WorldWideScience

Sample records for human-computer interaction techniques

  1. From Human-Computer Interaction to Human-Robot Social Interaction

    OpenAIRE

    Toumi, Tarek; Zidani, Abdelmadjid

    2014-01-01

    Human-Robot Social Interaction became one of active research fields in which researchers from different areas propose solutions and directives leading robots to improve their interactions with humans. In this paper we propose to introduce works in both human robot interaction and human computer interaction and to make a bridge between them, i.e. to integrate emotions and capabilities concepts of the robot in human computer model to become adequate for human robot interaction and discuss chall...

  2. The Past, Present and Future of Human Computer Interaction

    KAUST Repository

    Churchill, Elizabeth

    2018-01-16

    Human Computer Interaction (HCI) focuses on how people interact with, and are transformed by computation. Our current technology landscape is changing rapidly. Interactive applications, devices and services are increasingly becoming embedded into our environments. From our homes to the urban and rural spaces, we traverse everyday. We are increasingly able toヨoften required toヨmanage and configure multiple, interconnected devices and program their interactions. Artificial intelligence (AI) techniques are being used to create dynamic services that learn about us and others, that make conclusions about our intents and affiliations, and that mould our digital interactions based in predictions about our actions and needs, nudging us toward certain behaviors. Computation is also increasingly embedded into our bodies. Understanding human interactions in the everyday digital and physical context. During this lecture, Elizabeth Churchill -Director of User Experience at Google- will talk about how an emerging landscape invites us to revisit old methods and tactics for understanding how people interact with computers and computation, and how it challenges us to think about new methods and frameworks for understanding the future of human-centered computation.

  3. Occupational stress in human computer interaction.

    Science.gov (United States)

    Smith, M J; Conway, F T; Karsh, B T

    1999-04-01

    There have been a variety of research approaches that have examined the stress issues related to human computer interaction including laboratory studies, cross-sectional surveys, longitudinal case studies and intervention studies. A critical review of these studies indicates that there are important physiological, biochemical, somatic and psychological indicators of stress that are related to work activities where human computer interaction occurs. Many of the stressors of human computer interaction at work are similar to those stressors that have historically been observed in other automated jobs. These include high workload, high work pressure, diminished job control, inadequate employee training to use new technology, monotonous tasks, por supervisory relations, and fear for job security. New stressors have emerged that can be tied primarily to human computer interaction. These include technology breakdowns, technology slowdowns, and electronic performance monitoring. The effects of the stress of human computer interaction in the workplace are increased physiological arousal; somatic complaints, especially of the musculoskeletal system; mood disturbances, particularly anxiety, fear and anger; and diminished quality of working life, such as reduced job satisfaction. Interventions to reduce the stress of computer technology have included improved technology implementation approaches and increased employee participation in implementation. Recommendations for ways to reduce the stress of human computer interaction at work are presented. These include proper ergonomic conditions, increased organizational support, improved job content, proper workload to decrease work pressure, and enhanced opportunities for social support. A model approach to the design of human computer interaction at work that focuses on the system "balance" is proposed.

  4. Human-computer interaction : Guidelines for web animation

    OpenAIRE

    Galyani Moghaddam, Golnessa; Moballeghi, Mostafa

    2006-01-01

    Human-computer interaction in the large is an interdisciplinary area which attracts researchers, educators, and practioners from many differenf fields. Human-computer interaction studies a human and a machine in communication, it draws from supporting knowledge on both the machine and the human side. This paper is related to the human side of human-computer interaction and focuses on animations. The growing use of animation in Web pages testifies to the increasing ease with which such multim...

  5. Fundamentals of human-computer interaction

    CERN Document Server

    Monk, Andrew F

    1985-01-01

    Fundamentals of Human-Computer Interaction aims to sensitize the systems designer to the problems faced by the user of an interactive system. The book grew out of a course entitled """"The User Interface: Human Factors for Computer-based Systems"""" which has been run annually at the University of York since 1981. This course has been attended primarily by systems managers from the computer industry. The book is organized into three parts. Part One focuses on the user as processor of information with studies on visual perception; extracting information from printed and electronically presented

  6. Language evolution and human-computer interaction

    Science.gov (United States)

    Grudin, Jonathan; Norman, Donald A.

    1991-01-01

    Many of the issues that confront designers of interactive computer systems also appear in natural language evolution. Natural languages and human-computer interfaces share as their primary mission the support of extended 'dialogues' between responsive entities. Because in each case one participant is a human being, some of the pressures operating on natural languages, causing them to evolve in order to better support such dialogue, also operate on human-computer 'languages' or interfaces. This does not necessarily push interfaces in the direction of natural language - since one entity in this dialogue is not a human, this is not to be expected. Nonetheless, by discerning where the pressures that guide natural language evolution also appear in human-computer interaction, we can contribute to the design of computer systems and obtain a new perspective on natural languages.

  7. Modeling multimodal human-computer interaction

    NARCIS (Netherlands)

    Obrenovic, Z.; Starcevic, D.

    2004-01-01

    Incorporating the well-known Unified Modeling Language into a generic modeling framework makes research on multimodal human-computer interaction accessible to a wide range off software engineers. Multimodal interaction is part of everyday human discourse: We speak, move, gesture, and shift our gaze

  8. Measuring Multimodal Synchrony for Human-Computer Interaction

    NARCIS (Netherlands)

    Reidsma, Dennis; Nijholt, Antinus; Tschacher, Wolfgang; Ramseyer, Fabian; Sourin, A.

    2010-01-01

    Nonverbal synchrony is an important and natural element in human-human interaction. It can also play various roles in human-computer interaction. In particular this is the case in the interaction between humans and the virtual humans that inhabit our cyberworlds. Virtual humans need to adapt their

  9. Human-computer interaction and management information systems

    CERN Document Server

    Galletta, Dennis F

    2014-01-01

    ""Human-Computer Interaction and Management Information Systems: Applications"" offers state-of-the-art research by a distinguished set of authors who span the MIS and HCI fields. The original chapters provide authoritative commentaries and in-depth descriptions of research programs that will guide 21st century scholars, graduate students, and industry professionals. Human-Computer Interaction (or Human Factors) in MIS is concerned with the ways humans interact with information, technologies, and tasks, especially in business, managerial, organizational, and cultural contexts. It is distinctiv

  10. Humans, computers and wizards human (simulated) computer interaction

    CERN Document Server

    Fraser, Norman; McGlashan, Scott; Wooffitt, Robin

    2013-01-01

    Using data taken from a major European Union funded project on speech understanding, the SunDial project, this book considers current perspectives on human computer interaction and argues for the value of an approach taken from sociology which is based on conversation analysis.

  11. Minimal mobile human computer interaction

    NARCIS (Netherlands)

    el Ali, A.

    2013-01-01

    In the last 20 years, the widespread adoption of personal, mobile computing devices in everyday life, has allowed entry into a new technological era in Human Computer Interaction (HCI). The constant change of the physical and social context in a user's situation made possible by the portability of

  12. Proxemics in Human-Computer Interaction

    OpenAIRE

    Greenberg, Saul; Honbaek, Kasper; Quigley, Aaron; Reiterer, Harald; Rädle, Roman

    2014-01-01

    In 1966, anthropologist Edward Hall coined the term "proxemics." Proxemics is an area of study that identifies the culturally dependent ways in which people use interpersonal distance to understand and mediate their interactions with others. Recent research has demonstrated the use of proxemics in human-computer interaction (HCI) for supporting users' explicit and implicit interactions in a range of uses, including remote office collaboration, home entertainment, and games. One promise of pro...

  13. The epistemology and ontology of human-computer interaction

    NARCIS (Netherlands)

    Brey, Philip A.E.

    2005-01-01

    This paper analyzes epistemological and ontological dimensions of Human-Computer Interaction (HCI) through an analysis of the functions of computer systems in relation to their users. It is argued that the primary relation between humans and computer systems has historically been epistemic:

  14. Eye Tracking Based Control System for Natural Human-Computer Interaction

    Directory of Open Access Journals (Sweden)

    Xuebai Zhang

    2017-01-01

    Full Text Available Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user’s eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.

  15. Eye Tracking Based Control System for Natural Human-Computer Interaction.

    Science.gov (United States)

    Zhang, Xuebai; Liu, Xiaolong; Yuan, Shyan-Ming; Lin, Shu-Fan

    2017-01-01

    Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.

  16. Human-Computer Interaction The Agency Perspective

    CERN Document Server

    Oliveira, José

    2012-01-01

    Agent-centric theories, approaches and technologies are contributing to enrich interactions between users and computers. This book aims at highlighting the influence of the agency perspective in Human-Computer Interaction through a careful selection of research contributions. Split into five sections; Users as Agents, Agents and Accessibility, Agents and Interactions, Agent-centric Paradigms and Approaches, and Collective Agents, the book covers a wealth of novel, original and fully updated material, offering:   ü  To provide a coherent, in depth, and timely material on the agency perspective in HCI ü  To offer an authoritative treatment of the subject matter presented by carefully selected authors ü  To offer a balanced and broad coverage of the subject area, including, human, organizational, social, as well as technological concerns. ü  To offer a hands-on-experience by covering representative case studies and offering essential design guidelines   The book will appeal to a broad audience of resea...

  17. Benefits of Subliminal Feedback Loops in Human-Computer Interaction

    OpenAIRE

    Walter Ritter

    2011-01-01

    A lot of efforts have been directed to enriching human-computer interaction to make the user experience more pleasing or efficient. In this paper, we briefly present work in the fields of subliminal perception and affective computing, before we outline a new approach to add analog communication channels to the human-computer interaction experience. In this approach, in addition to symbolic predefined mappings of input to output, a subliminal feedback loop is used that provides feedback in evo...

  18. Human-computer systems interaction backgrounds and applications 3

    CERN Document Server

    Kulikowski, Juliusz; Mroczek, Teresa; Wtorek, Jerzy

    2014-01-01

    This book contains an interesting and state-of the art collection of papers on the recent progress in Human-Computer System Interaction (H-CSI). It contributes the profound description of the actual status of the H-CSI field and also provides a solid base for further development and research in the discussed area. The contents of the book are divided into the following parts: I. General human-system interaction problems; II. Health monitoring and disabled people helping systems; and III. Various information processing systems. This book is intended for a wide audience of readers who are not necessarily experts in computer science, machine learning or knowledge engineering, but are interested in Human-Computer Systems Interaction. The level of particular papers and specific spreading-out into particular parts is a reason why this volume makes fascinating reading. This gives the reader a much deeper insight than he/she might glean from research papers or talks at conferences. It touches on all deep issues that ...

  19. Human-Computer Interaction in Smart Environments

    Science.gov (United States)

    Paravati, Gianluca; Gatteschi, Valentina

    2015-01-01

    Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.

  20. Introduction to human-computer interaction

    CERN Document Server

    Booth, Paul

    2014-01-01

    Originally published in 1989 this title provided a comprehensive and authoritative introduction to the burgeoning discipline of human-computer interaction for students, academics, and those from industry who wished to know more about the subject. Assuming very little knowledge, the book provides an overview of the diverse research areas that were at the time only gradually building into a coherent and well-structured field. It aims to explain the underlying causes of the cognitive, social and organizational problems typically encountered when computer systems are introduced. It is clear and co

  1. Human-Computer Interaction in Smart Environments

    Directory of Open Access Journals (Sweden)

    Gianluca Paravati

    2015-08-01

    Full Text Available Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.

  2. Multimodal Information Presentation for High-Load Human Computer Interaction

    NARCIS (Netherlands)

    Cao, Y.

    2011-01-01

    This dissertation addresses multimodal information presentation in human computer interaction. Information presentation refers to the manner in which computer systems/interfaces present information to human users. More specifically, the focus of our work is not on which information to present, but

  3. Humor in Human-Computer Interaction : A Short Survey

    NARCIS (Netherlands)

    Nijholt, Anton; Niculescu, Andreea; Valitutti, Alessandro; Banchs, Rafael E.; Joshi, Anirudha; Balkrishan, Devanuj K.; Dalvi, Girish; Winckler, Marco

    2017-01-01

    This paper is a short survey on humor in human-computer interaction. It describes how humor is designed and interacted with in social media, virtual agents, social robots and smart environments. Benefits and future use of humor in interactions with artificial entities are discussed based on

  4. Mobile human-computer interaction perspective on mobile learning

    CSIR Research Space (South Africa)

    Botha, Adèle

    2010-10-01

    Full Text Available Applying a Mobile Human Computer Interaction (MHCI) view to the domain of education using Mobile Learning (Mlearning), the research outlines its understanding of the influences and effects of different interactions on the use of mobile technology...

  5. Human-Computer Interaction and Information Management Research Needs

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — In a visionary future, Human-Computer Interaction HCI and Information Management IM have the potential to enable humans to better manage their lives through the use...

  6. Human-computer interaction handbook fundamentals, evolving technologies and emerging applications

    CERN Document Server

    Sears, Andrew

    2007-01-01

    This second edition of The Human-Computer Interaction Handbook provides an updated, comprehensive overview of the most important research in the field, including insights that are directly applicable throughout the process of developing effective interactive information technologies. It features cutting-edge advances to the scientific knowledge base, as well as visionary perspectives and developments that fundamentally transform the way in which researchers and practitioners view the discipline. As the seminal volume of HCI research and practice, The Human-Computer Interaction Handbook feature

  7. Choice of Human-Computer Interaction Mode in Stroke Rehabilitation.

    Science.gov (United States)

    Mousavi Hondori, Hossein; Khademi, Maryam; Dodakian, Lucy; McKenzie, Alison; Lopes, Cristina V; Cramer, Steven C

    2016-03-01

    Advances in technology are providing new forms of human-computer interaction. The current study examined one form of human-computer interaction, augmented reality (AR), whereby subjects train in the real-world workspace with virtual objects projected by the computer. Motor performances were compared with those obtained while subjects used a traditional human-computer interaction, that is, a personal computer (PC) with a mouse. Patients used goal-directed arm movements to play AR and PC versions of the Fruit Ninja video game. The 2 versions required the same arm movements to control the game but had different cognitive demands. With AR, the game was projected onto the desktop, where subjects viewed the game plus their arm movements simultaneously, in the same visual coordinate space. In the PC version, subjects used the same arm movements but viewed the game by looking up at a computer monitor. Among 18 patients with chronic hemiparesis after stroke, the AR game was associated with 21% higher game scores (P = .0001), 19% faster reaching times (P = .0001), and 15% less movement variability (P = .0068), as compared to the PC game. Correlations between game score and arm motor status were stronger with the AR version. Motor performances during the AR game were superior to those during the PC game. This result is due in part to the greater cognitive demands imposed by the PC game, a feature problematic for some patients but clinically useful for others. Mode of human-computer interface influences rehabilitation therapy demands and can be individualized for patients. © The Author(s) 2015.

  8. Applying systemic-structural activity theory to design of human-computer interaction systems

    CERN Document Server

    Bedny, Gregory Z; Bedny, Inna

    2015-01-01

    Human-Computer Interaction (HCI) is an interdisciplinary field that has gained recognition as an important field in ergonomics. HCI draws on ideas and theoretical concepts from computer science, psychology, industrial design, and other fields. Human-Computer Interaction is no longer limited to trained software users. Today people interact with various devices such as mobile phones, tablets, and laptops. How can you make such interaction user friendly, even when user proficiency levels vary? This book explores methods for assessing the psychological complexity of computer-based tasks. It also p

  9. Gaze-and-brain-controlled interfaces for human-computer and human-robot interaction

    Directory of Open Access Journals (Sweden)

    Shishkin S. L.

    2017-09-01

    Full Text Available Background. Human-machine interaction technology has greatly evolved during the last decades, but manual and speech modalities remain single output channels with their typical constraints imposed by the motor system’s information transfer limits. Will brain-computer interfaces (BCIs and gaze-based control be able to convey human commands or even intentions to machines in the near future? We provide an overview of basic approaches in this new area of applied cognitive research. Objective. We test the hypothesis that the use of communication paradigms and a combination of eye tracking with unobtrusive forms of registering brain activity can improve human-machine interaction. Methods and Results. Three groups of ongoing experiments at the Kurchatov Institute are reported. First, we discuss the communicative nature of human-robot interaction, and approaches to building a more e cient technology. Specifically, “communicative” patterns of interaction can be based on joint attention paradigms from developmental psychology, including a mutual “eye-to-eye” exchange of looks between human and robot. Further, we provide an example of “eye mouse” superiority over the computer mouse, here in emulating the task of selecting a moving robot from a swarm. Finally, we demonstrate a passive, noninvasive BCI that uses EEG correlates of expectation. This may become an important lter to separate intentional gaze dwells from non-intentional ones. Conclusion. The current noninvasive BCIs are not well suited for human-robot interaction, and their performance, when they are employed by healthy users, is critically dependent on the impact of the gaze on selection of spatial locations. The new approaches discussed show a high potential for creating alternative output pathways for the human brain. When support from passive BCIs becomes mature, the hybrid technology of the eye-brain-computer (EBCI interface will have a chance to enable natural, fluent, and the

  10. Virtual reality/ augmented reality technology : the next chapter of human-computer interaction

    OpenAIRE

    Huang, Xing

    2015-01-01

    No matter how many different size and shape the computer has, the basic components of computers are still the same. If we use the user perspective to look for the development of computer history, we can surprisingly find that it is the input output device that leads the development of the industry development, in one word, human-computer interaction changes the development of computer history. Human computer interaction has been gone through three stages, the first stage relies on the inpu...

  11. Proceedings of the Third International Conference on Intelligent Human Computer Interaction

    CERN Document Server

    Pokorný, Jaroslav; Snášel, Václav; Abraham, Ajith

    2013-01-01

    The Third International Conference on Intelligent Human Computer Interaction 2011 (IHCI 2011) was held at Charles University, Prague, Czech Republic from August 29 - August 31, 2011. This conference was third in the series, following IHCI 2009 and IHCI 2010 held in January at IIIT Allahabad, India. Human computer interaction is a fast growing research area and an attractive subject of interest for both academia and industry. There are many interesting and challenging topics that need to be researched and discussed. This book aims to provide excellent opportunities for the dissemination of interesting new research and discussion about presented topics. It can be useful for researchers working on various aspects of human computer interaction. Topics covered in this book include user interface and interaction, theoretical background and applications of HCI and also data mining and knowledge discovery as a support of HCI applications.

  12. Human-Computer Interaction, Tourism and Cultural Heritage

    Science.gov (United States)

    Cipolla Ficarra, Francisco V.

    We present a state of the art of the human-computer interaction aimed at tourism and cultural heritage in some cities of the European Mediterranean. In the work an analysis is made of the main problems deriving from training understood as business and which can derail the continuous growth of the HCI, the new technologies and tourism industry. Through a semiotic and epistemological study the current mistakes in the context of the interrelations of the formal and factual sciences will be detected and also the human factors that have an influence on the professionals devoted to the development of interactive systems in order to safeguard and boost cultural heritage.

  13. Virtual reality in medicine-computer graphics and interaction techniques.

    Science.gov (United States)

    Haubner, M; Krapichler, C; Lösch, A; Englmeier, K H; van Eimeren, W

    1997-03-01

    This paper describes several new visualization and interaction techniques that enable the use of virtual environments for routine medical purposes. A new volume-rendering method supports shaded and transparent visualization of medical image sequences in real-time with an interactive threshold definition. Based on these rendering algorithms two complementary segmentation approaches offer an intuitive assistance for a wide range of requirements in diagnosis and therapy planning. In addition, a hierarchical data representation for geometric surface descriptions guarantees an optimal use of available hardware resources and prevents inaccurate visualization. The combination of the presented techniques empowers the improved human-machine interface of virtual reality to support every interactive task in medical three-dimensional (3-D) image processing, from visualization of unsegmented data volumes up to the simulation of surgical procedures.

  14. The Human-Computer Interaction of Cross-Cultural Gaming Strategy

    Science.gov (United States)

    Chakraborty, Joyram; Norcio, Anthony F.; Van Der Veer, Jacob J.; Andre, Charles F.; Miller, Zachary; Regelsberger, Alexander

    2015-01-01

    This article explores the cultural dimensions of the human-computer interaction that underlies gaming strategies. The article is a desktop study of existing literature and is organized into five sections. The first examines the cultural aspects of knowledge processing. The social constructs technology interaction is discussed. Following this, the…

  15. Accident sequence analysis of human-computer interface design

    International Nuclear Information System (INIS)

    Fan, C.-F.; Chen, W.-H.

    2000-01-01

    It is important to predict potential accident sequences of human-computer interaction in a safety-critical computing system so that vulnerable points can be disclosed and removed. We address this issue by proposing a Multi-Context human-computer interaction Model along with its analysis techniques, an Augmented Fault Tree Analysis, and a Concurrent Event Tree Analysis. The proposed augmented fault tree can identify the potential weak points in software design that may induce unintended software functions or erroneous human procedures. The concurrent event tree can enumerate possible accident sequences due to these weak points

  16. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    Science.gov (United States)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  17. Design Science in Human-Computer Interaction: A Model and Three Examples

    Science.gov (United States)

    Prestopnik, Nathan R.

    2013-01-01

    Humanity has entered an era where computing technology is virtually ubiquitous. From websites and mobile devices to computers embedded in appliances on our kitchen counters and automobiles parked in our driveways, information and communication technologies (ICTs) and IT artifacts are fundamentally changing the ways we interact with our world.…

  18. BUILD-IT : a computer vision-based interaction technique for a planning tool

    NARCIS (Netherlands)

    Rauterberg, G.W.M.; Fjeld, M.; Krueger, H.; Bichsel, M.; Leonhardt, U.; Meier, M.; Thimbleby, H.; O'Conaill, B.; Thomas, P.J.

    1997-01-01

    Shows a method that goes beyond the established approaches of human-computer interaction. We first bring a serious critique of traditional interface types, showing their major drawbacks and limitations. Promising alternatives are offered by virtual (or immersive) reality (VR) and by augmented

  19. Implementations of the CC'01 Human-Computer Interaction Guidelines Using Bloom's Taxonomy

    Science.gov (United States)

    Manaris, Bill; Wainer, Michael; Kirkpatrick, Arthur E.; Stalvey, RoxAnn H.; Shannon, Christine; Leventhal, Laura; Barnes, Julie; Wright, John; Schafer, J. Ben; Sanders, Dean

    2007-01-01

    In today's technology-laden society human-computer interaction (HCI) is an important knowledge area for computer scientists and software engineers. This paper surveys existing approaches to incorporate HCI into computer science (CS) and such related issues as the perceived gap between the interests of the HCI community and the needs of CS…

  20. The Study on Human-Computer Interaction Design Based on the Users’ Subconscious Behavior

    Science.gov (United States)

    Li, Lingyuan

    2017-09-01

    Human-computer interaction is human-centered. An excellent interaction design should focus on the study of user experience, which greatly comes from the consistence between design and human behavioral habit. However, users’ behavioral habits often result from subconsciousness. Therefore, it is smart to utilize users’ subconscious behavior to achieve design's intention and maximize the value of products’ functions, which gradually becomes a new trend in this field.

  1. Appearance-based human gesture recognition using multimodal features for human computer interaction

    Science.gov (United States)

    Luo, Dan; Gao, Hua; Ekenel, Hazim Kemal; Ohya, Jun

    2011-03-01

    The use of gesture as a natural interface plays an utmost important role for achieving intelligent Human Computer Interaction (HCI). Human gestures include different components of visual actions such as motion of hands, facial expression, and torso, to convey meaning. So far, in the field of gesture recognition, most previous works have focused on the manual component of gestures. In this paper, we present an appearance-based multimodal gesture recognition framework, which combines the different groups of features such as facial expression features and hand motion features which are extracted from image frames captured by a single web camera. We refer 12 classes of human gestures with facial expression including neutral, negative and positive meanings from American Sign Languages (ASL). We combine the features in two levels by employing two fusion strategies. At the feature level, an early feature combination can be performed by concatenating and weighting different feature groups, and LDA is used to choose the most discriminative elements by projecting the feature on a discriminative expression space. The second strategy is applied on decision level. Weighted decisions from single modalities are fused in a later stage. A condensation-based algorithm is adopted for classification. We collected a data set with three to seven recording sessions and conducted experiments with the combination techniques. Experimental results showed that facial analysis improve hand gesture recognition, decision level fusion performs better than feature level fusion.

  2. Engageability: a new sub-principle of the learnability principle in human-computer interaction

    Directory of Open Access Journals (Sweden)

    B Chimbo

    2011-12-01

    Full Text Available The learnability principle relates to improving the usability of software, as well as users’ performance and productivity. A gap has been identified as the current definition of the principle does not distinguish between users of different ages. To determine the extent of the gap, this article compares the ways in which two user groups, adults and children, learn how to use an unfamiliar software application. In doing this, we bring together the research areas of human-computer interaction (HCI, adult and child learning, learning theories and strategies, usability evaluation and interaction design. A literature survey conducted on learnability and learning processes considered the meaning of learnability of software applications across generations. In an empirical investigation, users aged from 9 to 12 and from 35 to 50 were observed in a usability laboratory while learning to use educational software applications. Insights that emerged from data analysis showed different tactics and approaches that children and adults use when learning unfamiliar software. Eye tracking data was also recorded. Findings indicated that subtle re- interpretation of the learnability principle and its associated sub-principles was required. An additional sub-principle, namely engageability was proposed to incorporate aspects of learnability that are not covered by the existing sub-principles. Our re-interpretation of the learnability principle and the resulting design recommendations should help designers to fulfill the varying needs of different-aged users, and improve the learnability of their designs. Keywords: Child computer interaction, Design principles, Eye tracking, Generational differences, human-computer interaction, Learning theories, Learnability, Engageability, Software applications, Uasability Disciplines: Human-Computer Interaction (HCI Studies, Computer science, Observational Studies

  3. Cooperation in human-computer communication

    OpenAIRE

    Kronenberg, Susanne

    2000-01-01

    The goal of this thesis is to simulate cooperation in human-computer communication to model the communicative interaction process of agents in natural dialogs in order to provide advanced human-computer interaction in that coherence is maintained between contributions of both agents, i.e. the human user and the computer. This thesis contributes to certain aspects of understanding and generation and their interaction in the German language. In spontaneous dialogs agents cooperate by the pro...

  4. Stereo Vision for Unrestricted Human-Computer Interaction

    OpenAIRE

    Eldridge, Ross; Rudolph, Heiko

    2008-01-01

    Human computer interfaces have come long way in recent years, but the goal of a computer interpreting unrestricted human movement remains elusive. The use of stereo vision in this field has enabled the development of systems that begin to approach this goal. As computer technology advances we come ever closer to a system that can react to the ambiguities of human movement in real-time. In the foreseeable future stereo computer vision is not likely to replace the keyboard or mouse. There is at...

  5. Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments

    Directory of Open Access Journals (Sweden)

    Alonso-Valerdi Luz María

    2017-01-01

    Full Text Available Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI. Those cognitive processes take place while a user navigates and explores a virtual environment (VE and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI. BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1 set out working environmental conditions, (2 maximize the efficiency of BCI control panels, (3 implement navigation systems based not only on user intentions but also on user emotions, and (4 regulate user mental state to increase the differentiation between control and noncontrol modalities.

  6. Application of computer technique in the reconstruction of Chinese ancient buildings

    Science.gov (United States)

    Li, Deren; Yang, Jie; Zhu, Yixuan

    2003-01-01

    This paper offers an introduction of computer assemble and simulation of ancient building. A pioneer research work was carried out by investigators of surveying and mapping describing ancient Chinese timber buildings by 3D frame graphs with computers. But users can know the structural layers and the assembly process of these buildings if the frame graphs are processed further with computer. This can be implemented by computer simulation technique. This technique display the raw data on the screen of a computer and interactively manage them by combining technologies from computer graphics and image processing, multi-media technology, artificial intelligence, highly parallel real-time computation technique and human behavior science. This paper presents the implement procedure of simulation for large-sized wooden buildings as well as 3D dynamic assembly of these buildings under the 3DS MAX environment. The results of computer simulation are also shown in the paper.

  7. Service Interaction Flow Analysis Technique for Service Personalization

    DEFF Research Database (Denmark)

    Korhonen, Olli; Kinnula, Marianne; Syrjanen, Anna-Liisa

    2017-01-01

    Service interaction flows are difficult to capture, analyze, outline, and represent for research and design purposes. We examine how variation of personalized service flows in technology-mediated service interaction can be modeled and analyzed to provide information on how service personalization...... could support interaction. We have analyzed service interaction cases in a context of technology-mediated car rental service. With the analysis technique we propose, inspired by Interaction Analysis method, we were able to capture and model the situational service interaction. Our contribution regarding...... technology-mediated service interaction design is twofold: First, with the increased understanding on the role of personalization in managing variation in technology-mediated service interaction, our study contributes to designing service management information systems and human-computer interfaces...

  8. Cross-cultural human-computer interaction and user experience design a semiotic perspective

    CERN Document Server

    Brejcha, Jan

    2015-01-01

    This book describes patterns of language and culture in human-computer interaction (HCI). Through numerous examples, it shows why these patterns matter and how to exploit them to design a better user experience (UX) with computer systems. It provides scientific information on the theoretical and practical areas of the interaction and communication design for research experts and industry practitioners and covers the latest research in semiotics and cultural studies, bringing a set of tools and methods to benefit the process of designing with the cultural background in mind.

  9. Human computer interaction using hand gestures

    CERN Document Server

    Premaratne, Prashan

    2014-01-01

    Human computer interaction (HCI) plays a vital role in bridging the 'Digital Divide', bringing people closer to consumer electronics control in the 'lounge'. Keyboards and mouse or remotes do alienate old and new generations alike from control interfaces. Hand Gesture Recognition systems bring hope of connecting people with machines in a natural way. This will lead to consumers being able to use their hands naturally to communicate with any electronic equipment in their 'lounge.' This monograph will include the state of the art hand gesture recognition approaches and how they evolved from their inception. The author would also detail his research in this area for the past 8 years and how the future might turn out to be using HCI. This monograph will serve as a valuable guide for researchers (who would endeavour into) in the world of HCI.

  10. USING RESEARCH METHODS IN HUMAN COMPUTER INTERACTION TO DESIGN TECHNOLOGY FOR RESILIENCE

    OpenAIRE

    Lopes, Arminda Guerra

    2016-01-01

    ABSTRACT Research in human computer interaction (HCI) covers both technological and human behavioural concerns. As a consequence, the contributions made in HCI research tend to be aware to either engineering or the social sciences. In HCI the purpose of practical research contributions is to reveal unknown insights about human behaviour and its relationship to technology. Practical research methods normally used in HCI include formal experiments, field experiments, field studies, interviews, ...

  11. Child-Computer Interaction: ICMI 2012 special session

    NARCIS (Netherlands)

    Nijholt, Antinus; Morency, L.P.; Bohus, L.; Aghajan, H.; Nijholt, Antinus; Cassell, J.; Epps, J.

    2012-01-01

    This is a short introduction to the special session on child computer interaction at the International Conference on Multimodal Interaction 2012 (ICMI 2012). In human-computer interaction users have become participants in the design process. This is not different for child computer interaction

  12. Reciprocity in computer-human interaction: source-based, norm-based, and affect-based explanations.

    Science.gov (United States)

    Lee, Seungcheol Austin; Liang, Yuhua Jake

    2015-04-01

    Individuals often apply social rules when they interact with computers, and this is known as the Computers Are Social Actors (CASA) effect. Following previous work, one approach to understand the mechanism responsible for CASA is to utilize computer agents and have the agents attempt to gain human compliance (e.g., completing a pattern recognition task). The current study focuses on three key factors frequently cited to influence traditional notions of compliance: evaluations toward the source (competence and warmth), normative influence (reciprocity), and affective influence (mood). Structural equation modeling assessed the effects of these factors on human compliance with computer request. The final model shows that norm-based influence (reciprocity) increased the likelihood of compliance, while evaluations toward the computer agent did not significantly influence compliance.

  13. Multi-step EMG Classification Algorithm for Human-Computer Interaction

    Science.gov (United States)

    Ren, Peng; Barreto, Armando; Adjouadi, Malek

    A three-electrode human-computer interaction system, based on digital processing of the Electromyogram (EMG) signal, is presented. This system can effectively help disabled individuals paralyzed from the neck down to interact with computers or communicate with people through computers using point-and-click graphic interfaces. The three electrodes are placed on the right frontalis, the left temporalis and the right temporalis muscles in the head, respectively. The signal processing algorithm used translates the EMG signals during five kinds of facial movements (left jaw clenching, right jaw clenching, eyebrows up, eyebrows down, simultaneous left & right jaw clenching) into five corresponding types of cursor movements (left, right, up, down and left-click), to provide basic mouse control. The classification strategy is based on three principles: the EMG energy of one channel is typically larger than the others during one specific muscle contraction; the spectral characteristics of the EMG signals produced by the frontalis and temporalis muscles during different movements are different; the EMG signals from adjacent channels typically have correlated energy profiles. The algorithm is evaluated on 20 pre-recorded EMG signal sets, using Matlab simulations. The results show that this method provides improvements and is more robust than other previous approaches.

  14. Enhancing Human-Computer Interaction Design Education: Teaching Affordance Design for Emerging Mobile Devices

    Science.gov (United States)

    Faiola, Anthony; Matei, Sorin Adam

    2010-01-01

    The evolution of human-computer interaction design (HCID) over the last 20 years suggests that there is a growing need for educational scholars to consider new and more applicable theoretical models of interactive product design. The authors suggest that such paradigms would call for an approach that would equip HCID students with a better…

  15. Affective Computing used in an imaging interaction paradigm

    DEFF Research Database (Denmark)

    Schultz, Nette

    2003-01-01

    This paper combines affective computing with an imaging interaction paradigm. An imaging interaction paradigm means that human and computer communicates primarily by images. Images evoke emotions in humans, so the computer must be able to behave emotionally intelligent. An affective image selection...

  16. HCI^2 Workbench: A Development Tool for Multimodal Human-Computer Interaction Systems

    NARCIS (Netherlands)

    Shen, Jie; Wenzhe, Shi; Pantic, Maja

    In this paper, we present a novel software tool designed and implemented to simplify the development process of Multimodal Human-Computer Interaction (MHCI) systems. This tool, which is called the HCI^2 Workbench, exploits a Publish / Subscribe (P/S) architecture [13] [14] to facilitate efficient

  17. Human Computer Music Performance

    OpenAIRE

    Dannenberg, Roger B.

    2012-01-01

    Human Computer Music Performance (HCMP) is the study of music performance by live human performers and real-time computer-based performers. One goal of HCMP is to create a highly autonomous artificial performer that can fill the role of a human, especially in a popular music setting. This will require advances in automated music listening and understanding, new representations for music, techniques for music synchronization, real-time human-computer communication, music generation, sound synt...

  18. Human-Computer Interaction and Sociological Insight: A Theoretical Examination and Experiment in Building Affinity in Small Groups

    Science.gov (United States)

    Oren, Michael Anthony

    2011-01-01

    The juxtaposition of classic sociological theory and the, relatively, young discipline of human-computer interaction (HCI) serves as a powerful mechanism for both exploring the theoretical impacts of technology on human interactions as well as the application of technological systems to moderate interactions. It is the intent of this dissertation…

  19. Proceedings of the topical meeting on advances in human factors research on man/computer interactions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book discusses the following topics: expert systems and knowledge engineering-I; verification and validation of software; methods for modeling UMAN/computer performance; MAN/computer interaction problems in producing procedures -1-2; progress and problems with automation-1-2; experience with electronic presentation of procedures-2; intelligent displays and monitors; modeling user/computer interface; and computer-based human decision-making aids

  20. Computer aided composition by means of interactive GP

    DEFF Research Database (Denmark)

    Ando, Daichi; Dahlstedt, Palle; Nordahl, Mats G.

    2006-01-01

    Research on the application of Interactive Evolutionary Computation (IEC) to the field of musical computation has been improved in recent years, marking an interesting parallel to the current trend of applying human characteristics or sensitivities to computer systems. However, past techniques...... developed for IEC-based composition have not necessarily proven very effective for professional use. This is due to the large difference between data representation used by IEC and authored classical music composition. To solve this difficulties, we purpose a new IEC approach to music composition based...... on classical music theory. In this paper, we describe an established system according to the above idea, and detail of making success of composition a piece....

  1. SnapAnatomy, a computer-based interactive tool for independent learning of human anatomy.

    Science.gov (United States)

    Yip, George W; Rajendran, Kanagasuntheram

    2008-06-01

    Computer-aided instruction materials are becoming increasing popular in medical education and particularly in the teaching of human anatomy. This paper describes SnapAnatomy, a new interactive program that the authors designed for independent learning of anatomy. SnapAnatomy is primarily tailored for the beginner student to encourage the learning of anatomy by developing a three-dimensional visualization of human structure that is essential to applications in clinical practice and the understanding of function. The program allows the student to take apart and to accurately put together body components in an interactive, self-paced and variable manner to achieve the learning outcome.

  2. Evidence Report: Risk of Inadequate Human-Computer Interaction

    Science.gov (United States)

    Holden, Kritina; Ezer, Neta; Vos, Gordon

    2013-01-01

    Human-computer interaction (HCI) encompasses all the methods by which humans and computer-based systems communicate, share information, and accomplish tasks. When HCI is poorly designed, crews have difficulty entering, navigating, accessing, and understanding information. HCI has rarely been studied in an operational spaceflight context, and detailed performance data that would support evaluation of HCI have not been collected; thus, we draw much of our evidence from post-spaceflight crew comments, and from other safety-critical domains like ground-based power plants, and aviation. Additionally, there is a concern that any potential or real issues to date may have been masked by the fact that crews have near constant access to ground controllers, who monitor for errors, correct mistakes, and provide additional information needed to complete tasks. We do not know what types of HCI issues might arise without this "safety net". Exploration missions will test this concern, as crews may be operating autonomously due to communication delays and blackouts. Crew survival will be heavily dependent on available electronic information for just-in-time training, procedure execution, and vehicle or system maintenance; hence, the criticality of the Risk of Inadequate HCI. Future work must focus on identifying the most important contributing risk factors, evaluating their contribution to the overall risk, and developing appropriate mitigations. The Risk of Inadequate HCI includes eight core contributing factors based on the Human Factors Analysis and Classification System (HFACS): (1) Requirements, policies, and design processes, (2) Information resources and support, (3) Allocation of attention, (4) Cognitive overload, (5) Environmentally induced perceptual changes, (6) Misperception and misinterpretation of displayed information, (7) Spatial disorientation, and (8) Displays and controls.

  3. Analysis of the binding interaction in uric acid - Human hemoglobin system by spectroscopic techniques

    Science.gov (United States)

    Makarska-Bialokoz, Magdalena

    2017-05-01

    The binding interaction between human hemoglobin and uric acid has been studied for the first time, by UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence techniques. Characteristic effects observed for human hemoglobin intrinsic fluorescence during interaction with uric acid at neutral pH point at the formation of stacking non-covalent and non-fluorescent complexes. All the calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants, as well as Förster resonance energy transfer parameters confirm the existence of static quenching. The results of synchronous fluorescence measurements indicate that the fluorescence quenching of human hemoglobin originates both from Trp and Tyr residues and that the addition of uric acid could significantly hinder the physiological functions of human hemoglobin.

  4. Investigation on human serum albumin and Gum Tragacanth interactions using experimental and computational methods.

    Science.gov (United States)

    Moradi, Sajad; Taran, Mojtaba; Shahlaei, Mohsen

    2018-02-01

    The study on the interaction of human serum albumin and Gum Tragacanth, a biodegradable bio-polymer, has been undertaken. For this purpose, several experimental and computational methods were used. Investigation of thermodynamic parameters and mode of interactions were carried out using Fluorescence spectroscopy in 300 and 310K. Also, a Fourier transformed infrared spectra and synchronous fluorescence spectroscopy was performed. To give detailed insight of possible interactions, docking and molecular dynamic simulations were also applied. Results show that the interaction is based on hydrogen bonding and van der Waals forces. Structural analysis implies on no adverse change in protein conformation during binding of GT. Furthermore, computational methods confirm some evidence on secondary structure enhancement of protein as a presence of combining with Gum Tragacanth. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Human-Computer Interaction Handbook Fundamentals, Evolving Technologies, and Emerging Applications

    CERN Document Server

    Jacko, Julie A

    2012-01-01

    The third edition of a groundbreaking reference, The Human--Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications raises the bar for handbooks in this field. It is the largest, most complete compilation of HCI theories, principles, advances, case studies, and more that exist within a single volume. The book captures the current and emerging sub-disciplines within HCI related to research, development, and practice that continue to advance at an astonishing rate. It features cutting-edge advances to the scientific knowledge base as well as visionary perspe

  6. Guest Editorial Special Issue on Human Computing

    NARCIS (Netherlands)

    Pantic, Maja; Santos, E.; Pentland, A.; Nijholt, Antinus

    2009-01-01

    The seven articles in this special issue focus on human computing. Most focus on two challenging issues in human computing, namely, machine analysis of human behavior in group interactions and context-sensitive modeling.

  7. Training Software in Artificial-Intelligence Computing Techniques

    Science.gov (United States)

    Howard, Ayanna; Rogstad, Eric; Chalfant, Eugene

    2005-01-01

    The Artificial Intelligence (AI) Toolkit is a computer program for training scientists, engineers, and university students in three soft-computing techniques (fuzzy logic, neural networks, and genetic algorithms) used in artificial-intelligence applications. The program promotes an easily understandable tutorial interface, including an interactive graphical component through which the user can gain hands-on experience in soft-computing techniques applied to realistic example problems. The tutorial provides step-by-step instructions on the workings of soft-computing technology, whereas the hands-on examples allow interaction and reinforcement of the techniques explained throughout the tutorial. In the fuzzy-logic example, a user can interact with a robot and an obstacle course to verify how fuzzy logic is used to command a rover traverse from an arbitrary start to the goal location. For the genetic algorithm example, the problem is to determine the minimum-length path for visiting a user-chosen set of planets in the solar system. For the neural-network example, the problem is to decide, on the basis of input data on physical characteristics, whether a person is a man, woman, or child. The AI Toolkit is compatible with the Windows 95,98, ME, NT 4.0, 2000, and XP operating systems. A computer having a processor speed of at least 300 MHz, and random-access memory of at least 56MB is recommended for optimal performance. The program can be run on a slower computer having less memory, but some functions may not be executed properly.

  8. APPLYING ARTIFICIAL INTELLIGENCE TECHNIQUES TO HUMAN-COMPUTER INTERFACES

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1988-01-01

    A description is given of UIMS (User Interface Management System), a system using a variety of artificial intelligence techniques to build knowledge-based user interfaces combining functionality and information from a variety of computer systems that maintain, test, and configure customer telephone...... and data networks. Three artificial intelligence (AI) techniques used in UIMS are discussed, namely, frame representation, object-oriented programming languages, and rule-based systems. The UIMS architecture is presented, and the structure of the UIMS is explained in terms of the AI techniques....

  9. Advancements in Violin-Related Human-Computer Interaction

    DEFF Research Database (Denmark)

    Overholt, Daniel

    2014-01-01

    of human intelligence and emotion is at the core of the Musical Interface Technology Design Space, MITDS. This is a framework that endeavors to retain and enhance such traits of traditional instruments in the design of interactive live performance interfaces. Utilizing the MITDS, advanced Human...

  10. Real-time non-invasive eyetracking and gaze-point determination for human-computer interaction and biomedicine

    Science.gov (United States)

    Talukder, Ashit; Morookian, John-Michael; Monacos, S.; Lam, R.; Lebaw, C.; Bond, A.

    2004-01-01

    Eyetracking is one of the latest technologies that has shown potential in several areas including human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological problems in individuals.

  11. Computerized Cognitive Rehabilitation: Comparing Different Human-Computer Interactions.

    Science.gov (United States)

    Quaglini, Silvana; Alloni, Anna; Cattani, Barbara; Panzarasa, Silvia; Pistarini, Caterina

    2017-01-01

    In this work we describe an experiment involving aphasic patients, where the same speech rehabilitation exercise was administered in three different modalities, two of which are computer-based. In particular, one modality exploits the "Makey Makey", an electronic board which allows interacting with the computer using physical objects.

  12. The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

    KAUST Repository

    Theofilatos, Konstantinos A.

    2013-07-12

    Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, cal-culatesasetoffeaturesofinterest and computesaconfidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.

  13. Animal-Computer Interaction (ACI) : An analysis, a perspective, and guidelines

    NARCIS (Netherlands)

    van den Broek, E.L.

    2016-01-01

    Animal-Computer Interaction (ACI)’s founding elements are discussed in relation to its overarching discipline Human-Computer Interaction (HCI). Its basic dimensions are identified: agent, computing machinery, and interaction, and their levels of processing: perceptual, cognitive, and affective.

