness efforts to promote parent and community involvement. In the past year, two pilot projects were carried out to test the concepts, goals, and methods of the collaboration. One pilot project used plant growth studies in predominantly Hispanic fifth-grade classrooms to stimulate student interest. Students explored tree ring cores and tested water-use efficiency with sponges. The other pilot project included a two-day workshop for Native American students from Jemez Pueblo focusing on global climate change. This project combined a class component and hands-on field research. Samples were taken from LANL research sites with in-field lessons from scientists who monitor the sites. In addition, Jemez Pueblo officials were able to tie the sites to the student's lives with a historical and cultural overview. The most successful elements from these pilot projects are being used to develop a long-term project that will pique student interest in the science disciplines. Field activities garnered the most enthusiastic response from students, while in-class lessons were less

  4. The role of natural climatic variation in perturbing the observed global mean temperature trend

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, Aspendale, VIC (Australia)

    2011-02-15

    Controversy continues to prevail concerning the reality of anthropogenically-induced climatic warming. One of the principal issues is the cause of the hiatus in the current global warming trend. There appears to be a widely held view that climatic change warming should exhibit an inexorable upwards trend, a view that implies there is no longer any input by climatic variability in the existing climatic system. The relative roles of climatic change and climatic variability are examined here using the same coupled global climatic model. For the former, the model is run using a specified CO{sub 2} growth scenario, while the latter consisted of a multi-millennial simulation where any climatic variability was attributable solely to internal processes within the climatic system. It is shown that internal climatic variability can produce global mean surface temperature anomalies of {+-}0.25 K and sustained positive and negative anomalies sufficient to account for the anomalous warming of the 1940s as well as the present hiatus in the observed global warming. The characteristics of the internally-induced negative temperature anomalies are such that if this internal natural variability is the cause of the observed hiatus, then a resumption of the observed global warming trend is to be expected within the next few years. (orig.)

  5. Advancement of the climate dual strategy. New concepts for a globally effective climate protection; Weiterentwicklung der baden-wuerttembergischen Klimadoppelstrategie. Neue Konzepte fuer einen global wirksamen Klimaschutz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    The Baden-Wuerttemberg Council on Sustainable Development (Stuttgart, Federal Republic of Germany) presents a climate expert report with new concepts for a globally effective climate protection. First of all, the development of the global emissions of carbon dioxide since 1990 is described. The development of the global emissions of carbon dioxide up to 2050 is forecasted. Four general criteria (effectiveness, efficiency, fairness and acceptance) for a comparative evaluation of climate protection concepts are introduced. A proposal for solution on the basis of a globally effective cap-and-trade system as well as an identical scenario as an alternative with respect to the implementation are described. This alternative scenario is based on a cap-and-trade system but it develops on the basis of national self-commitment in accordance with an incentive and sanctionative system. Both implementation proposals are compared. Recommendations of the national government Baden-Wuerttemberg are given.

  6. Development directions of the global climate protection law; Die Entwicklungslinien des globalen Klimaschutzrechts

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Katharina [Bochum Univ. (Germany)

    2014-07-01

    The contribution on development directions of the global climate protection law covers the origination process of the Kyoto protocol, the precise form of the Kyoto protocol, the climate protection regime afterwards: Montreal 2005 - implementation-improvement-innovation, Nairobi 2006 - climatic change very close, Bali 2007 - roadmap, Posen 2008 - intermediate step, Copenhagen 2009 - stagnancy, Cancun 2010 - comeback, Durban 2011 - gleam of hope, Doha 2012 - minimum compromise, Warsaw 2013 - hope. The last chapter discusses the fundamental problems and perspectives of the climate protection laws.

  7. Integrating global energy and climate governance: The changing role of the International Energy Agency

    OpenAIRE

    Heubaum, Harald; Biermann, Frank

    2015-01-01

    Despite the long-recognized interlinkages between global energy consumption and climate change, there has historically been only limited policy interaction, let alone integration, between the two fields. This compartmentalization is mirrored in scholarship, where much research has focused on the fragmentation of, respectively, global energy and global climate governance, but only little has been said about how these fields might be integrated. Our analysis of the International Energy Agency’s...

  8. Are natural climate forcings able to counteract the projected anthropogenic global warming?

    OpenAIRE

    Bertrand, C.; van Ypersele, J.P.; Berger, A.

    2002-01-01

    A two-dimensional global climate model is used to assess the climatic changes associated with the new IPCC SRES emissions scenarios and to determine which kind of changes in total solar irradiance and volcanic perturbations could mask the projected anthropogenic global warming associated to the SRES scenarios. Our results suggest that only extremely unlikely changes in total solar irradiance and/or volcanic eruptions would be able to overcome the simulated anthropogenic global warming over th...

  9. Titan Chemistry: Results From A Global Climate Model

    Science.gov (United States)

    Wilson, Eric; West, R. A.; Friedson, A. J.; Oyafuso, F.

    2008-09-01

    We present results from a 3-dimesional global climate model of Titan's atmosphere and surface. This model, a modified version of NCAR's CAM-3 (Community Atmosphere Model), has been optimized for analysis of Titan's lower atmosphere and surface. With the inclusion of forcing from Saturn's gravitational tides, interaction from the surface, transfer of longwave and shortwave radiation, and parameterization of haze properties, constrained by Cassini observations, a dynamical field is generated, which serves to advect 14 long-lived species. The concentrations of these chemical tracers are also affected by 82 chemical reactions and the photolysis of 21 species, based on the Wilson and Atreya (2004) model, that provide sources and sinks for the advected species along with 23 additional non-advected radicals. In addition, the chemical contribution to haze conversion is parameterized along with the microphysical processes that serve to distribute haze opacity throughout the atmosphere. References Wilson, E.H. and S.K. Atreya, J. Geophys. Res., 109, E06002, 2004.

  10. Global climate and infectious disease: The cholera paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Colwell, R.R. [Univ. of Maryland Biotechnology Inst., College Park, MD (United States)

    1996-12-20

    Historically, infectious diseases have had a profound effect on human populations, including their evolution and cultural development. Despite significant advances in medical science, infectious diseases continue to impact human populations in many parts of the world. Emerging diseases are considered to be those infections that either are newly appearing in the population or are rapidly increasing in incidence or expanding in geographic range. Emergence of disease is not a simple phenomenon, mainly because infectious diseases are dynamic. Most new infections are not caused by truly new pathogens but are microorganisms (viruses, bacteria, fungi, protozoa, and helminths) that find a new way to enter a susceptible host and are newly recognized because of recently developed, sensitive techniques. Human activities drive emergence of disease and a variety of social, economic, political, climatic, technological, and environmental factors can shape the pattern of a disease and influence its emergence into populations. For example, travel affects emergence of disease, and human migrations have been the main source of epidemics throughout history. Trade caravans, religious pilgrimage, and military campaigns facilitated the spread of plague, smallpox, and cholera. Global travel is a fact of modern life and, equally so, the continued evolution of microorganisms; therefore, new infections will continue to emerge, and known infections will change in distribution, frequency, and severity. 88 refs., 1 fig.

  11. Climate Change and Societal Response: Livelihoods, Communities, and the Environment

    Science.gov (United States)

    Molnar, Joseph J.

    2010-01-01

    Climate change may be considered a natural disaster evolving in slow motion on a global scale. Increasing storm intensities, shifting rainfall patterns, melting glaciers, rising sea levels, and other manifold alterations are being experienced around the world. Climate has never been constant in any location, but human-induced changes associated…

  12. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis

    Science.gov (United States)

    Dotterweich, Markus

    2013-11-01

    This paper presents a global synopsis about the geomorphic evidence of soil erosion in humid and semihumid areas since the beginning of agriculture. Historical documents, starting from ancient records to data from the mid-twentieth century and numerous literature reviews form an extensive assortment of examples that show how soil erosion has been perceived previously by scholars, land surveyors, farmers, land owners, researchers, and policy makers. Examples have been selected from ancient Greek and Roman Times and from central Europe, southern Africa, North America, the Chinese Loess Plateau, Australia, New Zealand, and Easter Island. Furthermore, a comprehensive collection on the development of soil erosion research and soil conservation has been provided, with a particular focus on Germany and the USA. Geomorphic evidence shows that most of the agriculturally used slopes in the Old and New Worlds had already been affected by soil erosion in earlier, prehistoric times. Early descriptions of soil erosion are often very vague. With regard to the Roman Times, geomorphic evidence shows seemingly opposing results, ranging from massive devastation to landscapes remaining stable for centuries. Unfortunately, historical documentation is lacking. In the following centuries, historical records become more frequent and more precise and observations on extreme soil erosion events are prominent. Sometimes they can be clearly linked to geomorphic evidence in the field. The advent of professional soil conservation took place in the late eighteenth century. The first extensive essay on soil conservation known to the Western world was published in Germany in 1815. The rise of professional soil conservation occurred in the late nineteenth and early twentieth centuries. Soil remediation and flood prevention programs were initiated, but the long-term success of these actions remains controversial. In recent years, increasing interest is to recover any traditional knowledge of soil

  13. Seasonal Climate Extremes : Mechanism, Predictability and Responses to Global Warming

    NARCIS (Netherlands)

    Shongwe, M.E.

    2010-01-01

    Climate extremes are rarely occurring natural phenomena in the climate system. They often pose one of the greatest environmental threats to human and natural systems. Statistical methods are commonly used to investigate characteristics of climate extremes. The fitted statistical properties are often

  14. Global assessment of experimental climate warming on tundra vegetation

    DEFF Research Database (Denmark)

    Elmendorf, S.C.; Henry, G.H.R.; Bjorkman, A.D.

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this ap...

  15. National ownership in the implementation of global climate policy in Uganda

    DEFF Research Database (Denmark)

    Olsen, K.H.

    2006-01-01

    This article explores the history, from a developing country perspective, of how external interventions to implement global policies on the Climate Convention and the Clean Development Mechanism (CDM) have been integrated into national development policy frameworks in the period 1990-2005. The main...... first. Against this background, Uganda's policy response to climate change is reviewed. National climate policies are found not to exist, and the implementation of global policies is not integrated into national policy frameworks, partly due to conflicting national and global priorities. Given limited...... national awareness and the fact that climate policy is marginal compared to other national interests in Uganda, the experiences with donor support for the implementation of global climate policy nationally are analysed. This article demonstrates that neither national policies nor national management...

  16. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.

    Directory of Open Access Journals (Sweden)

    Oriana Ovalle-Rivera

    Full Text Available Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee.

  17. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change

    Science.gov (United States)

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee. PMID:25875230

  18. Increasing climate extremes under global warming - What is the driving force?

    Science.gov (United States)

    Yoon, Jin-Ho

    2017-04-01

    More climate extreme events have occurred in recent years, including the continual development of extreme drought in California, the severe cold winters in the eastern U.S. since 2014, 2015 Washington drought, and excessive wildfire events over Alaska in 2015. These have been casually attributed to global warming. However, a need for further understanding of mechanisms responsible for climate extremes is growing. In this presentation, we'll use sets of climate model simulation that designed to identify the role of the oceanic feedback in increasing climate extremes under global warming. One is with a fully coupled climate model forced by 1% ramping CO2, and the other is with an atmosphere only model forced by the same CO2 forcing. By contrasting these two, an importance of the oceanic feedback in increasing climate extremes under global warming can be diagnosed.

  19. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change.

    Directory of Open Access Journals (Sweden)

    Antonius G T Schut

    Full Text Available Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010 derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17-36% of all productive areas depending on the NDVI metric used. For only 1-2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity.