  14. Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training

    Science.gov (United States)

    Lee, Yongkuk; Nicholls, Benjamin; Sup Lee, Dong; Chen, Yanfei; Chun, Youngjae; Siang Ang, Chee; Yeo, Woon-Hong

    2017-04-01

    We introduce a skin-friendly electronic system that enables human-computer interaction (HCI) for swallowing training in dysphagia rehabilitation. For an ergonomic HCI, we utilize a soft, highly compliant (“skin-like”) electrode, which addresses critical issues of an existing rigid and planar electrode combined with a problematic conductive electrolyte and adhesive pad. The skin-like electrode offers a highly conformal, user-comfortable interaction with the skin for long-term wearable, high-fidelity recording of swallowing electromyograms on the chin. Mechanics modeling and experimental quantification captures the ultra-elastic mechanical characteristics of an open mesh microstructured sensor, conjugated with an elastomeric membrane. Systematic in vivo studies investigate the functionality of the soft electronics for HCI-enabled swallowing training, which includes the application of a biofeedback system to detect swallowing behavior. The collection of results demonstrates clinical feasibility of the ergonomic electronics in HCI-driven rehabilitation for patients with swallowing disorders.

  15. Using Noninvasive Brain Measurement to Explore the Psychological Effects of Computer Malfunctions on Users during Human-Computer Interactions

    Directory of Open Access Journals (Sweden)

    Leanne M. Hirshfield

    2014-01-01

    Full Text Available In today’s technologically driven world, there is a need to better understand the ways that common computer malfunctions affect computer users. These malfunctions may have measurable influences on computer user’s cognitive, emotional, and behavioral responses. An experiment was conducted where participants conducted a series of web search tasks while wearing functional near-infrared spectroscopy (fNIRS and galvanic skin response sensors. Two computer malfunctions were introduced during the sessions which had the potential to influence correlates of user trust and suspicion. Surveys were given after each session to measure user’s perceived emotional state, cognitive load, and perceived trust. Results suggest that fNIRS can be used to measure the different cognitive and emotional responses associated with computer malfunctions. These cognitive and emotional changes were correlated with users’ self-report levels of suspicion and trust, and they in turn suggest future work that further explores the capability of fNIRS for the measurement of user experience during human-computer interactions.

  16. Effects of interactive instructional techniques in a web-based peripheral nervous system component for human anatomy.

    Science.gov (United States)

    Allen, Edwin B; Walls, Richard T; Reilly, Frank D

    2008-02-01

    This study investigated the effects of interactive instructional techniques in a web-based peripheral nervous system (PNS) component of a first year medical school human anatomy course. Existing data from 9 years of instruction involving 856 students were used to determine (1) the effect of web-based interactive instructional techniques on written exam item performance and (2) differences between student opinions of the benefit level of five different types of interactive learning objects used. The interactive learning objects included Patient Case studies, review Games, Simulated Interactive Patients (SIP), Flashcards, and unit Quizzes. Exam item analysis scores were found to be significantly higher (p < 0.05) for students receiving the instructional treatment incorporating the web-based interactive learning objects than for students not receiving this treatment. Questionnaires using a five-point Likert scale were analysed to determine student opinion ratings of the interactive learning objects. Students reported favorably on the benefit level of all learning objects. Students rated the benefit level of the Simulated Interactive Patients (SIP) highest, and this rating was significantly higher (p < 0.05) than all other learning objects. This study suggests that web-based interactive instructional techniques improve student exam performance. Students indicated a strong acceptance of Simulated Interactive Patient learning objects.

  17. Brain-Computer Interfaces Revolutionizing Human-Computer Interaction

    CERN Document Server

    Graimann, Bernhard; Allison, Brendan

    2010-01-01

    A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.

  18. Development of safety analysis and constraint detection techniques for process interaction errors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chin-Feng, E-mail: csfanc@saturn.yzu.edu.tw [Computer Science and Engineering Dept., Yuan-Ze University, Taiwan (China); Tsai, Shang-Lin; Tseng, Wan-Hui [Computer Science and Engineering Dept., Yuan-Ze University, Taiwan (China)

    2011-02-15

    Among the new failure modes introduced by computer into safety systems, the process interaction error is the most unpredictable and complicated failure mode, which may cause disastrous consequences. This paper presents safety analysis and constraint detection techniques for process interaction errors among hardware, software, and human processes. Among interaction errors, the most dreadful ones are those that involve run-time misinterpretation from a logic process. We call them the 'semantic interaction errors'. Such abnormal interaction is not adequately emphasized in current research. In our static analysis, we provide a fault tree template focusing on semantic interaction errors by checking conflicting pre-conditions and post-conditions among interacting processes. Thus, far-fetched, but highly risky, interaction scenarios involve interpretation errors can be identified. For run-time monitoring, a range of constraint types is proposed for checking abnormal signs at run time. We extend current constraints to a broader relational level and a global level, considering process/device dependencies and physical conservation rules in order to detect process interaction errors. The proposed techniques can reduce abnormal interactions; they can also be used to assist in safety-case construction.

  19. Development of safety analysis and constraint detection techniques for process interaction errors

    International Nuclear Information System (INIS)

    Fan, Chin-Feng; Tsai, Shang-Lin; Tseng, Wan-Hui

    2011-01-01

    Among the new failure modes introduced by computer into safety systems, the process interaction error is the most unpredictable and complicated failure mode, which may cause disastrous consequences. This paper presents safety analysis and constraint detection techniques for process interaction errors among hardware, software, and human processes. Among interaction errors, the most dreadful ones are those that involve run-time misinterpretation from a logic process. We call them the 'semantic interaction errors'. Such abnormal interaction is not adequately emphasized in current research. In our static analysis, we provide a fault tree template focusing on semantic interaction errors by checking conflicting pre-conditions and post-conditions among interacting processes. Thus, far-fetched, but highly risky, interaction scenarios involve interpretation errors can be identified. For run-time monitoring, a range of constraint types is proposed for checking abnormal signs at run time. We extend current constraints to a broader relational level and a global level, considering process/device dependencies and physical conservation rules in order to detect process interaction errors. The proposed techniques can reduce abnormal interactions; they can also be used to assist in safety-case construction.

  20. Integrated multimodal human-computer interface and augmented reality for interactive display applications

    Science.gov (United States)

    Vassiliou, Marius S.; Sundareswaran, Venkataraman; Chen, S.; Behringer, Reinhold; Tam, Clement K.; Chan, M.; Bangayan, Phil T.; McGee, Joshua H.

    2000-08-01

    We describe new systems for improved integrated multimodal human-computer interaction and augmented reality for a diverse array of applications, including future advanced cockpits, tactical operations centers, and others. We have developed an integrated display system featuring: speech recognition of multiple concurrent users equipped with both standard air- coupled microphones and novel throat-coupled sensors (developed at Army Research Labs for increased noise immunity); lip reading for improving speech recognition accuracy in noisy environments, three-dimensional spatialized audio for improved display of warnings, alerts, and other information; wireless, coordinated handheld-PC control of a large display; real-time display of data and inferences from wireless integrated networked sensors with on-board signal processing and discrimination; gesture control with disambiguated point-and-speak capability; head- and eye- tracking coupled with speech recognition for 'look-and-speak' interaction; and integrated tetherless augmented reality on a wearable computer. The various interaction modalities (speech recognition, 3D audio, eyetracking, etc.) are implemented a 'modality servers' in an Internet-based client-server architecture. Each modality server encapsulates and exposes commercial and research software packages, presenting a socket network interface that is abstracted to a high-level interface, minimizing both vendor dependencies and required changes on the client side as the server's technology improves.

  1. Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design

    Science.gov (United States)

    Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy

    We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.

  2. Interactive segmentation techniques algorithms and performance evaluation

    CERN Document Server

    He, Jia; Kuo, C-C Jay

    2013-01-01

    This book focuses on interactive segmentation techniques, which have been extensively studied in recent decades. Interactive segmentation emphasizes clear extraction of objects of interest, whose locations are roughly indicated by human interactions based on high level perception. This book will first introduce classic graph-cut segmentation algorithms and then discuss state-of-the-art techniques, including graph matching methods, region merging and label propagation, clustering methods, and segmentation methods based on edge detection. A comparative analysis of these methods will be provided

  3. User involvement in the design of human-computer interactions: some similarities and differences between design approaches

    NARCIS (Netherlands)

    Bekker, M.M.; Long, J.B.

    1998-01-01

    This paper presents a general review of user involvement in the design of human-computer interactions, as advocated by a selection of different approaches to design. The selection comprises User-Centred Design, Participatory Design, Socio-Technical Design, Soft Systems Methodology, and Joint

  4. The Emotiv EPOC interface paradigm in Human-Computer Interaction

    OpenAIRE

    Ancău Dorina; Roman Nicolae-Marius; Ancău Mircea

    2017-01-01

    Numerous studies have suggested the use of decoded error potentials in the brain to improve human-computer communication. Together with state-of-the-art scientific equipment, experiments have also tested instruments with more limited performance for the time being, such as Emotiv EPOC. This study presents a review of these trials and a summary of the results obtained. However, the level of these results indicates a promising prospect for using this headset as a human-computer interface for er...

  5. The Emotiv EPOC interface paradigm in Human-Computer Interaction

    Directory of Open Access Journals (Sweden)

    Ancău Dorina

    2017-01-01

    Full Text Available Numerous studies have suggested the use of decoded error potentials in the brain to improve human-computer communication. Together with state-of-the-art scientific equipment, experiments have also tested instruments with more limited performance for the time being, such as Emotiv EPOC. This study presents a review of these trials and a summary of the results obtained. However, the level of these results indicates a promising prospect for using this headset as a human-computer interface for error decoding.

  6. Audio Technology and Mobile Human Computer Interaction

    DEFF Research Database (Denmark)

    Chamberlain, Alan; Bødker, Mads; Hazzard, Adrian

    2017-01-01

    Audio-based mobile technology is opening up a range of new interactive possibilities. This paper brings some of those possibilities to light by offering a range of perspectives based in this area. It is not only the technical systems that are developing, but novel approaches to the design...... and understanding of audio-based mobile systems are evolving to offer new perspectives on interaction and design and support such systems to be applied in areas, such as the humanities....

  7. Ergonomic guidelines for using notebook personal computers. Technical Committee on Human-Computer Interaction, International Ergonomics Association.

    Science.gov (United States)

    Saito, S; Piccoli, B; Smith, M J; Sotoyama, M; Sweitzer, G; Villanueva, M B; Yoshitake, R

    2000-10-01

    In the 1980's, the visual display terminal (VDT) was introduced in workplaces of many countries. Soon thereafter, an upsurge in reported cases of related health problems, such as musculoskeletal disorders and eyestrain, was seen. Recently, the flat panel display or notebook personal computer (PC) became the most remarkable feature in modern workplaces with VDTs and even in homes. A proactive approach must be taken to avert foreseeable ergonomic and occupational health problems from the use of this new technology. Because of its distinct physical and optical characteristics, the ergonomic requirements for notebook PCs in terms of machine layout, workstation design, lighting conditions, among others, should be different from the CRT-based computers. The Japan Ergonomics Society (JES) technical committee came up with a set of guidelines for notebook PC use following exploratory discussions that dwelt on its ergonomic aspects. To keep in stride with this development, the Technical Committee on Human-Computer Interaction under the auspices of the International Ergonomics Association worked towards the international issuance of the guidelines. This paper unveils the result of this collaborative effort.

  8. HumanComputer Systems Interaction Backgrounds and Applications 2 Part 2

    CERN Document Server

    Kulikowski, Juliusz; Mroczek, Teresa

    2012-01-01

    This volume of the book contains a collection of chapters selected from the papers which originally (in shortened form) have been presented at the 3rd International Conference on Human-Systems Interaction held in Rzeszow, Poland, in 2010. The chapters are divided into five sections concerning: IV. Environment monitoring and robotic systems, V. Diagnostic systems, VI. Educational Systems, and VII. General Problems. The novel concepts and realizations of humanoid robots, talking robots and orthopedic surgical robots, as well as those of direct brain-computer interface  are examples of particularly interesting topics presented in Sec. VI. In Sec. V the problems of  skin cancer recognition, colonoscopy diagnosis, and brain strokes diagnosis as well as more general problems of ontology design for  medical diagnostic knowledge are presented. Example of an industrial diagnostic system and a concept of new algorithm for edges detection in computer-analyzed images  are also presented in this Section. Among the edu...

  9. A truly human interface: Interacting face-to-face with someone whose words are determined by a computer program

    Directory of Open Access Journals (Sweden)

    Kevin eCorti

    2015-05-01

    Full Text Available We use speech shadowing to create situations wherein people converse in person with a human whose words are determined by a conversational agent computer program. Speech shadowing involves a person (the shadower repeating vocal stimuli originating from a separate communication source in real-time. Humans shadowing for conversational agent sources (e.g., chat bots become hybrid agents (echoborgs capable of face-to-face interlocution. We report three studies that investigated people’s experiences interacting with echoborgs and the extent to which echoborgs pass as autonomous humans. First, participants in a Turing Test spoke with a chat bot via either a text interface or an echoborg. Human shadowing did not improve the chat bot’s chance of passing but did increase interrogators’ ratings of how human-like the chat bot seemed. In our second study, participants had to decide whether their interlocutor produced words generated by a chat bot or simply pretended to be one. Compared to those who engaged a text interface, participants who engaged an echoborg were more likely to perceive their interlocutor as pretending to be a chat bot. In our third study, participants were naïve to the fact that their interlocutor produced words generated by a chat bot. Unlike those who engaged a text interface, the vast majority of participants who engaged an echoborg neither sensed nor suspected a robotic interaction. These findings have implications for android science, the Turing Test paradigm, and human-computer interaction. The human body, as the delivery mechanism of communication, fundamentally alters the social psychological dynamics of interactions with machine intelligence.

  10. Investigation and evaluation into the usability of human-computer interfaces using a typical CAD system

    Energy Technology Data Exchange (ETDEWEB)

    Rickett, J D

    1987-01-01

    This research program covers three topics relating to the human-computer interface namely, voice recognition, tools and techniques for evaluation, and user and interface modeling. An investigation into the implementation of voice-recognition technologies examines how voice recognizers may be evaluated in commercial software. A prototype system was developed with the collaboration of FEMVIEW Ltd. (marketing a CAD package). A theoretical approach to evaluation leads to the hypothesis that human-computer interaction is affected by personality, influencing types of dialogue, preferred methods for providing helps, etc. A user model based on personality traits, or habitual-behavior patterns (HBP) is presented. Finally, a practical framework is provided for the evaluation of human-computer interfaces. It suggests that evaluation is an integral part of design and that the iterative use of evaluation techniques throughout the conceptualization, design, implementation and post-implementation stages will ensure systems that satisfy the needs of the users and fulfill the goal of usability.

  11. A comparative analysis of soft computing techniques for gene prediction.

    Science.gov (United States)

    Goel, Neelam; Singh, Shailendra; Aseri, Trilok Chand

    2013-07-01

    The rapid growth of genomic sequence data for both human and nonhuman species has made analyzing these sequences, especially predicting genes in them, very important and is currently the focus of many research efforts. Beside its scientific interest in the molecular biology and genomics community, gene prediction is of considerable importance in human health and medicine. A variety of gene prediction techniques have been developed for eukaryotes over the past few years. This article reviews and analyzes the application of certain soft computing techniques in gene prediction. First, the problem of gene prediction and its challenges are described. These are followed by different soft computing techniques along with their application to gene prediction. In addition, a comparative analysis of different soft computing techniques for gene prediction is given. Finally some limitations of the current research activities and future research directions are provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Brain-Computer Interfaces. Applying our Minds to Human-Computer Interaction

    NARCIS (Netherlands)

    Tan, Desney S.; Nijholt, Antinus

    2010-01-01

    For generations, humans have fantasized about the ability to create devices that can see into a person’s mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science

  13. Safety Metrics for Human-Computer Controlled Systems

    Science.gov (United States)

    Leveson, Nancy G; Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  14. The development of human behavior analysis techniques

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Lee, Yong Hee; Park, Geun Ok; Cheon, Se Woo; Suh, Sang Moon; Oh, In Suk; Lee, Hyun Chul; Park, Jae Chang.

    1997-07-01

    In this project, which is to study on man-machine interaction in Korean nuclear power plants, we developed SACOM (Simulation Analyzer with a Cognitive Operator Model), a tool for the assessment of task performance in the control rooms using software simulation, and also develop human error analysis and application techniques. SACOM was developed to assess operator's physical workload, workload in information navigation at VDU workstations, and cognitive workload in procedural tasks. We developed trip analysis system including a procedure based on man-machine interaction analysis system including a procedure based on man-machine interaction analysis and a classification system. We analyzed a total of 277 trips occurred from 1978 to 1994 to produce trip summary information, and for 79 cases induced by human errors time-lined man-machine interactions. The INSTEC, a database system of our analysis results, was developed. The MARSTEC, a multimedia authoring and representation system for trip information, was also developed, and techniques for human error detection in human factors experiments were established. (author). 121 refs., 38 tabs., 52 figs

  15. The development of human behavior analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Lee, Yong Hee; Park, Geun Ok; Cheon, Se Woo; Suh, Sang Moon; Oh, In Suk; Lee, Hyun Chul; Park, Jae Chang

    1997-07-01

    In this project, which is to study on man-machine interaction in Korean nuclear power plants, we developed SACOM (Simulation Analyzer with a Cognitive Operator Model), a tool for the assessment of task performance in the control rooms using software simulation, and also develop human error analysis and application techniques. SACOM was developed to assess operator`s physical workload, workload in information navigation at VDU workstations, and cognitive workload in procedural tasks. We developed trip analysis system including a procedure based on man-machine interaction analysis system including a procedure based on man-machine interaction analysis and a classification system. We analyzed a total of 277 trips occurred from 1978 to 1994 to produce trip summary information, and for 79 cases induced by human errors time-lined man-machine interactions. The INSTEC, a database system of our analysis results, was developed. The MARSTEC, a multimedia authoring and representation system for trip information, was also developed, and techniques for human error detection in human factors experiments were established. (author). 121 refs., 38 tabs., 52 figs.

  16. Brain Computer Interfaces for Enhanced Interaction with Mobile Robot Agents

    Science.gov (United States)

    2016-07-27

    SECURITY CLASSIFICATION OF: Brain Computer Interfaces (BCIs) show great potential in allowing humans to interact with computational environments in a...Distribution Unlimited UU UU UU UU 27-07-2016 17-Sep-2013 16-Sep-2014 Final Report: Brain Computer Interfaces for Enhanced Interactions with Mobile Robot...published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Brain Computer Interfaces for Enhanced

  17. A parallel graded-mesh FDTD algorithm for human-antenna interaction problems.

    Science.gov (United States)

    Catarinucci, Luca; Tarricone, Luciano

    2009-01-01

    The finite difference time domain method (FDTD) is frequently used for the numerical solution of a wide variety of electromagnetic (EM) problems and, among them, those concerning human exposure to EM fields. In many practical cases related to the assessment of occupational EM exposure, large simulation domains are modeled and high space resolution adopted, so that strong memory and central processing unit power requirements have to be satisfied. To better afford the computational effort, the use of parallel computing is a winning approach; alternatively, subgridding techniques are often implemented. However, the simultaneous use of subgridding schemes and parallel algorithms is very new. In this paper, an easy-to-implement and highly-efficient parallel graded-mesh (GM) FDTD scheme is proposed and applied to human-antenna interaction problems, demonstrating its appropriateness in dealing with complex occupational tasks and showing its capability to guarantee the advantages of a traditional subgridding technique without affecting the parallel FDTD performance.

  18. Brain-Computer Interfaces Applying Our Minds to Human-computer Interaction

    CERN Document Server

    Tan, Desney S

    2010-01-01

    For generations, humans have fantasized about the ability to create devices that can see into a person's mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science fiction stories. Recent advances in cognitive neuroscience and brain imaging technologies have started to turn these myths into a reality, and are providing us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that monitor physical p

  19. Interaction of promethazine and adiphenine to human hemoglobin: A comparative spectroscopic and computational analysis

    Science.gov (United States)

    Maurya, Neha; ud din Parray, Mehraj; Maurya, Jitendra Kumar; Kumar, Amit; Patel, Rajan

    2018-06-01

    The binding nature of amphiphilic drugs viz. promethazine hydrochloride (PMT) and adiphenine hydrochloride (ADP), with human hemoglobin (Hb) was unraveled by fluorescence, absorbance, time resolved fluorescence, fluorescence resonance energy transfer (FRET) and circular dichroism (CD) spectral techniques in combination with molecular docking and molecular dynamic simulation methods. The steady state fluorescence spectra indicated that both PMT and ADP quenches the fluorescence of Hb through static quenching mechanism which was further confirmed by time resolved fluorescence spectra. The UV-Vis spectroscopy suggested ground state complex formation. The activation energy (Ea) was observed more in the case of Hb-ADP than Hb-PMT interaction system. The FRET result indicates the high probability of energy transfer from β Trp37 residue of Hb to the PMT (r = 2.02 nm) and ADP (r = 2.33 nm). The thermodynamic data reveal that binding of PMT with Hb are exothermic in nature involving hydrogen bonding and van der Waal interaction whereas in the case of ADP hydrophobic forces play the major role and binding process is endothermic in nature. The CD results show that both PMT and ADP, induced secondary structural changes of Hb and unfold the protein by losing a large helical content while the effect is more pronounced with ADP. Additionally, we also utilized computational approaches for deep insight into the binding of these drugs with Hb and the results are well matched with our experimental results.

  20. Human computer confluence applied in healthcare and rehabilitation.

    Science.gov (United States)

    Viaud-Delmon, Isabelle; Gaggioli, Andrea; Ferscha, Alois; Dunne, Stephen

    2012-01-01

    Human computer confluence (HCC) is an ambitious research program studying how the emerging symbiotic relation between humans and computing devices can enable radically new forms of sensing, perception, interaction, and understanding. It is an interdisciplinary field, bringing together researches from horizons as various as pervasive computing, bio-signals processing, neuroscience, electronics, robotics, virtual & augmented reality, and provides an amazing potential for applications in medicine and rehabilitation.

  1. Institutionalizing human-computer interaction for global health.

    Science.gov (United States)

    Gulliksen, Jan

    2017-06-01

    Digitalization is the societal change process in which new ICT-based solutions bring forward completely new ways of doing things, new businesses and new movements in the society. Digitalization also provides completely new ways of addressing issues related to global health. This paper provides an overview of the field of human-computer interaction (HCI) and in what way the field has contributed to international development in different regions of the world. Additionally, it outlines the United Nations' new sustainability goals from December 2015 and what these could contribute to the development of global health and its relationship to digitalization. Finally, it argues why and how HCI could be adopted and adapted to fit the contextual needs, the need for localization and for the development of new digital innovations. The research methodology is mostly qualitative following an action research paradigm in which the actual change process that the digitalization is evoking is equally important as the scientific conclusions that can be drawn. In conclusion, the paper argues that digitalization is fundamentally changing the society through the development and use of digital technologies and may have a profound effect on the digital development of every country in the world. But it needs to be developed based on local practices, it needs international support and to not be limited by any technological constraints. Particularly digitalization to support global health requires a profound understanding of the users and their context, arguing for user-centred systems design methodologies as particularly suitable.

  2. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    Science.gov (United States)

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

  3. Computations and interaction

    NARCIS (Netherlands)

    Baeten, J.C.M.; Luttik, S.P.; Tilburg, van P.J.A.; Natarajan, R.; Ojo, A.

    2011-01-01

    We enhance the notion of a computation of the classical theory of computing with the notion of interaction. In this way, we enhance a Turing machine as a model of computation to a Reactive Turing Machine that is an abstract model of a computer as it is used nowadays, always interacting with the user

  4. Une approche pragmatique cognitive de l'interaction personne/système informatisé A Cognitive Pragmatic Approach of Human/Computer Interaction

    Directory of Open Access Journals (Sweden)

    Madeleine Saint-Pierre

    1998-06-01

    Full Text Available Dans cet article, nous proposons une approche inférentielle de l'interaction humain/ordinateur. C'est par la prise en compte de l'activité cognitive de l'utilisateur pendant son travail avec un système que nous voulons comprendre ce type d'interaction. Ceci mènera à une véritable évaluation des interfaces/utilisateurs et pourra servir de guide pour des interfaces en développement. Nos analyses décrivent le processus inférentiel impliqué dans le contexte dynamique d'exécution de tâche, grâce à une catégorisation de l'activité cognitive issue des verbalisations recueillies auprès d'utilisateurs qui " pensent à haute voix " en travaillant. Nous présentons des instruments méthodologiques mis au point dans notre recherche pour l'analyses et la catégorisation des protocoles. Les résultats sont interprétés dans le cadre de la théorie de la pertinence de Sperber et Wilson (1995 en termes d'effort cognitif dans le traitement des objets (linguistique, iconique, graphique... apparaissant à l'écran et d'effet cognitif de ces derniers. Cette approche est généralisable à tout autre contexte d'interaction humain/ordinateur comme, par exemple, le télé-apprentissage.This article proposes an inferential approach for the study of human/computer interaction. It is by taking into account the user's cognitive activity while working at a computer that we propose to understand this interaction. This approach leads to a real user/interface evaluation and, hopefully, will serve as guidelines for the design of new interfaces. Our analysis describe the inferential process involved in the dynamics of task performance. The cognitive activity of the user is grasped by the mean of a " thinking aloud " method through which the user is asked to verbalize while working at the computer. Tools developped by our research team for the categorization of the verbal protocols are presented. The results are interpreted within the relevance theory

  5. Prediction of Human Drug Targets and Their Interactions Using Machine Learning Methods: Current and Future Perspectives.

    Science.gov (United States)

    Nath, Abhigyan; Kumari, Priyanka; Chaube, Radha

    2018-01-01

    Identification of drug targets and drug target interactions are important steps in the drug-discovery pipeline. Successful computational prediction methods can reduce the cost and time demanded by the experimental methods. Knowledge of putative drug targets and their interactions can be very useful for drug repurposing. Supervised machine learning methods have been very useful in drug target prediction and in prediction of drug target interactions. Here, we describe the details for developing prediction models using supervised learning techniques for human drug target prediction and their interactions.

  6. Learning to Detect Human-Object Interactions

    KAUST Repository

    Chao, Yu-Wei; Liu, Yunfan; Liu, Xieyang; Zeng, Huayi; Deng, Jia

    2017-01-01

    In this paper we study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. We propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN), a novel DNN-based framework for HOI detection. At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. We validate the effectiveness of our HO-RCNN using HICO-DET. Experiments demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.

  7. Learning to Detect Human-Object Interactions

    KAUST Repository

    Chao, Yu-Wei

    2017-02-17

    In this paper we study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. We propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN), a novel DNN-based framework for HOI detection. At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. We validate the effectiveness of our HO-RCNN using HICO-DET. Experiments demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.

  8. Human activity recognition and prediction

    CERN Document Server

    2016-01-01

    This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discussed give readers tools that provide a significant improvement over existing methodologies of video content understanding by taking advantage of activity recognition. It links multiple popular research fields in computer vision, machine learning, human-centered computing, human-computer interaction, image classification, and pattern recognition. In addition, the book includes several key chapters covering multiple emerging topics in the field. Contributed by top experts and practitioners, the chapters present key topics from different angles and blend both methodology and application, composing a solid overview of the human activity recognition techniques. .

  9. Cognition beyond the brain computation, interactivity and human artifice

    CERN Document Server

    Cowley, Stephen J

    2013-01-01

    Arguing that a collective dimension has given cognitive flexibility to human intelligence, this book shows that traditional cognitive psychology underplays the role of bodies, dialogue, diagrams, tools, talk, customs, habits, computers and cultural practices.

  10. Human agency beliefs influence behaviour during virtual social interactions.

    Science.gov (United States)

    Caruana, Nathan; Spirou, Dean; Brock, Jon

    2017-01-01

    In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an "intentional stance" by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants' behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative "joint attention" game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other's eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm ("Computer" condition). The other half were misled into believing that the virtual character was controlled by a second participant in another room ("Human" condition). Those in the "Human" condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the "Computer" condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect on the achievement of the application's goals.

  11. Overview Electrotactile Feedback for Enhancing Human Computer Interface

    Science.gov (United States)

    Pamungkas, Daniel S.; Caesarendra, Wahyu

    2018-04-01

    To achieve effective interaction between a human and a computing device or machine, adequate feedback from the computing device or machine is required. Recently, haptic feedback is increasingly being utilised to improve the interactivity of the Human Computer Interface (HCI). Most existing haptic feedback enhancements aim at producing forces or vibrations to enrich the user’s interactive experience. However, these force and/or vibration actuated haptic feedback systems can be bulky and uncomfortable to wear and only capable of delivering a limited amount of information to the user which can limit both their effectiveness and the applications they can be applied to. To address this deficiency, electrotactile feedback is used. This involves delivering haptic sensations to the user by electrically stimulating nerves in the skin via electrodes placed on the surface of the skin. This paper presents a review and explores the capability of electrotactile feedback for HCI applications. In addition, a description of the sensory receptors within the skin for sensing tactile stimulus and electric currents alsoseveral factors which influenced electric signal to transmit to the brain via human skinare explained.

  12. The Next Wave: Humans, Computers, and Redefining Reality

    Science.gov (United States)

    Little, William

    2018-01-01

    The Augmented/Virtual Reality (AVR) Lab at KSC is dedicated to " exploration into the growing computer fields of Extended Reality and the Natural User Interface (it is) a proving ground for new technologies that can be integrated into future NASA projects and programs." The topics of Human Computer Interface, Human Computer Interaction, Augmented Reality, Virtual Reality, and Mixed Reality are defined; examples of work being done in these fields in the AVR Lab are given. Current new and future work in Computer Vision, Speech Recognition, and Artificial Intelligence are also outlined.

  13. Cloud computing and digital media fundamentals, techniques, and applications

    CERN Document Server

    Li, Kuan-Ching; Shih, Timothy K

    2014-01-01

    Cloud Computing and Digital Media: Fundamentals, Techniques, and Applications presents the fundamentals of cloud and media infrastructure, novel technologies that integrate digital media with cloud computing, and real-world applications that exemplify the potential of cloud computing for next-generation digital media. It brings together technologies for media/data communication, elastic media/data storage, security, authentication, cross-network media/data fusion, interdevice media interaction/reaction, data centers, PaaS, SaaS, and more.The book covers resource optimization for multimedia clo

  14. Human-computer interaction for alert warning and attention allocation systems of the multimodal watchstation

    Science.gov (United States)

    Obermayer, Richard W.; Nugent, William A.

    2000-11-01

    The SPAWAR Systems Center San Diego is currently developing an advanced Multi-Modal Watchstation (MMWS); design concepts and software from this effort are intended for transition to future United States Navy surface combatants. The MMWS features multiple flat panel displays and several modes of user interaction, including voice input and output, natural language recognition, 3D audio, stylus and gestural inputs. In 1999, an extensive literature review was conducted on basic and applied research concerned with alerting and warning systems. After summarizing that literature, a human computer interaction (HCI) designer's guide was prepared to support the design of an attention allocation subsystem (AAS) for the MMWS. The resultant HCI guidelines are being applied in the design of a fully interactive AAS prototype. An overview of key findings from the literature review, a proposed design methodology with illustrative examples, and an assessment of progress made in implementing the HCI designers guide are presented.

  15. Situated dialog in speech-based human-computer interaction

    CERN Document Server

    Raux, Antoine; Lane, Ian; Misu, Teruhisa

    2016-01-01

    This book provides a survey of the state-of-the-art in the practical implementation of Spoken Dialog Systems for applications in everyday settings. It includes contributions on key topics in situated dialog interaction from a number of leading researchers and offers a broad spectrum of perspectives on research and development in the area. In particular, it presents applications in robotics, knowledge access and communication and covers the following topics: dialog for interacting with robots; language understanding and generation; dialog architectures and modeling; core technologies; and the analysis of human discourse and interaction. The contributions are adapted and expanded contributions from the 2014 International Workshop on Spoken Dialog Systems (IWSDS 2014), where researchers and developers from industry and academia alike met to discuss and compare their implementation experiences, analyses and empirical findings.

  16. A Software Framework for Multimodal Human-Computer Interaction Systems

    NARCIS (Netherlands)

    Shen, Jie; Pantic, Maja

    2009-01-01

    This paper describes a software framework we designed and implemented for the development and research in the area of multimodal human-computer interface. The proposed framework is based on publish / subscribe architecture, which allows developers and researchers to conveniently configure, test and

  17. Translator-computer interaction in action

    DEFF Research Database (Denmark)

    Bundgaard, Kristine; Christensen, Tina Paulsen; Schjoldager, Anne

    2016-01-01

    perspective, this paper investigates the relationship between machines and humans in the field of translation, analysing a CAT process in which machine-translation (MT) technology was integrated into a translation-memory (TM) suite. After a review of empirical research into the impact of CAT tools......Though we lack empirically-based knowledge of the impact of computer-aided translation (CAT) tools on translation processes, it is generally agreed that all professional translators are now involved in some kind of translator-computer interaction (TCI), using O’Brien’s (2012) term. Taking a TCI......, the study indicates that the tool helps the translator conform to project and customer requirements....

  18. USING OLFACTORY DISPLAYS AS A NONTRADITIONAL INTERFACE IN HUMAN COMPUTER INTERACTION

    Directory of Open Access Journals (Sweden)

    Alper Efe

    2017-07-01

    Full Text Available Smell has its limitations and disadvantages as a display medium, but it also has its strengths and many have recognized its potential. At present, in communications and virtual technologies, smell is either forgotten or improperly stimulated, because non controlled odorants present in the physical space surrounding the user. Nonetheless a controlled presentation of olfactory information can give advantages in various application fields. Therefore, two enabling technologies, electronic noses and especially olfactory displays are reviewed. Scenarios of usage are discussed together with relevant psycho-physiological issues. End-to-end systems including olfactory interfaces are quantitatively characterised under many respects. Recent works done by the authors on field are reported. The article will touch briefly on the control of scent emissions; an important factor to consider when building scented computer systems. As a sample application SUBSMELL system investigated. A look at areas of human computer interaction where olfaction output may prove useful will be presented. The article will finish with some brief conclusions and discuss some shortcomings and gaps of the topic. In particular, the addition of olfactory cues to a virtual environment increased the user's sense of presence and memory of the environment. Also, this article discusses the educational aspect of the subsmell systems.

  19. My4Sight: A Human Computation Platform for Improving Flu Predictions

    OpenAIRE

    Akupatni, Vivek Bharath

    2015-01-01

    While many human computation (human-in-the-loop) systems exist in the field of Artificial Intelligence (AI) to solve problems that can't be solved by computers alone, comparatively fewer platforms exist for collecting human knowledge, and evaluation of various techniques for harnessing human insights in improving forecasting models for infectious diseases, such as Influenza and Ebola. In this thesis, we present the design and implementation of My4Sight, a human computation system develope...

  20. Human Computation

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    What if people could play computer games and accomplish work without even realizing it? What if billions of people collaborated to solve important problems for humanity or generate training data for computers? My work aims at a general paradigm for doing exactly that: utilizing human processing power to solve computational problems in a distributed manner. In particular, I focus on harnessing human time and energy for addressing problems that computers cannot yet solve. Although computers have advanced dramatically in many respects over the last 50 years, they still do not possess the basic conceptual intelligence or perceptual capabilities...

  1. Techniques for optimizing human-machine information transfer related to real-time interactive display systems

    Science.gov (United States)

    Granaas, Michael M.; Rhea, Donald C.

    1989-01-01

    In recent years the needs of ground-based researcher-analysts to access real-time engineering data in the form of processed information has expanded rapidly. Fortunately, the capacity to deliver that information has also expanded. The development of advanced display systems is essential to the success of a research test activity. Those developed at the National Aeronautics and Space Administration (NASA), Western Aeronautical Test Range (WATR), range from simple alphanumerics to interactive mapping and graphics. These unique display systems are designed not only to meet basic information display requirements of the user, but also to take advantage of techniques for optimizing information display. Future ground-based display systems will rely heavily not only on new technologies, but also on interaction with the human user and the associated productivity with that interaction. The psychological abilities and limitations of the user will become even more important in defining the difference between a usable and a useful display system. This paper reviews the requirements for development of real-time displays; the psychological aspects of design such as the layout, color selection, real-time response rate, and interactivity of displays; and an analysis of some existing WATR displays.

  2. SLIM-MAUD - a computer based technique for human reliability assessment

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1985-01-01

    The Success Likelihood Index Methodology (SLIM) is a widely applicable technique which can be used to assess human error probabilities in both proceduralized and cognitive tasks (i.e. those involving decision making, problem solving, etc.). It assumes that expert assessors are able to evaluate the relative importance (or weights) of different factors called Performance Shaping Factors (PSFs), in determining the likelihood of error for the situations being assessed. Typical PSFs are the extent to which good procedures are available, operators are adequately trained, the man-machine interface is well designed, etc. If numerical ratings are made of the PSFs for the specific tasks being evaluated, these can be combined with the weights to give a numerical index, called the Success Likelihood Index (SLI). The SLI represents, in numerical form, the overall assessment of the experts of the likelihood of task success. The SLI can be subsequently transformed to a corresponding human error probability (HEP) estimate. The latest form of the SLIM technique is implemented using a microcomputer based system called MAUD (Multi-Attribute Utility Decomposition), the resulting technique being called SLIM-MAUD. A detailed description of the SLIM-MAUD technique and case studies of applications are available. An illustrative example of the application of SLIM-MAUD in probabilistic risk assessment is given

  3. Higher-order techniques in computational electromagnetics

    CERN Document Server

    Graglia, Roberto D

    2016-01-01

    Higher-Order Techniques in Computational Electromagnetics explains 'high-order' techniques that can significantly improve the accuracy, computational cost, and reliability of computational techniques for high-frequency electromagnetics, such as antennas, microwave devices and radar scattering applications.

  4. Intelligent Interaction for Human-Friendly Service Robot in Smart House Environment

    Directory of Open Access Journals (Sweden)

    Z. Zenn Bien

    2008-01-01

    Full Text Available The smart house under consideration is a service-integrated complex system to assist older persons and/or people with disabilities. The primary goal of the system is to achieve independent living by various robotic devices and systems. Such a system is treated as a human-in-the loop system in which human- robot interaction takes place intensely and frequently. Based on our experiences of having designed and implemented a smart house environment, called Intelligent Sweet Home (ISH, we present a framework of realizing human-friendly HRI (human-robot interaction module with various effective techniques of computational intelligence. More specifically, we partition the robotic tasks of HRI module into three groups in consideration of the level of specificity, fuzziness or uncertainty of the context of the system, and present effective interaction method for each case. We first show a task planning algorithm and its architecture to deal with well-structured tasks autonomously by a simplified set of commands of the user instead of inconvenient manual operations. To provide with capability of interacting in a human-friendly way in a fuzzy context, it is proposed that the robot should make use of human bio-signals as input of the HRI module as shown in a hand gesture recognition system, called a soft remote control system. Finally we discuss a probabilistic fuzzy rule-based life-long learning system, equipped with intention reading capability by learning human behavioral patterns, which is introduced as a solution in uncertain and time-varying situations.

  5. Efficient techniques for wave-based sound propagation in interactive applications

    Science.gov (United States)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  6. Rethinking Human-Centered Computing: Finding the Customer and Negotiated Interactions at the Airport

    Science.gov (United States)

    Wales, Roxana; O'Neill, John; Mirmalek, Zara

    2003-01-01

    The breakdown in the air transportation system over the past several years raises an interesting question for researchers: How can we help improve the reliability of airline operations? In offering some answers to this question, we make a statement about Huuman-Centered Computing (HCC). First we offer the definition that HCC is a multi-disciplinary research and design methodology focused on supporting humans as they use technology by including cognitive and social systems, computational tools and the physical environment in the analysis of organizational systems. We suggest that a key element in understanding organizational systems is that there are external cognitive and social systems (customers) as well as internal cognitive and social systems (employees) and that they interact dynamically to impact the organization and its work. The design of human-centered intelligent systems must take this outside-inside dynamic into account. In the past, the design of intelligent systems has focused on supporting the work and improvisation requirements of employees but has often assumed that customer requirements are implicitly satisfied by employee requirements. Taking a customer-centric perspective provides a different lens for understanding this outside-inside dynamic, the work of the organization and the requirements of both customers and employees In this article we will: 1) Demonstrate how the use of ethnographic methods revealed the important outside-inside dynamic in an airline, specifically the consequential relationship between external customer requirements and perspectives and internal organizational processes and perspectives as they came together in a changing environment; 2) Describe how taking a customer centric perspective identifies places where the impact of the outside-inside dynamic is most critical and requires technology that can be adaptive; 3) Define and discuss the place of negotiated interactions in airline operations, identifying how these

  7. Efficient Computation of Casimir Interactions between Arbitrary 3D Objects

    International Nuclear Information System (INIS)

    Reid, M. T. Homer; Rodriguez, Alejandro W.; White, Jacob; Johnson, Steven G.

    2009-01-01

    We introduce an efficient technique for computing Casimir energies and forces between objects of arbitrarily complex 3D geometries. In contrast to other recently developed methods, our technique easily handles nonspheroidal, nonaxisymmetric objects, and objects with sharp corners. Using our new technique, we obtain the first predictions of Casimir interactions in a number of experimentally relevant geometries, including crossed cylinders and tetrahedral nanoparticles.

  8. Seamless interaction with scrolling contents on eyewear computers using optokinetic nystagmus eye movements

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Mardanbegi, Diako

    2016-01-01

    In this paper we investigate the utility of an eye-based interaction technique (EyeGrip) for seamless interaction with scrolling contents on eyewear computers. EyeGrip uses Optokinetic Nystagmus (OKN) eye movements to detect object of interest among a set of scrolling contents and automatically s...... a well-known input device. Moreover, the accuracy of the EyeGrip method for menu item selection was higher while in the Facebook study participants found keyboard more accurate.......In this paper we investigate the utility of an eye-based interaction technique (EyeGrip) for seamless interaction with scrolling contents on eyewear computers. EyeGrip uses Optokinetic Nystagmus (OKN) eye movements to detect object of interest among a set of scrolling contents and automatically...... stops scrolling for the user. We empirically evaluated the usability of EyeGrip in two different applications for eyewear computers: 1) a menu scroll viewer and 2) a Facebook newsfeed reader. The results of our study showed that the EyeGrip technique performs as good as keyboard which has long been...

  9. Analytical techniques for the study of polyphenol-protein interactions.

    Science.gov (United States)

    Poklar Ulrih, Nataša

    2017-07-03

    This mini review focuses on advances in biophysical techniques to study polyphenol interactions with proteins. Polyphenols have many beneficial pharmacological properties, as a result of which they have been the subject of intensive studies. The most conventional techniques described here can be divided into three groups: (i) methods used for screening (in-situ methods); (ii) methods used to gain insight into the mechanisms of polyphenol-protein interactions; and (iii) methods used to study protein aggregation and precipitation. All of these methods used to study polyphenol-protein interactions are based on modifications to the physicochemical properties of the polyphenols or proteins after binding/complex formation in solution. To date, numerous review articles have been published in the field of polyphenols. This review will give a brief insight in computational methods and biosensors and cell-based methods, spectroscopic methods including fluorescence emission, UV-vis adsorption, circular dichroism, Fourier transform infrared and mass spectrometry, nuclear magnetic resonance, X-ray diffraction, and light scattering techniques including small-angle X-ray scattering and small-angle neutron scattering, and calorimetric techniques (isothermal titration calorimetry and differential scanning calorimetry), microscopy, the techniques which have been successfully used for polyphenol-protein interactions. At the end the new methods based on single molecule detection with high potential to study polyphenol-protein interactions will be presented. The advantages and disadvantages of each technique will be discussed as well as the thermodynamic, kinetic or structural parameters, which can be obtained. The other relevant biophysical experimental techniques that have proven to be valuable, such electrochemical methods, hydrodynamic techniques and chromatographic techniques will not be described here.

  10. A Human/Computer Learning Network to Improve Biodiversity Conservation and Research

    OpenAIRE

    Kelling, Steve; Gerbracht, Jeff; Fink, Daniel; Lagoze, Carl; Wong, Weng-Keen; Yu, Jun; Damoulas, Theodoros; Gomes, Carla

    2012-01-01

    In this paper we describe eBird, a citizen-science project that takes advantage of the human observational capacity to identify birds to species, which is then used to accurately represent patterns of bird occurrences across broad spatial and temporal extents. eBird employs artificial intelligence techniques such as machine learning to improve data quality by taking advantage of the synergies between human computation and mechanical computation. We call this a Human-Computer Learning Network,...

  11. Neural correlate of human reciprocity in social interactions.

    Science.gov (United States)

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions.

  12. Neural correlate of human reciprocity in social interactions

    Directory of Open Access Journals (Sweden)

    Shiro eSakaiya

    2013-12-01

    Full Text Available Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human and strategy (random, tit-for-tat in repeated prisoner’s dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate and theory of mind (ToM regions (i.e., ventromedial prefrontal cortex [VMPFC] and precuneus. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (deactivation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during

  13. Interactive Computer Graphics

    Science.gov (United States)

    Kenwright, David

    2000-01-01

    Aerospace data analysis tools that significantly reduce the time and effort needed to analyze large-scale computational fluid dynamics simulations have emerged this year. The current approach for most postprocessing and visualization work is to explore the 3D flow simulations with one of a dozen or so interactive tools. While effective for analyzing small data sets, this approach becomes extremely time consuming when working with data sets larger than one gigabyte. An active area of research this year has been the development of data mining tools that automatically search through gigabyte data sets and extract the salient features with little or no human intervention. With these so-called feature extraction tools, engineers are spared the tedious task of manually exploring huge amounts of data to find the important flow phenomena. The software tools identify features such as vortex cores, shocks, separation and attachment lines, recirculation bubbles, and boundary layers. Some of these features can be extracted in a few seconds; others take minutes to hours on extremely large data sets. The analysis can be performed off-line in a batch process, either during or following the supercomputer simulations. These computations have to be performed only once, because the feature extraction programs search the entire data set and find every occurrence of the phenomena being sought. Because the important questions about the data are being answered automatically, interactivity is less critical than it is with traditional approaches.

  14. Soft computing techniques in engineering applications

    CERN Document Server

    Zhong, Baojiang

    2014-01-01

    The Soft Computing techniques, which are based on the information processing of biological systems are now massively used in the area of pattern recognition, making prediction & planning, as well as acting on the environment. Ideally speaking, soft computing is not a subject of homogeneous concepts and techniques; rather, it is an amalgamation of distinct methods that confirms to its guiding principle. At present, the main aim of soft computing is to exploit the tolerance for imprecision and uncertainty to achieve tractability, robustness and low solutions cost. The principal constituents of soft computing techniques are probabilistic reasoning, fuzzy logic, neuro-computing, genetic algorithms, belief networks, chaotic systems, as well as learning theory. This book covers contributions from various authors to demonstrate the use of soft computing techniques in various applications of engineering.  

  15. Cognitive engineering in the design of human-computer interaction and expert systems

    International Nuclear Information System (INIS)

    Salvendy, G.

    1987-01-01

    The 68 papers contributing to this book cover the following areas: Theories of Interface Design; Methodologies of Interface Design; Applications of Interface Design; Software Design; Human Factors in Speech Technology and Telecommunications; Design of Graphic Dialogues; Knowledge Acquisition for Knowledge-Based Systems; Design, Evaluation and Use of Expert Systems. This demonstrates the dual role of cognitive engineering. On the one hand cognitive engineering is utilized to design computing systems which are compatible with human cognition and can be effectively and be easily utilized by all individuals. On the other hand, cognitive engineering is utilized to transfer human cognition into the computer for the purpose of building expert systems. Two papers are of interest to INIS

  16. The Importance of Human-Computer Interaction in Radiology E-learning

    NARCIS (Netherlands)

    den Harder, Annemarie M; Frijlingh, Marissa; Ravesloot, Cécile J; Oosterbaan, Anne E; van der Gijp, Anouk

    2016-01-01

    With the development of cross-sectional imaging techniques and transformation to digital reading of radiological imaging, e-learning might be a promising tool in undergraduate radiology education. In this systematic review of the literature, we evaluate the emergence of image interaction

  17. HCIDL: Human-computer interface description language for multi-target, multimodal, plastic user interfaces

    Directory of Open Access Journals (Sweden)

    Lamia Gaouar

    2018-06-01

    Full Text Available From the human-computer interface perspectives, the challenges to be faced are related to the consideration of new, multiple interactions, and the diversity of devices. The large panel of interactions (touching, shaking, voice dictation, positioning … and the diversification of interaction devices can be seen as a factor of flexibility albeit introducing incidental complexity. Our work is part of the field of user interface description languages. After an analysis of the scientific context of our work, this paper introduces HCIDL, a modelling language staged in a model-driven engineering approach. Among the properties related to human-computer interface, our proposition is intended for modelling multi-target, multimodal, plastic interaction interfaces using user interface description languages. By combining plasticity and multimodality, HCIDL improves usability of user interfaces through adaptive behaviour by providing end-users with an interaction-set adapted to input/output of terminals and, an optimum layout. Keywords: Model driven engineering, Human-computer interface, User interface description languages, Multimodal applications, Plastic user interfaces

  18. Interactive computer-enhanced remote viewing system

    International Nuclear Information System (INIS)

    Tourtellott, J.A.; Wagner, J.F.

    1995-01-01

    Remediation activities such as decontamination and decommissioning (D ampersand D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths am clear of obstacles. This need for a task space model is most pronounced in the remediation of obsolete production facilities and underground storage tanks. Production facilities at many sites contain compact process machinery and systems that were used to produce weapons grade material. For many such systems, a complex maze of pipes (with potentially dangerous contents) must be removed, and this represents a significant D ampersand D challenge. In an analogous way, the underground storage tanks at sites such as Hanford represent a challenge because of their limited entry and the tumbled profusion of in-tank hardware. In response to this need, the Interactive Computer-Enhanced Remote Viewing System (ICERVS) is being designed as a software system to: (1) Provide a reliable geometric description of a robotic task space, and (2) Enable robotic remediation to be conducted more effectively and more economically than with available techniques. A system such as ICERVS is needed because of the problems discussed below

  19. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    Science.gov (United States)

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  20. Drum-mate: interaction dynamics and gestures in human-humanoid drumming experiments

    Science.gov (United States)

    Kose-Bagci, Hatice; Dautenhahn, Kerstin; Syrdal, Dag S.; Nehaniv, Chrystopher L.

    2010-06-01

    This article investigates the role of interaction kinesics in human-robot interaction (HRI). We adopted a bottom-up, synthetic approach towards interactive competencies in robots using simple, minimal computational models underlying the robot's interaction dynamics. We present two empirical, exploratory studies investigating a drumming experience with a humanoid robot (KASPAR) and a human. In the first experiment, the turn-taking behaviour of the humanoid is deterministic and the non-verbal gestures of the robot accompany its drumming to assess the impact of non-verbal gestures on the interaction. The second experiment studies a computational framework that facilitates emergent turn-taking dynamics, whereby the particular dynamics of turn-taking emerge from the social interaction between the human and the humanoid. The results from the HRI experiments are presented and analysed qualitatively (in terms of the participants' subjective experiences) and quantitatively (concerning the drumming performance of the human-robot pair). The results point out a trade-off between the subjective evaluation of the drumming experience from the perspective of the participants and the objective evaluation of the drumming performance. A certain number of gestures was preferred as a motivational factor in the interaction. The participants preferred the models underlying the robot's turn-taking which enable the robot and human to interact more and provide turn-taking closer to 'natural' human-human conversations, despite differences in objective measures of drumming behaviour. The results are consistent with the temporal behaviour matching hypothesis previously proposed in the literature which concerns the effect that the participants adapt their own interaction dynamics to the robot's.

  1. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    Science.gov (United States)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  2. Computational Approaches for Prediction of Pathogen-Host Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Esmaeil eNourani

    2015-02-01

    Full Text Available Infectious diseases are still among the major and prevalent health problems, mostly because of the drug resistance of novel variants of pathogens. Molecular interactions between pathogens and their hosts are the key part of the infection mechanisms. Novel antimicrobial therapeutics to fight drug resistance is only possible in case of a thorough understanding of pathogen-host interaction (PHI systems. Existing databases, which contain experimentally verified PHI data, suffer from scarcity of reported interactions due to the technically challenging and time consuming process of experiments. This has motivated many researchers to address the problem by proposing computational approaches for analysis and prediction of PHIs. The computational methods primarily utilize sequence information, protein structure and known interactions. Classic machine learning techniques are used when there are sufficient known interactions to be used as training data. On the opposite case, transfer and multi task learning methods are preferred. Here, we present an overview of these computational approaches for PHI prediction, discussing their weakness and abilities, with future directions.

  3. Survey on Chatbot Design Techniques in Speech Conversation Systems

    OpenAIRE

    Sameera A. Abdul-Kader; Dr. John Woods

    2015-01-01

    Human-Computer Speech is gaining momentum as a technique of computer interaction. There has been a recent upsurge in speech based search engines and assistants such as Siri, Google Chrome and Cortana. Natural Language Processing (NLP) techniques such as NLTK for Python can be applied to analyse speech, and intelligent responses can be found by designing an engine to provide appropriate human like responses. This type of programme is called a Chatbot, which is the focus of this study. This pap...

  4. Are Children with Autism More Responsive to Animated Characters? A Study of Interactions with Humans and Human-Controlled Avatars

    Science.gov (United States)

    Carter, Elizabeth J.; Williams, Diane L.; Hodgins, Jessica K.; Lehman, Jill F.

    2014-01-01

    Few direct comparisons have been made between the responsiveness of children with autism to computer-generated or animated characters and their responsiveness to humans. Twelve 4-to 8-year-old children with autism interacted with a human therapist; a human-controlled, interactive avatar in a theme park; a human actor speaking like the avatar; and…

  5. The mixed reality of things: emerging challenges for human-information interaction

    Science.gov (United States)

    Spicer, Ryan P.; Russell, Stephen M.; Rosenberg, Evan Suma

    2017-05-01

    Virtual and mixed reality technology has advanced tremendously over the past several years. This nascent medium has the potential to transform how people communicate over distance, train for unfamiliar tasks, operate in challenging environments, and how they visualize, interact, and make decisions based on complex data. At the same time, the marketplace has experienced a proliferation of network-connected devices and generalized sensors that are becoming increasingly accessible and ubiquitous. As the "Internet of Things" expands to encompass a predicted 50 billion connected devices by 2020, the volume and complexity of information generated in pervasive and virtualized environments will continue to grow exponentially. The convergence of these trends demands a theoretically grounded research agenda that can address emerging challenges for human-information interaction (HII). Virtual and mixed reality environments can provide controlled settings where HII phenomena can be observed and measured, new theories developed, and novel algorithms and interaction techniques evaluated. In this paper, we describe the intersection of pervasive computing with virtual and mixed reality, identify current research gaps and opportunities to advance the fundamental understanding of HII, and discuss implications for the design and development of cyber-human systems for both military and civilian use.

  6. Interactive displays natural human-interface technologies

    CERN Document Server

    Bhowmik, Achintya K

    2014-01-01

    One of the first books to provide an in-depth discussion of the technologies, applications and trends in the rapidly emerging field of interactive displays (touch, gesture & voice) The book will cover the technologies, applications and trends in the field of interactive displays, namely interfaces based on touch, gesture and voice and those using a combination of these technologies. The book will be split into 4 main parts with each being dedicated to a specific user interface. Part 1 ''Touch Interfaces'' will provide a review of the currently deployed touch-screen technologies and applications. It will also cover the recent developments towards achieving thinner, lightweight and cost-reduced touch screen panels in the future via integration of touch functionalities. Part 2 ''Gesture Interfaces'' will examine techniques and applications in stereoscopic 3D computer vision, structured-light 3D computer vision and time-of-flight 3D computer vision in gesture interfaces. Part 3 ''Voice Interfaces'' will revie...

  7. Quality of human-computer interaction - results of a national usability survey of hospital-IT in Germany

    Directory of Open Access Journals (Sweden)

    Bundschuh Bettina B

    2011-11-01

    Full Text Available Abstract Background Due to the increasing functionality of medical information systems, it is hard to imagine day to day work in hospitals without IT support. Therefore, the design of dialogues between humans and information systems is one of the most important issues to be addressed in health care. This survey presents an analysis of the current quality level of human-computer interaction of healthcare-IT in German hospitals, focused on the users' point of view. Methods To evaluate the usability of clinical-IT according to the design principles of EN ISO 9241-10 the IsoMetrics Inventory, an assessment tool, was used. The focus of this paper has been put on suitability for task, training effort and conformity with user expectations, differentiated by information systems. Effectiveness has been evaluated with the focus on interoperability and functionality of different IT systems. Results 4521 persons from 371 hospitals visited the start page of the study, while 1003 persons from 158 hospitals completed the questionnaire. The results show relevant variations between different information systems. Conclusions Specialised information systems with defined functionality received better assessments than clinical information systems in general. This could be attributed to the improved customisation of these specialised systems for specific working environments. The results can be used as reference data for evaluation and benchmarking of human computer engineering in clinical health IT context for future studies.

  8. Human-centered Computing: Toward a Human Revolution

    OpenAIRE

    Jaimes, Alejandro; Gatica-Perez, Daniel; Sebe, Nicu; Huang, Thomas S.

    2007-01-01

    Human-centered computing studies the design, development, and deployment of mixed-initiative human-computer systems. HCC is emerging from the convergence of multiple disciplines that are concerned both with understanding human beings and with the design of computational artifacts.

  9. A Perspective on Computational Human Performance Models as Design Tools

    Science.gov (United States)

    Jones, Patricia M.

    2010-01-01

    The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.

  10. Interactive computer-enhanced remote viewing system

    Energy Technology Data Exchange (ETDEWEB)

    Tourtellott, J.A.; Wagner, J.F. [Mechanical Technology Incorporated, Latham, NY (United States)

    1995-10-01

    Remediation activities such as decontamination and decommissioning (D&D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths are clear of obstacles. This report describes the development of an Interactive Computer-Enhanced Remote Viewing System (ICERVS), a software system to provide a reliable geometric description of a robotic task space, and enable robotic remediation to be conducted more effectively and more economically.

  11. Object recognition in images by human vision and computer vision

    NARCIS (Netherlands)

    Chen, Q.; Dijkstra, J.; Vries, de B.

    2010-01-01

    Object recognition plays a major role in human behaviour research in the built environment. Computer based object recognition techniques using images as input are challenging, but not an adequate representation of human vision. This paper reports on the differences in object shape recognition

  12. Twenty Years of Creativity Research in Human-Computer Interaction: Current State and Future Directions

    DEFF Research Database (Denmark)

    Frich Pedersen, Jonas; Biskjaer, Michael Mose; Dalsgaard, Peter

    2018-01-01

    Creativity has been a growing topic within the ACM community since the 1990s. However, no clear overview of this trend has been offered. We present a thorough survey of 998 creativity-related publications in the ACM Digital Library collected using keyword search to determine prevailing approaches......, topics, and characteristics of creativity-oriented Human-Computer Interaction (HCI) research. . A selected sample based on yearly citations yielded 221 publications, which were analyzed using constant comparison analysis. We found that HCI is almost exclusively responsible for creativity......-oriented publications; they focus on collaborative creativity rather than individual creativity; there is a general lack of definition of the term ‘creativity’; empirically based contributions are prevalent; and many publications focus on new tools, often developed by researchers. On this basis, we present three...

  13. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: investigating the fundamental forces of DNA-intercalator interactions.

    Science.gov (United States)

    Hohenstein, Edward G; Parrish, Robert M; Sherrill, C David; Turney, Justin M; Schaefer, Henry F

    2011-11-07

    Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.

  14. How should Fitts' Law be applied to human-computer interaction?

    Science.gov (United States)

    Gillan, D. J.; Holden, K.; Adam, S.; Rudisill, M.; Magee, L.

    1992-01-01

    The paper challenges the notion that any Fitts' Law model can be applied generally to human-computer interaction, and proposes instead that applying Fitts' Law requires knowledge of the users' sequence of movements, direction of movement, and typical movement amplitudes as well as target sizes. Two experiments examined a text selection task with sequences of controlled movements (point-click and point-drag). For the point-click sequence, a Fitts' Law model that used the diagonal across the text object in the direction of pointing (rather than the horizontal extent of the text object) as the target size provided the best fit for the pointing time data, whereas for the point-drag sequence, a Fitts' Law model that used the vertical size of the text object as the target size gave the best fit. Dragging times were fitted well by Fitts' Law models that used either the vertical or horizontal size of the terminal character in the text object. Additional results of note were that pointing in the point-click sequence was consistently faster than in the point-drag sequence, and that pointing in either sequence was consistently faster than dragging. The discussion centres around the need to define task characteristics before applying Fitts' Law to an interface design or analysis, analyses of pointing and of dragging, and implications for interface design.

  15. A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems

    Science.gov (United States)

    Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  16. Statistical and Computational Techniques in Manufacturing

    CERN Document Server

    2012-01-01

    In recent years, interest in developing statistical and computational techniques for applied manufacturing engineering has been increased. Today, due to the great complexity of manufacturing engineering and the high number of parameters used, conventional approaches are no longer sufficient. Therefore, in manufacturing, statistical and computational techniques have achieved several applications, namely, modelling and simulation manufacturing processes, optimization manufacturing parameters, monitoring and control, computer-aided process planning, etc. The present book aims to provide recent information on statistical and computational techniques applied in manufacturing engineering. The content is suitable for final undergraduate engineering courses or as a subject on manufacturing at the postgraduate level. This book serves as a useful reference for academics, statistical and computational science researchers, mechanical, manufacturing and industrial engineers, and professionals in industries related to manu...

  17. Developing Human-Computer Interface Models and Representation Techniques(Dialogue Management as an Integral Part of Software Engineering)

    OpenAIRE

    Hartson, H. Rex; Hix, Deborah; Kraly, Thomas M.

    1987-01-01

    The Dialogue Management Project at Virginia Tech is studying the poorly understood problem of human-computer dialogue development. This problem often leads to low usability in human-computer dialogues. The Dialogue Management Project approaches solutions to low usability in interfaces by addressing human-computer dialogue development as an integral and equal part of the total system development process. This project consists of two rather distinct, but dependent, parts. One is development of ...

  18. Transnational HCI: Humans, Computers and Interactions in Global Contexts

    DEFF Research Database (Denmark)

    Vertesi, Janet; Lindtner, Silvia; Shklovski, Irina

    2011-01-01

    , but as evolving in relation to global processes, boundary crossings, frictions and hybrid practices. In doing so, we expand upon existing research in HCI to consider the effects, implications for individuals and communities, and design opportunities in times of increased transnational interactions. We hope...... to broaden the conversation around the impact of technology in global processes by bringing together scholars from HCI and from related humanities, media arts and social sciences disciplines....

  19. Studying human-automation interactions: methodological lessons learned from the human-centred automation experiments 1997-2001

    International Nuclear Information System (INIS)

    Massaiu, Salvatore; Skjerve, Ann Britt Miberg; Skraaning, Gyrd Jr.; Strand, Stine; Waeroe, Irene

    2004-04-01

    This report documents the methodological lessons learned from the Human Centred Automation (HCA) programme both in terms of psychometric evaluation of the measurement techniques developed for human-automation interaction study, and in terms of the application of advanced statistical methods for analysis of experiments. The psychometric evaluation is based on data from the four experiments performed within the HCA programme. The result is a single-source reference text of measurement instruments for the study of human-automation interaction, part of which were specifically developed by the programme. The application of advanced statistical techniques is exemplified by additional analyses performed on the IPSN-HCA experiment of 1998. Special importance is given to the statistical technique Structural Equation Modeling, for the possibility it offers to advance, and empirically test, comprehensive explanations about human-automation interactions. The additional analyses of the IPSN-HCA experiment investigated how the operators formed judgments about their own performance. The issue is of substantive interest for human automation interaction research because the operators' over- or underestimation of their own performance could be seen as a symptom of human-machine mismatch, and a potential latent failure. These analyses concluded that it is the interplay between (1) the level of automation and several factors that determines the operators' bias in performance self-estimation: (2) the nature of the task, (3) the level of scenario complexity, and (4) the level of trust in the automatic system. A structural model that expresses the interplay of all these factors was empirically evaluated and was found able to provide a concise and elegant explanation of the intricate pattern of relationships between the identified factors. (Author)

  20. Interactive computer-enhanced remote viewing system

    International Nuclear Information System (INIS)

    Tourtellott, J.A.; Wagner, J.F.

    1995-01-01

    Remediation activities such as decontamination and decommissioning (D ampersand D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths are clear of obstacles. This report describes the development of an Interactive Computer-Enhanced Remote Viewing System (ICERVS), a software system to provide a reliable geometric description of a robotic task space, and enable robotic remediation to be conducted more effectively and more economically

  1. Granular computing and decision-making interactive and iterative approaches

    CERN Document Server

    Chen, Shyi-Ming

    2015-01-01

    This volume is devoted to interactive and iterative processes of decision-making– I2 Fuzzy Decision Making, in brief. Decision-making is inherently interactive. Fuzzy sets help realize human-machine communication in an efficient way by facilitating a two-way interaction in a friendly and transparent manner. Human-centric interaction is of paramount relevance as a leading guiding design principle of decision support systems.   The volume provides the reader with an updated and in-depth material on the conceptually appealing and practically sound methodology and practice of I2 Fuzzy Decision Making. The book engages a wealth of methods of fuzzy sets and Granular Computing, brings new concepts, architectures and practice of fuzzy decision-making providing the reader with various application studies.   The book is aimed at a broad audience of researchers and practitioners in numerous disciplines in which decision-making processes play a pivotal role and serve as a vehicle to produce solutions to existing prob...

  2. The development of human factors technologies -The development of human behaviour analysis techniques-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Lee, Yong Heui; Park, Keun Ok; Chun, Se Woo; Suh, Sang Moon; Park, Jae Chang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    In order to contribute to human error reduction through the studies on human-machine interaction in nuclear power plants, this project has objectives to develop SACOM(Simulation Analyzer with a Cognitive Operator Model) and techniques for human error analysis and application. In this year, we studied the followings: (1) Site investigation of operator tasks, (2) Development of operator task micro structure and revision of micro structure, (3) Development of knowledge representation software and SACOM prototype, (4) Development of performance assessment methodologies in task simulation and analysis of the effects of performance shaping factors. human error analysis and application techniques> (1) Classification of error shaping factors(ESFs) and development of software for ESF evaluation, (2) Analysis of human error occurrences and revision of analysis procedure, (3) Experiment for human error data collection using a compact nuclear simulator, (4) Development of a prototype data base system of the analyzed information on trip cases. 55 figs, 23 tabs, 33 refs. (Author).

  3. Human-machine interaction in nuclear power plants

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu

    2005-01-01

    Advanced nuclear power plants are generally large complex systems automated by computers. Whenever a rate plant emergency occurs the plant operators must cope with the emergency under severe mental stress without committing any fatal errors. Furthermore, the operators must train to improve and maintain their ability to cope with every conceivable situation, though it is almost impossible to be fully prepared for an infinite variety of situations. In view of the limited capability of operators in emergency situations, there has been a new approach to preventing the human error caused by improper human-machine interaction. The new approach has been triggered by the introduction of advanced information systems that help operators recognize and counteract plant emergencies. In this paper, the adverse effect of automation in human-machine systems is explained. The discussion then focuses on how to configure a joint human-machine system for ideal human-machine interaction. Finally, there is a new proposal on how to organize technologies that recognize the different states of such a joint human-machine system

  4. Human computer interaction and communication aids for hearing-impaired, deaf and deaf-blind people: Introduction to the special thematic session

    DEFF Research Database (Denmark)

    Bothe, Hans-Heinrich

    2008-01-01

    This paper gives ail overview and extends the Special Thematic Session (STS) oil research and development of technologies for hearing-impaired, deaf, and deaf-blind people. The topics of the session focus oil special equipment or services to improve communication and human computer interaction....... The papers are related to visual communication using captions, sign language, speech-reading, to vibro-tactile stimulation, or to general services for hearing-impaired persons....

  5. Interaction of Citrinin with Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Miklós Poór

    2015-12-01

    Full Text Available Citrinin (CIT is a mycotoxin produced by several Aspergillus, Penicillium, and Monascus species. CIT occurs worldwide in different foods and drinks and causes health problems for humans and animals. Human serum albumin (HSA is the most abundant plasma protein in human circulation. Albumin forms stable complexes with many drugs and xenobiotics; therefore, HSA commonly plays important role in the pharmacokinetics or toxicokinetics of numerous compounds. However, the interaction of CIT with HSA is poorly characterized yet. In this study, the complex formation of CIT with HSA was investigated using fluorescence spectroscopy and ultrafiltration techniques. For the deeper understanding of the interaction, thermodynamic, and molecular modeling studies were performed as well. Our results suggest that CIT forms stable complex with HSA (logK ~ 5.3 and its primary binding site is located in subdomain IIA (Sudlow’s Site I. In vitro cell experiments also recommend that CIT-HSA interaction may have biological relevance. Finally, the complex formations of CIT with bovine, porcine, and rat serum albumin were investigated, in order to test the potential species differences of CIT-albumin interactions.

  6. Interactive computing in BASIC an introduction to interactive computing and a practical course in the BASIC language

    CERN Document Server

    Sanderson, Peter C

    1973-01-01

    Interactive Computing in BASIC: An Introduction to Interactive Computing and a Practical Course in the BASIC Language provides a general introduction to the principles of interactive computing and a comprehensive practical guide to the programming language Beginners All-purpose Symbolic Instruction Code (BASIC). The book starts by providing an introduction to computers and discussing the aspects of terminal usage, programming languages, and the stages in writing and testing a program. The text then discusses BASIC with regard to methods in writing simple arithmetical programs, control stateme

  7. Seven Years after the Manifesto: Literature Review and Research Directions for Technologies in Animal Computer Interaction

    Directory of Open Access Journals (Sweden)

    Ilyena Hirskyj-Douglas

    2018-06-01

    Full Text Available As technologies diversify and become embedded in everyday lives, the technologies we expose to animals, and the new technologies being developed for animals within the field of Animal Computer Interaction (ACI are increasing. As we approach seven years since the ACI manifesto, which grounded the field within Human Computer Interaction and Computer Science, this thematic literature review looks at the technologies developed for (non-human animals. Technologies that are analysed include tangible and physical, haptic and wearable, olfactory, screen technology and tracking systems. The conversation explores what exactly ACI is whilst questioning what it means to be animal by considering the impact and loop between machine and animal interactivity. The findings of this review are expected to form the first grounding foundation of ACI technologies informing future research in animal computing as well as suggesting future areas for exploration.

  8. Spectroscopic and molecular docking techniques study of the interaction between oxymetholone and human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Bagheri, Habibollah; Afkhami, Abbas; Soleimani, Mohammad

    2014-11-15

    In this study, the binding of oxymetholone (OXM), a doping drug, to human serum albumin (HSA) was explored at pH 7.40 by spectroscopic methods including spectrofluorimetry, three dimensional excitation–emission matrix (3D EEM), UV–vis absorption, resonance rayleigh scattering (RRS) and molecular docking. The fluorescence results showed that there was a considerable quenching of the intrinsic fluorescence of HSA upon binding to OXM by static quenching mechanism. The Stern–Volmer quenching constants (K{sub SV}) between OXM and HSA at three different temperatures 295, 303, 308 K, were obtained as 4.63×10{sup 4}, 3.05×10{sup 4} and 1.49×10{sup 4} L mol{sup −1}, respectively. Furthermore this interaction was confirmed by UV–vis spectrophotometric and RRS techniques. The binding site number, n, apparent binding constant, K{sub b}, and corresponding thermodynamic parameters (ΔS, ΔH and ΔG) were measured at different temperatures. The Van der Waals and hydrogen-bond forces were found to stabilize OXM–HSA complex. The distance (r) between the donor and acceptor was obtained from Förster's theory of fluorescence resonance energy transfer (FRET) and found to be 1.67 nm. The 3D EEM showed that OXM slightly changes the secondary structure of HSA. Furthermore, the molecular docking was employed for identification of drug binding sites and interaction of OXM with amino acid residues. - Highlights: • The binding of OXM as a doping drug with HSA was studied by different techniques. • The binding constant of HSA–OXM was calculated. • The binding site of OXM on HSA was characterized with molecular docking. • The thermodynamic parameters were calculated according to fluorescence technique.

  9. Human-machine interactions

    Science.gov (United States)

    Forsythe, J Chris [Sandia Park, NM; Xavier, Patrick G [Albuquerque, NM; Abbott, Robert G [Albuquerque, NM; Brannon, Nathan G [Albuquerque, NM; Bernard, Michael L [Tijeras, NM; Speed, Ann E [Albuquerque, NM

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  10. Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.

    Science.gov (United States)

    Diwaker, Chander; Tomar, Pradeep; Poonia, Ramesh C; Singh, Vijander

    2018-04-10

    A lot of models have been made for predicting software reliability. The reliability models are restricted to using particular types of methodologies and restricted number of parameters. There are a number of techniques and methodologies that may be used for reliability prediction. There is need to focus on parameters consideration while estimating reliability. The reliability of a system may increase or decreases depending on the selection of different parameters used. Thus there is need to identify factors that heavily affecting the reliability of the system. In present days, reusability is mostly used in the various area of research. Reusability is the basis of Component-Based System (CBS). The cost, time and human skill can be saved using Component-Based Software Engineering (CBSE) concepts. CBSE metrics may be used to assess those techniques which are more suitable for estimating system reliability. Soft computing is used for small as well as large-scale problems where it is difficult to find accurate results due to uncertainty or randomness. Several possibilities are available to apply soft computing techniques in medicine related problems. Clinical science of medicine using fuzzy-logic, neural network methodology significantly while basic science of medicine using neural-networks-genetic algorithm most frequently and preferably. There is unavoidable interest shown by medical scientists to use the various soft computing methodologies in genetics, physiology, radiology, cardiology and neurology discipline. CBSE boost users to reuse the past and existing software for making new products to provide quality with a saving of time, memory space, and money. This paper focused on assessment of commonly used soft computing technique like Genetic Algorithm (GA), Neural-Network (NN), Fuzzy Logic, Support Vector Machine (SVM), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC). This paper presents working of soft computing

  11. Computer aided systems human engineering: A hypermedia tool

    Science.gov (United States)

    Boff, Kenneth R.; Monk, Donald L.; Cody, William J.

    1992-01-01

    The Computer Aided Systems Human Engineering (CASHE) system, Version 1.0, is a multimedia ergonomics database on CD-ROM for the Apple Macintosh II computer, being developed for use by human system designers, educators, and researchers. It will initially be available on CD-ROM and will allow users to access ergonomics data and models stored electronically as text, graphics, and audio. The CASHE CD-ROM, Version 1.0 will contain the Boff and Lincoln (1988) Engineering Data Compendium, MIL-STD-1472D and a unique, interactive simulation capability, the Perception and Performance Prototyper. Its features also include a specialized data retrieval, scaling, and analysis capability and the state of the art in information retrieval, browsing, and navigation.

  12. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2010-08-01

    Full Text Available Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  13. Conceptual design of pipe whip restraints using interactive computer analysis

    International Nuclear Information System (INIS)

    Rigamonti, G.; Dainora, J.

    1975-01-01

    Protection against pipe break effects necessitates a complex interaction between failure mode analysis, piping layout, and structural design. Many iterations are required to finalize structural designs and equipment arrangements. The magnitude of the pipe break loads transmitted by the pipe whip restraints to structural embedments precludes the application of conservative design margins. A simplified analytical formulation of the nonlinear dynamic problems associated with pipe whip has been developed and applied using interactive computer analysis techniques. In the dynamic analysis, the restraint and the associated portion of the piping system, are modeled using the finite element lumped mass approach to properly reflect the dynamic characteristics of the piping/restraint system. The analysis is performed as a series of piecewise linear increments. Each of these linear increments is terminated by either formation of plastic conditions or closing/opening of gaps. The stiffness matrix is modified to reflect the changed stiffness characteristics of the system and re-started using the previous boundary conditions. The formation of yield hinges are related to the plastic moment of the section and unloading paths are automatically considered. The conceptual design of the piping/restraint system is performed using interactive computer analysis. The application of the simplified analytical approach with interactive computer analysis results in an order of magnitude reduction in engineering time and computer cost. (Auth.)

  14. Can Computers Foster Human Users’ Creativity? Theory and Praxis of Mixed-Initiative Co-Creativity

    Directory of Open Access Journals (Sweden)

    Antonios Liapis

    2016-07-01

    Full Text Available This article discusses the impact of artificially intelligent computers to the process of design, play and educational activities. A computational process which has the necessary intelligence and creativity to take a proactive role in such activities can not only support human creativity but also foster it and prompt lateral thinking. The argument is made both from the perspective of human creativity, where the computational input is treated as an external stimulus which triggers re-framing of humans’ routines and mental associations, but also from the perspective of computational creativity where human input and initiative constrains the search space of the algorithm, enabling it to focus on specific possible solutions to a problem rather than globally search for the optimal. The article reviews four mixed-initiative tools (for design and educational play based on how they contribute to human-machine co-creativity. These paradigms serve different purposes, afford different human interaction methods and incorporate different computationally creative processes. Assessing how co-creativity is facilitated on a per-paradigm basis strengthens the theoretical argument and provides an initial seed for future work in the burgeoning domain of mixed-initiative interaction.

  15. Human agency beliefs influence behaviour during virtual social interactions

    Directory of Open Access Journals (Sweden)

    Nathan Caruana

    2017-09-01

    Full Text Available In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an “intentional stance” by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants’ behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative “joint attention” game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other’s eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm (“Computer” condition. The other half were misled into believing that the virtual character was controlled by a second participant in another room (“Human” condition. Those in the “Human” condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the “Computer” condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect

  16. Movement coordination in applied human-human and human-robot interaction

    DEFF Research Database (Denmark)

    Schubö, Anna; Vesper, Cordula; Wiesbeck, Mathey

    2007-01-01

    and describing human-human interaction in terms of goal-oriented movement coordination is considered an important and necessary step for designing and describing human-robot interaction. In the present scenario, trajectories of hand and finger movements were recorded while two human participants performed......The present paper describes a scenario for examining mechanisms of movement coordination in humans and robots. It is assumed that coordination can best be achieved when behavioral rules that shape movement execution in humans are also considered for human-robot interaction. Investigating...... coordination were affected. Implications for human-robot interaction are discussed....

  17. Proceedings of the 5th Danish Human-Computer Interaction Research Symposium

    DEFF Research Database (Denmark)

    Clemmensen, Torkil; Nielsen, Lene

    2005-01-01

    Lene Nielsen DEALING WITH REALITY - IN THEORY Gitte Skou PetersenA NEW IFIP WORKING GROUP - HUMAN WORK INTERACTION DESIGN Rikke Ørngreen, Torkil Clemmensen & Annelise Mark-Pejtersen CLASSIFICATION OF DESCRIPTIONS USED IN SOFTWARE AND INTERACTION DESIGN Georg Strøm OBSTACLES TO DESIGN IN VOLUNTEER BASED...... for the symposium, of which 14 were presented orally in four panel sessions. Previously the symposium has been held at University of Aarhus 2001, University of Copenhagen 2002, Roskilde University Center 2003, Aalborg University 2004. Torkil Clemmensen & Lene Nielsen Copenhagen, November 2005 CONTENT INTRODUCTION...

  18. Affective Computing and Intelligent Interaction

    CERN Document Server

    2012-01-01

    2012 International Conference on Affective Computing and Intelligent Interaction (ICACII 2012) was the most comprehensive conference focused on the various aspects of advances in Affective Computing and Intelligent Interaction. The conference provided a rare opportunity to bring together worldwide academic researchers and practitioners for exchanging the latest developments and applications in this field such as Intelligent Computing, Affective Computing, Machine Learning, Business Intelligence and HCI.   This volume is a collection of 119 papers selected from 410 submissions from universities and industries all over the world, based on their quality and relevancy to the conference. All of the papers have been peer-reviewed by selected experts.  

  19. A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images.

    Science.gov (United States)

    Kin, Taichi; Nakatomi, Hirofumi; Shojima, Masaaki; Tanaka, Minoru; Ino, Kenji; Mori, Harushi; Kunimatsu, Akira; Oyama, Hiroshi; Saito, Nobuhito

    2012-07-01

    In this study, the authors used preoperative simulation employing 3D computer graphics (interactive computer graphics) to fuse all imaging data for brainstem cavernous malformations. The authors evaluated whether interactive computer graphics or 2D imaging correlated better with the actual operative field, particularly in identifying a developmental venous anomaly (DVA). The study population consisted of 10 patients scheduled for surgical treatment of brainstem cavernous malformations. Data from preoperative imaging (MRI, CT, and 3D rotational angiography) were automatically fused using a normalized mutual information method, and then reconstructed by a hybrid method combining surface rendering and volume rendering methods. With surface rendering, multimodality and multithreshold techniques for 1 tissue were applied. The completed interactive computer graphics were used for simulation of surgical approaches and assumed surgical fields. Preoperative diagnostic rates for a DVA associated with brainstem cavernous malformation were compared between conventional 2D imaging and interactive computer graphics employing receiver operating characteristic (ROC) analysis. The time required for reconstruction of 3D images was 3-6 hours for interactive computer graphics. Observation in interactive mode required approximately 15 minutes. Detailed anatomical information for operative procedures, from the craniotomy to microsurgical operations, could be visualized and simulated three-dimensionally as 1 computer graphic using interactive computer graphics. Virtual surgical views were consistent with actual operative views. This technique was very useful for examining various surgical approaches. Mean (±SEM) area under the ROC curve for rate of DVA diagnosis was significantly better for interactive computer graphics (1.000±0.000) than for 2D imaging (0.766±0.091; pcomputer graphics than with 2D images. Interactive computer graphics was also useful in helping to plan the surgical

  20. Computational study of plasma-solid interaction in DC glow discharge in argon plasma at medium pressures

    International Nuclear Information System (INIS)

    Havlickova, E; Bartos, P; Hrach, R

    2007-01-01

    In the presented contribution two groups of techniques of computational physics-fluid modelling and non self-consistent particle technique were used to study plasma-solid interaction in argon plasma. We focused both on the physical processes taking place in the sheath at various pressures and on the problems of computational physics. The attention was given to preparation of two-dimensional fluid models with realistic assumptions about physical processes taking place in plasma during the plasma-solid interaction, further to improvement of the non self-consistent technique of particle modelling, where the external electric field was obtained either from the fluid model or directly from the trajectories of charged particles and finally to efficiency of individual algorithms

  1. Adaptive interaction a utility maximization approach to understanding human interaction with technology

    CERN Document Server

    Payne, Stephen J

    2013-01-01

    This lecture describes a theoretical framework for the behavioural sciences that holds high promise for theory-driven research and design in Human-Computer Interaction. The framework is designed to tackle the adaptive, ecological, and bounded nature of human behaviour. It is designed to help scientists and practitioners reason about why people choose to behave as they do and to explain which strategies people choose in response to utility, ecology, and cognitive information processing mechanisms. A key idea is that people choose strategies so as to maximise utility given constraints. The frame

  2. Workshop on cultural usability and human work interaction design

    DEFF Research Database (Denmark)

    Clemmensen, Torkil; Ørngreen, Rikke; Roese, Kerstin

    2008-01-01

    it into interaction design. The workshop will present current research into cultural usability and human work interaction design. Cultural usability is a comprehensive concept, which adheres to all kinds of contexts in which humans are involved (private family, work, public and private organizations, nature......, Workplace observation, Think-Aloud Usability Test, etc. These techniques often give - seemingly - similar results when applied in diverse cultural settings, but experience shows that we need a deep understanding of the cultural, social and organizational context to interpret the results, and to transform...

  3. Design of a compact low-power human-computer interaction equipment for hand motion

    Science.gov (United States)

    Wu, Xianwei; Jin, Wenguang

    2017-01-01

    Human-Computer Interaction (HCI) raises demand of convenience, endurance, responsiveness and naturalness. This paper describes a design of a compact wearable low-power HCI equipment applied to gesture recognition. System combines multi-mode sense signals: the vision sense signal and the motion sense signal, and the equipment is equipped with the depth camera and the motion sensor. The dimension (40 mm × 30 mm) and structure is compact and portable after tight integration. System is built on a module layered framework, which contributes to real-time collection (60 fps), process and transmission via synchronous confusion with asynchronous concurrent collection and wireless Blue 4.0 transmission. To minimize equipment's energy consumption, system makes use of low-power components, managing peripheral state dynamically, switching into idle mode intelligently, pulse-width modulation (PWM) of the NIR LEDs of the depth camera and algorithm optimization by the motion sensor. To test this equipment's function and performance, a gesture recognition algorithm is applied to system. As the result presents, general energy consumption could be as low as 0.5 W.

  4. Interactive inverse kinematics for human motion estimation

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Hauberg, Søren; Lapuyade, Jerome

    2009-01-01

    We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion...... to significantly speed up the particle filtering. It should be stressed that the observation part of the system has not been our focus, and as such is described only from a sense of completeness. With our approach it is possible to construct a robust and computationally efficient system for human motion estimation....

  5. Research on integrated simulation of fluid-structure system by computation science techniques

    International Nuclear Information System (INIS)

    Yamaguchi, Akira

    1996-01-01

    In Power Reactor and Nuclear Fuel Development Corporation, the research on the integrated simulation of fluid-structure system by computation science techniques has been carried out, and by its achievement, the verification of plant systems which has depended on large scale experiments is substituted by computation science techniques, in this way, it has been aimed at to reduce development costs and to attain the optimization of FBR systems. For the purpose, it is necessary to establish the technology for integrally and accurately analyzing complicated phenomena (simulation technology), the technology for applying it to large scale problems (speed increasing technology), and the technology for assuring the reliability of the results of analysis when simulation technology is utilized for the permission and approval of FBRs (verifying technology). The simulation of fluid-structure interaction, the heat flow simulation in the space with complicated form and the related technologies are explained. As the utilization of computation science techniques, the elucidation of phenomena by numerical experiment and the numerical simulation as the substitute for tests are discussed. (K.I.)

  6. A Utopian agenda in Child-Computer Interaction

    DEFF Research Database (Denmark)

    Iversen, Ole Sejer; Dindler, Christian

    2012-01-01

    While participatory techniques and practices have become commonplace in parts of the Child-Computer Interaction (CCI) related literature we believe that the tradition of Participatory Design has more to offer CCI. In particular, the Scandinavian Cooperative Design tradition, manifest through...... the Utopia project, provides a valuable resource for setting an agenda for CCI research that explicitly addresses ideals and values in research and practice. Based on a revisit of the Utopia project we position the ideals of democracy, skilfulness, and emancipation as the core ideals of a Utopian agenda...... and discuss how these resonate with issues and challenges in CCI research. Moreover, we propose that a Utopian agenda entails an explicit alignment between these ideals, a participatory epistemology, and methodology in terms of tools and techniques in CCI practice....

  7. An application of interactive computer graphics technology to the design of dispersal mechanisms

    Science.gov (United States)

    Richter, B. J.; Welch, B. H.

    1977-01-01

    Interactive computer graphics technology is combined with a general purpose mechanisms computer code to study the operational behavior of three guided bomb dispersal mechanism designs. These studies illustrate the use of computer graphics techniques to discover operational anomalies, to assess the effectiveness of design improvements, to reduce the time and cost of the modeling effort, and to provide the mechanism designer with a visual understanding of the physical operation of such systems.

  8. Computational strong-field quantum dynamics. Intense light-matter interactions

    International Nuclear Information System (INIS)

    Bauer, Dieter

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  9. Computational strong-field quantum dynamics. Intense light-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik

    2017-09-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  10. Computational strong-field quantum dynamics intense light-matter interactions

    CERN Document Server

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  11. HCI^2 Framework: A software framework for multimodal human-computer interaction systems

    NARCIS (Netherlands)

    Shen, Jie; Pantic, Maja

    2013-01-01

    This paper presents a novel software framework for the development and research in the area of multimodal human-computer interface (MHCI) systems. The proposed software framework, which is called the HCI∧2 Framework, is built upon publish/subscribe (P/S) architecture. It implements a

  12. Dual-Energy Computed Tomography Gemstone Spectral Imaging: A Novel Technique to Determine Human Cardiac Calculus Composition.