  20. Projections of emissions from burning of biomass foruse in studies of global climate and atmospheric chemistry

    Science.gov (United States)

    Darold E. Ward; Weimin Hao

    1991-01-01

    Emissions of trace gases and particulate matter from burning of biomass are generally factored into global climate models. Models for improving the estimates of the global annual release of emissions from biomass fires are presented. Estimates of total biomass consumed on a global basis range from 2 to 10 Pg (1 petagram = 1015 g) per year. New...

  1. Time-lag effects of global vegetation responses to climate change.

    Science.gov (United States)

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P effects is quite important for better predicting and evaluating the vegetation dynamics under the background of global climate change.

  2. Braking effect of climate and topography on global change-induced upslope forest expansion.

    Science.gov (United States)

    Alatalo, Juha M; Ferrarini, Alessandro

    2017-03-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  3. Global climate change attitudes and perceptions among south American zoo visitors.

    Science.gov (United States)

    Luebke, Jerry F; Clayton, Susan; Kelly, Lisa-Anne DeGregoria; Grajal, Alejandro

    2015-01-01

    There is a substantial gap between the scientific evidence for anthropogenic climate change and the human response to this evidence. Perceptions of and responses to climate change can differ among regions of the world, as well as within countries. Therefore, information about the public's attitudes and perceptions related to climate change is essential to the development of relevant educational resources. In the present study, zoo visitors in four South American countries responded to a questionnaire regarding their attitudes and perceptions toward global climate change. Results indicated that most respondents are already highly concerned about global climate change and are interested in greater engagement in pro-environmental behaviors. Visitors also perceive various obstacles to engagement in climate change mitigation behaviors. We discuss the results of our study in terms of addressing visitors' climate change attitudes and perceptions within the social and emotional context of zoo settings.

  4. Braking effect of climate and topography on global change-induced upslope forest expansion

    Science.gov (United States)

    Alatalo, Juha M.; Ferrarini, Alessandro

    2016-08-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  5. NASA/JPL CLIMATE DAY: Middle and High School Students Get the Facts about Global Climate Change

    Science.gov (United States)

    Richardson, Annie; Callery, Susan; Srinivasan, Margaret

    2013-04-01

    In 2007, NASA Headquarters requested that Earth Science outreach teams brainstorm new education and public outreach activities that would focus on the topic of global climate change. At the Jet Propulsion Laboratory (JPL), Annie Richardson, outreach lead for the Ocean Surface Topography missions came up with the idea of a "Climate Day", capitalizing on the popular Earth Day name and events held annually throughout the world. JPL Climate Day would be an education and public outreach event whose objectives are to provide the latest scientific facts about global climate change - including the role the ocean plays in it, the contributions that NASA/JPL satellites and scientists make to the body of knowledge on the topic, and what we as individuals can do to promote global sustainability. The primary goal is that participants get this information in a fun and exciting environment, and walk away feeling empowered and capable of confidently engaging in the global climate debate. In March 2008, JPL and its partners held the first Climate Day event. 950 students from seven school districts heard from five scientists; visited exhibits, and participated in hands-on-activities. Pleased with the outcome, we organized JPL Climate Day 2010 at the Pasadena Convention Center in Pasadena, California, reaching more than 1700 students, teachers, and members of the general public over two days. Taking note of this successful model, NASA funded a multi-center, NASA Climate Day proposal in 2010 to expand Climate Day nation-wide. The NASA Climate Day proposal is a three-pronged project consisting of a cadre of Earth Ambassadors selected from among NASA-affiliated informal educators; a "Climate Day Kit" consisting of climate-related electronic resources available to the Earth Ambassadors; and NASA Climate Day events to be held in Earth Ambassador communities across the United States. NASA/JPL continues to host the original Climate Day event and in 2012 held its 4th event, at the Pasadena

  6. Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise

    NARCIS (Netherlands)

    Giesen, R.H.; Oerlemans, J.

    2013-01-01

    The large uncertainty in future global glacier volume projections partly results from a substantial range in future climate conditions projected by global climate models. This study addresses the effect of global and regional differences in climate input data on the projected twenty-first century

  7. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Science.gov (United States)

    John B Kim; Erwan Monier; Brent Sohngen; G Stephen Pitts; Ray Drapek; James McFarland; Sara Ohrel; Jefferson Cole

    2016-01-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a...

  8. The use of multi-model ensembles from global climate models for impact assessment of climate change

    Science.gov (United States)

    Semenov, M. A.

    2009-04-01

    The IPCC 4th Assessment Report was based on large datasets of projections of future climate produced by eighteen modelling groups worldwide who performed a set of coordinated climate experiments in which numerous global climate models (GCMs) have been run for a common set of experiments and various emission scenarios. These datasets are freely available form the IPCC Data Distribution Centre (www.ipcc-data.org) and can be used by the research community to assess the impact of changing climate on various systems of interest including impacts on agricultural crops and natural ecosystems, biodiversity and plant diseases. Multi-model ensembles (MME) emphasize the uncertainty in climate predictions resulting from structural differences in the global climate model design as well as uncertainty to variations of initial conditions or model parameters. This paper describes a methodology based on a stochastic weather generator for linking MME of predictions from GCMs with process-based impact models to assess impacts of climate change on biological or ecological systems. The latest version of the LARS-WG weather generator is described which allows seamlessly generating daily site-specific climate scenarios worldwide by utilising local daily weather and MME from GCMs. Examples of impacts on wheat in Europe, based on MME, are discussed, including changes in severity of drought and heat stress around flowering.

  9. Wintertime urban heat island modified by global climate change over Japan

    Science.gov (United States)

    Hara, M.

    2015-12-01

    Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.

  10. Cosmic rays and space weather: effects on global climate change

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2012-01-01

    Full Text Available We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays and cosmic dust through their influence on clouds, and thus, on climate.

  11. Health, fairness and New Zealand's contribution to global post-2020 climate change action.

    Science.gov (United States)

    Bennett, Hayley; Macmillan, Alex; Jones, Rhys

    2015-05-29

    Health and wellbeing have been largely ignored in discussions around climate change targets and action to date. The current public consultation around New Zealand's post-2020 climate target is an opportunity for health professionals to highlight the health implications of climate change. Without urgent global efforts to bring down global GHG (greenhouse gas) emissions, the world is heading towards high levels of global warming, which will have devastating impacts on human health and wellbeing. New Zealand's action to bring down GHG emissions (as part of the global effort) has potential to improve health and reduce costs on the health sector, if health and fairness are put at the centre of policies to address climate change. New Zealand should commit to at least 40 % reductions in GHG emissions by 2030, and zero carbon emissions before 2050, with healthy and fair policies across sectors to enable reaching these targets.

  12. Global late Quaternary megafauna extinctions linked to humans, not climate change

    National Research Council Canada - National Science Library

    Sandom, Christopher; Faurby, Søren; Sandel, Brody; Svenning, Jens-Christian

    2014-01-01

    The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial...

  13. Global warming and contemporary climatic changes in Poland; Globalne ocieplenie a wspolczesne zmiany klimatyczne w Polsce

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The conference on global warming took place in Szczecin, Poland, on May 31 to Jun 1, 1993, organized by the national committee of IGBP Global Change, the Szczecin University and the Szczecin Academy of Agriculture. Twenty papers were published. Topics covered climatic changes in geological history, microclimates in Poland, contributions of natural changes to recent global warming, scenarios for climatic change in Poland, sensitivity of the water balance to climatic change, effects of global warming on surface water temperatures, evapotranspiration in the Balkans, droughts in the Eastern Mediterranean and in Poland, precipitation patterns in Poland, temperatures and salinity in the Baltic Sea, changes in water supply of the Baltic sea, the atmospheric circulation over the Baltic sea and in Poland, cold and heat waves in Poznan during 1911-1990 and climatic changes observed in Southern Poland.

  14. Climate Prediction Center (CPC) NCEP-Global Forecast System (GFS) Precipitation Forecast Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) forecast precipitation data at 37.5km resolution is created at the NOAA Climate Prediction Center for the purpose of near real-time...

  15. Teaching about Climate Change: Cool Schools Tackle Global Warming.

    Science.gov (United States)

    Grant, Tim, Ed.; Littlejohn, Gail, Ed.

    Within the last couple of decades, the concentration of greenhouse gases in the atmosphere has increased significantly due to human activities. Today climate change is an important issue for humankind. This book provides a starting point for educators to teach about climate change, although there are obstacles caused by the industrialized…

  16. Global water resources affected by human interventionss and climate change

    NARCIS (Netherlands)

    Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Florke, M.F.; Hanasaki, N.; Konzmann, M.; Ludwig, F.

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct

  17. Global water resources affected by human interventions and climate change

    NARCIS (Netherlands)

    Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; Stacke, T.; Tessler, Z.; Wada, Y.|info:eu-repo/dai/nl/341387819; Wisser, D.

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct

  18. Teaching about Climate Change: Cool Schools Tackle Global Warming.

    Science.gov (United States)

    Grant, Tim, Ed.; Littlejohn, Gail, Ed.

    Within the last couple of decades, the concentration of greenhouse gases in the atmosphere has increased significantly due to human activities. Today climate change is an important issue for humankind. This book provides a starting point for educators to teach about climate change, although there are obstacles caused by the industrialized…

  19. Global water resources affected by human interventions and climate change

    NARCIS (Netherlands)

    Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; Stacke, T.; Tessler, Z.; Wada, Y.; Wisser, D.

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct

  20. Global water resources affected by human interventionss and climate change

    NARCIS (Netherlands)

    Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Florke, M.F.; Hanasaki, N.; Konzmann, M.; Ludwig, F.

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct

  1. A Global Carbon Levy for Climate Change Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Leuenberger, Moritz [President of the Swiss Confederation (Switzerland)

    2006-11-15

    Climate change is happening, here and now. We are tied together by melting glaciers in Africa and in Europe, by floods in America and in Asia, and by droughts and shortages of fresh water in Australia and Africa. And we are tied by a joint responsibility to combat climate change around the world and help those affected by it.

  2. A Global Carbon Levy for Climate Change Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Leuenberger, Moritz [President of the Swiss Confederation (Switzerland)

    2006-11-15

    Climate change is happening, here and now. We are tied together by melting glaciers in Africa and in Europe, by floods in America and in Asia, and by droughts and shortages of fresh water in Australia and Africa. And we are tied by a joint responsibility to combat climate change around the world and help those affected by it.

  3. Weather and climate analyses using improved global water vapor observations

    National Research Council Canada - National Science Library

    Vonder Haar, Thomas H; Bytheway, Janice L; Forsythe, John M

    2012-01-01

    The NASA Water Vapor Project (NVAP) dataset is a global (land and ocean) water vapor dataset created by merging multiple sources of atmospheric water vapor to form a global data base of total and layered precipitable water vapor...

  4. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Document Server

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  5. Probabilistic Description of Global Climatic Fields By Wave Functions

    Science.gov (United States)

    Yushkov, V.

    Probability density decomposition onto the waveforms will propose. This method is analogous to widely used EOF analysis but on three spatial dimensions and on tem- poral scale is enlarged. Probabilistic approach gives simpler understanding of main relations in climatic system. It permits to avoid sophisticated parameterization in the dynamic description. This approach allows concentrating attention on the key param- eters of climate and weather changes. Based on relatively few parameters, this method permits to describe the basic statistical characteristics of the Earth's climate and to compare various climatic data sets, theoretical climate models, and the differences between model results and observation. Probabilistic approach allows us to analyze huge archives of accumulated meteorological information and create algorithms for data storage.