    Science.gov (United States)

    Cheng, Ching-Li; Chang, Hsiao-Huang; Ko, Shih-Chi; Huang, Pei-Jung; Lin, Shan-Yang

    2016-01-01

    Understanding the chemical composition of any calculus in different human organs is essential for choosing the best treatment strategy for patients. The purpose of this study was to assess the capability of determining the chemical composition of a human cardiac calculus using gemstone spectral imaging (GSI) mode on a single-source dual-energy computed tomography (DECT) in vitro. The cardiac calculus was directly scanned on the Discovery CT750 HD FREEdom Edition using GSI mode, in vitro. A portable fiber-optic Raman spectroscopy was also applied to verify the quantitative accuracy of the DECT measurements. The results of spectral DECT measurements indicate that effective Z values in 3 designated positions located in this calculus were 15.02 to 15.47, which are close to values of 15.74 to 15.86, corresponding to the effective Z values of calcium apatite and hydroxyapatite. The Raman spectral data were also reflected by the predominant Raman peak at 960 cm for hydroxyapatite and the minor peak at 875 cm for calcium apatite. A potential single-source DECT with GSI mode was first used to examine the morphological characteristics and chemical compositions of a giant human cardiac calculus, in vitro. The CT results were consistent with the Raman spectral data, suggesting that spectral CT imaging techniques could be accurately used to diagnose and characterize the compositional materials in the cardiac calculus.

  13. A Preliminary Study of Peer-to-Peer Human-Robot Interaction

    Science.gov (United States)

    Fong, Terrence; Flueckiger, Lorenzo; Kunz, Clayton; Lees, David; Schreiner, John; Siegel, Michael; Hiatt, Laura M.; Nourbakhsh, Illah; Simmons, Reid; Ambrose, Robert

    2006-01-01

    The Peer-to-Peer Human-Robot Interaction (P2P-HRI) project is developing techniques to improve task coordination and collaboration between human and robot partners. Our work is motivated by the need to develop effective human-robot teams for space mission operations. A central element of our approach is creating dialogue and interaction tools that enable humans and robots to flexibly support one another. In order to understand how this approach can influence task performance, we recently conducted a series of tests simulating a lunar construction task with a human-robot team. In this paper, we describe the tests performed, discuss our initial results, and analyze the effect of intervention on task performance.

  14. Computed tomography of human joints and radioactive waste drums

    International Nuclear Information System (INIS)

    Martz, Harry E.; Roberson, G. Patrick; Hollerbach, Karin; Logan, Clinton M.; Ashby, Elaine; Bernardi, Richard

    1999-01-01

    X- and gamma-ray imaging techniques in nondestructive evaluation (NDE) and assay (NDA) have seen increasing use in an array of industrial, environmental, military, and medical applications. Much of this growth in recent years is attributed to the rapid development of computed tomography (CT) and the use of NDE throughout the life-cycle of a product. Two diverse examples of CT are discussed, 1.) Our computational approach to normal joint kinematics and prosthetic joint analysis offers an opportunity to evaluate and improve prosthetic human joint replacements before they are manufactured or surgically implanted. Computed tomography data from scanned joints are segmented, resulting in the identification of bone and other tissues of interest, with emphasis on the articular surfaces. 2.) We are developing NDE and NDA techniques to analyze closed waste drums accurately and quantitatively. Active and passive computed tomography (A and PCT) is a comprehensive and accurate gamma-ray NDA method that can identify all detectable radioisotopes present in a container and measure their radioactivity

  15. An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans.

    Science.gov (United States)

    Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen

    2018-06-01

    This work introduces an object-oriented computational model to study cardiopulmonary interactions in humans. Modeling was performed in object-oriented programing language Matlab Simscape, where model components are connected with each other through physical connections. Constitutive and phenomenological equations of model elements are implemented based on their non-linear pressure-volume or pressure-flow relationship. The model includes more than 30 physiological compartments, which belong either to the cardiovascular or respiratory system. The model considers non-linear behaviors of veins, pulmonary capillaries, collapsible airways, alveoli, and the chest wall. Model parameters were derisved based on literature values. Model validation was performed by comparing simulation results with clinical and animal data reported in literature. The model is able to provide quantitative values of alveolar, pleural, interstitial, aortic and ventricular pressures, as well as heart and lung volumes during spontaneous breathing and mechanical ventilation. Results of baseline simulation demonstrate the consistency of the assigned parameters. Simulation results during mechanical ventilation with PEEP trials can be directly compared with animal and clinical data given in literature. Object-oriented programming languages can be used to model interconnected systems including model non-linearities. The model provides a useful tool to investigate cardiopulmonary activity during spontaneous breathing and mechanical ventilation. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. HumanComputer Systems Interaction Backgrounds and Applications 2 Part 1

    CERN Document Server

    Kulikowski, Juliusz; Mroczek, Teresa

    2012-01-01

    The main contemporary human-system interaction (H-SI) problems consist in design and/or improvement of the tools for effective exchange of information between individual humans or human groups and technical systems created for humans aiding in reaching their vital goals. This book is a second issue in a series devoted to the novel in H-SI results and contributions reached for the last years by many research groups in European and extra-European countries. The preliminary (usually shortened) versions of the chapters  were presented as conference papers at the 3rd International Conference on H-SI held in Rzeszow, Poland, in 2010. A  large number of valuable papers  selected for publication caused a necessity to publish the book in two volumes. The given, 1st Volume  consists of sections devoted to: I. Decision Supporting Systems, II. Distributed Knowledge Bases and WEB Systems and III. Impaired Persons  Aiding Systems. The decision supporting systems concern various application areas, like enterprises mana...

  17. Human motion sensing and recognition a fuzzy qualitative approach

    CERN Document Server

    Liu, Honghai; Ji, Xiaofei; Chan, Chee Seng; Khoury, Mehdi

    2017-01-01

    This book introduces readers to the latest exciting advances in human motion sensing and recognition, from the theoretical development of fuzzy approaches to their applications. The topics covered include human motion recognition in 2D and 3D, hand motion analysis with contact sensors, and vision-based view-invariant motion recognition, especially from the perspective of Fuzzy Qualitative techniques. With the rapid development of technologies in microelectronics, computers, networks, and robotics over the last decade, increasing attention has been focused on human motion sensing and recognition in many emerging and active disciplines where human motions need to be automatically tracked, analyzed or understood, such as smart surveillance, intelligent human-computer interaction, robot motion learning, and interactive gaming. Current challenges mainly stem from the dynamic environment, data multi-modality, uncertain sensory information, and real-time issues. These techniques are shown to effectively address the ...

  18. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  19. Finding Waldo: Learning about Users from their Interactions.

    Science.gov (United States)

    Brown, Eli T; Ottley, Alvitta; Zhao, Helen; Quan Lin; Souvenir, Richard; Endert, Alex; Chang, Remco

    2014-12-01

    Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user's interactions with a system reflect a large amount of the user's reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user's task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, we conduct an experiment in which participants perform a visual search task, and apply well-known machine learning algorithms to three encodings of the users' interaction data. We achieve, depending on algorithm and encoding, between 62% and 83% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user's personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time: in one case 95% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed-initiative visual analytics systems.

  20. Finding Waldo: Learning about Users from their Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eli T.; Ottley, Alvitta; Zhao, Helen; Lin, Quan; Souvenir, Richard; Endert, Alex; Chang, Remco

    2014-12-31

    Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user’s interactions with a system reflect a large amount of the user’s reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user’s task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, we conduct an experiment in which participants perform a visual search task and we apply well-known machine learning algorithms to three encodings of the users interaction data. We achieve, depending on algorithm and encoding, between 62% and 96% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user’s personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time, in some cases, 82% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed- initiative visual analytics systems.

  1. Vision-based interaction

    CERN Document Server

    Turk, Matthew

    2013-01-01

    In its early years, the field of computer vision was largely motivated by researchers seeking computational models of biological vision and solutions to practical problems in manufacturing, defense, and medicine. For the past two decades or so, there has been an increasing interest in computer vision as an input modality in the context of human-computer interaction. Such vision-based interaction can endow interactive systems with visual capabilities similar to those important to human-human interaction, in order to perceive non-verbal cues and incorporate this information in applications such

  2. Human Pacman: A Mobile Augmented Reality Entertainment System Based on Physical, Social, and Ubiquitous Computing

    Science.gov (United States)

    Cheok, Adrian David

    This chapter details the Human Pacman system to illuminate entertainment computing which ventures to embed the natural physical world seamlessly with a fantasy virtual playground by capitalizing on infrastructure provided by mobile computing, wireless LAN, and ubiquitous computing. With Human Pacman, we have a physical role-playing computer fantasy together with real human-social and mobile-gaming that emphasizes on collaboration and competition between players in a wide outdoor physical area that allows natural wide-area human-physical movements. Pacmen and Ghosts are now real human players in the real world experiencing mixed computer graphics fantasy-reality provided by using the wearable computers on them. Virtual cookies and actual tangible physical objects are incorporated into the game play to provide novel experiences of seamless transitions between the real and virtual worlds. This is an example of a new form of gaming that anchors on physicality, mobility, social interaction, and ubiquitous computing.

  3. Human-technology interaction for standoff IED detection

    Science.gov (United States)

    Zhang, Evan; Zou, Yiyang; Zachrich, Liping; Fulton, Jack

    2011-03-01

    IEDs kill our soldiers and innocent people every day. Lessons learned from Iraq and Afghanistan clearly indicated that IEDs cannot be detected/defeated by technology alone; human-technology interaction must be engaged. In most cases, eye is the best detector, brain is the best computer, and technologies are tools, they must be used by human being properly then can achieve full functionality. In this paper, a UV Raman/fluorescence, CCD and LWIR 3 sensor fusion system for standoff IED detection and a handheld fusion system for close range IED detection are developed and demonstrated. We must train solders using their eyes or CCD/LWIR cameras to do wide area search while on the move to find small suspected area first then use the spectrometer because the laser spot is too small, to scan a one-mile long and 2-meter wide road needs 185 days although our fusion system can detect the IED in 30m with 1s interrogating time. Even if the small suspected area (e.g., 0.5mx0.5m) is found, human eyes still cannot detect the IED, soldiers must use or interact with the technology - laser based spectrometer to scan the area then they are able to detect and identify the IED in 10 minutes not 185 days. Therefore, the human-technology interaction approach will be the best solution for IED detection.

  4. Interactive computer modeling of combustion chemistry and coalescence-dispersion modeling of turbulent combustion

    Science.gov (United States)

    Pratt, D. T.

    1984-01-01

    An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.

  5. Computer-Mediated Communication Systems

    Directory of Open Access Journals (Sweden)

    Bin Yu

    2011-10-01

    Full Text Available The essence of communication is to exchange and share information. Computers provide a new medium to human communication. CMC system, composed of human and computers, absorbs and then extends the advantages of all former formats of communication, embracing the instant interaction of oral communication, the abstract logics of printing dissemination, and the vivid images of movie and television. It also creates a series of new communication formats, such as Hyper Text, Multimedia etc. which are the information organizing methods, and cross-space message delivering patterns. Benefiting from the continuous development of technique and mechanism, the computer-mediated communication makes the dream of transmitting information cross space and time become true, which will definitely have a great impact on our social lives.

  6. The Importance of Human-Computer Interaction in Radiology E-learning.

    Science.gov (United States)

    den Harder, Annemarie M; Frijlingh, Marissa; Ravesloot, Cécile J; Oosterbaan, Anne E; van der Gijp, Anouk

    2016-04-01

    With the development of cross-sectional imaging techniques and transformation to digital reading of radiological imaging, e-learning might be a promising tool in undergraduate radiology education. In this systematic review of the literature, we evaluate the emergence of image interaction possibilities in radiology e-learning programs and evidence for effects of radiology e-learning on learning outcomes and perspectives of medical students and teachers. A systematic search in PubMed, EMBASE, Cochrane, ERIC, and PsycInfo was performed. Articles were screened by two authors and included when they concerned the evaluation of radiological e-learning tools for undergraduate medical students. Nineteen articles were included. Seven studies evaluated e-learning programs with image interaction possibilities. Students perceived e-learning with image interaction possibilities to be a useful addition to learning with hard copy images and to be effective for learning 3D anatomy. Both e-learning programs with and without image interaction possibilities were found to improve radiological knowledge and skills. In general, students found e-learning programs easy to use, rated image quality high, and found the difficulty level of the courses appropriate. Furthermore, they felt that their knowledge and understanding of radiology improved by using e-learning. In conclusion, the addition of radiology e-learning in undergraduate medical education can improve radiological knowledge and image interpretation skills. Differences between the effect of e-learning with and without image interpretation possibilities on learning outcomes are unknown and should be subject to future research.

  7. Spatial computing in interactive architecture

    NARCIS (Netherlands)

    S.O. Dulman (Stefan); M. Krezer; L. Hovestad

    2014-01-01

    htmlabstractDistributed computing is the theoretical foundation for applications and technologies like interactive architecture, wearable computing, and smart materials. It evolves continuously, following needs rising from scientific developments, novel uses of technology, or simply the curiosity to

  8. Child-Computer Interaction SIG

    DEFF Research Database (Denmark)

    Hourcade, Juan Pablo; Revelle, Glenda; Zeising, Anja

    2016-01-01

    This SIG will provide child-computer interaction researchers and practitioners an opportunity to discuss four topics that represent new challenges and opportunities for the community. The four areas are: interactive technologies for children under the age of five, technology for inclusion, privacy...... and information security in the age of the quantified self, and the maker movement....

  9. Interactive visualization of Earth and Space Science computations

    Science.gov (United States)

    Hibbard, William L.; Paul, Brian E.; Santek, David A.; Dyer, Charles R.; Battaiola, Andre L.; Voidrot-Martinez, Marie-Francoise

    1994-01-01

    Computers have become essential tools for scientists simulating and observing nature. Simulations are formulated as mathematical models but are implemented as computer algorithms to simulate complex events. Observations are also analyzed and understood in terms of mathematical models, but the number of these observations usually dictates that we automate analyses with computer algorithms. In spite of their essential role, computers are also barriers to scientific understanding. Unlike hand calculations, automated computations are invisible and, because of the enormous numbers of individual operations in automated computations, the relation between an algorithm's input and output is often not intuitive. This problem is illustrated by the behavior of meteorologists responsible for forecasting weather. Even in this age of computers, many meteorologists manually plot weather observations on maps, then draw isolines of temperature, pressure, and other fields by hand (special pads of maps are printed for just this purpose). Similarly, radiologists use computers to collect medical data but are notoriously reluctant to apply image-processing algorithms to that data. To these scientists with life-and-death responsibilities, computer algorithms are black boxes that increase rather than reduce risk. The barrier between scientists and their computations can be bridged by techniques that make the internal workings of algorithms visible and that allow scientists to experiment with their computations. Here we describe two interactive systems developed at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) that provide these capabilities to Earth and space scientists.

  10. Uncertainty in soil-structure interaction analysis arising from differences in analytical techniques

    International Nuclear Information System (INIS)

    Maslenikov, O.R.; Chen, J.C.; Johnson, J.J.

    1982-07-01

    This study addresses uncertainties arising from variations in different modeling approaches to soil-structure interaction of massive structures at a nuclear power plant. To perform a comprehensive systems analysis, it is necessary to quantify, for each phase of the traditional analysis procedure, both the realistic seismic response and the uncertainties associated with them. In this study two linear soil-structure interaction techniques were used to analyze the Zion, Illinois nuclear power plant: a direct method using the FLUSH computer program and a substructure approach using the CLASSI family of computer programs. In-structure response from two earthquakes, one real and one synthetic, was compared. Structure configurations from relatively simple to complicated multi-structure cases were analyzed. The resulting variations help quantify uncertainty in structure response due to analysis procedures

  11. A Human-Centred Tangible approach to learning Computational Thinking

    Directory of Open Access Journals (Sweden)

    Tommaso Turchi

    2016-08-01

    Full Text Available Computational Thinking has recently become a focus of many teaching and research domains; it encapsulates those thinking skills integral to solving complex problems using a computer, thus being widely applicable in our society. It is influencing research across many disciplines and also coming into the limelight of education, mostly thanks to public initiatives such as the Hour of Code. In this paper we present our arguments for promoting Computational Thinking in education through the Human-centred paradigm of Tangible End-User Development, namely by exploiting objects whose interactions with the physical environment are mapped to digital actions performed on the system.

  12. Ghost-in-the-Machine reveals human social signals for human-robot interaction.

    Science.gov (United States)

    Loth, Sebastian; Jettka, Katharina; Giuliani, Manuel; de Ruiter, Jan P

    2015-01-01

    We used a new method called "Ghost-in-the-Machine" (GiM) to investigate social interactions with a robotic bartender taking orders for drinks and serving them. Using the GiM paradigm allowed us to identify how human participants recognize the intentions of customers on the basis of the output of the robotic recognizers. Specifically, we measured which recognizer modalities (e.g., speech, the distance to the bar) were relevant at different stages of the interaction. This provided insights into human social behavior necessary for the development of socially competent robots. When initiating the drink-order interaction, the most important recognizers were those based on computer vision. When drink orders were being placed, however, the most important information source was the speech recognition. Interestingly, the participants used only a subset of the available information, focussing only on a few relevant recognizers while ignoring others. This reduced the risk of acting on erroneous sensor data and enabled them to complete service interactions more swiftly than a robot using all available sensor data. We also investigated socially appropriate response strategies. In their responses, the participants preferred to use the same modality as the customer's requests, e.g., they tended to respond verbally to verbal requests. Also, they added redundancy to their responses, for instance by using echo questions. We argue that incorporating the social strategies discovered with the GiM paradigm in multimodal grammars of human-robot interactions improves the robustness and the ease-of-use of these interactions, and therefore provides a smoother user experience.

  13. Human-Robot Interaction and Human Self-Realization

    DEFF Research Database (Denmark)

    Nørskov, Marco

    2014-01-01

    is to test the basis for this type of discrimination when it comes to human-robot interaction. Furthermore, the paper will take Heidegger's warning concerning technology as a vantage point and explore the possibility of human-robot interaction forming a praxis that might help humans to be with robots beyond...

  14. Computational techniques of the simplex method

    CERN Document Server

    Maros, István

    2003-01-01

    Computational Techniques of the Simplex Method is a systematic treatment focused on the computational issues of the simplex method. It provides a comprehensive coverage of the most important and successful algorithmic and implementation techniques of the simplex method. It is a unique source of essential, never discussed details of algorithmic elements and their implementation. On the basis of the book the reader will be able to create a highly advanced implementation of the simplex method which, in turn, can be used directly or as a building block in other solution algorithms.

  15. Human interactions with sirenians (manatees and dugongs)

    Science.gov (United States)

    Bonde, Robert K.; Flint, Mark

    2017-01-01

    There are three extant sirenian species of the Trichechidae family and one living Dugongidae family member. Given their close ties to coastal and often urbanized habitats, sirenians are exposed to many types of anthropogenic activities that result in challenges to their well-being, poor health, and even death. In the wild, they are exposed to direct and indirect local pressures as well as subject to large-scale stressors such as global climate change acting on regions or entire genetic stocks. In captivity, they are subject to husbandry and management practices based on our collective knowledge, or in some cases lack thereof, of their needs and welfare. It is therefore reasonable to consider that their current imperiled status is very closely linked to our actions. In this chapter, we identify and define human interactions that may impact dugongs and manatees, including hunting, fisheries, boat interactions, negative interactions with man-made structures, disease and contaminants, and global climate change. We examine techniques used to investigate these impacts and the influence of sirenian biology and of changing human behaviors on potential outcomes. We examine how this differs for dugongs and manatees in the wild and for those held in captivity. Finally, we provide possible mitigation strategies and ways to assess the efforts we are making to improve the welfare of individuals and to conserve these species. This chapter identifies how the welfare of these species is intrinsically linked to the human interactions these animals experience, and how the nature of these interactions has changed with societal shifts. We proffer suggested ways to minimize negative impacts. Current knowledge should be used to minimize negative human interactions and impacts, to promote positive impacts, and to protect these animals for the future.

  16. TECHNIQUES AND ALGORITHMS OF INTERACTIVE AUGMENTED REALITY VISUALIZATION: RESEARCH AND DEVELOPMENT

    OpenAIRE

    Kravtsov A. A.

    2015-01-01

    The author performed a research with the purpose of improving visualization of three-dimensional objects by means of augmented reality technology with the use of massively available mobile devices as a platform. This article summarizes the main results and provides suggestions for future research. Since graphical user interfaces made it to the consumer market about 30 years ago, interaction with the computer has not changed significantly. The focus of current user interface techniques is only...

  17. Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.

    Science.gov (United States)

    Oishi, Makoto; Fukuda, Masafumi; Hiraishi, Tetsuya; Yajima, Naoki; Sato, Yosuke; Fujii, Yukihiko

    2012-09-01

    The purpose of this paper is to report on the authors' advanced presurgical interactive virtual simulation technique using a 3D computer graphics model for microvascular decompression (MVD) surgery. The authors performed interactive virtual simulation prior to surgery in 26 patients with trigeminal neuralgia or hemifacial spasm. The 3D computer graphics models for interactive virtual simulation were composed of the brainstem, cerebellum, cranial nerves, vessels, and skull individually created by the image analysis, including segmentation, surface rendering, and data fusion for data collected by 3-T MRI and 64-row multidetector CT systems. Interactive virtual simulation was performed by employing novel computer-aided design software with manipulation of a haptic device to imitate the surgical procedures of bone drilling and retraction of the cerebellum. The findings were compared with intraoperative findings. In all patients, interactive virtual simulation provided detailed and realistic surgical perspectives, of sufficient quality, representing the lateral suboccipital route. The causes of trigeminal neuralgia or hemifacial spasm determined by observing 3D computer graphics models were concordant with those identified intraoperatively in 25 (96%) of 26 patients, which was a significantly higher rate than the 73% concordance rate (concordance in 19 of 26 patients) obtained by review of 2D images only (p computer graphics model provided a realistic environment for performing virtual simulations prior to MVD surgery and enabled us to ascertain complex microsurgical anatomy.

  18. New computing techniques in physics research

    International Nuclear Information System (INIS)

    Perret-Gallix, D.; Wojcik, W.

    1990-01-01

    These proceedings relate in a pragmatic way the use of methods and techniques of software engineering and artificial intelligence in high energy and nuclear physics. Such fundamental research can only be done through the design, the building and the running of equipments and systems among the most complex ever undertaken by mankind. The use of these new methods is mandatory in such an environment. However their proper integration in these real applications raise some unsolved problems. Their solution, beyond the research field, will lead to a better understanding of some fundamental aspects of software engineering and artificial intelligence. Here is a sample of subjects covered in the proceedings : Software engineering in a multi-users, multi-versions, multi-systems environment, project management, software validation and quality control, data structure and management object oriented languages, multi-languages application, interactive data analysis, expert systems for diagnosis, expert systems for real-time applications, neural networks for pattern recognition, symbolic manipulation for automatic computation of complex processes

  19. Computed Radiography: An Innovative Inspection Technique

    International Nuclear Information System (INIS)

    Klein, William A.; Councill, Donald L.

    2002-01-01

    Florida Power and Light Company's (FPL) Nuclear Division combined two diverse technologies to create an innovative inspection technique, Computed Radiography, that improves personnel safety and unit reliability while reducing inspection costs. This technique was pioneered in the medical field and applied in the Nuclear Division initially to detect piping degradation due to flow-accelerated corrosion. Component degradation can be detected by this additional technique. This approach permits FPL to reduce inspection costs, perform on line examinations (no generation curtailment), and to maintain or improve both personnel safety and unit reliability. Computed Radiography is a very versatile tool capable of other uses: - improving the external corrosion program by permitting inspections underneath insulation, and - diagnosing system and component problems such as valve positions, without the need to shutdown or disassemble the component. (authors)

  20. When computers were human

    CERN Document Server

    Grier, David Alan

    2013-01-01

    Before Palm Pilots and iPods, PCs and laptops, the term ""computer"" referred to the people who did scientific calculations by hand. These workers were neither calculating geniuses nor idiot savants but knowledgeable people who, in other circumstances, might have become scientists in their own right. When Computers Were Human represents the first in-depth account of this little-known, 200-year epoch in the history of science and technology. Beginning with the story of his own grandmother, who was trained as a human computer, David Alan Grier provides a poignant introduction to the wider wo

  1. Computational intelligence techniques for biological data mining: An overview

    Science.gov (United States)

    Faye, Ibrahima; Iqbal, Muhammad Javed; Said, Abas Md; Samir, Brahim Belhaouari

    2014-10-01

    Computational techniques have been successfully utilized for a highly accurate analysis and modeling of multifaceted and raw biological data gathered from various genome sequencing projects. These techniques are proving much more effective to overcome the limitations of the traditional in-vitro experiments on the constantly increasing sequence data. However, most critical problems that caught the attention of the researchers may include, but not limited to these: accurate structure and function prediction of unknown proteins, protein subcellular localization prediction, finding protein-protein interactions, protein fold recognition, analysis of microarray gene expression data, etc. To solve these problems, various classification and clustering techniques using machine learning have been extensively used in the published literature. These techniques include neural network algorithms, genetic algorithms, fuzzy ARTMAP, K-Means, K-NN, SVM, Rough set classifiers, decision tree and HMM based algorithms. Major difficulties in applying the above algorithms include the limitations found in the previous feature encoding and selection methods while extracting the best features, increasing classification accuracy and decreasing the running time overheads of the learning algorithms. The application of this research would be potentially useful in the drug design and in the diagnosis of some diseases. This paper presents a concise overview of the well-known protein classification techniques.

  2. Study on the interaction of tussilagone with human serum albumin (HSA) by spectroscopic and molecular docking techniques

    Science.gov (United States)

    Xu, Liang; Hu, Yan-Xi; Li, Yan-Cheng; Zhang, Li; Ai, Hai-Xin; Liu, Hong-Sheng; Liu, Yu-Feng; Sang, Yu-Li

    2017-12-01

    Tussilagone is a sesquiterpenoid which exhibits a variety of pharmacological activities. The interaction of tussilagone with human serum albumin (HSA) was investigated using fluorescence spectroscopy, UV-vis absorption, fluorescence probe experiments, synchronous fluorescence, circular dichroism (CD) spectra, three-dimensional spectra and molecular docking techniques under simulative physiological conditions. The results clarified that the fluorescence quenching of HSA by tussilagone was a static quenching process as a result of HSA-tussilagone (1:1) complex. Tussilagone spontaneously bound to HSA in site I (subdomain IIA), which was primarily driven by hydrophobic forces and hydrogen bonds (ΔH° = -13.89 kJ mol-1, ΔS° = 16.39 J mol-1 K-1). The binding constant was calculated to be 2.182 × 103 L mol-1 and the binding distance was estimated to be 2.07 nm at 291 K, showing the occurrence of fluorescence energy transfer. The results of CD, synchronous and three-dimensional fluorescence spectra all revealed that tussilagone induced the conformational changes of HSA. Meanwhile, the study of molecular docking also indicated that tussilagone could bind to the site I of HSA mainly by hydrophobic and hydrogen bond interactions.

  3. INFN-Pisa scientific computation environment (GRID, HPC and Interactive Analysis)

    International Nuclear Information System (INIS)

    Arezzini, S; Carboni, A; Caruso, G; Ciampa, A; Coscetti, S; Mazzoni, E; Piras, S

    2014-01-01

    The INFN-Pisa Tier2 infrastructure is described, optimized not only for GRID CPU and Storage access, but also for a more interactive use of the resources in order to provide good solutions for the final data analysis step. The Data Center, equipped with about 6700 production cores, permits the use of modern analysis techniques realized via advanced statistical tools (like RooFit and RooStat) implemented in multicore systems. In particular a POSIX file storage access integrated with standard SRM access is provided. Therefore the unified storage infrastructure is described, based on GPFS and Xrootd, used both for SRM data repository and interactive POSIX access. Such a common infrastructure allows a transparent access to the Tier2 data to the users for their interactive analysis. The organization of a specialized many cores CPU facility devoted to interactive analysis is also described along with the login mechanism integrated with the INFN-AAI (National INFN Infrastructure) to extend the site access and use to a geographical distributed community. Such infrastructure is used also for a national computing facility in use to the INFN theoretical community, it enables a synergic use of computing and storage resources. Our Center initially developed for the HEP community is now growing and includes also HPC resources fully integrated. In recent years has been installed and managed a cluster facility (1000 cores, parallel use via InfiniBand connection) and we are now updating this facility that will provide resources for all the intermediate level HPC computing needs of the INFN theoretical national community.

  4. AirDraw: Leveraging Smart Watch Motion Sensors for Mobile Human Computer Interactions

    OpenAIRE

    Sajjadi, Seyed A; Moazen, Danial; Nahapetian, Ani

    2017-01-01

    Wearable computing is one of the fastest growing technologies today. Smart watches are poised to take over at least of half the wearable devices market in the near future. Smart watch screen size, however, is a limiting factor for growth, as it restricts practical text input. On the other hand, wearable devices have some features, such as consistent user interaction and hands-free, heads-up operations, which pave the way for gesture recognition methods of text entry. This paper proposes a new...

  5. Neurosurgical simulation by interactive computer graphics on iPad.

    Science.gov (United States)

    Maruyama, Keisuke; Kin, Taichi; Saito, Toki; Suematsu, Shinya; Gomyo, Miho; Noguchi, Akio; Nagane, Motoo; Shiokawa, Yoshiaki

    2014-11-01

    Presurgical simulation before complicated neurosurgery is a state-of-the-art technique, and its usefulness has recently become well known. However, simulation requires complex image processing, which hinders its widespread application. We explored handling the results of interactive computer graphics on the iPad tablet, which can easily be controlled anywhere. Data from preneurosurgical simulations from 12 patients (4 men, 8 women) who underwent complex brain surgery were loaded onto an iPad. First, DICOM data were loaded using Amira visualization software to create interactive computer graphics, and ParaView, another free visualization software package, was used to convert the results of the simulation to be loaded using the free iPad software KiwiViewer. The interactive computer graphics created prior to neurosurgery were successfully displayed and smoothly controlled on the iPad in all patients. The number of elements ranged from 3 to 13 (mean 7). The mean original data size was 233 MB, which was reduced to 10.4 MB (4.4% of original size) after image processing by ParaView. This was increased to 46.6 MB (19.9%) after decompression in KiwiViewer. Controlling the magnification, transfer, rotation, and selection of translucence in 10 levels of each element were smoothly and easily performed using one or two fingers. The requisite skill to smoothly control the iPad software was acquired within 1.8 trials on average in 12 medical students and 6 neurosurgical residents. Using an iPad to handle the result of preneurosurgical simulation was extremely useful because it could easily be handled anywhere.

  6. Computer-based personality judgments are more accurate than those made by humans.

    Science.gov (United States)

    Youyou, Wu; Kosinski, Michal; Stillwell, David

    2015-01-27

    Judging others' personalities is an essential skill in successful social living, as personality is a key driver behind people's interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants' Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy.

  7. Real-time multiple human perception with color-depth cameras on a mobile robot.

    Science.gov (United States)

    Zhang, Hao; Reardon, Christopher; Parker, Lynne E

    2013-10-01

    The ability to perceive humans is an essential requirement for safe and efficient human-robot interaction. In real-world applications, the need for a robot to interact in real time with multiple humans in a dynamic, 3-D environment presents a significant challenge. The recent availability of commercial color-depth cameras allow for the creation of a system that makes use of the depth dimension, thus enabling a robot to observe its environment and perceive in the 3-D space. Here we present a system for 3-D multiple human perception in real time from a moving robot equipped with a color-depth camera and a consumer-grade computer. Our approach reduces computation time to achieve real-time performance through a unique combination of new ideas and established techniques. We remove the ground and ceiling planes from the 3-D point cloud input to separate candidate point clusters. We introduce the novel information concept, depth of interest, which we use to identify candidates for detection, and that avoids the computationally expensive scanning-window methods of other approaches. We utilize a cascade of detectors to distinguish humans from objects, in which we make intelligent reuse of intermediary features in successive detectors to improve computation. Because of the high computational cost of some methods, we represent our candidate tracking algorithm with a decision directed acyclic graph, which allows us to use the most computationally intense techniques only where necessary. We detail the successful implementation of our novel approach on a mobile robot and examine its performance in scenarios with real-world challenges, including occlusion, robot motion, nonupright humans, humans leaving and reentering the field of view (i.e., the reidentification challenge), human-object and human-human interaction. We conclude with the observation that the incorporation of the depth information, together with the use of modern techniques in new ways, we are able to create an

  8. Computation as Medium

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance

    2017-01-01

    Artists increasingly utilize computational tools to generate art works. Computational approaches to art making open up new ways of thinking about agency in interactive art because they invite participation and allow for unpredictable outcomes. Computational art is closely linked...... to the participatory turn in visual art, wherein spectators physically participate in visual art works. Unlike purely physical methods of interaction, computer assisted interactivity affords artists and spectators more nuanced control of artistic outcomes. Interactive art brings together human bodies, computer code......, and nonliving objects to create emergent art works. Computation is more than just a tool for artists, it is a medium for investigating new aesthetic possibilities for choreography and composition. We illustrate this potential through two artistic projects: an improvisational dance performance between a human...

  9. Ubiquitous human computing.

    Science.gov (United States)

    Zittrain, Jonathan

    2008-10-28

    Ubiquitous computing means network connectivity everywhere, linking devices and systems as small as a drawing pin and as large as a worldwide product distribution chain. What could happen when people are so readily networked? This paper explores issues arising from two possible emerging models of ubiquitous human computing: fungible networked brainpower and collective personal vital sign monitoring.

  10. GRAVTool, a Package to Compute Geoid Model by Remove-Compute-Restore Technique

    Science.gov (United States)

    Marotta, G. S.; Blitzkow, D.; Vidotti, R. M.

    2015-12-01

    Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astro-geodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove-Compute-Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and global geopotential coefficients, respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and that adjust these models to one local vertical datum. This research presents a developed package called GRAVTool based on MATLAB software to compute local geoid models by RCR technique and its application in a study area. The studied area comprehends the federal district of Brazil, with ~6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show the local geoid model computed by the GRAVTool package (Figure), using 1377 terrestrial gravity data, SRTM data with 3 arc second of resolution, and geopotential coefficients of the EIGEN-6C4 model to degree 360. The accuracy of the computed model (σ = ± 0.071 m, RMS = 0.069 m, maximum = 0.178 m and minimum = -0.123 m) matches the uncertainty (σ =± 0.073) of 21 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.099 m, RMS = 0.208 m, maximum = 0.419 m and minimum = -0.040 m).

  11. Virtual Reality Techniques for Eliciting Empathy and Cultural Awareness: Affective Human-Virtual World Interaction

    OpenAIRE

    Chirino-Klevans, Ivonne

    2017-01-01

    On the average human beings have about 50,000 thoughts every day. If we consider that thoughts influence how we feel there is little doubt that the way we perceive reality will strongly correlate with how we act upon that reality. Let’s contextualize this thinking process within the realm of global business where interacting with individuals from other cultural backgrounds is the norm. Our own perceptions and stereotypes towards those cultural groups will strongly influence how we interact wi...

  12. Hi-Jack: a novel computational framework for pathway-based inference of host–pathogen interactions

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2015-03-09

    Motivation: Pathogens infect their host and hijack the host machinery to produce more progeny pathogens. Obligate intracellular pathogens, in particular, require resources of the host to replicate. Therefore, infections by these pathogens lead to alterations in the metabolism of the host, shifting in favor of pathogen protein production. Some computational identification of mechanisms of host-pathogen interactions have been proposed, but it seems the problem has yet to be approached from the metabolite-hijacking angle. Results: We propose a novel computational framework, Hi-Jack, for inferring pathway-based interactions between a host and a pathogen that relies on the idea of metabolite hijacking. Hi-Jack searches metabolic network data from hosts and pathogens, and identifies candidate reactions where hijacking occurs. A novel scoring function ranks candidate hijacked reactions and identifies pathways in the host that interact with pathways in the pathogen, as well as the associated frequent hijacked metabolites. We also describe host-pathogen interaction principles that can be used in the future for subsequent studies. Our case study on Mycobacterium tuberculosis (Mtb) revealed pathways in human-e.g. carbohydrate metabolism, lipids metabolism and pathways related to amino acids metabolism-that are likely to be hijacked by the pathogen. In addition, we report interesting potential pathway interconnections between human and Mtb such as linkage of human fatty acid biosynthesis with Mtb biosynthesis of unsaturated fatty acids, or linkage of human pentose phosphate pathway with lipopolysaccharide biosynthesis in Mtb. © The Author 2015. Published by Oxford University Press. All rights reserved.

  13. Redesign of a computerized clinical reminder for colorectal cancer screening: a human-computer interaction evaluation

    Directory of Open Access Journals (Sweden)

    Saleem Jason J

    2011-11-01

    Full Text Available Abstract Background Based on barriers to the use of computerized clinical decision support (CDS learned in an earlier field study, we prototyped design enhancements to the Veterans Health Administration's (VHA's colorectal cancer (CRC screening clinical reminder to compare against the VHA's current CRC reminder. Methods In a controlled simulation experiment, 12 primary care providers (PCPs used prototypes of the current and redesigned CRC screening reminder in a within-subject comparison. Quantitative measurements were based on a usability survey, workload assessment instrument, and workflow integration survey. We also collected qualitative data on both designs. Results Design enhancements to the VHA's existing CRC screening clinical reminder positively impacted aspects of usability and workflow integration but not workload. The qualitative analysis revealed broad support across participants for the design enhancements with specific suggestions for improving the reminder further. Conclusions This study demonstrates the value of a human-computer interaction evaluation in informing the redesign of information tools to foster uptake, integration into workflow, and use in clinical practice.

  14. Human Capital Variables and Economic Growth in Nigeria: An Interactive Effect

    Directory of Open Access Journals (Sweden)

    Adenike Mosunmola Osoba

    2017-05-01

    Full Text Available Various studies have focused on the relationship between human capital and economic growth all over the world. However, there is still a missing gap on the joint influence of human capital investment components on economic growth particularly in Nigeria. This study therefore examines the interactive effects of the relationship between human capital investment components and economic growth in Nigeria for the period of 1986 – 2014. The study employed secondary annual data on education expenditure, health expenditure, real gross domestic product and gross capital formation obtained from the Central Bank Statistical bulletin, 2014. The data were analyzed using Fully Modified Ordinary Least Squares (FMOLS technique. The results of the study showed that there was positive and significant relationship between the interactive effects of human capital components and growth in Nigeria. The study concluded that the interactive effect of the human capital variables was also in conformity with the theoretical proposition that increase in human capital will enhance growth as stipulated in the modified Solow growth model by Mankiw, Romer & Weil (1992.

  15. Ontology for assessment studies of human-computer-interaction in surgery.

    Science.gov (United States)

    Machno, Andrej; Jannin, Pierre; Dameron, Olivier; Korb, Werner; Scheuermann, Gerik; Meixensberger, Jürgen

    2015-02-01

    New technologies improve modern medicine, but may result in unwanted consequences. Some occur due to inadequate human-computer-interactions (HCI). To assess these consequences, an investigation model was developed to facilitate the planning, implementation and documentation of studies for HCI in surgery. The investigation model was formalized in Unified Modeling Language and implemented as an ontology. Four different top-level ontologies were compared: Object-Centered High-level Reference, Basic Formal Ontology, General Formal Ontology (GFO) and Descriptive Ontology for Linguistic and Cognitive Engineering, according to the three major requirements of the investigation model: the domain-specific view, the experimental scenario and the representation of fundamental relations. Furthermore, this article emphasizes the distinction of "information model" and "model of meaning" and shows the advantages of implementing the model in an ontology rather than in a database. The results of the comparison show that GFO fits the defined requirements adequately: the domain-specific view and the fundamental relations can be implemented directly, only the representation of the experimental scenario requires minor extensions. The other candidates require wide-ranging extensions, concerning at least one of the major implementation requirements. Therefore, the GFO was selected to realize an appropriate implementation of the developed investigation model. The ensuing development considered the concrete implementation of further model aspects and entities: sub-domains, space and time, processes, properties, relations and functions. The investigation model and its ontological implementation provide a modular guideline for study planning, implementation and documentation within the area of HCI research in surgery. This guideline helps to navigate through the whole study process in the form of a kind of standard or good clinical practice, based on the involved foundational frameworks

  16. Qudit-Basis Universal Quantum Computation Using χ^{(2)} Interactions.

    Science.gov (United States)

    Niu, Murphy Yuezhen; Chuang, Isaac L; Shapiro, Jeffrey H

    2018-04-20

    We prove that universal quantum computation can be realized-using only linear optics and χ^{(2)} (three-wave mixing) interactions-in any (n+1)-dimensional qudit basis of the n-pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ^{(2)} Hamiltonians and photon-number operators generate the full u(3) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ^{(2)} interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ^{(2)} interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.

  17. A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.

    Science.gov (United States)

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human-robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

  18. Physically-Based Interactive Flow Visualization Based on Schlieren and Interferometry Experimental Techniques

    KAUST Repository

    Brownlee, C.

    2011-11-01

    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics (CFD) produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph, interferometry, and schlieren imaging for centuries, which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. Interferometry tracks changes in phase-shift resulting in bands appearing. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraph, schlieren and interferometry images of time-varying scalar fields derived from computational fluid dynamics data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Applications of our method to multifield data and custom application-dependent color filter creation are explored. Results comparing this method to previous schlieren approximations are finally presented. © 2011 IEEE.

  19. Extending NGOMSL Model for Human-Humanoid Robot Interaction in the Soccer Robotics Domain

    Directory of Open Access Journals (Sweden)

    Rajesh Elara Mohan

    2008-01-01

    Full Text Available In the field of human-computer interaction, the Natural Goals, Operators, Methods, and Selection rules Language (NGOMSL model is one of the most popular methods for modelling knowledge and cognitive processes for rapid usability evaluation. The NGOMSL model is a description of the knowledge that a user must possess to operate the system represented as elementary actions for effective usability evaluations. In the last few years, mobile robots have been exhibiting a stronger presence in commercial markets and very little work has been done with NGOMSL modelling for usability evaluations in the human-robot interaction discipline. This paper focuses on extending the NGOMSL model for usability evaluation of human-humanoid robot interaction in the soccer robotics domain. The NGOMSL modelled human-humanoid interaction design of Robo-Erectus Junior was evaluated and the results of the experiments showed that the interaction design was able to find faults in an average time of 23.84 s. Also, the interaction design was able to detect the fault within the 60 s in 100% of the cases. The Evaluated Interaction design was adopted by our Robo-Erectus Junior version of humanoid robots in the RoboCup 2007 humanoid soccer league.

  20. After-effects of human-computer interaction indicated by P300 of the event-related brain potential.

    Science.gov (United States)

    Trimmel, M; Huber, R

    1998-05-01

    After-effects of human-computer interaction (HCI) were investigated by using the P300 component of the event-related brain potential (ERP). Forty-nine subjects (naive non-users, beginners, experienced users, programmers) completed three paper/pencil tasks (text editing, solving intelligence test items, filling out a questionnaire on sensation seeking) and three HCI tasks (text editing, executing a tutor program or programming, playing Tetris). The sequence of 7-min tasks was randomized between subjects and balanced between groups. After each experimental condition ERPs were recorded during an acoustic discrimination task at F3, F4, Cz, P3 and P4. Data indicate that: (1) mental after-effects of HCI can be detected by P300 of the ERP; (2) HCI showed in general a reduced amplitude; (3) P300 amplitude varied also with type of task, mainly at F4 where it was smaller after cognitive tasks (intelligence test/programming) and larger after emotion-based tasks (sensation seeking/Tetris); (4) cognitive tasks showed shorter latencies; (5) latencies were widely location-independent (within the range of 356-358 ms at F3, F4, P3 and P4) after executing the tutor program or programming; and (6) all observed after-effects were independent of the user's experience in operating computers and may therefore reflect short-term after-effects only and no structural changes of information processing caused by HCI.

  1. Human Computing and Machine Understanding of Human Behavior: A Survey

    NARCIS (Netherlands)

    Pantic, Maja; Pentland, Alex; Nijholt, Antinus; Huang, Thomas; Quek, F.; Yang, Yie

    2006-01-01

    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should

  2. Simulating human behavior for national security human interactions.

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Michael Lewis; Hart, Dereck H.; Verzi, Stephen J.; Glickman, Matthew R.; Wolfenbarger, Paul R.; Xavier, Patrick Gordon

    2007-01-01

    This 3-year research and development effort focused on what we believe is a significant technical gap in existing modeling and simulation capabilities: the representation of plausible human cognition and behaviors within a dynamic, simulated environment. Specifically, the intent of the ''Simulating Human Behavior for National Security Human Interactions'' project was to demonstrate initial simulated human modeling capability that realistically represents intra- and inter-group interaction behaviors between simulated humans and human-controlled avatars as they respond to their environment. Significant process was made towards simulating human behaviors through the development of a framework that produces realistic characteristics and movement. The simulated humans were created from models designed to be psychologically plausible by being based on robust psychological research and theory. Progress was also made towards enhancing Sandia National Laboratories existing cognitive models to support culturally plausible behaviors that are important in representing group interactions. These models were implemented in the modular, interoperable, and commercially supported Umbra{reg_sign} simulation framework.

  3. The development of human factors technologies -The development of human behaviour analysis techniques-

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Lee, Yong Heui; Park, Keun Ok; Chun, Se Woo; Suh, Sang Moon; Park, Jae Chang

    1995-07-01

    In order to contribute to human error reduction through the studies on human-machine interaction in nuclear power plants, this project has objectives to develop SACOM(Simulation Analyzer with a Cognitive Operator Model) and techniques for human error analysis and application. In this year, we studied the followings: 1) Site investigation of operator tasks, 2) Development of operator task micro structure and revision of micro structure, 3) Development of knowledge representation software and SACOM prototype, 4) Development of performance assessment methodologies in task simulation and analysis of the effects of performance shaping factors. 1) Classification of error shaping factors(ESFs) and development of software for ESF evaluation, 2) Analysis of human error occurrences and revision of analysis procedure, 3) Experiment for human error data collection using a compact nuclear simulator, 4) Development of a prototype data base system of the analyzed information on trip cases. 55 figs, 23 tabs, 33 refs. (Author)

  4. Future trends in power plant process computer techniques

    International Nuclear Information System (INIS)

    Dettloff, K.

    1975-01-01

    The development of new concepts of the process computer technique has advanced in great steps. The steps are in the three sections: hardware, software, application concept. New computers with a new periphery such as, e.g., colour layer equipment, have been developed in hardware. In software, a decisive step in the sector 'automation software' has been made. Through these components, a step forwards has also been made in the question of incorporating the process computer in the structure of the whole power plant control technique. (orig./LH) [de

  5. Template matching techniques in computer vision theory and practice

    CERN Document Server

    Brunelli, Roberto

    2009-01-01

    The detection and recognition of objects in images is a key research topic in the computer vision community.  Within this area, face recognition and interpretation has attracted increasing attention owing to the possibility of unveiling human perception mechanisms, and for the development of practical biometric systems. This book and the accompanying website, focus on template matching, a subset of object recognition techniques of wide applicability, which has proved to be particularly effective for face recognition applications. Using examples from face processing tasks throughout the book to illustrate more general object recognition approaches, Roberto Brunelli: examines the basics of digital image formation, highlighting points critical to the task of template matching;presents basic and  advanced template matching techniques, targeting grey-level images, shapes and point sets;discusses recent pattern classification paradigms from a template matching perspective;illustrates the development of a real fac...

  6. A Single Camera Motion Capture System for Human-Computer Interaction

    Science.gov (United States)

    Okada, Ryuzo; Stenger, Björn

    This paper presents a method for markerless human motion capture using a single camera. It uses tree-based filtering to efficiently propagate a probability distribution over poses of a 3D body model. The pose vectors and associated shapes are arranged in a tree, which is constructed by hierarchical pairwise clustering, in order to efficiently evaluate the likelihood in each frame. Anew likelihood function based on silhouette matching is proposed that improves the pose estimation of thinner body parts, i. e. the limbs. The dynamic model takes self-occlusion into account by increasing the variance of occluded body-parts, thus allowing for recovery when the body part reappears. We present two applications of our method that work in real-time on a Cell Broadband Engine™: a computer game and a virtual clothing application.

  7. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): Application of spectroscopic techniques and molecular modeling methods.

    Science.gov (United States)

    Poureshghi, Fatemeh; Ghandforoushan, Parisa; Safarnejad, Azam; Soltani, Somaieh

    2017-01-01

    Lamotrigine (an epileptic drug) interaction with human serum albumin (HSA) was investigated by fluorescence, UV-Vis, FTIR, CD spectroscopic techniques, and molecular modeling methods. Binding constant (K b ) of 5.74×10 3 and number of binding site of 0.97 showed that there is a slight interaction between lamotrigine and HSA. Thermodynamic studies was constructed using the flourimetric titrations in three different temperatures and the resulted data used to calculate the parameters using Vant Hoff equation. Decreased Stern Volmer quenching constant by enhanced temperature revealed the static quenching mechanism. Negative standard enthalpy (ΔH) and standard entropy (ΔS) changes indicated that van der Waals interactions and hydrogen bonds were dominant forces which facilitate the binding of Lamotrigine to HSA, the results were confirmed by molecular docking studies which showed no hydrogen binding. The FRET studies showed that there is a possibility of energy transfer between Trp214 and lamotrigine. Also the binding of lamotrigine to HSA in the studied concentrations was not as much as many other drugs, but the secondary structure of the HSA was significantly changed following the interaction in a way that α-helix percentage was reduced from 67% to 57% after the addition of lamotrigine in the molar ratio of 4:1 to HSA. According to the docking studies, lamotrigine binds to IB site preferably. Copyright © 2016. Published by Elsevier B.V.

  8. Computer animation algorithms and techniques

    CERN Document Server

    Parent, Rick

    2012-01-01

    Driven by the demands of research and the entertainment industry, the techniques of animation are pushed to render increasingly complex objects with ever-greater life-like appearance and motion. This rapid progression of knowledge and technique impacts professional developers, as well as students. Developers must maintain their understanding of conceptual foundations, while their animation tools become ever more complex and specialized. The second edition of Rick Parent's Computer Animation is an excellent resource for the designers who must meet this challenge. The first edition establ

  9. Computational intelligence techniques in health care

    CERN Document Server

    Zhou, Wengang; Satheesh, P

    2016-01-01

    This book presents research on emerging computational intelligence techniques and tools, with a particular focus on new trends and applications in health care. Healthcare is a multi-faceted domain, which incorporates advanced decision-making, remote monitoring, healthcare logistics, operational excellence and modern information systems. In recent years, the use of computational intelligence methods to address the scale and the complexity of the problems in healthcare has been investigated. This book discusses various computational intelligence methods that are implemented in applications in different areas of healthcare. It includes contributions by practitioners, technology developers and solution providers.

  10. 2012 International Conference on Human-centric Computing

    CERN Document Server

    Jin, Qun; Yeo, Martin; Hu, Bin; Human Centric Technology and Service in Smart Space, HumanCom 2012

    2012-01-01

    The theme of HumanCom is focused on the various aspects of human-centric computing for advances in computer science and its applications and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of human-centric computing. In addition, the conference will publish high quality papers which are closely related to the various theories and practical applications in human-centric computing. Furthermore, we expect that the conference and its publications will be a trigger for further related research and technology improvements in this important subject.

  11. Techniques and applications of the human reliability analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Pinto, Fausto C.

    1995-01-01

    The analysis and prediction of the man-machine interaction are the objectives of human reliability analysis. In this work is presented in a manner that could be used by experts in the field of Probabilistic Safety Assessment, considering primarily the aspects of human errors. The Technique of Human Error Rate Prediction (THERP) is used in large scale to obtain data on human error. Applications of this technique are presented, as well as aspects of the state-of-art and of research and development of this particular field of work, where the construction of a reliable data bank is considered essential. In this work is also developed an application of the THERP for the TRIGA Mark 1 IPR R-1 Reactor of the Centro de Desenvolvimento de Tecnologia Nuclear, Brazilian research institute of nuclear technology. The results indicate that some changes must be made in the emergency procedures of the reactor, in order to achieve a higher level of safety

  12. Modeling Users' Experiences with Interactive Systems

    CERN Document Server

    Karapanos, Evangelos

    2013-01-01

    Over the past decade the field of Human-Computer Interaction has evolved from the study of the usability of interactive products towards a more holistic understanding of how they may mediate desired human experiences.  This book identifies the notion of diversity in usersʼ experiences with interactive products and proposes methods and tools for modeling this along two levels: (a) interpersonal diversity in usersʽ responses to early conceptual designs, and (b) the dynamics of usersʼ experiences over time. The Repertory Grid Technique is proposed as an alternative to standardized psychometric scales for modeling interpersonal diversity in usersʼ responses to early concepts in the design process, and new Multi-Dimensional Scaling procedures are introduced for modeling such complex quantitative data. iScale, a tool for the retrospective assessment of usersʼ experiences over time is proposed as an alternative to longitudinal field studies, and a semi-automated technique for the analysis of the elicited exper...

  13. Why E-Business Must Evolve beyond Market Orientation: Applying Human Interaction Models to Computer-Mediated Corporate Communications.

    Science.gov (United States)

    Johnston, Kevin McCullough

    2001-01-01

    Considers the design of corporate communications for electronic business and discusses the increasing importance of corporate interaction as companies work in virtual environments. Compares sociological and psychological theories of human interaction and relationship formation with organizational interaction theories of corporate relationship…

  14. Multi-Detector Computed Tomography Imaging Techniques in Arterial Injuries

    Directory of Open Access Journals (Sweden)

    Cameron Adler

    2018-04-01

    Full Text Available Cross-sectional imaging has become a critical aspect in the evaluation of arterial injuries. In particular, angiography using computed tomography (CT is the imaging of choice. A variety of techniques and options are available when evaluating for arterial injuries. Techniques involve contrast bolus, various phases of contrast enhancement, multiplanar reconstruction, volume rendering, and maximum intensity projection. After the images are rendered, a variety of features may be seen that diagnose the injury. This article provides a general overview of the techniques, important findings, and pitfalls in cross sectional imaging of arterial imaging, particularly in relation to computed tomography. In addition, the future directions of computed tomography, including a few techniques in the process of development, is also discussed.

  15. Quantifying human-environment interactions using videography in the context of infectious disease transmission.

    Science.gov (United States)

    Julian, Timothy R; Bustos, Carla; Kwong, Laura H; Badilla, Alejandro D; Lee, Julia; Bischel, Heather N; Canales, Robert A

    2018-05-08

    Quantitative data on human-environment interactions are needed to fully understand infectious disease transmission processes and conduct accurate risk assessments. Interaction events occur during an individual's movement through, and contact with, the environment, and can be quantified using diverse methodologies. Methods that utilize videography, coupled with specialized software, can provide a permanent record of events, collect detailed interactions in high resolution, be reviewed for accuracy, capture events difficult to observe in real-time, and gather multiple concurrent phenomena. In the accompanying video, the use of specialized software to capture humanenvironment interactions for human exposure and disease transmission is highlighted. Use of videography, combined with specialized software, allows for the collection of accurate quantitative representations of human-environment interactions in high resolution. Two specialized programs include the Virtual Timing Device for the Personal Computer, which collects sequential microlevel activity time series of contact events and interactions, and LiveTrak, which is optimized to facilitate annotation of events in real-time. Opportunities to annotate behaviors at high resolution using these tools are promising, permitting detailed records that can be summarized to gain information on infectious disease transmission and incorporated into more complex models of human exposure and risk.

  16. The Self-Organization of Human Interaction

    DEFF Research Database (Denmark)

    Dale, Rick; Fusaroli, Riccardo; Duran, Nicholas

    2013-01-01

    We describe a “centipede’s dilemma” that faces the sciences of human interaction. Research on human interaction has been involved in extensive theoretical debate, although the vast majority of research tends to focus on a small set of human behaviors, cognitive processes, and interactive contexts...

  17. Computer-based personality judgments are more accurate than those made by humans

    Science.gov (United States)

    Youyou, Wu; Kosinski, Michal; Stillwell, David

    2015-01-01

    Judging others’ personalities is an essential skill in successful social living, as personality is a key driver behind people’s interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants’ Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy. PMID:25583507

  18. Computing the influences of different Intraocular Pressures on the human eye components using computational fluid-structure interaction model.

    Science.gov (United States)

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2017-01-01

    Intraocular Pressure (IOP) is defined as the pressure of aqueous in the eye. It has been reported that the normal range of IOP should be within the 10-20 mmHg with an average of 15.50 mmHg among the ophthalmologists. Keratoconus is an anti-inflammatory eye disorder that debilitated cornea unable to reserve the normal structure contrary to the IOP in the eye. Consequently, the cornea would bulge outward and invoke a conical shape following by distorted vision. In addition, it is known that any alterations in the structure and composition of the lens and cornea would exceed a change of the eye ball as well as the mechanical and optical properties of the eye. Understanding the precise alteration of the eye components' stresses and deformations due to different IOPs could help elucidate etiology and pathogenesis to develop treatments not only for keratoconus but also for other diseases of the eye. In this study, at three different IOPs, including 10, 20, and 30 mmHg the stresses and deformations of the human eye components were quantified using a Three-Dimensional (3D) computational Fluid-Structure Interaction (FSI) model of the human eye. The results revealed the highest amount of von Mises stress in the bulged region of the cornea with 245 kPa at the IOP of 30 mmHg. The lens was also showed the von Mises stress of 19.38 kPa at the IOPs of 30 mmHg. In addition, by increasing the IOP from 10 to 30 mmHg, the radius of curvature in the cornea and lens was increased accordingly. In contrast, the sclera indicated its highest stress at the IOP of 10 mmHg due to over pressure phenomenon. The variation of IOP illustrated a little influence in the amount of stress as well as the resultant displacement of the optic nerve. These results can be used for understanding the amount of stresses and deformations in the human eye components due to different IOPs as well as for clarifying significant role of IOP on the radius of curvature of the cornea and the lens.

  19. Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers

    Science.gov (United States)

    Guruswamy, Guru; VanDalsem, William (Technical Monitor)

    1994-01-01

    Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.

  20. The Development of an Interactive Computer-Based Training Program for Timely and Humane On-Farm Pig Euthanasia.

    Science.gov (United States)

    Mullins, Caitlyn R; Pairis-Garcia, Monique D; Campler, Magnus R; Anthony, Raymond; Johnson, Anna K; Coleman, Grahame J; Rault, Jean-Loup

    2018-02-05

    With extensive knowledge and training in the prevention, management, and treatment of disease conditions in animals, veterinarians play a critical role in ensuring good welfare on swine farms by training caretakers on the importance of timely euthanasia. To assist veterinarians and other industry professionals in training new and seasoned caretakers, an interactive computer-based training program was created. It consists of three modules, each containing five case studies, which cover three distinct production stages (breeding stock, piglets, and wean to grower-finisher pigs). Case study development was derived from five specific euthanasia criteria defined in the 2015 Common Swine Industry Audit, a nationally recognized auditing program used in the US. Case studies provide information regarding treatment history, clinical signs, and condition severity of the pig and prompt learners to make management decisions regarding pig treatment and care. Once a decision is made, feedback is provided so learners understand the appropriateness of their decision compared to current industry guidelines. In addition to training farm personnel, this program may also be a valuable resource if incorporated into veterinary, graduate, and continuing education curricula. This innovative tool represents the first interactive euthanasia-specific training program in the US swine industry and offers the potential to improve timely and humane on-farm pig euthanasia.

  1. Eyewear Computing – Augmenting the Human with Head-mounted Wearable Assistants (Dagstuhl Seminar 16042)

    OpenAIRE

    Bulling, Andreas; Cakmakci, Ozan; Kunze, Kai; Rehg, James M.

    2016-01-01

    The seminar was composed of workshops and tutorials on head-mounted eye tracking, egocentric vision, optics, and head-mounted displays. The seminar welcomed 30 academic and industry researchers from Europe, the US, and Asia with a diverse background, including wearable and ubiquitous computing, computer vision, developmental psychology, optics, and human-computer interaction. In contrast to several previous Dagstuhl seminars, we used an ignite talk format to reduce the time of talks to...

  2. LATTICE: an interactive lattice computer code

    International Nuclear Information System (INIS)

    Staples, J.

    1976-10-01

    LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included

  3. Emotion based human-robot interaction

    Directory of Open Access Journals (Sweden)

    Berns Karsten

    2018-01-01

    Full Text Available Human-machine interaction is a major challenge in the development of complex humanoid robots. In addition to verbal communication the use of non-verbal cues such as hand, arm and body gestures or mimics can improve the understanding of the intention of the robot. On the other hand, by perceiving such mechanisms of a human in a typical interaction scenario the humanoid robot can adapt its interaction skills in a better way. In this work, the perception system of two social robots, ROMAN and ROBIN of the RRLAB of the TU Kaiserslautern, is presented in the range of human-robot interaction.

  4. Histomorphometric quantification of human pathological bones from synchrotron radiation 3D computed microtomography

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson

    2011-01-01

    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a noninvasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, the output 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify pathological samples of human bone. Samples of human bones were cut into small blocks (8 mm x 8 mm x 10 mm) with a precision saw and then imaged. The computed microtomographies were obtained at SYRMEP (Synchrotron Radiation for MEdical Physics) beamline, at ELETTRA synchrotron radiation facility (Italy). The obtained 3D images yielded excellent resolution and details of intra-trabecular bone structures, including marrow present inside trabeculae. Histomorphometric quantification was compared to literature as well. (author)

  5. Structural mode significance using INCA. [Interactive Controls Analysis computer program

    Science.gov (United States)

    Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.

    1990-01-01

    Structural finite element models are often too large to be used in the design and analysis of control systems. Model reduction techniques must be applied to reduce the structural model to manageable size. In the past, engineers either performed the model order reduction by hand or used distinct computer programs to retrieve the data, to perform the significance analysis and to reduce the order of the model. To expedite this process, the latest version of INCA has been expanded to include an interactive graphical structural mode significance and model order reduction capability.

  6. Operator support system using computational intelligence techniques

    International Nuclear Information System (INIS)

    Bueno, Elaine Inacio; Pereira, Iraci Martinez

    2015-01-01

    Computational Intelligence Systems have been widely applied in Monitoring and Fault Detection Systems in several processes and in different kinds of applications. These systems use interdependent components ordered in modules. It is a typical behavior of such systems to ensure early detection and diagnosis of faults. Monitoring and Fault Detection Techniques can be divided into two categories: estimative and pattern recognition methods. The estimative methods use a mathematical model, which describes the process behavior. The pattern recognition methods use a database to describe the process. In this work, an operator support system using Computational Intelligence Techniques was developed. This system will show the information obtained by different CI techniques in order to help operators to take decision in real time and guide them in the fault diagnosis before the normal alarm limits are reached. (author)

  7. Operator support system using computational intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Elaine Inacio, E-mail: ebueno@ifsp.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Sao Paulo, SP (Brazil); Pereira, Iraci Martinez, E-mail: martinez@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Computational Intelligence Systems have been widely applied in Monitoring and Fault Detection Systems in several processes and in different kinds of applications. These systems use interdependent components ordered in modules. It is a typical behavior of such systems to ensure early detection and diagnosis of faults. Monitoring and Fault Detection Techniques can be divided into two categories: estimative and pattern recognition methods. The estimative methods use a mathematical model, which describes the process behavior. The pattern recognition methods use a database to describe the process. In this work, an operator support system using Computational Intelligence Techniques was developed. This system will show the information obtained by different CI techniques in order to help operators to take decision in real time and guide them in the fault diagnosis before the normal alarm limits are reached. (author)

  8. Interaction debugging : an integral approach to analyze human-robot interaction

    NARCIS (Netherlands)

    Kooijmans, T.; Kanda, T.; Bartneck, C.; Ishiguro, H.; Hagita, N.

    2006-01-01

    Along with the development of interactive robots, controlled experiments and field trials are regularly conducted to stage human-robot interaction. Experience in this field has shown that analyzing human-robot interaction for evaluation purposes fosters the development of improved systems and the

  9. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab

  10. Explicit Interaction

    DEFF Research Database (Denmark)

    Löwgren, Jonas; Eriksen, Mette Agger; Linde, Per

    2006-01-01

    We report an ongoing study of palpable computing to support surgical rehabilitation, in the general field of interaction design for ubiquitous computing. Through explorative design, fieldwork and participatory design techniques, we explore the design principle of explicit interaction as an interp...

  11. Best of Affective Computing and Intelligent Interaction 2013 in Multimodal Interactions

    NARCIS (Netherlands)

    Soleymani, Mohammad; Soleymani, M.; Pun, T.; Pun, Thierry; Nijholt, Antinus

    The fifth biannual Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII 2013) was held in Geneva, Switzerland. This conference featured the recent advancement in affective computing and relevant applications in education, entertainment and health. A number of

  12. Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    Science.gov (United States)

    Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer

    2011-01-01

    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator

  13. Approximate Computing Techniques for Iterative Graph Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Panyala, Ajay R.; Subasi, Omer; Halappanavar, Mahantesh; Kalyanaraman, Anantharaman; Chavarria Miranda, Daniel G.; Krishnamoorthy, Sriram

    2017-12-18

    Approximate computing enables processing of large-scale graphs by trading off quality for performance. Approximate computing techniques have become critical not only due to the emergence of parallel architectures but also the availability of large scale datasets enabling data-driven discovery. Using two prototypical graph algorithms, PageRank and community detection, we present several approximate computing heuristics to scale the performance with minimal loss of accuracy. We present several heuristics including loop perforation, data caching, incomplete graph coloring and synchronization, and evaluate their efficiency. We demonstrate performance improvements of up to 83% for PageRank and up to 450x for community detection, with low impact of accuracy for both the algorithms. We expect the proposed approximate techniques will enable scalable graph analytics on data of importance to several applications in science and their subsequent adoption to scale similar graph algorithms.

  14. Numerical Computational Technique for Scattering from Underwater Objects

    OpenAIRE

    T. Ratna Mani; Raj Kumar; Odamapally Vijay Kumar

    2013-01-01

    This paper presents a computational technique for mono-static and bi-static scattering from underwater objects of different shape such as submarines. The scatter has been computed using finite element time domain (FETD) method, based on the superposition of reflections, from the different elements reaching the receiver at a particular instant in time. The results calculated by this method has been verified with the published results based on ramp response technique. An in-depth parametric s...

  15. Computer Assistance for Writing Interactive Programs: TICS.

    Science.gov (United States)

    Kaplow, Roy; And Others

    1973-01-01

    Investigators developed an on-line, interactive programing system--the Teacher-Interactive Computer System (TICS)--to provide assistance to those who were not programers, but nevertheless wished to write interactive instructional programs. TICS had two components: an author system and a delivery system. Underlying assumptions were that…

  16. General aviation design synthesis utilizing interactive computer graphics

    Science.gov (United States)

    Galloway, T. L.; Smith, M. R.

    1976-01-01

    Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.

  17. Electrochemical Studies of Camptothecin and Its Interaction with Human Serum Albumin

    OpenAIRE

    Zhao, Jing; Zheng, Xiaofeng; Xing, Wei; Huang, Junyi; Li, Genxi

    2007-01-01

    Camptothecin, an anticancer component from Camptotheca acuminate, may interact with human serum albumin (HSA) at the subdomain IIA (site I), and then convert to its inactive form(carboxylate form). In this paper, the detailed electrochemical behaviors of camptothecin at a pyrolytic graphite electrode is presented. The interaction between camptothecin and HSA is also studied by electrochemical technique. By comparing with bovine serum albumin (BSA), which is highly homologous to HSA, we prove ...

  18. Synchronous Computer-Mediated Communication and Interaction

    Science.gov (United States)

    Ziegler, Nicole

    2016-01-01

    The current study reports on a meta-analysis of the relative effectiveness of interaction in synchronous computer-mediated communication (SCMC) and face-to-face (FTF) contexts. The primary studies included in the analysis were journal articles and dissertations completed between 1990 and 2012 (k = 14). Results demonstrate that interaction in SCMC…

  19. Development of computer-aided auto-ranging technique for a computed radiography system

    International Nuclear Information System (INIS)

    Ishida, M.; Shimura, K.; Nakajima, N.; Kato, H.

    1988-01-01

    For a computed radiography system, the authors developed a computer-aided autoranging technique in which the clinically useful image data are automatically mapped to the available display range. The preread image data are inspected to determine the location of collimation. A histogram of the pixels inside the collimation is evaluated regarding characteristic values such as maxima and minima, and then the optimal density and contrast are derived for the display image. The effect of the autoranging technique was investigated at several hospitals in Japan. The average rate of films lost due to undesirable density or contrast was about 0.5%

  20. Exploring Techniques for Vision Based Human Activity Recognition: Methods, Systems, and Evaluation

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2013-01-01

    Full Text Available With the wide applications of vision based intelligent systems, image and video analysis technologies have attracted the attention of researchers in the computer vision field. In image and video analysis, human activity recognition is an important research direction. By interpreting and understanding human activity, we can recognize and predict the occurrence of crimes and help the police or other agencies react immediately. In the past, a large number of papers have been published on human activity recognition in video and image sequences. In this paper, we provide a comprehensive survey of the recent development of the techniques, including methods, systems, and quantitative evaluation towards the performance of human activity recognition.

  1. Practical techniques for pediatric computed tomography

    International Nuclear Information System (INIS)

    Fitz, C.R.; Harwood-Nash, D.C.; Kirks, D.R.; Kaufman, R.A.; Berger, P.E.; Kuhn, J.P.; Siegel, M.J.

    1983-01-01

    Dr. Donald Kirks has assembled this section on Practical Techniques for Pediatric Computed Tomography. The material is based on a presentation in the Special Interest session at the 25th Annual Meeting of the Society for Pediatric Radiology in New Orleans, Louisiana, USA in 1982. Meticulous attention to detail and technique is required to ensure an optimal CT examination. CT techniques specifically applicable to infants and children have not been disseminated in the radiology literature and in this respect it may rightly be observed that ''the child is not a small adult''. What follows is a ''cookbook'' prepared by seven participants and it is printed in Pediatric Radiology, in outline form, as a statement of individual preferences for pediatric CT techniques. This outline gives concise explanation of techniques and permits prompt dissemination of information. (orig.)

  2. Computer Assisted Audit Techniques

    Directory of Open Access Journals (Sweden)

    Eugenia Iancu

    2007-01-01

    Full Text Available From the modern point of view, audit takes intoaccount especially the information systems representingmainly the examination performed by a professional asregards the manner for developing an activity by means ofcomparing it to the quality criteria specific to this activity.Having as reference point this very general definition ofauditing, it must be emphasized that the best known segmentof auditing is the financial audit that had a parallel evolutionto the accountancy one.The present day phase of developing the financial audithas as main trait the internationalization of the accountantprofessional. World wide there are multinational companiesthat offer services in the financial auditing, taxing andconsultancy domain. The auditors, natural persons and auditcompanies, take part at the works of the national andinternational authorities for setting out norms in theaccountancy and auditing domain.The computer assisted audit techniques can be classified inseveral manners according to the approaches used by theauditor. The most well-known techniques are comprised inthe following categories: testing data techniques, integratedtest, parallel simulation, revising the program logics,programs developed upon request, generalized auditsoftware, utility programs and expert systems.

  3. Quantifying human-environment interactions using videography in the context of infectious disease transmission

    Directory of Open Access Journals (Sweden)

    Timothy R. Julian

    2018-05-01

    Full Text Available Quantitative data on human-environment interactions are needed to fully understand infectious disease transmission processes and conduct accurate risk assessments. Interaction events occur during an individual’s movement through, and contact with, the environment, and can be quantified using diverse methodologies. Methods that utilize videography, coupled with specialized software, can provide a permanent record of events, collect detailed interactions in high resolution, be reviewed for accuracy, capture events difficult to observe in real-time, and gather multiple concurrent phenomena. In the accompanying video, the use of specialized software to capture humanenvironment interactions for human exposure and disease transmission is highlighted. Use of videography, combined with specialized software, allows for the collection of accurate quantitative representations of human-environment interactions in high resolution. Two specialized programs include the Virtual Timing Device for the Personal Computer, which collects sequential microlevel activity time series of contact events and interactions, and LiveTrak, which is optimized to facilitate annotation of events in real-time. Opportunities to annotate behaviors at high resolution using these tools are promising, permitting detailed records that can be summarized to gain information on infectious disease transmission and incorporated into more complex models of human exposure and risk.

  4. Versatile computational capability for ion-solid interactions

    International Nuclear Information System (INIS)

    Brice, D.K.

    1976-01-01

    A computational technique for calculating distributions of particles, energy, and damage that result when solids are bombarded with ions is described. The technique can be applied to weapons and energy projects

  5. Advances in FDTD computational electrodynamics photonics and nanotechnology

    CERN Document Server

    Oskooi, Ardavan; Johnson, Steven G

    2013-01-01

    Advances in photonics and nanotechnology have the potential to revolutionize humanity s ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwell s equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwell s equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech books in this area are among the top ten most-cited in the history of engineering. You discover the most important advances in all areas of FDTD and PSTD computational modeling of electromagnetic wave interactions. This cutting-edge resource helps you understand the latest develo...

  6. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. copyright 1997 American Institute of Physics

  7. Techniques to assess acoustic-structure interaction in liquid rocket engines

    Science.gov (United States)

    Davis, R. Benjamin

    Acoustoelasticity is the study of the dynamic interaction between elastic structures and acoustic enclosures. In this dissertation, acoustoelasticity is considered in the context of liquid rocket engine design. The techniques presented here can be used to determine which forcing frequencies are important in acoustoelastic systems. With a knowledge of these frequencies, an analyst can either find ways to attenuate the excitation at these frequencies or alter the system in such a way that the prescribed excitations do result in a resonant condition. The end result is a structural component that is less susceptible to failure. The research scope is divided into three parts. In the first part, the dynamics of cylindrical shells submerged in liquid hydrogen (LH2) and liquid oxygen (LOX) are considered. The shells are bounded by rigid outer cylinders. This configuration gives rise to two fluid-filled cavities---an inner cylindrical cavity and an outer annular cavity. Such geometries are common in rocket engine design. The natural frequencies and modes of the fluid-structure system are computed by combining the rigid wall acoustic cavity modes and the in vacuo structural modes into a system of coupled ordinary differential equations. Eigenvalue veering is observed near the intersections of the curves representing natural frequencies of the rigid wall acoustic and the in vacuo structural modes. In the case of a shell submerged in LH2, system frequencies near these intersections are as much as 30% lower than the corresponding in vacuo structural frequencies. Due to its high density, the frequency reductions in the presence of LOX are even more dramatic. The forced responses of a shell submerged in LH2 and LOX while subject to a harmonic point excitation are also presented. The responses in the presence of fluid are found to be quite distinct from those of the structure in vacuo. In the second part, coupled mode theory is used to explore the fundamental features of

  8. Comparative Analysis Between Computed and Conventional Inferior Alveolar Nerve Block Techniques.

    Science.gov (United States)

    Araújo, Gabriela Madeira; Barbalho, Jimmy Charles Melo; Dias, Tasiana Guedes de Souza; Santos, Thiago de Santana; Vasconcellos, Ricardo José de Holanda; de Morais, Hécio Henrique Araújo

    2015-11-01

    The aim of this randomized, double-blind, controlled trial was to compare the computed and conventional inferior alveolar nerve block techniques in symmetrically positioned inferior third molars. Both computed and conventional anesthetic techniques were performed in 29 healthy patients (58 surgeries) aged between 18 and 40 years. The anesthetic of choice was 2% lidocaine with 1: 200,000 epinephrine. The Visual Analogue Scale assessed the pain variable after anesthetic infiltration. Patient satisfaction was evaluated using the Likert Scale. Heart and respiratory rates, mean time to perform technique, and the need for additional anesthesia were also evaluated. Pain variable means were higher for the conventional technique as compared with computed, 3.45 ± 2.73 and 2.86 ± 1.96, respectively, but no statistically significant differences were found (P > 0.05). Patient satisfaction showed no statistically significant differences. The average computed technique runtime and the conventional were 3.85 and 1.61 minutes, respectively, showing statistically significant differences (P <0.001). The computed anesthetic technique showed lower mean pain perception, but did not show statistically significant differences when contrasted to the conventional technique.

  9. A mobile Nursing Information System based on human-computer interaction design for improving quality of nursing.

    Science.gov (United States)

    Su, Kuo-Wei; Liu, Cheng-Li

    2012-06-01

    A conventional Nursing Information System (NIS), which supports the role of nurse in some areas, is typically deployed as an immobile system. However, the traditional information system can't response to patients' conditions in real-time, causing delays on the availability of this information. With the advances of information technology, mobile devices are increasingly being used to extend the human mind's limited capacity to recall and process large numbers of relevant variables and to support information management, general administration, and clinical practice. Unfortunately, there have been few studies about the combination of a well-designed small-screen interface with a personal digital assistant (PDA) in clinical nursing. Some researchers found that user interface design is an important factor in determining the usability and potential use of a mobile system. Therefore, this study proposed a systematic approach to the development of a mobile nursing information system (MNIS) based on Mobile Human-Computer Interaction (M-HCI) for use in clinical nursing. The system combines principles of small-screen interface design with user-specified requirements. In addition, the iconic functions were designed with metaphor concept that will help users learn the system more quickly with less working-memory. An experiment involving learnability testing, thinking aloud and a questionnaire investigation was conducted for evaluating the effect of MNIS on PDA. The results show that the proposed MNIS is good on learning and higher satisfaction on symbol investigation, terminology and system information.

  10. Application of computer technique in SMCAMS

    International Nuclear Information System (INIS)

    Lu Deming

    2001-01-01

    A series of applications of computer technique in SMCAMS physics design and magnetic field measurement is described, including digital calculation of electric-magnetic field, beam dynamics, calculation of beam injection and extraction, and mapping and shaping of the magnetic field

  11. Towards quantifying dynamic human-human physical interactions for robot assisted stroke therapy.

    Science.gov (United States)

    Mohan, Mayumi; Mendonca, Rochelle; Johnson, Michelle J

    2017-07-01

    Human-Robot Interaction is a prominent field of robotics today. Knowledge of human-human physical interaction can prove vital in creating dynamic physical interactions between human and robots. Most of the current work in studying this interaction has been from a haptic perspective. Through this paper, we present metrics that can be used to identify if a physical interaction occurred between two people using kinematics. We present a simple Activity of Daily Living (ADL) task which involves a simple interaction. We show that we can use these metrics to successfully identify interactions.

  12. Pseudo-interactive monitoring in distributed computing

    International Nuclear Information System (INIS)

    Sfiligoi, I.; Bradley, D.; Livny, M.

    2009-01-01

    Distributed computing, and in particular Grid computing, enables physicists to use thousands of CPU days worth of computing every day, by submitting thousands of compute jobs. Unfortunately, a small fraction of such jobs regularly fail; the reasons vary from disk and network problems to bugs in the user code. A subset of these failures result in jobs being stuck for long periods of time. In order to debug such failures, interactive monitoring is highly desirable; users need to browse through the job log files and check the status of the running processes. Batch systems typically don't provide such services; at best, users get job logs at job termination, and even this may not be possible if the job is stuck in an infinite loop. In this paper we present a novel approach of using regular batch system capabilities of Condor to enable users to access the logs and processes of any running job. This does not provide true interactive access, so commands like vi are not viable, but it does allow operations like ls, cat, top, ps, lsof, netstat and dumping the stack of any process owned by the user; we call this pseudo-interactive monitoring. It is worth noting that the same method can be used to monitor Grid jobs in a glidein-based environment. We further believe that the same mechanism could be applied to many other batch systems.

  13. Pseudo-interactive monitoring in distributed computing

    International Nuclear Information System (INIS)

    Sfiligoi, I; Bradley, D; Livny, M

    2010-01-01

    Distributed computing, and in particular Grid computing, enables physicists to use thousands of CPU days worth of computing every day, by submitting thousands of compute jobs. Unfortunately, a small fraction of such jobs regularly fail; the reasons vary from disk and network problems to bugs in the user code. A subset of these failures result in jobs being stuck for long periods of time. In order to debug such failures, interactive monitoring is highly desirable; users need to browse through the job log files and check the status of the running processes. Batch systems typically don't provide such services; at best, users get job logs at job termination, and even this may not be possible if the job is stuck in an infinite loop. In this paper we present a novel approach of using regular batch system capabilities of Condor to enable users to access the logs and processes of any running job. This does not provide true interactive access, so commands like vi are not viable, but it does allow operations like ls, cat, top, ps, lsof, netstat and dumping the stack of any process owned by the user; we call this pseudo-interactive monitoring. It is worth noting that the same method can be used to monitor Grid jobs in a glidein-based environment. We further believe that the same mechanism could be applied to many other batch systems.

  14. Pseudo-interactive monitoring in distributed computing

    Energy Technology Data Exchange (ETDEWEB)

    Sfiligoi, I.; /Fermilab; Bradley, D.; Livny, M.; /Wisconsin U., Madison

    2009-05-01

    Distributed computing, and in particular Grid computing, enables physicists to use thousands of CPU days worth of computing every day, by submitting thousands of compute jobs. Unfortunately, a small fraction of such jobs regularly fail; the reasons vary from disk and network problems to bugs in the user code. A subset of these failures result in jobs being stuck for long periods of time. In order to debug such failures, interactive monitoring is highly desirable; users need to browse through the job log files and check the status of the running processes. Batch systems typically don't provide such services; at best, users get job logs at job termination, and even this may not be possible if the job is stuck in an infinite loop. In this paper we present a novel approach of using regular batch system capabilities of Condor to enable users to access the logs and processes of any running job. This does not provide true interactive access, so commands like vi are not viable, but it does allow operations like ls, cat, top, ps, lsof, netstat and dumping the stack of any process owned by the user; we call this pseudo-interactive monitoring. It is worth noting that the same method can be used to monitor Grid jobs in a glidein-based environment. We further believe that the same mechanism could be applied to many other batch systems.

  15. Identification of Enhancers In Human: Advances In Computational Studies

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2016-03-24

    Roughly ~50% of the human genome, contains noncoding sequences serving as regulatory elements responsible for the diverse gene expression of the cells in the body. One very well studied category of regulatory elements is the category of enhancers. Enhancers increase the transcriptional output in cells through chromatin remodeling or recruitment of complexes of binding proteins. Identification of enhancer using computational techniques is an interesting area of research and up to now several approaches have been proposed. However, the current state-of-the-art methods face limitations since the function of enhancers is clarified, but their mechanism of function is not well understood. This PhD thesis presents a bioinformatics/computer science study that focuses on the problem of identifying enhancers in different human cells using computational techniques. The dissertation is decomposed into four main tasks that we present in different chapters. First, since many of the enhancer’s functions are not well understood, we study the basic biological models by which enhancers trigger transcriptional functions and we survey comprehensively over 30 bioinformatics approaches for identifying enhancers. Next, we elaborate more on the availability of enhancer data as produced by different enhancer identification methods and experimental procedures. In particular, we analyze advantages and disadvantages of existing solutions and we report obstacles that require further consideration. To mitigate these problems we developed the Database of Integrated Human Enhancers (DENdb), a centralized online repository that archives enhancer data from 16 ENCODE cell-lines. The integrated enhancer data are also combined with many other experimental data that can be used to interpret the enhancers content and generate a novel enhancer annotation that complements the existing integrative annotation proposed by the ENCODE consortium. Next, we propose the first deep-learning computational

  16. Development and evaluation of a computer-aided system for analyzing human error in railway operations

    International Nuclear Information System (INIS)

    Kim, Dong San; Baek, Dong Hyun; Yoon, Wan Chul

    2010-01-01

    As human error has been recognized as one of the major contributors to accidents in safety-critical systems, there has been a strong need for techniques that can analyze human error effectively. Although many techniques have been developed so far, much room for improvement remains. As human error analysis is a cognitively demanding and time-consuming task, it is particularly necessary to develop a computerized system supporting this task. This paper presents a computer-aided system for analyzing human error in railway operations, called Computer-Aided System for Human Error Analysis and Reduction (CAS-HEAR). It supports analysts to find multiple levels of error causes and their causal relations by using predefined links between contextual factors and causal factors as well as links between causal factors. In addition, it is based on a complete accident model; hence, it helps analysts to conduct a thorough analysis without missing any important part of human error analysis. A prototype of CAS-HEAR was evaluated by nine field investigators from six railway organizations in Korea. Its overall usefulness in human error analysis was confirmed, although development of its simplified version and some modification of the contextual factors and causal factors are required in order to ensure its practical use.

  17. Qudit-Basis Universal Quantum Computation Using χ(2 ) Interactions

    Science.gov (United States)

    Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.

    2018-04-01

    We prove that universal quantum computation can be realized—using only linear optics and χ(2 ) (three-wave mixing) interactions—in any (n +1 )-dimensional qudit basis of the n -pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ(2 ) Hamiltonians and photon-number operators generate the full u (3 ) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ(2 ) interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ(2 ) interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.

  18. On the application of motivation theory to human factors/ergonomics: motivational design principles for human-technology interaction.

    Science.gov (United States)

    Szalma, James L

    2014-12-01

    Motivation is a driving force in human-technology interaction. This paper represents an effort to (a) describe a theoretical model of motivation in human technology interaction, (b) provide design principles and guidelines based on this theory, and (c) describe a sequence of steps for the. evaluation of motivational factors in human-technology interaction. Motivation theory has been relatively neglected in human factors/ergonomics (HF/E). In both research and practice, the (implicit) assumption has been that the operator is already motivated or that motivation is an organizational concern and beyond the purview of HF/E. However, technology can induce task-related boredom (e.g., automation) that can be stressful and also increase system vulnerability to performance failures. A theoretical model of motivation in human-technology interaction is proposed, based on extension of the self-determination theory of motivation to HF/E. This model provides the basis for both future research and for development of practical recommendations for design. General principles and guidelines for motivational design are described as well as a sequence of steps for the design process. Human motivation is an important concern for HF/E research and practice. Procedures in the design of both simple and complex technologies can, and should, include the evaluation of motivational characteristics of the task, interface, or system. In addition, researchers should investigate these factors in specific human-technology domains. The theory, principles, and guidelines described here can be incorporated into existing techniques for task analysis and for interface and system design.

  19. Developing human technology curriculum

    Directory of Open Access Journals (Sweden)

    Teija Vainio

    2012-10-01

    Full Text Available During the past ten years expertise in human-computer interaction has shifted from humans interacting with desktop computers to individual human beings or groups of human beings interacting with embedded or mobile technology. Thus, humans are not only interacting with computers but with technology. Obviously, this shift should be reflected in how we educate human-technology interaction (HTI experts today and in the future. We tackle this educational challenge first by analysing current Master’s-level education in collaboration with two universities and second, discussing postgraduate education in the international context. As a result, we identified core studies that should be included in the HTI curriculum. Furthermore, we discuss some practical challenges and new directions for international HTI education.

  20. Making IBM's Computer, Watson, Human

    Science.gov (United States)

    Rachlin, Howard

    2012-01-01

    This essay uses the recent victory of an IBM computer (Watson) in the TV game, "Jeopardy," to speculate on the abilities Watson would need, in addition to those it has, to be human. The essay's basic premise is that to be human is to behave as humans behave and to function in society as humans function. Alternatives to this premise are considered…

  1. Studying the neurobiology of human social interaction: Making the case for ecological validity.

    Science.gov (United States)

    Hogenelst, Koen; Schoevers, Robert A; aan het Rot, Marije

    2015-01-01

    With this commentary we make the case for an increased focus on the ecological validity of the measures used to assess aspects of human social functioning. Impairments in social functioning are seen in many types of psychopathology, negatively affecting the lives of psychiatric patients and those around them. Yet the neurobiology underlying abnormal social interaction remains unclear. As an example of human social neuroscience research with relevance to biological psychiatry and clinical psychopharmacology, this commentary discusses published experimental studies involving manipulation of the human brain serotonin system that included assessments of social behavior. To date, these studies have mostly been laboratory-based and included computer tasks, observations by others, or single-administration self-report measures. Most laboratory measures used so far inform about the role of serotonin in aspects of social interaction, but the relevance for real-life interaction is often unclear. Few studies have used naturalistic assessments in real life. We suggest several laboratory methods with high ecological validity as well as ecological momentary assessment, which involves intensive repeated measures in naturalistic settings. In sum, this commentary intends to stimulate experimental research on the neurobiology of human social interaction as it occurs in real life.

  2. Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and Automated Systems

    Science.gov (United States)

    Rungta, Neha; Brat, Guillaume; Clancey, William J.; Linde, Charlotte; Raimondi, Franco; Seah, Chin; Shafto, Michael

    2013-01-01

    The on-going transformation from the current US Air Traffic System (ATS) to the Next Generation Air Traffic System (NextGen) will force the introduction of new automated systems and most likely will cause automation to migrate from ground to air. This will yield new function allocations between humans and automation and therefore change the roles and responsibilities in the ATS. Yet, safety in NextGen is required to be at least as good as in the current system. We therefore need techniques to evaluate the safety of the interactions between humans and automation. We think that current human factor studies and simulation-based techniques will fall short in front of the ATS complexity, and that we need to add more automated techniques to simulations, such as model checking, which offers exhaustive coverage of the non-deterministic behaviors in nominal and off-nominal scenarios. In this work, we present a verification approach based both on simulations and on model checking for evaluating the roles and responsibilities of humans and automation. Models are created using Brahms (a multi-agent framework) and we show that the traditional Brahms simulations can be integrated with automated exploration techniques based on model checking, thus offering a complete exploration of the behavioral space of the scenario. Our formal analysis supports the notion of beliefs and probabilities to reason about human behavior. We demonstrate the technique with the Ueberligen accident since it exemplifies authority problems when receiving conflicting advices from human and automated systems.