  6. Environmental Progression: The Psychological Justification for Reframing Climate Change and Global Warming

    Science.gov (United States)

    Veldey, S. H.

    2016-12-01

    On-going research in climate science communication through environmental media has uncovered critical barriers to reducing denial and increasing agency in addressing the threat of climate change. Similar to framing of our changing environment as "global warming", the term "climate change" also fails to properly frame the most critical challenge our species has faced. In a set of preliminary studies, significant changes in climate crisis denial, both positive and negative, have resulted from different media messaging. Continuation of this research utilizes social judgement theory (SJT) to classify a broader spectrum of effective avenues for environmental communication. The specificity of the terms global warming and climate change limit inclusion of issues critical to understanding their impacts. Now that the masses know what climate change is, it's time to teach them what it means.

  7. A global climate model based, Bayesian climate projection for northern extra-tropical land areas

    Science.gov (United States)

    Arzhanov, Maxim M.; Eliseev, Alexey V.; Mokhov, Igor I.

    2012-04-01

    Projections with contemporary global climate models (GCMs) still markedly deviate from each other on magnitude of climate changes, in particular, in middle to subpolar latitudes. In this work, a climate projection based on the ensemble of 18 CMIP3 GCM models forced by SRES A1B scenario is performed for the northern extra-tropical land. To assess the change of soil state, off-line simulations are performed with the Deep Soil Simulator (DSS) developed at the A.M.Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS). This model is forced by output of the above-mentioned GCM simulations. Ensemble mean and ensemble standard deviation for any variable are calculated by using Bayesian averaging which allows to enhance a contribution from more realistic models and diminish that from less realistic models. As a result, uncertainty for soil and permafrost variables become substantially narrower. The Bayesian weights for each model are calculated based on their performance for the present-day surface air temperature (SAT) and permafrost distributions, and for SAT trend during the 20th century. The results, except for intra-ensemble standard deviations, are not very sensitive to particular choice of Bayesian traits. Averaged over the northern extra-tropical land, annual mean surface air temperature in the ensemble increases by 3.1 ± 1.4 K (ensemble mean±intra-ensemble standard deviation) during the 21st century. Precipitation robustly increases in the pan-Arctic and decreases in the Mediterranean/Black Sea region. The models agree on near-surface permafrost degradation during the 21st century. The area underlain by near-surface permafrost decreases from the contemporary value 20 ± 3 mln sq. km to 14 ± 3 mln sq. km in the late 21st century. This leads to risk for geocryological hazard due to soil subsidence. This risk is classified as moderate to high in the southern and western parts of Siberia and Tibet in Eurasia, and in the region from Alaska

  8. The impact of climate change on the global wine industry: Challenges & solutions

    Directory of Open Access Journals (Sweden)

    Michelle Renée Mozell

    2014-12-01

    Full Text Available This paper explores the impact of climate change upon the global production of winegrapes and wine. It includes a review of the literature on the cause and effects of climate change, as well as illustrations of the specific challenges global warming may bring to the production of winegrapes and wine. More importantly, this paper provides some practical solutions that industry professionals can take to mitigate and adapt to the coming change in both vineyards and wineries.

  9. Re-emergence of Chikungunya and other scourges: the role of globalization and climate change.

    Science.gov (United States)

    Rezza, Giovanni

    2008-01-01

    Globalization and climate change are important phenomena in a changing world. To date, only the effect of globalisation on infectious diseases, from vector-borne to respiratory infections, has been well established. The influence of cyclic natural climatic events and local variations in temperature and precipitation has also been recognised; however, there is still no conclusive evidence of an effect of global warming on infectious disease patterns.

  10. Omega-3: A Link between Global Climate Change and Human Health

    OpenAIRE

    Kang, Jing X.

    2011-01-01

    In recent years, global climate change has been shown to detrimentally affect many biological and environmental factors, including those of marine ecosystems. In particular, global climate change has been linked to an increase in atmospheric carbon dioxide, UV irradiation, and ocean temperatures, resulting in decreased marine phytoplankton growth and reduced synthesis of omega-3 polyunsaturated fatty acids (PUFAs). Marine phytoplankton are the primary producers of omega-3 PUFAs, which are ess...

  11. Assessing effects of variation in global climate data sets on spatial predictions from climate envelope models

    Science.gov (United States)

    Romanach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.

    2014-01-01

    Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

  12. Bridging the Divide Between Climate and Global Change Science and Education of Public and K-12 Visitors at the National Center for Atmospheric Research

    Science.gov (United States)

    Foster, S. Q.; Johnson, R. M.; Carbone, L.; Munoz, R.; Eastburn, T.; Ammann, C.; Lu, G.; Richmond, A.; Committee, S.

    2004-12-01

    The study of climate and global change is an important on-going focus for scientists at the National Center for Atmospheric Research (NCAR). Programs overseen by the University Corporation for Atmospheric Research Office of Education and Outreach (UCAR-EO) help to translate NCAR's scientific programs, methodologies, and technologies and their societal benefits to over 80,000 visitors to the NCAR Mesa Laboratory each year, including about 10,000 K-12 students. This is currently accomplished through the implementation of an increasingly integrated system of exhibits, guided tours, an audiotour, programs for school groups, and a teachers' guide to the exhibits, which is currently in development. The Climate Discovery Exhibit unveiled in July 2003 and expanded in 2004 offers visitors visually engaging and informative text panels, graphics, artifacts, and interactives describing Sun-Earth connections, dynamic processes that contribute to and mediate climate change, and the Earth's climate history. The exhibit seeks to help visitors to understand why scientists model the global climate system and how information about past and current climate is used to validate models and build scenarios for Earth's future climate. Exhibit-viewers are challenged to ask questions and reflect upon decision making challenges while considering the roles various natural and human-induced factors play in shaping these predictions. With support from NASA and NCAR, a K-12 Teacher's Guide has been developed corresponding the Climate Discovery exhibit's sections addressing the Sun-Earth connection and past climates (the Little Ice Age, in particular). This presentation will review efforts to identify the challenges of communicating with the public and school groups about climate change, while also describing several successful strategies for utilizing visitor questionnaires and interviews to learn how to develop and refine educational resources that will target their interests, bolster their

  13. The adaptation rate of terrestrial ecosystems as a critical factor in global climate dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fuessler, J.S.; Gassmann, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A conceptual climate model describing regional two-way atmosphere-vegetation interaction has been extended by a simple qualitative scheme of ecosystem adaptation to drought stress. The results of this explorative study indicate that the role of terrestrial vegetation under different forcing scenarios depends crucially on the rate of the ecosystems adaptation to drought stress. The faster the adaptation of important ecosystems such as forests the better global climate is protected from abrupt climate changes. (author) 1 fig., 3 refs.

  14. Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale

    OpenAIRE

    T. I. E. Veldkamp; S. Eisner; Wada, Y.; J. C. J. H. Aerts; Ward, P. J.

    2015-01-01

    Globally, freshwater shortage is one of the most important risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and in some regions climate change However, less attention has been paid to the impacts of climate variability on water scarcit...

  15. The Role of Knowledge in Global Climate Change Governance: Modes of Legitimation in Tuvalu

    OpenAIRE

    Lazrus, Heather

    2005-01-01

    The important role of knowledge about global climate change in environmental governance is investigated in this paper. The relationship between more and less ‘global’ and ‘local’ forms of knowledge in climate governance has implications for international norms of justice, national sovereignty and human and national security. This paper attempts to show how the simultaneous and seemingly contradictory trends of ‘globalizing’ and ‘localizing’ in climate governance actually serve to help legitim...

  16. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    OpenAIRE

    2015-01-01

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water ...

  17. Interests, Norms, and Support for the Provision of Global Public Goods: The Case of Climate Cooperation

    OpenAIRE

    Bechtel, Michael; Genovese, Federica; Kenneth F. Scheve

    2016-01-01

    Mitigating climate change requires countries to provide a global public good. This means that the domestic cleavages underlying mass attitudes toward international climate policy are a central determinant of its provision. We argue that the industry-specific costs of emission abatement and internalized social norms help explain support for climate policy. To evaluate our predictions we develop novel measures of industry-specific interests by cross-referencing individuals’ sectors of employmen...

  18. Policies, Actions and Effects for China s Forestry Response to Global Climate Change

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Climate change is a great concern of various countries, the public and science community, and forest plays an important role in mitigating climate change. The paper made a comprehensive analysis regarding the policy selections of China to promote forestry response to the global climate change, and elaborated the concrete actions and achievements in this regard. Policy selections include: 1) Reinforce tree planting and afforestation, increase the forested area and enhance the capacity of carbon sequestration...

  19. Toward a Quantitative Estimate of Future Heat Wave Mortality under Global Climate Change

    OpenAIRE

    Peng, Roger D.; Tebaldi, Claudia; McDaniel, Larry; Bobb, Jennifer; Dominici, Francesca; Bell, Michelle D.

    2010-01-01

    Background: Climate change is anticipated to affect human health by changing the distribution of known risk factors. Heat waves have had debilitating effects on human mortality, and global climate models predict an increase in the frequency and severity of heat waves. The extent to which climate change will harm human health through changes in the distribution of heat waves and the sources of uncertainty in estimating these effects have not been studied extensively. Objectives: We estimated t...

  20. Modeling the global society-biosphere-climate system : Part 2: Computed scenarios

    NARCIS (Netherlands)

    Alcamo, J.; Van Den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Krabec, J.; Leemans, R.; Olivier, J.G.J.; Toet, A.M.C.; De Vries, H.J.M.; Van Der Woerd, H.J.

    1994-01-01

    This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric concent

  1. Quantifying biodiversity impacts of climate change and bioenergy: the role of integrated global scenarios

    NARCIS (Netherlands)

    Meller, L.; van Vuuren, D.P.; Cabeza, M.

    2015-01-01

    The role of bioenergy in climate change mitigation is a topic of heated debate, as the demand for land may result in social and ecological conflicts. Biodiversity impacts are a key controversy, given that biodiversity conservation is a globally agreed goal under pressure due to both climate change a

  2. Future global mortality from changes in air pollution attributable to climate change

    Science.gov (United States)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François; Shindell, Drew T.; Collins, William J.; Faluvegi, Greg; Folberth, Gerd A.; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven T.; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Doherty, Ruth M.; Josse, Beatrice; MacKenzie, Ian A.; Stevenson, David S.; Zeng, Guang

    2017-09-01

    Ground-level ozone and fine particulate matter (PM 2.5) are associated with premature human mortality; their future concentrations depend on changes in emissions, which dominate the near-term, and on climate change. Previous global studies of the air-quality-related health effects of future climate change used single atmospheric models. However, in related studies, mortality results differ among models. Here we use an ensemble of global chemistry-climate models to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP8.5 (ref. ), is probably positive. We estimate 3,340 (-30,300 to 47,100) ozone-related deaths in 2030, relative to 2000 climate, and 43,600 (-195,000 to 237,000) in 2100 (14% of the increase in global ozone-related mortality). For PM 2.5, we estimate 55,600 (-34,300 to 164,000) deaths in 2030 and 215,000 (-76,100 to 595,000) in 2100 (countering by 16% the global decrease in PM 2.5-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.

  3. Quantifying biodiversity impacts of climate change and bioenergy: the role of integrated global scenarios

    NARCIS (Netherlands)

    Meller, L.; van Vuuren, D.P.; Cabeza, M.