  3. Advanced Technologies, Embedded and Multimedia for Human-Centric Computing

    CERN Document Server

    Chao, Han-Chieh; Deng, Der-Jiunn; Park, James; HumanCom and EMC 2013

    2014-01-01

    The theme of HumanCom and EMC are focused on the various aspects of human-centric computing for advances in computer science and its applications, embedded and multimedia computing and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of human-centric computing. And the theme of EMC (Advanced in Embedded and Multimedia Computing) is focused on the various aspects of embedded system, smart grid, cloud and multimedia computing, and it provides an opportunity for academic, industry professionals to discuss the latest issues and progress in the area of embedded and multimedia computing. Therefore this book will be include the various theories and practical applications in human-centric computing and embedded and multimedia computing.

  4. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand.

    Science.gov (United States)

    Kent, Benjamin A; Engeberg, Erik D

    2014-11-07

    Effortless control of the human hand is mediated by the physical and neural couplings inherent in the structure of the hand. This concept was explored for environmental interaction tasks with the human hand, and a novel human-inspired feedback synergy (HFS) controller was developed for a robotic hand which synchronized position and force feedback signals to mimic observed human hand motions. This was achieved by first recording the finger joint motion profiles of human test subjects, where it was observed that the subjects would extend their fingers to maintain a natural hand posture when interacting with different surfaces. The resulting human joint angle data were used as inspiration to develop the HFS controller for the anthropomorphic robotic hand, which incorporated finger abduction and force feedback in the control laws for finger extension. Experimental results showed that by projecting a broader view of the tasks at hand to each specific joint, the HFS controller produced hand motion profiles that closely mimic the observed human responses and allowed the robotic manipulator to interact with the surfaces while maintaining a natural hand posture. Additionally, the HFS controller enabled the robotic hand to autonomously traverse vertical step discontinuities without prior knowledge of the environment, visual feedback, or traditional trajectory planning techniques.

  5. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand

    International Nuclear Information System (INIS)

    Kent, Benjamin A; Engeberg, Erik D

    2014-01-01

    Effortless control of the human hand is mediated by the physical and neural couplings inherent in the structure of the hand. This concept was explored for environmental interaction tasks with the human hand, and a novel human-inspired feedback synergy (HFS) controller was developed for a robotic hand which synchronized position and force feedback signals to mimic observed human hand motions. This was achieved by first recording the finger joint motion profiles of human test subjects, where it was observed that the subjects would extend their fingers to maintain a natural hand posture when interacting with different surfaces. The resulting human joint angle data were used as inspiration to develop the HFS controller for the anthropomorphic robotic hand, which incorporated finger abduction and force feedback in the control laws for finger extension. Experimental results showed that by projecting a broader view of the tasks at hand to each specific joint, the HFS controller produced hand motion profiles that closely mimic the observed human responses and allowed the robotic manipulator to interact with the surfaces while maintaining a natural hand posture. Additionally, the HFS controller enabled the robotic hand to autonomously traverse vertical step discontinuities without prior knowledge of the environment, visual feedback, or traditional trajectory planning techniques. (paper)

  6. Modelling of human-machine interaction in equipment design of manufacturing cells

    Science.gov (United States)

    Cochran, David S.; Arinez, Jorge F.; Collins, Micah T.; Bi, Zhuming

    2017-08-01

    This paper proposes a systematic approach to model human-machine interactions (HMIs) in supervisory control of machining operations; it characterises the coexistence of machines and humans for an enterprise to balance the goals of automation/productivity and flexibility/agility. In the proposed HMI model, an operator is associated with a set of behavioural roles as a supervisor for multiple, semi-automated manufacturing processes. The model is innovative in the sense that (1) it represents an HMI based on its functions for process control but provides the flexibility for ongoing improvements in the execution of manufacturing processes; (2) it provides a computational tool to define functional requirements for an operator in HMIs. The proposed model can be used to design production systems at different levels of an enterprise architecture, particularly at the machine level in a production system where operators interact with semi-automation to accomplish the goal of 'autonomation' - automation that augments the capabilities of human beings.

  7. Innovative application of virtual display technique in virtual museum

    Science.gov (United States)

    Zhang, Jiankang

    2017-09-01

    Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.

  8. Symbolic computation of nonlinear wave interactions on MACSYMA

    International Nuclear Information System (INIS)

    Bers, A.; Kulp, J.L.; Karney, C.F.F.

    1976-01-01

    In this paper the use of a large symbolic computation system - MACSYMA - in determining approximate analytic expressions for the nonlinear coupling of waves in an anisotropic plasma is described. MACSYMA was used to implement the solutions of a fluid plasma model nonlinear partial differential equations by perturbation expansions and subsequent iterative analytic computations. By interacting with the details of the symbolic computation, the physical processes responsible for particular nonlinear wave interactions could be uncovered and appropriate approximations introduced so as to simplify the final analytic result. Details of the MACSYMA system and its use are discussed and illustrated. (Auth.)

  9. Human Robot Interaction for Hybrid Collision Avoidance System for Indoor Mobile Robots

    Directory of Open Access Journals (Sweden)

    Mazen Ghandour

    2017-06-01

    Full Text Available In this paper, a novel approach for collision avoidance for indoor mobile robots based on human-robot interaction is realized. The main contribution of this work is a new technique for collision avoidance by engaging the human and the robot in generating new collision-free paths. In mobile robotics, collision avoidance is critical for the success of the robots in implementing their tasks, especially when the robots navigate in crowded and dynamic environments, which include humans. Traditional collision avoidance methods deal with the human as a dynamic obstacle, without taking into consideration that the human will also try to avoid the robot, and this causes the people and the robot to get confused, especially in crowded social places such as restaurants, hospitals, and laboratories. To avoid such scenarios, a reactive-supervised collision avoidance system for mobile robots based on human-robot interaction is implemented. In this method, both the robot and the human will collaborate in generating the collision avoidance via interaction. The person will notify the robot about the avoidance direction via interaction, and the robot will search for the optimal collision-free path on the selected direction. In case that no people interacted with the robot, it will select the navigation path autonomously and select the path that is closest to the goal location. The humans will interact with the robot using gesture recognition and Kinect sensor. To build the gesture recognition system, two models were used to classify these gestures, the first model is Back-Propagation Neural Network (BPNN, and the second model is Support Vector Machine (SVM. Furthermore, a novel collision avoidance system for avoiding the obstacles is implemented and integrated with the HRI system. The system is tested on H20 robot from DrRobot Company (Canada and a set of experiments were implemented to report the performance of the system in interacting with the human and avoiding

  10. Use of Spectroscopic, Zeta Potential and Molecular Dynamic Techniques to Study the Interaction between Human Holo-Transferrin and Two Antagonist Drugs: Comparison of Binary and Ternary Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Saberi

    2012-03-01

    Full Text Available For the first time, the binding of ropinirole hydrochloride (ROP and aspirin (ASA to human holo-transferrin (hTf has been investigated by spectroscopic approaches (fluorescence quenching, synchronous fluorescence, time-resolved fluorescence, three-dimensional fluorescence, UV-vis absorption, circular dichroism, resonance light scattering, as well as zeta potential and molecular modeling techniques, under simulated physiological conditions. Fluorescence analysis was used to estimate the effect of the ROP and ASA drugs on the fluorescence of hTf as well as to define the binding and quenching properties of binary and ternary complexes. The synchronized fluorescence and three-dimensional fluorescence spectra demonstrated some micro-environmental and conformational changes around the Trp and Tyr residues with a faint red shift. Thermodynamic analysis displayed the van der Waals forces and hydrogen bonds interactions are the major acting forces in stabilizing the complexes. Steady-state and time-resolved fluorescence data revealed that the fluorescence quenching of complexes are static mechanism. The effect of the drugs aggregating on the hTf resulted in an enhancement of the resonance light scattering (RLS intensity. The average binding distance between were computed according to the forster non-radiation energy transfer theory. The circular dichroism (CD spectral examinations indicated that the binding of the drugs induced a conformational change of hTf. Measurements of the zeta potential indicated that the combination of electrostatic and hydrophobic interactions between ROP, ASA and hTf formed micelle-like clusters. The molecular modeling confirmed the experimental results. This study is expected to provide important insight into the interaction of hTf with ROP and ASA to use in various toxicological and therapeutic processes.

  11. THE COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR PREDICTIONS - ARTIFICIAL NEURAL NETWORKS

    OpenAIRE

    Mary Violeta Bar

    2014-01-01

    The computational intelligence techniques are used in problems which can not be solved by traditional techniques when there is insufficient data to develop a model problem or when they have errors.Computational intelligence, as he called Bezdek (Bezdek, 1992) aims at modeling of biological intelligence. Artificial Neural Networks( ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is solving problems that are too c...

  12. The design implications of social interaction in a workplace setting

    OpenAIRE

    A Backhouse; P Drew

    1992-01-01

    Space has been traditionally conceptualised as a passive host to its user activities. Increasingly, however, it is recognised that patterns of human interaction are derivative of the spatial configuration of which they are an integral part. This work is almost wholly confined to computational statistics of undifferentiated interactional encounters. In this paper specifically qualitative techniques will be used to extend and refine this model in order to demonstrate empirically that user behav...

  13. Personality and social skills in human-dog interaction

    DEFF Research Database (Denmark)

    Meyer, Iben Helene Coakley

    developing a social tool set that makes it very successful in interacting and communicating with humans. Human evolution has similarly resulted in the development of complex social cognition in humans. This enables humans to form bonded relationships, besides pair-bonding, and it seems that humans are also...... of this thesis was to attain a better understanding of some of the factors related to the inter-action between humans and dogs. This aim was addressed by focusing on dog personality and hu-man social skills in relation to human-dog interaction. Two studies investigated dog personality and how it a) affects...... the relationship with the owner, and b) is affected by human breeding goals. Two studies investigated how human social skills affect the communication and interaction between hu-man and dog. As part of these studies it was also investigated how experience with dogs interacts with human social skills, perception...

  14. Aspects of computer control from the human engineering standpoint

    International Nuclear Information System (INIS)

    Huang, T.V.

    1979-03-01

    A Computer Control System includes data acquisition, information display and output control signals. In order to design such a system effectively we must first determine the required operational mode: automatic control (closed loop), computer assisted (open loop), or hybrid control. The choice of operating mode will depend on the nature of the plant, the complexity of the operation, the funds available, and the technical expertise of the operating staff, among many other factors. Once the mode has been selected, consideration must be given to the method (man/machine interface) by which the operator interacts with this system. The human engineering factors are of prime importance to achieving high operating efficiency and very careful attention must be given to this aspect of the work, if full operator acceptance is to be achieved. This paper will discuss these topics and will draw on experience gained in setting up the computer control system in Main Control Center for Stanford University's Accelerator Center (a high energy physics research facility)

  15. A computer graphics display technique for the examination of aircraft design data

    Science.gov (United States)

    Talcott, N. A., Jr.

    1981-01-01

    An interactive computer graphics technique has been developed for quickly sorting and interpreting large amounts of aerodynamic data. It utilizes a graphic representation rather than numbers. The geometry package represents the vehicle as a set of panels. These panels are ordered in groups of ascending values (e.g., equilibrium temperatures). The groups are then displayed successively on a CRT building up to the complete vehicle. A zoom feature allows for displaying only the panels with values between certain limits. The addition of color allows a one-time display thus eliminating the need for a display build up.

  16. New computing techniques in physics research

    International Nuclear Information System (INIS)

    Becks, Karl-Heinz; Perret-Gallix, Denis

    1994-01-01

    New techniques were highlighted by the ''Third International Workshop on Software Engineering, Artificial Intelligence and Expert Systems for High Energy and Nuclear Physics'' in Oberammergau, Bavaria, Germany, from October 4 to 8. It was the third workshop in the series; the first was held in Lyon in 1990 and the second at France-Telecom site near La Londe les Maures in 1992. This series of workshops covers a broad spectrum of problems. New, highly sophisticated experiments demand new techniques in computing, in hardware as well as in software. Software Engineering Techniques could in principle satisfy the needs for forthcoming accelerator experiments. The growing complexity of detector systems demands new techniques in experimental error diagnosis and repair suggestions; Expert Systems seem to offer a way of assisting the experimental crew during data-taking

  17. Human-machine interface for a VR-based medical imaging environment

    Science.gov (United States)

    Krapichler, Christian; Haubner, Michael; Loesch, Andreas; Lang, Manfred K.; Englmeier, Karl-Hans

    1997-05-01

    Modern 3D scanning techniques like magnetic resonance imaging (MRI) or computed tomography (CT) produce high- quality images of the human anatomy. Virtual environments open new ways to display and to analyze those tomograms. Compared with today's inspection of 2D image sequences, physicians are empowered to recognize spatial coherencies and examine pathological regions more facile, diagnosis and therapy planning can be accelerated. For that purpose a powerful human-machine interface is required, which offers a variety of tools and features to enable both exploration and manipulation of the 3D data. Man-machine communication has to be intuitive and efficacious to avoid long accustoming times and to enhance familiarity with and acceptance of the interface. Hence, interaction capabilities in virtual worlds should be comparable to those in the real work to allow utilization of our natural experiences. In this paper the integration of hand gestures and visual focus, two important aspects in modern human-computer interaction, into a medical imaging environment is shown. With the presented human- machine interface, including virtual reality displaying and interaction techniques, radiologists can be supported in their work. Further, virtual environments can even alleviate communication between specialists from different fields or in educational and training applications.

  18. Contextual Interaction Design Research: Enabling HCI

    OpenAIRE

    Murer , Martin; Meschtscherjakov , Alexander; Fuchsberger , Verena; Giuliani , Manuel; Neureiter , Katja; Moser , Christiane; Aslan , Ilhan; Tscheligi , Manfred

    2015-01-01

    International audience; Human-Computer Interaction (HCI) has always been about humans, their needs and desires. Contemporary HCI thinking investigates interactions in everyday life and puts an emphasis on the emotional and experiential qualities of interactions. At the Center for Human-Computer Interaction we seek to bridge meandering strands in the field by following a guiding metaphor that shifts focus to what has always been the core quality of our research field: Enabling HCI, as a leitmo...

  19. A Comprehensive Review on Handcrafted and Learning-Based Action Representation Approaches for Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Allah Bux Sargano

    2017-01-01

    Full Text Available Human activity recognition (HAR is an important research area in the fields of human perception and computer vision due to its wide range of applications. These applications include: intelligent video surveillance, ambient assisted living, human computer interaction, human-robot interaction, entertainment, and intelligent driving. Recently, with the emergence and successful deployment of deep learning techniques for image classification, researchers have migrated from traditional handcrafting to deep learning techniques for HAR. However, handcrafted representation-based approaches are still widely used due to some bottlenecks such as computational complexity of deep learning techniques for activity recognition. However, approaches based on handcrafted representation are not able to handle complex scenarios due to their limitations and incapability; therefore, resorting to deep learning-based techniques is a natural option. This review paper presents a comprehensive survey of both handcrafted and learning-based action representations, offering comparison, analysis, and discussions on these approaches. In addition to this, the well-known public datasets available for experimentations and important applications of HAR are also presented to provide further insight into the field. This is the first review paper of its kind which presents all these aspects of HAR in a single review article with comprehensive coverage of each part. Finally, the paper is concluded with important discussions and research directions in the domain of HAR.

  20. Simulation-based computation of dose to humans in radiological environments

    International Nuclear Information System (INIS)

    Breazeal, N.L.; Davis, K.R.; Watson, R.A.; Vickers, D.S.; Ford, M.S.

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface

  1. Simulation-based computation of dose to humans in radiological environments

    Energy Technology Data Exchange (ETDEWEB)

    Breazeal, N.L. [Sandia National Labs., Livermore, CA (United States); Davis, K.R.; Watson, R.A. [Sandia National Labs., Albuquerque, NM (United States); Vickers, D.S. [Brigham Young Univ., Provo, UT (United States). Dept. of Electrical and Computer Engineering; Ford, M.S. [Battelle Pantex, Amarillo, TX (United States). Dept. of Radiation Safety

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface.

  2. Activity-based computing: computational management of activities reflecting human intention

    DEFF Research Database (Denmark)

    Bardram, Jakob E; Jeuris, Steven; Houben, Steven

    2015-01-01

    paradigm that has been applied in personal information management applications as well as in ubiquitous, multidevice, and interactive surface computing. ABC has emerged as a response to the traditional application- and file-centered computing paradigm, which is oblivious to a notion of a user’s activity...

  3. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    Science.gov (United States)

    Wu, Dongrui; Lance, Brent J; Parsons, Thomas D

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.

  4. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    Directory of Open Access Journals (Sweden)

    Dongrui Wu

    Full Text Available Brain-computer interaction (BCI and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL, active class selection (ACS, and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.

  5. Computer-Based Interaction Analysis with DEGREE Revisited

    Science.gov (United States)

    Barros, B.; Verdejo, M. F.

    2016-01-01

    We review our research with "DEGREE" and analyse how our work has impacted the collaborative learning community since 2000. Our research is framed within the context of computer-based interaction analysis and the development of computer-supported collaborative learning (CSCL) tools. We identify some aspects of our work which have been…

  6. Computer-assisted image analysis assay of human neutrophil chemotaxis in vitro

    DEFF Research Database (Denmark)

    Jensen, P; Kharazmi, A

    1991-01-01

    We have developed a computer-based image analysis system to measure in-filter migration of human neutrophils in the Boyden chamber. This method is compared with the conventional manual counting techniques. Neutrophils from healthy individuals and from patients with reduced chemotactic activity were....... Another advantage of the assay is that it can be used to show the migration pattern of different populations of neutrophils from both healthy individuals and patients....

  7. Development of a Fast Fluid-Structure Coupling Technique for Wind Turbine Computations

    DEFF Research Database (Denmark)

    Sessarego, Matias; Ramos García, Néstor; Shen, Wen Zhong

    2015-01-01

    Fluid-structure interaction simulations are routinely used in the wind energy industry to evaluate the aerodynamic and structural dynamic performance of wind turbines. Most aero-elastic codes in modern times implement a blade element momentum technique to model the rotor aerodynamics and a modal......, multi-body, or finite-element approach to model the turbine structural dynamics. The present paper describes a novel fluid-structure coupling technique which combines a threedimensional viscous-inviscid solver for horizontal-axis wind-turbine aerodynamics, called MIRAS, and the structural dynamics model...... used in the aero-elastic code FLEX5. The new code, MIRASFLEX, in general shows good agreement with the standard aero-elastic codes FLEX5 and FAST for various test cases. The structural model in MIRAS-FLEX acts to reduce the aerodynamic load computed by MIRAS, particularly near the tip and at high wind...

  8. Continued use of an interactive computer game-based visual perception learning system in children with developmental delay.

    Science.gov (United States)

    Lin, Hsien-Cheng; Chiu, Yu-Hsien; Chen, Yenming J; Wuang, Yee-Pay; Chen, Chiu-Ping; Wang, Chih-Chung; Huang, Chien-Ling; Wu, Tang-Meng; Ho, Wen-Hsien

    2017-11-01

    This study developed an interactive computer game-based visual perception learning system for special education children with developmental delay. To investigate whether perceived interactivity affects continued use of the system, this study developed a theoretical model of the process in which learners decide whether to continue using an interactive computer game-based visual perception learning system. The technology acceptance model, which considers perceived ease of use, perceived usefulness, and perceived playfulness, was extended by integrating perceived interaction (i.e., learner-instructor interaction and learner-system interaction) and then analyzing the effects of these perceptions on satisfaction and continued use. Data were collected from 150 participants (rehabilitation therapists, medical paraprofessionals, and parents of children with developmental delay) recruited from a single medical center in Taiwan. Structural equation modeling and partial-least-squares techniques were used to evaluate relationships within the model. The modeling results indicated that both perceived ease of use and perceived usefulness were positively associated with both learner-instructor interaction and learner-system interaction. However, perceived playfulness only had a positive association with learner-system interaction and not with learner-instructor interaction. Moreover, satisfaction was positively affected by perceived ease of use, perceived usefulness, and perceived playfulness. Thus, satisfaction positively affects continued use of the system. The data obtained by this study can be applied by researchers, designers of computer game-based learning systems, special education workers, and medical professionals. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. [Novel Hyphenated Techniques of Atomic Spectrometry for Metal Species Interaction with Biomolecules].

    Science.gov (United States)

    Li, Yan; Yan, Xiu-ping

    2015-09-01

    Trace metals may be adopted by biological systems to assist in the syntheses and metabolic functions of genes (DNA and RNA) and proteins in the environment. These metals may be beneficial or may pose a risk to humans and other life forms. Novel hybrid techniques are required for studies on the interaction between different metal species and biomolecules, which is significant for biology, biochemistry, nutrition, agriculture, medicine, pharmacy, and environmental science. In recent years, our group dwells on new hyphenated techniques based on capillary electrophoresis (CE), electrothermal atomic absorption spectrometry (ETAAS), and inductively coupled plasma mass spectroscopy (ICP-MS), and their application for different metal species interaction with biomolecules such as DNA, HSA, and GSH. The CE-ETAAS assay and CE-ICP-MS assay allow sensitively probing the level of biomolecules such as DNA damage by different metal species and extracting the kinetic and thermodynamic information on the interactions of different metal species with biomolecules, provides direct evidences for the formation of different metal species--biomolecule adducts. In addition, the consequent structural information were extracted from circular dichroism (CD) and X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The present works represent the most complete and extensive study to date on the interactions between different metal species with biomolecules, and also provide new evidences for and insights into the interactions of different metal species with biomolecules for further understanding of the toxicological effects of metal species.

  10. Interactive machine learning for health informatics: when do we need the human-in-the-loop?

    Science.gov (United States)

    Holzinger, Andreas

    2016-06-01

    Machine learning (ML) is the fastest growing field in computer science, and health informatics is among the greatest challenges. The goal of ML is to develop algorithms which can learn and improve over time and can be used for predictions. Most ML researchers concentrate on automatic machine learning (aML), where great advances have been made, for example, in speech recognition, recommender systems, or autonomous vehicles. Automatic approaches greatly benefit from big data with many training sets. However, in the health domain, sometimes we are confronted with a small number of data sets or rare events, where aML-approaches suffer of insufficient training samples. Here interactive machine learning (iML) may be of help, having its roots in reinforcement learning, preference learning, and active learning. The term iML is not yet well used, so we define it as "algorithms that can interact with agents and can optimize their learning behavior through these interactions, where the agents can also be human." This "human-in-the-loop" can be beneficial in solving computationally hard problems, e.g., subspace clustering, protein folding, or k-anonymization of health data, where human expertise can help to reduce an exponential search space through heuristic selection of samples. Therefore, what would otherwise be an NP-hard problem, reduces greatly in complexity through the input and the assistance of a human agent involved in the learning phase.

  11. Supporting collaborative computing and interaction

    International Nuclear Information System (INIS)

    Agarwal, Deborah; McParland, Charles; Perry, Marcia

    2002-01-01

    To enable collaboration on the daily tasks involved in scientific research, collaborative frameworks should provide lightweight and ubiquitous components that support a wide variety of interaction modes. We envision a collaborative environment as one that provides a persistent space within which participants can locate each other, exchange synchronous and asynchronous messages, share documents and applications, share workflow, and hold videoconferences. We are developing the Pervasive Collaborative Computing Environment (PCCE) as such an environment. The PCCE will provide integrated tools to support shared computing and task control and monitoring. This paper describes the PCCE and the rationale for its design

  12. Human-computer interface incorporating personal and application domains

    Science.gov (United States)

    Anderson, Thomas G [Albuquerque, NM

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  13. The Human-Robot Interaction Operating System

    Science.gov (United States)

    Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda

    2006-01-01

    In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.

  14. Cloud Computing Techniques for Space Mission Design

    Science.gov (United States)

    Arrieta, Juan; Senent, Juan

    2014-01-01

    The overarching objective of space mission design is to tackle complex problems producing better results, and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different layers of a computing system.

  15. Sensor-based assessment of the in-situ quality of human computer interaction in the cars : final research report.

    Science.gov (United States)

    2016-01-01

    Human attention is a finite resource. When interrupted while performing a task, this : resource is split between two interactive tasks. People have to decide whether the benefits : from the interruptive interaction will be enough to offset the loss o...

  16. Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms

    Science.gov (United States)

    Longmuir, Kenneth J.

    2014-01-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…

  17. Comparing human-Salmonella with plant-Salmonella protein-protein interaction predictions

    Directory of Open Access Journals (Sweden)

    Sylvia eSchleker

    2015-01-01

    Full Text Available Salmonellosis is the most frequent food-borne disease world-wide and can be transmitted to humans by a variety of routes, especially via animal and plant products. Salmonella bacteria are believed to use not only animal and human but also plant hosts despite their evolutionary distance. This raises the question if Salmonella employs similar mechanisms in infection of these diverse hosts. Given that most of our understanding comes from its interaction with human hosts, we investigate here to what degree knowledge of Salmonella-human interactions can be transferred to the Salmonella-plant system. Reviewed are recent publications on analysis and prediction of Salmonella-host interactomes. Putative protein-protein interactions (PPIs between Salmonella and its human and Arabidopsis hosts were retrieved utilizing purely interolog-based approaches in which predictions were inferred based on available sequence and domain information of known PPIs, and machine learning approaches that integrate a larger set of useful information from different sources. Transfer learning is an especially suitable machine learning technique to predict plant host targets from the knowledge of human host targets. A comparison of the prediction results with transcriptomic data shows a clear overlap between the host proteins predicted to be targeted by PPIs and their gene ontology enrichment in both host species and regulation of gene expression. In particular, the cellular processes Salmonella interferes with in plants and humans are catabolic processes. The details of how these processes are targeted, however, are quite different between the two organisms, as expected based on their evolutionary and habitat differences. Possible implications of this observation on evolution of host-pathogen communication are discussed.

  18. New coding technique for computer generated holograms.

    Science.gov (United States)

    Haskell, R. E.; Culver, B. C.

    1972-01-01

    A coding technique is developed for recording computer generated holograms on a computer controlled CRT in which each resolution cell contains two beam spots of equal size and equal intensity. This provides a binary hologram in which only the position of the two dots is varied from cell to cell. The amplitude associated with each resolution cell is controlled by selectively diffracting unwanted light into a higher diffraction order. The recording of the holograms is fast and simple.

  19. Techniques involving extreme environment, nondestructive techniques, computer methods in metals research, and data analysis

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1976-01-01

    A number of different techniques which range over several different aspects of materials research are covered in this volume. They are concerned with property evaluation of 4 0 K and below, surface characterization, coating techniques, techniques for the fabrication of composite materials, computer methods, data evaluation and analysis, statistical design of experiments and non-destructive test techniques. Topics covered in this part include internal friction measurements; nondestructive testing techniques; statistical design of experiments and regression analysis in metallurgical research; and measurement of surfaces of engineering materials

  20. [Development of computer aided forming techniques in manufacturing scaffolds for bone tissue engineering].

    Science.gov (United States)

    Wei, Xuelei; Dong, Fuhui

    2011-12-01

    To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.

  1. Human performance models for computer-aided engineering

    Science.gov (United States)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  2. IPython: components for interactive and parallel computing across disciplines. (Invited)

    Science.gov (United States)

    Perez, F.; Bussonnier, M.; Frederic, J. D.; Froehle, B. M.; Granger, B. E.; Ivanov, P.; Kluyver, T.; Patterson, E.; Ragan-Kelley, B.; Sailer, Z.

    2013-12-01

    Scientific computing is an inherently exploratory activity that requires constantly cycling between code, data and results, each time adjusting the computations as new insights and questions arise. To support such a workflow, good interactive environments are critical. The IPython project (http://ipython.org) provides a rich architecture for interactive computing with: 1. Terminal-based and graphical interactive consoles. 2. A web-based Notebook system with support for code, text, mathematical expressions, inline plots and other rich media. 3. Easy to use, high performance tools for parallel computing. Despite its roots in Python, the IPython architecture is designed in a language-agnostic way to facilitate interactive computing in any language. This allows users to mix Python with Julia, R, Octave, Ruby, Perl, Bash and more, as well as to develop native clients in other languages that reuse the IPython clients. In this talk, I will show how IPython supports all stages in the lifecycle of a scientific idea: 1. Individual exploration. 2. Collaborative development. 3. Production runs with parallel resources. 4. Publication. 5. Education. In particular, the IPython Notebook provides an environment for "literate computing" with a tight integration of narrative and computation (including parallel computing). These Notebooks are stored in a JSON-based document format that provides an "executable paper": notebooks can be version controlled, exported to HTML or PDF for publication, and used for teaching.

  3. TOPICAL REVIEW: Modelling the interaction of electromagnetic fields (10 MHz 10 GHz) with the human body: methods and applications

    Science.gov (United States)

    Hand, J. W.

    2008-08-01

    Numerical modelling of the interaction between electromagnetic fields (EMFs) and the dielectrically inhomogeneous human body provides a unique way of assessing the resulting spatial distributions of internal electric fields, currents and rate of energy deposition. Knowledge of these parameters is of importance in understanding such interactions and is a prerequisite when assessing EMF exposure or when assessing or optimizing therapeutic or diagnostic medical applications that employ EMFs. In this review, computational methods that provide this information through full time-dependent solutions of Maxwell's equations are summarized briefly. This is followed by an overview of safety- and medical-related applications where modelling has contributed significantly to development and understanding of the techniques involved. In particular, applications in the areas of mobile communications, magnetic resonance imaging, hyperthermal therapy and microwave radiometry are highlighted. Finally, examples of modelling the potentially new medical applications of recent technologies such as ultra-wideband microwaves are discussed.

  4. Human Factors Principles in Design of Computer-Mediated Visualization for Robot Missions

    Energy Technology Data Exchange (ETDEWEB)

    David I Gertman; David J Bruemmer

    2008-12-01

    With increased use of robots as a resource in missions supporting countermine, improvised explosive devices (IEDs), and chemical, biological, radiological nuclear and conventional explosives (CBRNE), fully understanding the best means by which to complement the human operator’s underlying perceptual and cognitive processes could not be more important. Consistent with control and display integration practices in many other high technology computer-supported applications, current robotic design practices rely highly upon static guidelines and design heuristics that reflect the expertise and experience of the individual designer. In order to use what we know about human factors (HF) to drive human robot interaction (HRI) design, this paper reviews underlying human perception and cognition principles and shows how they were applied to a threat detection domain.

  5. The properties of genome conformation and spatial gene interaction and regulation networks of normal and malignant human cell types.

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    Full Text Available The spatial conformation of a genome plays an important role in the long-range regulation of genome-wide gene expression and methylation, but has not been extensively studied due to lack of genome conformation data. The recently developed chromosome conformation capturing techniques such as the Hi-C method empowered by next generation sequencing can generate unbiased, large-scale, high-resolution chromosomal interaction (contact data, providing an unprecedented opportunity to investigate the spatial structure of a genome and its applications in gene regulation, genomics, epigenetics, and cell biology. In this work, we conducted a comprehensive, large-scale computational analysis of this new stream of genome conformation data generated for three different human leukemia cells or cell lines by the Hi-C technique. We developed and applied a set of bioinformatics methods to reliably generate spatial chromosomal contacts from high-throughput sequencing data and to effectively use them to study the properties of the genome structures in one-dimension (1D and two-dimension (2D. Our analysis demonstrates that Hi-C data can be effectively applied to study tissue-specific genome conformation, chromosome-chromosome interaction, chromosomal translocations, and spatial gene-gene interaction and regulation in a three-dimensional genome of primary tumor cells. Particularly, for the first time, we constructed genome-scale spatial gene-gene interaction network, transcription factor binding site (TFBS - TFBS interaction network, and TFBS-gene interaction network from chromosomal contact information. Remarkably, all these networks possess the properties of scale-free modular networks.

  6. [Cardiac computed tomography: new applications of an evolving technique].

    Science.gov (United States)

    Martín, María; Corros, Cecilia; Calvo, Juan; Mesa, Alicia; García-Campos, Ana; Rodríguez, María Luisa; Barreiro, Manuel; Rozado, José; Colunga, Santiago; de la Hera, Jesús M; Morís, César; Luyando, Luis H

    2015-01-01

    During the last years we have witnessed an increasing development of imaging techniques applied in Cardiology. Among them, cardiac computed tomography is an emerging and evolving technique. With the current possibility of very low radiation studies, the applications have expanded and go further coronariography In the present article we review the technical developments of cardiac computed tomography and its new applications. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  7. Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.

    Science.gov (United States)

    Longmuir, Kenneth J

    2014-03-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction.

  8. Fluctuating hyperfine interactions: computational implementation

    International Nuclear Information System (INIS)

    Zacate, M. O.; Evenson, W. E.

    2010-01-01

    A library of computational routines has been created to assist in the analysis of stochastic models of hyperfine interactions. We call this library the stochastic hyperfine interactions modeling library (SHIML). It provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental hyperfine interaction measurements can be calculated. Example model calculations are included in the SHIML package to illustrate its use and to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A 22 can be neglected.

  9. Effects of interactions between humans and domesticated animals

    NARCIS (Netherlands)

    Bokkers, E.A.M.

    2006-01-01

    Humans have many kinds of relationships with domesticated animals. To maintain relationships interactions are needed. Interactions with animals may be beneficial for humans but may also be risky. Scientific literature on effects of human¿animal relationships and interactions in a workplace,

  10. Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations.

    Science.gov (United States)

    Hayes, Andrew F; Matthes, Jörg

    2009-08-01

    Researchers often hypothesize moderated effects, in which the effect of an independent variable on an outcome variable depends on the value of a moderator variable. Such an effect reveals itself statistically as an interaction between the independent and moderator variables in a model of the outcome variable. When an interaction is found, it is important to probe the interaction, for theories and hypotheses often predict not just interaction but a specific pattern of effects of the focal independent variable as a function of the moderator. This article describes the familiar pick-a-point approach and the much less familiar Johnson-Neyman technique for probing interactions in linear models and introduces macros for SPSS and SAS to simplify the computations and facilitate the probing of interactions in ordinary least squares and logistic regression. A script version of the SPSS macro is also available for users who prefer a point-and-click user interface rather than command syntax.

  11. Interaction as Negotiation

    DEFF Research Database (Denmark)

    Kristensen, Jannie Friis; Nielsen, Christina

    In this paper we discuss recent developments in interaction design principles for ubiquitous computing environments, specifically implications related to situated and mobile aspects of work. We present 'Interaction through Negotiation' as a general Human-Computer Interaction (HCI) paradigm, aimed...... at ubiquitous/pervasive technology and environments, with focus on facilitating negotiation in and between webs of different artifacts, humans and places. This approach is concerned with the way technology presents itself to us, both as physical entities and as conceptual entities, as well as the relations...... on several extensive empirical case studies, as well as co-operative design-sessions, we present a reflective analysis providing insights into results of the "Interaction through Negotiation" design approach in action. A very promising area of application is exception handling in pervasive computing...

  12. Seismic-load-induced human errors and countermeasures using computer graphics in plant-operator communication

    International Nuclear Information System (INIS)

    Hara, Fumio

    1988-01-01

    This paper remarks the importance of seismic load-induced human errors in plant operation by delineating the characteristics of the task performance of human beings under seismic loads. It focuses on man-machine communication via multidimensional data like that conventionally displayed on large panels in a plant control room. It demonstrates a countermeasure to human errors using a computer graphics technique that conveys the global state of the plant operation to operators through cartoon-like, colored graphs in the form of faces that, with different facial expressions, show the plant safety status. (orig.)

  13. Computers and conversation

    CERN Document Server

    Luff, Paul; Gilbert, Nigel G

    1986-01-01

    In the past few years a branch of sociology, conversation analysis, has begun to have a significant impact on the design of human*b1computer interaction (HCI). The investigation of human*b1human dialogue has emerged as a fruitful foundation for interactive system design.****This book includes eleven original chapters by leading researchers who are applying conversation analysis to HCI. The fundamentals of conversation analysis are outlined, a number of systems are described, and a critical view of their value for HCI is offered.****Computers and Conversation will be of interest to all concerne

  14. Interactive simulation of nuclear power systems using a dedicated minicomputer - computer graphics facility

    International Nuclear Information System (INIS)

    Tye, C.; Sezgen, A.O.

    1980-01-01

    The design of control systems and operational procedures for large scale nuclear power plant poses a difficult optimization problem requiring a lot of computational effort. Plant dynamic simulation using digital minicomputers offers the prospect of relatively low cost computing and when combined with graphical input/output provides a powerful tool for studying such problems. The paper discusses the results obtained from a simulation study carried out at the Computer Graphics Unit of the University of Manchester using a typical station control model for an Advanced Gas Cooled reactor. Particular reference is placed on the use of computer graphics for information display, parameter and control system optimization and techniques for using graphical input for defining and/or modifying the control system topology. Experience gained from this study has shown that a relatively modest minicomputer system can be used for simulating large scale dynamic systems and that highly interactive computer graphics can be used to advantage to relieve the designer of many of the tedious aspects of simulation leaving him free to concentrate on the more creative aspects of his work. (author)

  15. Impact of familiarity on information complexity in human-computer interfaces

    Directory of Open Access Journals (Sweden)

    Bakaev Maxim

    2016-01-01

    Full Text Available A quantitative measure of information complexity remains very much desirable in HCI field, since it may aid in optimization of user interfaces, especially in human-computer systems for controlling complex objects. Our paper is dedicated to exploration of subjective (subject-depended aspect of the complexity, conceptualized as information familiarity. Although research of familiarity in human cognition and behaviour is done in several fields, the accepted models in HCI, such as Human Processor or Hick-Hyman’s law do not generally consider this issue. In our experimental study the subjects performed search and selection of digits and letters, whose familiarity was conceptualized as frequency of occurrence in numbers and texts. The analysis showed significant effect of information familiarity on selection time and throughput in regression models, although the R2 values were somehow low. Still, we hope that our results might aid in quantification of information complexity and its further application for optimizing interaction in human-machine systems.

  16. Portable computing - A fielded interactive scientific application in a small off-the-shelf package

    Science.gov (United States)

    Groleau, Nicolas; Hazelton, Lyman; Frainier, Rich; Compton, Michael; Colombano, Silvano; Szolovits, Peter

    1993-01-01

    Experience with the design and implementation of a portable computing system for STS crew-conducted science is discussed. Principal-Investigator-in-a-Box (PI) will help the SLS-2 astronauts perform vestibular (human orientation system) experiments in flight. PI is an interactive system that provides data acquisition and analysis, experiment step rescheduling, and various other forms of reasoning to astronaut users. The hardware architecture of PI consists of a computer and an analog interface box. 'Off-the-shelf' equipment is employed in the system wherever possible in an effort to use widely available tools and then to add custom functionality and application codes to them. Other projects which can help prospective teams to learn more about portable computing in space are also discussed.

  17. Reducing wrong patient selection errors: exploring the design space of user interface techniques.

    Science.gov (United States)

    Sopan, Awalin; Plaisant, Catherine; Powsner, Seth; Shneiderman, Ben

    2014-01-01

    Wrong patient selection errors are a major issue for patient safety; from ordering medication to performing surgery, the stakes are high. Widespread adoption of Electronic Health Record (EHR) and Computerized Provider Order Entry (CPOE) systems makes patient selection using a computer screen a frequent task for clinicians. Careful design of the user interface can help mitigate the problem by helping providers recall their patients' identities, accurately select their names, and spot errors before orders are submitted. We propose a catalog of twenty seven distinct user interface techniques, organized according to a task analysis. An associated video demonstrates eighteen of those techniques. EHR designers who consider a wider range of human-computer interaction techniques could reduce selection errors, but verification of efficacy is still needed.

  18. Observations on human-technology interaction aspects in remote handling for fusion

    International Nuclear Information System (INIS)

    Salminen, Karoliina

    2009-01-01

    Remote handling can been seen as cooperation between human and machine. One of the characteristics of remote handling is that there is always a human involved in the technique: there is always a human guiding and supervising the movements and deciding the actions of the machine. Unlike many other fields of remote handling for fusion, the human-technology interaction side has not been studied carefully recently. The state-of-the-art research about different kinds of remote handling systems shows that there is a lot of information available in this subject, but there is a clear need for studies where the special needs of ITER are taken into account. During the PREFIT programme, the human-interaction aspects of remote handling have been studied, and the goal has been to find solutions compatible with ITER. Some of the aspects that make ITER a unique system are its new technology combining state-of-the-art knowledge from several different fields, and its very international working environment. When discussing the human aspects, the fact of the multinational cooperation cannot be neglected. Since the majority of the information found in the literature review is not about remote handling, references need to be taken from other industries, like aviation. This article consists of ITER remote handling relevant findings in state-of-the-art research and information and knowledge gained during the PREFIT programme, especially during the training periods at JET in Culham and at CEA in Fontenay-aux-Roses. It also discusses the importance of human-technology interaction field in remote handling, especially in ITER.

  19. Measurement of mesothelioma on thoracic CT scans: A comparison of manual and computer-assisted techniques

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Oxnard, Geoffrey R.; MacMahon, Heber; Vogelzang, Nicholas J.; Kindler, Hedy L.; Kocherginsky, Masha; Starkey, Adam

    2004-01-01

    Our purpose in this study was to evaluate the variability of manual mesothelioma tumor thickness measurements in computed tomography (CT) scans and to assess the relative performance of six computerized measurement algorithms. The CT scans of 22 patients with malignant pleural mesothelioma were collected. In each scan, an initial observer identified up to three sites in each of three CT sections at which tumor thickness measurements were to be made. At each site, five observers manually measured tumor thickness through a computer interface. Three observers repeated these measurements during three separate sessions. Inter- and intra-observer variability in the manual measurement of tumor thickness was assessed. Six automated measurement algorithms were developed based on the geometric relationship between a specified measurement site and the automatically extracted lung regions. Computer-generated measurements were compared with manual measurements. The tumor thickness measurements of different observers were highly correlated (r≥0.99); however, the 95% limits of agreement for relative inter-observer difference spanned a range of 30%. Tumor thickness measurements generated by the computer algorithms also correlated highly with the average of observer measurements (r≥0.93). We have developed computerized techniques for the measurement of mesothelioma tumor thickness in CT scans. These techniques achieved varying levels of agreement with measurements made by human observers

  20. Multimodal interaction for human-robot teams

    Science.gov (United States)

    Burke, Dustin; Schurr, Nathan; Ayers, Jeanine; Rousseau, Jeff; Fertitta, John; Carlin, Alan; Dumond, Danielle

    2013-05-01

    Unmanned ground vehicles have the potential for supporting small dismounted teams in mapping facilities, maintaining security in cleared buildings, and extending the team's reconnaissance and persistent surveillance capability. In order for such autonomous systems to integrate with the team, we must move beyond current interaction methods using heads-down teleoperation which require intensive human attention and affect the human operator's ability to maintain local situational awareness and ensure their own safety. This paper focuses on the design, development and demonstration of a multimodal interaction system that incorporates naturalistic human gestures, voice commands, and a tablet interface. By providing multiple, partially redundant interaction modes, our system degrades gracefully in complex environments and enables the human operator to robustly select the most suitable interaction method given the situational demands. For instance, the human can silently use arm and hand gestures for commanding a team of robots when it is important to maintain stealth. The tablet interface provides an overhead situational map allowing waypoint-based navigation for multiple ground robots in beyond-line-of-sight conditions. Using lightweight, wearable motion sensing hardware either worn comfortably beneath the operator's clothing or integrated within their uniform, our non-vision-based approach enables an accurate, continuous gesture recognition capability without line-of-sight constraints. To reduce the training necessary to operate the system, we designed the interactions around familiar arm and hand gestures.

  1. SHARP - a framework for incorporating human interactions into PRA studies

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Joksimovich, V.; Spurgin, A.J.; Worledge, D.H.

    1985-01-01

    Recently, increased attention has been given to understanding the role of humans in the safe operation of nuclear power plants. By virtue of the ability to combine equipment reliability with human reliability probabilistic risk assessment (PRA) technology was deemed capable of providing significant insights about the contributions of human interations in accident scenarios. EPRI recognized the need to strengthen the methodology for incorporating human interactions into PRAs as one element of their broad research program to improve the credibility of PRAs. This research project lead to the development and detailed description of SHARP (Systematic Human Application Reliability Procedure) in EPRI NP-3583. The objective of this paper is to illustrate the SHARP framework. This should help PRA analysts state more clearly their assumptions and approach no matter which human reliability assessment technique is used. SHARP includes a structure of seven analysis steps which can be formally or informally performed during PRAs. The seven steps are termed definition, screening, breakdown, representation, impact assessment, quantification, and documentation

  2. From 'automation' to 'autonomy': the importance of trust repair in human-machine interaction.

    Science.gov (United States)

    de Visser, Ewart J; Pak, Richard; Shaw, Tyler H

    2018-04-09

    Modern interactions with technology are increasingly moving away from simple human use of computers as tools to the establishment of human relationships with autonomous entities that carry out actions on our behalf. In a recent commentary, Peter Hancock issued a stark warning to the field of human factors that attention must be focused on the appropriate design of a new class of technology: highly autonomous systems. In this article, we heed the warning and propose a human-centred approach directly aimed at ensuring that future human-autonomy interactions remain focused on the user's needs and preferences. By adapting literature from industrial psychology, we propose a framework to infuse a unique human-like ability, building and actively repairing trust, into autonomous systems. We conclude by proposing a model to guide the design of future autonomy and a research agenda to explore current challenges in repairing trust between humans and autonomous systems. Practitioner Summary: This paper is a call to practitioners to re-cast our connection to technology as akin to a relationship between two humans rather than between a human and their tools. To that end, designing autonomy with trust repair abilities will ensure future technology maintains and repairs relationships with their human partners.

  3. Human Work Interaction Design for Pervasive and Smart Workplaces

    DEFF Research Database (Denmark)

    Campos, Pedro F.; Lopes, Arminda; Clemmensen, Torkil

    2014-01-01

    ' experience and outputs? This workshop focuses on answering this question to support professionals, academia, national labs, and industry engaged in human work analysis and interaction design for the workplace. Conversely, tools, procedures, and professional competences for designing human......Pervasive and smart technologies have pushed workplace configuration beyond linear logic and physical boundaries. As a result, workers' experience of and access to technology is increasingly pervasive, and their agency constantly reconfigured. While this in certain areas of work is not new (e.......g., technology mediation and decision support in air traffic control), more recent developments in other domains such as healthcare (e.g., Augmented Reality in Computer Aided Surgery) have raised challenging issues for HCI researchers and practitioners. The question now is: how to improve the quality of workers...

  4. Computation of Casimir interactions between arbitrary three-dimensional objects with arbitrary material properties

    International Nuclear Information System (INIS)

    Reid, M. T. Homer; White, Jacob; Johnson, Steven G.

    2011-01-01

    We extend a recently introduced method for computing Casimir forces between arbitrarily shaped metallic objects [M. T. H. Reid et al., Phys. Rev. Lett. 103 040401 (2009)] to allow treatment of objects with arbitrary material properties, including imperfect conductors, dielectrics, and magnetic materials. Our original method considered electric currents on the surfaces of the interacting objects; the extended method considers both electric and magnetic surface current distributions, and obtains the Casimir energy of a configuration of objects in terms of the interactions of these effective surface currents. Using this new technique, we present the first predictions of Casimir interactions in several experimentally relevant geometries that would be difficult to treat with any existing method. In particular, we investigate Casimir interactions between dielectric nanodisks embedded in a dielectric fluid; we identify the threshold surface-surface separation at which finite-size effects become relevant, and we map the rotational energy landscape of bound nanoparticle diclusters.

  5. An ontology for human-like interaction systems

    OpenAIRE

    Albacete García, Esperanza

    2016-01-01

    This report proposes and describes the development of a Ph.D. Thesis aimed at building an ontological knowledge model supporting Human-Like Interaction systems. The main function of such knowledge model in a human-like interaction system is to unify the representation of each concept, relating it to the appropriate terms, as well as to other concepts with which it shares semantic relations. When developing human-like interactive systems, the inclusion of an ontological module can be valuab...

  6. Fluid Structure Interaction Techniques For Extrusion And Mixing Processes

    Science.gov (United States)

    Valette, Rudy; Vergnes, Bruno; Coupez, Thierry

    2007-05-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each sub-domain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique background computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  7. Evolutionary computation techniques a comparative perspective

    CERN Document Server

    Cuevas, Erik; Oliva, Diego

    2017-01-01

    This book compares the performance of various evolutionary computation (EC) techniques when they are faced with complex optimization problems extracted from different engineering domains. Particularly focusing on recently developed algorithms, it is designed so that each chapter can be read independently. Several comparisons among EC techniques have been reported in the literature, however, they all suffer from one limitation: their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. In each chapter, a complex engineering optimization problem is posed, and then a particular EC technique is presented as the best choice, according to its search characteristics. Lastly, a set of experiments is conducted in order to compare its performance to other popular EC methods.

  8. Computational techniques in tribology and material science at the atomic level

    Science.gov (United States)

    Ferrante, J.; Bozzolo, G. H.

    1992-01-01

    Computations in tribology and material science at the atomic level present considerable difficulties. Computational techniques ranging from first-principles to semi-empirical and their limitations are discussed. Example calculations of metallic surface energies using semi-empirical techniques are presented. Finally, application of the methods to calculation of adhesion and friction are presented.

  9. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    Science.gov (United States)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99 in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text chat communications, manipulation of procedureschecklists, cataloguingannotating images, scientific note taking, human-robot interaction, and control of suit andor other EVA systems.

  10. Comparison of radiographic technique by computer simulation

    International Nuclear Information System (INIS)

    Brochi, M.A.C.; Ghilardi Neto, T.

    1989-01-01

    A computational algorithm to compare radiographic techniques (KVp, mAs and filters) is developed based in the fixation of parameters that defines the images, such as optical density and constrast. Before the experience, the results were used in a radiography of thorax. (author) [pt

  11. Human Computation An Integrated Approach to Learning from the Crowd

    CERN Document Server

    Law, Edith

    2011-01-01

    Human computation is a new and evolving research area that centers around harnessing human intelligence to solve computational problems that are beyond the scope of existing Artificial Intelligence (AI) algorithms. With the growth of the Web, human computation systems can now leverage the abilities of an unprecedented number of people via the Web to perform complex computation. There are various genres of human computation applications that exist today. Games with a purpose (e.g., the ESP Game) specifically target online gamers who generate useful data (e.g., image tags) while playing an enjoy

  12. The Evolution of Integrated Assessment and Emerging Challenges in the Assessment of Human and Natural System Interactions

    Science.gov (United States)

    Clarke, L.

    2017-12-01

    Integrated assessment (IA) modeling and research has a long history, spanning over 30 years since its inception and addressing a wide range of contemporary issues along the way. Over the last decade, IA modeling and research has emerged as one of the primary analytical methods for understanding the complex interactions between human and natural systems, from the interactions between energy, water, and land/food systems to the interplay between health, climate, and air pollution. IA modeling and research is particularly well-suited for the analysis of these interactions because it is a discipline that strives to integrate representations of multiple systems into consistent computational platforms or frameworks. In doing so, it explicitly confronts the many tradeoffs that are frequently necessary to manage complexity and computational cost while still representing the most important interactions and overall, coupled system behavior. This talk explores the history of IA modeling and research as a means to better understand its role in the assessment of contemporary issues at the confluence of human and natural systems. It traces the evolution of IA modeling and research from initial exploration of long-term emissions pathways, to the role of technology in the global evolution of the energy system, to the key linkages between land and energy systems and, more recently, the linkages with water, air pollution, and other key systems and issues. It discusses the advances in modeling that have emerged over this evolution and the biggest challenges that still present themselves as we strive to better understand the most important interactions between human and natural systems and the implications of these interactions for human welfare and decision making.

  13. Interaction of amphiphilic drugs with human and bovine serum albumins.

    Science.gov (United States)

    Khan, Abbul Bashar; Khan, Javed Masood; Ali, Mohd Sajid; Khan, Rizwan Hasan; Kabir-Ud-Din

    2012-11-01

    To know the interaction of amphiphilic drugs nortriptyline hydrochloride (NOT) and promazine hydrochloride (PMZ) with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)), techniques of UV-visible, fluorescence, and circular dichroism (CD) spectroscopies are used. The binding affinity is more in case of PMZ with both the serum albumins. The quenching rate constant (k(q)) values suggest a static quenching process for all the drug-serum albumin interactions. The UV-visible results show that the change in protein conformation of PMZ-serum albumin interactions are more prominent as compared to NOT-serum albumin interactions. The CD results also explain the conformational changes in the serum albumins on binding with the drugs. The increment in %α-helical structure is slightly more for drug-BSA complexes as compared to drug-HSA complexes. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Coi-wiz: An interactive computer wizard for analyzing cardiac optical signals.

    Science.gov (United States)

    Yuan, Xiaojing; Uyanik, Ilyas; Situ, Ning; Xi, Yutao; Cheng, Jie

    2009-01-01

    A number of revolutionary techniques have been developed for cardiac electrophysiology research to better study the various arrhythmia mechanisms that can enhance ablating strategies for cardiac arrhythmias. Once the three-dimensional high resolution cardiac optical imaging data is acquired, it is time consuming to manually go through them and try to identify the patterns associated with various arrhythmia symptoms. In this paper, we present an interactive computer wizard that helps cardiac electrophysiology researchers to visualize and analyze the high resolution cardiac optical imaging data. The wizard provides a file interface that accommodates different file formats. A series of analysis algorithms output waveforms, activation and action potential maps after spatial and temporal filtering, velocity field and heterogeneity measure. The interactive GUI allows the researcher to identify the region of interest in both the spatial and temporal domain, thus enabling them to study different heart chamber at their choice.

  15. Multimodal interaction in image and video applications

    CERN Document Server

    Sappa, Angel D

    2013-01-01

    Traditional Pattern Recognition (PR) and Computer Vision (CV) technologies have mainly focused on full automation, even though full automation often proves elusive or unnatural in many applications, where the technology is expected to assist rather than replace the human agents. However, not all the problems can be automatically solved being the human interaction the only way to tackle those applications. Recently, multimodal human interaction has become an important field of increasing interest in the research community. Advanced man-machine interfaces with high cognitive capabilities are a hot research topic that aims at solving challenging problems in image and video applications. Actually, the idea of computer interactive systems was already proposed on the early stages of computer science. Nowadays, the ubiquity of image sensors together with the ever-increasing computing performance has open new and challenging opportunities for research in multimodal human interaction. This book aims to show how existi...

  16. Quantitative heartbeat coupling measures in human-horse interaction.

    Science.gov (United States)

    Lanata, Antonio; Guidi, Andrea; Valenza, Gaetano; Baragli, Paolo; Scilingo, Enzo Pasquale

    2016-08-01

    We present a study focused on a quantitative estimation of a human-horse dynamic interaction. A set of measures based on magnitude and phase coupling between heartbeat dynamics of both humans and horses in three different conditions is reported: no interaction, visual/olfactory interaction and grooming. Specifically, Magnitude Squared Coherence (MSC), Mean Phase Coherence (MPC) and Dynamic Time Warping (DTW) have been used as estimators of the amount of coupling between human and horse through the analysis of their heart rate variability (HRV) time series in a group of eleven human subjects, and one horse. The rationale behind this study is that the interaction of two complex biological systems go towards a coupling process whose dynamical evolution is modulated by the kind and time duration of the interaction itself. We achieved a congruent and consistent statistical significant difference for all of the three indices. Moreover, a Nearest Mean Classifier was able to recognize the three classes of interaction with an accuracy greater than 70%. Although preliminary, these encouraging results allow a discrimination of three distinct phases in a real human-animal interaction opening to the characterization of the empirically proven relationship between human and horse.

  17. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, Ruston, LA 71272 (United States)], E-mail: neven@phys.latech.edu

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  18. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.

    Science.gov (United States)

    Simicevic, Neven

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  19. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    International Nuclear Information System (INIS)

    Simicevic, Neven

    2008-01-01

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW

  20. Multimodal Challenge: Analytics Beyond User-computer Interaction Data

    NARCIS (Netherlands)

    Di Mitri, Daniele; Schneider, Jan; Specht, Marcus; Drachsler, Hendrik

    2018-01-01

    This contribution describes one the challenges explored in the Fourth LAK Hackathon. This challenge aims at shifting the focus from learning situations which can be easily traced through user-computer interactions data and concentrate more on user-world interactions events, typical of co-located and

  1. Handbook of human computation

    CERN Document Server

    Michelucci, Pietro

    2013-01-01

    This volume addresses the emerging area of human computation, The chapters, written by leading international researchers, explore existing and future opportunities to combine the respective strengths of both humans and machines in order to create powerful problem-solving capabilities. The book bridges scientific communities, capturing and integrating the unique perspective and achievements of each. It coalesces contributions from industry and across related disciplines in order to motivate, define, and anticipate the future of this exciting new frontier in science and cultural evolution. Reade

  2. Interactive physically-based sound simulation

    Science.gov (United States)

    Raghuvanshi, Nikunj

    The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously-intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation

  3. Computer-Assisted Technique for Surgical Tooth Extraction

    Directory of Open Access Journals (Sweden)

    Hosamuddin Hamza

    2016-01-01

    Full Text Available Introduction. Surgical tooth extraction is a common procedure in dentistry. However, numerous extraction cases show a high level of difficulty in practice. This difficulty is usually related to inadequate visualization, improper instrumentation, or other factors related to the targeted tooth (e.g., ankyloses or presence of bony undercut. Methods. In this work, the author presents a new technique for surgical tooth extraction based on 3D imaging, computer planning, and a new concept of computer-assisted manufacturing. Results. The outcome of this work is a surgical guide made by 3D printing of plastics and CNC of metals (hybrid outcome. In addition, the conventional surgical cutting tools (surgical burs are modified with a number of stoppers adjusted to avoid any excessive drilling that could harm bone or other vital structures. Conclusion. The present outcome could provide a minimally invasive technique to overcome the routine complications facing dental surgeons in surgical extraction procedures.

  4. Guest editorial: Brain/neuronal computer games interfaces and interaction

    OpenAIRE

    Coyle, D.; Principe, J.; Lotte, F.; Nijholt, Antinus

    2013-01-01

    Nowadays brainwave or electroencephalogram (EEG) controlled games controllers are adding new options to satisfy the continual demand for new ways to interact with games, following trends such as the Nintendo® Wii, Microsoft® Kinect and Playstation® Move which are based on accelerometers and motion capture. EEG-based brain-computer games interaction are controlled through brain-computer interface (BCI) technology which requires sophisticated signal processing to produce a low communication ban...

  5. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies.

    Science.gov (United States)

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (-)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π-π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki ] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood-brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a

  6. Computational Intelligence Techniques for New Product Design

    CERN Document Server

    Chan, Kit Yan; Dillon, Tharam S

    2012-01-01

    Applying computational intelligence for product design is a fast-growing and promising research area in computer sciences and industrial engineering. However, there is currently a lack of books, which discuss this research area. This book discusses a wide range of computational intelligence techniques for implementation on product design. It covers common issues on product design from identification of customer requirements in product design, determination of importance of customer requirements, determination of optimal design attributes, relating design attributes and customer satisfaction, integration of marketing aspects into product design, affective product design, to quality control of new products. Approaches for refinement of computational intelligence are discussed, in order to address different issues on product design. Cases studies of product design in terms of development of real-world new products are included, in order to illustrate the design procedures, as well as the effectiveness of the com...

  7. Introduction to analytical techniques of beam-target interactions and resolutions

    International Nuclear Information System (INIS)

    Ruste, J.

    1995-08-01

    For several years, new analysis and observation techniques have been developed, which have considerably improved material research. Almost all these techniques are based on the interaction of a beam of 'primary particles' (electrons, photons, ions, particles, etc) with target. Correct and appropriate use of these techniques requires a good knowledge of these interactions and their consequences (emissions of 'secondary particles', modifications of the primary beam and target, etc). The first part of this report deals with the radiation/material interactions according to the nature of the radiation and its energy. The nature and consequences of the interaction of an electromagnetic wave, a beam of electrons, ions and neutrons are examined over an extended range of energy from MeV to MeV. Certain notions such as the analysis area, spatial resolutions or limits of detection can also be defined. In the second part, some of the most important and widespread techniques of analysis and observation are compared in terms of properties and performance. In particular, there is a brief principle of the technique, nature of the data obtained, spatial resolution, and the limits of detection with today's methods permit. (author). 5 refs., 23 figs., 9 tabs

  8. An Interdisciplinary Bibliography for Computers and the Humanities Courses.

    Science.gov (United States)

    Ehrlich, Heyward

    1991-01-01

    Presents an annotated bibliography of works related to the subject of computers and the humanities. Groups items into textbooks and overviews; introductions; human and computer languages; literary and linguistic analysis; artificial intelligence and robotics; social issue debates; computers' image in fiction; anthologies; writing and the…

  9. Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts

    Science.gov (United States)

    Doolittle, Janet M.; Gomez, Shawn M.

    2011-01-01

    Background Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. Methodology/Principal Findings We implemented a computational approach to predict interactions between Dengue virus (DENV) and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9). Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. Conclusions/Significance Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets. PMID:21358811

  10. Mapping protein interactions between Dengue virus and its human and insect hosts.

    Directory of Open Access Journals (Sweden)

    Janet M Doolittle

    Full Text Available BACKGROUND: Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. METHODOLOGY/PRINCIPAL FINDINGS: We implemented a computational approach to predict interactions between Dengue virus (DENV and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9. Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. CONCLUSIONS/SIGNIFICANCE: Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets.

  11. Human-Robot Interaction

    Science.gov (United States)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  12. Modelling dynamic human-device interaction in healthcare

    OpenAIRE

    Niezen, Gerrit

    2013-01-01

    Errors are typically blamed on human factors, forgetting that the system should have been designed to take them into account and minimise these problems. In our research we are developing tools to design interactive medical devices using human-in-the-loop modelling. Manual control theory is used to describe and analyse the dynamic aspects of human-device interaction.

  13. Prediction of protein-protein interactions between viruses and human by an SVM model

    Directory of Open Access Journals (Sweden)

    Cui Guangyu

    2012-05-01

    Full Text Available Abstract Background Several computational methods have been developed to predict protein-protein interactions from amino acid sequences, but most of those methods are intended for the interactions within a species rather than for interactions across different species. Methods for predicting interactions between homogeneous proteins are not appropriate for finding those between heterogeneous proteins since they do not distinguish the interactions between proteins of the same species from those of different species. Results We developed a new method for representing a protein sequence of variable length in a frequency vector of fixed length, which encodes the relative frequency of three consecutive amino acids of a sequence. We built a support vector machine (SVM model to predict human proteins that interact with virus proteins. In two types of viruses, human papillomaviruses (HPV and hepatitis C virus (HCV, our SVM model achieved an average accuracy above 80%, which is higher than that of another SVM model with a different representation scheme. Using the SVM model and Gene Ontology (GO annotations of proteins, we predicted new interactions between virus proteins and human proteins. Conclusions Encoding the relative frequency of amino acid triplets of a protein sequence is a simple yet powerful representation method for predicting protein-protein interactions across different species. The representation method has several advantages: (1 it enables a prediction model to achieve a better performance than other representations, (2 it generates feature vectors of fixed length regardless of the sequence length, and (3 the same representation is applicable to different types of proteins.

  14. Computer technique for evaluating collimator performance

    International Nuclear Information System (INIS)

    Rollo, F.D.

    1975-01-01

    A computer program has been developed to theoretically evaluate the overall performance of collimators used with radioisotope scanners and γ cameras. The first step of the program involves the determination of the line spread function (LSF) and geometrical efficiency from the fundamental parameters of the collimator being evaluated. The working equations can be applied to any plane of interest. The resulting LSF is applied to subroutine computer programs which compute corresponding modulation transfer function and contrast efficiency functions. The latter function is then combined with appropriate geometrical efficiency data to determine the performance index function. The overall computer program allows one to predict from the physical parameters of the collimator alone how well the collimator will reproduce various sized spherical voids of activity in the image plane. The collimator performance program can be used to compare the performance of various collimator types, to study the effects of source depth on collimator performance, and to assist in the design of collimators. The theory of the collimator performance equation is discussed, a comparison between the experimental and theoretical LSF values is made, and examples of the application of the technique are presented

  15. Soft Computing Techniques in Vision Science

    CERN Document Server

    Yang, Yeon-Mo

    2012-01-01

    This Special Edited Volume is a unique approach towards Computational solution for the upcoming field of study called Vision Science. From a scientific firmament Optics, Ophthalmology, and Optical Science has surpassed an Odyssey of optimizing configurations of Optical systems, Surveillance Cameras and other Nano optical devices with the metaphor of Nano Science and Technology. Still these systems are falling short of its computational aspect to achieve the pinnacle of human vision system. In this edited volume much attention has been given to address the coupling issues Computational Science and Vision Studies.  It is a comprehensive collection of research works addressing various related areas of Vision Science like Visual Perception and Visual system, Cognitive Psychology, Neuroscience, Psychophysics and Ophthalmology, linguistic relativity, color vision etc. This issue carries some latest developments in the form of research articles and presentations. The volume is rich of contents with technical tools ...

  16. A comparative evaluation of five human reliability assessment techniques

    International Nuclear Information System (INIS)

    Kirwan, B.

    1988-01-01

    A field experiment was undertaken to evaluate the accuracy, usefulness, and resources requirements of five human reliability quantification techniques (Techniques for Human Error Rate Prediction (THERP); Paired Comparisons, Human Error Assessment and Reduction Technique (HEART), Success Liklihood Index Method (SLIM)-Multi Attribute Utility Decomposition (MAUD), and Absolute Probability Judgement). This was achieved by assessing technique predictions against a set of known human error probabilities, and by comparing their predictions on a set of five realistic Probabilisitc Risk Assessment (PRA) human error. On a combined measure of accuracy THERP and Absolute Probability Judgement performed best, whilst HEART showed indications of accuracy and was lower in resources usage than other techniques. HEART and THERP both appear to benefit from using trained assessors in order to obtain the best results. SLIM and Paired Comparisons require further research on achieving a robust calibration relationship between their scale values and absolute probabilities. (author)

  17. A review of metaheuristic scheduling techniques in cloud computing

    Directory of Open Access Journals (Sweden)

    Mala Kalra

    2015-11-01

    Full Text Available Cloud computing has become a buzzword in the area of high performance distributed computing as it provides on-demand access to shared pool of resources over Internet in a self-service, dynamically scalable and metered manner. Cloud computing is still in its infancy, so to reap its full benefits, much research is required across a broad array of topics. One of the important research issues which need to be focused for its efficient performance is scheduling. The goal of scheduling is to map tasks to appropriate resources that optimize one or more objectives. Scheduling in cloud computing belongs to a category of problems known as NP-hard problem due to large solution space and thus it takes a long time to find an optimal solution. There are no algorithms which may produce optimal solution within polynomial time to solve these problems. In cloud environment, it is preferable to find suboptimal solution, but in short period of time. Metaheuristic based techniques have been proved to achieve near optimal solutions within reasonable time for such problems. In this paper, we provide an extensive survey and comparative analysis of various scheduling algorithms for cloud and grid environments based on three popular metaheuristic techniques: Ant Colony Optimization (ACO, Genetic Algorithm (GA and Particle Swarm Optimization (PSO, and two novel techniques: League Championship Algorithm (LCA and BAT algorithm.

  18. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Moses, Alan M.; Zhang, Zhaolei

    2015-01-01

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  19. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun

    2015-11-02

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  20. Development of a body motion interactive system with a weight voting mechanism and computer vision technology

    Science.gov (United States)

    Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien

    2012-09-01

    This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.

  1. Anticipated Ongoing Interaction versus Channel Effects of Relational Communication in Computer-Mediated Interaction.

    Science.gov (United States)

    Walther, Joseph B.

    1994-01-01

    Assesses the related effects of anticipated future interaction and different communication media (computer-mediated versus face-to-face communication) on the communication of relational intimacy and composure. Shows that the assignment of long-term versus short-term partnerships has a larger impact on anticipated future interaction reported by…

  2. Safe physical human robot interaction- past, present and future

    International Nuclear Information System (INIS)

    Pervez, Aslam; Ryu, Jeha

    2008-01-01

    When a robot physically interacts with a human user, the requirements should be drastically changed. The most important requirement is the safety of the human user in the sense that robot should not harm the human in any situation. During the last few years, research has been focused on various aspects of safe physical human robot interaction. This paper provides a review of the work on safe physical interaction of robotic systems sharing their workspace with human users (especially elderly people). Three distinct areas of research are identified: interaction safety assessment, interaction safety through design, and interaction safety through planning and control. The paper then highlights the current challenges and available technologies and points out future research directions for realization of a safe and dependable robotic system for human users

  3. Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization

    Science.gov (United States)

    Zhao, Qiangfu; Liu, Yong

    2015-01-01

    A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050

  4. Effects of interactions between humans and domesticated animals

    OpenAIRE

    Bokkers, E.A.M.

    2006-01-01

    Humans have many kinds of relationships with domesticated animals. To maintain relationships interactions are needed. Interactions with animals may be beneficial for humans but may also be risky. Scientific literature on effects of human¿animal relationships and interactions in a workplace, health-care and residential context has been reviewed to develop ideas about the effects farm animals can have on humans. Although there are quite a few studies, the variety of methods, the complexity of t...

  5. Human-Computer Interaction Software: Lessons Learned, Challenges Ahead

    Science.gov (United States)

    1989-01-01

    domain communi- Iatelligent s t s s Me cation. Users familiar with problem Inteligent support systes. High-func- anddomains but inxperienced with comput...8217i. April 1987, pp. 7.3-78. His research interests include artificial intel- Creating better HCI softw-are will have a 8. S.K Catrd. I.P. Moran. arid

  6. Application of computational intelligence techniques for load shedding in power systems: A review

    International Nuclear Information System (INIS)

    Laghari, J.A.; Mokhlis, H.; Bakar, A.H.A.; Mohamad, Hasmaini

    2013-01-01

    Highlights: • The power system blackout history of last two decades is presented. • Conventional load shedding techniques, their types and limitations are presented. • Applications of intelligent techniques in load shedding are presented. • Intelligent techniques include ANN, fuzzy logic, ANFIS, genetic algorithm and PSO. • The discussion and comparison between these techniques are provided. - Abstract: Recent blackouts around the world question the reliability of conventional and adaptive load shedding techniques in avoiding such power outages. To address this issue, reliable techniques are required to provide fast and accurate load shedding to prevent collapse in the power system. Computational intelligence techniques, due to their robustness and flexibility in dealing with complex non-linear systems, could be an option in addressing this problem. Computational intelligence includes techniques like artificial neural networks, genetic algorithms, fuzzy logic control, adaptive neuro-fuzzy inference system, and particle swarm optimization. Research in these techniques is being undertaken in order to discover means for more efficient and reliable load shedding. This paper provides an overview of these techniques as applied to load shedding in a power system. This paper also compares the advantages of computational intelligence techniques over conventional load shedding techniques. Finally, this paper discusses the limitation of computational intelligence techniques, which restricts their usage in load shedding in real time

  7. SPATIO-TEMPORAL CLUSTERING OF MOVEMENT DATA: AN APPLICATION TO TRAJECTORIES GENERATED BY HUMAN-COMPUTER INTERACTION

    Directory of Open Access Journals (Sweden)

    G. McArdle

    2012-07-01

    Full Text Available Advances in ubiquitous positioning technologies and their increasing availability in mobile devices has generated large volumes of movement data. Analysing these datasets is challenging. While data mining techniques can be applied to this data, knowledge of the underlying spatial region can assist interpreting the data. We have developed a geovisual analysis tool for studying movement data. In addition to interactive visualisations, the tool has features for analysing movement trajectories, in terms of their spatial and temporal similarity. The focus in this paper is on mouse trajectories of users interacting with web maps. The results obtained from a user trial can be used as a starting point to determine which parts of a mouse trajectory can assist personalisation of spatial web maps.

  8. Visual exploration and analysis of human-robot interaction rules

    Science.gov (United States)

    Zhang, Hui; Boyles, Michael J.

    2013-01-01

    We present a novel interaction paradigm for the visual exploration, manipulation and analysis of human-robot interaction (HRI) rules; our development is implemented using a visual programming interface and exploits key techniques drawn from both information visualization and visual data mining to facilitate the interaction design and knowledge discovery process. HRI is often concerned with manipulations of multi-modal signals, events, and commands that form various kinds of interaction rules. Depicting, manipulating and sharing such design-level information is a compelling challenge. Furthermore, the closed loop between HRI programming and knowledge discovery from empirical data is a relatively long cycle. This, in turn, makes design-level verification nearly impossible to perform in an earlier phase. In our work, we exploit a drag-and-drop user interface and visual languages to support depicting responsive behaviors from social participants when they interact with their partners. For our principal test case of gaze-contingent HRI interfaces, this permits us to program and debug the robots' responsive behaviors through a graphical data-flow chart editor. We exploit additional program manipulation interfaces to provide still further improvement to our programming experience: by simulating the interaction dynamics between a human and a robot behavior model, we allow the researchers to generate, trace and study the perception-action dynamics with a social interaction simulation to verify and refine their designs. Finally, we extend our visual manipulation environment with a visual data-mining tool that allows the user to investigate interesting phenomena such as joint attention and sequential behavioral patterns from multiple multi-modal data streams. We have created instances of HRI interfaces to evaluate and refine our development paradigm. As far as we are aware, this paper reports the first program manipulation paradigm that integrates visual programming

  9. Human factors in computing systems: focus on patient-centered health communication at the ACM SIGCHI conference.

    Science.gov (United States)

    Wilcox, Lauren; Patel, Rupa; Chen, Yunan; Shachak, Aviv

    2013-12-01

    Health Information Technologies, such as electronic health records (EHR) and secure messaging, have already transformed interactions among patients and clinicians. In addition, technologies supporting asynchronous communication outside of clinical encounters, such as email, SMS, and patient portals, are being increasingly used for follow-up, education, and data reporting. Meanwhile, patients are increasingly adopting personal tools to track various aspects of health status and therapeutic progress, wishing to review these data with clinicians during consultations. These issues have drawn increasing interest from the human-computer interaction (HCI) community, with special focus on critical challenges in patient-centered interactions and design opportunities that can address these challenges. We saw this community presenting and interacting at the ACM SIGCHI 2013, Conference on Human Factors in Computing Systems, (also known as CHI), held April 27-May 2nd, 2013 at the Palais de Congrès de Paris in France. CHI 2013 featured many formal avenues to pursue patient-centered health communication: a well-attended workshop, tracks of original research, and a lively panel discussion. In this report, we highlight these events and the main themes we identified. We hope that it will help bring the health care communication and the HCI communities closer together. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Socially intelligent robots: dimensions of human-robot interaction.

    Science.gov (United States)

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  11. Computational Human Performance Modeling For Alarm System Design

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo

    2012-07-01

    The introduction of new technologies like adaptive automation systems and advanced alarms processing and presentation techniques in nuclear power plants is already having an impact on the safety and effectiveness of plant operations and also the role of the control room operator. This impact is expected to escalate dramatically as more and more nuclear power utilities embark on upgrade projects in order to extend the lifetime of their plants. One of the most visible impacts in control rooms will be the need to replace aging alarm systems. Because most of these alarm systems use obsolete technologies, the methods, techniques and tools that were used to design the previous generation of alarm system designs are no longer effective and need to be updated. The same applies to the need to analyze and redefine operators’ alarm handling tasks. In the past, methods for analyzing human tasks and workload have relied on crude, paper-based methods that often lacked traceability. New approaches are needed to allow analysts to model and represent the new concepts of alarm operation and human-system interaction. State-of-the-art task simulation tools are now available that offer a cost-effective and efficient method for examining the effect of operator performance in different conditions and operational scenarios. A discrete event simulation system was used by human factors researchers at the Idaho National Laboratory to develop a generic alarm handling model to examine the effect of operator performance with simulated modern alarm system. It allowed analysts to evaluate alarm generation patterns as well as critical task times and human workload predicted by the system.

  12. Technique for human-error sequence identification and signification

    International Nuclear Information System (INIS)

    Heslinga, G.

    1988-01-01

    The aim of the present study was to investigate whether the event-tree technique can be used for the analysis of sequences of human errors that could cause initiating events. The scope of the study was limited to a consideration of the performance of procedural actions. The event-tree technique was modified to adapt it for this study and will be referred to as the 'Technique for Human-Error-Sequence Identification and Signification' (THESIS). The event trees used in this manner, i.e. THESIS event trees, appear to present additional problems if they are applied to human performance instead of technical systems. These problems, referred to as the 'Man-Related Features' of THESIS, are: the human capability to choose among several procedures, the ergonomics of the panel layout, human actions of a continuous nature, dependence between human errors, human capability to recover possible errors, the influence of memory during the recovery attempt, variability in human performance and correlations between human;erropr probabilities. The influence of these problems on the applicability of THESIS was assessed by means of mathematical analysis, field studies and laboratory experiments (author). 130 refs.; 51 figs.; 24 tabs

  13. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    OpenAIRE

    Xerxes D. Arsiwalla; Riccardo eZucca; Alberto eBetella; Enrique eMartinez; David eDalmazzo; Pedro eOmedas; Gustavo eDeco; Gustavo eDeco; Paul F.M.J. Verschure; Paul F.M.J. Verschure

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  14. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    OpenAIRE

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martínez, Enrique, 1961-; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  15. Human computing and machine understanding of human behavior: A survey

    NARCIS (Netherlands)

    Pentland, Alex; Huang, Thomas S.; Huang, Th.S.; Nijholt, Antinus; Pantic, Maja; Pentland, A.

    2007-01-01

    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing should be about anticipatory user interfaces

  16. Modeling with data tools and techniques for scientific computing

    CERN Document Server

    Klemens, Ben

    2009-01-01

    Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods

  17. Child-Computer Interaction SIG: Ethics and Values

    DEFF Research Database (Denmark)

    Hourcade, Juan Pablo; Zeising, Anja; Iversen, Ole Sejer

    2017-01-01

    This SIG will provide child computer interaction researchers and practitioners an opportunity to discuss topics related to ethical challenges in the design, and use of interactive technologies for children. Topics include the role of big data, the impact of technology in children’s social...... and physical ecosystem, and the consideration of ethics in children’s participation in the design of technologies, and in the conceptualization of technologies for children....

  18. User localization during human-robot interaction.

    Science.gov (United States)

    Alonso-Martín, F; Gorostiza, Javi F; Malfaz, María; Salichs, Miguel A

    2012-01-01

    This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented.

  19. Cognitive Technologies: The Design of Joint Human-Machine Cognitive Systems

    OpenAIRE

    Woods, David D.

    1985-01-01

    This article explores the implications of one type of cognitive technology, techniques and concepts to develop joint human-machine cognitive systems, for the application of computational technology by examining the joint cognitive system implicit in a hypothetical computer consultant that outputs some form of problem solution. This analysis reveals some of the problems can occur in cognitive system design-e.g., machine control of the interaction, the danger of a responsibility-authority doubl...

  20. Brain computer interfaces as intelligent sensors for enhancing human-computer interaction

    NARCIS (Netherlands)

    Poel, M.; Nijboer, F.; Broek, E.L. van den; Fairclough, S.; Nijholt, A.

    2012-01-01

    BCIs are traditionally conceived as a way to control apparatus, an interface that allows you to act on" external devices as a form of input control. We propose an alternative use of BCIs, that of monitoring users as an additional intelligent sensor to enrich traditional means of interaction. This

  1. Brain computer interfaces as intelligent sensors for enhancing human-computer interaction

    NARCIS (Netherlands)

    Poel, Mannes; Nijboer, Femke; van den Broek, Egon; Fairclough, Stephen; Morency, Louis-Philippe; Bohus, Dan; Aghajan, Hamid; Nijholt, Antinus; Cassell, Justine; Epps, Julien

    2012-01-01

    BCIs are traditionally conceived as a way to control apparatus, an interface that allows you to "act on" external devices as a form of input control. We propose an alternative use of BCIs, that of monitoring users as an additional intelligent sensor to enrich traditional means of interaction. This

  2. Approaching Engagement towards Human-Engaged Computing

    DEFF Research Database (Denmark)

    Niksirat, Kavous Salehzadeh; Sarcar, Sayan; Sun, Huatong

    2018-01-01

    Debates regarding the nature and role of HCI research and practice have intensified in recent years, given the ever increasingly intertwined relations between humans and technologies. The framework of Human-Engaged Computing (HEC) was proposed and developed over a series of scholarly workshops to...

  3. Motor contagion during human-human and human-robot interaction.

    Directory of Open Access Journals (Sweden)

    Ambra Bisio

    Full Text Available Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot. After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner.

  4. Motor contagion during human-human and human-robot interaction.

    Science.gov (United States)

    Bisio, Ambra; Sciutti, Alessandra; Nori, Francesco; Metta, Giorgio; Fadiga, Luciano; Sandini, Giulio; Pozzo, Thierry

    2014-01-01

    Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot). After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner.

  5. Model-based acquisition and analysis of multimodal interactions for improving human-robot interaction

    OpenAIRE

    Renner, Patrick; Pfeiffer, Thies

    2014-01-01

    For solving complex tasks cooperatively in close interaction with robots, they need to understand natural human communication. To achieve this, robots could benefit from a deeper understanding of the processes that humans use for successful communication. Such skills can be studied by investigating human face-to-face interactions in complex tasks. In our work the focus lies on shared-space interactions in a path planning task and thus 3D gaze directions and hand movements are of particular in...

  6. Audio Interaction in Computer Mediated Games

    Directory of Open Access Journals (Sweden)

    J. R. Parker

    2008-01-01

    Full Text Available The use of sound in an interactive media environment has not been advanced, as a technology, as far as graphics or artificial intelligence. This discussion will explore the use of sound as a way to influence the player of a computer game, will show ways that a game can use sound as input, and will describe ways that the player can influence sound in a game. The role of sound in computer games will be explored some practical design ideas that can be used to improve the current state of the art will be given.

  7. Man-machine interactions 3

    CERN Document Server

    Czachórski, Tadeusz; Kozielski, Stanisław

    2014-01-01

    Man-Machine Interaction is an interdisciplinary field of research that covers many aspects of science focused on a human and machine in conjunction.  Basic goal of the study is to improve and invent new ways of communication between users and computers, and many different subjects are involved to reach the long-term research objective of an intuitive, natural and multimodal way of interaction with machines.  The rapid evolution of the methods by which humans interact with computers is observed nowadays and new approaches allow using computing technologies to support people on the daily basis, making computers more usable and receptive to the user's needs.   This monograph is the third edition in the series and presents important ideas, current trends and innovations in  the man-machine interactions area.  The aim of this book is to introduce not only hardware and software interfacing concepts, but also to give insights into the related theoretical background. Reader is provided with a compilation of high...

  8. An intelligent multi-media human-computer dialogue system

    Science.gov (United States)

    Neal, J. G.; Bettinger, K. E.; Byoun, J. S.; Dobes, Z.; Thielman, C. Y.

    1988-01-01

    Sophisticated computer systems are being developed to assist in the human decision-making process for very complex tasks performed under stressful conditions. The human-computer interface is a critical factor in these systems. The human-computer interface should be simple and natural to use, require a minimal learning period, assist the user in accomplishing his task(s) with a minimum of distraction, present output in a form that best conveys information to the user, and reduce cognitive load for the user. In pursuit of this ideal, the Intelligent Multi-Media Interfaces project is devoted to the development of interface technology that integrates speech, natural language text, graphics, and pointing gestures for human-computer dialogues. The objective of the project is to develop interface technology that uses the media/modalities intelligently in a flexible, context-sensitive, and highly integrated manner modelled after the manner in which humans converse in simultaneous coordinated multiple modalities. As part of the project, a knowledge-based interface system, called CUBRICON (CUBRC Intelligent CONversationalist) is being developed as a research prototype. The application domain being used to drive the research is that of military tactical air control.

  9. Visualization of hierarchically structured information for human-computer interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Suh Hyun; Lee, J. K.; Choi, I. K.; Kye, S. C.; Lee, N. K. [Dongguk University, Seoul (Korea)

    2001-11-01

    Visualization techniques can be used to support operator's information navigation tasks on the system especially consisting of an enormous volume of information, such as operating information display system and computerized operating procedure system in advanced control room of nuclear power plants. By offering an easy understanding environment of hierarchically structured information, these techniques can reduce the operator's supplementary navigation task load. As a result of that, operators can pay more attention on the primary tasks and ultimately improve the cognitive task performance. In this report, an interface was designed and implemented using hyperbolic visualization technique, which is expected to be applied as a means of optimizing operator's information navigation tasks. 15 refs., 19 figs., 32 tabs. (Author)

  10. Mobile phone interaction techniques for rural economy development ...

    African Journals Online (AJOL)

    The objective of this study is to identify the various researches on interaction techniques and user interface design as a first step to the design of suitable mobile interactions and user interfaces for rural users. This research project is also aimed at socio-economic development and adding value to mobile phone users in ...

  11. Salesperson Ethics: An Interactive Computer Simulation

    Science.gov (United States)

    Castleberry, Stephen

    2014-01-01

    A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…

  12. Themes in human work interaction design

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Mark Pejtersen, Annelise; Clemmensen, Torkil

    2008-01-01

    Design (name HWID) through the last two and half years since the commencement of this Working Group. The paper thus provides an introduction to the theory and empirical evidence that lie behind the combination of empirical work studies and interaction design. It also recommends key topics for future......Abstract. This paper raises themes that are seen as some of the challenges facing the emerging practice and research field of Human Work Interaction Design. The paper has its offset in the discussions and writings that have been dominant within the IFIP Working Group on Human Work Interaction...

  13. Understanding and Resolving Failures in Human-Robot Interaction: Literature Review and Model Development

    Directory of Open Access Journals (Sweden)

    Shanee Honig

    2018-06-01

    Full Text Available While substantial effort has been invested in making robots more reliable, experience demonstrates that robots operating in unstructured environments are often challenged by frequent failures. Despite this, robots have not yet reached a level of design that allows effective management of faulty or unexpected behavior by untrained users. To understand why this may be the case, an in-depth literature review was done to explore when people perceive and resolve robot failures, how robots communicate failure, how failures influence people's perceptions and feelings toward robots, and how these effects can be mitigated. Fifty-two studies were identified relating to communicating failures and their causes, the influence of failures on human-robot interaction (HRI, and mitigating failures. Since little research has been done on these topics within the HRI community, insights from the fields of human computer interaction (HCI, human factors engineering, cognitive engineering and experimental psychology are presented and discussed. Based on the literature, we developed a model of information processing for robotic failures (Robot Failure Human Information Processing, RF-HIP, that guides the discussion of our findings. The model describes the way people perceive, process, and act on failures in human robot interaction. The model includes three main parts: (1 communicating failures, (2 perception and comprehension of failures, and (3 solving failures. Each part contains several stages, all influenced by contextual considerations and mitigation strategies. Several gaps in the literature have become evident as a result of this evaluation. More focus has been given to technical failures than interaction failures. Few studies focused on human errors, on communicating failures, or the cognitive, psychological, and social determinants that impact the design of mitigation strategies. By providing the stages of human information processing, RF-HIP can be used as a

  14. Computing paths and cycles in biological interaction graphs

    Directory of Open Access Journals (Sweden)

    von Kamp Axel

    2009-06-01

    Full Text Available Abstract Background Interaction graphs (signed directed graphs provide an important qualitative modeling approach for Systems Biology. They enable the analysis of causal relationships in cellular networks and can even be useful for predicting qualitative aspects of systems dynamics. Fundamental issues in the analysis of interaction graphs are the enumeration of paths and cycles (feedback loops and the calculation of shortest positive/negative paths. These computational problems have been discussed only to a minor extent in the context of Systems Biology and in particular the shortest signed paths problem requires algorithmic developments. Results We first review algorithms for the enumeration of paths and cycles and show that these algorithms are superior to a recently proposed enumeration approach based on elementary-modes computation. The main part of this work deals with the computation of shortest positive/negative paths, an NP-complete problem for which only very few algorithms are described in the literature. We propose extensions and several new algorithm variants for computing either exact results or approximations. Benchmarks with various concrete biological networks show that exact results can sometimes be obtained in networks with several hundred nodes. A class of even larger graphs can still be treated exactly by a new algorithm combining exhaustive and simple search strategies. For graphs, where the computation of exact solutions becomes time-consuming or infeasible, we devised an approximative algorithm with polynomial complexity. Strikingly, in realistic networks (where a comparison with exact results was possible this algorithm delivered results that are very close or equal to the exact values. This phenomenon can probably be attributed to the particular topology of cellular signaling and regulatory networks which contain a relatively low number of negative feedback loops. Conclusion The calculation of shortest positive

  15. Fusion of neural computing and PLS techniques for load estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, M.; Xue, H.; Cheng, X. [Northwestern Polytechnical Univ., Xi' an (China); Zhang, W. [Xi' an Inst. of Post and Telecommunication, Xi' an (China)

    2007-07-01

    A method to predict the electric load of a power system in real time was presented. The method is based on neurocomputing and partial least squares (PLS). Short-term load forecasts for power systems are generally determined by conventional statistical methods and Computational Intelligence (CI) techniques such as neural computing. However, statistical modeling methods often require the input of questionable distributional assumptions, and neural computing is weak, particularly in determining topology. In order to overcome the problems associated with conventional techniques, the authors developed a CI hybrid model based on neural computation and PLS techniques. The theoretical foundation for the designed CI hybrid model was presented along with its application in a power system. The hybrid model is suitable for nonlinear modeling and latent structure extracting. It can automatically determine the optimal topology to maximize the generalization. The CI hybrid model provides faster convergence and better prediction results compared to the abductive networks model because it incorporates a load conversion technique as well as new transfer functions. In order to demonstrate the effectiveness of the hybrid model, load forecasting was performed on a data set obtained from the Puget Sound Power and Light Company. Compared with the abductive networks model, the CI hybrid model reduced the forecast error by 32.37 per cent on workday, and by an average of 27.18 per cent on the weekend. It was concluded that the CI hybrid model has a more powerful predictive ability. 7 refs., 1 tab., 3 figs.