    2015-01-01

    The role of bioenergy in climate change mitigation is a topic of heated debate, as the demand for land may result in social and ecological conflicts. Biodiversity impacts are a key controversy, given that biodiversity conservation is a globally agreed goal under pressure due to both climate change a

  4. Now what do people know about global climate change? Survey studies of educated laypeople.

    Science.gov (United States)

    Reynolds, Travis William; Bostrom, Ann; Read, Daniel; Morgan, M Granger

    2010-10-01

    In 1992, a mental-models-based survey in Pittsburgh, Pennsylvania, revealed that educated laypeople often conflated global climate change and stratospheric ozone depletion, and appeared relatively unaware of the role of anthropogenic carbon dioxide emissions in global warming. This study compares those survey results with 2009 data from a sample of similarly well-educated laypeople responding to the same survey instrument. Not surprisingly, following a decade of explosive attention to climate change in politics and in the mainstream media, survey respondents in 2009 showed higher awareness and comprehension of some climate change causes. Most notably, unlike those in 1992, 2009 respondents rarely mentioned ozone depletion as a cause of global warming. They were also far more likely to correctly volunteer energy use as a major cause of climate change; many in 2009 also cited natural processes and historical climatic cycles as key causes. When asked how to address the problem of climate change, while respondents in 1992 were unable to differentiate between general "good environmental practices" and actions specific to addressing climate change, respondents in 2009 have begun to appreciate the differences. Despite this, many individuals in 2009 still had incorrect beliefs about climate change, and still did not appear to fully appreciate key facts such as that global warming is primarily due to increased concentrations of carbon dioxide in the atmosphere, and the single most important source of this carbon dioxide is the combustion of fossil fuels.

  5. The response of terrestrial ecosystems to global climate change: Towards an integrated approach

    Science.gov (United States)

    Lindsey E. Rustad

    2008-01-01

    Accumulating evidence points to an anthropogenic 'fingerprint' on the global climate change that has occurred in the last century. Climate change has, and will continue to have, profound effects on the structure and function of terrestrial ecosystems. As such, there is a critical need to continue to develop a sound scientific basis for national and...

  6. Modeling the global society-biosphere-climate system : Part 2: Computed scenarios

    NARCIS (Netherlands)

    Alcamo, J.; Van Den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Krabec, J.; Leemans, R.; Olivier, J.G.J.; Toet, A.M.C.; De Vries, H.J.M.; Van Der Woerd, H.J.

    1994-01-01

    This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric

  7. Medical Providers as Global Warming and Climate Change Health Educators: A Health Literacy Approach

    Science.gov (United States)

    Villagran, Melinda; Weathers, Melinda; Keefe, Brian; Sparks, Lisa

    2010-01-01

    Climate change is a threat to wildlife and the environment, but it also one of the most pervasive threats to human health. The goal of this study was to examine the relationships among dimensions of health literacy, patient education about global warming and climate change (GWCC), and health behaviors. Results reveal that patients who have higher…

  8. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    Science.gov (United States)

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  9. Medical Providers as Global Warming and Climate Change Health Educators: A Health Literacy Approach

    Science.gov (United States)

    Villagran, Melinda; Weathers, Melinda; Keefe, Brian; Sparks, Lisa

    2010-01-01

    Climate change is a threat to wildlife and the environment, but it also one of the most pervasive threats to human health. The goal of this study was to examine the relationships among dimensions of health literacy, patient education about global warming and climate change (GWCC), and health behaviors. Results reveal that patients who have higher…

  10. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    Science.gov (United States)

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  11. Estimating Global Climate Change Impacts on Hydropower Projects : Applications in India, Sri Lanka and Vietnam

    OpenAIRE

    Iimi, Atsushi

    2007-01-01

    The world is faced with considerable risk and uncertainty about climate change. Particular attention has been paid increasingly to hydropower generation in recent years because it is renewable energy. However, hydropower is among the most vulnerable industries to changes in global and regional climate. This paper aims to examine the possibility of applying a simple vector autoregressive mo...

  12. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web

    DEFF Research Database (Denmark)

    Niiranen, S.; Yletyinen, J.; Tomczak, M.T.;

    2013-01-01

    approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional...

  13. Global vegetation distribution and terrestrial climate evolution at the Eocene-Oligocene transition

    Science.gov (United States)

    Pound, Matthew; Salzmann, Ulrich

    2016-04-01

    The Eocene - Oligocene transition (EOT; ca. 34-33.5 Ma) is widely considered to be the biggest step in Cenozoic climate evolution. Geochemical marine records show both surface and bottom water cooling, associated with the expansion of Antarctic glaciers and a reduction in the atmospheric CO2 concentration. However, the global response of the terrestrial biosphere to the EOT is less well understood and not uniform when comparing different regions. We present new global vegetation and terrestrial climate reconstructions of the Priabonian (late Eocene; 38-33.9 Ma) and Rupelian (early Oligocene; 33.9-28.45 Ma) by synthesising 215 pollen and spore localities. Using presence/absence data of pollen and spores with multivariate statistics has allowed the reconstruction of palaeo-biomes without relying on modern analogues. The reconstructed palaeo-biomes do not show the equator-ward shift at the EOT, which would be expected from a global cooling. Reconstructions of mean annual temperature, cold month mean temperature and warm month mean temperature do not show a global cooling of terrestrial climate across the EOT. Our new reconstructions differ from previous global syntheses by being based on an internally consistent statistically defined classification of palaeo-biomes and our terrestrial based climate reconstructions are in stark contrast to some marine based climate estimates. Our results raise new questions on the nature and extent of terrestrial global climate change at the EOT.

  14. Global and Local Discourses on Climate Change: A Perspective from the Concept of Embeddedness

    Directory of Open Access Journals (Sweden)

    Jailab Kumar Rai

    2011-04-01

    Full Text Available Climate change has been becoming a major order of business of all including researchers and academics. This is known that global, national and local organizations, institutions and even the individuals are partaking into the issues with their own perspectives and skills of negotiations. Despite the series of international efforts and attempts, there are also a series of national concerns, efforts and attempts in combating against the effects of global climate change. This paper is an attempt to draw on the overview of contexts and concerns of international communities for combating global climate change and its discursive influence in national policy discourses. Moreover, the paper attempts to assess the local socio-cultural discourses and dynamics of climate change in relation to global and national discourses. Finally the paper highlights on how global and local climate change knowledge networks and epistemic communities either from political processes or the socio-economic fabrics are interrelated and determinant to each other. Keywords: climate change; discourses; embeddeness; dynamics; global; local DOI: 10.3126/dsaj.v4i0.4518 Dhaulagiri Journal of Sociology and Anthropology Vol.4 2010 pp.143-180

  15. Exploring Connections between Global Climate Indices and African Vegetation Phenology

    Science.gov (United States)

    Brown, Molly E.; deBeurs, Kirsten; Vrieling, Anton

    2009-01-01

    Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the continent in Africa. Agriculturally destructive droughts and floods are monitored from space using satellite remote sensing by organizations seeking to provide quantitative and predictive information about food security crises. Better knowledge on the relation between climate indices and food production may increase the use of these indices in famine early warning systems and climate outlook forums on the continent. Here we explore the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), the Multivariate ENSO Index (MEI) and the Southern Oscillation Index (SOI). We explore spatial relationships between growing conditions as measured by the NDVI and the five climate indices in Eastern, Western and Southern Africa to determine the regions and periods when they have a significant impact. The focus is to provide a clear indication as to which climate index has the most impact on the three regions during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by variations in the climate indices. The particular climate index and the timing showing highest correlation depended heavily on the region examined. The research shows that climate indices can contribute to understanding growing season variability in Eastern, Western and Southern Africa.

  16. Impacts on regional climate of an afforestation scenario under a +2°C global warming climate

    Science.gov (United States)

    Strada, Susanna; Noblet-Ducoudré Nathalie, de; Marc, Stéfanon

    2017-04-01

    Through surface-atmosphere interactions (SAI), land-use and land-cover changes (LULCCs) alter atmospheric conditions with effects on climate at different scales, from local/regional (a few ten kilometres) (Pielke et al., 2011) to global scales (a few hundred kilometres) (Mahmood et al., 2014). Focusing on the regional scale, in the context of climate change, LULCCs may either enhance or dampen climate impacts via changes in SAI they may initiate. Those LULCC-driven atmospheric impacts could in turn influence e.g. the functioning of terrestrial ecosystems, with consequences on mitigation and adaptation strategies. Despite LULCC impacts on regional climate are largely discussed in the literature, in Europe information is missing on LULCC impacts under future climate conditions on a country scale (Galos et al., 2015). The latest COPs have urged the scientific community to explore the impacts of reduced global warming (1.5°C to a +2°C) on the Earth system. LULCCs will be one major tool to achieve such targets. In this framework, we investigate impacts on regional climate of a modified landscape under a +2°C climatic scenario. To this purpose, we performed sensitivity studies over western Europe with a fully coupled land-atmosphere regional climate model, WRF-ORCHIDEE (Drobinski et al., 2012, Stefanon et al., 2014). A +2°C scenario was selected among those proposed by the "Impact2C" project (Vautard et al., 2014), and the afforested land-cover scenario proposed in the RCP4.5 is prescribed. We have chosen the maximum extent of forest RCP4.5 simulates for Europe at the end of the 21st century. WRF-ORCHIDEE is fed with boundary atmospheric conditions from the global climate model LMDZ for PD (1971-2000) and the +2°C warming period for the LMDZ model (2028-2057). Preliminary results over the target domain show that, under a +2°C global warming scenario, afforestation contributes by 2% to the total warming due to both climate change and LULCCs. During summer, the

  17. Assessing the impact on global climate from general anesthetic gases

    DEFF Research Database (Denmark)

    Andersen, Mads P. Sulbæk; Nielsen, Ole John; Wallington, Timothy J.

    2012-01-01

    Although present in the atmosphere with a combined concentration approximately 100,000 times lower than carbon dioxide (i.e., the principal anthropogenic driver of climate change), halogenated organic compounds are responsible for a warming effect of approximately 10% to 15% of the total...... regarding the impact of anesthetic gas release on the environment, with particular focus on its contribution to the radiative forcing of climate change....... anthropogenic radiative forcing of climate, as measured relative to the start of the industrial era (approximately 1750). The family of anesthetic gases includes several halogenated organic compounds that are strong greenhouse gases. In this short report, we provide an overview of the state of knowledge...

  18. Simulation of black carbon in snow and its climate impact in the Canadian Global Climate Model

    Science.gov (United States)

    Namazi, M.; von Salzen, K.; Cole, J. N. S.

    2015-09-01

    A new physically based parameterisation of black carbon (BC) in snow was developed and implemented in the Canadian Atmospheric Global Climate Model (CanAM4.2). Simulated BC snow mixing ratios and BC snow radiative forcings are in good agreement with measurements and results from other models. Simulations with the improved model yield considerable trends in regional BC concentrations in snow and BC snow radiative forcings during the time period from 1950-1959 to 2000-2009. Increases in radiative forcings for Asia and decreases for Europe and North America are found to be associated with changes in BC emissions. Additional sensitivity simulations were performed in order to study the impact of BC emission changes between 1950-1959 and 2000-2009 on surface albedo, snow cover fraction, and surface air temperature. Results from these simulations indicate that impacts of BC emission changes on snow albedos between these 2 decades are small and not significant. Overall, changes in BC concentrations in snow have much smaller impacts on the cryosphere than the net warming surface air temperatures during the second half of the 20th century.

  19. Simulation of black carbon in snow and its climate impact in the Canadian Global Climate Model

    Directory of Open Access Journals (Sweden)

    M. Namazi

    2015-07-01

    Full Text Available A new physically-based parameterization of black carbon (BC in snow was developed and implemented in the Canadian Atmospheric Global Climate Model (CanAM4.2. Simulated BC snow mixing ratios and BC snow radiative forcings are in good agreement with measurements and results from other models. Simulations with the improved model yield considerable trends in regional BC concentrations in snow and BC snow radiative forcings during the time period from 1950–1959 to 2000–2009. Increases in radiative forcings for Asia and decreases for Europe and North America are found to be associated with changes in BC emissions. Additional sensitivity simulations were performed in order to study the impact of BC emission changes between 1950–1959 and 2000–2009 on surface albedo, snow cover fraction, and surface air temperature. Results from these simulations indicate that impacts of BC emission changes on snow albedos between these two decades are small and not significant. Overall, changes in BC concentrations in snow have much smaller impacts on the cryosphere than the net warming surface air temperatures during the second half of the 20th century.

  20. A new dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2012-11-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature change (ΔTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  1. The organization of global negotiations: constructing the climate change regime

    National Research Council Canada - National Science Library

    Depledge, Joanna

    2005-01-01

    "Using a theatrical metaphor, this book describes the enormous and skilful organization required by the UN to create an effective international regime, producing the UN Framework Convention on Climate...

  2. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-02-17

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  3. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-02-17

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  4. Regional Climate Downscaling Of African Climate Using A High-Resolution Global Atmospheric Model: Validation And Future Projection

    Science.gov (United States)

    Raj, J.; Stenchikov, G. L.; Bangalath, H.

    2013-12-01

    Climate change impact assessment and adaptation planning require region specific information with high spatial resolution, since the climate and weather effects are directly felt at the local scale. While most of the state-of-the-art General Circulation Models lack adequate spatial resolution, regional climate models (RCM) used in a nested domain are generally incapable of incorporating the two-way exchanges between regional and global climate. In this study we use a very high resolution atmospheric general circulation model HiRAM, developed at NOAA GFDL, to investigate the regional climate changes over CORDEX African domain. The HiRAM simulations are performed with a horizontal grid spacing of 25 km, which is an ample resolution for regional climate simulation. HiRAM has the advantage of naturally describing interaction between regional and global climate. Historic (1975-2004) simulations and future (2007-2050) projections, with both RCP 4.5 and RCP 8.5 pathways, are conducted in line with the CORDEX protocol. A coarse resolution sea surface temperature (SST) is prescribed from the GFDL Earth System Model runs of IPPC AR5, as bottom boundary condition over ocean. The GFDL Land Surface Model (LM3) is employed to calculate physical processes at surface and in soil. The preliminary analysis of the performance of HiRAM, using historic runs, shows it reproduces the regional climate adequately well in comparison with observations. Significant improvement in the simulation of regional climate is evident in comparison with the coarse resolution driving model. Future projections predict an increase in atmospheric temperature over Africa with stronger warming in the subtropics than in tropics. A significant strengthening of West African Monsoon and a southward shift of the summer rainfall maxima over Africa is predicted in both RCP 4.5 and RCP8.5 scenarios.

  5. Flood risk and climate change: global and regional perspectives

    OpenAIRE

    Kundzewicz, Zbigniew W.; Kanae, Shinjiro; Seneviratne, Sonia I; Handmer, John; Nicholls, Neville; Peduzzi, Pascal; Mechler, Reinhard; Laurens M. Bouwer; Arnell, Nigel; Mach, Katharine; Muir-Wood, Robert; Brakenridge, G. Robert; Kron, Wolfgang; Benito, Gerardo; Honda, Yasushi

    2014-01-01

    A holistic perspective on changing rainfall-driven flood risk is provided for the late 20th and early 21st centuries. Economic losses from floods have greatly increased, principally driven by the expanding exposure of assets at risk. It has not been possible to attribute rain-generated peak streamflow trends to anthropogenic climate change over the past several decades. Projected increases in the frequency and intensity of heavy rainfall, based on climate models, should contribute to increase...

  6. Aviation and global climate change in the 21st century

    OpenAIRE

    Lee, David S.; Fahey, David W.; Forster, Piers M.; Newton, Peter J.; Wit, Ron C.N.; Lim, Ling L.; Owen, Bethan; Sausen, Robert

    2009-01-01

    Aviation emissions contribute to the radiative forcing (RF) of climate. Of importance are emissions of carbon dioxide (CO2), nitrogen oxides (NOx), aerosols and their precursors (soot and sulphate), and increased cloudiness in the form of persistent linear contrails and induced-cirrus cloudiness. The recent Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) quantified aviation’s RF contribution for 2005 based upon 2000 operations data. Aviation has grown...

  7. Changes in the Global Wave Climate from Single-Model Projections

    Science.gov (United States)

    Lemos, Gil; Behrens, Arno; Dobrynin, Mikhail; Miranda, Pedro; Semedo, Alvaro; Staneva, Joanna

    2016-04-01

    Ocean surface wind waves are of outmost relevance for practical and scientific reasons. On the one hand waves have a direct impact in coastal erosion, but also in sediment transport and beach nourishment, in ship routing and ship design, as well as in coastal and offshore infrastructures, just to mention the most relevant. On the other hand waves are part of the climate system, and modulate most of the exchanges that take place at the atmosphere-ocean interface. In fact waves are the "ultimate" air-sea interaction process, clearly visible and noticeable. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit and received relative attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (Fifth Assessment Report). In the present study the impact of a warmer climate in the future global wave climate is investigated through a 3-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is eliminated, leaving only room for the climate change signal. The three ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1971 to 2005. The projected changes in the global wave climate are analyzed for the 2071-2100 period. The ensemble reference period is evaluated trough the comparison with the European Centre for medium-range weather forecasts (ECMWF) ERA-Interim reanalysis.

  8. Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration.

    Science.gov (United States)

    Zhang, Ke; Kimball, John S; Nemani, Ramakrishna R; Running, Steven W; Hong, Yang; Gourley, Jonathan J; Yu, Zhongbo

    2015-10-30

    Recent studies showed that anomalous dry conditions and limited moisture supply roughly between 1998 and 2008, especially in the Southern Hemisphere, led to reduced vegetation productivity and ceased growth in land evapotranspiration (ET). However, natural variability of Earth's climate system can degrade capabilities for identifying climate trends. Here we produced a long-term (1982-2013) remote sensing based land ET record and investigated multidecadal changes in global ET and underlying causes. The ET record shows a significant upward global trend of 0.88 mm yr(-2) (P climate phases associated with strong El Niño events.

  9. Moisture Flux Convergence in Regional and Global Climate Models: Implications for Droughts in the Southwestern United States Under Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yanhong; Leung, Lai-Yung R.; Salathe, E.; Dominguez, Francina; Nijssen, Bart; Lettenmaier, D. P.

    2012-05-10

    The water cycle of the southwestern United States (SW) is dominated by winter storms that maintain a positive annual net precipitation. Analysis of the control and future climate from four pairs of regional and global climate models (RCMs and GCMs) shows that the RCMs simulate a higher fraction of transient eddy moisture fluxes because the hydrodynamic instabilities associated with flow over complex terrain are better resolved. Under global warming, this enables the RCMs to capture the response of transient eddies to increased atmospheric stability that allows more moisture to converge on the windward side of the mountains by blocking. As a result, RCMs simulate enhanced transient eddy moisture convergence in the SW compared to GCMs, although both robustly simulate drying due to enhanced moisture divergence by the divergent mean flow in a warmer climate. This enhanced convergence leads to reduced susceptibility to hydrological change in the RCMs compared to GCMs.

  10. Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2

    Science.gov (United States)

    Naik, Vaishali; Delire, Christine; Wuebbles, Donald J.

    2004-03-01

    Isoprenoids (isoprene and monoterpenes) are the most dominant class of biogenic volatile organic compounds (BVOCs) and have been shown to significantly affect global tropospheric chemistry and composition, climate, and the global carbon cycle. In this study we assess the sensitivity of biogenic isoprene and monoterpene emissions to combined and isolated fluctuations in observed global climate and atmospheric carbon dioxide (CO2) concentration during the period 1971-1990. We integrate surface emission algorithms within the framework of a dynamic global ecosystem model, the Integrated Biospheric Simulator (IBIS), to simulate biogenic fluxes of isoprenoids as a component of the climate-vegetation dynamics. IBIS predicts global land surface isoprene emissions of 454 Tg C and monoterpenes of 72 Tg C annually and captures the spatial and temporal patterns well. The combined fluctuations in climate and atmospheric CO2 during 1971-1990 caused significant interannual and seasonal variability in global biogenic isoprenoid fluxes that was somewhat related to the El Niño-Southern Oscillation. Furthermore, an increasing trend in the simulated emissions was seen during this period that is attributed partly to the warming trend and partly to CO2 fertilization effect. The isolated effect of increasing CO2 during this period was to steadily increase emissions as a result of increases in foliar biomass. These fluctuations in biogenic emissions could have significant impacts on regional and global atmospheric chemistry and the global carbon budget.

  11. Empirical Estimates of Global Climate Sensitivity: An Assessment of Strategies Using a Coupled GCM

    Institute of Scientific and Technical Information of China (English)

    ZHU Weijun; Kevin HAMILTON

    2008-01-01

    A control integration with the normal solar constant and one with it increased by 2.5% in the National Center for Atmospheric Research (NCAR) coupled atmosphere-ocean Climate System Model were conducted to see how well the actual realized global warming could be predicted just by analysis of the control results. This is a test, within a model context, of proposals that have been advanced to use knowledge of the present day climate to make "empirical" estimates of global climate sensitivity. The scaling of the top-of-the-atmosphere infrared flux and the planetary albedo as functions of surface temperature was inferred by examining four different temporal and geographical variations of the control simulations. Each of these inferences greatly overestimates the climate sensitivity of the model, largely because of the behavior of the cloud albedo. In each inference the control results suggest that cloudiness and albedo decrease with increasing surface temperature. However, the experiment with the increased solar constant actually has higher albedo and more cloudiness at most latitudes. The increased albedo is a strong negative feedback, and this helps account for the rather weak sensitivity of the climate in the NCAR model. To the extent that these model results apply to the real world, they suggest empirical evaluation of the scaling of global-mean radiative properties with surface temperature in the present day climate provides little useful guidance for estimates of the actual climate sensitivity to global changes.

  12. Response of the mean global vegetation distribution to interannual climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Notaro, Michael [University of Wisconsin-Madison, Center for Climatic Research, Madison, WI (United States)

    2008-06-15

    The impact of interannual variability in temperature and precipitation on global terrestrial ecosystems is investigated using a dynamic global vegetation model driven by gridded climate observations for the twentieth century. Contrasting simulations are driven either by repeated mean climatology or raw climate data with interannual variability included. Interannual climate variability reduces net global vegetation cover, particularly over semi-arid regions, and favors the expansion of grass cover at the expense of tree cover, due to differences in growth rates, fire impacts, and interception. The area burnt by global fires is substantially enhanced by interannual precipitation variability. The current position of the central United States' ecotone, with forests to the east and grasslands to the west, is largely attributed to climate variability. Among woody vegetation, climate variability supports expanded deciduous forest growth and diminished evergreen forest growth, due to difference in bioclimatic limits, leaf longevity, interception rates, and rooting depth. These results offer insight into future ecosystem distributions since climate models generally predict an increase in climate variability and extremes. (orig.)

  13. Regional climate shifts caused by gradual global cooling in the Pliocene epoch.

    Science.gov (United States)

    Ravelo, Ana Christina; Andreasen, Dyke H; Lyle, Mitchell; Olivarez Lyle, Annette; Wara, Michael W

    2004-05-20

    The Earth's climate has undergone a global transition over the past four million years, from warm conditions with global surface temperatures about 3 degrees C warmer than today, smaller ice sheets and higher sea levels to the current cooler conditions. Tectonic changes and their influence on ocean heat transport have been suggested as forcing factors for that transition, including the onset of significant Northern Hemisphere glaciation approximately 2.75 million years ago, but the ultimate causes for the climatic changes are still under debate. Here we compare climate records from high latitudes, subtropical regions and the tropics, indicating that the onset of large glacial/interglacial cycles did not coincide with a specific climate reorganization event at lower latitudes. The regional differences in the timing of cooling imply that global cooling was a gradual process, rather than the response to a single threshold or episodic event as previously suggested. We also find that high-latitude climate sensitivity to variations in solar heating increased gradually, culminating after cool tropical and subtropical upwelling conditions were established two million years ago. Our results suggest that mean low-latitude climate conditions can significantly influence global climate feedbacks.

  14. The historical impact of climate extremes on global agricultural production and trade

    Science.gov (United States)

    Troy, T. J.; Pal, I.; Block, P. J.; Lall, U.

    2011-12-01

    How does climate variability at interannual time scales impact the volume and prices of key agricultural products on the global market? Do concurrent climate shocks in major breadbaskets of the world have serious impacts on global stocks and food prices? To what extent may irrigated agriculture or food storage buffer such impacts? Is there evidence of such impacts and/or buffering in the publicly available historical data? This talk explores these questions through empirical data analysis. During the past two years, we have seen drought in China, Europe, and Russia and floods in the United States and Australia. In this study, we examine the relationship between climate and crop yields, focusing on three main grain staples: wheat, rice, and maize. To do this, we use global production, trade, and stock data from the Food and Agricultural Organization and the United States Department of Agriculture for agriculture information and gridded observations of temperature and precipitation from 1960 through 2008. We focus on the impact of climate shocks (extreme temperatures, drought, and floods) on the agricultural production for the top exporting countries and quantify how these shocks propagate through the country's exports, imports, and grain stocks in order to understand the effect climate variability and extremes have on global food security. The ability to forecast these climate shocks at seasonal to longer lead times would significantly improve our ability to cope with perturbations in the global food supply, and we evaluate the ability of current models to produce skillful seasonal forecasts over the major grain producing regions.

  15. Is the global rise of asthma an early impact of anthropogenic climate change?

    Directory of Open Access Journals (Sweden)

    Paul John Beggs

    Full Text Available The increase in asthma incidence, prevalence, and morbidity over recent decades presents a significant challenge to public health. Pollen is an important trigger of some types of asthma, and both pollen quantity and season depend on climatic and meteorological variables. Over the same period as the global rise in asthma, there have been considerable increases in atmospheric carbon dioxide concentration and global average surface temperature. We hypothesize anthropogenic climate change as a plausible contributor to the rise in asthma. Greater concentrations of carbon dioxide and higher temperatures may increase pollen quantity and induce longer pollen seasons. Pollen allergenicity can also increase as a result of these changes in climate. Exposure in early life to a more allergenic environment may also provoke the development of other atopic conditions, such as eczema and allergic rhinitis. Although the etiology of asthma is complex, the recent global rise in asthma could be an early health effect of anthropogenic climate change.

  16. Human and climate impacts on global water resources

    NARCIS (Netherlands)

    Wada, Y.

    2013-01-01

    Over past decades, terrestrial water fluxes have been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s water resources are turning up in a diverse range of records. In this thesis, a state-of-the-art global hydrological model (GHM) and global water d

  17. Human and climate impacts on global water resources

    NARCIS (Netherlands)

    Wada, Y.|info:eu-repo/dai/nl/341387819

    2013-01-01

    Over past decades, terrestrial water fluxes have been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s water resources are turning up in a diverse range of records. In this thesis, a state-of-the-art global hydrological model (GHM) and global water

  18. Fighting windmills? EU industrial interests and global climate negotiations

    DEFF Research Database (Denmark)

    Brandt, Urs Steiner; Svendsen, Gert Tinggaard

    2003-01-01

    for setting a target of 15% of all energy to come from sources such as windmills, solar panels and waves by 2015. Such a target would further the EU's interests globally, and could explain, in economic terms, why the EU eagerly promotes GHG trade at a global level whereas the US has left the Kyoto agreement...

  19. Climate change: challenges and opportunities for global health.

    Science.gov (United States)

    Patz, Jonathan A; Frumkin, Howard; Holloway, Tracey; Vimont, Daniel J; Haines, Andrew

    2014-10-15

    Health is inextricably linked to climate change. It is important for clinicians to understand this relationship in order to discuss associated health risks with their patients and to inform public policy. To provide new US-based temperature projections from downscaled climate modeling and to review recent studies on health risks related to climate change and the cobenefits of efforts to mitigate greenhouse gas emissions. We searched PubMed and Google Scholar from 2009 to 2014 for articles related to climate change and health, focused on governmental reports, predictive models, and empirical epidemiological studies. Of the more than 250 abstracts reviewed, 56 articles were selected. In addition, we analyzed climate data averaged over 13 climate models and based future projections on downscaled probability distributions of the daily maximum temperature for 2046-2065. We also compared maximum daily 8-hour average ozone with air temperature data taken from the National Oceanic and Atmospheric Administration, National Climate Data Center. By 2050, many US cities may experience more frequent extreme heat days. For example, New York and Milwaukee may have 3 times their current average number of days hotter than 32°C (90°F). High temperatures are also strongly associated with ozone exceedance days, for example, in Chicago, Illinois. The adverse health aspects related to climate change may include heat-related disorders, such as heat stress and economic consequences of reduced work capacity; respiratory disorders, including those exacerbated by air pollution and aeroallergens, such as asthma; infectious diseases, including vectorborne diseases and waterborne diseases, such as childhood gastrointestinal diseases; food insecurity, including reduced crop yields and an increase in plant diseases; and mental health disorders, such as posttraumatic stress disorder and depression, that are associated with natural disasters. Substantial health and economic cobenefits could be

  20. BRICS COUNTRIES’ POLITICAL AND LEGAL PARTICIPATION IN THE GLOBAL CLIMATE CHANGE AGENDA

    DEFF Research Database (Denmark)

    Ahsan, Dewan; Gladun, Elena

    2016-01-01

    and regulations on climate-related issues in BRICS. The authors compare the key actions and measures BRICS have taken for complying with international climate change documents. They highlight that global climate change action cannot be successful without BRICS countries’ involvement. BRICS must therefore make......-related issues BRICS should act as a bloc. Russia’s distancing itself from its partners is considered a deficiency in strengthening the BRICS countries’ role in global governance. BRICS are capable of serving as a vigorous platform in driving climate change negotiations leading to effective binding regulations...... issues and work out an obligatory legal framework to fight climate change collectively as well as unified legislation at their domestic levels. Second, Russia and other BRICS countries have the potential to cooperate in the field of renewable energy through the exchange of technology, investment...

  1. Melancholia States in the Climate System: Exploring Global Instabilities and Critical Transitions

    CERN Document Server

    Lucarini, Valerio

    2016-01-01

    Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system's response to perturbations. Near critical transitions small causes can lead to large effects and - for all practical purposes - irreversible changes in the properties of the system. The Earth climate is multistable: present astronomical/astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate, characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions in the context of both stochastic and deterministic dynamics, and assess strengths and weaknesses of simplified approaches. Following an idea developed by Eckhardt and co. for the investigation of multistable turbulent fluids, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the ...

  2. Climate change damage functions in LCA – (1) from global warming potential to natural environment damages

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Hauschild, Michael Zwicky; Bagger Jørgensen, Rikke

    Energy use often is the most significant contributor to the impact category ‘global warming’ in life cycle impact assessment. However, the potential global warming effects on the climate at regional level and consequential effects on the natural environment are not thoroughly described within LCA...... methodology. The current scientific understanding of the extent of climate change impacts is limited due to the immense complexity of the multi-factorial environmental changes and unknown adaptive capacities at process, species and ecosystem level. In the presentation we argue that the global warming impacts...

  3. Impact of climate forcing uncertainty and human water use on global and continental water balance components

    Science.gov (United States)

    Müller Schmied, Hannes; Adam, Linda; Eisner, Stephanie; Fink, Gabriel; Flörke, Martina; Kim, Hyungjun; Oki, Taikan; Portmann, Felix Theodor; Reinecke, Robert; Riedel, Claudia; Song, Qi; Zhang, Jing; Döll, Petra

    2016-10-01

    The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans and inland sinks. During 1971-2000, evapotranspiration due to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the highest discharge deviations occurring for river discharge in Africa (-6 to 11 % from the ensemble mean). Uncertain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of the global sum of water consumption in the other water use sector.

  4. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    Science.gov (United States)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing

  5. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX.

    Science.gov (United States)

    Khormi, Hassan M; Kumar, Lalit

    2014-05-01

    We examined the potential added risk posed by global climate change on the dengue vector Aedes aegypti abundance using CLIMEX, a powerful tool for exploring the relationship between the fundamental and realised niche of any species. After calibrating the model using data from several knowledge domains, including geographical distribution records, we estimated potential distributions of the mosquito under current and future potential scenarios. The impact of climate change on its potential distribution was assessed with two global climate models, the CSIRO-Mk3.0 and the MIROC-H, run with two potential, future emission scenarios (A1B and A2) published by the Intergovernmental Panel on Climate Change. We compared today's climate situation with two arbitrarily chosen future time points (2030 and 2070) to see the impact on the worldwide distribution of A. aegypti . The model for the current global climate indicated favourable areas for the mosquito within its known distribution in tropical and subtropical areas. However, even if much of the tropics and subtropics will continue to be suitable, the climatically favourable areas for A. aegypti globally are projected to contract under the future scenarios produced by these models, while currently unfavourable areas, such as inland Australia, the Arabian Peninsula, southern Iran and some parts of North America may become climatically favourable for this mosquito species. The climate models for the Aedes dengue vector presented here should be useful for management purposes as they can be adapted for decision/making regarding allocation of resources for dengue risk toward areas where risk infection remains and away from areas where climatic suitability is likely to decrease in the future.

  6. Equilibrium of global amphibian species distributions with climate

    DEFF Research Database (Denmark)

    Munguí­a, Mariana; Rahbek, Carsten; Rangel, Thiago F.

    2012-01-01

    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out...... for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion...... of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would...

  7. The Great Season Climatic Oscillation and the Global Warming

    CERN Document Server

    Boucenna, Ahmed

    2008-01-01

    The present earth warming up is often explained by the atmosphere gas greenhouse effect. This explanation is in contradiction with the thermodynamics second law. The warming up by greenhouse effect is quite improbable. It is cloud reflection that gives to the earth s ground its 15 degres C mean temperature. Since the reflection of the radiation by gases is negligible, the role of the atmosphere greenhouse gases in the earth warming up by earth radiation reflection loses its importance. We think that natural climatic oscillations contribute more to earth climatic disturbances. The oscillation that we hypothesize to exist has a long period (800 to 1000 years). The glacier melting and regeneration cycles lead to variations in the cold region ocean water density and thermal conductibility according to their salinity. These variations lead one to think about a macro climate oscillating between maximum hot and minimum cold temperatures. This oscillation is materialized by the passages of the planet through hot, mil...

  8. Global cooling during the eocene-oligocene climate transition.

    Science.gov (United States)

    Liu, Zhonghui; Pagani, Mark; Zinniker, David; Deconto, Robert; Huber, Matthew; Brinkhuis, Henk; Shah, Sunita R; Leckie, R Mark; Pearson, Ann

    2009-02-27

    About 34 million years ago, Earth's climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earth's temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were approximately 20 degrees C and cooled an average of approximately 5 degrees C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.

  9. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  10. Modeling and remote sensing of human induced water cycle change

    Science.gov (United States)

    Pokhrel, Yadu N.

    2016-04-01

    The global water cycle has been profoundly affected by human land-water management especially during the last century. Since the changes in water cycle can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to account for human land-water management in land surface models (LSMs) which are used for water resources assessment and to simulate the land surface hydrologic processes within Earth system models (ESMs). During the last two decades, noteworthy progress has been made in modeling human impacts on the water cycle but sufficient advancements have not yet been made, especially in representing human factors in large-scale LSMs toward integrating them into ESMs. In this study, an integrated modeling framework of continental-scale water cycle, with explicit representation of climate and human induced forces (e.g., irrigation, groundwater pumping) is developed and used to reconstruct the observed water cycle changes in the past and to attribute the observed changes to climatic and human factors. The new model builds upon two different previously developed models: a global LSM called the Human Impacts and GroundWater in the MATSIRO (HiGW-MAT) and a high-resolution regional groundwater model called the LEAF-Hydro-Flood. The model is used to retro-simulate the hydrologic stores and fluxes in close dialogue with in-situ and GRACE satellite based observations at a wide range of river basin scales around the world, with a particular focus on the changes in groundwater dynamics in northwest India, Pakistan, and the High Plains and Central Valley aquifers in the US.

  11. Recursive inter-generational utility in global climate risk modeling

    Energy Technology Data Exchange (ETDEWEB)

    Minh, Ha-Duong [Centre International de Recherche sur l' Environnement et le Developpement (CIRED-CNRS), 75 - Paris (France); Treich, N. [Institut National de Recherches Agronomiques (INRA-LEERNA), 31 - Toulouse (France)

    2003-07-01

    This paper distinguishes relative risk aversion and resistance to inter-temporal substitution in climate risk modeling. Stochastic recursive preferences are introduced in a stylized numeric climate-economy model using preliminary IPCC 1998 scenarios. It shows that higher risk aversion increases the optimal carbon tax. Higher resistance to inter-temporal substitution alone has the same effect as increasing the discount rate, provided that the risk is not too large. We discuss implications of these findings for the debate upon discounting and sustainability under uncertainty. (author)

  12. U.S. Global Change Research Program National Climate Assessment Global Change Information System

    Science.gov (United States)

    Tilmes, Curt

    2012-01-01

    The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.

  13. Resource Letter: GW-1: Global warming

    Science.gov (United States)

    Firor, John W.

    1994-06-01

    This Resource Letter provides a guide to the literature on the possibility of a human-induced climate change—a global warming. Journal articles and books are cited for the following topics: the Greenhouse Effect, sources of infrared-trapping gases, climate models and their uncertainties, verification of climate models, past climate changes, and economics, ethics, and politics of policy responses to climate change. [The letter E after an item indicates elementary level or material of general interest to persons becoming informed in the field. The letter I, for intermediate level, indicates material of somewhat more specialized nature, and the letter A indicates rather specialized or advanced material.

  14. Global priority conservation areas in the face of 21st century climate change.

    Directory of Open Access Journals (Sweden)

    Junsheng Li

    Full Text Available In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the "Global 200" ecoregions - a set of priority ecoregions designed to "achieve the goal of saving a broad diversity of the Earth's ecosystems" - over the 21(st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991-2010 and 2081-2100, 96% of the ecoregions considered will be likely (more than 66% probability to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change.

  15. Global priority conservation areas in the face of 21st century climate change.

    Science.gov (United States)

    Li, Junsheng; Lin, Xin; Chen, Anping; Peterson, Townsend; Ma, Keping; Bertzky, Monika; Ciais, Philippe; Kapos, Valerie; Peng, Changhui; Poulter, Benjamin

    2013-01-01

    In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI) that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the "Global 200" ecoregions - a set of priority ecoregions designed to "achieve the goal of saving a broad diversity of the Earth's ecosystems" - over the 21(st) century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991-2010 and 2081-2100, 96% of the ecoregions considered will be likely (more than 66% probability) to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change.

  16. Optimising the FAMOUS climate model: inclusion of global carbon cycling

    Directory of Open Access Journals (Sweden)

    J. H. T. Williams

    2012-10-01

    Full Text Available FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved set of carbon cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were performed; one for the land surface and one for the ocean. The land surface scheme was tested against present day and past representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large source of climate model uncertainty can be more thoroughly sampled. This has the associated benefit of being able to assess the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds.

  17. Energy in New England | Energy and Global Climate Change ...

    Science.gov (United States)

    2017-04-10

    EPA Region 1's Energy and Climate Unit provides information, technical assistance, and training on energy efficiency, renewable energy, energy use and transmission in New England. In addition, the unit works with the New England States to regulate and inventory greenhouse gas emissions.

  18. Climate Prediction Center (CPC) Global Precipitation Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global precipitation time series provides time series charts showing observations of daily precipitation as well as accumulated precipitation compared to normal...

  19. Climate Prediction Center (CPC) Global Temperature Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global temperature time series provides time series charts using station based observations of daily temperature. These charts provide information about the...

  20. RNCEP: global weather and climate data at your fingertips

    National Research Council Canada - National Science Library

    Kemp, M.U; Loon, van, E.E; Shamoun-Baranes, J; Bouten, W

    2012-01-01

    .... We have developed RNCEP, a package of functions in the open-source R language, to access, organise and visualise freely available atmospheric data from two long-term high-quality data sets with global coverage...

  1. Deficiencies in the simulation of the geographic distribution of climate types by global climate models

    Science.gov (United States)

    Zhang, Xianliang; Yan, Xiaodong

    2016-05-01

    The performances of General Circulation Models (GCMs) when checked with conventional methods (i.e. correlation, bias, root-mean-square error) can only be evaluated for each variable individually. The geographic distribution of climate type in GCM simulations, which reflects the spatial attributes of models and is related closely to the terrestrial biosphere, has not yet been evaluated. Thus, whether the geographic distribution of climate types was well simulated by GCMs was evaluated in this study for nine GCMs. The results showed that large areas of climate zones classified by the GCMs were allocated incorrectly when compared to the basic climate zones established by observed data. The percentages of wrong areas covered approximately 30-50 % of the total land area for most models. In addition, the temporal shift in the distribution of climate zones according to the GCMs was found to be inaccurate. Not only were the locations of shifts poorly simulated, but also the areas of shift in climate zones. Overall, the geographic distribution of climate types was not simulated well by the GCMs, nor was the temporal shift in the distribution of climate zones. Thus, a new method on how to evaluate the simulated distribution of climate types for GCMs was provided in this study.

  2. Assessing the consistency between short-term global temperature trends in observations and climate model projections

    CERN Document Server

    Michaels, Patrick J; Christy, John R; Herman, Chad S; Liljegren, Lucia M; Annan, James D

    2013-01-01

    Assessing the consistency between short-term global temperature trends in observations and climate model projections is a challenging problem. While climate models capture many processes governing short-term climate fluctuations, they are not expected to simulate the specific timing of these somewhat random phenomena - the occurrence of which may impact the realized trend. Therefore, to assess model performance, we develop distributions of projected temperature trends from a collection of climate models running the IPCC A1B emissions scenario. We evaluate where observed trends of length 5 to 15 years fall within the distribution of model trends of the same length. We find that current trends lie near the lower limits of the model distributions, with cumulative probability-of-occurrence values typically between 5 percent and 20 percent, and probabilities below 5 percent not uncommon. Our results indicate cause for concern regarding the consistency between climate model projections and observed climate behavior...

  3. Global climate change: Causes, phenomena, consequences; Globale Klimaaenderungen - Ursachen, Phaenomene und Folgen

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, S. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    2005-07-01

    The contribution presents an outline of current knowledge on the climate system and its probable development on the basis of the 2001 report of the Intergovernmental Panel on Climate Change (IPCC). Illustrations are derived from this report and were also provided by the MPI of Meteorology and the German Climate Research Center (DKRZ), Hamburg. Further information can be derived from their internet pages, (www.mpimet.mpg.de, www.dkrz.de, www.ipcc.ch). (orig.)

  4. Threat to future global food security from climate change and ozone air pollution

    Science.gov (United States)

    Tai, Amos P. K.; Martin, Maria Val; Heald, Colette L.

    2014-09-01

    Future food production is highly vulnerable to both climate change and air pollution with implications for global food security. Climate change adaptation and ozone regulation have been identified as important strategies to safeguard food production, but little is known about how climate and ozone pollution interact to affect agriculture, nor the relative effectiveness of these two strategies for different crops and regions. Here we present an integrated analysis of the individual and combined effects of 2000-2050 climate change and ozone trends on the production of four major crops (wheat, rice, maize and soybean) worldwide based on historical observations and model projections, specifically accounting for ozone-temperature co-variation. The projections exclude the effect of rising CO2, which has complex and potentially offsetting impacts on global food supply. We show that warming reduces global crop production by >10% by 2050 with a potential to substantially worsen global malnutrition in all scenarios considered. Ozone trends either exacerbate or offset a substantial fraction of climate impacts depending on the scenario, suggesting the importance of air quality management in agricultural planning. Furthermore, we find that depending on region some crops are primarily sensitive to either ozone (for example, wheat) or heat (for example, maize) alone, providing a measure of relative benefits of climate adaptation versus ozone regulation for food security in different regions.

  5. Florida-focused climate change lesson demonstrations from the ASK Florida global and regional climate change professional development workshops

    Science.gov (United States)

    Weihs, R. R.

    2013-12-01

    A variety of Florida-focused climate change activities will be featured as part of the ASK Florida global and regional climate change professional development workshops. In a combined effort from Florida State University's Center for Ocean-Atmospheric Prediction Studies (COAPS) and University of South Florida's Coalition for Science Literacy (CSL), and supported by NASA's NICE initiative, the ASK Florida professional development workshops are a series of workshops designed to enhance and support climate change information and related pedagogical skills for middle school science teachers from Title-I schools in Florida. These workshops took place during a two-year period from 2011 to 2013 and consisted of two cohorts in Hillsborough and Volusia counties in Florida. Featured activities include lab-style exercises demonstrating topics such as storm surge and coastal geometry, sea level rise from thermal expansion, and the greenhouse effect. These types of labs are modified so that they allow more independent, inquiry thinking as they require teachers to design their own experiment in order to test a hypothesis. Lecture based activities are used to cover a broad range of topics including hurricanes, climate modeling, and sink holes. The more innovative activities are group activities that utilize roll-playing, technology and resources, and group discussion. For example, 'Climate Gallery Walk' is an activity that features group discussions on each of the climate literacy principles established by the United States Global Change Research Program. By observing discussions between individuals and groups, this activity helps the facilitators gather information on their previous knowledge and identify possible misconceptions that will be addressed within the workshops. Furthermore, 'Fact or Misconception' presents the challenge of identifying whether a given statement is fact or misconception based on the material covered throughout the workshops. It serves as a way to

  6. CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate

    Science.gov (United States)

    Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.

    2013-12-01

    Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought

  7. The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change

    Science.gov (United States)

    Khachatryan, S.

    2009-05-01

    Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.

  8. Global Potential for Hydro-generated Electricity and Climate Change Impact

    Science.gov (United States)

    Zhou, Y.; Hejazi, M. I.; Leon, C.; Calvin, K. V.; Thomson, A. M.; Li, H. Y.

    2014-12-01

    Hydropower is a dominant renewable energy source at the global level, accounting for more than 15% of the world's total power supply. It is also very vulnerable to climate change. Improved understanding of climate change impact on hydropower can help develop adaptation measures to increase the resilience of energy system. In this study, we developed a comprehensive estimate of global hydropower potential using runoff and stream flow data derived from a global hydrologic model with a river routing sub-model, along with turbine technology performance, cost assumptions, and environmental consideration (Figure 1). We find that hydropower has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by regions. Resources in a number of countries exceed by multiple folds the total current demand for electricity, e.g., Russia and Indonesia. A sensitivity analysis indicates that hydropower potential can be highly sensitive to a number of parameters including designed flow for capacity, cost and financing, turbine efficiency, and stream flow. The climate change impact on hydropower potential was evaluated by using runoff outputs from 4 climate models (HadCM3, PCM, CGCM2, and CSIRO2). It was found that the climate change on hydropower shows large variation not only by regions, but also climate models, and this demonstrates the importance of incorporating climate change into infrastructure-planning at the regional level though the existing uncertainties.

  9. Global analysis of the effect of local climate on the hatchling output of leatherback turtles

    Science.gov (United States)

    Santidrián Tomillo, Pilar; Saba, Vincent S.; Lombard, Claudia D.; Valiulis, Jennifer M.; Robinson, Nathan J.; Paladino, Frank V.; Spotila, James R.; Fernández, Carlos; Rivas, Marga L.; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-11-01

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21st century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100.

  10. Global analysis of the effect of local climate on the hatchling output of leatherback turtles

    Science.gov (United States)

    Santidrián Tomillo, Pilar; Saba, Vincent S.; Lombard, Claudia D.; Valiulis, Jennifer M.; Robinson, Nathan J.; Paladino, Frank V.; Spotila, James R.; Fernández, Carlos; Rivas, Marga L.; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-01-01

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21st century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100. PMID:26572897

  11. Global variation in thermal tolerances and vulnerability of endotherms to climate change.

    Science.gov (United States)

    Khaliq, Imran; Hof, Christian; Prinzinger, Roland; Böhning-Gaese, Katrin; Pfenninger, Markus

    2014-08-22

    The relationships among species' physiological capacities and the geographical variation of ambient climate are of key importance to understanding the distribution of life on the Earth. Furthermore, predictions of how species will respond to climate change will profit from the explicit consideration of their physiological tolerances. The climatic variability hypothesis, which predicts that climatic tolerances are broader in more variable climates, provides an analytical framework for studying these relationships between physiology and biogeography. However, direct empirical support for the hypothesis is mostly lacking for endotherms, and few studies have tried to integrate physiological data into assessments of species' climatic vulnerability at the global scale. Here, we test the climatic variability hypothesis for endotherms, with a comprehensive dataset on thermal tolerances derived from physiological experiments, and use these data to assess the vulnerability of species to projected climate change. We find the expected relationship between thermal tolerance and ambient climatic variability in birds, but not in mammals-a contrast possibly resulting from different adaptation strategies to ambient climate via behaviour, morphology or physiology. We show that currently most of the species are experiencing ambient temperatures well within their tolerance limits and that in the future many species may be able to tolerate projected temperature increases across significant proportions of their distributions. However, our findings also underline the high vulnerability of tropical regions to changes in temperature and other threats of anthropogenic global changes. Our study demonstrates that a better understanding of the interplay among species' physiology and the geography of climate change will advance assessments of species' vulnerability to climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Climate Change and Human Migration: Towards a Global Governance System to Protect Climate Refugees

    NARCIS (Netherlands)

    Biermann, F.; Boas, I.J.C.

    2012-01-01

    Climate change will fundamentally affect the lives of millions of people who will be forced over the next decades to leave their villages and cities to seek refuge in other areas. Although the exact numbers of climate refugees are unknowable and vary from assessment to assessment depending on

  13. Climate Change Hotspots Identification in China through the CMIP5 Global Climate Model Ensemble

    Directory of Open Access Journals (Sweden)

    Huanghe Gu

    2014-01-01

    Full Text Available China is one of the countries vulnerable to adverse climate changes. The potential climate change hotspots in China throughout the 21st century are identified in this study by using a multimodel, multiscenario climate model ensemble that includes Phase Five of the Coupled Model Intercomparison Project (CMIP5 atmosphere-ocean general circulation models. Both high (RCP8.5 and low (RCP4.5 greenhouse gas emission trajectories are tested, and both the mean and extreme seasonal temperature and precipitation are considered in identifying regional climate change hotspots. Tarim basin and Tibetan Plateau in West China are identified as persistent regional climate change hotspots in both the RCP4.5 and RCP8.5 scenarios. The aggregate impacts of climate change increase throughout the 21st century and are more significant in RCP8.5 than in RCP4.5. Extreme hot event and mean temperature are two climate variables that greatly contribute to the hotspots calculation in all regions. The contribution of other climate variables exhibits a notable subregional variability. South China is identified as another hotspot based on the change of extreme dry event, especially in SON and DJF, which indicates that such event will frequently occur in the future. Our results can contribute to the designing of national and cross-national adaptation and mitigation policies.

  14. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease.

    Science.gov (United States)

    Rohr, Jason R; Raffel, Thomas R

    2010-05-01

    The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature.

  15. Sustainable water deliveries from the Colorado River in a changing climate

    OpenAIRE

    Barnett, Tim P.; Pierce, David W.

    2009-01-01

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10–30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed ≈5...

  16. Assessing In-service Secondary School Science Teachers knowledge base about global climate change

    Science.gov (United States)

    Bhattacharya, D.; Roehrig, G. H.; Karahan, E.; Liu, S.

    2012-12-01

    Global climate change (GCC) is a crucial environmental issue that is challenging all Americans. With an effective collaboration between researchers, scientists and teachers, conceptual frameworks and methods can be developed for creating climate change content for classroom implementation. In this paper, we describe how teachers' conceptualize and understand global climate change. The information generated by this study can further be used to develop theme based, structured curricula to enhance teachers' understanding of the phenomenon of global climate change. Recent national documents concerning science education have focused on an Earth System approach and concentrate on the fundamental concepts and big ideas in earth science and climate change (e.g., The Earth Science Literacy Initiative (ESLI) (National Science Foundation (NSF), 2009) and Climate Literacy: The Essential Principles of Climate Science (National Oceanic and Atmospheric Association (NOAA), 2009)). Unfortunately, research related to teachers' earth science content knowledge has not focused on an earth systems approach rather researchers have examined teachers' misconceptions about isolated earth science concepts, such as moon phases and plate tectonics. While such research implies teachers' lack of knowledge and awareness of earth as a system, it does not provide direct information about teachers' earth system knowledge. Similarly, research on teachers' and students' knowledge of climate change has focused on isolated topics, such as the greenhouse effect and global warming. Our study focused on eliciting secondary school science teachers' understanding of global climate change using a multifaceted and integrated approach. We do so in the context of a 3-year teacher professional development program where the climate science content provided to the teachers was aligned with essential principles of climate science (EPCS-National Oceanic and Atmospheric Association (NOAA), 2009). Our study was guided

  17. Basic Info | Energy and Global Climate Change in New ...

    Science.gov (United States)

    2017-04-10

    Beginning late in the 18th Century, human activities associated with the Industrial Revolution changed the chemical composition of the atmosphere and began influencing the Earth's climate: the burning of fossil fuels, such as coal and oil, along with deforestation, has caused concentrations of heat-trapping 'greenhouse gases' to increase significantly in our atmosphere. These gases act to prevent heat from escaping into space, like the glass panels of a greenhouse.

  18. EFFECTS OF CLIMATE CHANGE ON GLOBAL SEAWEED COMMUNITIES.

    Science.gov (United States)

    Harley, Christopher D G; Anderson, Kathryn M; Demes, Kyle W; Jorve, Jennifer P; Kordas, Rebecca L; Coyle, Theraesa A; Graham, Michael H

    2012-10-01

    Seaweeds are ecologically important primary producers, competitors, and ecosystem engineers that play a central role in coastal habitats ranging from kelp forests to coral reefs. Although seaweeds are known to be vulnerable to physical and chemical changes in the marine environment, the impacts of ongoing and future anthropogenic climate change in seaweed-dominated ecosystems remain poorly understood. In this review, we describe the ways in which changes in the environment directly affect seaweeds in terms of their physiology, growth, reproduction, and survival. We consider the extent to which seaweed species may be able to respond to these changes via adaptation or migration. We also examine the extensive reshuffling of communities that is occurring as the ecological balance between competing species changes, and as top-down control by herbivores becomes stronger or weaker. Finally, we delve into some of the ecosystem-level responses to these changes, including changes in primary productivity, diversity, and resilience. Although there are several key areas in which ecological insight is lacking, we suggest that reasonable climate-related hypotheses can be developed and tested based on current information. By strategically prioritizing research in the areas of complex environmental variation, multiple stressor effects, evolutionary adaptation, and population, community, and ecosystem-level responses, we can rapidly build upon our current understanding of seaweed biology and climate change ecology to more effectively conserve and manage coastal ecosystems. © 2012 Phycological Society of America.

  19. BRICS COUNTRIES’ POLITICAL AND LEGAL PARTICIPATION IN THE GLOBAL CLIMATE CHANGE AGENDA

    Directory of Open Access Journals (Sweden)

    E. Gladun

    2016-01-01

    Full Text Available The article presents an overview and analysis of international legal regulations on climate change. The authors examine how the international regime related to climate change has evolved in multilateral agreements. A special focus is put on the principle of common but differentiated responsibilities which became the basis of discord among states in discussing targets and responsibilities in climate change mitigation. The authors note that in 2015 the international climate change regime entered a new stage where the most important role is determined for developing countries, both in the legal and in the financial infrastructure, and in the formation of an international climate change policy.The importance of the participation of Brazil, Russia, India, China, and South Africa (BRICS in an international climate change regime has been recognized for some time. The article describes the policy and regulations on climate-related issues in BRICS. The authors compare the key actions and measures BRICS have taken for complying with international climate change documents. They highlight that global climate change action cannot be successful without BRICS countries’ involvement. BRICS must therefore make adequate efforts in emissions reduction measures and significant commitments in respect of the international climate change regime. The authors propose three major steps for BRICS to take the lead in dealing with climate change. First, BRICS need to foster further discussion and cooperation on climate issues and work out an obligatory legal framework to fight climate change collectively as well as unified legislation at their domestic levels. Second, Russia and other BRICS countries have the potential to cooperate in the field of renewable energy through the exchange of technology, investment in the sector, and the participation of their energy companies in each other’s domestic market. Assuming Russia will support the development and enhancement of

  20. Climatic change and wildland recreation: Examining the changing patterns of wilderness recreation in response to the effects of global climate change and the El Nino phenomenon

    Science.gov (United States)

    Vinod Sasidharan

    2000-01-01

    Impacts of global climate change on the biophysical components of wilderness areas have the potential to alter their recreational utility of wilderness areas. Concomitantly, the frequency and patterns of both land-based and water-based wilderness recreation activities will be affected. Despite the difficulty of responding to the unclear dimensions of global climate...