  16. An overview of computer-based natural language processing

    Science.gov (United States)

    Gevarter, W. B.

    1983-01-01

    Computer based Natural Language Processing (NLP) is the key to enabling humans and their computer based creations to interact with machines in natural language (like English, Japanese, German, etc., in contrast to formal computer languages). The doors that such an achievement can open have made this a major research area in Artificial Intelligence and Computational Linguistics. Commercial natural language interfaces to computers have recently entered the market and future looks bright for other applications as well. This report reviews the basic approaches to such systems, the techniques utilized, applications, the state of the art of the technology, issues and research requirements, the major participants and finally, future trends and expectations. It is anticipated that this report will prove useful to engineering and research managers, potential users, and others who will be affected by this field as it unfolds.

  17. Place-Specific Computing

    DEFF Research Database (Denmark)

    Messeter, Jörn

    2009-01-01

    An increased interest in the notion of place has evolved in interaction design based on the proliferation of wireless infrastructures, developments in digital media, and a ‘spatial turn’ in computing. In this article, place-specific computing is suggested as a genre of interaction design that add......An increased interest in the notion of place has evolved in interaction design based on the proliferation of wireless infrastructures, developments in digital media, and a ‘spatial turn’ in computing. In this article, place-specific computing is suggested as a genre of interaction design...... that addresses the shaping of interactions among people, place-specific resources and global socio-technical networks, mediated by digital technology, and influenced by the structuring conditions of place. The theoretical grounding for place-specific computing is located in the meeting between conceptions...... of place in human geography and recent research in interaction design focusing on embodied interaction. Central themes in this grounding revolve around place and its relation to embodiment and practice, as well as the social, cultural and material aspects conditioning the enactment of place. Selected...

  18. Interaction techniques for radiology workstations: impact on users' productivity

    Science.gov (United States)

    Moise, Adrian; Atkins, M. Stella

    2004-04-01

    As radiologists progress from reading images presented on film to modern computer systems with images presented on high-resolution displays, many new problems arise. Although the digital medium has many advantages, the radiologist"s job becomes cluttered with many new tasks related to image manipulation. This paper presents our solution for supporting radiologists" interpretation of digital images by automating image presentation during sequential interpretation steps. Our method supports scenario based interpretation, which group data temporally, according to the mental paradigm of the physician. We extended current hanging protocols with support for "stages". A stage reflects the presentation of digital information required to complete a single step within a complex task. We demonstrated the benefits of staging in a user study with 20 lay subjects involved in a visual conjunctive search for targets, similar to a radiology task of identifying anatomical abnormalities. We designed a task and a set of stimuli which allowed us to simulate the interpretation workflow from a typical radiology scenario - reading a chest computed radiography exam when a prior study is also available. The simulation was possible by abstracting the radiologist"s task and the basic workstation navigation functionality. We introduced "Stages," an interaction technique attuned to the radiologist"s interpretation task. Compared to the traditional user interface, Stages generated a 14% reduction in the average interpretation.

  19. Computational prediction of drug-drug interactions based on drugs functional similarities.

    Science.gov (United States)

    Ferdousi, Reza; Safdari, Reza; Omidi, Yadollah

    2017-06-01

    Therapeutic activities of drugs are often influenced by co-administration of drugs that may cause inevitable drug-drug interactions (DDIs) and inadvertent side effects. Prediction and identification of DDIs are extremely vital for the patient safety and success of treatment modalities. A number of computational methods have been employed for the prediction of DDIs based on drugs structures and/or functions. Here, we report on a computational method for DDIs prediction based on functional similarity of drugs. The model was set based on key biological elements including carriers, transporters, enzymes and targets (CTET). The model was applied for 2189 approved drugs. For each drug, all the associated CTETs were collected, and the corresponding binary vectors were constructed to determine the DDIs. Various similarity measures were conducted to detect DDIs. Of the examined similarity methods, the inner product-based similarity measures (IPSMs) were found to provide improved prediction values. Altogether, 2,394,766 potential drug pairs interactions were studied. The model was able to predict over 250,000 unknown potential DDIs. Upon our findings, we propose the current method as a robust, yet simple and fast, universal in silico approach for identification of DDIs. We envision that this proposed method can be used as a practical technique for the detection of possible DDIs based on the functional similarities of drugs. Copyright © 2017. Published by Elsevier Inc.

  20. An audio-visual dataset of human-human interactions in stressful situations

    NARCIS (Netherlands)

    Lefter, I.; Burghouts, G.J.; Rothkrantz, L.J.M.

    2014-01-01

    Stressful situations are likely to occur at human operated service desks, as well as at human-computer interfaces used in public domain. Automatic surveillance can help notifying when extra assistance is needed. Human communication is inherently multimodal e.g. speech, gestures, facial expressions.

  1. Eyeblink Synchrony in Multimodal Human-Android Interaction.

    Science.gov (United States)

    Tatsukawa, Kyohei; Nakano, Tamami; Ishiguro, Hiroshi; Yoshikawa, Yuichiro

    2016-12-23

    As the result of recent progress in technology of communication robot, robots are becoming an important social partner for humans. Behavioral synchrony is understood as an important factor in establishing good human-robot relationships. In this study, we hypothesized that biasing a human's attitude toward a robot changes the degree of synchrony between human and robot. We first examined whether eyeblinks were synchronized between a human and an android in face-to-face interaction and found that human listeners' eyeblinks were entrained to android speakers' eyeblinks. This eyeblink synchrony disappeared when the android speaker spoke while looking away from the human listeners but was enhanced when the human participants listened to the speaking android while touching the android's hand. These results suggest that eyeblink synchrony reflects a qualitative state in human-robot interactions.

  2. Fuzzy classification for strawberry diseases-infection using machine vision and soft-computing techniques

    Science.gov (United States)

    Altıparmak, Hamit; Al Shahadat, Mohamad; Kiani, Ehsan; Dimililer, Kamil

    2018-04-01

    Robotic agriculture requires smart and doable techniques to substitute the human intelligence with machine intelligence. Strawberry is one of the important Mediterranean product and its productivity enhancement requires modern and machine-based methods. Whereas a human identifies the disease infected leaves by his eye, the machine should also be capable of vision-based disease identification. The objective of this paper is to practically verify the applicability of a new computer-vision method for discrimination between the healthy and disease infected strawberry leaves which does not require neural network or time consuming trainings. The proposed method was tested under outdoor lighting condition using a regular DLSR camera without any particular lens. Since the type and infection degree of disease is approximated a human brain a fuzzy decision maker classifies the leaves over the images captured on-site having the same properties of human vision. Optimizing the fuzzy parameters for a typical strawberry production area at a summer mid-day in Cyprus produced 96% accuracy for segmented iron deficiency and 93% accuracy for segmented using a typical human instant classification approximation as the benchmark holding higher accuracy than a human eye identifier. The fuzzy-base classifier provides approximate result for decision making on the leaf status as if it is healthy or not.

  3. A conceptual framework to evaluate human-wildlife interactions within coupled human and natural systems

    Directory of Open Access Journals (Sweden)

    Anita T. Morzillo

    2014-09-01

    Full Text Available Landscape characteristics affect human-wildlife interactions. However, there is a need to better understand mechanisms that drive those interactions, particularly feedbacks that exist between wildlife-related impacts, human reaction to and behavior as a result of those impacts, and how land use and landscape characteristics may influence those components within coupled human and natural systems. Current conceptual models of human-wildlife interactions often focus on species population size as the independent variable driving those interactions. Such an approach potentially overlooks important feedbacks among and drivers of human-wildlife interactions that result from mere wildlife presence versus absence. We describe an emerging conceptual framework that focuses on wildlife as a driver of human behavior and allows us to better understand linkages between humans, wildlife, and the broader landscape. We also present results of a pilot analysis related to our own ongoing study of urban rodent control behavior to illustrate one application of this framework within a study of urban landscapes.

  4. Data analysis through interactive computer animation method (DATICAM)

    International Nuclear Information System (INIS)

    Curtis, J.N.; Schwieder, D.H.

    1983-01-01

    DATICAM is an interactive computer animation method designed to aid in the analysis of nuclear research data. DATICAM was developed at the Idaho National Engineering Laboratory (INEL) by EG and G Idaho, Inc. INEL analysts use DATICAM to produce computer codes that are better able to predict the behavior of nuclear power reactors. In addition to increased code accuracy, DATICAM has saved manpower and computer costs. DATICAM has been generalized to assist in the data analysis of virtually any data-producing dynamic process

  5. Guidelines for the integration of audio cues into computer user interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sumikawa, D.A.

    1985-06-01

    Throughout the history of computers, vision has been the main channel through which information is conveyed to the computer user. As the complexities of man-machine interactions increase, more and more information must be transferred from the computer to the user and then successfully interpreted by the user. A logical next step in the evolution of the computer-user interface is the incorporation of sound and thereby using the sense of ''hearing'' in the computer experience. This allows our visual and auditory capabilities to work naturally together in unison leading to more effective and efficient interpretation of all information received by the user from the computer. This thesis presents an initial set of guidelines to assist interface developers in designing an effective sight and sound user interface. This study is a synthesis of various aspects of sound, human communication, computer-user interfaces, and psychoacoustics. We introduce the notion of an earcon. Earcons are audio cues used in the computer-user interface to provide information and feedback to the user about some computer object, operation, or interaction. A possible construction technique for earcons, the use of earcons in the interface, how earcons are learned and remembered, and the affects of earcons on their users are investigated. This study takes the point of view that earcons are a language and human/computer communication issue and are therefore analyzed according to the three dimensions of linguistics; syntactics, semantics, and pragmatics.

  6. Image Visual Realism: From Human Perception to Machine Computation.

    Science.gov (United States)

    Fan, Shaojing; Ng, Tian-Tsong; Koenig, Bryan L; Herberg, Jonathan S; Jiang, Ming; Shen, Zhiqi; Zhao, Qi

    2017-08-30

    Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and CNN-learned features to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.

  7. Parallel structures in human and computer memory

    Science.gov (United States)

    Kanerva, Pentti

    1986-08-01

    If we think of our experiences as being recorded continuously on film, then human memory can be compared to a film library that is indexed by the contents of the film strips stored in it. Moreover, approximate retrieval cues suffice to retrieve information stored in this library: We recognize a familiar person in a fuzzy photograph or a familiar tune played on a strange instrument. This paper is about how to construct a computer memory that would allow a computer to recognize patterns and to recall sequences the way humans do. Such a memory is remarkably similar in structure to a conventional computer memory and also to the neural circuits in the cortex of the cerebellum of the human brain. The paper concludes that the frame problem of artificial intelligence could be solved by the use of such a memory if we were able to encode information about the world properly.

  8. Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages

    Science.gov (United States)

    Vilagosh, Zoltan; Lajevardipour, Alireza; Wood, Andrew

    2018-01-01

    Finite-difference time-domain (FDTD) computational phantoms aid the analysis of THz radiation interaction with human skin. The presented computational phantoms have accurate anatomical layering and electromagnetic properties. A novel "large sheet" simulation technique is used allowing for a realistic representation of lateral absorption and reflection of in-vivo measurements. Simulations carried out to date have indicated that hair follicles act as THz propagation channels and confirms the possible role of melanin, both in nevi and skin pigmentation, to act as a significant absorber of THz radiation. A novel freezing technique has promise in increasing the depth of skin penetration of THz radiation to aid diagnostic imaging.

  9. Computational methods using weighed-extreme learning machine to predict protein self-interactions with protein evolutionary information.

    Science.gov (United States)

    An, Ji-Yong; Zhang, Lei; Zhou, Yong; Zhao, Yu-Jun; Wang, Da-Fu

    2017-08-18

    Self-interactions Proteins (SIPs) is important for their biological activity owing to the inherent interaction amongst their secondary structures or domains. However, due to the limitations of experimental Self-interactions detection, one major challenge in the study of prediction SIPs is how to exploit computational approaches for SIPs detection based on evolutionary information contained protein sequence. In the work, we presented a novel computational approach named WELM-LAG, which combined the Weighed-Extreme Learning Machine (WELM) classifier with Local Average Group (LAG) to predict SIPs based on protein sequence. The major improvement of our method lies in presenting an effective feature extraction method used to represent candidate Self-interactions proteins by exploring the evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix (PSSM); and then employing a reliable and robust WELM classifier to carry out classification. In addition, the Principal Component Analysis (PCA) approach is used to reduce the impact of noise. The WELM-LAG method gave very high average accuracies of 92.94 and 96.74% on yeast and human datasets, respectively. Meanwhile, we compared it with the state-of-the-art support vector machine (SVM) classifier and other existing methods on human and yeast datasets, respectively. Comparative results indicated that our approach is very promising and may provide a cost-effective alternative for predicting SIPs. In addition, we developed a freely available web server called WELM-LAG-SIPs to predict SIPs. The web server is available at http://219.219.62.123:8888/WELMLAG/ .

  10. Conformational effects on the circular dichroism of Human Carbonic Anhydrase II: a multilevel computational study.

    Directory of Open Access Journals (Sweden)

    Tatyana G Karabencheva-Christova

    Full Text Available Circular Dichroism (CD spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII, with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions.

  11. Sphericall: A Human/Artificial Intelligence interaction experience

    Directory of Open Access Journals (Sweden)

    Frack Gechter

    2014-12-01

    Full Text Available Multi-agent systems are now wide spread in scientific works and in industrial applications. Few applications deal with the Human/Multi-agent system interaction. Multi-agent systems are characterized by individual entities, called agents, in interaction with each other and with their environment. Multi-agent systems are generally classified into complex systems categories since the global emerging phenomenon cannot be predicted even if every component is well known. The systems developed in this paper are named reactive because they behave using simple interaction models. In the reactive approach, the issue of Human/system interaction is hard to cope with and is scarcely exposed in literature. This paper presents Sphericall, an application aimed at studying Human/Complex System interactions and based on two physics inspired multi-agent systems interacting together. The Sphericall device is composed of a tactile screen and a spherical world where agents evolve. This paper presents both the technical background of Sphericall project and a feedback taken from the demonstration performed during OFFF Festival in La Villette (Paris.

  12. Agent assisted interactive algorithm for computationally demanding multiobjective optimization problems

    OpenAIRE

    Ojalehto, Vesa; Podkopaev, Dmitry; Miettinen, Kaisa

    2015-01-01

    We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker du...

  13. Review on Computational Electromagnetics

    Directory of Open Access Journals (Sweden)

    P. Sumithra

    2017-03-01

    Full Text Available Computational electromagnetics (CEM is applied to model the interaction of electromagnetic fields with the objects like antenna, waveguides, aircraft and their environment using Maxwell equations.  In this paper the strength and weakness of various computational electromagnetic techniques are discussed. Performance of various techniques in terms accuracy, memory and computational time for application specific tasks such as modeling RCS (Radar cross section, space applications, thin wires, antenna arrays are presented in this paper.

  14. "Teaching students how to wear their Computer"

    DEFF Research Database (Denmark)

    Guglielmi, Michel; Johannesen, Hanne Louise

    2005-01-01

    to address this question trough the angle of what we called ‘Physical Computing’ and asked ourselves and the students if new fields like ‘tangible media’ or ‘wearable computers’ can contribute to improvements of life? And whose life improvement are we aiming for? Computers are a ubiquitous part....... Through the workshop the students were encouraged to disrupt the myth of how a computer should be used and to focus on the human-human interaction (HHI) through the computer rather than human-computer interaction (HCI). The physical computing approach offered furthermore a unique opportunity to break down......This paper intends to present the goal, results and methodology of a workshop run in collaboration with Visual Culture (humanities), University of Copenhagen, the Danish academy of Design in Copenhagen and Media lab Aalborg, University of Aalborg. The workshop was related to a design competition...

  15. Rana computatrix to human language: towards a computational neuroethology of language evolution.

    Science.gov (United States)

    Arbib, Michael A

    2003-10-15

    Walter's Machina speculatrix inspired the name Rana computatrix for a family of models of visuomotor coordination in the frog, which contributed to the development of computational neuroethology. We offer here an 'evolutionary' perspective on models in the same tradition for rat, monkey and human. For rat, we show how the frog-like taxon affordance model provides a basis for the spatial navigation mechanisms that involve the hippocampus and other brain regions. For monkey, we recall two models of neural mechanisms for visuomotor coordination. The first, for saccades, shows how interactions between the parietal and frontal cortex augment superior colliculus seen as the homologue of frog tectum. The second, for grasping, continues the theme of parieto-frontal interactions, linking parietal affordances to motor schemas in premotor cortex. It further emphasizes the mirror system for grasping, in which neurons are active both when the monkey executes a specific grasp and when it observes a similar grasp executed by others. The model of human-brain mechanisms is based on the mirror-system hypothesis of the evolution of the language-ready brain, which sees the human Broca's area as an evolved extension of the mirror system for grasping.

  16. Sensitivity to Social Contingency in Adults with High-Functioning Autism during Computer-Mediated Embodied Interaction.

    Science.gov (United States)

    Zapata-Fonseca, Leonardo; Froese, Tom; Schilbach, Leonhard; Vogeley, Kai; Timmermans, Bert

    2018-02-08

    Autism Spectrum Disorder (ASD) can be understood as a social interaction disorder. This makes the emerging "second-person approach" to social cognition a more promising framework for studying ASD than classical approaches focusing on mindreading capacities in detached, observer-based arrangements. According to the second-person approach, embodied, perceptual, and embedded or interactive capabilities are also required for understanding others, and these are hypothesized to be compromised in ASD. We therefore recorded the dynamics of real-time sensorimotor interaction in pairs of control participants and participants with High-Functioning Autism (HFA), using the minimalistic human-computer interface paradigm known as "perceptual crossing" (PC). We investigated whether HFA is associated with impaired detection of social contingency, i.e., a reduced sensitivity to the other's responsiveness to one's own behavior. Surprisingly, our analysis reveals that, at least under the conditions of this highly simplified, computer-mediated, embodied form of social interaction, people with HFA perform equally well as controls. This finding supports the increasing use of virtual reality interfaces for helping people with ASD to better compensate for their social disabilities. Further dynamical analyses are necessary for a better understanding of the mechanisms that are leading to the somewhat surprising results here obtained.

  17. Sensitivity to Social Contingency in Adults with High-Functioning Autism during Computer-Mediated Embodied Interaction

    Directory of Open Access Journals (Sweden)

    Leonardo Zapata-Fonseca

    2018-02-01

    Full Text Available Autism Spectrum Disorder (ASD can be understood as a social interaction disorder. This makes the emerging “second-person approach” to social cognition a more promising framework for studying ASD than classical approaches focusing on mindreading capacities in detached, observer-based arrangements. According to the second-person approach, embodied, perceptual, and embedded or interactive capabilities are also required for understanding others, and these are hypothesized to be compromised in ASD. We therefore recorded the dynamics of real-time sensorimotor interaction in pairs of control participants and participants with High-Functioning Autism (HFA, using the minimalistic human-computer interface paradigm known as “perceptual crossing” (PC. We investigated whether HFA is associated with impaired detection of social contingency, i.e., a reduced sensitivity to the other’s responsiveness to one’s own behavior. Surprisingly, our analysis reveals that, at least under the conditions of this highly simplified, computer-mediated, embodied form of social interaction, people with HFA perform equally well as controls. This finding supports the increasing use of virtual reality interfaces for helping people with ASD to better compensate for their social disabilities. Further dynamical analyses are necessary for a better understanding of the mechanisms that are leading to the somewhat surprising results here obtained.

  18. Evaluation of the Humanity Research Paradigms based on Analysis of Human – Environment Interaction

    Directory of Open Access Journals (Sweden)

    Reza Sameh

    2015-09-01

    Full Text Available As claimed by many behavioral scientists, designing should be based on the knowledge of interaction between human and environment. Environmental quality is also created in the context in which humans interact with their environment. To achieve such quality, designers should develop appropriate models for explaining this relationship, and this requires an understanding of human nature and the environment. Criticisms on the Modern Movement have shown that architects have often used incomplete and simplistic models in this regard, while most of design ideas are based on the definitions of human and environment and the interaction between them. However, the most important question that is raised is that how understanding of human nature and the environment and their interaction, which depends on foundations of different views, can affect the pursuit of quality in designing? Therefore, the present paper, in addition to introduction and comparison of common paradigms in humanities as the and methodological foundation of human sciences, aims to deal with the relationship of human and the environment from the perspective of objectivist, relativist, and critical paradigms in order to identify the characteristics and differences in their views on the analysis of the quality of this interaction. This is the most important step that paves the way for understanding the qualitative foundations of the environment and human life quality and also the quality of interaction between them.

  19. Versatile real-time interferometer phase-detection system using high-speed digital techniques

    International Nuclear Information System (INIS)

    Mendell, D.S.; Willett, G.W.

    1977-01-01

    This paper describes the basic design and philosophy of a versatile real-time interferometer phase-detection system to be used on the 2XIIB and TMX magnetic-fusion experiments at Lawrence Livermore Laboratory. This diagnostics system is a satellite to a host computer and uses high-speed emitter-coupled logic techniques to derive data on real-time phase relationships. The system's input signals can be derived from interferometer outputs over a wide range of reference frequencies. An LSI-11 microcomputer is the interface between the high-speed phase-detection logic, buffer memory, human interaction, and host computer. Phase data on a storage CRT is immediately displayed after each experimental fusion shot. An operator can interrogate this phase data more closely from an interactive control panel, and the host computer can be simultaneously examining the system's buffer memory or arming the system for the next shot

  20. A research on applications of qualitative reasoning techniques in Human Acts Simulation Program

    International Nuclear Information System (INIS)

    Far, B.H.

    1992-04-01

    Human Acts Simulation Program (HASP) is a ten-year research project of the Computing and Information Systems Center of JAERI. In HASP the goal is developing programs for an advanced intelligent robot to accomplish multiple instructions (for instance, related to surveillance, inspection and maintenance) in nuclear power plants. Some recent artificial intelligence techniques can contribute to this project. This report introduces some original contributions concerning application of Qualitative Reasoning (QR) techniques in HASP. The focus is on the knowledge-intensive tasks, including model-based reasoning, analytic learning, fault diagnosis and functional reasoning. The multi-level extended qualitative modeling for the Skill-Rule-Knowledge (S-R-K) based reasoning, that included the coordination and timing of events, Qualitative Sensitivity analysis (Q S A), Subjective Qualitative Fault Diagnosis (S Q F D) and Qualitative Function Formation (Q F F ) techniques are introduced. (author) 123 refs

  1. Human-Robot Interaction: Status and Challenges.

    Science.gov (United States)

    Sheridan, Thomas B

    2016-06-01

    The current status of human-robot interaction (HRI) is reviewed, and key current research challenges for the human factors community are described. Robots have evolved from continuous human-controlled master-slave servomechanisms for handling nuclear waste to a broad range of robots incorporating artificial intelligence for many applications and under human supervisory control. This mini-review describes HRI developments in four application areas and what are the challenges for human factors research. In addition to a plethora of research papers, evidence of success is manifest in live demonstrations of robot capability under various forms of human control. HRI is a rapidly evolving field. Specialized robots under human teleoperation have proven successful in hazardous environments and medical application, as have specialized telerobots under human supervisory control for space and repetitive industrial tasks. Research in areas of self-driving cars, intimate collaboration with humans in manipulation tasks, human control of humanoid robots for hazardous environments, and social interaction with robots is at initial stages. The efficacy of humanoid general-purpose robots has yet to be proven. HRI is now applied in almost all robot tasks, including manufacturing, space, aviation, undersea, surgery, rehabilitation, agriculture, education, package fetch and delivery, policing, and military operations. © 2016, Human Factors and Ergonomics Society.

  2. An exploratory study on the driving method of speech synthesis based on the human eye reading imaging data

    Science.gov (United States)

    Gao, Pei-pei; Liu, Feng

    2016-10-01

    With the development of information technology and artificial intelligence, speech synthesis plays a significant role in the fields of Human-Computer Interaction Techniques. However, the main problem of current speech synthesis techniques is lacking of naturalness and expressiveness so that it is not yet close to the standard of natural language. Another problem is that the human-computer interaction based on the speech synthesis is too monotonous to realize mechanism of user subjective drive. This thesis introduces the historical development of speech synthesis and summarizes the general process of this technique. It is pointed out that prosody generation module is an important part in the process of speech synthesis. On the basis of further research, using eye activity rules when reading to control and drive prosody generation was introduced as a new human-computer interaction method to enrich the synthetic form. In this article, the present situation of speech synthesis technology is reviewed in detail. Based on the premise of eye gaze data extraction, using eye movement signal in real-time driving, a speech synthesis method which can express the real speech rhythm of the speaker is proposed. That is, when reader is watching corpora with its eyes in silent reading, capture the reading information such as the eye gaze duration per prosodic unit, and establish a hierarchical prosodic pattern of duration model to determine the duration parameters of synthesized speech. At last, after the analysis, the feasibility of the above method is verified.

  3. Extended sequence diagram for human system interaction

    International Nuclear Information System (INIS)

    Hwang, Jong Rok; Choi, Sun Woo; Ko, Hee Ran; Kim, Jong Hyun

    2012-01-01

    Unified Modeling Language (UML) is a modeling language in the field of object oriented software engineering. The sequence diagram is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a message sequence chart. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. This paper proposes the Extended Sequence Diagram (ESD), which is capable of depicting human system interaction for nuclear power plants, as well as cognitive process of operators analysis. In the conventional sequence diagram, there is a limit to only identify the activities of human and systems interactions. The ESD is extended to describe operators' cognitive process in more detail. The ESD is expected to be used as a task analysis method for describing human system interaction. The ESD can also present key steps causing abnormal operations or failures and diverse human errors based on cognitive condition

  4. Animal-Computer Interaction: Animal-Centred, Participatory, and Playful Design

    NARCIS (Netherlands)

    Pons, Patricia; Hirskyj-Douglas, Ilyena; Nijholt, Antinus; Cheok, Adrian D.; Spink, Andrew; Riedel, Gernot; Zhou, Liting; Teekens, Lisanne; Albatal, Rami; Gurrin, Cathal

    In recent years there has been growing interest in developing technology to improve animal's wellbeing and to support the interaction of animals within the digital world. The field of Animal-Computer Interaction (ACI) considers animals as the end-users of the technology being developed, orienting

  5. Human-Bat Interactions in Rural West Africa.

    Science.gov (United States)

    Anti, Priscilla; Owusu, Michael; Agbenyega, Olivia; Annan, Augustina; Badu, Ebenezer Kofi; Nkrumah, Evans Ewald; Tschapka, Marco; Oppong, Samuel; Adu-Sarkodie, Yaw; Drosten, Christian

    2015-08-01

    Because some bats host viruses with zoonotic potential, we investigated human-bat interactions in rural Ghana during 2011-2012. Nearly half (46.6%) of respondents regularly visited bat caves; 37.4% had been bitten, scratched, or exposed to bat urine; and 45.6% ate bat meat. Human-bat interactions in rural Ghana are frequent and diverse.

  6. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption.

    Science.gov (United States)

    Banerjee, Arundhati; Ray, Sujay

    2016-01-01

    Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations.

  7. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption

    Directory of Open Access Journals (Sweden)

    Arundhati Banerjee

    2016-01-01

    Full Text Available Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations.

  8. Multiyear interactive computer almanac, 1800-2050

    CERN Document Server

    United States. Naval Observatory

    2005-01-01

    The Multiyear Interactive Computer Almanac (MICA Version 2.2.2 ) is a software system that runs on modern versions of Windows and Macintosh computers created by the U.S. Naval Observatory's Astronomical Applications Department, especially for astronomers, surveyors, meteorologists, navigators and others who regularly need accurate information on the positions, motions, and phenomena of celestial objects. MICA produces high-precision astronomical data in tabular form, tailored for the times and locations specified by the user. Unlike traditional almanacs, MICA computes these data in real time, eliminating the need for table look-ups and additional hand calculations. MICA tables can be saved as standard text files, enabling their use in other applications. Several important new features have been added to this edition of MICA, including: extended date coverage from 1800 to 2050; a redesigned user interface; a graphical sky map; a phenomena calculator (eclipses, transits, equinoxes, solstices, conjunctions, oppo...

  9. Interactive lung segmentation in abnormal human and animal chest CT scans

    International Nuclear Information System (INIS)

    Kockelkorn, Thessa T. J. P.; Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-01-01

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  10. Affordances and Cognitive Walkthrough for Analyzing Human-Virtual Human Interaction

    NARCIS (Netherlands)

    Ruttkay, Z.M.; op den Akker, Hendrikus J.A.; Esposito, A.; Bourbakis, N.; Avouris, N.; Hatzilygeroudis, I.

    2008-01-01

    This study investigates how the psychological notion of affordance, known from human computer interface design, can be adopted for the analysis and design of communication of a user with a Virtual Human (VH), as a novel interface. We take as starting point the original notion of affordance, used to

  11. Classification of alarm processing techniques and human performance issues

    International Nuclear Information System (INIS)

    Kim, I.S.; O'Hara, J.M.

    1993-01-01

    Human factors reviews indicate that conventional alarm systems based on the one sensor, one alarm approach, have many human engineering deficiencies, a paramount example being too many alarms during major disturbances. As an effort to resolve these deficiencies, various alarm processing systems have been developed using different techniques. To ensure their contribution to operational safety, the impacts of those systems on operating crew performance should be carefully evaluated. This paper briefly reviews some of the human factors research issues associated with alarm processing techniques and then discusses a framework with which to classify the techniques. The dimensions of this framework can be used to explore the effects of alarm processing systems on human performance

  12. Classification of alarm processing techniques and human performance issues

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.S.; O' Hara, J.M.

    1993-01-01

    Human factors reviews indicate that conventional alarm systems based on the one sensor, one alarm approach, have many human engineering deficiencies, a paramount example being too many alarms during major disturbances. As an effort to resolve these deficiencies, various alarm processing systems have been developed using different techniques. To ensure their contribution to operational safety, the impacts of those systems on operating crew performance should be carefully evaluated. This paper briefly reviews some of the human factors research issues associated with alarm processing techniques and then discusses a framework with which to classify the techniques. The dimensions of this framework can be used to explore the effects of alarm processing systems on human performance.

  13. Classification of alarm processing techniques and human performance issues

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.S.; O`Hara, J.M.

    1993-05-01

    Human factors reviews indicate that conventional alarm systems based on the one sensor, one alarm approach, have many human engineering deficiencies, a paramount example being too many alarms during major disturbances. As an effort to resolve these deficiencies, various alarm processing systems have been developed using different techniques. To ensure their contribution to operational safety, the impacts of those systems on operating crew performance should be carefully evaluated. This paper briefly reviews some of the human factors research issues associated with alarm processing techniques and then discusses a framework with which to classify the techniques. The dimensions of this framework can be used to explore the effects of alarm processing systems on human performance.

  14. mobile phone interaction techniques for rural economy development

    African Journals Online (AJOL)

    DJFLEX

    presented. KEY WORDS: Interaction Techniques, Mobile phone, User Interface, ICT, Rural Development. ... and services must be designed to use available facilities ... detachable memory cards. .... access health information from the Internet.

  15. CHI '13 Extended Abstracts on Human Factors in Computing Systems

    DEFF Research Database (Denmark)

    also deeply appreciate the huge amount of time donated to this process by the 211-member program committee, who paid their own way to attend the face-to-face program committee meeting, an event larger than the average ACM conference. We are proud of the work of the CHI 2013 program committee and hope...... a tremendous amount of work from all areas of the human-computer interaction community. As co-chairs of the process, we are amazed at the ability of the community to organize itself to accomplish this task. We would like to thank the 2680 individual reviewers for their careful consideration of these papers. We...

  16. Pilots of the future - Human or computer?

    Science.gov (United States)

    Chambers, A. B.; Nagel, D. C.

    1985-01-01

    In connection with the occurrence of aircraft accidents and the evolution of the air-travel system, questions arise regarding the computer's potential for making fundamental contributions to improving the safety and reliability of air travel. An important result of an analysis of the causes of aircraft accidents is the conclusion that humans - 'pilots and other personnel' - are implicated in well over half of the accidents which occur. Over 70 percent of the incident reports contain evidence of human error. In addition, almost 75 percent show evidence of an 'information-transfer' problem. Thus, the question arises whether improvements in air safety could be achieved by removing humans from control situations. In an attempt to answer this question, it is important to take into account also certain advantages which humans have in comparison to computers. Attention is given to human error and the effects of technology, the motivation to automate, aircraft automation at the crossroads, the evolution of cockpit automation, and pilot factors.

  17. Visualization of Minkowski operations by computer graphics techniques

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.; Blaauwgeers, G.S.M.; Serra, J; Soille, P

    1994-01-01

    We consider the problem of visualizing 3D objects defined as a Minkowski addition or subtraction of elementary objects. It is shown that such visualizations can be obtained by using techniques from computer graphics such as ray tracing and Constructive Solid Geometry. Applications of the method are

  18. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  19. Experimental data processing techniques by a personal computer

    International Nuclear Information System (INIS)

    Matsuura, Kiyokata; Tsuda, Kenzo; Abe, Yoshihiko; Kojima, Tsuyoshi; Nishikawa, Akira; Shimura, Hitoshi; Hyodo, Hiromi; Yamagishi, Shigeru.

    1989-01-01

    A personal computer (16-bit, about 1 MB memory) can be used at a low cost in the experimental data processing. This report surveys the important techniques on A/D and D/A conversion, display, store and transfer of the experimental data. It is also discussed the items to be considered in the software. Practical softwares programed BASIC and Assembler language are given as examples. Here, we present some techniques to get faster process in BASIC language and show that the system composed of BASIC and Assembler is useful in a practical experiment. The system performance such as processing speed and flexibility in setting operation condition will depend strongly on programming language. We have made test for processing speed by some typical programming languages; BASIC(interpreter), C, FORTRAN and Assembler. As for the calculation, FORTRAN has the best performance which is comparable to or better than Assembler even in the personal computer. (author)

  20. Artifical Intelligence for Human Computing

    NARCIS (Netherlands)

    Huang, Th.S.; Nijholt, Antinus; Pantic, Maja; Pentland, A.; Unknown, [Unknown

    2007-01-01

    This book constitutes the thoroughly refereed post-proceedings of two events discussing AI for Human Computing: one Special Session during the Eighth International ACM Conference on Multimodal Interfaces (ICMI 2006), held in Banff, Canada, in November 2006, and a Workshop organized in conjunction

  1. Pantomimic gestures for human-robot interaction

    CSIR Research Space (South Africa)

    Burke, Michael G

    2015-10-01

    Full Text Available -1 IEEE TRANSACTIONS ON ROBOTICS 1 Pantomimic Gestures for Human-Robot Interaction Michael Burke, Student Member, IEEE, and Joan Lasenby Abstract This work introduces a pantomimic gesture interface, which classifies human hand gestures using...

  2. Sustaining Economic Exploitation of Complex Ecosystems in Computational Models of Coupled Human-Natural Networks

    OpenAIRE

    Martinez, Neo D.; Tonin, Perrine; Bauer, Barbara; Rael, Rosalyn C.; Singh, Rahul; Yoon, Sangyuk; Yoon, Ilmi; Dunne, Jennifer A.

    2012-01-01

    Understanding ecological complexity has stymied scientists for decades. Recent elucidation of the famously coined "devious strategies for stability in enduring natural systems" has opened up a new field of computational analyses of complex ecological networks where the nonlinear dynamics of many interacting species can be more realistically mod-eled and understood. Here, we describe the first extension of this field to include coupled human-natural systems. This extension elucidates new strat...

  3. Integrative approaches to computational biomedicine

    Science.gov (United States)

    Coveney, Peter V.; Diaz-Zuccarini, Vanessa; Graf, Norbert; Hunter, Peter; Kohl, Peter; Tegner, Jesper; Viceconti, Marco

    2013-01-01

    The new discipline of computational biomedicine is concerned with the application of computer-based techniques and particularly modelling and simulation to human health. Since 2007, this discipline has been synonymous, in Europe, with the name given to the European Union's ambitious investment in integrating these techniques with the eventual aim of modelling the human body as a whole: the virtual physiological human. This programme and its successors are expected, over the next decades, to transform the study and practice of healthcare, moving it towards the priorities known as ‘4P's’: predictive, preventative, personalized and participatory medicine.

  4. Interactive granular computations in networks and systems engineering a practical perspective

    CERN Document Server

    Jankowski, Andrzej

    2017-01-01

    The book outlines selected projects conducted under the supervision of the author. Moreover, it discusses significant relations between Interactive Granular Computing (IGrC) and numerous dynamically developing scientific domains worldwide, along with features characteristic of the author’s approach to IGrC. The results presented are a continuation and elaboration of various aspects of Wisdom Technology, initiated and developed in cooperation with Professor Andrzej Skowron. Based on the empirical findings from these projects, the author explores the following areas: (a) understanding the causes of the theory and practice gap problem (TPGP) in complex systems engineering (CSE);(b) generalizing computing models of complex adaptive systems (CAS) (in particular, natural computing models) by constructing an interactive granular computing (IGrC) model of networks of interrelated interacting complex granules (c-granules), belonging to a single agent and/or to a group of agents; (c) developing methodologies based ...

  5. Prediction of scour caused by 2D horizontal jets using soft computing techniques

    Directory of Open Access Journals (Sweden)

    Masoud Karbasi

    2017-12-01

    Full Text Available This paper presents application of five soft-computing techniques, artificial neural networks, support vector regression, gene expression programming, grouping method of data handling (GMDH neural network and adaptive-network-based fuzzy inference system, to predict maximum scour hole depth downstream of a sluice gate. The input parameters affecting the scour depth are the sediment size and its gradation, apron length, sluice gate opening, jet Froude number and the tail water depth. Six non-dimensional parameters were achieved to define a functional relationship between the input and output variables. Published data were used from the experimental researches. The results of soft-computing techniques were compared with empirical and regression based equations. The results obtained from the soft-computing techniques are superior to those of empirical and regression based equations. Comparison of soft-computing techniques showed that accuracy of the ANN model is higher than other models (RMSE = 0.869. A new GEP based equation was proposed.

  6. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  7. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  8. Structural model for the interaction of a designed Ankyrin Repeat Protein with the human epidermal growth factor receptor 2.

    Directory of Open Access Journals (Sweden)

    V Chandana Epa

    Full Text Available Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2. HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84-1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions.

  9. Child computer interaction SIG: towards sustainable thinking and being

    NARCIS (Netherlands)

    Read, J.; Hourcade, J.P.; Markopoulos, P.; Iversen, O.S.

    The discipline of Child Computer Interaction (CCI) has been steadily growing and it is now firmly established as a community in its own right, having the annual IDC (Interaction and Design for Children) conference and its own journal and also enjoying its role as a highly recognisable and vibrant

  10. Human Work Interaction Design

    DEFF Research Database (Denmark)

    Lopes, Arminda; Ørngreen, Rikke

    This book constitutes the thoroughly refereed post-conference proceedings of the Third IFIP WG 13.6 Working Conference on Human Work Interaction Design, HWID 2012, held in Copenhagen, Denmark, in December 2012. The 16 revised papers presented were carefully selected for inclusion in this volume...

  11. Non-Linear Interactive Stories in Computer Games

    DEFF Research Database (Denmark)

    Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas

    2003-01-01

    The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...

  12. Interactive computer graphics for bio-stereochemical modelling

    Indian Academy of Sciences (India)

    Proc, Indian Acad. Sci., Vol. 87 A (Chem. Sci.), No. 4, April 1978, pp. 95-113, (e) printed in India. Interactive computer graphics for bio-stereochemical modelling. ROBERT REIN, SHLOMONIR, KAREN HAYDOCK and. ROBERTD MACELROY. Department of Experimental Pathology, Roswell Park Memorial Institute,. 666 Elm ...

  13. Social touch in human–computer interaction

    NARCIS (Netherlands)

    Erp, J.B.F. van; Toet, A.

    2015-01-01

    Touch is our primary non-verbal communication channel for conveying intimate emotions and as such essential for our physical and emotional wellbeing. In our digital age, human social interaction is often mediated. However, even though there is increasing evidence that mediated touch affords

  14. Social touch in human–computer interaction

    NARCIS (Netherlands)

    van Erp, Johannes Bernardus Fransiscus; Toet, Alexander

    Touch is our primary non-verbal communication channel for conveying intimate emotions and as such essential for our physical and emotional wellbeing. In our digital age, human social interaction is often mediated. However, even though there is increasing evidence that mediated touch affords

  15. Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique.

    Science.gov (United States)

    Meyer, Frans J C; Davidson, David B; Jakobus, Ulrich; Stuchly, Maria A

    2003-02-01

    A hybrid finite-element method (FEM)/method of moments (MoM) technique is employed for specific absorption rate (SAR) calculations in a human phantom in the near field of a typical group special mobile (GSM) base-station antenna. The MoM is used to model the metallic surfaces and wires of the base-station antenna, and the FEM is used to model the heterogeneous human phantom. The advantages of each of these frequency domain techniques are, thus, exploited, leading to a highly efficient and robust numerical method for addressing this type of bioelectromagnetic problem. The basic mathematical formulation of the hybrid technique is presented. This is followed by a discussion of important implementation details-in particular, the linear algebra routines for sparse, complex FEM matrices combined with dense MoM matrices. The implementation is validated by comparing results to MoM (surface equivalence principle implementation) and finite-difference time-domain (FDTD) solutions of human exposure problems. A comparison of the computational efficiency of the different techniques is presented. The FEM/MoM implementation is then used for whole-body and critical-organ SAR calculations in a phantom at different positions in the near field of a base-station antenna. This problem cannot, in general, be solved using the MoM or FDTD due to computational limitations. This paper shows that the specific hybrid FEM/MoM implementation is an efficient numerical tool for accurate assessment of human exposure in the near field of base-station antennas.

  16. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    Science.gov (United States)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  17. Advanced computer-based training

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H D; Martin, H D

    1987-05-01

    The paper presents new techniques of computer-based training for personnel of nuclear power plants. Training on full-scope simulators is further increased by use of dedicated computer-based equipment. An interactive communication system runs on a personal computer linked to a video disc; a part-task simulator runs on 32 bit process computers and shows two versions: as functional trainer or as on-line predictor with an interactive learning system (OPAL), which may be well-tailored to a specific nuclear power plant. The common goal of both develoments is the optimization of the cost-benefit ratio for training and equipment.

  18. Advanced computer-based training

    International Nuclear Information System (INIS)

    Fischer, H.D.; Martin, H.D.

    1987-01-01

    The paper presents new techniques of computer-based training for personnel of nuclear power plants. Training on full-scope simulators is further increased by use of dedicated computer-based equipment. An interactive communication system runs on a personal computer linked to a video disc; a part-task simulator runs on 32 bit process computers and shows two versions: as functional trainer or as on-line predictor with an interactive learning system (OPAL), which may be well-tailored to a specific nuclear power plant. The common goal of both develoments is the optimization of the cost-benefit ratio for training and equipment. (orig.) [de

  19. Hybrid Human-Computing Distributed Sense-Making: Extending the SOA Paradigm for Dynamic Adjudication and Optimization of Human and Computer Roles

    Science.gov (United States)

    Rimland, Jeffrey C.

    2013-01-01

    In many evolving systems, inputs can be derived from both human observations and physical sensors. Additionally, many computation and analysis tasks can be performed by either human beings or artificial intelligence (AI) applications. For example, weather prediction, emergency event response, assistive technology for various human sensory and…

  20. Hybrid soft computing systems for electromyographic signals analysis: a review.

    Science.gov (United States)

    Xie, Hong-Bo; Guo, Tianruo; Bai, Siwei; Dokos, Socrates

    2014-02-03

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis.