WorldWideScience

Sample records for human-computer interaction point

  1. From Human-Computer Interaction to Human-Robot Social Interaction

    OpenAIRE

    Toumi, Tarek; Zidani, Abdelmadjid

    2014-01-01

    Human-Robot Social Interaction became one of active research fields in which researchers from different areas propose solutions and directives leading robots to improve their interactions with humans. In this paper we propose to introduce works in both human robot interaction and human computer interaction and to make a bridge between them, i.e. to integrate emotions and capabilities concepts of the robot in human computer model to become adequate for human robot interaction and discuss chall...

  2. Occupational stress in human computer interaction.

    Science.gov (United States)

    Smith, M J; Conway, F T; Karsh, B T

    1999-04-01

    There have been a variety of research approaches that have examined the stress issues related to human computer interaction including laboratory studies, cross-sectional surveys, longitudinal case studies and intervention studies. A critical review of these studies indicates that there are important physiological, biochemical, somatic and psychological indicators of stress that are related to work activities where human computer interaction occurs. Many of the stressors of human computer interaction at work are similar to those stressors that have historically been observed in other automated jobs. These include high workload, high work pressure, diminished job control, inadequate employee training to use new technology, monotonous tasks, por supervisory relations, and fear for job security. New stressors have emerged that can be tied primarily to human computer interaction. These include technology breakdowns, technology slowdowns, and electronic performance monitoring. The effects of the stress of human computer interaction in the workplace are increased physiological arousal; somatic complaints, especially of the musculoskeletal system; mood disturbances, particularly anxiety, fear and anger; and diminished quality of working life, such as reduced job satisfaction. Interventions to reduce the stress of computer technology have included improved technology implementation approaches and increased employee participation in implementation. Recommendations for ways to reduce the stress of human computer interaction at work are presented. These include proper ergonomic conditions, increased organizational support, improved job content, proper workload to decrease work pressure, and enhanced opportunities for social support. A model approach to the design of human computer interaction at work that focuses on the system "balance" is proposed.

  3. Human-computer interaction : Guidelines for web animation

    OpenAIRE

    Galyani Moghaddam, Golnessa; Moballeghi, Mostafa

    2006-01-01

    Human-computer interaction in the large is an interdisciplinary area which attracts researchers, educators, and practioners from many differenf fields. Human-computer interaction studies a human and a machine in communication, it draws from supporting knowledge on both the machine and the human side. This paper is related to the human side of human-computer interaction and focuses on animations. The growing use of animation in Web pages testifies to the increasing ease with which such multim...

  4. Fundamentals of human-computer interaction

    CERN Document Server

    Monk, Andrew F

    1985-01-01

    Fundamentals of Human-Computer Interaction aims to sensitize the systems designer to the problems faced by the user of an interactive system. The book grew out of a course entitled """"The User Interface: Human Factors for Computer-based Systems"""" which has been run annually at the University of York since 1981. This course has been attended primarily by systems managers from the computer industry. The book is organized into three parts. Part One focuses on the user as processor of information with studies on visual perception; extracting information from printed and electronically presented

  5. Language evolution and human-computer interaction

    Science.gov (United States)

    Grudin, Jonathan; Norman, Donald A.

    1991-01-01

    Many of the issues that confront designers of interactive computer systems also appear in natural language evolution. Natural languages and human-computer interfaces share as their primary mission the support of extended 'dialogues' between responsive entities. Because in each case one participant is a human being, some of the pressures operating on natural languages, causing them to evolve in order to better support such dialogue, also operate on human-computer 'languages' or interfaces. This does not necessarily push interfaces in the direction of natural language - since one entity in this dialogue is not a human, this is not to be expected. Nonetheless, by discerning where the pressures that guide natural language evolution also appear in human-computer interaction, we can contribute to the design of computer systems and obtain a new perspective on natural languages.

  6. Modeling multimodal human-computer interaction

    NARCIS (Netherlands)

    Obrenovic, Z.; Starcevic, D.

    2004-01-01

    Incorporating the well-known Unified Modeling Language into a generic modeling framework makes research on multimodal human-computer interaction accessible to a wide range off software engineers. Multimodal interaction is part of everyday human discourse: We speak, move, gesture, and shift our gaze

  7. Measuring Multimodal Synchrony for Human-Computer Interaction

    NARCIS (Netherlands)

    Reidsma, Dennis; Nijholt, Antinus; Tschacher, Wolfgang; Ramseyer, Fabian; Sourin, A.

    2010-01-01

    Nonverbal synchrony is an important and natural element in human-human interaction. It can also play various roles in human-computer interaction. In particular this is the case in the interaction between humans and the virtual humans that inhabit our cyberworlds. Virtual humans need to adapt their

  8. Human-computer interaction and management information systems

    CERN Document Server

    Galletta, Dennis F

    2014-01-01

    ""Human-Computer Interaction and Management Information Systems: Applications"" offers state-of-the-art research by a distinguished set of authors who span the MIS and HCI fields. The original chapters provide authoritative commentaries and in-depth descriptions of research programs that will guide 21st century scholars, graduate students, and industry professionals. Human-Computer Interaction (or Human Factors) in MIS is concerned with the ways humans interact with information, technologies, and tasks, especially in business, managerial, organizational, and cultural contexts. It is distinctiv

  9. Humans, computers and wizards human (simulated) computer interaction

    CERN Document Server

    Fraser, Norman; McGlashan, Scott; Wooffitt, Robin

    2013-01-01

    Using data taken from a major European Union funded project on speech understanding, the SunDial project, this book considers current perspectives on human computer interaction and argues for the value of an approach taken from sociology which is based on conversation analysis.

  10. Real-time non-invasive eyetracking and gaze-point determination for human-computer interaction and biomedicine

    Science.gov (United States)

    Talukder, Ashit; Morookian, John-Michael; Monacos, S.; Lam, R.; Lebaw, C.; Bond, A.

    2004-01-01

    Eyetracking is one of the latest technologies that has shown potential in several areas including human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological problems in individuals.

  11. Minimal mobile human computer interaction

    NARCIS (Netherlands)

    el Ali, A.

    2013-01-01

    In the last 20 years, the widespread adoption of personal, mobile computing devices in everyday life, has allowed entry into a new technological era in Human Computer Interaction (HCI). The constant change of the physical and social context in a user's situation made possible by the portability of

  12. The Past, Present and Future of Human Computer Interaction

    KAUST Repository

    Churchill, Elizabeth

    2018-01-16

    Human Computer Interaction (HCI) focuses on how people interact with, and are transformed by computation. Our current technology landscape is changing rapidly. Interactive applications, devices and services are increasingly becoming embedded into our environments. From our homes to the urban and rural spaces, we traverse everyday. We are increasingly able toヨoften required toヨmanage and configure multiple, interconnected devices and program their interactions. Artificial intelligence (AI) techniques are being used to create dynamic services that learn about us and others, that make conclusions about our intents and affiliations, and that mould our digital interactions based in predictions about our actions and needs, nudging us toward certain behaviors. Computation is also increasingly embedded into our bodies. Understanding human interactions in the everyday digital and physical context. During this lecture, Elizabeth Churchill -Director of User Experience at Google- will talk about how an emerging landscape invites us to revisit old methods and tactics for understanding how people interact with computers and computation, and how it challenges us to think about new methods and frameworks for understanding the future of human-centered computation.

  13. Proxemics in Human-Computer Interaction

    OpenAIRE

    Greenberg, Saul; Honbaek, Kasper; Quigley, Aaron; Reiterer, Harald; Rädle, Roman

    2014-01-01

    In 1966, anthropologist Edward Hall coined the term "proxemics." Proxemics is an area of study that identifies the culturally dependent ways in which people use interpersonal distance to understand and mediate their interactions with others. Recent research has demonstrated the use of proxemics in human-computer interaction (HCI) for supporting users' explicit and implicit interactions in a range of uses, including remote office collaboration, home entertainment, and games. One promise of pro...

  14. The epistemology and ontology of human-computer interaction

    NARCIS (Netherlands)

    Brey, Philip A.E.

    2005-01-01

    This paper analyzes epistemological and ontological dimensions of Human-Computer Interaction (HCI) through an analysis of the functions of computer systems in relation to their users. It is argued that the primary relation between humans and computer systems has historically been epistemic:

  15. Accident sequence analysis of human-computer interface design

    International Nuclear Information System (INIS)

    Fan, C.-F.; Chen, W.-H.

    2000-01-01

    It is important to predict potential accident sequences of human-computer interaction in a safety-critical computing system so that vulnerable points can be disclosed and removed. We address this issue by proposing a Multi-Context human-computer interaction Model along with its analysis techniques, an Augmented Fault Tree Analysis, and a Concurrent Event Tree Analysis. The proposed augmented fault tree can identify the potential weak points in software design that may induce unintended software functions or erroneous human procedures. The concurrent event tree can enumerate possible accident sequences due to these weak points

  16. Modeling molecular boiling points using computed interaction energies.

    Science.gov (United States)

    Peterangelo, Stephen C; Seybold, Paul G

    2017-12-20

    The noncovalent van der Waals interactions between molecules in liquids are typically described in textbooks as occurring between the total molecular dipoles (permanent, induced, or transient) of the molecules. This notion was tested by examining the boiling points of 67 halogenated hydrocarbon liquids using quantum chemically calculated molecular dipole moments, ionization potentials, and polarizabilities obtained from semi-empirical (AM1 and PM3) and ab initio Hartree-Fock [HF 6-31G(d), HF 6-311G(d,p)], and density functional theory [B3LYP/6-311G(d,p)] methods. The calculated interaction energies and an empirical measure of hydrogen bonding were employed to model the boiling points of the halocarbons. It was found that only terms related to London dispersion energies and hydrogen bonding proved significant in the regression analyses, and the performances of the models generally improved at higher levels of quantum chemical computation. An empirical estimate for the molecular polarizabilities was also tested, and the best models for the boiling points were obtained using either this empirical polarizability itself or the polarizabilities calculated at the B3LYP/6-311G(d,p) level, along with the hydrogen-bonding parameter. The results suggest that the cohesive forces are more appropriately described as resulting from highly localized interactions rather than interactions between the global molecular dipoles.

  17. Human-Computer Interaction The Agency Perspective

    CERN Document Server

    Oliveira, José

    2012-01-01

    Agent-centric theories, approaches and technologies are contributing to enrich interactions between users and computers. This book aims at highlighting the influence of the agency perspective in Human-Computer Interaction through a careful selection of research contributions. Split into five sections; Users as Agents, Agents and Accessibility, Agents and Interactions, Agent-centric Paradigms and Approaches, and Collective Agents, the book covers a wealth of novel, original and fully updated material, offering:   ü  To provide a coherent, in depth, and timely material on the agency perspective in HCI ü  To offer an authoritative treatment of the subject matter presented by carefully selected authors ü  To offer a balanced and broad coverage of the subject area, including, human, organizational, social, as well as technological concerns. ü  To offer a hands-on-experience by covering representative case studies and offering essential design guidelines   The book will appeal to a broad audience of resea...

  18. Benefits of Subliminal Feedback Loops in Human-Computer Interaction

    OpenAIRE

    Walter Ritter

    2011-01-01

    A lot of efforts have been directed to enriching human-computer interaction to make the user experience more pleasing or efficient. In this paper, we briefly present work in the fields of subliminal perception and affective computing, before we outline a new approach to add analog communication channels to the human-computer interaction experience. In this approach, in addition to symbolic predefined mappings of input to output, a subliminal feedback loop is used that provides feedback in evo...

  19. Human-computer systems interaction backgrounds and applications 3

    CERN Document Server

    Kulikowski, Juliusz; Mroczek, Teresa; Wtorek, Jerzy

    2014-01-01

    This book contains an interesting and state-of the art collection of papers on the recent progress in Human-Computer System Interaction (H-CSI). It contributes the profound description of the actual status of the H-CSI field and also provides a solid base for further development and research in the discussed area. The contents of the book are divided into the following parts: I. General human-system interaction problems; II. Health monitoring and disabled people helping systems; and III. Various information processing systems. This book is intended for a wide audience of readers who are not necessarily experts in computer science, machine learning or knowledge engineering, but are interested in Human-Computer Systems Interaction. The level of particular papers and specific spreading-out into particular parts is a reason why this volume makes fascinating reading. This gives the reader a much deeper insight than he/she might glean from research papers or talks at conferences. It touches on all deep issues that ...

  20. Human-Computer Interaction in Smart Environments

    Science.gov (United States)

    Paravati, Gianluca; Gatteschi, Valentina

    2015-01-01

    Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.

  1. Introduction to human-computer interaction

    CERN Document Server

    Booth, Paul

    2014-01-01

    Originally published in 1989 this title provided a comprehensive and authoritative introduction to the burgeoning discipline of human-computer interaction for students, academics, and those from industry who wished to know more about the subject. Assuming very little knowledge, the book provides an overview of the diverse research areas that were at the time only gradually building into a coherent and well-structured field. It aims to explain the underlying causes of the cognitive, social and organizational problems typically encountered when computer systems are introduced. It is clear and co

  2. Human-Computer Interaction in Smart Environments

    Directory of Open Access Journals (Sweden)

    Gianluca Paravati

    2015-08-01

    Full Text Available Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.

  3. Multimodal Information Presentation for High-Load Human Computer Interaction

    NARCIS (Netherlands)

    Cao, Y.

    2011-01-01

    This dissertation addresses multimodal information presentation in human computer interaction. Information presentation refers to the manner in which computer systems/interfaces present information to human users. More specifically, the focus of our work is not on which information to present, but

  4. Humor in Human-Computer Interaction : A Short Survey

    NARCIS (Netherlands)

    Nijholt, Anton; Niculescu, Andreea; Valitutti, Alessandro; Banchs, Rafael E.; Joshi, Anirudha; Balkrishan, Devanuj K.; Dalvi, Girish; Winckler, Marco

    2017-01-01

    This paper is a short survey on humor in human-computer interaction. It describes how humor is designed and interacted with in social media, virtual agents, social robots and smart environments. Benefits and future use of humor in interactions with artificial entities are discussed based on

  5. Mobile human-computer interaction perspective on mobile learning

    CSIR Research Space (South Africa)

    Botha, Adèle

    2010-10-01

    Full Text Available Applying a Mobile Human Computer Interaction (MHCI) view to the domain of education using Mobile Learning (Mlearning), the research outlines its understanding of the influences and effects of different interactions on the use of mobile technology...

  6. Human-Computer Interaction and Information Management Research Needs

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — In a visionary future, Human-Computer Interaction HCI and Information Management IM have the potential to enable humans to better manage their lives through the use...

  7. Multi-step EMG Classification Algorithm for Human-Computer Interaction

    Science.gov (United States)

    Ren, Peng; Barreto, Armando; Adjouadi, Malek

    A three-electrode human-computer interaction system, based on digital processing of the Electromyogram (EMG) signal, is presented. This system can effectively help disabled individuals paralyzed from the neck down to interact with computers or communicate with people through computers using point-and-click graphic interfaces. The three electrodes are placed on the right frontalis, the left temporalis and the right temporalis muscles in the head, respectively. The signal processing algorithm used translates the EMG signals during five kinds of facial movements (left jaw clenching, right jaw clenching, eyebrows up, eyebrows down, simultaneous left & right jaw clenching) into five corresponding types of cursor movements (left, right, up, down and left-click), to provide basic mouse control. The classification strategy is based on three principles: the EMG energy of one channel is typically larger than the others during one specific muscle contraction; the spectral characteristics of the EMG signals produced by the frontalis and temporalis muscles during different movements are different; the EMG signals from adjacent channels typically have correlated energy profiles. The algorithm is evaluated on 20 pre-recorded EMG signal sets, using Matlab simulations. The results show that this method provides improvements and is more robust than other previous approaches.

  8. Human-computer interaction handbook fundamentals, evolving technologies and emerging applications

    CERN Document Server

    Sears, Andrew

    2007-01-01

    This second edition of The Human-Computer Interaction Handbook provides an updated, comprehensive overview of the most important research in the field, including insights that are directly applicable throughout the process of developing effective interactive information technologies. It features cutting-edge advances to the scientific knowledge base, as well as visionary perspectives and developments that fundamentally transform the way in which researchers and practitioners view the discipline. As the seminal volume of HCI research and practice, The Human-Computer Interaction Handbook feature

  9. Choice of Human-Computer Interaction Mode in Stroke Rehabilitation.

    Science.gov (United States)

    Mousavi Hondori, Hossein; Khademi, Maryam; Dodakian, Lucy; McKenzie, Alison; Lopes, Cristina V; Cramer, Steven C

    2016-03-01

    Advances in technology are providing new forms of human-computer interaction. The current study examined one form of human-computer interaction, augmented reality (AR), whereby subjects train in the real-world workspace with virtual objects projected by the computer. Motor performances were compared with those obtained while subjects used a traditional human-computer interaction, that is, a personal computer (PC) with a mouse. Patients used goal-directed arm movements to play AR and PC versions of the Fruit Ninja video game. The 2 versions required the same arm movements to control the game but had different cognitive demands. With AR, the game was projected onto the desktop, where subjects viewed the game plus their arm movements simultaneously, in the same visual coordinate space. In the PC version, subjects used the same arm movements but viewed the game by looking up at a computer monitor. Among 18 patients with chronic hemiparesis after stroke, the AR game was associated with 21% higher game scores (P = .0001), 19% faster reaching times (P = .0001), and 15% less movement variability (P = .0068), as compared to the PC game. Correlations between game score and arm motor status were stronger with the AR version. Motor performances during the AR game were superior to those during the PC game. This result is due in part to the greater cognitive demands imposed by the PC game, a feature problematic for some patients but clinically useful for others. Mode of human-computer interface influences rehabilitation therapy demands and can be individualized for patients. © The Author(s) 2015.

  10. Applying systemic-structural activity theory to design of human-computer interaction systems

    CERN Document Server

    Bedny, Gregory Z; Bedny, Inna

    2015-01-01

    Human-Computer Interaction (HCI) is an interdisciplinary field that has gained recognition as an important field in ergonomics. HCI draws on ideas and theoretical concepts from computer science, psychology, industrial design, and other fields. Human-Computer Interaction is no longer limited to trained software users. Today people interact with various devices such as mobile phones, tablets, and laptops. How can you make such interaction user friendly, even when user proficiency levels vary? This book explores methods for assessing the psychological complexity of computer-based tasks. It also p

  11. Gaze-and-brain-controlled interfaces for human-computer and human-robot interaction

    Directory of Open Access Journals (Sweden)

    Shishkin S. L.

    2017-09-01

    Full Text Available Background. Human-machine interaction technology has greatly evolved during the last decades, but manual and speech modalities remain single output channels with their typical constraints imposed by the motor system’s information transfer limits. Will brain-computer interfaces (BCIs and gaze-based control be able to convey human commands or even intentions to machines in the near future? We provide an overview of basic approaches in this new area of applied cognitive research. Objective. We test the hypothesis that the use of communication paradigms and a combination of eye tracking with unobtrusive forms of registering brain activity can improve human-machine interaction. Methods and Results. Three groups of ongoing experiments at the Kurchatov Institute are reported. First, we discuss the communicative nature of human-robot interaction, and approaches to building a more e cient technology. Specifically, “communicative” patterns of interaction can be based on joint attention paradigms from developmental psychology, including a mutual “eye-to-eye” exchange of looks between human and robot. Further, we provide an example of “eye mouse” superiority over the computer mouse, here in emulating the task of selecting a moving robot from a swarm. Finally, we demonstrate a passive, noninvasive BCI that uses EEG correlates of expectation. This may become an important lter to separate intentional gaze dwells from non-intentional ones. Conclusion. The current noninvasive BCIs are not well suited for human-robot interaction, and their performance, when they are employed by healthy users, is critically dependent on the impact of the gaze on selection of spatial locations. The new approaches discussed show a high potential for creating alternative output pathways for the human brain. When support from passive BCIs becomes mature, the hybrid technology of the eye-brain-computer (EBCI interface will have a chance to enable natural, fluent, and the

  12. Virtual reality/ augmented reality technology : the next chapter of human-computer interaction

    OpenAIRE

    Huang, Xing

    2015-01-01

    No matter how many different size and shape the computer has, the basic components of computers are still the same. If we use the user perspective to look for the development of computer history, we can surprisingly find that it is the input output device that leads the development of the industry development, in one word, human-computer interaction changes the development of computer history. Human computer interaction has been gone through three stages, the first stage relies on the inpu...

  13. Proceedings of the Third International Conference on Intelligent Human Computer Interaction

    CERN Document Server

    Pokorný, Jaroslav; Snášel, Václav; Abraham, Ajith

    2013-01-01

    The Third International Conference on Intelligent Human Computer Interaction 2011 (IHCI 2011) was held at Charles University, Prague, Czech Republic from August 29 - August 31, 2011. This conference was third in the series, following IHCI 2009 and IHCI 2010 held in January at IIIT Allahabad, India. Human computer interaction is a fast growing research area and an attractive subject of interest for both academia and industry. There are many interesting and challenging topics that need to be researched and discussed. This book aims to provide excellent opportunities for the dissemination of interesting new research and discussion about presented topics. It can be useful for researchers working on various aspects of human computer interaction. Topics covered in this book include user interface and interaction, theoretical background and applications of HCI and also data mining and knowledge discovery as a support of HCI applications.

  14. Human-Computer Interaction, Tourism and Cultural Heritage

    Science.gov (United States)

    Cipolla Ficarra, Francisco V.

    We present a state of the art of the human-computer interaction aimed at tourism and cultural heritage in some cities of the European Mediterranean. In the work an analysis is made of the main problems deriving from training understood as business and which can derail the continuous growth of the HCI, the new technologies and tourism industry. Through a semiotic and epistemological study the current mistakes in the context of the interrelations of the formal and factual sciences will be detected and also the human factors that have an influence on the professionals devoted to the development of interactive systems in order to safeguard and boost cultural heritage.

  15. How should Fitts' Law be applied to human-computer interaction?

    Science.gov (United States)

    Gillan, D. J.; Holden, K.; Adam, S.; Rudisill, M.; Magee, L.

    1992-01-01

    The paper challenges the notion that any Fitts' Law model can be applied generally to human-computer interaction, and proposes instead that applying Fitts' Law requires knowledge of the users' sequence of movements, direction of movement, and typical movement amplitudes as well as target sizes. Two experiments examined a text selection task with sequences of controlled movements (point-click and point-drag). For the point-click sequence, a Fitts' Law model that used the diagonal across the text object in the direction of pointing (rather than the horizontal extent of the text object) as the target size provided the best fit for the pointing time data, whereas for the point-drag sequence, a Fitts' Law model that used the vertical size of the text object as the target size gave the best fit. Dragging times were fitted well by Fitts' Law models that used either the vertical or horizontal size of the terminal character in the text object. Additional results of note were that pointing in the point-click sequence was consistently faster than in the point-drag sequence, and that pointing in either sequence was consistently faster than dragging. The discussion centres around the need to define task characteristics before applying Fitts' Law to an interface design or analysis, analyses of pointing and of dragging, and implications for interface design.

  16. The Human-Computer Interaction of Cross-Cultural Gaming Strategy

    Science.gov (United States)

    Chakraborty, Joyram; Norcio, Anthony F.; Van Der Veer, Jacob J.; Andre, Charles F.; Miller, Zachary; Regelsberger, Alexander

    2015-01-01

    This article explores the cultural dimensions of the human-computer interaction that underlies gaming strategies. The article is a desktop study of existing literature and is organized into five sections. The first examines the cultural aspects of knowledge processing. The social constructs technology interaction is discussed. Following this, the…

  17. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    Science.gov (United States)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  18. Integrated multimodal human-computer interface and augmented reality for interactive display applications

    Science.gov (United States)

    Vassiliou, Marius S.; Sundareswaran, Venkataraman; Chen, S.; Behringer, Reinhold; Tam, Clement K.; Chan, M.; Bangayan, Phil T.; McGee, Joshua H.

    2000-08-01

    We describe new systems for improved integrated multimodal human-computer interaction and augmented reality for a diverse array of applications, including future advanced cockpits, tactical operations centers, and others. We have developed an integrated display system featuring: speech recognition of multiple concurrent users equipped with both standard air- coupled microphones and novel throat-coupled sensors (developed at Army Research Labs for increased noise immunity); lip reading for improving speech recognition accuracy in noisy environments, three-dimensional spatialized audio for improved display of warnings, alerts, and other information; wireless, coordinated handheld-PC control of a large display; real-time display of data and inferences from wireless integrated networked sensors with on-board signal processing and discrimination; gesture control with disambiguated point-and-speak capability; head- and eye- tracking coupled with speech recognition for 'look-and-speak' interaction; and integrated tetherless augmented reality on a wearable computer. The various interaction modalities (speech recognition, 3D audio, eyetracking, etc.) are implemented a 'modality servers' in an Internet-based client-server architecture. Each modality server encapsulates and exposes commercial and research software packages, presenting a socket network interface that is abstracted to a high-level interface, minimizing both vendor dependencies and required changes on the client side as the server's technology improves.

  19. Design Science in Human-Computer Interaction: A Model and Three Examples

    Science.gov (United States)

    Prestopnik, Nathan R.

    2013-01-01

    Humanity has entered an era where computing technology is virtually ubiquitous. From websites and mobile devices to computers embedded in appliances on our kitchen counters and automobiles parked in our driveways, information and communication technologies (ICTs) and IT artifacts are fundamentally changing the ways we interact with our world.…

  20. Implementations of the CC'01 Human-Computer Interaction Guidelines Using Bloom's Taxonomy

    Science.gov (United States)

    Manaris, Bill; Wainer, Michael; Kirkpatrick, Arthur E.; Stalvey, RoxAnn H.; Shannon, Christine; Leventhal, Laura; Barnes, Julie; Wright, John; Schafer, J. Ben; Sanders, Dean

    2007-01-01

    In today's technology-laden society human-computer interaction (HCI) is an important knowledge area for computer scientists and software engineers. This paper surveys existing approaches to incorporate HCI into computer science (CS) and such related issues as the perceived gap between the interests of the HCI community and the needs of CS…

  1. The Study on Human-Computer Interaction Design Based on the Users’ Subconscious Behavior

    Science.gov (United States)

    Li, Lingyuan

    2017-09-01

    Human-computer interaction is human-centered. An excellent interaction design should focus on the study of user experience, which greatly comes from the consistence between design and human behavioral habit. However, users’ behavioral habits often result from subconsciousness. Therefore, it is smart to utilize users’ subconscious behavior to achieve design's intention and maximize the value of products’ functions, which gradually becomes a new trend in this field.

  2. Eye Tracking Based Control System for Natural Human-Computer Interaction

    Directory of Open Access Journals (Sweden)

    Xuebai Zhang

    2017-01-01

    Full Text Available Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user’s eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.

  3. Eye Tracking Based Control System for Natural Human-Computer Interaction.

    Science.gov (United States)

    Zhang, Xuebai; Liu, Xiaolong; Yuan, Shyan-Ming; Lin, Shu-Fan

    2017-01-01

    Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.

  4. Engageability: a new sub-principle of the learnability principle in human-computer interaction

    Directory of Open Access Journals (Sweden)

    B Chimbo

    2011-12-01

    Full Text Available The learnability principle relates to improving the usability of software, as well as users’ performance and productivity. A gap has been identified as the current definition of the principle does not distinguish between users of different ages. To determine the extent of the gap, this article compares the ways in which two user groups, adults and children, learn how to use an unfamiliar software application. In doing this, we bring together the research areas of human-computer interaction (HCI, adult and child learning, learning theories and strategies, usability evaluation and interaction design. A literature survey conducted on learnability and learning processes considered the meaning of learnability of software applications across generations. In an empirical investigation, users aged from 9 to 12 and from 35 to 50 were observed in a usability laboratory while learning to use educational software applications. Insights that emerged from data analysis showed different tactics and approaches that children and adults use when learning unfamiliar software. Eye tracking data was also recorded. Findings indicated that subtle re- interpretation of the learnability principle and its associated sub-principles was required. An additional sub-principle, namely engageability was proposed to incorporate aspects of learnability that are not covered by the existing sub-principles. Our re-interpretation of the learnability principle and the resulting design recommendations should help designers to fulfill the varying needs of different-aged users, and improve the learnability of their designs. Keywords: Child computer interaction, Design principles, Eye tracking, Generational differences, human-computer interaction, Learning theories, Learnability, Engageability, Software applications, Uasability Disciplines: Human-Computer Interaction (HCI Studies, Computer science, Observational Studies

  5. Cooperation in human-computer communication

    OpenAIRE

    Kronenberg, Susanne

    2000-01-01

    The goal of this thesis is to simulate cooperation in human-computer communication to model the communicative interaction process of agents in natural dialogs in order to provide advanced human-computer interaction in that coherence is maintained between contributions of both agents, i.e. the human user and the computer. This thesis contributes to certain aspects of understanding and generation and their interaction in the German language. In spontaneous dialogs agents cooperate by the pro...

  6. Stereo Vision for Unrestricted Human-Computer Interaction

    OpenAIRE

    Eldridge, Ross; Rudolph, Heiko

    2008-01-01

    Human computer interfaces have come long way in recent years, but the goal of a computer interpreting unrestricted human movement remains elusive. The use of stereo vision in this field has enabled the development of systems that begin to approach this goal. As computer technology advances we come ever closer to a system that can react to the ambiguities of human movement in real-time. In the foreseeable future stereo computer vision is not likely to replace the keyboard or mouse. There is at...

  7. Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments

    Directory of Open Access Journals (Sweden)

    Alonso-Valerdi Luz María

    2017-01-01

    Full Text Available Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI. Those cognitive processes take place while a user navigates and explores a virtual environment (VE and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI. BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1 set out working environmental conditions, (2 maximize the efficiency of BCI control panels, (3 implement navigation systems based not only on user intentions but also on user emotions, and (4 regulate user mental state to increase the differentiation between control and noncontrol modalities.

  8. Cross-cultural human-computer interaction and user experience design a semiotic perspective

    CERN Document Server

    Brejcha, Jan

    2015-01-01

    This book describes patterns of language and culture in human-computer interaction (HCI). Through numerous examples, it shows why these patterns matter and how to exploit them to design a better user experience (UX) with computer systems. It provides scientific information on the theoretical and practical areas of the interaction and communication design for research experts and industry practitioners and covers the latest research in semiotics and cultural studies, bringing a set of tools and methods to benefit the process of designing with the cultural background in mind.

  9. Human computer interaction using hand gestures

    CERN Document Server

    Premaratne, Prashan

    2014-01-01

    Human computer interaction (HCI) plays a vital role in bridging the 'Digital Divide', bringing people closer to consumer electronics control in the 'lounge'. Keyboards and mouse or remotes do alienate old and new generations alike from control interfaces. Hand Gesture Recognition systems bring hope of connecting people with machines in a natural way. This will lead to consumers being able to use their hands naturally to communicate with any electronic equipment in their 'lounge.' This monograph will include the state of the art hand gesture recognition approaches and how they evolved from their inception. The author would also detail his research in this area for the past 8 years and how the future might turn out to be using HCI. This monograph will serve as a valuable guide for researchers (who would endeavour into) in the world of HCI.

  10. USING RESEARCH METHODS IN HUMAN COMPUTER INTERACTION TO DESIGN TECHNOLOGY FOR RESILIENCE

    OpenAIRE

    Lopes, Arminda Guerra

    2016-01-01

    ABSTRACT Research in human computer interaction (HCI) covers both technological and human behavioural concerns. As a consequence, the contributions made in HCI research tend to be aware to either engineering or the social sciences. In HCI the purpose of practical research contributions is to reveal unknown insights about human behaviour and its relationship to technology. Practical research methods normally used in HCI include formal experiments, field experiments, field studies, interviews, ...

  11. Computationally derived points of fragility of a human cascade are consistent with current therapeutic strategies.

    Directory of Open Access Journals (Sweden)

    Deyan Luan

    2007-07-01

    Full Text Available The role that mechanistic mathematical modeling and systems biology will play in molecular medicine and clinical development remains uncertain. In this study, mathematical modeling and sensitivity analysis were used to explore the working hypothesis that mechanistic models of human cascades, despite model uncertainty, can be computationally screened for points of fragility, and that these sensitive mechanisms could serve as therapeutic targets. We tested our working hypothesis by screening a model of the well-studied coagulation cascade, developed and validated from literature. The predicted sensitive mechanisms were then compared with the treatment literature. The model, composed of 92 proteins and 148 protein-protein interactions, was validated using 21 published datasets generated from two different quiescent in vitro coagulation models. Simulated platelet activation and thrombin generation profiles in the presence and absence of natural anticoagulants were consistent with measured values, with a mean correlation of 0.87 across all trials. Overall state sensitivity coefficients, which measure the robustness or fragility of a given mechanism, were calculated using a Monte Carlo strategy. In the absence of anticoagulants, fluid and surface phase factor X/activated factor X (fX/FXa activity and thrombin-mediated platelet activation were found to be fragile, while fIX/FIXa and fVIII/FVIIIa activation and activity were robust. Both anti-fX/FXa and direct thrombin inhibitors are important classes of anticoagulants; for example, anti-fX/FXa inhibitors have FDA approval for the prevention of venous thromboembolism following surgical intervention and as an initial treatment for deep venous thrombosis and pulmonary embolism. Both in vitro and in vivo experimental evidence is reviewed supporting the prediction that fIX/FIXa activity is robust. When taken together, these results support our working hypothesis that computationally derived points of

  12. Child-Computer Interaction: ICMI 2012 special session

    NARCIS (Netherlands)

    Nijholt, Antinus; Morency, L.P.; Bohus, L.; Aghajan, H.; Nijholt, Antinus; Cassell, J.; Epps, J.

    2012-01-01

    This is a short introduction to the special session on child computer interaction at the International Conference on Multimodal Interaction 2012 (ICMI 2012). In human-computer interaction users have become participants in the design process. This is not different for child computer interaction

  13. Reciprocity in computer-human interaction: source-based, norm-based, and affect-based explanations.

    Science.gov (United States)

    Lee, Seungcheol Austin; Liang, Yuhua Jake

    2015-04-01

    Individuals often apply social rules when they interact with computers, and this is known as the Computers Are Social Actors (CASA) effect. Following previous work, one approach to understand the mechanism responsible for CASA is to utilize computer agents and have the agents attempt to gain human compliance (e.g., completing a pattern recognition task). The current study focuses on three key factors frequently cited to influence traditional notions of compliance: evaluations toward the source (competence and warmth), normative influence (reciprocity), and affective influence (mood). Structural equation modeling assessed the effects of these factors on human compliance with computer request. The final model shows that norm-based influence (reciprocity) increased the likelihood of compliance, while evaluations toward the computer agent did not significantly influence compliance.

  14. Enhancing Human-Computer Interaction Design Education: Teaching Affordance Design for Emerging Mobile Devices

    Science.gov (United States)

    Faiola, Anthony; Matei, Sorin Adam

    2010-01-01

    The evolution of human-computer interaction design (HCID) over the last 20 years suggests that there is a growing need for educational scholars to consider new and more applicable theoretical models of interactive product design. The authors suggest that such paradigms would call for an approach that would equip HCID students with a better…

  15. Affective Computing used in an imaging interaction paradigm

    DEFF Research Database (Denmark)

    Schultz, Nette

    2003-01-01

    This paper combines affective computing with an imaging interaction paradigm. An imaging interaction paradigm means that human and computer communicates primarily by images. Images evoke emotions in humans, so the computer must be able to behave emotionally intelligent. An affective image selection...

  16. Determine point-to-point networking interactions using regular expressions

    Directory of Open Access Journals (Sweden)

    Konstantin S. Deev

    2015-06-01

    Full Text Available As Internet growth and becoming more popular, the number of concurrent data flows start to increasing, which makes sense in bandwidth requested. Providers and corporate customers need ability to identify point-to-point interactions. The best is to use special software and hardware implementations that distribute the load in the internals of the complex, using the principles and approaches, in particular, described in this paper. This paper represent the principles of building system, which searches for a regular expression match using computing on graphics adapter in server station. A significant computing power and capability to parallel execution on modern graphic processor allows inspection of large amounts of data through sets of rules. Using the specified characteristics can lead to increased computing power in 30…40 times compared to the same setups on the central processing unit. The potential increase in bandwidth capacity could be used in systems that provide packet analysis, firewalls and network anomaly detectors.

  17. HCI^2 Workbench: A Development Tool for Multimodal Human-Computer Interaction Systems

    NARCIS (Netherlands)

    Shen, Jie; Wenzhe, Shi; Pantic, Maja

    In this paper, we present a novel software tool designed and implemented to simplify the development process of Multimodal Human-Computer Interaction (MHCI) systems. This tool, which is called the HCI^2 Workbench, exploits a Publish / Subscribe (P/S) architecture [13] [14] to facilitate efficient

  18. Human-Computer Interaction and Sociological Insight: A Theoretical Examination and Experiment in Building Affinity in Small Groups

    Science.gov (United States)

    Oren, Michael Anthony

    2011-01-01

    The juxtaposition of classic sociological theory and the, relatively, young discipline of human-computer interaction (HCI) serves as a powerful mechanism for both exploring the theoretical impacts of technology on human interactions as well as the application of technological systems to moderate interactions. It is the intent of this dissertation…

  19. Proceedings of the topical meeting on advances in human factors research on man/computer interactions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book discusses the following topics: expert systems and knowledge engineering-I; verification and validation of software; methods for modeling UMAN/computer performance; MAN/computer interaction problems in producing procedures -1-2; progress and problems with automation-1-2; experience with electronic presentation of procedures-2; intelligent displays and monitors; modeling user/computer interface; and computer-based human decision-making aids

  20. Une approche pragmatique cognitive de l'interaction personne/système informatisé A Cognitive Pragmatic Approach of Human/Computer Interaction

    Directory of Open Access Journals (Sweden)

    Madeleine Saint-Pierre

    1998-06-01

    Full Text Available Dans cet article, nous proposons une approche inférentielle de l'interaction humain/ordinateur. C'est par la prise en compte de l'activité cognitive de l'utilisateur pendant son travail avec un système que nous voulons comprendre ce type d'interaction. Ceci mènera à une véritable évaluation des interfaces/utilisateurs et pourra servir de guide pour des interfaces en développement. Nos analyses décrivent le processus inférentiel impliqué dans le contexte dynamique d'exécution de tâche, grâce à une catégorisation de l'activité cognitive issue des verbalisations recueillies auprès d'utilisateurs qui " pensent à haute voix " en travaillant. Nous présentons des instruments méthodologiques mis au point dans notre recherche pour l'analyses et la catégorisation des protocoles. Les résultats sont interprétés dans le cadre de la théorie de la pertinence de Sperber et Wilson (1995 en termes d'effort cognitif dans le traitement des objets (linguistique, iconique, graphique... apparaissant à l'écran et d'effet cognitif de ces derniers. Cette approche est généralisable à tout autre contexte d'interaction humain/ordinateur comme, par exemple, le télé-apprentissage.This article proposes an inferential approach for the study of human/computer interaction. It is by taking into account the user's cognitive activity while working at a computer that we propose to understand this interaction. This approach leads to a real user/interface evaluation and, hopefully, will serve as guidelines for the design of new interfaces. Our analysis describe the inferential process involved in the dynamics of task performance. The cognitive activity of the user is grasped by the mean of a " thinking aloud " method through which the user is asked to verbalize while working at the computer. Tools developped by our research team for the categorization of the verbal protocols are presented. The results are interpreted within the relevance theory

  1. Human-Robot Interaction and Human Self-Realization

    DEFF Research Database (Denmark)

    Nørskov, Marco

    2014-01-01

    is to test the basis for this type of discrimination when it comes to human-robot interaction. Furthermore, the paper will take Heidegger's warning concerning technology as a vantage point and explore the possibility of human-robot interaction forming a praxis that might help humans to be with robots beyond...

  2. SnapAnatomy, a computer-based interactive tool for independent learning of human anatomy.

    Science.gov (United States)

    Yip, George W; Rajendran, Kanagasuntheram

    2008-06-01

    Computer-aided instruction materials are becoming increasing popular in medical education and particularly in the teaching of human anatomy. This paper describes SnapAnatomy, a new interactive program that the authors designed for independent learning of anatomy. SnapAnatomy is primarily tailored for the beginner student to encourage the learning of anatomy by developing a three-dimensional visualization of human structure that is essential to applications in clinical practice and the understanding of function. The program allows the student to take apart and to accurately put together body components in an interactive, self-paced and variable manner to achieve the learning outcome.

  3. Evidence Report: Risk of Inadequate Human-Computer Interaction

    Science.gov (United States)

    Holden, Kritina; Ezer, Neta; Vos, Gordon

    2013-01-01

    Human-computer interaction (HCI) encompasses all the methods by which humans and computer-based systems communicate, share information, and accomplish tasks. When HCI is poorly designed, crews have difficulty entering, navigating, accessing, and understanding information. HCI has rarely been studied in an operational spaceflight context, and detailed performance data that would support evaluation of HCI have not been collected; thus, we draw much of our evidence from post-spaceflight crew comments, and from other safety-critical domains like ground-based power plants, and aviation. Additionally, there is a concern that any potential or real issues to date may have been masked by the fact that crews have near constant access to ground controllers, who monitor for errors, correct mistakes, and provide additional information needed to complete tasks. We do not know what types of HCI issues might arise without this "safety net". Exploration missions will test this concern, as crews may be operating autonomously due to communication delays and blackouts. Crew survival will be heavily dependent on available electronic information for just-in-time training, procedure execution, and vehicle or system maintenance; hence, the criticality of the Risk of Inadequate HCI. Future work must focus on identifying the most important contributing risk factors, evaluating their contribution to the overall risk, and developing appropriate mitigations. The Risk of Inadequate HCI includes eight core contributing factors based on the Human Factors Analysis and Classification System (HFACS): (1) Requirements, policies, and design processes, (2) Information resources and support, (3) Allocation of attention, (4) Cognitive overload, (5) Environmentally induced perceptual changes, (6) Misperception and misinterpretation of displayed information, (7) Spatial disorientation, and (8) Displays and controls.

  4. Investigation on human serum albumin and Gum Tragacanth interactions using experimental and computational methods.

    Science.gov (United States)

    Moradi, Sajad; Taran, Mojtaba; Shahlaei, Mohsen

    2018-02-01

    The study on the interaction of human serum albumin and Gum Tragacanth, a biodegradable bio-polymer, has been undertaken. For this purpose, several experimental and computational methods were used. Investigation of thermodynamic parameters and mode of interactions were carried out using Fluorescence spectroscopy in 300 and 310K. Also, a Fourier transformed infrared spectra and synchronous fluorescence spectroscopy was performed. To give detailed insight of possible interactions, docking and molecular dynamic simulations were also applied. Results show that the interaction is based on hydrogen bonding and van der Waals forces. Structural analysis implies on no adverse change in protein conformation during binding of GT. Furthermore, computational methods confirm some evidence on secondary structure enhancement of protein as a presence of combining with Gum Tragacanth. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Quality of human-computer interaction - results of a national usability survey of hospital-IT in Germany

    Directory of Open Access Journals (Sweden)

    Bundschuh Bettina B

    2011-11-01

    Full Text Available Abstract Background Due to the increasing functionality of medical information systems, it is hard to imagine day to day work in hospitals without IT support. Therefore, the design of dialogues between humans and information systems is one of the most important issues to be addressed in health care. This survey presents an analysis of the current quality level of human-computer interaction of healthcare-IT in German hospitals, focused on the users' point of view. Methods To evaluate the usability of clinical-IT according to the design principles of EN ISO 9241-10 the IsoMetrics Inventory, an assessment tool, was used. The focus of this paper has been put on suitability for task, training effort and conformity with user expectations, differentiated by information systems. Effectiveness has been evaluated with the focus on interoperability and functionality of different IT systems. Results 4521 persons from 371 hospitals visited the start page of the study, while 1003 persons from 158 hospitals completed the questionnaire. The results show relevant variations between different information systems. Conclusions Specialised information systems with defined functionality received better assessments than clinical information systems in general. This could be attributed to the improved customisation of these specialised systems for specific working environments. The results can be used as reference data for evaluation and benchmarking of human computer engineering in clinical health IT context for future studies.

  6. Human-Computer Interaction Handbook Fundamentals, Evolving Technologies, and Emerging Applications

    CERN Document Server

    Jacko, Julie A

    2012-01-01

    The third edition of a groundbreaking reference, The Human--Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications raises the bar for handbooks in this field. It is the largest, most complete compilation of HCI theories, principles, advances, case studies, and more that exist within a single volume. The book captures the current and emerging sub-disciplines within HCI related to research, development, and practice that continue to advance at an astonishing rate. It features cutting-edge advances to the scientific knowledge base as well as visionary perspe

  7. Drum-mate: interaction dynamics and gestures in human-humanoid drumming experiments

    Science.gov (United States)

    Kose-Bagci, Hatice; Dautenhahn, Kerstin; Syrdal, Dag S.; Nehaniv, Chrystopher L.

    2010-06-01

    This article investigates the role of interaction kinesics in human-robot interaction (HRI). We adopted a bottom-up, synthetic approach towards interactive competencies in robots using simple, minimal computational models underlying the robot's interaction dynamics. We present two empirical, exploratory studies investigating a drumming experience with a humanoid robot (KASPAR) and a human. In the first experiment, the turn-taking behaviour of the humanoid is deterministic and the non-verbal gestures of the robot accompany its drumming to assess the impact of non-verbal gestures on the interaction. The second experiment studies a computational framework that facilitates emergent turn-taking dynamics, whereby the particular dynamics of turn-taking emerge from the social interaction between the human and the humanoid. The results from the HRI experiments are presented and analysed qualitatively (in terms of the participants' subjective experiences) and quantitatively (concerning the drumming performance of the human-robot pair). The results point out a trade-off between the subjective evaluation of the drumming experience from the perspective of the participants and the objective evaluation of the drumming performance. A certain number of gestures was preferred as a motivational factor in the interaction. The participants preferred the models underlying the robot's turn-taking which enable the robot and human to interact more and provide turn-taking closer to 'natural' human-human conversations, despite differences in objective measures of drumming behaviour. The results are consistent with the temporal behaviour matching hypothesis previously proposed in the literature which concerns the effect that the participants adapt their own interaction dynamics to the robot's.

  8. Guest Editorial Special Issue on Human Computing

    NARCIS (Netherlands)

    Pantic, Maja; Santos, E.; Pentland, A.; Nijholt, Antinus

    2009-01-01

    The seven articles in this special issue focus on human computing. Most focus on two challenging issues in human computing, namely, machine analysis of human behavior in group interactions and context-sensitive modeling.

  9. Advancements in Violin-Related Human-Computer Interaction

    DEFF Research Database (Denmark)

    Overholt, Daniel

    2014-01-01

    of human intelligence and emotion is at the core of the Musical Interface Technology Design Space, MITDS. This is a framework that endeavors to retain and enhance such traits of traditional instruments in the design of interactive live performance interfaces. Utilizing the MITDS, advanced Human...

  10. Computerized Cognitive Rehabilitation: Comparing Different Human-Computer Interactions.

    Science.gov (United States)

    Quaglini, Silvana; Alloni, Anna; Cattani, Barbara; Panzarasa, Silvia; Pistarini, Caterina

    2017-01-01

    In this work we describe an experiment involving aphasic patients, where the same speech rehabilitation exercise was administered in three different modalities, two of which are computer-based. In particular, one modality exploits the "Makey Makey", an electronic board which allows interacting with the computer using physical objects.

  11. Animal-Computer Interaction (ACI) : An analysis, a perspective, and guidelines

    NARCIS (Netherlands)

    van den Broek, E.L.

    2016-01-01

    Animal-Computer Interaction (ACI)’s founding elements are discussed in relation to its overarching discipline Human-Computer Interaction (HCI). Its basic dimensions are identified: agent, computing machinery, and interaction, and their levels of processing: perceptual, cognitive, and affective.

  12. Functions of pointing by humans, and dogs’ responses, during dog-human play between familiar and unfamiliar players.

    Directory of Open Access Journals (Sweden)

    Robert W. Mitchell

    2018-05-01

    Full Text Available Although much research focuses on human index finger pointing to hidden items for dogs in experimental settings, there is little research about human pointing in naturalistic interactions. We examined human pointing to dogs during 62 dog-human play interactions, spanning 4.8 hours of videotape, to determine the functions of human pointing and dogs’ responses to that pointing. Participants were 26 humans and 27 dogs. Humans played with their own dog(s and, almost always, an unfamiliar dog. Seventeen people (16 players and one passerby pointed for 20 dogs a total of 101 times (once with a foot during 26 interactions. Most (49.5% points were toward an object (almost always a ball, to direct attention or action toward the object; 36.6% were to the ground in front of the (almost always familiar pointer, directing the dog to come, and/or drop a ball the dog held, here; 10.9% directed the dog toward the designated player and/or play area; and 3.0% directed the dog to move away from a ball the dog had dropped. Humans almost always pointed such that the dog could see the point (92.1%, and pointed more with their own than with an unfamiliar dog. Dogs responded appropriately (i.e., did what the pointer requested for only 24.7% of the visible points, more often for points to the ground than for points to objects. The proportion of dogs’ appropriate responses to visible points was similar for both familiar (30% and unfamiliar (18% humans. Six dogs who responded appropriately to some points resisted responding appropriately to others. Future research should examine non-object directed uses of pointing with dogs and their responses in naturalistic and experimental settings, and experimentally assess diverse explanations, including resistance, when dogs and other animals fail standard pointing tasks.

  13. Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training

    Science.gov (United States)

    Lee, Yongkuk; Nicholls, Benjamin; Sup Lee, Dong; Chen, Yanfei; Chun, Youngjae; Siang Ang, Chee; Yeo, Woon-Hong

    2017-04-01

    We introduce a skin-friendly electronic system that enables human-computer interaction (HCI) for swallowing training in dysphagia rehabilitation. For an ergonomic HCI, we utilize a soft, highly compliant (“skin-like”) electrode, which addresses critical issues of an existing rigid and planar electrode combined with a problematic conductive electrolyte and adhesive pad. The skin-like electrode offers a highly conformal, user-comfortable interaction with the skin for long-term wearable, high-fidelity recording of swallowing electromyograms on the chin. Mechanics modeling and experimental quantification captures the ultra-elastic mechanical characteristics of an open mesh microstructured sensor, conjugated with an elastomeric membrane. Systematic in vivo studies investigate the functionality of the soft electronics for HCI-enabled swallowing training, which includes the application of a biofeedback system to detect swallowing behavior. The collection of results demonstrates clinical feasibility of the ergonomic electronics in HCI-driven rehabilitation for patients with swallowing disorders.

  14. Using Noninvasive Brain Measurement to Explore the Psychological Effects of Computer Malfunctions on Users during Human-Computer Interactions

    Directory of Open Access Journals (Sweden)

    Leanne M. Hirshfield

    2014-01-01

    Full Text Available In today’s technologically driven world, there is a need to better understand the ways that common computer malfunctions affect computer users. These malfunctions may have measurable influences on computer user’s cognitive, emotional, and behavioral responses. An experiment was conducted where participants conducted a series of web search tasks while wearing functional near-infrared spectroscopy (fNIRS and galvanic skin response sensors. Two computer malfunctions were introduced during the sessions which had the potential to influence correlates of user trust and suspicion. Surveys were given after each session to measure user’s perceived emotional state, cognitive load, and perceived trust. Results suggest that fNIRS can be used to measure the different cognitive and emotional responses associated with computer malfunctions. These cognitive and emotional changes were correlated with users’ self-report levels of suspicion and trust, and they in turn suggest future work that further explores the capability of fNIRS for the measurement of user experience during human-computer interactions.

  15. Optimization of the Phase Advance Between RHIC Interaction Points

    CERN Document Server

    Tomas, Rogelio

    2005-01-01

    We consider the scenario of having two identical Interaction Points (IPs) in the Relativistic Heavy Ion Collider (RHIC). The strengths of beam-beam resonances strongly depend on the phase advance between these two IPs and therefore certain phase advances could improve beam lifetime and luminosity. We compute the dynamic aperture as function of the phase advance between these IPs to find the optimum settings. The beam-beam interaction is treated in the weak-strong approximation and a complete non-linear model of the lattice is used. For the current RHIC proton working point (0.69,0.685) the design lattice is found to have the optimum phase advance. However this is not the case for other working points.

  16. Computing bubble-points of CO

    NARCIS (Netherlands)

    Ramdin, M.; Balaji, S.P.; Vicent Luna, J.M.; Torres-Knoop, A; Chen, Q.; Dubbeldam, D.; Calero, S; de Loos, T.W.; Vlugt, T.J.H.

    2016-01-01

    Computing bubble-points of multicomponent mixtures using Monte Carlo simulations is a non-trivial task. A new method is used to compute gas compositions from a known temperature, bubble-point pressure, and liquid composition. Monte Carlo simulations are used to calculate the bubble-points of

  17. Brain-Computer Interfaces Revolutionizing Human-Computer Interaction

    CERN Document Server

    Graimann, Bernhard; Allison, Brendan

    2010-01-01

    A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.

  18. Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design

    Science.gov (United States)

    Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy

    We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.

  19. User involvement in the design of human-computer interactions: some similarities and differences between design approaches

    NARCIS (Netherlands)

    Bekker, M.M.; Long, J.B.

    1998-01-01

    This paper presents a general review of user involvement in the design of human-computer interactions, as advocated by a selection of different approaches to design. The selection comprises User-Centred Design, Participatory Design, Socio-Technical Design, Soft Systems Methodology, and Joint

  20. The Emotiv EPOC interface paradigm in Human-Computer Interaction

    OpenAIRE

    Ancău Dorina; Roman Nicolae-Marius; Ancău Mircea

    2017-01-01

    Numerous studies have suggested the use of decoded error potentials in the brain to improve human-computer communication. Together with state-of-the-art scientific equipment, experiments have also tested instruments with more limited performance for the time being, such as Emotiv EPOC. This study presents a review of these trials and a summary of the results obtained. However, the level of these results indicates a promising prospect for using this headset as a human-computer interface for er...

  1. The Emotiv EPOC interface paradigm in Human-Computer Interaction

    Directory of Open Access Journals (Sweden)

    Ancău Dorina

    2017-01-01

    Full Text Available Numerous studies have suggested the use of decoded error potentials in the brain to improve human-computer communication. Together with state-of-the-art scientific equipment, experiments have also tested instruments with more limited performance for the time being, such as Emotiv EPOC. This study presents a review of these trials and a summary of the results obtained. However, the level of these results indicates a promising prospect for using this headset as a human-computer interface for error decoding.

  2. Audio Technology and Mobile Human Computer Interaction

    DEFF Research Database (Denmark)

    Chamberlain, Alan; Bødker, Mads; Hazzard, Adrian

    2017-01-01

    Audio-based mobile technology is opening up a range of new interactive possibilities. This paper brings some of those possibilities to light by offering a range of perspectives based in this area. It is not only the technical systems that are developing, but novel approaches to the design...... and understanding of audio-based mobile systems are evolving to offer new perspectives on interaction and design and support such systems to be applied in areas, such as the humanities....

  3. Ergonomic guidelines for using notebook personal computers. Technical Committee on Human-Computer Interaction, International Ergonomics Association.

    Science.gov (United States)

    Saito, S; Piccoli, B; Smith, M J; Sotoyama, M; Sweitzer, G; Villanueva, M B; Yoshitake, R

    2000-10-01

    In the 1980's, the visual display terminal (VDT) was introduced in workplaces of many countries. Soon thereafter, an upsurge in reported cases of related health problems, such as musculoskeletal disorders and eyestrain, was seen. Recently, the flat panel display or notebook personal computer (PC) became the most remarkable feature in modern workplaces with VDTs and even in homes. A proactive approach must be taken to avert foreseeable ergonomic and occupational health problems from the use of this new technology. Because of its distinct physical and optical characteristics, the ergonomic requirements for notebook PCs in terms of machine layout, workstation design, lighting conditions, among others, should be different from the CRT-based computers. The Japan Ergonomics Society (JES) technical committee came up with a set of guidelines for notebook PC use following exploratory discussions that dwelt on its ergonomic aspects. To keep in stride with this development, the Technical Committee on Human-Computer Interaction under the auspices of the International Ergonomics Association worked towards the international issuance of the guidelines. This paper unveils the result of this collaborative effort.

  4. HumanComputer Systems Interaction Backgrounds and Applications 2 Part 2

    CERN Document Server

    Kulikowski, Juliusz; Mroczek, Teresa

    2012-01-01

    This volume of the book contains a collection of chapters selected from the papers which originally (in shortened form) have been presented at the 3rd International Conference on Human-Systems Interaction held in Rzeszow, Poland, in 2010. The chapters are divided into five sections concerning: IV. Environment monitoring and robotic systems, V. Diagnostic systems, VI. Educational Systems, and VII. General Problems. The novel concepts and realizations of humanoid robots, talking robots and orthopedic surgical robots, as well as those of direct brain-computer interface  are examples of particularly interesting topics presented in Sec. VI. In Sec. V the problems of  skin cancer recognition, colonoscopy diagnosis, and brain strokes diagnosis as well as more general problems of ontology design for  medical diagnostic knowledge are presented. Example of an industrial diagnostic system and a concept of new algorithm for edges detection in computer-analyzed images  are also presented in this Section. Among the edu...

  5. Appearance-based human gesture recognition using multimodal features for human computer interaction

    Science.gov (United States)

    Luo, Dan; Gao, Hua; Ekenel, Hazim Kemal; Ohya, Jun

    2011-03-01

    The use of gesture as a natural interface plays an utmost important role for achieving intelligent Human Computer Interaction (HCI). Human gestures include different components of visual actions such as motion of hands, facial expression, and torso, to convey meaning. So far, in the field of gesture recognition, most previous works have focused on the manual component of gestures. In this paper, we present an appearance-based multimodal gesture recognition framework, which combines the different groups of features such as facial expression features and hand motion features which are extracted from image frames captured by a single web camera. We refer 12 classes of human gestures with facial expression including neutral, negative and positive meanings from American Sign Languages (ASL). We combine the features in two levels by employing two fusion strategies. At the feature level, an early feature combination can be performed by concatenating and weighting different feature groups, and LDA is used to choose the most discriminative elements by projecting the feature on a discriminative expression space. The second strategy is applied on decision level. Weighted decisions from single modalities are fused in a later stage. A condensation-based algorithm is adopted for classification. We collected a data set with three to seven recording sessions and conducted experiments with the combination techniques. Experimental results showed that facial analysis improve hand gesture recognition, decision level fusion performs better than feature level fusion.

  6. A Situative Space Model for Mobile Mixed-Reality Computing

    DEFF Research Database (Denmark)

    Pederson, Thomas; Janlert, Lars-Erik; Surie, Dipak

    2011-01-01

    This article proposes a situative space model that links the physical and virtual realms and sets the stage for complex human-computer interaction defined by what a human agent can see, hear, and touch, at any given point in time.......This article proposes a situative space model that links the physical and virtual realms and sets the stage for complex human-computer interaction defined by what a human agent can see, hear, and touch, at any given point in time....

  7. A truly human interface: Interacting face-to-face with someone whose words are determined by a computer program

    Directory of Open Access Journals (Sweden)

    Kevin eCorti

    2015-05-01

    Full Text Available We use speech shadowing to create situations wherein people converse in person with a human whose words are determined by a conversational agent computer program. Speech shadowing involves a person (the shadower repeating vocal stimuli originating from a separate communication source in real-time. Humans shadowing for conversational agent sources (e.g., chat bots become hybrid agents (echoborgs capable of face-to-face interlocution. We report three studies that investigated people’s experiences interacting with echoborgs and the extent to which echoborgs pass as autonomous humans. First, participants in a Turing Test spoke with a chat bot via either a text interface or an echoborg. Human shadowing did not improve the chat bot’s chance of passing but did increase interrogators’ ratings of how human-like the chat bot seemed. In our second study, participants had to decide whether their interlocutor produced words generated by a chat bot or simply pretended to be one. Compared to those who engaged a text interface, participants who engaged an echoborg were more likely to perceive their interlocutor as pretending to be a chat bot. In our third study, participants were naïve to the fact that their interlocutor produced words generated by a chat bot. Unlike those who engaged a text interface, the vast majority of participants who engaged an echoborg neither sensed nor suspected a robotic interaction. These findings have implications for android science, the Turing Test paradigm, and human-computer interaction. The human body, as the delivery mechanism of communication, fundamentally alters the social psychological dynamics of interactions with machine intelligence.

  8. Brain-Computer Interfaces. Applying our Minds to Human-Computer Interaction

    NARCIS (Netherlands)

    Tan, Desney S.; Nijholt, Antinus

    2010-01-01

    For generations, humans have fantasized about the ability to create devices that can see into a person’s mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science

  9. Brain Computer Interfaces for Enhanced Interaction with Mobile Robot Agents

    Science.gov (United States)

    2016-07-27

    SECURITY CLASSIFICATION OF: Brain Computer Interfaces (BCIs) show great potential in allowing humans to interact with computational environments in a...Distribution Unlimited UU UU UU UU 27-07-2016 17-Sep-2013 16-Sep-2014 Final Report: Brain Computer Interfaces for Enhanced Interactions with Mobile Robot...published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Brain Computer Interfaces for Enhanced

  10. Brain-Computer Interfaces Applying Our Minds to Human-computer Interaction

    CERN Document Server

    Tan, Desney S

    2010-01-01

    For generations, humans have fantasized about the ability to create devices that can see into a person's mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science fiction stories. Recent advances in cognitive neuroscience and brain imaging technologies have started to turn these myths into a reality, and are providing us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that monitor physical p

  11. Affordances and Cognitive Walkthrough for Analyzing Human-Virtual Human Interaction

    NARCIS (Netherlands)

    Ruttkay, Z.M.; op den Akker, Hendrikus J.A.; Esposito, A.; Bourbakis, N.; Avouris, N.; Hatzilygeroudis, I.

    2008-01-01

    This study investigates how the psychological notion of affordance, known from human computer interface design, can be adopted for the analysis and design of communication of a user with a Virtual Human (VH), as a novel interface. We take as starting point the original notion of affordance, used to

  12. Human computer confluence applied in healthcare and rehabilitation.

    Science.gov (United States)

    Viaud-Delmon, Isabelle; Gaggioli, Andrea; Ferscha, Alois; Dunne, Stephen

    2012-01-01

    Human computer confluence (HCC) is an ambitious research program studying how the emerging symbiotic relation between humans and computing devices can enable radically new forms of sensing, perception, interaction, and understanding. It is an interdisciplinary field, bringing together researches from horizons as various as pervasive computing, bio-signals processing, neuroscience, electronics, robotics, virtual & augmented reality, and provides an amazing potential for applications in medicine and rehabilitation.

  13. Institutionalizing human-computer interaction for global health.

    Science.gov (United States)

    Gulliksen, Jan

    2017-06-01

    Digitalization is the societal change process in which new ICT-based solutions bring forward completely new ways of doing things, new businesses and new movements in the society. Digitalization also provides completely new ways of addressing issues related to global health. This paper provides an overview of the field of human-computer interaction (HCI) and in what way the field has contributed to international development in different regions of the world. Additionally, it outlines the United Nations' new sustainability goals from December 2015 and what these could contribute to the development of global health and its relationship to digitalization. Finally, it argues why and how HCI could be adopted and adapted to fit the contextual needs, the need for localization and for the development of new digital innovations. The research methodology is mostly qualitative following an action research paradigm in which the actual change process that the digitalization is evoking is equally important as the scientific conclusions that can be drawn. In conclusion, the paper argues that digitalization is fundamentally changing the society through the development and use of digital technologies and may have a profound effect on the digital development of every country in the world. But it needs to be developed based on local practices, it needs international support and to not be limited by any technological constraints. Particularly digitalization to support global health requires a profound understanding of the users and their context, arguing for user-centred systems design methodologies as particularly suitable.

  14. A point-based rendering approach for real-time interaction on mobile devices

    Institute of Scientific and Technical Information of China (English)

    LIANG XiaoHui; ZHAO QinPing; HE ZhiYing; XIE Ke; LIU YuBo

    2009-01-01

    Mobile device is an Important interactive platform. Due to the limitation of computation, memory, display area and energy, how to realize the efficient and real-time interaction of 3D models based on mobile devices is an important research topic. Considering features of mobile devices, this paper adopts remote rendering mode and point models, and then, proposes a transmission and rendering approach that could interact in real time. First, improved simplification algorithm based on MLS and display resolution of mobile devices is proposed. Then, a hierarchy selection of point models and a QoS transmission control strategy are given based on interest area of operator, interest degree of object in the virtual environment and rendering error. They can save the energy consumption. Finally, the rendering and interaction of point models are completed on mobile devices. The experiments show that our method is efficient.

  15. Computations and interaction

    NARCIS (Netherlands)

    Baeten, J.C.M.; Luttik, S.P.; Tilburg, van P.J.A.; Natarajan, R.; Ojo, A.

    2011-01-01

    We enhance the notion of a computation of the classical theory of computing with the notion of interaction. In this way, we enhance a Turing machine as a model of computation to a Reactive Turing Machine that is an abstract model of a computer as it is used nowadays, always interacting with the user

  16. Learning to Detect Human-Object Interactions

    KAUST Repository

    Chao, Yu-Wei; Liu, Yunfan; Liu, Xieyang; Zeng, Huayi; Deng, Jia

    2017-01-01

    In this paper we study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. We propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN), a novel DNN-based framework for HOI detection. At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. We validate the effectiveness of our HO-RCNN using HICO-DET. Experiments demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.

  17. Learning to Detect Human-Object Interactions

    KAUST Repository

    Chao, Yu-Wei

    2017-02-17

    In this paper we study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. We propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN), a novel DNN-based framework for HOI detection. At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. We validate the effectiveness of our HO-RCNN using HICO-DET. Experiments demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.

  18. Cognition beyond the brain computation, interactivity and human artifice

    CERN Document Server

    Cowley, Stephen J

    2013-01-01

    Arguing that a collective dimension has given cognitive flexibility to human intelligence, this book shows that traditional cognitive psychology underplays the role of bodies, dialogue, diagrams, tools, talk, customs, habits, computers and cultural practices.

  19. Human agency beliefs influence behaviour during virtual social interactions.

    Science.gov (United States)

    Caruana, Nathan; Spirou, Dean; Brock, Jon

    2017-01-01

    In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an "intentional stance" by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants' behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative "joint attention" game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other's eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm ("Computer" condition). The other half were misled into believing that the virtual character was controlled by a second participant in another room ("Human" condition). Those in the "Human" condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the "Computer" condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect on the achievement of the application's goals.

  20. Overview Electrotactile Feedback for Enhancing Human Computer Interface

    Science.gov (United States)

    Pamungkas, Daniel S.; Caesarendra, Wahyu

    2018-04-01

    To achieve effective interaction between a human and a computing device or machine, adequate feedback from the computing device or machine is required. Recently, haptic feedback is increasingly being utilised to improve the interactivity of the Human Computer Interface (HCI). Most existing haptic feedback enhancements aim at producing forces or vibrations to enrich the user’s interactive experience. However, these force and/or vibration actuated haptic feedback systems can be bulky and uncomfortable to wear and only capable of delivering a limited amount of information to the user which can limit both their effectiveness and the applications they can be applied to. To address this deficiency, electrotactile feedback is used. This involves delivering haptic sensations to the user by electrically stimulating nerves in the skin via electrodes placed on the surface of the skin. This paper presents a review and explores the capability of electrotactile feedback for HCI applications. In addition, a description of the sensory receptors within the skin for sensing tactile stimulus and electric currents alsoseveral factors which influenced electric signal to transmit to the brain via human skinare explained.

  1. The Next Wave: Humans, Computers, and Redefining Reality

    Science.gov (United States)

    Little, William

    2018-01-01

    The Augmented/Virtual Reality (AVR) Lab at KSC is dedicated to " exploration into the growing computer fields of Extended Reality and the Natural User Interface (it is) a proving ground for new technologies that can be integrated into future NASA projects and programs." The topics of Human Computer Interface, Human Computer Interaction, Augmented Reality, Virtual Reality, and Mixed Reality are defined; examples of work being done in these fields in the AVR Lab are given. Current new and future work in Computer Vision, Speech Recognition, and Artificial Intelligence are also outlined.

  2. Human-computer interaction for alert warning and attention allocation systems of the multimodal watchstation

    Science.gov (United States)

    Obermayer, Richard W.; Nugent, William A.

    2000-11-01

    The SPAWAR Systems Center San Diego is currently developing an advanced Multi-Modal Watchstation (MMWS); design concepts and software from this effort are intended for transition to future United States Navy surface combatants. The MMWS features multiple flat panel displays and several modes of user interaction, including voice input and output, natural language recognition, 3D audio, stylus and gestural inputs. In 1999, an extensive literature review was conducted on basic and applied research concerned with alerting and warning systems. After summarizing that literature, a human computer interaction (HCI) designer's guide was prepared to support the design of an attention allocation subsystem (AAS) for the MMWS. The resultant HCI guidelines are being applied in the design of a fully interactive AAS prototype. An overview of key findings from the literature review, a proposed design methodology with illustrative examples, and an assessment of progress made in implementing the HCI designers guide are presented.

  3. Magic Pointing for Eyewear Computers

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Mardanbegi, Diako; Pederson, Thomas

    2015-01-01

    In this paper, we propose a combination of head and eye movements for touchlessly controlling the "mouse pointer" on eyewear devices, exploiting the speed of eye pointing and accuracy of head pointing. The method is a wearable computer-targeted variation of the original MAGIC pointing approach...... which combined gaze tracking with a classical mouse device. The result of our experiment shows that the combination of eye and head movements is faster than head pointing for far targets and more accurate than eye pointing....

  4. Interactive Trunk Extraction from Forest Point Cloud

    Directory of Open Access Journals (Sweden)

    T. Mizoguchi

    2014-06-01

    Full Text Available For forest management or monitoring, it is required to constantly measure several parameters of each tree, such as height, diameter at breast height, and trunk volume. Terrestrial laser scanner has been used for this purpose instead of human workers to reduce time and cost for the measurement. In order to use point cloud captured by terrestrial laser scanner in the above applications, it is an important step to extract all trees or their trunks separately. For this purpose, we propose an interactive system in which a user can intuitively and efficiently extract each trunk by a simple editing on the distance image created from the point cloud. We demonstrate the effectiveness of our proposed system from various experiments.

  5. Situated dialog in speech-based human-computer interaction

    CERN Document Server

    Raux, Antoine; Lane, Ian; Misu, Teruhisa

    2016-01-01

    This book provides a survey of the state-of-the-art in the practical implementation of Spoken Dialog Systems for applications in everyday settings. It includes contributions on key topics in situated dialog interaction from a number of leading researchers and offers a broad spectrum of perspectives on research and development in the area. In particular, it presents applications in robotics, knowledge access and communication and covers the following topics: dialog for interacting with robots; language understanding and generation; dialog architectures and modeling; core technologies; and the analysis of human discourse and interaction. The contributions are adapted and expanded contributions from the 2014 International Workshop on Spoken Dialog Systems (IWSDS 2014), where researchers and developers from industry and academia alike met to discuss and compare their implementation experiences, analyses and empirical findings.

  6. A Software Framework for Multimodal Human-Computer Interaction Systems

    NARCIS (Netherlands)

    Shen, Jie; Pantic, Maja

    2009-01-01

    This paper describes a software framework we designed and implemented for the development and research in the area of multimodal human-computer interface. The proposed framework is based on publish / subscribe architecture, which allows developers and researchers to conveniently configure, test and

  7. Translator-computer interaction in action

    DEFF Research Database (Denmark)

    Bundgaard, Kristine; Christensen, Tina Paulsen; Schjoldager, Anne

    2016-01-01

    perspective, this paper investigates the relationship between machines and humans in the field of translation, analysing a CAT process in which machine-translation (MT) technology was integrated into a translation-memory (TM) suite. After a review of empirical research into the impact of CAT tools......Though we lack empirically-based knowledge of the impact of computer-aided translation (CAT) tools on translation processes, it is generally agreed that all professional translators are now involved in some kind of translator-computer interaction (TCI), using O’Brien’s (2012) term. Taking a TCI......, the study indicates that the tool helps the translator conform to project and customer requirements....

  8. USING OLFACTORY DISPLAYS AS A NONTRADITIONAL INTERFACE IN HUMAN COMPUTER INTERACTION

    Directory of Open Access Journals (Sweden)

    Alper Efe

    2017-07-01

    Full Text Available Smell has its limitations and disadvantages as a display medium, but it also has its strengths and many have recognized its potential. At present, in communications and virtual technologies, smell is either forgotten or improperly stimulated, because non controlled odorants present in the physical space surrounding the user. Nonetheless a controlled presentation of olfactory information can give advantages in various application fields. Therefore, two enabling technologies, electronic noses and especially olfactory displays are reviewed. Scenarios of usage are discussed together with relevant psycho-physiological issues. End-to-end systems including olfactory interfaces are quantitatively characterised under many respects. Recent works done by the authors on field are reported. The article will touch briefly on the control of scent emissions; an important factor to consider when building scented computer systems. As a sample application SUBSMELL system investigated. A look at areas of human computer interaction where olfaction output may prove useful will be presented. The article will finish with some brief conclusions and discuss some shortcomings and gaps of the topic. In particular, the addition of olfactory cues to a virtual environment increased the user's sense of presence and memory of the environment. Also, this article discusses the educational aspect of the subsmell systems.

  9. Safe physical human robot interaction- past, present and future

    International Nuclear Information System (INIS)

    Pervez, Aslam; Ryu, Jeha

    2008-01-01

    When a robot physically interacts with a human user, the requirements should be drastically changed. The most important requirement is the safety of the human user in the sense that robot should not harm the human in any situation. During the last few years, research has been focused on various aspects of safe physical human robot interaction. This paper provides a review of the work on safe physical interaction of robotic systems sharing their workspace with human users (especially elderly people). Three distinct areas of research are identified: interaction safety assessment, interaction safety through design, and interaction safety through planning and control. The paper then highlights the current challenges and available technologies and points out future research directions for realization of a safe and dependable robotic system for human users

  10. Human Computation

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    What if people could play computer games and accomplish work without even realizing it? What if billions of people collaborated to solve important problems for humanity or generate training data for computers? My work aims at a general paradigm for doing exactly that: utilizing human processing power to solve computational problems in a distributed manner. In particular, I focus on harnessing human time and energy for addressing problems that computers cannot yet solve. Although computers have advanced dramatically in many respects over the last 50 years, they still do not possess the basic conceptual intelligence or perceptual capabilities...

  11. The Status of Interactivity in Computer Art: Formal Apories

    Directory of Open Access Journals (Sweden)

    João Castro Pinto

    2011-12-01

    Full Text Available Contemporary art, particularly that which is produced by computer technologies capable of receiving data input via interactive devices (sensors and controllers, constitutes an emerging expressive medium of interdisciplinary nature, which implies the need for a critical look at its constitution and artistic functions. To consider interactive art as a form of artistic expression that files under the present categorization, implies the acceptance of the participation of the spectator in the production of the work of art, supposedly at the time of its origin / or during its creation. When we examine the significance of the formal status of interactivity, assuming as a theoretical starting point the referred premises and reducing it to a phenomenological point of view of artistic creation, we quickly fall into difficulties of conceptual definitions and structural apories [1]. The fundamental aim of this research is to formally define the status of interactive art, by perpetrating a phenomenological examination on the creative process of this specific art, establishing crucial distinctions in order to develop a hermeneutics in favor of creation of new perspectives and aesthetic frameworks. What is interactive creation? Is interactivity, from the computing artistic creativity point of view, the exponentiation of the concept of the open work of art (ECO 2009? Does interactive art correspond to an a priori projective and unachievable meta-art? What is the status of the artist and of the spectator in relation to an interactive work of art? What ontic and factical conditions are postulated as necessary in order to determine an artistic product as co-created? What apories do we find along the progres- sive process of reaching to a clarifying conceptual definition?This brief investigation will seek to contribute to the study of this issue, intending ultimately, and above all, to expose pertinent lines of inquiry rather than to provide definite scientific and

  12. Rethinking Human-Centered Computing: Finding the Customer and Negotiated Interactions at the Airport

    Science.gov (United States)

    Wales, Roxana; O'Neill, John; Mirmalek, Zara

    2003-01-01

    The breakdown in the air transportation system over the past several years raises an interesting question for researchers: How can we help improve the reliability of airline operations? In offering some answers to this question, we make a statement about Huuman-Centered Computing (HCC). First we offer the definition that HCC is a multi-disciplinary research and design methodology focused on supporting humans as they use technology by including cognitive and social systems, computational tools and the physical environment in the analysis of organizational systems. We suggest that a key element in understanding organizational systems is that there are external cognitive and social systems (customers) as well as internal cognitive and social systems (employees) and that they interact dynamically to impact the organization and its work. The design of human-centered intelligent systems must take this outside-inside dynamic into account. In the past, the design of intelligent systems has focused on supporting the work and improvisation requirements of employees but has often assumed that customer requirements are implicitly satisfied by employee requirements. Taking a customer-centric perspective provides a different lens for understanding this outside-inside dynamic, the work of the organization and the requirements of both customers and employees In this article we will: 1) Demonstrate how the use of ethnographic methods revealed the important outside-inside dynamic in an airline, specifically the consequential relationship between external customer requirements and perspectives and internal organizational processes and perspectives as they came together in a changing environment; 2) Describe how taking a customer centric perspective identifies places where the impact of the outside-inside dynamic is most critical and requires technology that can be adaptive; 3) Define and discuss the place of negotiated interactions in airline operations, identifying how these

  13. Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing

    Science.gov (United States)

    Akamine, Robert L.; Hodson, Robert F.; LaMeres, Brock J.; Ray, Robert E.

    2011-01-01

    Fault tolerant systems require the ability to detect and recover from physical damage caused by the hardware s environment, faulty connectors, and system degradation over time. This ability applies to military, space, and industrial computing applications. The integrity of Point-to-Point (P2P) communication, between two microcontrollers for example, is an essential part of fault tolerant computing systems. In this paper, different methods of fault detection and recovery are presented and analyzed.

  14. What's the point? Golden and Labrador retrievers living in kennels do not understand human pointing gestures.

    Science.gov (United States)

    D'Aniello, Biagio; Alterisio, Alessandra; Scandurra, Anna; Petremolo, Emanuele; Iommelli, Maria Rosaria; Aria, Massimo

    2017-07-01

    In many studies that have investigated whether dogs' capacities to understand human pointing gestures are aspects of evolutionary or developmental social competences, family-owned dogs have been compared to shelter dogs. However, for most of these studies, the origins of shelter dogs were unknown. Some shelter dogs may have lived with families before entering shelters, and from these past experiences, they may have learned to understand human gestures. Furthermore, there is substantial variation in the methodology and analytic approaches used in such studies (e.g. different pointing protocols, different treatment of trials with no-choice response and indoor vs. outdoor experimental arenas). Such differences in methodologies and analysis techniques used make it difficult to compare results obtained from different studies and may account for the divergent results obtained. We thus attempted to control for several parameters by carrying out a test on dynamic proximal and distal pointing. We studied eleven kennel dogs of known origin that were born and raised in a kennels with limited human interaction. This group was compared to a group of eleven dogs comparable in terms of breed, sex and age that had lived with human families since they were puppies. Our results demonstrate that pet dogs outperform kennel dogs in their comprehension of proximal and distal pointing, regardless of whether trials where no-choice was made were considered as errors or were excluded from statistical analysis, meaning that dogs living in kennels do not understand pointing gestures. Even if genetic effects of the domestication process on human-dog relationships cannot be considered as negligible, our data suggest that dogs need to learn human pointing gestures and thus underscore the importance of ontogenetic processes.

  15. Digital image processing and analysis human and computer vision applications with CVIPtools

    CERN Document Server

    Umbaugh, Scott E

    2010-01-01

    Section I Introduction to Digital Image Processing and AnalysisDigital Image Processing and AnalysisOverviewImage Analysis and Computer VisionImage Processing and Human VisionKey PointsExercisesReferencesFurther ReadingComputer Imaging SystemsImaging Systems OverviewImage Formation and SensingCVIPtools SoftwareImage RepresentationKey PointsExercisesSupplementary ExercisesReferencesFurther ReadingSection II Digital Image Analysis and Computer VisionIntroduction to Digital Image AnalysisIntroductionPreprocessingBinary Image AnalysisKey PointsExercisesSupplementary ExercisesReferencesFurther Read

  16. Contact point generation for convex polytopes in interactive rigid body dynamics

    DEFF Research Database (Denmark)

    Silcowitz-Hansen, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny

    When computing contact forces in rigid body dynamics systems, most state-of-the-art solutions use iterative methods such as the projected Gauss–Seidel (PGS) method. Methods such as the PGS method are preferred for their robustness. However, the time-critical nature of interactive applications...... combined with the linear convergence rates of such methods, will often result in visual artifacts in the final simulation. With this paper, we address an issue which is of major impact on the animation quality, when using methods such as the PGS method. The issue is robust generation of contact points...... for convex polytopes. A novel contact point generation method is presented, which is based on growth distances and Gauss maps. We demonstrate improvements when using our method in the context of interactive rigid body simulation...

  17. Critical points for finite Fibonacci chains of point delta-interactions and orthogonal polynomials

    International Nuclear Information System (INIS)

    De Prunele, E

    2011-01-01

    For a one-dimensional Schroedinger operator with a finite number n of point delta-interactions with a common intensity, the parameters are the intensity, the n - 1 intercenter distances and the mass. Critical points are points in the parameters space of the Hamiltonian where one bound state appears or disappears. The study of critical points for Hamiltonians with point delta-interactions arranged along a Fibonacci chain is shown to be closely related to the study of the so-called Fibonacci operator, a discrete one-dimensional Schroedinger-type operator, which occurs in the context of tight binding Hamiltonians. These critical points are the zeros of orthogonal polynomials previously studied in the context of special diatomic linear chains with elastic nearest-neighbor interaction. Properties of the zeros (location, asymptotic behavior, gaps, ...) are investigated. The perturbation series from the solvable periodic case is determined. The measure which yields orthogonality is investigated numerically from the zeros. It is shown that the transmission coefficient at zero energy can be expressed in terms of the orthogonal polynomials and their associated polynomials. In particular, it is shown that when the number of point delta-interactions is equal to a Fibonacci number minus 1, i.e. when the intervals between point delta-interactions form a palindrome, all the Fibonacci chains at critical points are completely transparent at zero energy. (paper)

  18. Neural correlate of human reciprocity in social interactions.

    Science.gov (United States)

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions.

  19. Neural correlate of human reciprocity in social interactions

    Directory of Open Access Journals (Sweden)

    Shiro eSakaiya

    2013-12-01

    Full Text Available Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human and strategy (random, tit-for-tat in repeated prisoner’s dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate and theory of mind (ToM regions (i.e., ventromedial prefrontal cortex [VMPFC] and precuneus. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (deactivation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during

  20. Interactive Computer Graphics

    Science.gov (United States)

    Kenwright, David

    2000-01-01

    Aerospace data analysis tools that significantly reduce the time and effort needed to analyze large-scale computational fluid dynamics simulations have emerged this year. The current approach for most postprocessing and visualization work is to explore the 3D flow simulations with one of a dozen or so interactive tools. While effective for analyzing small data sets, this approach becomes extremely time consuming when working with data sets larger than one gigabyte. An active area of research this year has been the development of data mining tools that automatically search through gigabyte data sets and extract the salient features with little or no human intervention. With these so-called feature extraction tools, engineers are spared the tedious task of manually exploring huge amounts of data to find the important flow phenomena. The software tools identify features such as vortex cores, shocks, separation and attachment lines, recirculation bubbles, and boundary layers. Some of these features can be extracted in a few seconds; others take minutes to hours on extremely large data sets. The analysis can be performed off-line in a batch process, either during or following the supercomputer simulations. These computations have to be performed only once, because the feature extraction programs search the entire data set and find every occurrence of the phenomena being sought. Because the important questions about the data are being answered automatically, interactivity is less critical than it is with traditional approaches.

  1. Cognitive engineering in the design of human-computer interaction and expert systems

    International Nuclear Information System (INIS)

    Salvendy, G.

    1987-01-01

    The 68 papers contributing to this book cover the following areas: Theories of Interface Design; Methodologies of Interface Design; Applications of Interface Design; Software Design; Human Factors in Speech Technology and Telecommunications; Design of Graphic Dialogues; Knowledge Acquisition for Knowledge-Based Systems; Design, Evaluation and Use of Expert Systems. This demonstrates the dual role of cognitive engineering. On the one hand cognitive engineering is utilized to design computing systems which are compatible with human cognition and can be effectively and be easily utilized by all individuals. On the other hand, cognitive engineering is utilized to transfer human cognition into the computer for the purpose of building expert systems. Two papers are of interest to INIS

  2. A structural approach to constructing perspective efficient and reliable human-computer interfaces

    International Nuclear Information System (INIS)

    Balint, L.

    1989-01-01

    The principles of human-computer interface (HCI) realizations are investigated with the aim of getting closer to a general framework and thus, to a more or less solid background of constructing perspective efficient, reliable and cost-effective human-computer interfaces. On the basis of characterizing and classifying the different HCI solutions, the fundamental problems of interface construction are pointed out especially with respect to human error occurrence possibilities. The evolution of HCI realizations is illustrated by summarizing the main properties of past, present and foreseeable future interface generations. HCI modeling is pointed out to be a crucial problem in theoretical and practical investigations. Suggestions concerning HCI structure (hierarchy and modularity), HCI functional dynamics (mapping from input to output information), minimization of human error caused system failures (error-tolerance, error-recovery and error-correcting) as well as cost-effective HCI design and realization methodology (universal and application-oriented vs. application-specific solutions) are presented. The concept of RISC-based and SCAMP-type HCI components is introduced with the aim of having a reduced interaction scheme in communication and a well defined architecture in HCI components' internal structure. HCI efficiency and reliability are dealt with, by taking into account complexity and flexibility. The application of fast computerized prototyping is also briefly investigated as an experimental device of achieving simple, parametrized, invariant HCI models. Finally, a concise outline of an approach of how to construct ideal HCI's is also suggested by emphasizing the open questions and the need of future work related to the proposals, as well. (author). 14 refs, 6 figs

  3. HCIDL: Human-computer interface description language for multi-target, multimodal, plastic user interfaces

    Directory of Open Access Journals (Sweden)

    Lamia Gaouar

    2018-06-01

    Full Text Available From the human-computer interface perspectives, the challenges to be faced are related to the consideration of new, multiple interactions, and the diversity of devices. The large panel of interactions (touching, shaking, voice dictation, positioning … and the diversification of interaction devices can be seen as a factor of flexibility albeit introducing incidental complexity. Our work is part of the field of user interface description languages. After an analysis of the scientific context of our work, this paper introduces HCIDL, a modelling language staged in a model-driven engineering approach. Among the properties related to human-computer interface, our proposition is intended for modelling multi-target, multimodal, plastic interaction interfaces using user interface description languages. By combining plasticity and multimodality, HCIDL improves usability of user interfaces through adaptive behaviour by providing end-users with an interaction-set adapted to input/output of terminals and, an optimum layout. Keywords: Model driven engineering, Human-computer interface, User interface description languages, Multimodal applications, Plastic user interfaces

  4. An intelligent multi-media human-computer dialogue system

    Science.gov (United States)

    Neal, J. G.; Bettinger, K. E.; Byoun, J. S.; Dobes, Z.; Thielman, C. Y.

    1988-01-01

    Sophisticated computer systems are being developed to assist in the human decision-making process for very complex tasks performed under stressful conditions. The human-computer interface is a critical factor in these systems. The human-computer interface should be simple and natural to use, require a minimal learning period, assist the user in accomplishing his task(s) with a minimum of distraction, present output in a form that best conveys information to the user, and reduce cognitive load for the user. In pursuit of this ideal, the Intelligent Multi-Media Interfaces project is devoted to the development of interface technology that integrates speech, natural language text, graphics, and pointing gestures for human-computer dialogues. The objective of the project is to develop interface technology that uses the media/modalities intelligently in a flexible, context-sensitive, and highly integrated manner modelled after the manner in which humans converse in simultaneous coordinated multiple modalities. As part of the project, a knowledge-based interface system, called CUBRICON (CUBRC Intelligent CONversationalist) is being developed as a research prototype. The application domain being used to drive the research is that of military tactical air control.

  5. Providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Charles J.; Faraj, Daniel A.; Inglett, Todd A.; Ratterman, Joseph D.

    2018-01-30

    Methods, apparatus, and products are disclosed for providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: receiving a network packet in a compute node, the network packet specifying a destination compute node; selecting, in dependence upon the destination compute node, at least one of the links for the compute node along which to forward the network packet toward the destination compute node; and forwarding the network packet along the selected link to the adjacent compute node connected to the compute node through the selected link.

  6. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    Science.gov (United States)

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  7. A heuristic model for computational prediction of human branch point sequence.

    Science.gov (United States)

    Wen, Jia; Wang, Jue; Zhang, Qing; Guo, Dianjing

    2017-10-24

    Pre-mRNA splicing is the removal of introns from precursor mRNAs (pre-mRNAs) and the concurrent ligation of the flanking exons to generate mature mRNA. This process is catalyzed by the spliceosome, where the splicing factor 1 (SF1) specifically recognizes the seven-nucleotide branch point sequence (BPS) and the U2 snRNP later displaces the SF1 and binds to the BPS. In mammals, the degeneracy of BPS motifs together with the lack of a large set of experimentally verified BPSs complicates the task of BPS prediction in silico. In this paper, we develop a simple and yet efficient heuristic model for human BPS prediction based on a novel scoring scheme, which quantifies the splicing strength of putative BPSs. The candidate BPS is restricted exclusively within a defined BPS search region to avoid the influences of other elements in the intron and therefore the prediction accuracy is improved. Moreover, using two types of relative frequencies for human BPS prediction, we demonstrate our model outperformed other current implementations on experimentally verified human introns. We propose that the binding energy contributes to the molecular recognition involved in human pre-mRNA splicing. In addition, a genome-wide human BPS prediction is carried out. The characteristics of predicted BPSs are in accordance with experimentally verified human BPSs, and branch site positions relative to the 3'ss and the 5'end of the shortened AGEZ are consistent with the results of published papers. Meanwhile, a webserver for BPS predictor is freely available at http://biocomputer.bio.cuhk.edu.hk/BPS .

  8. Are Children with Autism More Responsive to Animated Characters? A Study of Interactions with Humans and Human-Controlled Avatars

    Science.gov (United States)

    Carter, Elizabeth J.; Williams, Diane L.; Hodgins, Jessica K.; Lehman, Jill F.

    2014-01-01

    Few direct comparisons have been made between the responsiveness of children with autism to computer-generated or animated characters and their responsiveness to humans. Twelve 4-to 8-year-old children with autism interacted with a human therapist; a human-controlled, interactive avatar in a theme park; a human actor speaking like the avatar; and…

  9. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    Science.gov (United States)

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  10. Human-centered Computing: Toward a Human Revolution

    OpenAIRE

    Jaimes, Alejandro; Gatica-Perez, Daniel; Sebe, Nicu; Huang, Thomas S.

    2007-01-01

    Human-centered computing studies the design, development, and deployment of mixed-initiative human-computer systems. HCC is emerging from the convergence of multiple disciplines that are concerned both with understanding human beings and with the design of computational artifacts.

  11. A Perspective on Computational Human Performance Models as Design Tools

    Science.gov (United States)

    Jones, Patricia M.

    2010-01-01

    The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.

  12. Motor contagion during human-human and human-robot interaction.

    Directory of Open Access Journals (Sweden)

    Ambra Bisio

    Full Text Available Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot. After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner.

  13. Motor contagion during human-human and human-robot interaction.

    Science.gov (United States)

    Bisio, Ambra; Sciutti, Alessandra; Nori, Francesco; Metta, Giorgio; Fadiga, Luciano; Sandini, Giulio; Pozzo, Thierry

    2014-01-01

    Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot). After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner.

  14. Computational composites

    DEFF Research Database (Denmark)

    Vallgårda, Anna K. A.; Redström, Johan

    2007-01-01

    Computational composite is introduced as a new type of composite material. Arguing that this is not just a metaphorical maneuver, we provide an analysis of computational technology as material in design, which shows how computers share important characteristics with other materials used in design...... and architecture. We argue that the notion of computational composites provides a precise understanding of the computer as material, and of how computations need to be combined with other materials to come to expression as material. Besides working as an analysis of computers from a designer’s point of view......, the notion of computational composites may also provide a link for computer science and human-computer interaction to an increasingly rapid development and use of new materials in design and architecture....

  15. Interactive computer-enhanced remote viewing system

    Energy Technology Data Exchange (ETDEWEB)

    Tourtellott, J.A.; Wagner, J.F. [Mechanical Technology Incorporated, Latham, NY (United States)

    1995-10-01

    Remediation activities such as decontamination and decommissioning (D&D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths are clear of obstacles. This report describes the development of an Interactive Computer-Enhanced Remote Viewing System (ICERVS), a software system to provide a reliable geometric description of a robotic task space, and enable robotic remediation to be conducted more effectively and more economically.

  16. Twenty Years of Creativity Research in Human-Computer Interaction: Current State and Future Directions

    DEFF Research Database (Denmark)

    Frich Pedersen, Jonas; Biskjaer, Michael Mose; Dalsgaard, Peter

    2018-01-01

    Creativity has been a growing topic within the ACM community since the 1990s. However, no clear overview of this trend has been offered. We present a thorough survey of 998 creativity-related publications in the ACM Digital Library collected using keyword search to determine prevailing approaches......, topics, and characteristics of creativity-oriented Human-Computer Interaction (HCI) research. . A selected sample based on yearly citations yielded 221 publications, which were analyzed using constant comparison analysis. We found that HCI is almost exclusively responsible for creativity......-oriented publications; they focus on collaborative creativity rather than individual creativity; there is a general lack of definition of the term ‘creativity’; empirically based contributions are prevalent; and many publications focus on new tools, often developed by researchers. On this basis, we present three...

  17. Transnational HCI: Humans, Computers and Interactions in Global Contexts

    DEFF Research Database (Denmark)

    Vertesi, Janet; Lindtner, Silvia; Shklovski, Irina

    2011-01-01

    , but as evolving in relation to global processes, boundary crossings, frictions and hybrid practices. In doing so, we expand upon existing research in HCI to consider the effects, implications for individuals and communities, and design opportunities in times of increased transnational interactions. We hope...... to broaden the conversation around the impact of technology in global processes by bringing together scholars from HCI and from related humanities, media arts and social sciences disciplines....

  18. Computer aided composition by means of interactive GP

    DEFF Research Database (Denmark)

    Ando, Daichi; Dahlstedt, Palle; Nordahl, Mats G.

    2006-01-01

    Research on the application of Interactive Evolutionary Computation (IEC) to the field of musical computation has been improved in recent years, marking an interesting parallel to the current trend of applying human characteristics or sensitivities to computer systems. However, past techniques...... developed for IEC-based composition have not necessarily proven very effective for professional use. This is due to the large difference between data representation used by IEC and authored classical music composition. To solve this difficulties, we purpose a new IEC approach to music composition based...... on classical music theory. In this paper, we describe an established system according to the above idea, and detail of making success of composition a piece....

  19. Schroedinger operators with point interactions and short range expansions

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.; Oslo Univ.

    1984-01-01

    We give a survey of recent results concerning Schroedinger operators with point interactions in R 3 . In the case where the point interactions are located at a discrete set of points we discuss results about the resolvent, the spectrum, the resonances and the scattering quantities. We also discuss the approximation of point interactions by short range local potentials (short range or low energy expansions) and the one electron model of a 3-dimensional crystal. Moreover we discuss Schroedinger operators with Coulomb plus point interactions, with applications to the determination of scattering lengths and of level shifts in mesic atoms. Further applications to the multiple well problem, to multiparticle systems, to crystals with random impurities, to polymers and quantum fields are also briefly discussed. (orig.)

  20. Interactive computer-enhanced remote viewing system

    International Nuclear Information System (INIS)

    Tourtellott, J.A.; Wagner, J.F.

    1995-01-01

    Remediation activities such as decontamination and decommissioning (D ampersand D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths are clear of obstacles. This report describes the development of an Interactive Computer-Enhanced Remote Viewing System (ICERVS), a software system to provide a reliable geometric description of a robotic task space, and enable robotic remediation to be conducted more effectively and more economically

  1. Human Computer Music Performance

    OpenAIRE

    Dannenberg, Roger B.

    2012-01-01

    Human Computer Music Performance (HCMP) is the study of music performance by live human performers and real-time computer-based performers. One goal of HCMP is to create a highly autonomous artificial performer that can fill the role of a human, especially in a popular music setting. This will require advances in automated music listening and understanding, new representations for music, techniques for music synchronization, real-time human-computer communication, music generation, sound synt...

  2. Granular computing and decision-making interactive and iterative approaches

    CERN Document Server

    Chen, Shyi-Ming

    2015-01-01

    This volume is devoted to interactive and iterative processes of decision-making– I2 Fuzzy Decision Making, in brief. Decision-making is inherently interactive. Fuzzy sets help realize human-machine communication in an efficient way by facilitating a two-way interaction in a friendly and transparent manner. Human-centric interaction is of paramount relevance as a leading guiding design principle of decision support systems.   The volume provides the reader with an updated and in-depth material on the conceptually appealing and practically sound methodology and practice of I2 Fuzzy Decision Making. The book engages a wealth of methods of fuzzy sets and Granular Computing, brings new concepts, architectures and practice of fuzzy decision-making providing the reader with various application studies.   The book is aimed at a broad audience of researchers and practitioners in numerous disciplines in which decision-making processes play a pivotal role and serve as a vehicle to produce solutions to existing prob...

  3. Human-machine interaction in nuclear power plants

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu

    2005-01-01

    Advanced nuclear power plants are generally large complex systems automated by computers. Whenever a rate plant emergency occurs the plant operators must cope with the emergency under severe mental stress without committing any fatal errors. Furthermore, the operators must train to improve and maintain their ability to cope with every conceivable situation, though it is almost impossible to be fully prepared for an infinite variety of situations. In view of the limited capability of operators in emergency situations, there has been a new approach to preventing the human error caused by improper human-machine interaction. The new approach has been triggered by the introduction of advanced information systems that help operators recognize and counteract plant emergencies. In this paper, the adverse effect of automation in human-machine systems is explained. The discussion then focuses on how to configure a joint human-machine system for ideal human-machine interaction. Finally, there is a new proposal on how to organize technologies that recognize the different states of such a joint human-machine system

  4. Human computer interaction and communication aids for hearing-impaired, deaf and deaf-blind people: Introduction to the special thematic session

    DEFF Research Database (Denmark)

    Bothe, Hans-Heinrich

    2008-01-01

    This paper gives ail overview and extends the Special Thematic Session (STS) oil research and development of technologies for hearing-impaired, deaf, and deaf-blind people. The topics of the session focus oil special equipment or services to improve communication and human computer interaction....... The papers are related to visual communication using captions, sign language, speech-reading, to vibro-tactile stimulation, or to general services for hearing-impaired persons....

  5. Human Technology and Human Affects

    DEFF Research Database (Denmark)

    Fausing, Bent

    2009-01-01

    Human Technology and Human Affects  This year Samsung introduced a mobile phone with "Soul". It was made with a human touch and included itself a magical touch. Which function does technology and affects get in everyday aesthetics like this, its images and interactions included this presentation...... will ask and try to answer. The mobile phone and its devices are depicted as being able to make a unique human presence, interaction, and affect. The medium, the technology is a necessary helper to get towards this very special and lost humanity. Without the technology, no special humanity - soul....... The paper will investigate how technology, humanity, affects, and synaesthesia are presented and combined with examples from everyday aesthetics, e.g. early computer tv-commercial, net-commercial for mobile phones. Technology and affects point, is the conclusion, towards a forgotten pre-human and not he...

  6. Head and eye movement as pointing modalities for eyewear computers

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Mardanbeigi, Diako; Pederson, Thomas

    2014-01-01

    examined using head and eye movements to point on a graphical user interface of a wearable computer. The performance of users in head and eye pointing has been compared with mouse pointing as a baseline method. The result of our experiment showed that the eye pointing is significantly faster than head......While the new generation of eyewear computers have increased expectations of a wearable computer, providing input to these devices is still challenging. Hand-held devices, voice commands, and hand gestures have already been explored to provide input to the wearable devices. In this paper, we...

  7. Interactive computing in BASIC an introduction to interactive computing and a practical course in the BASIC language

    CERN Document Server

    Sanderson, Peter C

    1973-01-01

    Interactive Computing in BASIC: An Introduction to Interactive Computing and a Practical Course in the BASIC Language provides a general introduction to the principles of interactive computing and a comprehensive practical guide to the programming language Beginners All-purpose Symbolic Instruction Code (BASIC). The book starts by providing an introduction to computers and discussing the aspects of terminal usage, programming languages, and the stages in writing and testing a program. The text then discusses BASIC with regard to methods in writing simple arithmetical programs, control stateme

  8. Seven Years after the Manifesto: Literature Review and Research Directions for Technologies in Animal Computer Interaction

    Directory of Open Access Journals (Sweden)

    Ilyena Hirskyj-Douglas

    2018-06-01

    Full Text Available As technologies diversify and become embedded in everyday lives, the technologies we expose to animals, and the new technologies being developed for animals within the field of Animal Computer Interaction (ACI are increasing. As we approach seven years since the ACI manifesto, which grounded the field within Human Computer Interaction and Computer Science, this thematic literature review looks at the technologies developed for (non-human animals. Technologies that are analysed include tangible and physical, haptic and wearable, olfactory, screen technology and tracking systems. The conversation explores what exactly ACI is whilst questioning what it means to be animal by considering the impact and loop between machine and animal interactivity. The findings of this review are expected to form the first grounding foundation of ACI technologies informing future research in animal computing as well as suggesting future areas for exploration.

  9. Human-machine interactions

    Science.gov (United States)

    Forsythe, J Chris [Sandia Park, NM; Xavier, Patrick G [Albuquerque, NM; Abbott, Robert G [Albuquerque, NM; Brannon, Nathan G [Albuquerque, NM; Bernard, Michael L [Tijeras, NM; Speed, Ann E [Albuquerque, NM

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  10. Computer aided systems human engineering: A hypermedia tool

    Science.gov (United States)

    Boff, Kenneth R.; Monk, Donald L.; Cody, William J.

    1992-01-01

    The Computer Aided Systems Human Engineering (CASHE) system, Version 1.0, is a multimedia ergonomics database on CD-ROM for the Apple Macintosh II computer, being developed for use by human system designers, educators, and researchers. It will initially be available on CD-ROM and will allow users to access ergonomics data and models stored electronically as text, graphics, and audio. The CASHE CD-ROM, Version 1.0 will contain the Boff and Lincoln (1988) Engineering Data Compendium, MIL-STD-1472D and a unique, interactive simulation capability, the Perception and Performance Prototyper. Its features also include a specialized data retrieval, scaling, and analysis capability and the state of the art in information retrieval, browsing, and navigation.

  11. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2010-08-01

    Full Text Available Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  12. Computing three-point functions for short operators

    International Nuclear Information System (INIS)

    Bargheer, Till; Institute for Advanced Study, Princeton, NJ; Minahan, Joseph A.; Pereira, Raul

    2013-11-01

    We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

  13. Computing three-point functions for short operators

    Energy Technology Data Exchange (ETDEWEB)

    Bargheer, Till [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Minahan, Joseph A.; Pereira, Raul [Uppsala Univ. (Sweden). Dept. of Physics and Astronomy

    2013-11-15

    We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

  14. Can Computers Foster Human Users’ Creativity? Theory and Praxis of Mixed-Initiative Co-Creativity

    Directory of Open Access Journals (Sweden)

    Antonios Liapis

    2016-07-01

    Full Text Available This article discusses the impact of artificially intelligent computers to the process of design, play and educational activities. A computational process which has the necessary intelligence and creativity to take a proactive role in such activities can not only support human creativity but also foster it and prompt lateral thinking. The argument is made both from the perspective of human creativity, where the computational input is treated as an external stimulus which triggers re-framing of humans’ routines and mental associations, but also from the perspective of computational creativity where human input and initiative constrains the search space of the algorithm, enabling it to focus on specific possible solutions to a problem rather than globally search for the optimal. The article reviews four mixed-initiative tools (for design and educational play based on how they contribute to human-machine co-creativity. These paradigms serve different purposes, afford different human interaction methods and incorporate different computationally creative processes. Assessing how co-creativity is facilitated on a per-paradigm basis strengthens the theoretical argument and provides an initial seed for future work in the burgeoning domain of mixed-initiative interaction.

  15. Human agency beliefs influence behaviour during virtual social interactions

    Directory of Open Access Journals (Sweden)

    Nathan Caruana

    2017-09-01

    Full Text Available In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an “intentional stance” by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants’ behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative “joint attention” game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other’s eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm (“Computer” condition. The other half were misled into believing that the virtual character was controlled by a second participant in another room (“Human” condition. Those in the “Human” condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the “Computer” condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect

  16. New analytically solvable models of relativistic point interactions

    International Nuclear Information System (INIS)

    Gesztesy, F.; Seba, P.

    1987-01-01

    Two new analytically solvable models of relativistic point interactions in one dimension (being natural extensions of the nonrelativistic δ-resp, δ'-interaction) are considered. Their spectral properties in the case of finitely many point interactions as well as in the periodic case are fully analyzed. Moreover the spectrum is explicitely determined in the case of independent, identically distributed random coupling constants and the analog of the Saxon and Huther conjecture concerning gaps in the energy spectrum of such systems is derived

  17. Movement coordination in applied human-human and human-robot interaction

    DEFF Research Database (Denmark)

    Schubö, Anna; Vesper, Cordula; Wiesbeck, Mathey

    2007-01-01

    and describing human-human interaction in terms of goal-oriented movement coordination is considered an important and necessary step for designing and describing human-robot interaction. In the present scenario, trajectories of hand and finger movements were recorded while two human participants performed......The present paper describes a scenario for examining mechanisms of movement coordination in humans and robots. It is assumed that coordination can best be achieved when behavioral rules that shape movement execution in humans are also considered for human-robot interaction. Investigating...... coordination were affected. Implications for human-robot interaction are discussed....

  18. Proceedings of the 5th Danish Human-Computer Interaction Research Symposium

    DEFF Research Database (Denmark)

    Clemmensen, Torkil; Nielsen, Lene

    2005-01-01

    Lene Nielsen DEALING WITH REALITY - IN THEORY Gitte Skou PetersenA NEW IFIP WORKING GROUP - HUMAN WORK INTERACTION DESIGN Rikke Ørngreen, Torkil Clemmensen & Annelise Mark-Pejtersen CLASSIFICATION OF DESCRIPTIONS USED IN SOFTWARE AND INTERACTION DESIGN Georg Strøm OBSTACLES TO DESIGN IN VOLUNTEER BASED...... for the symposium, of which 14 were presented orally in four panel sessions. Previously the symposium has been held at University of Aarhus 2001, University of Copenhagen 2002, Roskilde University Center 2003, Aalborg University 2004. Torkil Clemmensen & Lene Nielsen Copenhagen, November 2005 CONTENT INTRODUCTION...

  19. Affective Computing and Intelligent Interaction

    CERN Document Server

    2012-01-01

    2012 International Conference on Affective Computing and Intelligent Interaction (ICACII 2012) was the most comprehensive conference focused on the various aspects of advances in Affective Computing and Intelligent Interaction. The conference provided a rare opportunity to bring together worldwide academic researchers and practitioners for exchanging the latest developments and applications in this field such as Intelligent Computing, Affective Computing, Machine Learning, Business Intelligence and HCI.   This volume is a collection of 119 papers selected from 410 submissions from universities and industries all over the world, based on their quality and relevancy to the conference. All of the papers have been peer-reviewed by selected experts.  

  20. Constructing a Computer Model of the Human Eye Based on Tissue Slice Images

    OpenAIRE

    Dai, Peishan; Wang, Boliang; Bao, Chunbo; Ju, Ying

    2010-01-01

    Computer simulation of the biomechanical and biological heat transfer in ophthalmology greatly relies on having a reliable computer model of the human eye. This paper proposes a novel method on the construction of a geometric model of the human eye based on tissue slice images. Slice images were obtained from an in vitro Chinese human eye through an embryo specimen processing methods. A level set algorithm was used to extract contour points of eye tissues while a principle component analysi...

  1. A review of over three decades of research on cat-human and human-cat interactions and relationships.

    Science.gov (United States)

    Turner, Dennis C

    2017-08-01

    This review article covers research conducted over the last three decades on cat-human and human-cat interactions and relationships, especially from an ethological point of view. It includes findings on cat-cat and cat-human communication, cat personalities and cat-owner personalities, the effects of cats on humans, and problems caused by cats. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Adaptive interaction a utility maximization approach to understanding human interaction with technology

    CERN Document Server

    Payne, Stephen J

    2013-01-01

    This lecture describes a theoretical framework for the behavioural sciences that holds high promise for theory-driven research and design in Human-Computer Interaction. The framework is designed to tackle the adaptive, ecological, and bounded nature of human behaviour. It is designed to help scientists and practitioners reason about why people choose to behave as they do and to explain which strategies people choose in response to utility, ecology, and cognitive information processing mechanisms. A key idea is that people choose strategies so as to maximise utility given constraints. The frame

  3. Design of a compact low-power human-computer interaction equipment for hand motion

    Science.gov (United States)

    Wu, Xianwei; Jin, Wenguang

    2017-01-01

    Human-Computer Interaction (HCI) raises demand of convenience, endurance, responsiveness and naturalness. This paper describes a design of a compact wearable low-power HCI equipment applied to gesture recognition. System combines multi-mode sense signals: the vision sense signal and the motion sense signal, and the equipment is equipped with the depth camera and the motion sensor. The dimension (40 mm × 30 mm) and structure is compact and portable after tight integration. System is built on a module layered framework, which contributes to real-time collection (60 fps), process and transmission via synchronous confusion with asynchronous concurrent collection and wireless Blue 4.0 transmission. To minimize equipment's energy consumption, system makes use of low-power components, managing peripheral state dynamically, switching into idle mode intelligently, pulse-width modulation (PWM) of the NIR LEDs of the depth camera and algorithm optimization by the motion sensor. To test this equipment's function and performance, a gesture recognition algorithm is applied to system. As the result presents, general energy consumption could be as low as 0.5 W.

  4. Interactive inverse kinematics for human motion estimation

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Hauberg, Søren; Lapuyade, Jerome

    2009-01-01

    We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion...... to significantly speed up the particle filtering. It should be stressed that the observation part of the system has not been our focus, and as such is described only from a sense of completeness. With our approach it is possible to construct a robust and computationally efficient system for human motion estimation....

  5. An effective dose assessment technique with NORM added consumer products using skin-point source on computational human phantom

    International Nuclear Information System (INIS)

    Yoo, Do Hyeon; Shin, Wook-Geun; Lee, Hyun Cheol; Choi, Hyun Joon; Testa, Mauro; Lee, Jae Kook; Yeom, Yeon Soo; Kim, Chan Hyeong; Min, Chul Hee

    2016-01-01

    The aim of this study is to develop the assessment technique of the effective dose by calculating the organ equivalent dose with a Monte Carlo (MC) simulation and a computational human phantom for the naturally occurring radioactive material (NORM) added consumer products. In this study, we suggests the method determining the MC source term based on the skin-point source enabling the convenient and conservative modeling of the various type of the products. To validate the skin-point source method, the organ equivalent doses were compared with that by the product modeling source of the realistic shape for the pillow, waist supporter, sleeping mattress etc. Our results show that according to the source location, the organ equivalent doses were observed as the similar tendency for both source determining methods, however, it was observed that the annual effective dose with the skin-point source was conservative than that with the modeling source with the maximum 3.3 times higher dose. With the assumption of the gamma energy of 1 MeV and product activity of 1 Bq g"−"1, the annual effective doses of the pillow, waist supporter and sleeping mattress with skin-point source was 3.09E-16 Sv Bq"−"1 year"−"1, 1.45E-15 Sv Bq"−"1 year"−"1, and 2,82E-16 Sv Bq"−"1 year"−"1, respectively, while the product modeling source showed 9.22E-17 Sv Bq"−"1 year"−"1, 9.29E-16 Sv Bq"−"1 year"−"1, and 8.83E-17 Sv Bq"−"1 year"−"1, respectively. In conclusion, it was demonstrated in this study that the skin-point source method could be employed to efficiently evaluate the annual effective dose due to the usage of the NORM added consumer products. - Highlights: • We evaluate the exposure dose from the usage of NORM added consumer products. • We suggest the method determining the MC source term based on the skin-point source. • To validate the skin-point source, the organ equivalent doses were compared with that the modeling source. • The skin-point source could

  6. Data Point Averaging for Computational Fluid Dynamics Data

    Science.gov (United States)

    Norman, Jr., David (Inventor)

    2016-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  7. HCI^2 Framework: A software framework for multimodal human-computer interaction systems

    NARCIS (Netherlands)

    Shen, Jie; Pantic, Maja

    2013-01-01

    This paper presents a novel software framework for the development and research in the area of multimodal human-computer interface (MHCI) systems. The proposed software framework, which is called the HCI∧2 Framework, is built upon publish/subscribe (P/S) architecture. It implements a

  8. Structural analysis of magnetic fusion energy systems in a combined interactive/batch computer environment

    International Nuclear Information System (INIS)

    Johnson, N.E.; Singhal, M.K.; Walls, J.C.; Gray, W.H.

    1979-01-01

    A system of computer programs has been developed to aid in the preparation of input data for and the evaluation of output data from finite element structural analyses of magnetic fusion energy devices. The system utilizes the NASTRAN structural analysis computer program and a special set of interactive pre- and post-processor computer programs, and has been designed for use in an environment wherein a time-share computer system is linked to a batch computer system. In such an environment, the analyst must only enter, review and/or manipulate data through interactive terminals linked to the time-share computer system. The primary pre-processor programs include NASDAT, NASERR and TORMAC. NASDAT and TORMAC are used to generate NASTRAN input data. NASERR performs routine error checks on this data. The NASTRAN program is run on a batch computer system using data generated by NASDAT and TORMAC. The primary post-processing programs include NASCMP and NASPOP. NASCMP is used to compress the data initially stored on magnetic tape by NASTRAN so as to facilitate interactive use of the data. NASPOP reads the data stored by NASCMP and reproduces NASTRAN output for selected grid points, elements and/or data types

  9. Photo-physical and structural interactions between viologen phosphorus-based dendrimers and human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Ciepluch, Karol, E-mail: ciepluch@biol.uni.lodz.pl [Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236 Lodz (Poland); Katir, Nadia [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 route de Narbonne, F-31077 Toulouse cedex 4 (France); Institute of Nanomaterials and Nanotechnology (INANOTECH)-MAScIR (Moroccan Foundation for Advanced Science, Innovation and Research), ENSET, Avenue de l' Armee Royale, Madinat El Irfane, 10100 Rabat (Morocco); El Kadib, Abdelkrim [Institute of Nanomaterials and Nanotechnology (INANOTECH)-MAScIR (Moroccan Foundation for Advanced Science, Innovation and Research), ENSET, Avenue de l' Armee Royale, Madinat El Irfane, 10100 Rabat (Morocco); Weber, Monika [Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236 Lodz (Poland); Caminade, Anne-Marie [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 route de Narbonne, F-31077 Toulouse cedex 4 (France); Bousmina, Mostapha [Hassan II Academy of Sciences and Technology, Avenue MVI, Km4, 10220 Rabat (Morocco); Pierre Majoral, Jean [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 route de Narbonne, F-31077 Toulouse cedex 4 (France); Hassan II Academy of Sciences and Technology, Avenue MVI, Km4, 10220 Rabat (Morocco); Bryszewska, Maria [Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236 Lodz (Poland)

    2012-06-15

    This work deals with photo-physical and structural interactions between viologen phosphorus dendrimers and human serum albumin (HSA). Viologens are derivatives of 4,4 Prime -bipyridinium salts. Aiming to rationalize the parameters governing such interactions eight types of these polycationic dendrimers in which the generation, the number of charges, the nature of the core and of the terminal groups vary from one to another, were designed and used. The influence of viologen-based dendrimers' on human serum albumin has been investigated. The photo-physical interactions of the two systems have been monitored by fluorescence quenching of free L-tryptophan and of HSA tryptophan residue. Additionally, using circular dichroism (CD) the effect of dendrimers on the secondary structure of albumin was measured. The obtained results show that viologen dendrimers interact with human serum albumin quenching its fluorescence either by collisional (dynamic) way or by forming complexes in a ground state (static quenching). In some cases the quenching is accompanied by changes of the secondary structure of HSA. - Highlights: Black-Right-Pointing-Pointer Photo-physical interactions between viologen phosphorus dendrimers and human serum albumin (HSA) were investigated. Black-Right-Pointing-Pointer The viologen dendrimers can quench the fluorescence of tryptophan in HSA. Black-Right-Pointing-Pointer CD spectra to explain the changes in secondary structure of albumin after exposition of dendrimers.

  10. Interactive Land-Use Optimization Using Laguerre Voronoi Diagram with Dynamic Generating Point Allocation

    Science.gov (United States)

    Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.

    2017-09-01

    In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.

  11. An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans.

    Science.gov (United States)

    Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen

    2018-06-01

    This work introduces an object-oriented computational model to study cardiopulmonary interactions in humans. Modeling was performed in object-oriented programing language Matlab Simscape, where model components are connected with each other through physical connections. Constitutive and phenomenological equations of model elements are implemented based on their non-linear pressure-volume or pressure-flow relationship. The model includes more than 30 physiological compartments, which belong either to the cardiovascular or respiratory system. The model considers non-linear behaviors of veins, pulmonary capillaries, collapsible airways, alveoli, and the chest wall. Model parameters were derisved based on literature values. Model validation was performed by comparing simulation results with clinical and animal data reported in literature. The model is able to provide quantitative values of alveolar, pleural, interstitial, aortic and ventricular pressures, as well as heart and lung volumes during spontaneous breathing and mechanical ventilation. Results of baseline simulation demonstrate the consistency of the assigned parameters. Simulation results during mechanical ventilation with PEEP trials can be directly compared with animal and clinical data given in literature. Object-oriented programming languages can be used to model interconnected systems including model non-linearities. The model provides a useful tool to investigate cardiopulmonary activity during spontaneous breathing and mechanical ventilation. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Human Computing in the Life Sciences: What does the future hold?

    NARCIS (Netherlands)

    Fikkert, F.W.

    2007-01-01

    In future computing environments you will be surrounded and supported by all kinds of technologies. Characteristic is that you can interact with them in a natural way: you can speak to, point at, or even frown about some piece of presented information: the environment understands your intent.

  13. A Physical Interaction Network of Dengue Virus and Human Proteins*

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D.; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S.; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J.; Perera, Rushika; LaCount, Douglas J.

    2011-01-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. PMID:21911577

  14. A physical interaction network of dengue virus and human proteins.

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J; Perera, Rushika; LaCount, Douglas J

    2011-12-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection.

  15. HumanComputer Systems Interaction Backgrounds and Applications 2 Part 1

    CERN Document Server

    Kulikowski, Juliusz; Mroczek, Teresa

    2012-01-01

    The main contemporary human-system interaction (H-SI) problems consist in design and/or improvement of the tools for effective exchange of information between individual humans or human groups and technical systems created for humans aiding in reaching their vital goals. This book is a second issue in a series devoted to the novel in H-SI results and contributions reached for the last years by many research groups in European and extra-European countries. The preliminary (usually shortened) versions of the chapters  were presented as conference papers at the 3rd International Conference on H-SI held in Rzeszow, Poland, in 2010. A  large number of valuable papers  selected for publication caused a necessity to publish the book in two volumes. The given, 1st Volume  consists of sections devoted to: I. Decision Supporting Systems, II. Distributed Knowledge Bases and WEB Systems and III. Impaired Persons  Aiding Systems. The decision supporting systems concern various application areas, like enterprises mana...

  16. BUILD-IT : a computer vision-based interaction technique for a planning tool

    NARCIS (Netherlands)

    Rauterberg, G.W.M.; Fjeld, M.; Krueger, H.; Bichsel, M.; Leonhardt, U.; Meier, M.; Thimbleby, H.; O'Conaill, B.; Thomas, P.J.

    1997-01-01

    Shows a method that goes beyond the established approaches of human-computer interaction. We first bring a serious critique of traditional interface types, showing their major drawbacks and limitations. Promising alternatives are offered by virtual (or immersive) reality (VR) and by augmented

  17. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  18. Vision-based interaction

    CERN Document Server

    Turk, Matthew

    2013-01-01

    In its early years, the field of computer vision was largely motivated by researchers seeking computational models of biological vision and solutions to practical problems in manufacturing, defense, and medicine. For the past two decades or so, there has been an increasing interest in computer vision as an input modality in the context of human-computer interaction. Such vision-based interaction can endow interactive systems with visual capabilities similar to those important to human-human interaction, in order to perceive non-verbal cues and incorporate this information in applications such

  19. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game.

    Science.gov (United States)

    Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.

  20. Human Pacman: A Mobile Augmented Reality Entertainment System Based on Physical, Social, and Ubiquitous Computing

    Science.gov (United States)

    Cheok, Adrian David

    This chapter details the Human Pacman system to illuminate entertainment computing which ventures to embed the natural physical world seamlessly with a fantasy virtual playground by capitalizing on infrastructure provided by mobile computing, wireless LAN, and ubiquitous computing. With Human Pacman, we have a physical role-playing computer fantasy together with real human-social and mobile-gaming that emphasizes on collaboration and competition between players in a wide outdoor physical area that allows natural wide-area human-physical movements. Pacmen and Ghosts are now real human players in the real world experiencing mixed computer graphics fantasy-reality provided by using the wearable computers on them. Virtual cookies and actual tangible physical objects are incorporated into the game play to provide novel experiences of seamless transitions between the real and virtual worlds. This is an example of a new form of gaming that anchors on physicality, mobility, social interaction, and ubiquitous computing.

  1. Human-technology interaction for standoff IED detection

    Science.gov (United States)

    Zhang, Evan; Zou, Yiyang; Zachrich, Liping; Fulton, Jack

    2011-03-01

    IEDs kill our soldiers and innocent people every day. Lessons learned from Iraq and Afghanistan clearly indicated that IEDs cannot be detected/defeated by technology alone; human-technology interaction must be engaged. In most cases, eye is the best detector, brain is the best computer, and technologies are tools, they must be used by human being properly then can achieve full functionality. In this paper, a UV Raman/fluorescence, CCD and LWIR 3 sensor fusion system for standoff IED detection and a handheld fusion system for close range IED detection are developed and demonstrated. We must train solders using their eyes or CCD/LWIR cameras to do wide area search while on the move to find small suspected area first then use the spectrometer because the laser spot is too small, to scan a one-mile long and 2-meter wide road needs 185 days although our fusion system can detect the IED in 30m with 1s interrogating time. Even if the small suspected area (e.g., 0.5mx0.5m) is found, human eyes still cannot detect the IED, soldiers must use or interact with the technology - laser based spectrometer to scan the area then they are able to detect and identify the IED in 10 minutes not 185 days. Therefore, the human-technology interaction approach will be the best solution for IED detection.

  2. Spatial computing in interactive architecture

    NARCIS (Netherlands)

    S.O. Dulman (Stefan); M. Krezer; L. Hovestad

    2014-01-01

    htmlabstractDistributed computing is the theoretical foundation for applications and technologies like interactive architecture, wearable computing, and smart materials. It evolves continuously, following needs rising from scientific developments, novel uses of technology, or simply the curiosity to

  3. Jean Claude Risset’s Duet for One Pianist: Challenges of a Real-Time Performance Interaction with a Computer-Controlled Acoustic Piano 16 Years Later

    Directory of Open Access Journals (Sweden)

    Sofia Lourenço

    2014-12-01

    Full Text Available This study aims to discuss the work Duet for one Pianist (1989 by the French composer Jean-Claude Risset (b. 13 March 1938 by analyzing the challenges of the music performance of this Computer-Aided Composition work Disklavier and implies Human-Computer Interaction performance. Extremely honored to perform the revised version of the 8 Sketches for One Pianist and Disklavier within a research project of CITAR and a new Sketch Reflections (2012 by Jean-Claude Risset dedicated to me in a World premiere in the closing ceremony of Black&White 2012 Film Festival promoted by the Catholic University of Portugal. Several issues on the performance of this work are analysed as a case-study, from the point of view of the performer, particularly the components of expressive performance in a real-time interaction between performer and computer. These components can work as analysis criteria of a piano interpretation, in here, of a pianist and Disklavier interpretation. 

  4. Child-Computer Interaction SIG

    DEFF Research Database (Denmark)

    Hourcade, Juan Pablo; Revelle, Glenda; Zeising, Anja

    2016-01-01

    This SIG will provide child-computer interaction researchers and practitioners an opportunity to discuss four topics that represent new challenges and opportunities for the community. The four areas are: interactive technologies for children under the age of five, technology for inclusion, privacy...... and information security in the age of the quantified self, and the maker movement....

  5. Computationally determining the salience of decision points for real-time wayfinding support

    Directory of Open Access Journals (Sweden)

    Makoto Takemiya

    2012-06-01

    Full Text Available This study introduces the concept of computational salience to explain the discriminatory efficacy of decision points, which in turn may have applications to providing real-time assistance to users of navigational aids. This research compared algorithms for calculating the computational salience of decision points and validated the results via three methods: high-salience decision points were used to classify wayfinders; salience scores were used to weight a conditional probabilistic scoring function for real-time wayfinder performance classification; and salience scores were correlated with wayfinding-performance metrics. As an exploratory step to linking computational and cognitive salience, a photograph-recognition experiment was conducted. Results reveal a distinction between algorithms useful for determining computational and cognitive saliences. For computational salience, information about the structural integration of decision points is effective, while information about the probability of decision-point traversal shows promise for determining cognitive salience. Limitations from only using structural information and motivations for future work that include non-structural information are elicited.

  6. Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations.

    Science.gov (United States)

    Hayes, Andrew F; Matthes, Jörg

    2009-08-01

    Researchers often hypothesize moderated effects, in which the effect of an independent variable on an outcome variable depends on the value of a moderator variable. Such an effect reveals itself statistically as an interaction between the independent and moderator variables in a model of the outcome variable. When an interaction is found, it is important to probe the interaction, for theories and hypotheses often predict not just interaction but a specific pattern of effects of the focal independent variable as a function of the moderator. This article describes the familiar pick-a-point approach and the much less familiar Johnson-Neyman technique for probing interactions in linear models and introduces macros for SPSS and SAS to simplify the computations and facilitate the probing of interactions in ordinary least squares and logistic regression. A script version of the SPSS macro is also available for users who prefer a point-and-click user interface rather than command syntax.

  7. Parametric Human Body Reconstruction Based on Sparse Key Points.

    Science.gov (United States)

    Cheng, Ke-Li; Tong, Ruo-Feng; Tang, Min; Qian, Jing-Ye; Sarkis, Michel

    2016-11-01

    We propose an automatic parametric human body reconstruction algorithm which can efficiently construct a model using a single Kinect sensor. A user needs to stand still in front of the sensor for a couple of seconds to measure the range data. The user's body shape and pose will then be automatically constructed in several seconds. Traditional methods optimize dense correspondences between range data and meshes. In contrast, our proposed scheme relies on sparse key points for the reconstruction. It employs regression to find the corresponding key points between the scanned range data and some annotated training data. We design two kinds of feature descriptors as well as corresponding regression stages to make the regression robust and accurate. Our scheme follows with dense refinement where a pre-factorization method is applied to improve the computational efficiency. Compared with other methods, our scheme achieves similar reconstruction accuracy but significantly reduces runtime.

  8. A Human-Centred Tangible approach to learning Computational Thinking

    Directory of Open Access Journals (Sweden)

    Tommaso Turchi

    2016-08-01

    Full Text Available Computational Thinking has recently become a focus of many teaching and research domains; it encapsulates those thinking skills integral to solving complex problems using a computer, thus being widely applicable in our society. It is influencing research across many disciplines and also coming into the limelight of education, mostly thanks to public initiatives such as the Hour of Code. In this paper we present our arguments for promoting Computational Thinking in education through the Human-centred paradigm of Tangible End-User Development, namely by exploiting objects whose interactions with the physical environment are mapped to digital actions performed on the system.

  9. Ghost-in-the-Machine reveals human social signals for human-robot interaction.

    Science.gov (United States)

    Loth, Sebastian; Jettka, Katharina; Giuliani, Manuel; de Ruiter, Jan P

    2015-01-01

    We used a new method called "Ghost-in-the-Machine" (GiM) to investigate social interactions with a robotic bartender taking orders for drinks and serving them. Using the GiM paradigm allowed us to identify how human participants recognize the intentions of customers on the basis of the output of the robotic recognizers. Specifically, we measured which recognizer modalities (e.g., speech, the distance to the bar) were relevant at different stages of the interaction. This provided insights into human social behavior necessary for the development of socially competent robots. When initiating the drink-order interaction, the most important recognizers were those based on computer vision. When drink orders were being placed, however, the most important information source was the speech recognition. Interestingly, the participants used only a subset of the available information, focussing only on a few relevant recognizers while ignoring others. This reduced the risk of acting on erroneous sensor data and enabled them to complete service interactions more swiftly than a robot using all available sensor data. We also investigated socially appropriate response strategies. In their responses, the participants preferred to use the same modality as the customer's requests, e.g., they tended to respond verbally to verbal requests. Also, they added redundancy to their responses, for instance by using echo questions. We argue that incorporating the social strategies discovered with the GiM paradigm in multimodal grammars of human-robot interactions improves the robustness and the ease-of-use of these interactions, and therefore provides a smoother user experience.

  10. Probability weighted ensemble transfer learning for predicting interactions between HIV-1 and human proteins.

    Directory of Open Access Journals (Sweden)

    Suyu Mei

    Full Text Available Reconstruction of host-pathogen protein interaction networks is of great significance to reveal the underlying microbic pathogenesis. However, the current experimentally-derived networks are generally small and should be augmented by computational methods for less-biased biological inference. From the point of view of computational modelling, data scarcity, data unavailability and negative data sampling are the three major problems for host-pathogen protein interaction networks reconstruction. In this work, we are motivated to address the three concerns and propose a probability weighted ensemble transfer learning model for HIV-human protein interaction prediction (PWEN-TLM, where support vector machine (SVM is adopted as the individual classifier of the ensemble model. In the model, data scarcity and data unavailability are tackled by homolog knowledge transfer. The importance of homolog knowledge is measured by the ROC-AUC metric of the individual classifiers, whose outputs are probability weighted to yield the final decision. In addition, we further validate the assumption that only the homolog knowledge is sufficient to train a satisfactory model for host-pathogen protein interaction prediction. Thus the model is more robust against data unavailability with less demanding data constraint. As regards with negative data construction, experiments show that exclusiveness of subcellular co-localized proteins is unbiased and more reliable than random sampling. Last, we conduct analysis of overlapped predictions between our model and the existing models, and apply the model to novel host-pathogen PPIs recognition for further biological research.

  11. Precision of Points Computed from Intersections of Lines or Planes

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2004-01-01

    estimates the precision of the points. When using laser scanning a similar problem appears. A laser scanner captures a 3-D point cloud, not the points of real interest. The suggested method can be used to compute three-dimensional coordinates of the intersection of three planes estimated from the point...

  12. Interaction of promethazine and adiphenine to human hemoglobin: A comparative spectroscopic and computational analysis

    Science.gov (United States)

    Maurya, Neha; ud din Parray, Mehraj; Maurya, Jitendra Kumar; Kumar, Amit; Patel, Rajan

    2018-06-01

    The binding nature of amphiphilic drugs viz. promethazine hydrochloride (PMT) and adiphenine hydrochloride (ADP), with human hemoglobin (Hb) was unraveled by fluorescence, absorbance, time resolved fluorescence, fluorescence resonance energy transfer (FRET) and circular dichroism (CD) spectral techniques in combination with molecular docking and molecular dynamic simulation methods. The steady state fluorescence spectra indicated that both PMT and ADP quenches the fluorescence of Hb through static quenching mechanism which was further confirmed by time resolved fluorescence spectra. The UV-Vis spectroscopy suggested ground state complex formation. The activation energy (Ea) was observed more in the case of Hb-ADP than Hb-PMT interaction system. The FRET result indicates the high probability of energy transfer from β Trp37 residue of Hb to the PMT (r = 2.02 nm) and ADP (r = 2.33 nm). The thermodynamic data reveal that binding of PMT with Hb are exothermic in nature involving hydrogen bonding and van der Waal interaction whereas in the case of ADP hydrophobic forces play the major role and binding process is endothermic in nature. The CD results show that both PMT and ADP, induced secondary structural changes of Hb and unfold the protein by losing a large helical content while the effect is more pronounced with ADP. Additionally, we also utilized computational approaches for deep insight into the binding of these drugs with Hb and the results are well matched with our experimental results.

  13. Wrapping interactions and the genus expansion of the 2-point function of composite operators

    International Nuclear Information System (INIS)

    Sieg, Christoph; Torrielli, Alessandro

    2005-01-01

    We perform a systematic analysis of wrapping interactions for a general class of theories with color degrees of freedom, including N=4 SYM. Wrapping interactions arise in the genus expansion of the 2-point function of composite operators as finite size effects that start to appear at a certain order in the coupling constant at which the range of the interaction is equal to the length of the operators. We analyze in detail the relevant genus expansions, and introduce a strategy to single out the wrapping contributions, based on adding spectator fields. We use a toy model to demonstrate our procedure, performing all computations explicitly. Although completely general, our treatment should be particularly useful for applications to the recent problem of wrapping contributions in some checks of the AdS/CFT correspondence

  14. Floating-point geometry: toward guaranteed geometric computations with approximate arithmetics

    Science.gov (United States)

    Bajard, Jean-Claude; Langlois, Philippe; Michelucci, Dominique; Morin, Géraldine; Revol, Nathalie

    2008-08-01

    Geometric computations can fail because of inconsistencies due to floating-point inaccuracy. For instance, the computed intersection point between two curves does not lie on the curves: it is unavoidable when the intersection point coordinates are non rational, and thus not representable using floating-point arithmetic. A popular heuristic approach tests equalities and nullities up to a tolerance ɛ. But transitivity of equality is lost: we can have A approx B and B approx C, but A not approx C (where A approx B means ||A - B|| < ɛ for A,B two floating-point values). Interval arithmetic is another, self-validated, alternative; the difficulty is to limit the swell of the width of intervals with computations. Unfortunately interval arithmetic cannot decide equality nor nullity, even in cases where it is decidable by other means. A new approach, developed in this paper, consists in modifying the geometric problems and algorithms, to account for the undecidability of the equality test and unavoidable inaccuracy. In particular, all curves come with a non-zero thickness, so two curves (generically) cut in a region with non-zero area, an inner and outer representation of which is computable. This last approach no more assumes that an equality or nullity test is available. The question which arises is: which geometric problems can still be solved with this last approach, and which cannot? This paper begins with the description of some cases where every known arithmetic fails in practice. Then, for each arithmetic, some properties of the problems they can solve are given. We end this work by proposing the bases of a new approach which aims to fulfill the geometric computations requirements.

  15. Teaching Experience: How to Make and Use PowerPoint-Based Interactive Simulations for Undergraduate IR Teaching

    Science.gov (United States)

    Meibauer, Gustav; Aagaard Nøhr, Andreas

    2018-01-01

    This article is about designing and implementing PowerPoint-based interactive simulations for use in International Relations (IR) introductory undergraduate classes based on core pedagogical literature, models of human skill acquisition, and previous research on simulations in IR teaching. We argue that simulations can be usefully employed at the…

  16. Characterization of human-dog social interaction using owner report.

    Science.gov (United States)

    Lit, Lisa; Schweitzer, Julie B; Oberbauer, Anita M

    2010-07-01

    Dog owners were surveyed for observations of social behaviors in their dogs, using questions adapted from the human Autism Diagnostic Observation Schedule (ADOS) pre-verbal module. Using 939 responses for purebred and mixed-breed dogs, three factors were identified: initiation of reciprocal social behaviors (INIT), response to social interactions (RSPNS), and communication (COMM). There were small or no effects of sex, age, breed group or training. For six breeds with more than 35 responses (Border Collie, Rough Collie, German Shepherd, Golden Retriever, Labrador Retriever, Standard Poodle), the behaviors eye contact with humans, enjoyment in interactions with human interaction, and name recognition demonstrated little variability across breeds, while asking for objects, giving/showing objects to humans, and attempts to direct humans' attention showed higher variability across these breeds. Breeds with genetically similar backgrounds had similar response distributions for owner reports of dog response to pointing. When considering these breeds according to the broad categories of "herders" and "retrievers," owners reported that the "herders" used more eye contact and vocalization, while the "retrievers" used more body contact. Information regarding social cognitive abilities in dogs provided by owner report suggest that there is variability across many social cognitive abilities in dogs and offers direction for further experimental investigations. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Spatially Uniform ReliefF (SURF for computationally-efficient filtering of gene-gene interactions

    Directory of Open Access Journals (Sweden)

    Greene Casey S

    2009-09-01

    Full Text Available Abstract Background Genome-wide association studies are becoming the de facto standard in the genetic analysis of common human diseases. Given the complexity and robustness of biological networks such diseases are unlikely to be the result of single points of failure but instead likely arise from the joint failure of two or more interacting components. The hope in genome-wide screens is that these points of failure can be linked to single nucleotide polymorphisms (SNPs which confer disease susceptibility. Detecting interacting variants that lead to disease in the absence of single-gene effects is difficult however, and methods to exhaustively analyze sets of these variants for interactions are combinatorial in nature thus making them computationally infeasible. Efficient algorithms which can detect interacting SNPs are needed. ReliefF is one such promising algorithm, although it has low success rate for noisy datasets when the interaction effect is small. ReliefF has been paired with an iterative approach, Tuned ReliefF (TuRF, which improves the estimation of weights in noisy data but does not fundamentally change the underlying ReliefF algorithm. To improve the sensitivity of studies using these methods to detect small effects we introduce Spatially Uniform ReliefF (SURF. Results SURF's ability to detect interactions in this domain is significantly greater than that of ReliefF. Similarly SURF, in combination with the TuRF strategy significantly outperforms TuRF alone for SNP selection under an epistasis model. It is important to note that this success rate increase does not require an increase in algorithmic complexity and allows for increased success rate, even with the removal of a nuisance parameter from the algorithm. Conclusion Researchers performing genetic association studies and aiming to discover gene-gene interactions associated with increased disease susceptibility should use SURF in place of ReliefF. For instance, SURF should be

  18. Optimal design methods for a digital human-computer interface based on human reliability in a nuclear power plant

    International Nuclear Information System (INIS)

    Jiang, Jianjun; Zhang, Li; Xie, Tian; Wu, Daqing; Li, Min; Wang, Yiqun; Peng, Yuyuan; Peng, Jie; Zhang, Mengjia; Li, Peiyao; Ma, Congmin; Wu, Xing

    2017-01-01

    Highlights: • A complete optimization process is established for digital human-computer interfaces of Npps. • A quick convergence search method is proposed. • The authors propose an affinity error probability mapping function to test human reliability. - Abstract: This is the second in a series of papers describing the optimal design method for a digital human-computer interface of nuclear power plant (Npp) from three different points based on human reliability. The purpose of this series is to explore different optimization methods from varying perspectives. This present paper mainly discusses the optimal design method for quantity of components of the same factor. In monitoring process, quantity of components has brought heavy burden to operators, thus, human errors are easily triggered. To solve the problem, the authors propose an optimization process, a quick convergence search method and an affinity error probability mapping function. Two balanceable parameter values of the affinity error probability function are obtained by experiments. The experimental results show that the affinity error probability mapping function about human-computer interface has very good sensitivity and stability, and that quick convergence search method for fuzzy segments divided by component quantity has better performance than general algorithm.

  19. Energy-dependent point interactions in one dimension

    International Nuclear Information System (INIS)

    Coutinho, F A B; Nogami, Y; Tomio, Lauro; Toyama, F M

    2005-01-01

    We consider a new type of point interaction in one-dimensional quantum mechanics. It is characterized by a boundary condition at the origin that involves the second and/or higher order derivatives of the wavefunction. The interaction is effectively energy dependent. It leads to a unitary S-matrix for the transmission-reflection problem. The energy dependence of the interaction can be chosen such that any given unitary S-matrix (or the transmission and reflection coefficients) can be reproduced at all energies. Generalization of the results to coupled-channel cases is discussed

  20. When computers were human

    CERN Document Server

    Grier, David Alan

    2013-01-01

    Before Palm Pilots and iPods, PCs and laptops, the term ""computer"" referred to the people who did scientific calculations by hand. These workers were neither calculating geniuses nor idiot savants but knowledgeable people who, in other circumstances, might have become scientists in their own right. When Computers Were Human represents the first in-depth account of this little-known, 200-year epoch in the history of science and technology. Beginning with the story of his own grandmother, who was trained as a human computer, David Alan Grier provides a poignant introduction to the wider wo

  1. Safety Metrics for Human-Computer Controlled Systems

    Science.gov (United States)

    Leveson, Nancy G; Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  2. Bayesian Modeling for Identification and Estimation of the Learning Effects of Pointing Tasks

    Science.gov (United States)

    Kyo, Koki

    Recently, in the field of human-computer interaction, a model containing the systematic factor and human factor has been proposed to evaluate the performance of the input devices of a computer. This is called the SH-model. In this paper, in order to extend the range of application of the SH-model, we propose some new models based on the Box-Cox transformation and apply a Bayesian modeling method for identification and estimation of the learning effects of pointing tasks. We consider the parameters describing the learning effect as random variables and introduce smoothness priors for them. Illustrative results show that the newly-proposed models work well.

  3. Program computes single-point failures in critical system designs

    Science.gov (United States)

    Brown, W. R.

    1967-01-01

    Computer program analyzes the designs of critical systems that will either prove the design is free of single-point failures or detect each member of the population of single-point failures inherent in a system design. This program should find application in the checkout of redundant circuits and digital systems.

  4. AirDraw: Leveraging Smart Watch Motion Sensors for Mobile Human Computer Interactions

    OpenAIRE

    Sajjadi, Seyed A; Moazen, Danial; Nahapetian, Ani

    2017-01-01

    Wearable computing is one of the fastest growing technologies today. Smart watches are poised to take over at least of half the wearable devices market in the near future. Smart watch screen size, however, is a limiting factor for growth, as it restricts practical text input. On the other hand, wearable devices have some features, such as consistent user interaction and hands-free, heads-up operations, which pave the way for gesture recognition methods of text entry. This paper proposes a new...

  5. Computer-based personality judgments are more accurate than those made by humans.

    Science.gov (United States)

    Youyou, Wu; Kosinski, Michal; Stillwell, David

    2015-01-27

    Judging others' personalities is an essential skill in successful social living, as personality is a key driver behind people's interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants' Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy.

  6. Computation as Medium

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance

    2017-01-01

    Artists increasingly utilize computational tools to generate art works. Computational approaches to art making open up new ways of thinking about agency in interactive art because they invite participation and allow for unpredictable outcomes. Computational art is closely linked...... to the participatory turn in visual art, wherein spectators physically participate in visual art works. Unlike purely physical methods of interaction, computer assisted interactivity affords artists and spectators more nuanced control of artistic outcomes. Interactive art brings together human bodies, computer code......, and nonliving objects to create emergent art works. Computation is more than just a tool for artists, it is a medium for investigating new aesthetic possibilities for choreography and composition. We illustrate this potential through two artistic projects: an improvisational dance performance between a human...

  7. Ubiquitous human computing.

    Science.gov (United States)

    Zittrain, Jonathan

    2008-10-28

    Ubiquitous computing means network connectivity everywhere, linking devices and systems as small as a drawing pin and as large as a worldwide product distribution chain. What could happen when people are so readily networked? This paper explores issues arising from two possible emerging models of ubiquitous human computing: fungible networked brainpower and collective personal vital sign monitoring.

  8. Human Sirtuin 2 Localization, Transient Interactions, and Impact on the Proteome Point to Its Role in Intracellular Trafficking.

    Science.gov (United States)

    Budayeva, Hanna G; Cristea, Ileana M

    2016-10-01

    Human sirtuin 2 (SIRT2) is an NAD + -dependent deacetylase that primarily functions in the cytoplasm, where it can regulate α-tubulin acetylation levels. SIRT2 is linked to cancer progression, neurodegeneration, and infection with bacteria or viruses. However, the current knowledge about its interactions and the means through which it exerts its functions has remained limited. Here, we aimed to gain a better understanding of its cellular functions by characterizing SIRT2 subcellular localization, the identity and relative stability of its protein interactions, and its impact on the proteome of primary human fibroblasts. To assess the relative stability of SIRT2 interactions, we used immunoaffinity purification in conjunction with both label-free and metabolic labeling quantitative mass spectrometry. In addition to the expected associations with cytoskeleton proteins, including its known substrate TUBA1A, our results reveal that SIRT2 specifically interacts with proteins functioning in membrane trafficking, secretory processes, and transcriptional regulation. By quantifying their relative stability, we found most interactions to be transient, indicating a dynamic SIRT2 environment. We discover that SIRT2 localizes to the ER-Golgi intermediate compartment (ERGIC), and that this recruitment requires an intact ER-Golgi trafficking pathway. Further expanding these findings, we used microscopy and interaction assays to establish the interaction and coregulation of SIRT2 with liprin-β1 scaffolding protein (PPFiBP1), a protein with roles in focal adhesions disassembly. As SIRT2 functions may be accomplished via interactions, enzymatic activity, and transcriptional regulation, we next assessed the impact of SIRT2 levels on the cellular proteome. SIRT2 knockdown led to changes in the levels of proteins functioning in membrane trafficking, including some of its interaction partners. Altogether, our study expands the knowledge of SIRT2 cytoplasmic functions to define a

  9. Hi-Jack: a novel computational framework for pathway-based inference of host–pathogen interactions

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2015-03-09

    Motivation: Pathogens infect their host and hijack the host machinery to produce more progeny pathogens. Obligate intracellular pathogens, in particular, require resources of the host to replicate. Therefore, infections by these pathogens lead to alterations in the metabolism of the host, shifting in favor of pathogen protein production. Some computational identification of mechanisms of host-pathogen interactions have been proposed, but it seems the problem has yet to be approached from the metabolite-hijacking angle. Results: We propose a novel computational framework, Hi-Jack, for inferring pathway-based interactions between a host and a pathogen that relies on the idea of metabolite hijacking. Hi-Jack searches metabolic network data from hosts and pathogens, and identifies candidate reactions where hijacking occurs. A novel scoring function ranks candidate hijacked reactions and identifies pathways in the host that interact with pathways in the pathogen, as well as the associated frequent hijacked metabolites. We also describe host-pathogen interaction principles that can be used in the future for subsequent studies. Our case study on Mycobacterium tuberculosis (Mtb) revealed pathways in human-e.g. carbohydrate metabolism, lipids metabolism and pathways related to amino acids metabolism-that are likely to be hijacked by the pathogen. In addition, we report interesting potential pathway interconnections between human and Mtb such as linkage of human fatty acid biosynthesis with Mtb biosynthesis of unsaturated fatty acids, or linkage of human pentose phosphate pathway with lipopolysaccharide biosynthesis in Mtb. © The Author 2015. Published by Oxford University Press. All rights reserved.

  10. Redesign of a computerized clinical reminder for colorectal cancer screening: a human-computer interaction evaluation

    Directory of Open Access Journals (Sweden)

    Saleem Jason J

    2011-11-01

    Full Text Available Abstract Background Based on barriers to the use of computerized clinical decision support (CDS learned in an earlier field study, we prototyped design enhancements to the Veterans Health Administration's (VHA's colorectal cancer (CRC screening clinical reminder to compare against the VHA's current CRC reminder. Methods In a controlled simulation experiment, 12 primary care providers (PCPs used prototypes of the current and redesigned CRC screening reminder in a within-subject comparison. Quantitative measurements were based on a usability survey, workload assessment instrument, and workflow integration survey. We also collected qualitative data on both designs. Results Design enhancements to the VHA's existing CRC screening clinical reminder positively impacted aspects of usability and workflow integration but not workload. The qualitative analysis revealed broad support across participants for the design enhancements with specific suggestions for improving the reminder further. Conclusions This study demonstrates the value of a human-computer interaction evaluation in informing the redesign of information tools to foster uptake, integration into workflow, and use in clinical practice.

  11. Computer utility for interactive instrument control

    International Nuclear Information System (INIS)

    Day, P.

    1975-08-01

    A careful study of the ANL laboratory automation needs in 1967 led to the conclusion that a central computer could support all of the real-time needs of a diverse collection of research instruments. A suitable hardware configuration would require an operating system to provide effective protection, fast real-time response and efficient data transfer. An SDS Sigma 5 satisfied all hardware criteria, however it was necessary to write an original operating system; services include program generation, experiment control real-time analysis, interactive graphics and final analysis. The system is providing real-time support for 21 concurrently running experiments, including an automated neutron diffractometer, a pulsed NMR spectrometer and multi-particle detection systems. It guarantees the protection of each user's interests and dynamically assigns core memory, disk space and 9-track magnetic tape usage. Multiplexor hardware capability allows the transfer of data between a user's device and assigned core area at rates of 100,000 bytes/sec. Real-time histogram generation for a user can proceed at rates of 50,000 points/sec. The facility has been self-running (no computer operator) for five years with a mean time between failures of 10 []ays and an uptime of 157 hours/week. (auth)

  12. Contact Estimation in Robot Interaction

    Directory of Open Access Journals (Sweden)

    Filippo D'Ippolito

    2014-07-01

    Full Text Available In the paper, safety issues are examined in a scenario in which a robot manipulator and a human perform the same task in the same workspace. During the task execution, the human should be able to physically interact with the robot, and in this case an estimation algorithm for both interaction forces and a contact point is proposed in order to guarantee safety conditions. The method, starting from residual joint torque estimation, allows both direct and adaptive computation of the contact point and force, based on a principle of equivalence of the contact forces. At the same time, all the unintended contacts must be avoided, and a suitable post-collision strategy is considered to move the robot away from the collision area or else to reduce impact effects. Proper experimental tests have demonstrated the applicability in practice of both the post-impact strategy and the estimation algorithms; furthermore, experiments demonstrate the different behaviour resulting from the adaptation of the contact point as opposed to direct calculation.

  13. Octopuses use a human-like strategy to control precise point-to-point arm movements.

    Science.gov (United States)

    Sumbre, Germán; Fiorito, Graziano; Flash, Tamar; Hochner, Binyamin

    2006-04-18

    One of the key problems in motor control is mastering or reducing the number of degrees of freedom (DOFs) through coordination. This problem is especially prominent with hyper-redundant limbs such as the extremely flexible arm of the octopus. Several strategies for simplifying these control problems have been suggested for human point-to-point arm movements. Despite the evolutionary gap and morphological differences, humans and octopuses evolved similar strategies when fetching food to the mouth. To achieve this precise point-to-point-task, octopus arms generate a quasi-articulated structure based on three dynamic joints. A rotational movement around these joints brings the object to the mouth . Here, we describe a peripheral neural mechanism-two waves of muscle activation propagate toward each other, and their collision point sets the medial-joint location. This is a remarkably simple mechanism for adjusting the length of the segments according to where the object is grasped. Furthermore, similar to certain human arm movements, kinematic invariants were observed at the joint level rather than at the end-effector level, suggesting intrinsic control coordination. The evolutionary convergence to similar geometrical and kinematic features suggests that a kinematically constrained articulated limb controlled at the level of joint space is the optimal solution for precise point-to-point movements.

  14. Advanced human machine interaction for an image interpretation workstation

    Science.gov (United States)

    Maier, S.; Martin, M.; van de Camp, F.; Peinsipp-Byma, E.; Beyerer, J.

    2016-05-01

    In recent years, many new interaction technologies have been developed that enhance the usability of computer systems and allow for novel types of interaction. The areas of application for these technologies have mostly been in gaming and entertainment. However, in professional environments, there are especially demanding tasks that would greatly benefit from improved human machine interfaces as well as an overall improved user experience. We, therefore, envisioned and built an image-interpretation-workstation of the future, a multi-monitor workplace comprised of four screens. Each screen is dedicated to a complex software product such as a geo-information system to provide geographic context, an image annotation tool, software to generate standardized reports and a tool to aid in the identification of objects. Using self-developed systems for hand tracking, pointing gestures and head pose estimation in addition to touchscreens, face identification, and speech recognition systems we created a novel approach to this complex task. For example, head pose information is used to save the position of the mouse cursor on the currently focused screen and to restore it as soon as the same screen is focused again while hand gestures allow for intuitive manipulation of 3d objects in mid-air. While the primary focus is on the task of image interpretation, all of the technologies involved provide generic ways of efficiently interacting with a multi-screen setup and could be utilized in other fields as well. In preliminary experiments, we received promising feedback from users in the military and started to tailor the functionality to their needs

  15. Ontology for assessment studies of human-computer-interaction in surgery.

    Science.gov (United States)

    Machno, Andrej; Jannin, Pierre; Dameron, Olivier; Korb, Werner; Scheuermann, Gerik; Meixensberger, Jürgen

    2015-02-01

    New technologies improve modern medicine, but may result in unwanted consequences. Some occur due to inadequate human-computer-interactions (HCI). To assess these consequences, an investigation model was developed to facilitate the planning, implementation and documentation of studies for HCI in surgery. The investigation model was formalized in Unified Modeling Language and implemented as an ontology. Four different top-level ontologies were compared: Object-Centered High-level Reference, Basic Formal Ontology, General Formal Ontology (GFO) and Descriptive Ontology for Linguistic and Cognitive Engineering, according to the three major requirements of the investigation model: the domain-specific view, the experimental scenario and the representation of fundamental relations. Furthermore, this article emphasizes the distinction of "information model" and "model of meaning" and shows the advantages of implementing the model in an ontology rather than in a database. The results of the comparison show that GFO fits the defined requirements adequately: the domain-specific view and the fundamental relations can be implemented directly, only the representation of the experimental scenario requires minor extensions. The other candidates require wide-ranging extensions, concerning at least one of the major implementation requirements. Therefore, the GFO was selected to realize an appropriate implementation of the developed investigation model. The ensuing development considered the concrete implementation of further model aspects and entities: sub-domains, space and time, processes, properties, relations and functions. The investigation model and its ontological implementation provide a modular guideline for study planning, implementation and documentation within the area of HCI research in surgery. This guideline helps to navigate through the whole study process in the form of a kind of standard or good clinical practice, based on the involved foundational frameworks

  16. A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.

    Science.gov (United States)

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human-robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

  17. The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

    KAUST Repository

    Theofilatos, Konstantinos A.

    2013-07-12

    Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, cal-culatesasetoffeaturesofinterest and computesaconfidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.

  18. Extending NGOMSL Model for Human-Humanoid Robot Interaction in the Soccer Robotics Domain

    Directory of Open Access Journals (Sweden)

    Rajesh Elara Mohan

    2008-01-01

    Full Text Available In the field of human-computer interaction, the Natural Goals, Operators, Methods, and Selection rules Language (NGOMSL model is one of the most popular methods for modelling knowledge and cognitive processes for rapid usability evaluation. The NGOMSL model is a description of the knowledge that a user must possess to operate the system represented as elementary actions for effective usability evaluations. In the last few years, mobile robots have been exhibiting a stronger presence in commercial markets and very little work has been done with NGOMSL modelling for usability evaluations in the human-robot interaction discipline. This paper focuses on extending the NGOMSL model for usability evaluation of human-humanoid robot interaction in the soccer robotics domain. The NGOMSL modelled human-humanoid interaction design of Robo-Erectus Junior was evaluated and the results of the experiments showed that the interaction design was able to find faults in an average time of 23.84 s. Also, the interaction design was able to detect the fault within the 60 s in 100% of the cases. The Evaluated Interaction design was adopted by our Robo-Erectus Junior version of humanoid robots in the RoboCup 2007 humanoid soccer league.

  19. After-effects of human-computer interaction indicated by P300 of the event-related brain potential.

    Science.gov (United States)

    Trimmel, M; Huber, R

    1998-05-01

    After-effects of human-computer interaction (HCI) were investigated by using the P300 component of the event-related brain potential (ERP). Forty-nine subjects (naive non-users, beginners, experienced users, programmers) completed three paper/pencil tasks (text editing, solving intelligence test items, filling out a questionnaire on sensation seeking) and three HCI tasks (text editing, executing a tutor program or programming, playing Tetris). The sequence of 7-min tasks was randomized between subjects and balanced between groups. After each experimental condition ERPs were recorded during an acoustic discrimination task at F3, F4, Cz, P3 and P4. Data indicate that: (1) mental after-effects of HCI can be detected by P300 of the ERP; (2) HCI showed in general a reduced amplitude; (3) P300 amplitude varied also with type of task, mainly at F4 where it was smaller after cognitive tasks (intelligence test/programming) and larger after emotion-based tasks (sensation seeking/Tetris); (4) cognitive tasks showed shorter latencies; (5) latencies were widely location-independent (within the range of 356-358 ms at F3, F4, P3 and P4) after executing the tutor program or programming; and (6) all observed after-effects were independent of the user's experience in operating computers and may therefore reflect short-term after-effects only and no structural changes of information processing caused by HCI.

  20. Human Computing and Machine Understanding of Human Behavior: A Survey

    NARCIS (Netherlands)

    Pantic, Maja; Pentland, Alex; Nijholt, Antinus; Huang, Thomas; Quek, F.; Yang, Yie

    2006-01-01

    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should

  1. Simulating human behavior for national security human interactions.

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Michael Lewis; Hart, Dereck H.; Verzi, Stephen J.; Glickman, Matthew R.; Wolfenbarger, Paul R.; Xavier, Patrick Gordon

    2007-01-01

    This 3-year research and development effort focused on what we believe is a significant technical gap in existing modeling and simulation capabilities: the representation of plausible human cognition and behaviors within a dynamic, simulated environment. Specifically, the intent of the ''Simulating Human Behavior for National Security Human Interactions'' project was to demonstrate initial simulated human modeling capability that realistically represents intra- and inter-group interaction behaviors between simulated humans and human-controlled avatars as they respond to their environment. Significant process was made towards simulating human behaviors through the development of a framework that produces realistic characteristics and movement. The simulated humans were created from models designed to be psychologically plausible by being based on robust psychological research and theory. Progress was also made towards enhancing Sandia National Laboratories existing cognitive models to support culturally plausible behaviors that are important in representing group interactions. These models were implemented in the modular, interoperable, and commercially supported Umbra{reg_sign} simulation framework.

  2. A Single Camera Motion Capture System for Human-Computer Interaction

    Science.gov (United States)

    Okada, Ryuzo; Stenger, Björn

    This paper presents a method for markerless human motion capture using a single camera. It uses tree-based filtering to efficiently propagate a probability distribution over poses of a 3D body model. The pose vectors and associated shapes are arranged in a tree, which is constructed by hierarchical pairwise clustering, in order to efficiently evaluate the likelihood in each frame. Anew likelihood function based on silhouette matching is proposed that improves the pose estimation of thinner body parts, i. e. the limbs. The dynamic model takes self-occlusion into account by increasing the variance of occluded body-parts, thus allowing for recovery when the body part reappears. We present two applications of our method that work in real-time on a Cell Broadband Engine™: a computer game and a virtual clothing application.

  3. 2012 International Conference on Human-centric Computing

    CERN Document Server

    Jin, Qun; Yeo, Martin; Hu, Bin; Human Centric Technology and Service in Smart Space, HumanCom 2012

    2012-01-01

    The theme of HumanCom is focused on the various aspects of human-centric computing for advances in computer science and its applications and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of human-centric computing. In addition, the conference will publish high quality papers which are closely related to the various theories and practical applications in human-centric computing. Furthermore, we expect that the conference and its publications will be a trigger for further related research and technology improvements in this important subject.

  4. Genomic cloud computing: legal and ethical points to consider.

    Science.gov (United States)

    Dove, Edward S; Joly, Yann; Tassé, Anne-Marie; Knoppers, Bartha M

    2015-10-01

    The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key 'points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These 'points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure.

  5. Why E-Business Must Evolve beyond Market Orientation: Applying Human Interaction Models to Computer-Mediated Corporate Communications.

    Science.gov (United States)

    Johnston, Kevin McCullough

    2001-01-01

    Considers the design of corporate communications for electronic business and discusses the increasing importance of corporate interaction as companies work in virtual environments. Compares sociological and psychological theories of human interaction and relationship formation with organizational interaction theories of corporate relationship…

  6. Quantifying human-environment interactions using videography in the context of infectious disease transmission.

    Science.gov (United States)

    Julian, Timothy R; Bustos, Carla; Kwong, Laura H; Badilla, Alejandro D; Lee, Julia; Bischel, Heather N; Canales, Robert A

    2018-05-08

    Quantitative data on human-environment interactions are needed to fully understand infectious disease transmission processes and conduct accurate risk assessments. Interaction events occur during an individual's movement through, and contact with, the environment, and can be quantified using diverse methodologies. Methods that utilize videography, coupled with specialized software, can provide a permanent record of events, collect detailed interactions in high resolution, be reviewed for accuracy, capture events difficult to observe in real-time, and gather multiple concurrent phenomena. In the accompanying video, the use of specialized software to capture humanenvironment interactions for human exposure and disease transmission is highlighted. Use of videography, combined with specialized software, allows for the collection of accurate quantitative representations of human-environment interactions in high resolution. Two specialized programs include the Virtual Timing Device for the Personal Computer, which collects sequential microlevel activity time series of contact events and interactions, and LiveTrak, which is optimized to facilitate annotation of events in real-time. Opportunities to annotate behaviors at high resolution using these tools are promising, permitting detailed records that can be summarized to gain information on infectious disease transmission and incorporated into more complex models of human exposure and risk.

  7. The Self-Organization of Human Interaction

    DEFF Research Database (Denmark)

    Dale, Rick; Fusaroli, Riccardo; Duran, Nicholas

    2013-01-01

    We describe a “centipede’s dilemma” that faces the sciences of human interaction. Research on human interaction has been involved in extensive theoretical debate, although the vast majority of research tends to focus on a small set of human behaviors, cognitive processes, and interactive contexts...

  8. Rhythm Patterns Interaction - Synchronization Behavior for Human-Robot Joint Action

    Science.gov (United States)

    Mörtl, Alexander; Lorenz, Tamara; Hirche, Sandra

    2014-01-01

    Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans. PMID:24752212

  9. Computer-based personality judgments are more accurate than those made by humans

    Science.gov (United States)

    Youyou, Wu; Kosinski, Michal; Stillwell, David

    2015-01-01

    Judging others’ personalities is an essential skill in successful social living, as personality is a key driver behind people’s interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants’ Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy. PMID:25583507

  10. Computing the influences of different Intraocular Pressures on the human eye components using computational fluid-structure interaction model.

    Science.gov (United States)

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2017-01-01

    Intraocular Pressure (IOP) is defined as the pressure of aqueous in the eye. It has been reported that the normal range of IOP should be within the 10-20 mmHg with an average of 15.50 mmHg among the ophthalmologists. Keratoconus is an anti-inflammatory eye disorder that debilitated cornea unable to reserve the normal structure contrary to the IOP in the eye. Consequently, the cornea would bulge outward and invoke a conical shape following by distorted vision. In addition, it is known that any alterations in the structure and composition of the lens and cornea would exceed a change of the eye ball as well as the mechanical and optical properties of the eye. Understanding the precise alteration of the eye components' stresses and deformations due to different IOPs could help elucidate etiology and pathogenesis to develop treatments not only for keratoconus but also for other diseases of the eye. In this study, at three different IOPs, including 10, 20, and 30 mmHg the stresses and deformations of the human eye components were quantified using a Three-Dimensional (3D) computational Fluid-Structure Interaction (FSI) model of the human eye. The results revealed the highest amount of von Mises stress in the bulged region of the cornea with 245 kPa at the IOP of 30 mmHg. The lens was also showed the von Mises stress of 19.38 kPa at the IOPs of 30 mmHg. In addition, by increasing the IOP from 10 to 30 mmHg, the radius of curvature in the cornea and lens was increased accordingly. In contrast, the sclera indicated its highest stress at the IOP of 10 mmHg due to over pressure phenomenon. The variation of IOP illustrated a little influence in the amount of stress as well as the resultant displacement of the optic nerve. These results can be used for understanding the amount of stresses and deformations in the human eye components due to different IOPs as well as for clarifying significant role of IOP on the radius of curvature of the cornea and the lens.

  11. The Development of an Interactive Computer-Based Training Program for Timely and Humane On-Farm Pig Euthanasia.

    Science.gov (United States)

    Mullins, Caitlyn R; Pairis-Garcia, Monique D; Campler, Magnus R; Anthony, Raymond; Johnson, Anna K; Coleman, Grahame J; Rault, Jean-Loup

    2018-02-05

    With extensive knowledge and training in the prevention, management, and treatment of disease conditions in animals, veterinarians play a critical role in ensuring good welfare on swine farms by training caretakers on the importance of timely euthanasia. To assist veterinarians and other industry professionals in training new and seasoned caretakers, an interactive computer-based training program was created. It consists of three modules, each containing five case studies, which cover three distinct production stages (breeding stock, piglets, and wean to grower-finisher pigs). Case study development was derived from five specific euthanasia criteria defined in the 2015 Common Swine Industry Audit, a nationally recognized auditing program used in the US. Case studies provide information regarding treatment history, clinical signs, and condition severity of the pig and prompt learners to make management decisions regarding pig treatment and care. Once a decision is made, feedback is provided so learners understand the appropriateness of their decision compared to current industry guidelines. In addition to training farm personnel, this program may also be a valuable resource if incorporated into veterinary, graduate, and continuing education curricula. This innovative tool represents the first interactive euthanasia-specific training program in the US swine industry and offers the potential to improve timely and humane on-farm pig euthanasia.

  12. Eyewear Computing – Augmenting the Human with Head-mounted Wearable Assistants (Dagstuhl Seminar 16042)

    OpenAIRE

    Bulling, Andreas; Cakmakci, Ozan; Kunze, Kai; Rehg, James M.

    2016-01-01

    The seminar was composed of workshops and tutorials on head-mounted eye tracking, egocentric vision, optics, and head-mounted displays. The seminar welcomed 30 academic and industry researchers from Europe, the US, and Asia with a diverse background, including wearable and ubiquitous computing, computer vision, developmental psychology, optics, and human-computer interaction. In contrast to several previous Dagstuhl seminars, we used an ignite talk format to reduce the time of talks to...

  13. LATTICE: an interactive lattice computer code

    International Nuclear Information System (INIS)

    Staples, J.

    1976-10-01

    LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included

  14. Emotion based human-robot interaction

    Directory of Open Access Journals (Sweden)

    Berns Karsten

    2018-01-01

    Full Text Available Human-machine interaction is a major challenge in the development of complex humanoid robots. In addition to verbal communication the use of non-verbal cues such as hand, arm and body gestures or mimics can improve the understanding of the intention of the robot. On the other hand, by perceiving such mechanisms of a human in a typical interaction scenario the humanoid robot can adapt its interaction skills in a better way. In this work, the perception system of two social robots, ROMAN and ROBIN of the RRLAB of the TU Kaiserslautern, is presented in the range of human-robot interaction.

  15. Design and evaluation of pointing devices; Gestaltung und Evaluation von koordinatengebenden Interaktionsgeraeten

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, L.; Zuehlke, D. [Kaiserslautern Univ. (Germany)

    2002-07-01

    Pointing devices e.g. the computer mouse are gaining considerable importance in modern human-machine-systems as a major part of the interaction interface between human beings and machines. During the dialogues with window-based operating systems the human being - the user - moves the cursor to a certain position on the screen by means of pointing devices. Microsoft products like WINDOWS have asserted themselves in the meantime in office applications and are currently conquering the market of industrial control systems as well. In office applications the mouse has become established as the most important pointing device for interaction. However, an 'office mouse' is not really suitable in a manufacturing environment. Only a few investigations exist evaluating alternatives to the mouse, which are suitable for industrial applications. At the Center of Human-Machine-Interaction (ZMMI) of the Institute of Production Automation (pak) at the University of Kaiserslautern a comparative investigation was carried out for alternative pointing devices like mouse, mousepad, mousebutton, mousestick, trackball, joystick, touchscreen, digitizing tablet and keyboard to determine their industrial suitability. This paper presents the methods of investigation and the most important results. The known Fitts' law model is mainly used in the field of HCl for office applications in order to evaluate interaction devices. This paper presents the new method DEVICE and is applied in the field of HMI for the evaluation of pointing devices. Tests with DEVICE and Fitts' method were conducted with machine operators under industrial environments to determine the suitability of thirty different pointing devices. The comparison between DEVICE and Fitts' law model shows that the results of certain partial tests correlate with each other. DEVICE can be used as substitute for Fitts' law model and offers additional parameters such as e.g. error rates and pointing deviation

  16. Evaluation of the leap motion controller as a new contact-free pointing device.

    Science.gov (United States)

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-12-24

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  17. A digital interactive human brain atlas based on Chinese visible human datasets for anatomy teaching.

    Science.gov (United States)

    Li, Qiyu; Ran, Xu; Zhang, Shaoxiang; Tan, Liwen; Qiu, Mingguo

    2014-01-01

    As we know, the human brain is one of the most complicated organs in the human body, which is the key and difficult point in neuroanatomy and sectional anatomy teaching. With the rapid development and extensive application of imaging technology in clinical diagnosis, doctors are facing higher and higher requirement on their anatomy knowledge. Thus, to cultivate medical students to meet the needs of medical development today and to improve their ability to read and understand radiographic images have become urgent challenges for the medical teachers. In this context, we developed a digital interactive human brain atlas based on the Chinese visible human datasets for anatomy teaching (available for free download from http://www.chinesevisiblehuman.com/down/DHBA.rar). The atlas simultaneously provides views in all 3 primary planes of section. The main structures of the human brain have been anatomically labeled in all 3 views. It is potentially useful for anatomy browsing, user self-testing, and automatic student assessment. In a word, it is interactive, 3D, user friendly, and free of charge, which can provide a new, intuitive means for anatomy teaching.

  18. Interaction debugging : an integral approach to analyze human-robot interaction

    NARCIS (Netherlands)

    Kooijmans, T.; Kanda, T.; Bartneck, C.; Ishiguro, H.; Hagita, N.

    2006-01-01

    Along with the development of interactive robots, controlled experiments and field trials are regularly conducted to stage human-robot interaction. Experience in this field has shown that analyzing human-robot interaction for evaluation purposes fosters the development of improved systems and the

  19. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab

  20. Real-time multiple human perception with color-depth cameras on a mobile robot.

    Science.gov (United States)

    Zhang, Hao; Reardon, Christopher; Parker, Lynne E

    2013-10-01

    The ability to perceive humans is an essential requirement for safe and efficient human-robot interaction. In real-world applications, the need for a robot to interact in real time with multiple humans in a dynamic, 3-D environment presents a significant challenge. The recent availability of commercial color-depth cameras allow for the creation of a system that makes use of the depth dimension, thus enabling a robot to observe its environment and perceive in the 3-D space. Here we present a system for 3-D multiple human perception in real time from a moving robot equipped with a color-depth camera and a consumer-grade computer. Our approach reduces computation time to achieve real-time performance through a unique combination of new ideas and established techniques. We remove the ground and ceiling planes from the 3-D point cloud input to separate candidate point clusters. We introduce the novel information concept, depth of interest, which we use to identify candidates for detection, and that avoids the computationally expensive scanning-window methods of other approaches. We utilize a cascade of detectors to distinguish humans from objects, in which we make intelligent reuse of intermediary features in successive detectors to improve computation. Because of the high computational cost of some methods, we represent our candidate tracking algorithm with a decision directed acyclic graph, which allows us to use the most computationally intense techniques only where necessary. We detail the successful implementation of our novel approach on a mobile robot and examine its performance in scenarios with real-world challenges, including occlusion, robot motion, nonupright humans, humans leaving and reentering the field of view (i.e., the reidentification challenge), human-object and human-human interaction. We conclude with the observation that the incorporation of the depth information, together with the use of modern techniques in new ways, we are able to create an

  1. Best of Affective Computing and Intelligent Interaction 2013 in Multimodal Interactions

    NARCIS (Netherlands)

    Soleymani, Mohammad; Soleymani, M.; Pun, T.; Pun, Thierry; Nijholt, Antinus

    The fifth biannual Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII 2013) was held in Geneva, Switzerland. This conference featured the recent advancement in affective computing and relevant applications in education, entertainment and health. A number of

  2. Interactive computer modeling of combustion chemistry and coalescence-dispersion modeling of turbulent combustion

    Science.gov (United States)

    Pratt, D. T.

    1984-01-01

    An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.

  3. The use of computer-assisted interactive videodisc training in reactor operations at the Savannah River site

    International Nuclear Information System (INIS)

    Shiplett, D.W.

    1990-01-01

    This presentation discussed the use of computer aided training at Savannah River Site using a computer-assisted interactive videodisc system. This system was used in situations where there was a high frequency of training required, where there were a large number of people to be trained and where there was a rigid work schedule. The system was used to support classroom training to emphasize major points, display graphics of flowpaths, for simulations, and video of actual equipment

  4. Computational Fluid and Particle Dynamics in the Human Respiratory System

    CERN Document Server

    Tu, Jiyuan; Ahmadi, Goodarz

    2013-01-01

    Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researcher...

  5. Computer Assistance for Writing Interactive Programs: TICS.

    Science.gov (United States)

    Kaplow, Roy; And Others

    1973-01-01

    Investigators developed an on-line, interactive programing system--the Teacher-Interactive Computer System (TICS)--to provide assistance to those who were not programers, but nevertheless wished to write interactive instructional programs. TICS had two components: an author system and a delivery system. Underlying assumptions were that…

  6. Code system to compute radiation dose in human phantoms

    International Nuclear Information System (INIS)

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods

  7. Intelligent Interaction for Human-Friendly Service Robot in Smart House Environment

    Directory of Open Access Journals (Sweden)

    Z. Zenn Bien

    2008-01-01

    Full Text Available The smart house under consideration is a service-integrated complex system to assist older persons and/or people with disabilities. The primary goal of the system is to achieve independent living by various robotic devices and systems. Such a system is treated as a human-in-the loop system in which human- robot interaction takes place intensely and frequently. Based on our experiences of having designed and implemented a smart house environment, called Intelligent Sweet Home (ISH, we present a framework of realizing human-friendly HRI (human-robot interaction module with various effective techniques of computational intelligence. More specifically, we partition the robotic tasks of HRI module into three groups in consideration of the level of specificity, fuzziness or uncertainty of the context of the system, and present effective interaction method for each case. We first show a task planning algorithm and its architecture to deal with well-structured tasks autonomously by a simplified set of commands of the user instead of inconvenient manual operations. To provide with capability of interacting in a human-friendly way in a fuzzy context, it is proposed that the robot should make use of human bio-signals as input of the HRI module as shown in a hand gesture recognition system, called a soft remote control system. Finally we discuss a probabilistic fuzzy rule-based life-long learning system, equipped with intention reading capability by learning human behavioral patterns, which is introduced as a solution in uncertain and time-varying situations.

  8. General aviation design synthesis utilizing interactive computer graphics

    Science.gov (United States)

    Galloway, T. L.; Smith, M. R.

    1976-01-01

    Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.

  9. Synchronous Computer-Mediated Communication and Interaction

    Science.gov (United States)

    Ziegler, Nicole

    2016-01-01

    The current study reports on a meta-analysis of the relative effectiveness of interaction in synchronous computer-mediated communication (SCMC) and face-to-face (FTF) contexts. The primary studies included in the analysis were journal articles and dissertations completed between 1990 and 2012 (k = 14). Results demonstrate that interaction in SCMC…

  10. Quantifying human-environment interactions using videography in the context of infectious disease transmission

    Directory of Open Access Journals (Sweden)

    Timothy R. Julian

    2018-05-01

    Full Text Available Quantitative data on human-environment interactions are needed to fully understand infectious disease transmission processes and conduct accurate risk assessments. Interaction events occur during an individual’s movement through, and contact with, the environment, and can be quantified using diverse methodologies. Methods that utilize videography, coupled with specialized software, can provide a permanent record of events, collect detailed interactions in high resolution, be reviewed for accuracy, capture events difficult to observe in real-time, and gather multiple concurrent phenomena. In the accompanying video, the use of specialized software to capture humanenvironment interactions for human exposure and disease transmission is highlighted. Use of videography, combined with specialized software, allows for the collection of accurate quantitative representations of human-environment interactions in high resolution. Two specialized programs include the Virtual Timing Device for the Personal Computer, which collects sequential microlevel activity time series of contact events and interactions, and LiveTrak, which is optimized to facilitate annotation of events in real-time. Opportunities to annotate behaviors at high resolution using these tools are promising, permitting detailed records that can be summarized to gain information on infectious disease transmission and incorporated into more complex models of human exposure and risk.

  11. Toward a framework for levels of robot autonomy in human-robot interaction.

    Science.gov (United States)

    Beer, Jenay M; Fisk, Arthur D; Rogers, Wendy A

    2014-07-01

    A critical construct related to human-robot interaction (HRI) is autonomy, which varies widely across robot platforms. Levels of robot autonomy (LORA), ranging from teleoperation to fully autonomous systems, influence the way in which humans and robots may interact with one another. Thus, there is a need to understand HRI by identifying variables that influence - and are influenced by - robot autonomy. Our overarching goal is to develop a framework for levels of robot autonomy in HRI. To reach this goal, the framework draws links between HRI and human-automation interaction, a field with a long history of studying and understanding human-related variables. The construct of autonomy is reviewed and redefined within the context of HRI. Additionally, the framework proposes a process for determining a robot's autonomy level, by categorizing autonomy along a 10-point taxonomy. The framework is intended to be treated as guidelines to determine autonomy, categorize the LORA along a qualitative taxonomy, and consider which HRI variables (e.g., acceptance, situation awareness, reliability) may be influenced by the LORA.

  12. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. copyright 1997 American Institute of Physics

  13. Recognition and Synthesis of Human Movements by Parametric HMMs

    DEFF Research Database (Denmark)

    Herzog, Dennis; Krüger, Volker

    2009-01-01

    The representation of human movements for recognition and synthesis is important in many application fields such as: surveillance, human-computer interaction, motion capture, and humanoid robots. Hidden Markov models (HMMs) are a common statistical framework in this context, since...... on the recognition and synthesis of human arm movements. Furthermore, we will show in various experiments the use of PHMMs for the control of a humanoid robot by synthesizing movements for relocating objects at arbitrary positions. In vision-based interaction experiments, PHMM are used for the recognition...... of pointing movements, where the recognized parameterization conveys to a robot the important information which object to relocate and where to put it. Finally, we evaluate the accuracy of recognition and synthesis for pointing and grasping arm movements and discuss that the precision of the synthesis...

  14. A mobile Nursing Information System based on human-computer interaction design for improving quality of nursing.

    Science.gov (United States)

    Su, Kuo-Wei; Liu, Cheng-Li

    2012-06-01

    A conventional Nursing Information System (NIS), which supports the role of nurse in some areas, is typically deployed as an immobile system. However, the traditional information system can't response to patients' conditions in real-time, causing delays on the availability of this information. With the advances of information technology, mobile devices are increasingly being used to extend the human mind's limited capacity to recall and process large numbers of relevant variables and to support information management, general administration, and clinical practice. Unfortunately, there have been few studies about the combination of a well-designed small-screen interface with a personal digital assistant (PDA) in clinical nursing. Some researchers found that user interface design is an important factor in determining the usability and potential use of a mobile system. Therefore, this study proposed a systematic approach to the development of a mobile nursing information system (MNIS) based on Mobile Human-Computer Interaction (M-HCI) for use in clinical nursing. The system combines principles of small-screen interface design with user-specified requirements. In addition, the iconic functions were designed with metaphor concept that will help users learn the system more quickly with less working-memory. An experiment involving learnability testing, thinking aloud and a questionnaire investigation was conducted for evaluating the effect of MNIS on PDA. The results show that the proposed MNIS is good on learning and higher satisfaction on symbol investigation, terminology and system information.

  15. Fixed-point image orthorectification algorithms for reduced computational cost

    Science.gov (United States)

    French, Joseph Clinton

    Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation

  16. Towards quantifying dynamic human-human physical interactions for robot assisted stroke therapy.

    Science.gov (United States)

    Mohan, Mayumi; Mendonca, Rochelle; Johnson, Michelle J

    2017-07-01

    Human-Robot Interaction is a prominent field of robotics today. Knowledge of human-human physical interaction can prove vital in creating dynamic physical interactions between human and robots. Most of the current work in studying this interaction has been from a haptic perspective. Through this paper, we present metrics that can be used to identify if a physical interaction occurred between two people using kinematics. We present a simple Activity of Daily Living (ADL) task which involves a simple interaction. We show that we can use these metrics to successfully identify interactions.

  17. Pseudo-interactive monitoring in distributed computing

    International Nuclear Information System (INIS)

    Sfiligoi, I.; Bradley, D.; Livny, M.

    2009-01-01

    Distributed computing, and in particular Grid computing, enables physicists to use thousands of CPU days worth of computing every day, by submitting thousands of compute jobs. Unfortunately, a small fraction of such jobs regularly fail; the reasons vary from disk and network problems to bugs in the user code. A subset of these failures result in jobs being stuck for long periods of time. In order to debug such failures, interactive monitoring is highly desirable; users need to browse through the job log files and check the status of the running processes. Batch systems typically don't provide such services; at best, users get job logs at job termination, and even this may not be possible if the job is stuck in an infinite loop. In this paper we present a novel approach of using regular batch system capabilities of Condor to enable users to access the logs and processes of any running job. This does not provide true interactive access, so commands like vi are not viable, but it does allow operations like ls, cat, top, ps, lsof, netstat and dumping the stack of any process owned by the user; we call this pseudo-interactive monitoring. It is worth noting that the same method can be used to monitor Grid jobs in a glidein-based environment. We further believe that the same mechanism could be applied to many other batch systems.

  18. Pseudo-interactive monitoring in distributed computing

    International Nuclear Information System (INIS)

    Sfiligoi, I; Bradley, D; Livny, M

    2010-01-01

    Distributed computing, and in particular Grid computing, enables physicists to use thousands of CPU days worth of computing every day, by submitting thousands of compute jobs. Unfortunately, a small fraction of such jobs regularly fail; the reasons vary from disk and network problems to bugs in the user code. A subset of these failures result in jobs being stuck for long periods of time. In order to debug such failures, interactive monitoring is highly desirable; users need to browse through the job log files and check the status of the running processes. Batch systems typically don't provide such services; at best, users get job logs at job termination, and even this may not be possible if the job is stuck in an infinite loop. In this paper we present a novel approach of using regular batch system capabilities of Condor to enable users to access the logs and processes of any running job. This does not provide true interactive access, so commands like vi are not viable, but it does allow operations like ls, cat, top, ps, lsof, netstat and dumping the stack of any process owned by the user; we call this pseudo-interactive monitoring. It is worth noting that the same method can be used to monitor Grid jobs in a glidein-based environment. We further believe that the same mechanism could be applied to many other batch systems.

  19. Pseudo-interactive monitoring in distributed computing

    Energy Technology Data Exchange (ETDEWEB)

    Sfiligoi, I.; /Fermilab; Bradley, D.; Livny, M.; /Wisconsin U., Madison

    2009-05-01

    Distributed computing, and in particular Grid computing, enables physicists to use thousands of CPU days worth of computing every day, by submitting thousands of compute jobs. Unfortunately, a small fraction of such jobs regularly fail; the reasons vary from disk and network problems to bugs in the user code. A subset of these failures result in jobs being stuck for long periods of time. In order to debug such failures, interactive monitoring is highly desirable; users need to browse through the job log files and check the status of the running processes. Batch systems typically don't provide such services; at best, users get job logs at job termination, and even this may not be possible if the job is stuck in an infinite loop. In this paper we present a novel approach of using regular batch system capabilities of Condor to enable users to access the logs and processes of any running job. This does not provide true interactive access, so commands like vi are not viable, but it does allow operations like ls, cat, top, ps, lsof, netstat and dumping the stack of any process owned by the user; we call this pseudo-interactive monitoring. It is worth noting that the same method can be used to monitor Grid jobs in a glidein-based environment. We further believe that the same mechanism could be applied to many other batch systems.

  20. Computational Analysis of Distance Operators for the Iterative Closest Point Algorithm.

    Directory of Open Access Journals (Sweden)

    Higinio Mora

    Full Text Available The Iterative Closest Point (ICP algorithm is currently one of the most popular methods for rigid registration so that it has become the standard in the Robotics and Computer Vision communities. Many applications take advantage of it to align 2D/3D surfaces due to its popularity and simplicity. Nevertheless, some of its phases present a high computational cost thus rendering impossible some of its applications. In this work, it is proposed an efficient approach for the matching phase of the Iterative Closest Point algorithm. This stage is the main bottleneck of that method so that any efficiency improvement has a great positive impact on the performance of the algorithm. The proposal consists in using low computational cost point-to-point distance metrics instead of classic Euclidean one. The candidates analysed are the Chebyshev and Manhattan distance metrics due to their simpler formulation. The experiments carried out have validated the performance, robustness and quality of the proposal. Different experimental cases and configurations have been set up including a heterogeneous set of 3D figures, several scenarios with partial data and random noise. The results prove that an average speed up of 14% can be obtained while preserving the convergence properties of the algorithm and the quality of the final results.

  1. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    Directory of Open Access Journals (Sweden)

    Daniel Bachmann

    2014-12-01

    Full Text Available This paper presents a Fitts’ law-based analysis of the user’s performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller’s performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  2. Non-Abelian monopole in the parameter space of point-like interactions

    International Nuclear Information System (INIS)

    Ohya, Satoshi

    2014-01-01

    We study non-Abelian geometric phase in N=2 supersymmetric quantum mechanics for a free particle on a circle with two point-like interactions at antipodal points. We show that non-Abelian Berry’s connection is that of SU(2) magnetic monopole discovered by Moody, Shapere and Wilczek in the context of adiabatic decoupling limit of diatomic molecule. - Highlights: • Supersymmetric quantum mechanics is an ideal playground for studying geometric phase. • We determine the parameter space of supersymmetric point-like interactions. • Berry’s connection is given by a Wu–Yang-like magnetic monopole in SU(2) Yang–Mills

  3. Analysis of the binding interaction in uric acid - Human hemoglobin system by spectroscopic techniques

    Science.gov (United States)

    Makarska-Bialokoz, Magdalena

    2017-05-01

    The binding interaction between human hemoglobin and uric acid has been studied for the first time, by UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence techniques. Characteristic effects observed for human hemoglobin intrinsic fluorescence during interaction with uric acid at neutral pH point at the formation of stacking non-covalent and non-fluorescent complexes. All the calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants, as well as Förster resonance energy transfer parameters confirm the existence of static quenching. The results of synchronous fluorescence measurements indicate that the fluorescence quenching of human hemoglobin originates both from Trp and Tyr residues and that the addition of uric acid could significantly hinder the physiological functions of human hemoglobin.

  4. Point based interactive image segmentation using multiquadrics splines

    Science.gov (United States)

    Meena, Sachin; Duraisamy, Prakash; Palniappan, Kannappan; Seetharaman, Guna

    2017-05-01

    Multiquadrics (MQ) are radial basis spline function that can provide an efficient interpolation of data points located in a high dimensional space. MQ were developed by Hardy to approximate geographical surfaces and terrain modelling. In this paper we frame the task of interactive image segmentation as a semi-supervised interpolation where an interpolating function learned from the user provided seed points is used to predict the labels of unlabeled pixel and the spline function used in the semi-supervised interpolation is MQ. This semi-supervised interpolation framework has a nice closed form solution which along with the fact that MQ is a radial basis spline function lead to a very fast interactive image segmentation process. Quantitative and qualitative results on the standard datasets show that MQ outperforms other regression based methods, GEBS, Ridge Regression and Logistic Regression, and popular methods like Graph Cut,4 Random Walk and Random Forest.6

  5. The role of the computer in automated spectral analysis

    International Nuclear Information System (INIS)

    Rasmussen, S.E.

    This report describes how a computer can be an extremely valuable tool for routine analysis of spectra, which is a time consuming process. A number of general-purpose algorithms that are available for the various phases of the analysis can be implemented, if these algorithms are designed to cope with all the variations that may occur. Since this is basically impossible, one must find a compromise between obscure error and program complexity. This is usually possible with human interaction at critical points. In spectral analysis this is possible if the user scans the data on an interactive graphics terminal, makes the necessary changes and then returns control to the computer for completion of the analysis

  6. Developing human technology curriculum

    Directory of Open Access Journals (Sweden)

    Teija Vainio

    2012-10-01

    Full Text Available During the past ten years expertise in human-computer interaction has shifted from humans interacting with desktop computers to individual human beings or groups of human beings interacting with embedded or mobile technology. Thus, humans are not only interacting with computers but with technology. Obviously, this shift should be reflected in how we educate human-technology interaction (HTI experts today and in the future. We tackle this educational challenge first by analysing current Master’s-level education in collaboration with two universities and second, discussing postgraduate education in the international context. As a result, we identified core studies that should be included in the HTI curriculum. Furthermore, we discuss some practical challenges and new directions for international HTI education.

  7. Making IBM's Computer, Watson, Human

    Science.gov (United States)

    Rachlin, Howard

    2012-01-01

    This essay uses the recent victory of an IBM computer (Watson) in the TV game, "Jeopardy," to speculate on the abilities Watson would need, in addition to those it has, to be human. The essay's basic premise is that to be human is to behave as humans behave and to function in society as humans function. Alternatives to this premise are considered…

  8. Studying the neurobiology of human social interaction: Making the case for ecological validity.

    Science.gov (United States)

    Hogenelst, Koen; Schoevers, Robert A; aan het Rot, Marije

    2015-01-01

    With this commentary we make the case for an increased focus on the ecological validity of the measures used to assess aspects of human social functioning. Impairments in social functioning are seen in many types of psychopathology, negatively affecting the lives of psychiatric patients and those around them. Yet the neurobiology underlying abnormal social interaction remains unclear. As an example of human social neuroscience research with relevance to biological psychiatry and clinical psychopharmacology, this commentary discusses published experimental studies involving manipulation of the human brain serotonin system that included assessments of social behavior. To date, these studies have mostly been laboratory-based and included computer tasks, observations by others, or single-administration self-report measures. Most laboratory measures used so far inform about the role of serotonin in aspects of social interaction, but the relevance for real-life interaction is often unclear. Few studies have used naturalistic assessments in real life. We suggest several laboratory methods with high ecological validity as well as ecological momentary assessment, which involves intensive repeated measures in naturalistic settings. In sum, this commentary intends to stimulate experimental research on the neurobiology of human social interaction as it occurs in real life.

  9. Advanced Technologies, Embedded and Multimedia for Human-Centric Computing

    CERN Document Server

    Chao, Han-Chieh; Deng, Der-Jiunn; Park, James; HumanCom and EMC 2013

    2014-01-01

    The theme of HumanCom and EMC are focused on the various aspects of human-centric computing for advances in computer science and its applications, embedded and multimedia computing and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of human-centric computing. And the theme of EMC (Advanced in Embedded and Multimedia Computing) is focused on the various aspects of embedded system, smart grid, cloud and multimedia computing, and it provides an opportunity for academic, industry professionals to discuss the latest issues and progress in the area of embedded and multimedia computing. Therefore this book will be include the various theories and practical applications in human-centric computing and embedded and multimedia computing.

  10. Mathematical simulation of point defect interaction with grain boundaries

    International Nuclear Information System (INIS)

    Bojko, V.S.

    1987-01-01

    Published works, where the interaction of point defects and grain boundaries was studied by mathematical simulation methods, have been analysed. Energetics of the vacancy formation both in nuclei of large-angle special grain boundaries and in lattice regions adjoining them has been considered. The data obtained permit to explain specific features of grain-boundary diffusion processes. Results of mathematical simulation of the interaction of impurity atoms and boundaries have been considered. Specific features of the helium atom interaction with large-angle grain boundaries are analysed as well

  11. Do Computers Write on Electric Screens?

    Directory of Open Access Journals (Sweden)

    Samuel Goyet

    2016-09-01

    Full Text Available How do we, humans, communicate with computers, or computational machines? What are the activities do humans and machines share, what are the meeting points between the two? Eventually, how can we build concepts of these meeting points that leaves space for the proper mode of existence of both humans and machines, without subduing one to the other? Computers are machines that operates on a scale different from humans: the calculus done by machines is too fast and untangible for humans. This is why computers activities has to be textualized, put into a form that can be understand for humans. For instance into a graphical interface, or a command line. More generally, this article tackles the problem of interface between humans and machines, the way the relation between humans and machines has been conceptualized. It is inspired both by philosophy of the modes of existence – since computers are machines with their own mode of existence – and semiotics, since computers activities have to be converted in some sort of signs that can be read by humans.

  12. An iterative approach to dynamic simulation of 3D rigid body motions for real-time interactive computer animation

    NARCIS (Netherlands)

    Overveld, van C.W.A.M.

    1991-01-01

    A method is presented for approximating the motions of linked 3-dimensional rigid body systems that may be applied in the context of interactive motion specification for computer animation. The method is based on decoupling the ballistic (free) component of the motion of the points that constitute

  13. Modelling of human-machine interaction in equipment design of manufacturing cells

    Science.gov (United States)

    Cochran, David S.; Arinez, Jorge F.; Collins, Micah T.; Bi, Zhuming

    2017-08-01

    This paper proposes a systematic approach to model human-machine interactions (HMIs) in supervisory control of machining operations; it characterises the coexistence of machines and humans for an enterprise to balance the goals of automation/productivity and flexibility/agility. In the proposed HMI model, an operator is associated with a set of behavioural roles as a supervisor for multiple, semi-automated manufacturing processes. The model is innovative in the sense that (1) it represents an HMI based on its functions for process control but provides the flexibility for ongoing improvements in the execution of manufacturing processes; (2) it provides a computational tool to define functional requirements for an operator in HMIs. The proposed model can be used to design production systems at different levels of an enterprise architecture, particularly at the machine level in a production system where operators interact with semi-automation to accomplish the goal of 'autonomation' - automation that augments the capabilities of human beings.

  14. Symbolic computation of nonlinear wave interactions on MACSYMA

    International Nuclear Information System (INIS)

    Bers, A.; Kulp, J.L.; Karney, C.F.F.

    1976-01-01

    In this paper the use of a large symbolic computation system - MACSYMA - in determining approximate analytic expressions for the nonlinear coupling of waves in an anisotropic plasma is described. MACSYMA was used to implement the solutions of a fluid plasma model nonlinear partial differential equations by perturbation expansions and subsequent iterative analytic computations. By interacting with the details of the symbolic computation, the physical processes responsible for particular nonlinear wave interactions could be uncovered and appropriate approximations introduced so as to simplify the final analytic result. Details of the MACSYMA system and its use are discussed and illustrated. (Auth.)

  15. Personality and social skills in human-dog interaction

    DEFF Research Database (Denmark)

    Meyer, Iben Helene Coakley

    developing a social tool set that makes it very successful in interacting and communicating with humans. Human evolution has similarly resulted in the development of complex social cognition in humans. This enables humans to form bonded relationships, besides pair-bonding, and it seems that humans are also...... of this thesis was to attain a better understanding of some of the factors related to the inter-action between humans and dogs. This aim was addressed by focusing on dog personality and hu-man social skills in relation to human-dog interaction. Two studies investigated dog personality and how it a) affects...... the relationship with the owner, and b) is affected by human breeding goals. Two studies investigated how human social skills affect the communication and interaction between hu-man and dog. As part of these studies it was also investigated how experience with dogs interacts with human social skills, perception...

  16. Interactional nursing - a practice-theory in the dynamic field between the natural, human and social sciences

    DEFF Research Database (Denmark)

    Scheel, Merry Elisabeth; Pedersen, Birthe D.; Rosenkrands, Vibeke

    2008-01-01

    Nursing is often described from the point of view of either the natural or the human sciences. In contrast to this, the value foundation in Interactional nursing practice is understood from the point of view of the natural sciences as well as that of the human and social sciences. This article...... presents many-faceted practice-theory of nursing, which is situated in the dynamic field between these three sciences. The focus of the theory is on interaction and practice resulting in a caring practice. Here practice is based on Taylor's and MacIntyre's interpretation of this concept. Action in nursing...... is based on Habermas' three varied modes of action seen in the light of an understanding of the world as a system world and a life world. Nursing as an interactional practice-theory is presented with examples of interpretative nursing science, seen in the ethical action-oriented, socio-cultural framework...

  17. Disentangling interacting dark energy cosmologies with the three-point correlation function

    Science.gov (United States)

    Moresco, Michele; Marulli, Federico; Baldi, Marco; Moscardini, Lauro; Cimatti, Andrea

    2014-10-01

    We investigate the possibility of constraining coupled dark energy (cDE) cosmologies using the three-point correlation function (3PCF). Making use of the CODECS N-body simulations, we study the statistical properties of cold dark matter (CDM) haloes for a variety of models, including a fiducial ΛCDM scenario and five models in which dark energy (DE) and CDM mutually interact. We measure both the halo 3PCF, ζ(θ), and the reduced 3PCF, Q(θ), at different scales (2 values of the halo 3PCF for perpendicular (elongated) configurations. The effect is also scale-dependent, with differences between ΛCDM and cDE models that increase at large scales. We made use of these measurements to estimate the halo bias, that results in fair agreement with the one computed from the two-point correlation function (2PCF). The main advantage of using both the 2PCF and 3PCF is to break the bias-σ8 degeneracy. Moreover, we find that our bias estimates are approximately independent of the assumed strength of DE coupling. This study demonstrates the power of a higher order clustering analysis in discriminating between alternative cosmological scenarios, for both present and forthcoming galaxy surveys, such as e.g. Baryon Oscillation Spectroscopic Survey and Euclid.

  18. Aspects of computer control from the human engineering standpoint

    International Nuclear Information System (INIS)

    Huang, T.V.

    1979-03-01

    A Computer Control System includes data acquisition, information display and output control signals. In order to design such a system effectively we must first determine the required operational mode: automatic control (closed loop), computer assisted (open loop), or hybrid control. The choice of operating mode will depend on the nature of the plant, the complexity of the operation, the funds available, and the technical expertise of the operating staff, among many other factors. Once the mode has been selected, consideration must be given to the method (man/machine interface) by which the operator interacts with this system. The human engineering factors are of prime importance to achieving high operating efficiency and very careful attention must be given to this aspect of the work, if full operator acceptance is to be achieved. This paper will discuss these topics and will draw on experience gained in setting up the computer control system in Main Control Center for Stanford University's Accelerator Center (a high energy physics research facility)

  19. Contextual Interaction Design Research: Enabling HCI

    OpenAIRE

    Murer , Martin; Meschtscherjakov , Alexander; Fuchsberger , Verena; Giuliani , Manuel; Neureiter , Katja; Moser , Christiane; Aslan , Ilhan; Tscheligi , Manfred

    2015-01-01

    International audience; Human-Computer Interaction (HCI) has always been about humans, their needs and desires. Contemporary HCI thinking investigates interactions in everyday life and puts an emphasis on the emotional and experiential qualities of interactions. At the Center for Human-Computer Interaction we seek to bridge meandering strands in the field by following a guiding metaphor that shifts focus to what has always been the core quality of our research field: Enabling HCI, as a leitmo...

  20. What Do IT-People Know About the (Nordic) History of Computers and User Interfaces?

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    2009-01-01

    :  This paper reports a preliminary, empirical exploration of what IT-people know about the history of computers and user interfaces.  The principal motivation for the study is that the younger generations such as students in IT seem to know very little about these topics.  The study employed...... to become the designation or even the icon for the computer.  In other words, one of the key focal points in the area of human-computer interaction: to make the computer as such invisible seems to have been successful...

  1. Simulation-based computation of dose to humans in radiological environments

    International Nuclear Information System (INIS)

    Breazeal, N.L.; Davis, K.R.; Watson, R.A.; Vickers, D.S.; Ford, M.S.

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface

  2. Simulation-based computation of dose to humans in radiological environments

    Energy Technology Data Exchange (ETDEWEB)

    Breazeal, N.L. [Sandia National Labs., Livermore, CA (United States); Davis, K.R.; Watson, R.A. [Sandia National Labs., Albuquerque, NM (United States); Vickers, D.S. [Brigham Young Univ., Provo, UT (United States). Dept. of Electrical and Computer Engineering; Ford, M.S. [Battelle Pantex, Amarillo, TX (United States). Dept. of Radiation Safety

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface.

  3. Activity-based computing: computational management of activities reflecting human intention

    DEFF Research Database (Denmark)

    Bardram, Jakob E; Jeuris, Steven; Houben, Steven

    2015-01-01

    paradigm that has been applied in personal information management applications as well as in ubiquitous, multidevice, and interactive surface computing. ABC has emerged as a response to the traditional application- and file-centered computing paradigm, which is oblivious to a notion of a user’s activity...

  4. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    Science.gov (United States)

    Wu, Dongrui; Lance, Brent J; Parsons, Thomas D

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.

  5. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    Directory of Open Access Journals (Sweden)

    Dongrui Wu

    Full Text Available Brain-computer interaction (BCI and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL, active class selection (ACS, and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.

  6. Computer-Based Interaction Analysis with DEGREE Revisited

    Science.gov (United States)

    Barros, B.; Verdejo, M. F.

    2016-01-01

    We review our research with "DEGREE" and analyse how our work has impacted the collaborative learning community since 2000. Our research is framed within the context of computer-based interaction analysis and the development of computer-supported collaborative learning (CSCL) tools. We identify some aspects of our work which have been…

  7. Interactive machine learning for health informatics: when do we need the human-in-the-loop?

    Science.gov (United States)

    Holzinger, Andreas

    2016-06-01

    Machine learning (ML) is the fastest growing field in computer science, and health informatics is among the greatest challenges. The goal of ML is to develop algorithms which can learn and improve over time and can be used for predictions. Most ML researchers concentrate on automatic machine learning (aML), where great advances have been made, for example, in speech recognition, recommender systems, or autonomous vehicles. Automatic approaches greatly benefit from big data with many training sets. However, in the health domain, sometimes we are confronted with a small number of data sets or rare events, where aML-approaches suffer of insufficient training samples. Here interactive machine learning (iML) may be of help, having its roots in reinforcement learning, preference learning, and active learning. The term iML is not yet well used, so we define it as "algorithms that can interact with agents and can optimize their learning behavior through these interactions, where the agents can also be human." This "human-in-the-loop" can be beneficial in solving computationally hard problems, e.g., subspace clustering, protein folding, or k-anonymization of health data, where human expertise can help to reduce an exponential search space through heuristic selection of samples. Therefore, what would otherwise be an NP-hard problem, reduces greatly in complexity through the input and the assistance of a human agent involved in the learning phase.

  8. Supporting collaborative computing and interaction

    International Nuclear Information System (INIS)

    Agarwal, Deborah; McParland, Charles; Perry, Marcia

    2002-01-01

    To enable collaboration on the daily tasks involved in scientific research, collaborative frameworks should provide lightweight and ubiquitous components that support a wide variety of interaction modes. We envision a collaborative environment as one that provides a persistent space within which participants can locate each other, exchange synchronous and asynchronous messages, share documents and applications, share workflow, and hold videoconferences. We are developing the Pervasive Collaborative Computing Environment (PCCE) as such an environment. The PCCE will provide integrated tools to support shared computing and task control and monitoring. This paper describes the PCCE and the rationale for its design

  9. Human-computer interface incorporating personal and application domains

    Science.gov (United States)

    Anderson, Thomas G [Albuquerque, NM

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  10. The response of guide dogs and pet dogs (Canis familiaris) to cues of human referential communication (pointing and gaze).

    Science.gov (United States)

    Ittyerah, Miriam; Gaunet, Florence

    2009-03-01

    The study raises the question of whether guide dogs and pet dogs are expected to differ in response to cues of referential communication given by their owners; especially since guide dogs grow up among sighted humans, and while living with their blind owners, they still have interactions with several sighted people. Guide dogs and pet dogs were required to respond to point, point and gaze, gaze and control cues of referential communication given by their owners. Results indicate that the two groups of dogs do not differ from each other, revealing that the visual status of the owner is not a factor in the use of cues of referential communication. Both groups of dogs have higher frequencies of performance and faster latencies for the point and the point and gaze cues as compared to gaze cue only. However, responses to control cues are below chance performance for the guide dogs, whereas the pet dogs perform at chance. The below chance performance of the guide dogs may be explained by a tendency among them to go and stand by the owner. The study indicates that both groups of dogs respond similarly in normal daily dyadic interaction with their owners and the lower comprehension of the human gaze may be a less salient cue among dogs in comparison to the pointing gesture.

  11. The Human-Robot Interaction Operating System

    Science.gov (United States)

    Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda

    2006-01-01

    In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.

  12. Sensor-based assessment of the in-situ quality of human computer interaction in the cars : final research report.

    Science.gov (United States)

    2016-01-01

    Human attention is a finite resource. When interrupted while performing a task, this : resource is split between two interactive tasks. People have to decide whether the benefits : from the interruptive interaction will be enough to offset the loss o...

  13. Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms

    Science.gov (United States)

    Longmuir, Kenneth J.

    2014-01-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…

  14. Interactive computer-enhanced remote viewing system

    International Nuclear Information System (INIS)

    Tourtellott, J.A.; Wagner, J.F.

    1995-01-01

    Remediation activities such as decontamination and decommissioning (D ampersand D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths am clear of obstacles. This need for a task space model is most pronounced in the remediation of obsolete production facilities and underground storage tanks. Production facilities at many sites contain compact process machinery and systems that were used to produce weapons grade material. For many such systems, a complex maze of pipes (with potentially dangerous contents) must be removed, and this represents a significant D ampersand D challenge. In an analogous way, the underground storage tanks at sites such as Hanford represent a challenge because of their limited entry and the tumbled profusion of in-tank hardware. In response to this need, the Interactive Computer-Enhanced Remote Viewing System (ICERVS) is being designed as a software system to: (1) Provide a reliable geometric description of a robotic task space, and (2) Enable robotic remediation to be conducted more effectively and more economically than with available techniques. A system such as ICERVS is needed because of the problems discussed below

  15. Human performance models for computer-aided engineering

    Science.gov (United States)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  16. IPython: components for interactive and parallel computing across disciplines. (Invited)

    Science.gov (United States)

    Perez, F.; Bussonnier, M.; Frederic, J. D.; Froehle, B. M.; Granger, B. E.; Ivanov, P.; Kluyver, T.; Patterson, E.; Ragan-Kelley, B.; Sailer, Z.

    2013-12-01

    Scientific computing is an inherently exploratory activity that requires constantly cycling between code, data and results, each time adjusting the computations as new insights and questions arise. To support such a workflow, good interactive environments are critical. The IPython project (http://ipython.org) provides a rich architecture for interactive computing with: 1. Terminal-based and graphical interactive consoles. 2. A web-based Notebook system with support for code, text, mathematical expressions, inline plots and other rich media. 3. Easy to use, high performance tools for parallel computing. Despite its roots in Python, the IPython architecture is designed in a language-agnostic way to facilitate interactive computing in any language. This allows users to mix Python with Julia, R, Octave, Ruby, Perl, Bash and more, as well as to develop native clients in other languages that reuse the IPython clients. In this talk, I will show how IPython supports all stages in the lifecycle of a scientific idea: 1. Individual exploration. 2. Collaborative development. 3. Production runs with parallel resources. 4. Publication. 5. Education. In particular, the IPython Notebook provides an environment for "literate computing" with a tight integration of narrative and computation (including parallel computing). These Notebooks are stored in a JSON-based document format that provides an "executable paper": notebooks can be version controlled, exported to HTML or PDF for publication, and used for teaching.

  17. Human Factors Principles in Design of Computer-Mediated Visualization for Robot Missions

    Energy Technology Data Exchange (ETDEWEB)

    David I Gertman; David J Bruemmer

    2008-12-01

    With increased use of robots as a resource in missions supporting countermine, improvised explosive devices (IEDs), and chemical, biological, radiological nuclear and conventional explosives (CBRNE), fully understanding the best means by which to complement the human operator’s underlying perceptual and cognitive processes could not be more important. Consistent with control and display integration practices in many other high technology computer-supported applications, current robotic design practices rely highly upon static guidelines and design heuristics that reflect the expertise and experience of the individual designer. In order to use what we know about human factors (HF) to drive human robot interaction (HRI) design, this paper reviews underlying human perception and cognition principles and shows how they were applied to a threat detection domain.

  18. Effective leaf area index retrieving from terrestrial point cloud data: coupling computational geometry application and Gaussian mixture model clustering

    Science.gov (United States)

    Jin, S.; Tamura, M.; Susaki, J.

    2014-09-01

    Leaf area index (LAI) is one of the most important structural parameters of forestry studies which manifests the ability of the green vegetation interacted with the solar illumination. Classic understanding about LAI is to consider the green canopy as integration of horizontal leaf layers. Since multi-angle remote sensing technique developed, LAI obliged to be deliberated according to the observation geometry. Effective LAI could formulate the leaf-light interaction virtually and precisely. To retrieve the LAI/effective LAI from remotely sensed data therefore becomes a challenge during the past decades. Laser scanning technique can provide accurate surface echoed coordinates with densely scanned intervals. To utilize the density based statistical algorithm for analyzing the voluminous amount of the 3-D points data is one of the subjects of the laser scanning applications. Computational geometry also provides some mature applications for point cloud data (PCD) processing and analysing. In this paper, authors investigated the feasibility of a new application for retrieving the effective LAI of an isolated broad leaf tree. Simplified curvature was calculated for each point in order to remove those non-photosynthetic tissues. Then PCD were discretized into voxel, and clustered by using Gaussian mixture model. Subsequently the area of each cluster was calculated by employing the computational geometry applications. In order to validate our application, we chose an indoor plant to estimate the leaf area, the correlation coefficient between calculation and measurement was 98.28 %. We finally calculated the effective LAI of the tree with 6 × 6 assumed observation directions.

  19. Dependencies, human interactions and uncertainties in probabilistic safety assessment

    International Nuclear Information System (INIS)

    Hirschberg, S.

    1990-01-01

    In the context of Probabilistic Safety Assessment (PSA), three areas were investigated in a 4-year Nordic programme: dependencies with special emphasis on common cause failures, human interactions and uncertainty aspects. The approach was centered around comparative analyses in form of Benchmark/Reference Studies and retrospective reviews. Weak points in available PSAs were identified and recommendations were made aiming at improving consistency of the PSAs. The sensitivity of PSA-results to basic assumptions was demonstrated and the sensitivity to data assignment and to choices of methods for analysis of selected topics was investigated. (author)

  20. Human friendly man-machine system with advanced media technology

    International Nuclear Information System (INIS)

    Ogino, Takamichi; Sasaki, Kazunori

    1993-01-01

    This paper deals with the methodology to implement the man-machine system (MMS) with enhanced human friendliness for nuclear power plants. The relevant technologies are investigated from the two view points: One is integrated multi-media usage for user-computer interface and the other cognitive engineering for user-task interaction. Promising MMS design methodologies, concepts, and their limitations are discussed. To overcome uncertain factors found in human behaviors or individual differences in performance and preference of operators, a design appproach to natural and flexible man-computer interactive environment is proposed by intergrated use of not only cognitive and psychological knowledge but also advanced media technology. Multi-media operator support system under development is shown as an example to evaluate the effectiveness of the new approach and future advancement is prospected. (orig.)

  1. Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.

    Science.gov (United States)

    Longmuir, Kenneth J

    2014-03-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction.

  2. Fluctuating hyperfine interactions: computational implementation

    International Nuclear Information System (INIS)

    Zacate, M. O.; Evenson, W. E.

    2010-01-01

    A library of computational routines has been created to assist in the analysis of stochastic models of hyperfine interactions. We call this library the stochastic hyperfine interactions modeling library (SHIML). It provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental hyperfine interaction measurements can be calculated. Example model calculations are included in the SHIML package to illustrate its use and to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A 22 can be neglected.

  3. Effects of interactions between humans and domesticated animals

    NARCIS (Netherlands)

    Bokkers, E.A.M.

    2006-01-01

    Humans have many kinds of relationships with domesticated animals. To maintain relationships interactions are needed. Interactions with animals may be beneficial for humans but may also be risky. Scientific literature on effects of human¿animal relationships and interactions in a workplace,

  4. Interaction as Negotiation

    DEFF Research Database (Denmark)

    Kristensen, Jannie Friis; Nielsen, Christina

    In this paper we discuss recent developments in interaction design principles for ubiquitous computing environments, specifically implications related to situated and mobile aspects of work. We present 'Interaction through Negotiation' as a general Human-Computer Interaction (HCI) paradigm, aimed...... at ubiquitous/pervasive technology and environments, with focus on facilitating negotiation in and between webs of different artifacts, humans and places. This approach is concerned with the way technology presents itself to us, both as physical entities and as conceptual entities, as well as the relations...... on several extensive empirical case studies, as well as co-operative design-sessions, we present a reflective analysis providing insights into results of the "Interaction through Negotiation" design approach in action. A very promising area of application is exception handling in pervasive computing...

  5. SPATIO-TEMPORAL CLUSTERING OF MOVEMENT DATA: AN APPLICATION TO TRAJECTORIES GENERATED BY HUMAN-COMPUTER INTERACTION

    Directory of Open Access Journals (Sweden)

    G. McArdle

    2012-07-01

    Full Text Available Advances in ubiquitous positioning technologies and their increasing availability in mobile devices has generated large volumes of movement data. Analysing these datasets is challenging. While data mining techniques can be applied to this data, knowledge of the underlying spatial region can assist interpreting the data. We have developed a geovisual analysis tool for studying movement data. In addition to interactive visualisations, the tool has features for analysing movement trajectories, in terms of their spatial and temporal similarity. The focus in this paper is on mouse trajectories of users interacting with web maps. The results obtained from a user trial can be used as a starting point to determine which parts of a mouse trajectory can assist personalisation of spatial web maps.

  6. Computers and conversation

    CERN Document Server

    Luff, Paul; Gilbert, Nigel G

    1986-01-01

    In the past few years a branch of sociology, conversation analysis, has begun to have a significant impact on the design of human*b1computer interaction (HCI). The investigation of human*b1human dialogue has emerged as a fruitful foundation for interactive system design.****This book includes eleven original chapters by leading researchers who are applying conversation analysis to HCI. The fundamentals of conversation analysis are outlined, a number of systems are described, and a critical view of their value for HCI is offered.****Computers and Conversation will be of interest to all concerne

  7. COMPUTER GRAPHICAL REPRESENTATION, IN TREBLE ORTHOGONAL PROJECTION, OF A POINT

    Directory of Open Access Journals (Sweden)

    SLONOVSCHI Andrei

    2017-05-01

    Full Text Available In the stages of understanding and study, by students, of descriptive geometry, the treble orthogonal projection of a point, creates problems in the situations in that one or more descriptive coordinates are zero. Starting from these considerations the authors have created an original computer program which offers to the students the possibility to easily understanding of the way in which a point is represented, in draught, in the treble orthogonal projection whatever which are its values of the descriptive coordinates.

  8. Impact of familiarity on information complexity in human-computer interfaces

    Directory of Open Access Journals (Sweden)

    Bakaev Maxim

    2016-01-01

    Full Text Available A quantitative measure of information complexity remains very much desirable in HCI field, since it may aid in optimization of user interfaces, especially in human-computer systems for controlling complex objects. Our paper is dedicated to exploration of subjective (subject-depended aspect of the complexity, conceptualized as information familiarity. Although research of familiarity in human cognition and behaviour is done in several fields, the accepted models in HCI, such as Human Processor or Hick-Hyman’s law do not generally consider this issue. In our experimental study the subjects performed search and selection of digits and letters, whose familiarity was conceptualized as frequency of occurrence in numbers and texts. The analysis showed significant effect of information familiarity on selection time and throughput in regression models, although the R2 values were somehow low. Still, we hope that our results might aid in quantification of information complexity and its further application for optimizing interaction in human-machine systems.

  9. Portable computing - A fielded interactive scientific application in a small off-the-shelf package

    Science.gov (United States)

    Groleau, Nicolas; Hazelton, Lyman; Frainier, Rich; Compton, Michael; Colombano, Silvano; Szolovits, Peter

    1993-01-01

    Experience with the design and implementation of a portable computing system for STS crew-conducted science is discussed. Principal-Investigator-in-a-Box (PI) will help the SLS-2 astronauts perform vestibular (human orientation system) experiments in flight. PI is an interactive system that provides data acquisition and analysis, experiment step rescheduling, and various other forms of reasoning to astronaut users. The hardware architecture of PI consists of a computer and an analog interface box. 'Off-the-shelf' equipment is employed in the system wherever possible in an effort to use widely available tools and then to add custom functionality and application codes to them. Other projects which can help prospective teams to learn more about portable computing in space are also discussed.

  10. Investigation and evaluation into the usability of human-computer interfaces using a typical CAD system

    Energy Technology Data Exchange (ETDEWEB)

    Rickett, J D

    1987-01-01

    This research program covers three topics relating to the human-computer interface namely, voice recognition, tools and techniques for evaluation, and user and interface modeling. An investigation into the implementation of voice-recognition technologies examines how voice recognizers may be evaluated in commercial software. A prototype system was developed with the collaboration of FEMVIEW Ltd. (marketing a CAD package). A theoretical approach to evaluation leads to the hypothesis that human-computer interaction is affected by personality, influencing types of dialogue, preferred methods for providing helps, etc. A user model based on personality traits, or habitual-behavior patterns (HBP) is presented. Finally, a practical framework is provided for the evaluation of human-computer interfaces. It suggests that evaluation is an integral part of design and that the iterative use of evaluation techniques throughout the conceptualization, design, implementation and post-implementation stages will ensure systems that satisfy the needs of the users and fulfill the goal of usability.

  11. Multimodal interaction for human-robot teams

    Science.gov (United States)

    Burke, Dustin; Schurr, Nathan; Ayers, Jeanine; Rousseau, Jeff; Fertitta, John; Carlin, Alan; Dumond, Danielle

    2013-05-01

    Unmanned ground vehicles have the potential for supporting small dismounted teams in mapping facilities, maintaining security in cleared buildings, and extending the team's reconnaissance and persistent surveillance capability. In order for such autonomous systems to integrate with the team, we must move beyond current interaction methods using heads-down teleoperation which require intensive human attention and affect the human operator's ability to maintain local situational awareness and ensure their own safety. This paper focuses on the design, development and demonstration of a multimodal interaction system that incorporates naturalistic human gestures, voice commands, and a tablet interface. By providing multiple, partially redundant interaction modes, our system degrades gracefully in complex environments and enables the human operator to robustly select the most suitable interaction method given the situational demands. For instance, the human can silently use arm and hand gestures for commanding a team of robots when it is important to maintain stealth. The tablet interface provides an overhead situational map allowing waypoint-based navigation for multiple ground robots in beyond-line-of-sight conditions. Using lightweight, wearable motion sensing hardware either worn comfortably beneath the operator's clothing or integrated within their uniform, our non-vision-based approach enables an accurate, continuous gesture recognition capability without line-of-sight constraints. To reduce the training necessary to operate the system, we designed the interactions around familiar arm and hand gestures.

  12. Compliance control based on PSO algorithm to improve the feeling during physical human-robot interaction.

    Science.gov (United States)

    Jiang, Zhongliang; Sun, Yu; Gao, Peng; Hu, Ying; Zhang, Jianwei

    2016-01-01

    Robots play more important roles in daily life and bring us a lot of convenience. But when people work with robots, there remain some significant differences in human-human interactions and human-robot interaction. It is our goal to make robots look even more human-like. We design a controller which can sense the force acting on any point of a robot and ensure the robot can move according to the force. First, a spring-mass-dashpot system was used to describe the physical model, and the second-order system is the kernel of the controller. Then, we can establish the state space equations of the system. In addition, the particle swarm optimization algorithm had been used to obtain the system parameters. In order to test the stability of system, the root-locus diagram had been shown in the paper. Ultimately, some experiments had been carried out on the robotic spinal surgery system, which is developed by our team, and the result shows that the new controller performs better during human-robot interaction.

  13. From 'automation' to 'autonomy': the importance of trust repair in human-machine interaction.

    Science.gov (United States)

    de Visser, Ewart J; Pak, Richard; Shaw, Tyler H

    2018-04-09

    Modern interactions with technology are increasingly moving away from simple human use of computers as tools to the establishment of human relationships with autonomous entities that carry out actions on our behalf. In a recent commentary, Peter Hancock issued a stark warning to the field of human factors that attention must be focused on the appropriate design of a new class of technology: highly autonomous systems. In this article, we heed the warning and propose a human-centred approach directly aimed at ensuring that future human-autonomy interactions remain focused on the user's needs and preferences. By adapting literature from industrial psychology, we propose a framework to infuse a unique human-like ability, building and actively repairing trust, into autonomous systems. We conclude by proposing a model to guide the design of future autonomy and a research agenda to explore current challenges in repairing trust between humans and autonomous systems. Practitioner Summary: This paper is a call to practitioners to re-cast our connection to technology as akin to a relationship between two humans rather than between a human and their tools. To that end, designing autonomy with trust repair abilities will ensure future technology maintains and repairs relationships with their human partners.

  14. Human Work Interaction Design for Pervasive and Smart Workplaces

    DEFF Research Database (Denmark)

    Campos, Pedro F.; Lopes, Arminda; Clemmensen, Torkil

    2014-01-01

    ' experience and outputs? This workshop focuses on answering this question to support professionals, academia, national labs, and industry engaged in human work analysis and interaction design for the workplace. Conversely, tools, procedures, and professional competences for designing human......Pervasive and smart technologies have pushed workplace configuration beyond linear logic and physical boundaries. As a result, workers' experience of and access to technology is increasingly pervasive, and their agency constantly reconfigured. While this in certain areas of work is not new (e.......g., technology mediation and decision support in air traffic control), more recent developments in other domains such as healthcare (e.g., Augmented Reality in Computer Aided Surgery) have raised challenging issues for HCI researchers and practitioners. The question now is: how to improve the quality of workers...

  15. Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding

    Science.gov (United States)

    Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam

    2018-03-01

    We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.

  16. Prediction of Human Drug Targets and Their Interactions Using Machine Learning Methods: Current and Future Perspectives.

    Science.gov (United States)

    Nath, Abhigyan; Kumari, Priyanka; Chaube, Radha

    2018-01-01

    Identification of drug targets and drug target interactions are important steps in the drug-discovery pipeline. Successful computational prediction methods can reduce the cost and time demanded by the experimental methods. Knowledge of putative drug targets and their interactions can be very useful for drug repurposing. Supervised machine learning methods have been very useful in drug target prediction and in prediction of drug target interactions. Here, we describe the details for developing prediction models using supervised learning techniques for human drug target prediction and their interactions.

  17. An ontology for human-like interaction systems

    OpenAIRE

    Albacete García, Esperanza

    2016-01-01

    This report proposes and describes the development of a Ph.D. Thesis aimed at building an ontological knowledge model supporting Human-Like Interaction systems. The main function of such knowledge model in a human-like interaction system is to unify the representation of each concept, relating it to the appropriate terms, as well as to other concepts with which it shares semantic relations. When developing human-like interactive systems, the inclusion of an ontological module can be valuab...

  18. On the tip of the tongue: learning typing and pointing with an intra-oral computer interface.

    Science.gov (United States)

    Caltenco, Héctor A; Breidegard, Björn; Struijk, Lotte N S Andreasen

    2014-07-01

    To evaluate typing and pointing performance and improvement over time of four able-bodied participants using an intra-oral tongue-computer interface for computer control. A physically disabled individual may lack the ability to efficiently control standard computer input devices. There have been several efforts to produce and evaluate interfaces that provide individuals with physical disabilities the possibility to control personal computers. Training with the intra-oral tongue-computer interface was performed by playing games over 18 sessions. Skill improvement was measured through typing and pointing exercises at the end of each training session. Typing throughput improved from averages of 2.36 to 5.43 correct words per minute. Pointing throughput improved from averages of 0.47 to 0.85 bits/s. Target tracking performance, measured as relative time on target, improved from averages of 36% to 47%. Path following throughput improved from averages of 0.31 to 0.83 bits/s and decreased to 0.53 bits/s with more difficult tasks. Learning curves support the notion that the tongue can rapidly learn novel motor tasks. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, which makes the tongue a feasible input organ for computer control. Intra-oral computer interfaces could provide individuals with severe upper-limb mobility impairments the opportunity to control computers and automatic equipment. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, but does not cause fatigue easily and might be invisible to other people, which is highly prioritized by assistive device users. Combination of visual and auditory feedback is vital for a good performance of an intra-oral computer interface and helps to reduce involuntary or erroneous activations.

  19. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    Science.gov (United States)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99 in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text chat communications, manipulation of procedureschecklists, cataloguingannotating images, scientific note taking, human-robot interaction, and control of suit andor other EVA systems.

  20. Molecular interactions in the betaine monohydrate-polyol deep eutectic solvents: Experimental and computational studies

    Science.gov (United States)

    Zahrina, Ida; Mulia, Kamarza; Yanuar, Arry; Nasikin, Mohammad

    2018-04-01

    DES (deep eutectic solvents) are a new class of ionic liquids that have excellent properties. The strength of interaction between molecules in the DES affects their properties and applications. In this work, the strength of molecular interactions between components in the betaine monohydrate salt and polyol (glycerol or/and propylene glycol) eutectic mixtures was studied by experimental and computational studies. The melting point and fusion enthalpy of the mixtures were measured using STA (Simultaneous Thermal Analyzer). The nature and strength of intermolecular interactions were observed by FT-IR and NMR spectroscopy. The molecular dynamics simulation was used to determine the number of H-bonds, percent occupancy, and radial distribution functions in the eutectic mixtures. The interaction between betaine monohydrate and polyol is following order: betaine monohydrate-glycerol-propylene glycol > betaine monohydrate-glycerol > betaine monohydrate-propylene glycol, where the latter is the eutectic mixture with the lowest stability, strength and extent of the hydrogen bonding interactions between component molecules. The presence of intra-molecular hydrogen bonding interactions, the inter-molecular hydrogen bonding interactions between betaine molecule and polyol, and also interactions between polyol and H2O of betaine monohydrate in the eutectic mixtures.

  1. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    OpenAIRE

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-01-01

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times...

  2. Human Computation An Integrated Approach to Learning from the Crowd

    CERN Document Server

    Law, Edith

    2011-01-01

    Human computation is a new and evolving research area that centers around harnessing human intelligence to solve computational problems that are beyond the scope of existing Artificial Intelligence (AI) algorithms. With the growth of the Web, human computation systems can now leverage the abilities of an unprecedented number of people via the Web to perform complex computation. There are various genres of human computation applications that exist today. Games with a purpose (e.g., the ESP Game) specifically target online gamers who generate useful data (e.g., image tags) while playing an enjoy

  3. The Evolution of Integrated Assessment and Emerging Challenges in the Assessment of Human and Natural System Interactions

    Science.gov (United States)

    Clarke, L.

    2017-12-01

    Integrated assessment (IA) modeling and research has a long history, spanning over 30 years since its inception and addressing a wide range of contemporary issues along the way. Over the last decade, IA modeling and research has emerged as one of the primary analytical methods for understanding the complex interactions between human and natural systems, from the interactions between energy, water, and land/food systems to the interplay between health, climate, and air pollution. IA modeling and research is particularly well-suited for the analysis of these interactions because it is a discipline that strives to integrate representations of multiple systems into consistent computational platforms or frameworks. In doing so, it explicitly confronts the many tradeoffs that are frequently necessary to manage complexity and computational cost while still representing the most important interactions and overall, coupled system behavior. This talk explores the history of IA modeling and research as a means to better understand its role in the assessment of contemporary issues at the confluence of human and natural systems. It traces the evolution of IA modeling and research from initial exploration of long-term emissions pathways, to the role of technology in the global evolution of the energy system, to the key linkages between land and energy systems and, more recently, the linkages with water, air pollution, and other key systems and issues. It discusses the advances in modeling that have emerged over this evolution and the biggest challenges that still present themselves as we strive to better understand the most important interactions between human and natural systems and the implications of these interactions for human welfare and decision making.

  4. A parallel graded-mesh FDTD algorithm for human-antenna interaction problems.

    Science.gov (United States)

    Catarinucci, Luca; Tarricone, Luciano

    2009-01-01

    The finite difference time domain method (FDTD) is frequently used for the numerical solution of a wide variety of electromagnetic (EM) problems and, among them, those concerning human exposure to EM fields. In many practical cases related to the assessment of occupational EM exposure, large simulation domains are modeled and high space resolution adopted, so that strong memory and central processing unit power requirements have to be satisfied. To better afford the computational effort, the use of parallel computing is a winning approach; alternatively, subgridding techniques are often implemented. However, the simultaneous use of subgridding schemes and parallel algorithms is very new. In this paper, an easy-to-implement and highly-efficient parallel graded-mesh (GM) FDTD scheme is proposed and applied to human-antenna interaction problems, demonstrating its appropriateness in dealing with complex occupational tasks and showing its capability to guarantee the advantages of a traditional subgridding technique without affecting the parallel FDTD performance.

  5. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.

    Science.gov (United States)

    Knaepen, Kristel; Beyl, Pieter; Duerinck, Saartje; Hagman, Friso; Lefeber, Dirk; Meeusen, Romain

    2014-11-01

    Until today it is not entirely clear how humans interact with automated gait rehabilitation devices and how we can, based on that interaction, maximize the effectiveness of these exoskeletons. The goal of this study was to gain knowledge on the human-robot interaction, in terms of kinematics and muscle activity, between a healthy human motor system and a powered knee exoskeleton (i.e., KNEXO). Therefore, temporal and spatial gait parameters, human joint kinematics, exoskeleton kinetics and muscle activity during four different walking trials in 10 healthy male subjects were studied. Healthy subjects can walk with KNEXO in patient-in-charge mode with some slight constraints in kinematics and muscle activity primarily due to inertia of the device. Yet, during robot-in-charge walking the muscular constraints are reversed by adding positive power to the leg swing, compensating in part this inertia. Next to that, KNEXO accurately records and replays the right knee kinematics meaning that subject-specific trajectories can be implemented as a target trajectory during assisted walking. No significant differences in the human response to the interaction with KNEXO in low and high compliant assistance could be pointed out. This is in contradiction with our hypothesis that muscle activity would decrease with increasing assistance. It seems that the differences between the parameter settings of low and high compliant control might not be sufficient to observe clear effects in healthy subjects. Moreover, we should take into account that KNEXO is a unilateral, 1 degree-of-freedom device.

  6. Multimodal interaction in image and video applications

    CERN Document Server

    Sappa, Angel D

    2013-01-01

    Traditional Pattern Recognition (PR) and Computer Vision (CV) technologies have mainly focused on full automation, even though full automation often proves elusive or unnatural in many applications, where the technology is expected to assist rather than replace the human agents. However, not all the problems can be automatically solved being the human interaction the only way to tackle those applications. Recently, multimodal human interaction has become an important field of increasing interest in the research community. Advanced man-machine interfaces with high cognitive capabilities are a hot research topic that aims at solving challenging problems in image and video applications. Actually, the idea of computer interactive systems was already proposed on the early stages of computer science. Nowadays, the ubiquity of image sensors together with the ever-increasing computing performance has open new and challenging opportunities for research in multimodal human interaction. This book aims to show how existi...

  7. Quantitative heartbeat coupling measures in human-horse interaction.

    Science.gov (United States)

    Lanata, Antonio; Guidi, Andrea; Valenza, Gaetano; Baragli, Paolo; Scilingo, Enzo Pasquale

    2016-08-01

    We present a study focused on a quantitative estimation of a human-horse dynamic interaction. A set of measures based on magnitude and phase coupling between heartbeat dynamics of both humans and horses in three different conditions is reported: no interaction, visual/olfactory interaction and grooming. Specifically, Magnitude Squared Coherence (MSC), Mean Phase Coherence (MPC) and Dynamic Time Warping (DTW) have been used as estimators of the amount of coupling between human and horse through the analysis of their heart rate variability (HRV) time series in a group of eleven human subjects, and one horse. The rationale behind this study is that the interaction of two complex biological systems go towards a coupling process whose dynamical evolution is modulated by the kind and time duration of the interaction itself. We achieved a congruent and consistent statistical significant difference for all of the three indices. Moreover, a Nearest Mean Classifier was able to recognize the three classes of interaction with an accuracy greater than 70%. Although preliminary, these encouraging results allow a discrimination of three distinct phases in a real human-animal interaction opening to the characterization of the empirically proven relationship between human and horse.

  8. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, Ruston, LA 71272 (United States)], E-mail: neven@phys.latech.edu

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  9. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.

    Science.gov (United States)

    Simicevic, Neven

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  10. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    International Nuclear Information System (INIS)

    Simicevic, Neven

    2008-01-01

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW

  11. Multimodal Challenge: Analytics Beyond User-computer Interaction Data

    NARCIS (Netherlands)

    Di Mitri, Daniele; Schneider, Jan; Specht, Marcus; Drachsler, Hendrik

    2018-01-01

    This contribution describes one the challenges explored in the Fourth LAK Hackathon. This challenge aims at shifting the focus from learning situations which can be easily traced through user-computer interactions data and concentrate more on user-world interactions events, typical of co-located and

  12. Handbook of human computation

    CERN Document Server

    Michelucci, Pietro

    2013-01-01

    This volume addresses the emerging area of human computation, The chapters, written by leading international researchers, explore existing and future opportunities to combine the respective strengths of both humans and machines in order to create powerful problem-solving capabilities. The book bridges scientific communities, capturing and integrating the unique perspective and achievements of each. It coalesces contributions from industry and across related disciplines in order to motivate, define, and anticipate the future of this exciting new frontier in science and cultural evolution. Reade

  13. Efficient and robust pupil size and blink estimation from near-field video sequences for human-machine interaction.

    Science.gov (United States)

    Chen, Siyuan; Epps, Julien

    2014-12-01

    Monitoring pupil and blink dynamics has applications in cognitive load measurement during human-machine interaction. However, accurate, efficient, and robust pupil size and blink estimation pose significant challenges to the efficacy of real-time applications due to the variability of eye images, hence to date, require manual intervention for fine tuning of parameters. In this paper, a novel self-tuning threshold method, which is applicable to any infrared-illuminated eye images without a tuning parameter, is proposed for segmenting the pupil from the background images recorded by a low cost webcam placed near the eye. A convex hull and a dual-ellipse fitting method are also proposed to select pupil boundary points and to detect the eyelid occlusion state. Experimental results on a realistic video dataset show that the measurement accuracy using the proposed methods is higher than that of widely used manually tuned parameter methods or fixed parameter methods. Importantly, it demonstrates convenience and robustness for an accurate and fast estimate of eye activity in the presence of variations due to different users, task types, load, and environments. Cognitive load measurement in human-machine interaction can benefit from this computationally efficient implementation without requiring a threshold calibration beforehand. Thus, one can envisage a mini IR camera embedded in a lightweight glasses frame, like Google Glass, for convenient applications of real-time adaptive aiding and task management in the future.

  14. UCH 3 and 4 plant computer system I/O point summary

    International Nuclear Information System (INIS)

    Sohn, Kwang Young; Lee, Tae Hoon; Lee, Soon Sung; Lee, Byung Chae; Yoon, Jong Keon; Park, Jeong Suk; Baek, Seung Min; Shin, Hyun Kook

    1996-05-01

    This technical report summarizes the UCN 3 and 4 I/O database points and is expected to be an important for many disciplines. There are several kind of plant tests before the commercial operation such as Preoperational Test, Cold Hydro Test (CHT), Hot Functional Test (HFT), and Power Ascension Test (PAT). Those are performed in a manner that the validity of the sensor inputs got to the Plant Computer System (PCS) and operational integrity of plant are determined by monitoring the addressable I/O point identification (PID) on the Plant Computer System operator console. For better performance of activities like Emergency Operating Procedure (EOP) computerization, Safety Parameter Display System (SPDS) development, and organizing integrated database for NSSS, referencing the past plant information about I/O database is highly expected. What's more, it is inevitable material for plant system research and general design document work to be done in future. So we present this report based on UCN database for better understanding of plant computer system. 5 refs. (Author) .new

  15. UCH 3 and 4 plant computer system I/O point summary

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Kwang Young; Lee, Tae Hoon; Lee, Soon Sung; Lee, Byung Chae; Yoon, Jong Keon; Park, Jeong Suk; Baek, Seung Min; Shin, Hyun Kook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-05-01

    This technical report summarizes the UCN 3 and 4 I/O database points and is expected to be an important for many disciplines. There are several kind of plant tests before the commercial operation such as Preoperational Test, Cold Hydro Test (CHT), Hot Functional Test (HFT), and Power Ascension Test (PAT). Those are performed in a manner that the validity of the sensor inputs got to the Plant Computer System (PCS) and operational integrity of plant are determined by monitoring the addressable I/O point identification (PID) on the Plant Computer System operator console. For better performance of activities like Emergency Operating Procedure (EOP) computerization, Safety Parameter Display System (SPDS) development, and organizing integrated database for NSSS, referencing the past plant information about I/O database is highly expected. What`s more, it is inevitable material for plant system research and general design document work to be done in future. So we present this report based on UCN database for better understanding of plant computer system. 5 refs. (Author) .new.

  16. Guest editorial: Brain/neuronal computer games interfaces and interaction

    OpenAIRE

    Coyle, D.; Principe, J.; Lotte, F.; Nijholt, Antinus

    2013-01-01

    Nowadays brainwave or electroencephalogram (EEG) controlled games controllers are adding new options to satisfy the continual demand for new ways to interact with games, following trends such as the Nintendo® Wii, Microsoft® Kinect and Playstation® Move which are based on accelerometers and motion capture. EEG-based brain-computer games interaction are controlled through brain-computer interface (BCI) technology which requires sophisticated signal processing to produce a low communication ban...

  17. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies.

    Science.gov (United States)

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (-)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π-π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki ] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood-brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a

  18. An Interdisciplinary Bibliography for Computers and the Humanities Courses.

    Science.gov (United States)

    Ehrlich, Heyward

    1991-01-01

    Presents an annotated bibliography of works related to the subject of computers and the humanities. Groups items into textbooks and overviews; introductions; human and computer languages; literary and linguistic analysis; artificial intelligence and robotics; social issue debates; computers' image in fiction; anthologies; writing and the…

  19. African elephants can use human pointing cues to find hidden food.

    Science.gov (United States)

    Smet, Anna F; Byrne, Richard W

    2013-10-21

    How animals gain information from attending to the behavior of others has been widely studied, driven partly by the importance of referential pointing in human cognitive development [1-4], but species differences in reading human social cues remain unexplained. One explanation is that this capacity evolved during domestication [5, 6], but it may be that only those animals able to interpret human-like social cues were successfully domesticated. Elephants are a critical taxon for this question: despite their longstanding use by humans, they have never been domesticated [7]. Here we show that a group of 11 captive African elephants, seven of them significantly as individuals, could interpret human pointing to find hidden food. We suggest that success was not due to prior training or extensive learning opportunities. Elephants successfully interpreted pointing when the experimenter's proximity to the hiding place was varied and when the ostensive pointing gesture was visually subtle, suggesting that they understood the experimenter's communicative intent. The elephant's native ability in interpreting social cues may have contributed to its long history of effective use by man. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts

    Science.gov (United States)

    Doolittle, Janet M.; Gomez, Shawn M.

    2011-01-01

    Background Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. Methodology/Principal Findings We implemented a computational approach to predict interactions between Dengue virus (DENV) and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9). Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. Conclusions/Significance Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets. PMID:21358811

  1. Mapping protein interactions between Dengue virus and its human and insect hosts.

    Directory of Open Access Journals (Sweden)

    Janet M Doolittle

    Full Text Available BACKGROUND: Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. METHODOLOGY/PRINCIPAL FINDINGS: We implemented a computational approach to predict interactions between Dengue virus (DENV and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9. Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. CONCLUSIONS/SIGNIFICANCE: Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets.

  2. Human-Robot Interaction

    Science.gov (United States)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  3. Modelling dynamic human-device interaction in healthcare

    OpenAIRE

    Niezen, Gerrit

    2013-01-01

    Errors are typically blamed on human factors, forgetting that the system should have been designed to take them into account and minimise these problems. In our research we are developing tools to design interactive medical devices using human-in-the-loop modelling. Manual control theory is used to describe and analyse the dynamic aspects of human-device interaction.

  4. Prediction of protein-protein interactions between viruses and human by an SVM model

    Directory of Open Access Journals (Sweden)

    Cui Guangyu

    2012-05-01

    Full Text Available Abstract Background Several computational methods have been developed to predict protein-protein interactions from amino acid sequences, but most of those methods are intended for the interactions within a species rather than for interactions across different species. Methods for predicting interactions between homogeneous proteins are not appropriate for finding those between heterogeneous proteins since they do not distinguish the interactions between proteins of the same species from those of different species. Results We developed a new method for representing a protein sequence of variable length in a frequency vector of fixed length, which encodes the relative frequency of three consecutive amino acids of a sequence. We built a support vector machine (SVM model to predict human proteins that interact with virus proteins. In two types of viruses, human papillomaviruses (HPV and hepatitis C virus (HCV, our SVM model achieved an average accuracy above 80%, which is higher than that of another SVM model with a different representation scheme. Using the SVM model and Gene Ontology (GO annotations of proteins, we predicted new interactions between virus proteins and human proteins. Conclusions Encoding the relative frequency of amino acid triplets of a protein sequence is a simple yet powerful representation method for predicting protein-protein interactions across different species. The representation method has several advantages: (1 it enables a prediction model to achieve a better performance than other representations, (2 it generates feature vectors of fixed length regardless of the sequence length, and (3 the same representation is applicable to different types of proteins.

  5. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Moses, Alan M.; Zhang, Zhaolei

    2015-01-01

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  6. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun

    2015-11-02

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  7. FIT: Computer Program that Interactively Determines Polynomial Equations for Data which are a Function of Two Independent Variables

    Science.gov (United States)

    Arbuckle, P. D.; Sliwa, S. M.; Roy, M. L.; Tiffany, S. H.

    1985-01-01

    A computer program for interactively developing least-squares polynomial equations to fit user-supplied data is described. The program is characterized by the ability to compute the polynomial equations of a surface fit through data that are a function of two independent variables. The program utilizes the Langley Research Center graphics packages to display polynomial equation curves and data points, facilitating a qualitative evaluation of the effectiveness of the fit. An explanation of the fundamental principles and features of the program, as well as sample input and corresponding output, are included.

  8. Guidelines for the integration of audio cues into computer user interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sumikawa, D.A.

    1985-06-01

    Throughout the history of computers, vision has been the main channel through which information is conveyed to the computer user. As the complexities of man-machine interactions increase, more and more information must be transferred from the computer to the user and then successfully interpreted by the user. A logical next step in the evolution of the computer-user interface is the incorporation of sound and thereby using the sense of ''hearing'' in the computer experience. This allows our visual and auditory capabilities to work naturally together in unison leading to more effective and efficient interpretation of all information received by the user from the computer. This thesis presents an initial set of guidelines to assist interface developers in designing an effective sight and sound user interface. This study is a synthesis of various aspects of sound, human communication, computer-user interfaces, and psychoacoustics. We introduce the notion of an earcon. Earcons are audio cues used in the computer-user interface to provide information and feedback to the user about some computer object, operation, or interaction. A possible construction technique for earcons, the use of earcons in the interface, how earcons are learned and remembered, and the affects of earcons on their users are investigated. This study takes the point of view that earcons are a language and human/computer communication issue and are therefore analyzed according to the three dimensions of linguistics; syntactics, semantics, and pragmatics.

  9. Development of a body motion interactive system with a weight voting mechanism and computer vision technology

    Science.gov (United States)

    Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien

    2012-09-01

    This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.

  10. Anticipated Ongoing Interaction versus Channel Effects of Relational Communication in Computer-Mediated Interaction.

    Science.gov (United States)

    Walther, Joseph B.

    1994-01-01

    Assesses the related effects of anticipated future interaction and different communication media (computer-mediated versus face-to-face communication) on the communication of relational intimacy and composure. Shows that the assignment of long-term versus short-term partnerships has a larger impact on anticipated future interaction reported by…

  11. Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization

    Science.gov (United States)

    Zhao, Qiangfu; Liu, Yong

    2015-01-01

    A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050

  12. Effects of interactions between humans and domesticated animals

    OpenAIRE

    Bokkers, E.A.M.

    2006-01-01

    Humans have many kinds of relationships with domesticated animals. To maintain relationships interactions are needed. Interactions with animals may be beneficial for humans but may also be risky. Scientific literature on effects of human¿animal relationships and interactions in a workplace, health-care and residential context has been reviewed to develop ideas about the effects farm animals can have on humans. Although there are quite a few studies, the variety of methods, the complexity of t...

  13. BrachyTPS -Interactive point kernel code package for brachytherapy treatment planning of gynaecological cancers

    International Nuclear Information System (INIS)

    Thilagam, L.; Subbaiah, K.V.

    2008-01-01

    Brachytherapy treatment planning systems (TPS) are always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in Intracavitary brachytherapy (ICBT) applicators. Most of the commercially available brachytherapy TPS softwares estimate the absorbed dose at a point, only taking care of the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. So the doses estimated by them are not much accurate under realistic clinical conditions. In this regard, interactive point kernel rode (BrachyTPS) has been developed to perform independent dose calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. As primary input data, the code takes patients' planning data including the source specifications, dwell positions, dwell times and it computes the doses at reference points by dose point kernel formalisms, with multi-layer shield build-up factors accounting for the contributions from scattered radiation. In addition to performing dose distribution calculations, this code package is capable of displaying an isodose distribution curve into the patient anatomy images. The primary aim of this study is to validate the developed point kernel code integrated with treatment planning systems against the other tools which are available in the market. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, Board of Radiation Isotope and Technology (BRIT) made low dose rate (LDR) applicator, Fletcher Green type LDR applicator and Fletcher Williamson high dose rate (HDR) applicator were studied to test the accuracy of the software

  14. Human-Computer Interaction Software: Lessons Learned, Challenges Ahead

    Science.gov (United States)

    1989-01-01

    domain communi- Iatelligent s t s s Me cation. Users familiar with problem Inteligent support systes. High-func- anddomains but inxperienced with comput...8217i. April 1987, pp. 7.3-78. His research interests include artificial intel- Creating better HCI softw-are will have a 8. S.K Catrd. I.P. Moran. arid

  15. Textile Pressure Mapping Sensor for Emotional Touch Detection in Human-Robot Interaction

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2017-11-01

    Full Text Available In this paper, we developed a fully textile sensing fabric for tactile touch sensing as the robot skin to detect human-robot interactions. The sensor covers a 20-by-20 cm 2 area with 400 sensitive points and samples at 50 Hz per point. We defined seven gestures which are inspired by the social and emotional interactions of typical people to people or pet scenarios. We conducted two groups of mutually blinded experiments, involving 29 participants in total. The data processing algorithm first reduces the spatial complexity to frame descriptors, and temporal features are calculated through basic statistical representations and wavelet analysis. Various classifiers are evaluated and the feature calculation algorithms are analyzed in details to determine each stage and segments’ contribution. The best performing feature-classifier combination can recognize the gestures with a 93 . 3 % accuracy from a known group of participants, and 89 . 1 % from strangers.

  16. Textile Pressure Mapping Sensor for Emotional Touch Detection in Human-Robot Interaction.

    Science.gov (United States)

    Zhou, Bo; Altamirano, Carlos Andres Velez; Zurian, Heber Cruz; Atefi, Seyed Reza; Billing, Erik; Martinez, Fernando Seoane; Lukowicz, Paul

    2017-11-09

    In this paper, we developed a fully textile sensing fabric for tactile touch sensing as the robot skin to detect human-robot interactions. The sensor covers a 20-by-20 cm 2 area with 400 sensitive points and samples at 50 Hz per point. We defined seven gestures which are inspired by the social and emotional interactions of typical people to people or pet scenarios. We conducted two groups of mutually blinded experiments, involving 29 participants in total. The data processing algorithm first reduces the spatial complexity to frame descriptors, and temporal features are calculated through basic statistical representations and wavelet analysis. Various classifiers are evaluated and the feature calculation algorithms are analyzed in details to determine each stage and segments' contribution. The best performing feature-classifier combination can recognize the gestures with a 93 . 3 % accuracy from a known group of participants, and 89 . 1 % from strangers.

  17. Human factors in computing systems: focus on patient-centered health communication at the ACM SIGCHI conference.

    Science.gov (United States)

    Wilcox, Lauren; Patel, Rupa; Chen, Yunan; Shachak, Aviv

    2013-12-01

    Health Information Technologies, such as electronic health records (EHR) and secure messaging, have already transformed interactions among patients and clinicians. In addition, technologies supporting asynchronous communication outside of clinical encounters, such as email, SMS, and patient portals, are being increasingly used for follow-up, education, and data reporting. Meanwhile, patients are increasingly adopting personal tools to track various aspects of health status and therapeutic progress, wishing to review these data with clinicians during consultations. These issues have drawn increasing interest from the human-computer interaction (HCI) community, with special focus on critical challenges in patient-centered interactions and design opportunities that can address these challenges. We saw this community presenting and interacting at the ACM SIGCHI 2013, Conference on Human Factors in Computing Systems, (also known as CHI), held April 27-May 2nd, 2013 at the Palais de Congrès de Paris in France. CHI 2013 featured many formal avenues to pursue patient-centered health communication: a well-attended workshop, tracks of original research, and a lively panel discussion. In this report, we highlight these events and the main themes we identified. We hope that it will help bring the health care communication and the HCI communities closer together. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Physical Forces between Humans and How Humans Attract and Repel Each Other Based on Their Social Interactions in an Online World.

    Directory of Open Access Journals (Sweden)

    Stefan Thurner

    Full Text Available Physical interactions between particles are the result of the exchange of gauge bosons. Human interactions are mediated by the exchange of messages, goods, money, promises, hostilities, etc. While in the physical world interactions and their associated forces have immediate dynamical consequences (Newton's laws the situation is not clear for human interactions. Here we quantify the relative acceleration between humans who interact through the exchange of messages, goods and hostilities in a massive multiplayer online game. For this game we have complete information about all interactions (exchange events between about 430,000 players, and about their trajectories (movements in the metric space of the game universe at any point in time. We use this information to derive "interaction potentials" for communication, trade and attacks and show that they are harmonic in nature. Individuals who exchange messages and trade goods generally attract each other and start to separate immediately after exchange events end. The form of the interaction potential for attacks mirrors the usual "hit-and-run" tactics of aggressive players. By measuring interaction intensities as a function of distance, velocity and acceleration, we show that "forces" between players are directly related to the number of exchange events. We find an approximate power-law decay of the likelihood for interactions as a function of distance, which is in accordance with previous real world empirical work. We show that the obtained potentials can be understood with a simple model assuming an exchange-driven force in combination with a distance-dependent exchange rate.

  19. Socially intelligent robots: dimensions of human-robot interaction.

    Science.gov (United States)

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  20. A mathematical model of interaction among humans, vampires and werewolves populations

    Science.gov (United States)

    Sumarti, Novriana; Nurrizky, Insan; Nuraini, Nuning

    2018-03-01

    In every country there are many fictional creatures depicting evil. In the western world, fictional creatures who often appear in horror stories are vampires and werewolves. Many released movies expose the conflict between humans with one or both creatures. In this paper, the interaction among humans, vampires and werewolves is modeled using a system of differential equations. We consider the stability of equilibrium points of the system that represent four situations; only humans remain or a disease-free condition, either vampires or werewolves are going to extinction, and no population goes extinct. The derived model is implemented for depicting some scenarios in the movie series of Underworld. The model can describe the fluctuation of vampires and werewolves population from the beginning to their extinction at 1500 years since the story started.

  1. The mixed reality of things: emerging challenges for human-information interaction

    Science.gov (United States)

    Spicer, Ryan P.; Russell, Stephen M.; Rosenberg, Evan Suma

    2017-05-01

    Virtual and mixed reality technology has advanced tremendously over the past several years. This nascent medium has the potential to transform how people communicate over distance, train for unfamiliar tasks, operate in challenging environments, and how they visualize, interact, and make decisions based on complex data. At the same time, the marketplace has experienced a proliferation of network-connected devices and generalized sensors that are becoming increasingly accessible and ubiquitous. As the "Internet of Things" expands to encompass a predicted 50 billion connected devices by 2020, the volume and complexity of information generated in pervasive and virtualized environments will continue to grow exponentially. The convergence of these trends demands a theoretically grounded research agenda that can address emerging challenges for human-information interaction (HII). Virtual and mixed reality environments can provide controlled settings where HII phenomena can be observed and measured, new theories developed, and novel algorithms and interaction techniques evaluated. In this paper, we describe the intersection of pervasive computing with virtual and mixed reality, identify current research gaps and opportunities to advance the fundamental understanding of HII, and discuss implications for the design and development of cyber-human systems for both military and civilian use.

  2. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    OpenAIRE

    Xerxes D. Arsiwalla; Riccardo eZucca; Alberto eBetella; Enrique eMartinez; David eDalmazzo; Pedro eOmedas; Gustavo eDeco; Gustavo eDeco; Paul F.M.J. Verschure; Paul F.M.J. Verschure

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  3. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    OpenAIRE

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martínez, Enrique, 1961-; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  4. Human computing and machine understanding of human behavior: A survey

    NARCIS (Netherlands)

    Pentland, Alex; Huang, Thomas S.; Huang, Th.S.; Nijholt, Antinus; Pantic, Maja; Pentland, A.

    2007-01-01

    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing should be about anticipatory user interfaces

  5. Child-Computer Interaction SIG: Ethics and Values

    DEFF Research Database (Denmark)

    Hourcade, Juan Pablo; Zeising, Anja; Iversen, Ole Sejer

    2017-01-01

    This SIG will provide child computer interaction researchers and practitioners an opportunity to discuss topics related to ethical challenges in the design, and use of interactive technologies for children. Topics include the role of big data, the impact of technology in children’s social...... and physical ecosystem, and the consideration of ethics in children’s participation in the design of technologies, and in the conceptualization of technologies for children....

  6. User localization during human-robot interaction.

    Science.gov (United States)

    Alonso-Martín, F; Gorostiza, Javi F; Malfaz, María; Salichs, Miguel A

    2012-01-01

    This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented.

  7. Brain computer interfaces as intelligent sensors for enhancing human-computer interaction

    NARCIS (Netherlands)

    Poel, M.; Nijboer, F.; Broek, E.L. van den; Fairclough, S.; Nijholt, A.

    2012-01-01

    BCIs are traditionally conceived as a way to control apparatus, an interface that allows you to act on" external devices as a form of input control. We propose an alternative use of BCIs, that of monitoring users as an additional intelligent sensor to enrich traditional means of interaction. This

  8. Brain computer interfaces as intelligent sensors for enhancing human-computer interaction

    NARCIS (Netherlands)

    Poel, Mannes; Nijboer, Femke; van den Broek, Egon; Fairclough, Stephen; Morency, Louis-Philippe; Bohus, Dan; Aghajan, Hamid; Nijholt, Antinus; Cassell, Justine; Epps, Julien

    2012-01-01

    BCIs are traditionally conceived as a way to control apparatus, an interface that allows you to "act on" external devices as a form of input control. We propose an alternative use of BCIs, that of monitoring users as an additional intelligent sensor to enrich traditional means of interaction. This

  9. Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view.

    Science.gov (United States)

    Masone, Diego; Chanforan, Céline

    2015-06-01

    Due to the high amount of artificial food colorants present in infants' diets, their adverse effects have been of major concern among the literature. Artificial food colorants have been suggested to affect children's behavior, being hyperactivity the most common disorder. In this study we compare binding affinities of a group of artificial colorants (sunset yellow, quinoline yellow, carmoisine, allura red and tartrazine) and their natural industrial equivalents (carminic acid, curcumin, peonidin-3-glucoside, cyanidin-3-glucoside) to human serum albumin (HSA) by a docking approach and further refinement through atomistic molecular dynamics simulations. Due to the protein-ligand conformational interface complexity, we used collective variable driven molecular dynamics to refine docking predictions and to score them according to a hydrogen-bond criterion. With this protocol, we were able to rank ligand affinities to HSA and to compare between the studied natural and artificial food additives. Our results show that the five artificial colorants studied bind better to HSA than their equivalent natural options, in terms of their H-bonding network, supporting the hypothesis of their potential risk to human health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology.

    Science.gov (United States)

    Deodhar, Suruchi; Bisset, Keith R; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V

    2014-07-01

    We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity.

  11. Pointing Device Performance in Steering Tasks.

    Science.gov (United States)

    Senanayake, Ransalu; Goonetilleke, Ravindra S

    2016-06-01

    Use of touch-screen-based interactions is growing rapidly. Hence, knowing the maneuvering efficacy of touch screens relative to other pointing devices is of great importance in the context of graphical user interfaces. Movement time, accuracy, and user preferences of four pointing device settings were evaluated on a computer with 14 participants aged 20.1 ± 3.13 years. It was found that, depending on the difficulty of the task, the optimal settings differ for ballistic and visual control tasks. With a touch screen, resting the arm increased movement time for steering tasks. When both performance and comfort are considered, whether to use a mouse or a touch screen for person-computer interaction depends on the steering difficulty. Hence, a input device should be chosen based on the application, and should be optimized to match the graphical user interface. © The Author(s) 2016.

  12. Approaching Engagement towards Human-Engaged Computing

    DEFF Research Database (Denmark)

    Niksirat, Kavous Salehzadeh; Sarcar, Sayan; Sun, Huatong

    2018-01-01

    Debates regarding the nature and role of HCI research and practice have intensified in recent years, given the ever increasingly intertwined relations between humans and technologies. The framework of Human-Engaged Computing (HEC) was proposed and developed over a series of scholarly workshops to...

  13. Model-based acquisition and analysis of multimodal interactions for improving human-robot interaction

    OpenAIRE

    Renner, Patrick; Pfeiffer, Thies

    2014-01-01

    For solving complex tasks cooperatively in close interaction with robots, they need to understand natural human communication. To achieve this, robots could benefit from a deeper understanding of the processes that humans use for successful communication. Such skills can be studied by investigating human face-to-face interactions in complex tasks. In our work the focus lies on shared-space interactions in a path planning task and thus 3D gaze directions and hand movements are of particular in...

  14. Computational Approaches for Prediction of Pathogen-Host Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Esmaeil eNourani

    2015-02-01

    Full Text Available Infectious diseases are still among the major and prevalent health problems, mostly because of the drug resistance of novel variants of pathogens. Molecular interactions between pathogens and their hosts are the key part of the infection mechanisms. Novel antimicrobial therapeutics to fight drug resistance is only possible in case of a thorough understanding of pathogen-host interaction (PHI systems. Existing databases, which contain experimentally verified PHI data, suffer from scarcity of reported interactions due to the technically challenging and time consuming process of experiments. This has motivated many researchers to address the problem by proposing computational approaches for analysis and prediction of PHIs. The computational methods primarily utilize sequence information, protein structure and known interactions. Classic machine learning techniques are used when there are sufficient known interactions to be used as training data. On the opposite case, transfer and multi task learning methods are preferred. Here, we present an overview of these computational approaches for PHI prediction, discussing their weakness and abilities, with future directions.

  15. Audio Interaction in Computer Mediated Games

    Directory of Open Access Journals (Sweden)

    J. R. Parker

    2008-01-01

    Full Text Available The use of sound in an interactive media environment has not been advanced, as a technology, as far as graphics or artificial intelligence. This discussion will explore the use of sound as a way to influence the player of a computer game, will show ways that a game can use sound as input, and will describe ways that the player can influence sound in a game. The role of sound in computer games will be explored some practical design ideas that can be used to improve the current state of the art will be given.

  16. A superellipsoid-plane model for simulating foot-ground contact during human gait.

    Science.gov (United States)

    Lopes, D S; Neptune, R R; Ambrósio, J A; Silva, M T

    2016-01-01

    Musculoskeletal models and forward dynamics simulations of human movement often include foot-ground interactions, with the foot-ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot-ground interactions, the kinematics of the minimum distance between the foot and planar ground needs to be computed. Due to their geometric simplicity, a considerable number of studies have used point-plane elements to represent these interacting bodies, but few studies have provided comparisons between point contact elements and other geometrically based analytical solutions. The objective of this work was to develop a more general-purpose superellipsoid-plane contact model that can be used to determine the three-dimensional foot-ground contact forces. As an example application, the model was used in a forward dynamics simulation of human walking. Simulation results and execution times were compared with a point-like viscoelastic contact model. Both models produced realistic ground reaction forces and kinematics with similar computational efficiency. However, solving the equations of motion with the surface contact model was found to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid-plane elements are also more versatile than point-like elements in that they allow for volumetric contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the superellipsoid-plane element is geometrically accurate and easily integrated within multibody simulation code. These advantages make the use of superellipsoid-plane contact models in musculoskeletal simulations an appealing alternative to point-like elements.

  17. Man-machine interactions 3

    CERN Document Server

    Czachórski, Tadeusz; Kozielski, Stanisław

    2014-01-01

    Man-Machine Interaction is an interdisciplinary field of research that covers many aspects of science focused on a human and machine in conjunction.  Basic goal of the study is to improve and invent new ways of communication between users and computers, and many different subjects are involved to reach the long-term research objective of an intuitive, natural and multimodal way of interaction with machines.  The rapid evolution of the methods by which humans interact with computers is observed nowadays and new approaches allow using computing technologies to support people on the daily basis, making computers more usable and receptive to the user's needs.   This monograph is the third edition in the series and presents important ideas, current trends and innovations in  the man-machine interactions area.  The aim of this book is to introduce not only hardware and software interfacing concepts, but also to give insights into the related theoretical background. Reader is provided with a compilation of high...

  18. Salesperson Ethics: An Interactive Computer Simulation

    Science.gov (United States)

    Castleberry, Stephen

    2014-01-01

    A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…

  19. Themes in human work interaction design

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Mark Pejtersen, Annelise; Clemmensen, Torkil

    2008-01-01

    Design (name HWID) through the last two and half years since the commencement of this Working Group. The paper thus provides an introduction to the theory and empirical evidence that lie behind the combination of empirical work studies and interaction design. It also recommends key topics for future......Abstract. This paper raises themes that are seen as some of the challenges facing the emerging practice and research field of Human Work Interaction Design. The paper has its offset in the discussions and writings that have been dominant within the IFIP Working Group on Human Work Interaction...

  20. Understanding and Resolving Failures in Human-Robot Interaction: Literature Review and Model Development

    Directory of Open Access Journals (Sweden)

    Shanee Honig

    2018-06-01

    Full Text Available While substantial effort has been invested in making robots more reliable, experience demonstrates that robots operating in unstructured environments are often challenged by frequent failures. Despite this, robots have not yet reached a level of design that allows effective management of faulty or unexpected behavior by untrained users. To understand why this may be the case, an in-depth literature review was done to explore when people perceive and resolve robot failures, how robots communicate failure, how failures influence people's perceptions and feelings toward robots, and how these effects can be mitigated. Fifty-two studies were identified relating to communicating failures and their causes, the influence of failures on human-robot interaction (HRI, and mitigating failures. Since little research has been done on these topics within the HRI community, insights from the fields of human computer interaction (HCI, human factors engineering, cognitive engineering and experimental psychology are presented and discussed. Based on the literature, we developed a model of information processing for robotic failures (Robot Failure Human Information Processing, RF-HIP, that guides the discussion of our findings. The model describes the way people perceive, process, and act on failures in human robot interaction. The model includes three main parts: (1 communicating failures, (2 perception and comprehension of failures, and (3 solving failures. Each part contains several stages, all influenced by contextual considerations and mitigation strategies. Several gaps in the literature have become evident as a result of this evaluation. More focus has been given to technical failures than interaction failures. Few studies focused on human errors, on communicating failures, or the cognitive, psychological, and social determinants that impact the design of mitigation strategies. By providing the stages of human information processing, RF-HIP can be used as a

  1. Computing paths and cycles in biological interaction graphs

    Directory of Open Access Journals (Sweden)

    von Kamp Axel

    2009-06-01

    Full Text Available Abstract Background Interaction graphs (signed directed graphs provide an important qualitative modeling approach for Systems Biology. They enable the analysis of causal relationships in cellular networks and can even be useful for predicting qualitative aspects of systems dynamics. Fundamental issues in the analysis of interaction graphs are the enumeration of paths and cycles (feedback loops and the calculation of shortest positive/negative paths. These computational problems have been discussed only to a minor extent in the context of Systems Biology and in particular the shortest signed paths problem requires algorithmic developments. Results We first review algorithms for the enumeration of paths and cycles and show that these algorithms are superior to a recently proposed enumeration approach based on elementary-modes computation. The main part of this work deals with the computation of shortest positive/negative paths, an NP-complete problem for which only very few algorithms are described in the literature. We propose extensions and several new algorithm variants for computing either exact results or approximations. Benchmarks with various concrete biological networks show that exact results can sometimes be obtained in networks with several hundred nodes. A class of even larger graphs can still be treated exactly by a new algorithm combining exhaustive and simple search strategies. For graphs, where the computation of exact solutions becomes time-consuming or infeasible, we devised an approximative algorithm with polynomial complexity. Strikingly, in realistic networks (where a comparison with exact results was possible this algorithm delivered results that are very close or equal to the exact values. This phenomenon can probably be attributed to the particular topology of cellular signaling and regulatory networks which contain a relatively low number of negative feedback loops. Conclusion The calculation of shortest positive

  2. Place-Specific Computing

    DEFF Research Database (Denmark)

    Messeter, Jörn

    2009-01-01

    An increased interest in the notion of place has evolved in interaction design based on the proliferation of wireless infrastructures, developments in digital media, and a ‘spatial turn’ in computing. In this article, place-specific computing is suggested as a genre of interaction design that add......An increased interest in the notion of place has evolved in interaction design based on the proliferation of wireless infrastructures, developments in digital media, and a ‘spatial turn’ in computing. In this article, place-specific computing is suggested as a genre of interaction design...... that addresses the shaping of interactions among people, place-specific resources and global socio-technical networks, mediated by digital technology, and influenced by the structuring conditions of place. The theoretical grounding for place-specific computing is located in the meeting between conceptions...... of place in human geography and recent research in interaction design focusing on embodied interaction. Central themes in this grounding revolve around place and its relation to embodiment and practice, as well as the social, cultural and material aspects conditioning the enactment of place. Selected...

  3. An audio-visual dataset of human-human interactions in stressful situations

    NARCIS (Netherlands)

    Lefter, I.; Burghouts, G.J.; Rothkrantz, L.J.M.

    2014-01-01

    Stressful situations are likely to occur at human operated service desks, as well as at human-computer interfaces used in public domain. Automatic surveillance can help notifying when extra assistance is needed. Human communication is inherently multimodal e.g. speech, gestures, facial expressions.

  4. Eyeblink Synchrony in Multimodal Human-Android Interaction.

    Science.gov (United States)

    Tatsukawa, Kyohei; Nakano, Tamami; Ishiguro, Hiroshi; Yoshikawa, Yuichiro

    2016-12-23

    As the result of recent progress in technology of communication robot, robots are becoming an important social partner for humans. Behavioral synchrony is understood as an important factor in establishing good human-robot relationships. In this study, we hypothesized that biasing a human's attitude toward a robot changes the degree of synchrony between human and robot. We first examined whether eyeblinks were synchronized between a human and an android in face-to-face interaction and found that human listeners' eyeblinks were entrained to android speakers' eyeblinks. This eyeblink synchrony disappeared when the android speaker spoke while looking away from the human listeners but was enhanced when the human participants listened to the speaking android while touching the android's hand. These results suggest that eyeblink synchrony reflects a qualitative state in human-robot interactions.

  5. Interactional nursing--a practice-theory in the dynamic field between the natural, human and social sciences.

    Science.gov (United States)

    Scheel, Merry Elisabeth; Pedersen, Birthe D; Rosenkrands, Vibeke

    2008-12-01

    Nursing is often described from the point of view of either the natural or the human sciences. In contrast to this, the value foundation in Interactional nursing practice is understood from the point of view of the natural sciences as well as that of the human and social sciences. This article presents many-faceted practice-theory of nursing, which is situated in the dynamic field between these three sciences. The focus of the theory is on interaction and practice resulting in a caring practice. Here practice is based on Taylor's and MacIntyre's interpretation of this concept. Action in nursing is based on Habermas' three varied modes of action seen in the light of an understanding of the world as a system world and a life world. Nursing as an interactional practice-theory is presented with examples of interpretative nursing science, seen in the ethical action-oriented, socio-cultural framework of Taylor and Habermas. It is concluded that phenomenologic and socio-cultural research into caring practice as well as an in-depth, comprehensive interpretation of nursing practice are both highly suited to forming the fundamental theoretical framework in nursing, here seen as an interpretative nursing science. Finally, a comparison is drawn between Interactional nursing practice and Benner's theory of nursing practice.

  6. A conceptual framework to evaluate human-wildlife interactions within coupled human and natural systems

    Directory of Open Access Journals (Sweden)

    Anita T. Morzillo

    2014-09-01

    Full Text Available Landscape characteristics affect human-wildlife interactions. However, there is a need to better understand mechanisms that drive those interactions, particularly feedbacks that exist between wildlife-related impacts, human reaction to and behavior as a result of those impacts, and how land use and landscape characteristics may influence those components within coupled human and natural systems. Current conceptual models of human-wildlife interactions often focus on species population size as the independent variable driving those interactions. Such an approach potentially overlooks important feedbacks among and drivers of human-wildlife interactions that result from mere wildlife presence versus absence. We describe an emerging conceptual framework that focuses on wildlife as a driver of human behavior and allows us to better understand linkages between humans, wildlife, and the broader landscape. We also present results of a pilot analysis related to our own ongoing study of urban rodent control behavior to illustrate one application of this framework within a study of urban landscapes.

  7. Colour computer-generated holography for point clouds utilizing the Phong illumination model.

    Science.gov (United States)

    Symeonidou, Athanasia; Blinder, David; Schelkens, Peter

    2018-04-16

    A technique integrating the bidirectional reflectance distribution function (BRDF) is proposed to generate realistic high-quality colour computer-generated holograms (CGHs). We build on prior work, namely a fast computer-generated holography method for point clouds that handles occlusions. We extend the method by integrating the Phong illumination model so that the properties of the objects' surfaces are taken into account to achieve natural light phenomena such as reflections and shadows. Our experiments show that rendering holograms with the proposed algorithm provides realistic looking objects without any noteworthy increase to the computational cost.

  8. Data analysis through interactive computer animation method (DATICAM)

    International Nuclear Information System (INIS)

    Curtis, J.N.; Schwieder, D.H.

    1983-01-01

    DATICAM is an interactive computer animation method designed to aid in the analysis of nuclear research data. DATICAM was developed at the Idaho National Engineering Laboratory (INEL) by EG and G Idaho, Inc. INEL analysts use DATICAM to produce computer codes that are better able to predict the behavior of nuclear power reactors. In addition to increased code accuracy, DATICAM has saved manpower and computer costs. DATICAM has been generalized to assist in the data analysis of virtually any data-producing dynamic process

  9. Humanism Factors and Islam Viewpoint from Motahri's Point of View

    Science.gov (United States)

    Yousefi, Zargham; Yousefy, Alireza; Keshtiaray, Narges

    2015-01-01

    The aim of this research is to criticize liberal humanism based on Islam viewpoint emphasizing Motahri's point of view. In this paper, the researchers tried to identify liberalism humanism factors with analytical look in order to present a new categorization called "main factor of liberal humanism". Then, each factor was studied and…

  10. Structural model for the interaction of a designed Ankyrin Repeat Protein with the human epidermal growth factor receptor 2.

    Directory of Open Access Journals (Sweden)

    V Chandana Epa

    Full Text Available Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2. HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84-1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions.

  11. Image Visual Realism: From Human Perception to Machine Computation.

    Science.gov (United States)

    Fan, Shaojing; Ng, Tian-Tsong; Koenig, Bryan L; Herberg, Jonathan S; Jiang, Ming; Shen, Zhiqi; Zhao, Qi

    2017-08-30

    Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and CNN-learned features to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.

  12. Parallel structures in human and computer memory

    Science.gov (United States)

    Kanerva, Pentti

    1986-08-01

    If we think of our experiences as being recorded continuously on film, then human memory can be compared to a film library that is indexed by the contents of the film strips stored in it. Moreover, approximate retrieval cues suffice to retrieve information stored in this library: We recognize a familiar person in a fuzzy photograph or a familiar tune played on a strange instrument. This paper is about how to construct a computer memory that would allow a computer to recognize patterns and to recall sequences the way humans do. Such a memory is remarkably similar in structure to a conventional computer memory and also to the neural circuits in the cortex of the cerebellum of the human brain. The paper concludes that the frame problem of artificial intelligence could be solved by the use of such a memory if we were able to encode information about the world properly.

  13. Computational methods using weighed-extreme learning machine to predict protein self-interactions with protein evolutionary information.

    Science.gov (United States)

    An, Ji-Yong; Zhang, Lei; Zhou, Yong; Zhao, Yu-Jun; Wang, Da-Fu

    2017-08-18

    Self-interactions Proteins (SIPs) is important for their biological activity owing to the inherent interaction amongst their secondary structures or domains. However, due to the limitations of experimental Self-interactions detection, one major challenge in the study of prediction SIPs is how to exploit computational approaches for SIPs detection based on evolutionary information contained protein sequence. In the work, we presented a novel computational approach named WELM-LAG, which combined the Weighed-Extreme Learning Machine (WELM) classifier with Local Average Group (LAG) to predict SIPs based on protein sequence. The major improvement of our method lies in presenting an effective feature extraction method used to represent candidate Self-interactions proteins by exploring the evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix (PSSM); and then employing a reliable and robust WELM classifier to carry out classification. In addition, the Principal Component Analysis (PCA) approach is used to reduce the impact of noise. The WELM-LAG method gave very high average accuracies of 92.94 and 96.74% on yeast and human datasets, respectively. Meanwhile, we compared it with the state-of-the-art support vector machine (SVM) classifier and other existing methods on human and yeast datasets, respectively. Comparative results indicated that our approach is very promising and may provide a cost-effective alternative for predicting SIPs. In addition, we developed a freely available web server called WELM-LAG-SIPs to predict SIPs. The web server is available at http://219.219.62.123:8888/WELMLAG/ .

  14. Conformational effects on the circular dichroism of Human Carbonic Anhydrase II: a multilevel computational study.

    Directory of Open Access Journals (Sweden)

    Tatyana G Karabencheva-Christova

    Full Text Available Circular Dichroism (CD spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII, with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions.

  15. Sphericall: A Human/Artificial Intelligence interaction experience

    Directory of Open Access Journals (Sweden)

    Frack Gechter

    2014-12-01

    Full Text Available Multi-agent systems are now wide spread in scientific works and in industrial applications. Few applications deal with the Human/Multi-agent system interaction. Multi-agent systems are characterized by individual entities, called agents, in interaction with each other and with their environment. Multi-agent systems are generally classified into complex systems categories since the global emerging phenomenon cannot be predicted even if every component is well known. The systems developed in this paper are named reactive because they behave using simple interaction models. In the reactive approach, the issue of Human/system interaction is hard to cope with and is scarcely exposed in literature. This paper presents Sphericall, an application aimed at studying Human/Complex System interactions and based on two physics inspired multi-agent systems interacting together. The Sphericall device is composed of a tactile screen and a spherical world where agents evolve. This paper presents both the technical background of Sphericall project and a feedback taken from the demonstration performed during OFFF Festival in La Villette (Paris.

  16. Agent assisted interactive algorithm for computationally demanding multiobjective optimization problems

    OpenAIRE

    Ojalehto, Vesa; Podkopaev, Dmitry; Miettinen, Kaisa

    2015-01-01

    We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker du...

  17. INTRA- AND INTER-OBSERVER RELIABILITY IN SELECTION OF THE HEART RATE DEFLECTION POINT DURING INCREMENTAL EXERCISE: COMPARISON TO A COMPUTER-GENERATED DEFLECTION POINT

    Directory of Open Access Journals (Sweden)

    Bridget A. Duoos

    2002-12-01

    Full Text Available This study was designed to 1 determine the relative frequency of occurrence of a heart rate deflection point (HRDP, when compared to a linear relationship, during progressive exercise, 2 measure the reproducibility of a visual assessment of a heart rate deflection point (HRDP, both within and between observers 3 compare visual and computer-assessed deflection points. Subjects consisted of 73 competitive male cyclists with mean age of 31.4 ± 6.3 years, mean height 178.3 ± 4.8 cm. and weight 74.0 ± 4.4 kg. Tests were conducted on an electrically-braked cycle ergometer beginning at 25 watts and progressing 25 watts per minute to fatigue. Heart Rates were recorded the last 10 seconds of each stage and at fatigue. Scatter plots of heart rate versus watts were computer-generated and given to 3 observers on two different occasions. A computer program was developed to assess if data points were best represented by a single line or two lines. The HRDP represented the intersection of the two lines. Results of this study showed that 1 computer-assessed HRDP showed that 44 of 73 subjects (60.3% had scatter plots best represented by a straight line with no HRDP 2in those subjects having HRDP, all 3 observers showed significant differences(p = 0.048, p = 0.007, p = 0.001 in reproducibility of their HRDP selection. Differences in HRDP selection were significant for two of the three comparisons between observers (p = 0.002, p = 0.305, p = 0.0003 Computer-generated HRDP was significantly different than visual HRDP for 2 of 3 observers (p = 0.0016, p = 0.513, p = 0.0001. It is concluded that 1 HRDP occurs in a minority of subjects 2 significant differences exist, both within and between observers, in selection of HRDP and 3 differences in agreement between visual and computer-generated HRDP would indicate that, when HRDP exists, it should be computer-assessed

  18. Study on the interaction between tabersonine and human serum albumin by optical spectroscopy and molecular modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hua; Chen, Rongrong [Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Pu Hanlin, E-mail: tphl@jnu.edu.cn [Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China)

    2012-03-15

    The mechanism of interaction between tabersonine (TAB) and human serum albumin (HSA) was investigated by the methods of fluorescence spectroscopy, UV-vis absorption spectroscopy and molecular modeling under simulative physiological conditions. Results obtained from analysis of fluorescence spectrum and fluorescence intensity indicated that TAB has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The binding site number n and apparent binding constant K{sub a}, corresponding thermodynamic parameters {Delta}G, {Delta}H and {Delta}S at different temperatures were calculated. The distance r between donor (human serum albumin) and acceptor (tabersonine) was obtained according to the Foerster theory of non-radiation energy transfer. The effect of common ions on binding constant was also investigated. The synchronous fluorescence and three-dimensional fluorescence spectra were used to investigate the structural change of HSA molecules with addition of TAB. Furthermore, the study of molecular modeling indicated that TAB could bind to the site I of HSA and hydrophobic interaction was the major acting force, which was in agreement with the binding mode study. - Highlights: Black-Right-Pointing-Pointer Fluorescence study of the mechanism of interaction between tabersonine and HSA. Black-Right-Pointing-Pointer The binding parameters and thermodynamic parameters were calculated. Black-Right-Pointing-Pointer The distance r was obtained and common ions effects was investigated. Black-Right-Pointing-Pointer Conformation of HSA and its molecular modeling was analyzed.

  19. Lipoprotein lipase isoelectric point isoforms in humans

    DEFF Research Database (Denmark)

    Badia-Villanueva, M.; Carulla, P.; Carrascal, M.

    2014-01-01

    -heparin plasma (PHP), LPL consists of a pattern of more than 8 forms of the same apparent molecular weight, but different isoelectric point (pI). In the present study we describe, for the first time, the existence of at least nine LPL pI isoforms in human PHP, with apparent pI between 6.8 and 8.6. Separation...

  20. "Teaching students how to wear their Computer"

    DEFF Research Database (Denmark)

    Guglielmi, Michel; Johannesen, Hanne Louise

    2005-01-01

    to address this question trough the angle of what we called ‘Physical Computing’ and asked ourselves and the students if new fields like ‘tangible media’ or ‘wearable computers’ can contribute to improvements of life? And whose life improvement are we aiming for? Computers are a ubiquitous part....... Through the workshop the students were encouraged to disrupt the myth of how a computer should be used and to focus on the human-human interaction (HHI) through the computer rather than human-computer interaction (HCI). The physical computing approach offered furthermore a unique opportunity to break down......This paper intends to present the goal, results and methodology of a workshop run in collaboration with Visual Culture (humanities), University of Copenhagen, the Danish academy of Design in Copenhagen and Media lab Aalborg, University of Aalborg. The workshop was related to a design competition...

  1. Rana computatrix to human language: towards a computational neuroethology of language evolution.

    Science.gov (United States)

    Arbib, Michael A

    2003-10-15

    Walter's Machina speculatrix inspired the name Rana computatrix for a family of models of visuomotor coordination in the frog, which contributed to the development of computational neuroethology. We offer here an 'evolutionary' perspective on models in the same tradition for rat, monkey and human. For rat, we show how the frog-like taxon affordance model provides a basis for the spatial navigation mechanisms that involve the hippocampus and other brain regions. For monkey, we recall two models of neural mechanisms for visuomotor coordination. The first, for saccades, shows how interactions between the parietal and frontal cortex augment superior colliculus seen as the homologue of frog tectum. The second, for grasping, continues the theme of parieto-frontal interactions, linking parietal affordances to motor schemas in premotor cortex. It further emphasizes the mirror system for grasping, in which neurons are active both when the monkey executes a specific grasp and when it observes a similar grasp executed by others. The model of human-brain mechanisms is based on the mirror-system hypothesis of the evolution of the language-ready brain, which sees the human Broca's area as an evolved extension of the mirror system for grasping.

  2. Sensitivity to Social Contingency in Adults with High-Functioning Autism during Computer-Mediated Embodied Interaction.

    Science.gov (United States)

    Zapata-Fonseca, Leonardo; Froese, Tom; Schilbach, Leonhard; Vogeley, Kai; Timmermans, Bert

    2018-02-08

    Autism Spectrum Disorder (ASD) can be understood as a social interaction disorder. This makes the emerging "second-person approach" to social cognition a more promising framework for studying ASD than classical approaches focusing on mindreading capacities in detached, observer-based arrangements. According to the second-person approach, embodied, perceptual, and embedded or interactive capabilities are also required for understanding others, and these are hypothesized to be compromised in ASD. We therefore recorded the dynamics of real-time sensorimotor interaction in pairs of control participants and participants with High-Functioning Autism (HFA), using the minimalistic human-computer interface paradigm known as "perceptual crossing" (PC). We investigated whether HFA is associated with impaired detection of social contingency, i.e., a reduced sensitivity to the other's responsiveness to one's own behavior. Surprisingly, our analysis reveals that, at least under the conditions of this highly simplified, computer-mediated, embodied form of social interaction, people with HFA perform equally well as controls. This finding supports the increasing use of virtual reality interfaces for helping people with ASD to better compensate for their social disabilities. Further dynamical analyses are necessary for a better understanding of the mechanisms that are leading to the somewhat surprising results here obtained.

  3. Sensitivity to Social Contingency in Adults with High-Functioning Autism during Computer-Mediated Embodied Interaction

    Directory of Open Access Journals (Sweden)

    Leonardo Zapata-Fonseca

    2018-02-01

    Full Text Available Autism Spectrum Disorder (ASD can be understood as a social interaction disorder. This makes the emerging “second-person approach” to social cognition a more promising framework for studying ASD than classical approaches focusing on mindreading capacities in detached, observer-based arrangements. According to the second-person approach, embodied, perceptual, and embedded or interactive capabilities are also required for understanding others, and these are hypothesized to be compromised in ASD. We therefore recorded the dynamics of real-time sensorimotor interaction in pairs of control participants and participants with High-Functioning Autism (HFA, using the minimalistic human-computer interface paradigm known as “perceptual crossing” (PC. We investigated whether HFA is associated with impaired detection of social contingency, i.e., a reduced sensitivity to the other’s responsiveness to one’s own behavior. Surprisingly, our analysis reveals that, at least under the conditions of this highly simplified, computer-mediated, embodied form of social interaction, people with HFA perform equally well as controls. This finding supports the increasing use of virtual reality interfaces for helping people with ASD to better compensate for their social disabilities. Further dynamical analyses are necessary for a better understanding of the mechanisms that are leading to the somewhat surprising results here obtained.

  4. Simple computation of reaction–diffusion processes on point clouds

    KAUST Repository

    Macdonald, Colin B.

    2013-05-20

    The study of reaction-diffusion processes is much more complicated on general curved surfaces than on standard Cartesian coordinate spaces. Here we show how to formulate and solve systems of reaction-diffusion equations on surfaces in an extremely simple way, using only the standard Cartesian form of differential operators, and a discrete unorganized point set to represent the surface. Our method decouples surface geometry from the underlying differential operators. As a consequence, it becomes possible to formulate and solve rather general reaction-diffusion equations on general surfaces without having to consider the complexities of differential geometry or sophisticated numerical analysis. To illustrate the generality of the method, computations for surface diffusion, pattern formation, excitable media, and bulk-surface coupling are provided for a variety of complex point cloud surfaces.

  5. Simple computation of reaction–diffusion processes on point clouds

    KAUST Repository

    Macdonald, Colin B.; Merriman, Barry; Ruuth, Steven J.

    2013-01-01

    The study of reaction-diffusion processes is much more complicated on general curved surfaces than on standard Cartesian coordinate spaces. Here we show how to formulate and solve systems of reaction-diffusion equations on surfaces in an extremely simple way, using only the standard Cartesian form of differential operators, and a discrete unorganized point set to represent the surface. Our method decouples surface geometry from the underlying differential operators. As a consequence, it becomes possible to formulate and solve rather general reaction-diffusion equations on general surfaces without having to consider the complexities of differential geometry or sophisticated numerical analysis. To illustrate the generality of the method, computations for surface diffusion, pattern formation, excitable media, and bulk-surface coupling are provided for a variety of complex point cloud surfaces.

  6. Evaluation of the Humanity Research Paradigms based on Analysis of Human – Environment Interaction

    Directory of Open Access Journals (Sweden)

    Reza Sameh

    2015-09-01

    Full Text Available As claimed by many behavioral scientists, designing should be based on the knowledge of interaction between human and environment. Environmental quality is also created in the context in which humans interact with their environment. To achieve such quality, designers should develop appropriate models for explaining this relationship, and this requires an understanding of human nature and the environment. Criticisms on the Modern Movement have shown that architects have often used incomplete and simplistic models in this regard, while most of design ideas are based on the definitions of human and environment and the interaction between them. However, the most important question that is raised is that how understanding of human nature and the environment and their interaction, which depends on foundations of different views, can affect the pursuit of quality in designing? Therefore, the present paper, in addition to introduction and comparison of common paradigms in humanities as the and methodological foundation of human sciences, aims to deal with the relationship of human and the environment from the perspective of objectivist, relativist, and critical paradigms in order to identify the characteristics and differences in their views on the analysis of the quality of this interaction. This is the most important step that paves the way for understanding the qualitative foundations of the environment and human life quality and also the quality of interaction between them.

  7. Interactive displays natural human-interface technologies

    CERN Document Server

    Bhowmik, Achintya K

    2014-01-01

    One of the first books to provide an in-depth discussion of the technologies, applications and trends in the rapidly emerging field of interactive displays (touch, gesture & voice) The book will cover the technologies, applications and trends in the field of interactive displays, namely interfaces based on touch, gesture and voice and those using a combination of these technologies. The book will be split into 4 main parts with each being dedicated to a specific user interface. Part 1 ''Touch Interfaces'' will provide a review of the currently deployed touch-screen technologies and applications. It will also cover the recent developments towards achieving thinner, lightweight and cost-reduced touch screen panels in the future via integration of touch functionalities. Part 2 ''Gesture Interfaces'' will examine techniques and applications in stereoscopic 3D computer vision, structured-light 3D computer vision and time-of-flight 3D computer vision in gesture interfaces. Part 3 ''Voice Interfaces'' will revie...

  8. Reducing and filtering point clouds with enhanced vector quantization.

    Science.gov (United States)

    Ferrari, Stefano; Ferrigno, Giancarlo; Piuri, Vincenzo; Borghese, N Alberto

    2007-01-01

    Modern scanners are able to deliver huge quantities of three-dimensional (3-D) data points sampled on an object's surface, in a short time. These data have to be filtered and their cardinality reduced to come up with a mesh manageable at interactive rates. We introduce here a novel procedure to accomplish these two tasks, which is based on an optimized version of soft vector quantization (VQ). The resulting technique has been termed enhanced vector quantization (EVQ) since it introduces several improvements with respect to the classical soft VQ approaches. These are based on computationally expensive iterative optimization; local computation is introduced here, by means of an adequate partitioning of the data space called hyperbox (HB), to reduce the computational time so as to be linear in the number of data points N, saving more than 80% of time in real applications. Moreover, the algorithm can be fully parallelized, thus leading to an implementation that is sublinear in N. The voxel side and the other parameters are automatically determined from data distribution on the basis of the Zador's criterion. This makes the algorithm completely automatic. Because the only parameter to be specified is the compression rate, the procedure is suitable even for nontrained users. Results obtained in reconstructing faces of both humans and puppets as well as artifacts from point clouds publicly available on the web are reported and discussed, in comparison with other methods available in the literature. EVQ has been conceived as a general procedure, suited for VQ applications with large data sets whose data space has relatively low dimensionality.

  9. Human-Robot Interaction: Status and Challenges.

    Science.gov (United States)

    Sheridan, Thomas B

    2016-06-01

    The current status of human-robot interaction (HRI) is reviewed, and key current research challenges for the human factors community are described. Robots have evolved from continuous human-controlled master-slave servomechanisms for handling nuclear waste to a broad range of robots incorporating artificial intelligence for many applications and under human supervisory control. This mini-review describes HRI developments in four application areas and what are the challenges for human factors research. In addition to a plethora of research papers, evidence of success is manifest in live demonstrations of robot capability under various forms of human control. HRI is a rapidly evolving field. Specialized robots under human teleoperation have proven successful in hazardous environments and medical application, as have specialized telerobots under human supervisory control for space and repetitive industrial tasks. Research in areas of self-driving cars, intimate collaboration with humans in manipulation tasks, human control of humanoid robots for hazardous environments, and social interaction with robots is at initial stages. The efficacy of humanoid general-purpose robots has yet to be proven. HRI is now applied in almost all robot tasks, including manufacturing, space, aviation, undersea, surgery, rehabilitation, agriculture, education, package fetch and delivery, policing, and military operations. © 2016, Human Factors and Ergonomics Society.

  10. Extended sequence diagram for human system interaction

    International Nuclear Information System (INIS)

    Hwang, Jong Rok; Choi, Sun Woo; Ko, Hee Ran; Kim, Jong Hyun

    2012-01-01

    Unified Modeling Language (UML) is a modeling language in the field of object oriented software engineering. The sequence diagram is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a message sequence chart. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. This paper proposes the Extended Sequence Diagram (ESD), which is capable of depicting human system interaction for nuclear power plants, as well as cognitive process of operators analysis. In the conventional sequence diagram, there is a limit to only identify the activities of human and systems interactions. The ESD is extended to describe operators' cognitive process in more detail. The ESD is expected to be used as a task analysis method for describing human system interaction. The ESD can also present key steps causing abnormal operations or failures and diverse human errors based on cognitive condition

  11. Animal-Computer Interaction: Animal-Centred, Participatory, and Playful Design

    NARCIS (Netherlands)

    Pons, Patricia; Hirskyj-Douglas, Ilyena; Nijholt, Antinus; Cheok, Adrian D.; Spink, Andrew; Riedel, Gernot; Zhou, Liting; Teekens, Lisanne; Albatal, Rami; Gurrin, Cathal

    In recent years there has been growing interest in developing technology to improve animal's wellbeing and to support the interaction of animals within the digital world. The field of Animal-Computer Interaction (ACI) considers animals as the end-users of the technology being developed, orienting

  12. Micro-Computed Tomography Evaluation of Human Fat Grafts in Nude Mice

    Science.gov (United States)

    Chung, Michael T.; Hyun, Jeong S.; Lo, David D.; Montoro, Daniel T.; Hasegawa, Masakazu; Levi, Benjamin; Januszyk, Michael; Longaker, Michael T.

    2013-01-01

    Background Although autologous fat grafting has revolutionized the field of soft tissue reconstruction and augmentation, long-term maintenance of fat grafts is unpredictable. Recent studies have reported survival rates of fat grafts to vary anywhere between 10% and 80% over time. The present study evaluated the long-term viability of human fat grafts in a murine model using a novel imaging technique allowing for in vivo volumetric analysis. Methods Human fat grafts were prepared from lipoaspirate samples using the Coleman technique. Fat was injected subcutaneously into the scalp of 10 adult Crl:NU-Foxn1nu CD-1 male mice. Micro-computed tomography (CT) was performed immediately following injection and then weekly thereafter. Fat volume was rendered by reconstructing a three-dimensional (3D) surface through cubic-spline interpolation. Specimens were also harvested at various time points and sections were prepared and stained with hematoxylin and eosin (H&E), for macrophages using CD68 and for the cannabinoid receptor 1 (CB1). Finally, samples were explanted at 8- and 12-week time points to validate calculated micro-CT volumes. Results Weekly CT scanning demonstrated progressive volume loss over the time course. However, volumetric analysis at the 8- and 12-week time points stabilized, showing an average of 62.2% and 60.9% survival, respectively. Gross analysis showed the fat graft to be healthy and vascularized. H&E analysis and staining for CD68 showed minimal inflammatory reaction with viable adipocytes. Immunohistochemical staining with anti-human CB1 antibodies confirmed human origin of the adipocytes. Conclusions Studies assessing the fate of autologous fat grafts in animals have focused on nonimaging modalities, including histological and biochemical analyses, which require euthanasia of the animals. In this study, we have demonstrated the ability to employ micro-CT for 3D reconstruction and volumetric analysis of human fat grafts in a mouse model. Importantly

  13. My4Sight: A Human Computation Platform for Improving Flu Predictions

    OpenAIRE

    Akupatni, Vivek Bharath

    2015-01-01

    While many human computation (human-in-the-loop) systems exist in the field of Artificial Intelligence (AI) to solve problems that can't be solved by computers alone, comparatively fewer platforms exist for collecting human knowledge, and evaluation of various techniques for harnessing human insights in improving forecasting models for infectious diseases, such as Influenza and Ebola. In this thesis, we present the design and implementation of My4Sight, a human computation system develope...

  14. Human-Bat Interactions in Rural West Africa.

    Science.gov (United States)

    Anti, Priscilla; Owusu, Michael; Agbenyega, Olivia; Annan, Augustina; Badu, Ebenezer Kofi; Nkrumah, Evans Ewald; Tschapka, Marco; Oppong, Samuel; Adu-Sarkodie, Yaw; Drosten, Christian

    2015-08-01

    Because some bats host viruses with zoonotic potential, we investigated human-bat interactions in rural Ghana during 2011-2012. Nearly half (46.6%) of respondents regularly visited bat caves; 37.4% had been bitten, scratched, or exposed to bat urine; and 45.6% ate bat meat. Human-bat interactions in rural Ghana are frequent and diverse.

  15. Multiyear interactive computer almanac, 1800-2050

    CERN Document Server

    United States. Naval Observatory

    2005-01-01

    The Multiyear Interactive Computer Almanac (MICA Version 2.2.2 ) is a software system that runs on modern versions of Windows and Macintosh computers created by the U.S. Naval Observatory's Astronomical Applications Department, especially for astronomers, surveyors, meteorologists, navigators and others who regularly need accurate information on the positions, motions, and phenomena of celestial objects. MICA produces high-precision astronomical data in tabular form, tailored for the times and locations specified by the user. Unlike traditional almanacs, MICA computes these data in real time, eliminating the need for table look-ups and additional hand calculations. MICA tables can be saved as standard text files, enabling their use in other applications. Several important new features have been added to this edition of MICA, including: extended date coverage from 1800 to 2050; a redesigned user interface; a graphical sky map; a phenomena calculator (eclipses, transits, equinoxes, solstices, conjunctions, oppo...

  16. The social-sensory interface: category interactions in person perception.

    Science.gov (United States)

    Freeman, Jonathan B; Johnson, Kerri L; Adams, Reginald B; Ambady, Nalini

    2012-01-01

    Research is increasingly challenging the claim that distinct sources of social information-such as sex, race, and emotion-are processed in discrete fashion. Instead, there appear to be functionally relevant interactions that occur. In the present article, we describe research examining how cues conveyed by the human face, voice, and body interact to form the unified representations that guide our perceptions of and responses to other people. We explain how these information sources are often thrown into interaction through bottom-up forces (e.g., phenotypic cues) as well as top-down forces (e.g., stereotypes and prior knowledge). Such interactions point to a person perception process that is driven by an intimate interface between bottom-up perceptual and top-down social processes. Incorporating data from neuroimaging, event-related potentials (ERP), computational modeling, computer mouse-tracking, and other behavioral measures, we discuss the structure of this interface, and we consider its implications and adaptive purposes. We argue that an increased understanding of person perception will likely require a synthesis of insights and techniques, from social psychology to the cognitive, neural, and vision sciences.

  17. An efficient algorithm to compute subsets of points in ℤ n

    OpenAIRE

    Pacheco Martínez, Ana María; Real Jurado, Pedro

    2012-01-01

    In this paper we show a more efficient algorithm than that in [8] to compute subsets of points non-congruent by isometries. This algorithm can be used to reconstruct the object from the digital image. Both algorithms are compared, highlighting the improvements obtained in terms of CPU time.

  18. Interactive lung segmentation in abnormal human and animal chest CT scans

    International Nuclear Information System (INIS)

    Kockelkorn, Thessa T. J. P.; Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-01-01

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  19. CHI '13 Extended Abstracts on Human Factors in Computing Systems

    DEFF Research Database (Denmark)

    also deeply appreciate the huge amount of time donated to this process by the 211-member program committee, who paid their own way to attend the face-to-face program committee meeting, an event larger than the average ACM conference. We are proud of the work of the CHI 2013 program committee and hope...... a tremendous amount of work from all areas of the human-computer interaction community. As co-chairs of the process, we are amazed at the ability of the community to organize itself to accomplish this task. We would like to thank the 2680 individual reviewers for their careful consideration of these papers. We...

  20. Pilots of the future - Human or computer?

    Science.gov (United States)

    Chambers, A. B.; Nagel, D. C.

    1985-01-01

    In connection with the occurrence of aircraft accidents and the evolution of the air-travel system, questions arise regarding the computer's potential for making fundamental contributions to improving the safety and reliability of air travel. An important result of an analysis of the causes of aircraft accidents is the conclusion that humans - 'pilots and other personnel' - are implicated in well over half of the accidents which occur. Over 70 percent of the incident reports contain evidence of human error. In addition, almost 75 percent show evidence of an 'information-transfer' problem. Thus, the question arises whether improvements in air safety could be achieved by removing humans from control situations. In an attempt to answer this question, it is important to take into account also certain advantages which humans have in comparison to computers. Attention is given to human error and the effects of technology, the motivation to automate, aircraft automation at the crossroads, the evolution of cockpit automation, and pilot factors.

  1. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  2. Artifical Intelligence for Human Computing

    NARCIS (Netherlands)

    Huang, Th.S.; Nijholt, Antinus; Pantic, Maja; Pentland, A.; Unknown, [Unknown

    2007-01-01

    This book constitutes the thoroughly refereed post-proceedings of two events discussing AI for Human Computing: one Special Session during the Eighth International ACM Conference on Multimodal Interfaces (ICMI 2006), held in Banff, Canada, in November 2006, and a Workshop organized in conjunction

  3. The power of PowerPoint.

    Science.gov (United States)

    Niamtu , J

    2001-08-01

    Carousel slide presentations have been used for academic and clinical presentations since the late 1950s. However, advances in computer technology have caused a paradigm shift, and digital presentations are quickly becoming standard for clinical presentations. The advantages of digital presentations include cost savings; portability; easy updating capability; Internet access; multimedia functions, such as animation, pictures, video, and sound; and customization to augment audience interest and attention. Microsoft PowerPoint has emerged as the most popular digital presentation software and is currently used by many practitioners with and without significant computer expertise. The user-friendly platform of PowerPoint enables even the novice presenter to incorporate digital presentations into his or her profession. PowerPoint offers many advanced options that, with a minimal investment of time, can be used to create more interactive and professional presentations for lectures, patient education, and marketing. Examples of advanced PowerPoint applications are presented in a stepwise manner to unveil the full power of PowerPoint. By incorporating these techniques, medical practitioners can easily personalize, customize, and enhance their PowerPoint presentations. Complications, pitfalls, and caveats are discussed to detour and prevent misadventures in digital presentations. Relevant Web sites are listed to further update, customize, and communicate PowerPoint techniques.

  4. Pantomimic gestures for human-robot interaction

    CSIR Research Space (South Africa)

    Burke, Michael G

    2015-10-01

    Full Text Available -1 IEEE TRANSACTIONS ON ROBOTICS 1 Pantomimic Gestures for Human-Robot Interaction Michael Burke, Student Member, IEEE, and Joan Lasenby Abstract This work introduces a pantomimic gesture interface, which classifies human hand gestures using...

  5. Sustaining Economic Exploitation of Complex Ecosystems in Computational Models of Coupled Human-Natural Networks

    OpenAIRE

    Martinez, Neo D.; Tonin, Perrine; Bauer, Barbara; Rael, Rosalyn C.; Singh, Rahul; Yoon, Sangyuk; Yoon, Ilmi; Dunne, Jennifer A.

    2012-01-01

    Understanding ecological complexity has stymied scientists for decades. Recent elucidation of the famously coined "devious strategies for stability in enduring natural systems" has opened up a new field of computational analyses of complex ecological networks where the nonlinear dynamics of many interacting species can be more realistically mod-eled and understood. Here, we describe the first extension of this field to include coupled human-natural systems. This extension elucidates new strat...

  6. Interactive granular computations in networks and systems engineering a practical perspective

    CERN Document Server

    Jankowski, Andrzej

    2017-01-01

    The book outlines selected projects conducted under the supervision of the author. Moreover, it discusses significant relations between Interactive Granular Computing (IGrC) and numerous dynamically developing scientific domains worldwide, along with features characteristic of the author’s approach to IGrC. The results presented are a continuation and elaboration of various aspects of Wisdom Technology, initiated and developed in cooperation with Professor Andrzej Skowron. Based on the empirical findings from these projects, the author explores the following areas: (a) understanding the causes of the theory and practice gap problem (TPGP) in complex systems engineering (CSE);(b) generalizing computing models of complex adaptive systems (CAS) (in particular, natural computing models) by constructing an interactive granular computing (IGrC) model of networks of interrelated interacting complex granules (c-granules), belonging to a single agent and/or to a group of agents; (c) developing methodologies based ...

  7. Utilizing the Double-Precision Floating-Point Computing Power of GPUs for RSA Acceleration

    Directory of Open Access Journals (Sweden)

    Jiankuo Dong

    2017-01-01

    Full Text Available Asymmetric cryptographic algorithm (e.g., RSA and Elliptic Curve Cryptography implementations on Graphics Processing Units (GPUs have been researched for over a decade. The basic idea of most previous contributions is exploiting the highly parallel GPU architecture and porting the integer-based algorithms from general-purpose CPUs to GPUs, to offer high performance. However, the great potential cryptographic computing power of GPUs, especially by the more powerful floating-point instructions, has not been comprehensively investigated in fact. In this paper, we fully exploit the floating-point computing power of GPUs, by various designs, including the floating-point-based Montgomery multiplication/exponentiation algorithm and Chinese Remainder Theorem (CRT implementation in GPU. And for practical usage of the proposed algorithm, a new method is performed to convert the input/output between octet strings and floating-point numbers, fully utilizing GPUs and further promoting the overall performance by about 5%. The performance of RSA-2048/3072/4096 decryption on NVIDIA GeForce GTX TITAN reaches 42,211/12,151/5,790 operations per second, respectively, which achieves 13 times the performance of the previous fastest floating-point-based implementation (published in Eurocrypt 2009. The RSA-4096 decryption precedes the existing fastest integer-based result by 23%.

  8. A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems

    Science.gov (United States)

    Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  9. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  10. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  11. Child computer interaction SIG: towards sustainable thinking and being

    NARCIS (Netherlands)

    Read, J.; Hourcade, J.P.; Markopoulos, P.; Iversen, O.S.

    The discipline of Child Computer Interaction (CCI) has been steadily growing and it is now firmly established as a community in its own right, having the annual IDC (Interaction and Design for Children) conference and its own journal and also enjoying its role as a highly recognisable and vibrant

  12. Human Work Interaction Design

    DEFF Research Database (Denmark)

    Lopes, Arminda; Ørngreen, Rikke

    This book constitutes the thoroughly refereed post-conference proceedings of the Third IFIP WG 13.6 Working Conference on Human Work Interaction Design, HWID 2012, held in Copenhagen, Denmark, in December 2012. The 16 revised papers presented were carefully selected for inclusion in this volume...

  13. Towards Automatic Testing of Reference Point Based Interactive Methods

    OpenAIRE

    Ojalehto, Vesa; Podkopaev, Dmitry; Miettinen, Kaisa

    2016-01-01

    In order to understand strengths and weaknesses of optimization algorithms, it is important to have access to different types of test problems, well defined performance indicators and analysis tools. Such tools are widely available for testing evolutionary multiobjective optimization algorithms. To our knowledge, there do not exist tools for analyzing the performance of interactive multiobjective optimization methods based on the reference point approach to communicating ...

  14. Non-Linear Interactive Stories in Computer Games

    DEFF Research Database (Denmark)

    Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas

    2003-01-01

    The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...

  15. Interactive computer graphics for bio-stereochemical modelling

    Indian Academy of Sciences (India)

    Proc, Indian Acad. Sci., Vol. 87 A (Chem. Sci.), No. 4, April 1978, pp. 95-113, (e) printed in India. Interactive computer graphics for bio-stereochemical modelling. ROBERT REIN, SHLOMONIR, KAREN HAYDOCK and. ROBERTD MACELROY. Department of Experimental Pathology, Roswell Park Memorial Institute,. 666 Elm ...

  16. Social touch in human–computer interaction

    NARCIS (Netherlands)

    Erp, J.B.F. van; Toet, A.

    2015-01-01

    Touch is our primary non-verbal communication channel for conveying intimate emotions and as such essential for our physical and emotional wellbeing. In our digital age, human social interaction is often mediated. However, even though there is increasing evidence that mediated touch affords

  17. Social touch in human–computer interaction

    NARCIS (Netherlands)

    van Erp, Johannes Bernardus Fransiscus; Toet, Alexander

    Touch is our primary non-verbal communication channel for conveying intimate emotions and as such essential for our physical and emotional wellbeing. In our digital age, human social interaction is often mediated. However, even though there is increasing evidence that mediated touch affords

  18. Conceptual design of pipe whip restraints using interactive computer analysis

    International Nuclear Information System (INIS)

    Rigamonti, G.; Dainora, J.

    1975-01-01

    Protection against pipe break effects necessitates a complex interaction between failure mode analysis, piping layout, and structural design. Many iterations are required to finalize structural designs and equipment arrangements. The magnitude of the pipe break loads transmitted by the pipe whip restraints to structural embedments precludes the application of conservative design margins. A simplified analytical formulation of the nonlinear dynamic problems associated with pipe whip has been developed and applied using interactive computer analysis techniques. In the dynamic analysis, the restraint and the associated portion of the piping system, are modeled using the finite element lumped mass approach to properly reflect the dynamic characteristics of the piping/restraint system. The analysis is performed as a series of piecewise linear increments. Each of these linear increments is terminated by either formation of plastic conditions or closing/opening of gaps. The stiffness matrix is modified to reflect the changed stiffness characteristics of the system and re-started using the previous boundary conditions. The formation of yield hinges are related to the plastic moment of the section and unloading paths are automatically considered. The conceptual design of the piping/restraint system is performed using interactive computer analysis. The application of the simplified analytical approach with interactive computer analysis results in an order of magnitude reduction in engineering time and computer cost. (Auth.)

  19. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    Science.gov (United States)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  20. Hybrid Human-Computing Distributed Sense-Making: Extending the SOA Paradigm for Dynamic Adjudication and Optimization of Human and Computer Roles

    Science.gov (United States)

    Rimland, Jeffrey C.

    2013-01-01

    In many evolving systems, inputs can be derived from both human observations and physical sensors. Additionally, many computation and analysis tasks can be performed by either human beings or artificial intelligence (AI) applications. For example, weather prediction, emergency event response, assistive technology for various human sensory and…

  1. Synthesis of biological active thiosemicarbazone and characterization of the interaction with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wangshu; Shi, Lei; Hui, Guangquan [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Cui, Fengling, E-mail: fenglingcui@hotmail.com [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China)

    2013-02-15

    The synthesis of a new biological active reagent, 2-((1,4-dihydroxy)-9,10-anthraquinone) aldehyde thiosemicarbazone (DHAQTS), was designed. The interaction between DHAQTS and HSA was studied by fluorescence spectroscopy in combination with molecular modeling under simulation of physiological conditions. According to the results of fluorescence measurements, the quenching mechanism was suggested to be static. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrophobic interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, DHAQTS was confirmed to be located in site I of HSA. The binding distance r=2.83 nm between the donor HSA and acceptor DHAQTS was obtained according to Foerster's non-radiative energy transfer theory. The three-dimensional fluorescence spectral results showed the conformation and microenvironment of HSA changed in the presence of DHAQTS. The effects of common ions on the binding of DHAQTS to HSA were also evaluated. The experimental results were in agreement with the results obtained via a molecular docking study. - Highlights: Black-Right-Pointing-Pointer 2-((1,4-dihydroxy)-9,10-anthraquinone)aldehyde thiosemicarbazone (DHAQTS) was synthesized. Black-Right-Pointing-Pointer DHAQTS can quench the fluorescence of human serum albumin (HSA) by static quenching mechanism. Black-Right-Pointing-Pointer Hydrophobic interactions were the predominant intermolecular forces. Black-Right-Pointing-Pointer The competitive experiment was carried out to identify the DHAQTS binding site on HSA. Black-Right-Pointing-Pointer Three-dimensional spectra confirmed DHAQTS caused the conformational change of HSA.

  2. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Science.gov (United States)

    Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri

    2015-11-01

    There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  3. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Directory of Open Access Journals (Sweden)

    David Bednar

    2015-11-01

    Full Text Available There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  4. Interactive Rhythm Learning System by Combining Tablet Computers and Robots

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chou

    2017-03-01

    Full Text Available This study proposes a percussion learning device that combines tablet computers and robots. This device comprises two systems: a rhythm teaching system, in which users can compose and practice rhythms by using a tablet computer, and a robot performance system. First, teachers compose the rhythm training contents on the tablet computer. Then, the learners practice these percussion exercises by using the tablet computer and a small drum set. The teaching system provides a new and user-friendly score editing interface for composing a rhythm exercise. It also provides a rhythm rating function to facilitate percussion training for children and improve the stability of rhythmic beating. To encourage children to practice percussion exercises, a robotic performance system is used to interact with the children; this system can perform percussion exercises for students to listen to and then help them practice the exercise. This interaction enhances children’s interest and motivation to learn and practice rhythm exercises. The results of experimental course and field trials reveal that the proposed system not only increases students’ interest and efficiency in learning but also helps them in understanding musical rhythms through interaction and composing simple rhythms.

  5. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  6. MODELING HOST-PATHOGEN INTERACTIONS: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS FOR INFECTIOUS DISEASE RESEARCH (Session introduction)

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Braun, Pascal; Bonneau, Richard A.; Hyduke, Daniel R.

    2011-12-01

    Pathogenic infections are a major cause of both human disease and loss of crop yields and animal stocks and thus cause immense damage to the worldwide economy. The significance of infectious diseases is expected to increase in an ever more connected warming world, in which new viral, bacterial and fungal pathogens can find novel hosts and ecologic niches. At the same time, the complex and sophisticated mechanisms by which diverse pathogenic agents evade defense mechanisms and subvert their hosts networks to suit their lifestyle needs is still very incompletely understood especially from a systems perspective [1]. Thus, understanding host-pathogen interactions is both an important and a scientifically fascinating topic. Recently, technology has offered the opportunity to investigate host-pathogen interactions on a level of detail and scope that offers immense computational and analytical possibilities. Genome sequencing was pioneered on some of these pathogens, and the number of strains and variants of pathogens sequenced to date vastly outnumbers the number of host genomes available. At the same time, for both plant and human hosts more and more data on population level genomic variation becomes available and offers a rich field for analysis into the genetic interactions between host and pathogen.

  7. Exploring the interaction between Salvia miltiorrhiza and human serum albumin: Insights from herb-drug interaction reports, computational analysis and experimental studies

    Science.gov (United States)

    Shao, Xin; Ai, Ni; Xu, Donghang; Fan, Xiaohui

    2016-05-01

    Human serum albumin (HSA) binding is one of important pharmacokinetic properties of drug, which is closely related to in vivo distribution and may ultimately influence its clinical efficacy. Compared to conventional drug, limited information on this transportation process is available for medicinal herbs, which significantly hampers our understanding on their pharmacological effects, particularly when herbs and drug are co-administrated as polytherapy to the ailment. Several lines of evidence suggest the existence of Salvia miltiorrhiza-Warfarin interaction. Since Warfarin is highly HSA bound in the plasma with selectivity to site I, it is critical to evaluate the possibility of HSA-related herb-drug interaction. Herein an integrated approach was employed to analyze the binding of chemicals identified in S. miltiorrhiza to HSA. Molecular docking simulations revealed filtering criteria for HSA site I compounds that include docking score and key molecular determinants for binding. For eight representative ingredients from the herb, their affinity and specificity to HSA site I was measured and confirmed fluorometrically, which helps to improve the knowledge of interaction mechanisms between this herb and HSA. Our results indicated that several compounds in S. miltiorrhiza were capable of decreasing the binding constant of Warfarin to HSA site I significantly, which may increase free drug concentration in vivo, contributing to the herb-drug interaction observed clinically. Furthermore, the significance of HSA mediated herb-drug interactions was further implied by manual mining on the published literatures on S. miltiorrhiza.

  8. A Bipartite Network-based Method for Prediction of Long Non-coding RNA–protein Interactions

    Directory of Open Access Journals (Sweden)

    Mengqu Ge

    2016-02-01

    Full Text Available As one large class of non-coding RNAs (ncRNAs, long ncRNAs (lncRNAs have gained considerable attention in recent years. Mutations and dysfunction of lncRNAs have been implicated in human disorders. Many lncRNAs exert their effects through interactions with the corresponding RNA-binding proteins. Several computational approaches have been developed, but only few are able to perform the prediction of these interactions from a network-based point of view. Here, we introduce a computational method named lncRNA–protein bipartite network inference (LPBNI. LPBNI aims to identify potential lncRNA–interacting proteins, by making full use of the known lncRNA–protein interactions. Leave-one-out cross validation (LOOCV test shows that LPBNI significantly outperforms other network-based methods, including random walk (RWR and protein-based collaborative filtering (ProCF. Furthermore, a case study was performed to demonstrate the performance of LPBNI using real data in predicting potential lncRNA–interacting proteins.

  9. A human protein interaction network shows conservation of aging processes between human and invertebrate species.

    Directory of Open Access Journals (Sweden)

    Russell Bell

    2009-03-01

    Full Text Available We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins.

  10. Ghost-in-the-Machine reveals human social signals for human–robot interaction

    Science.gov (United States)

    Loth, Sebastian; Jettka, Katharina; Giuliani, Manuel; de Ruiter, Jan P.

    2015-01-01

    We used a new method called “Ghost-in-the-Machine” (GiM) to investigate social interactions with a robotic bartender taking orders for drinks and serving them. Using the GiM paradigm allowed us to identify how human participants recognize the intentions of customers on the basis of the output of the robotic recognizers. Specifically, we measured which recognizer modalities (e.g., speech, the distance to the bar) were relevant at different stages of the interaction. This provided insights into human social behavior necessary for the development of socially competent robots. When initiating the drink-order interaction, the most important recognizers were those based on computer vision. When drink orders were being placed, however, the most important information source was the speech recognition. Interestingly, the participants used only a subset of the available information, focussing only on a few relevant recognizers while ignoring others. This reduced the risk of acting on erroneous sensor data and enabled them to complete service interactions more swiftly than a robot using all available sensor data. We also investigated socially appropriate response strategies. In their responses, the participants preferred to use the same modality as the customer’s requests, e.g., they tended to respond verbally to verbal requests. Also, they added redundancy to their responses, for instance by using echo questions. We argue that incorporating the social strategies discovered with the GiM paradigm in multimodal grammars of human–robot interactions improves the robustness and the ease-of-use of these interactions, and therefore provides a smoother user experience. PMID:26582998

  11. Domestic dogs use contextual information and tone of voice when following a human pointing gesture.

    Directory of Open Access Journals (Sweden)

    Linda Scheider

    Full Text Available Domestic dogs are skillful at using the human pointing gesture. In this study we investigated whether dogs take contextual information into account when following pointing gestures, specifically, whether they follow human pointing gestures more readily in the context in which food has been found previously. Also varied was the human's tone of voice as either imperative or informative. Dogs were more sustained in their searching behavior in the 'context' condition as opposed to the 'no context' condition, suggesting that they do not simply follow a pointing gesture blindly but use previously acquired contextual information to inform their interpretation of that pointing gesture. Dogs also showed more sustained searching behavior when there was pointing than when there was not, suggesting that they expect to find a referent when they see a human point. Finally, dogs searched more in high-pitched informative trials as opposed to the low-pitched imperative trials, whereas in the latter dogs seemed more inclined to respond by sitting. These findings suggest that a dog's response to a pointing gesture is flexible and depends on the context as well as the human's tone of voice.

  12. The role of beliefs in lexical alignment: evidence from dialogs with humans and computers.

    Science.gov (United States)

    Branigan, Holly P; Pickering, Martin J; Pearson, Jamie; McLean, Janet F; Brown, Ash

    2011-10-01

    Five experiments examined the extent to which speakers' alignment (i.e., convergence) on words in dialog is mediated by beliefs about their interlocutor. To do this, we told participants that they were interacting with another person or a computer in a task in which they alternated between selecting pictures that matched their 'partner's' descriptions and naming pictures themselves (though in reality all responses were scripted). In both text- and speech-based dialog, participants tended to repeat their partner's choice of referring expression. However, they showed a stronger tendency to align with 'computer' than with 'human' partners, and with computers that were presented as less capable than with computers that were presented as more capable. The tendency to align therefore appears to be mediated by beliefs, with the relevant beliefs relating to an interlocutor's perceived communicative capacity. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Human activity recognition and prediction

    CERN Document Server

    2016-01-01

    This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discussed give readers tools that provide a significant improvement over existing methodologies of video content understanding by taking advantage of activity recognition. It links multiple popular research fields in computer vision, machine learning, human-centered computing, human-computer interaction, image classification, and pattern recognition. In addition, the book includes several key chapters covering multiple emerging topics in the field. Contributed by top experts and practitioners, the chapters present key topics from different angles and blend both methodology and application, composing a solid overview of the human activity recognition techniques. .

  14. Wave chaos in quantum systems with point interaction

    International Nuclear Information System (INIS)

    Albeverio, S.; Seba, P.

    1991-01-01

    The authors study perturbations H of the quantized version H 0 of integrable Hamiltonian systems by point interactions. They relate the eigenvalues of H to the zeros of a certain meromorphic function ξ. Assuming the eigenvalues of H 0 are Poisson distributed, they get detailed information on the joint distribution of the zeros of ξ and give bounds on the probability density for the spacings of eigenvalues of H. Their results confirm the wave chaos phenomenon, as different from the quantum chaos phenomenon predicted by random matrix theory

  15. Real-time 3D human capture system for mixed-reality art and entertainment.

    Science.gov (United States)

    Nguyen, Ta Huynh Duy; Qui, Tran Cong Thien; Xu, Ke; Cheok, Adrian David; Teo, Sze Lee; Zhou, ZhiYing; Mallawaarachchi, Asitha; Lee, Shang Ping; Liu, Wei; Teo, Hui Siang; Thang, Le Nam; Li, Yu; Kato, Hirokazu

    2005-01-01

    A real-time system for capturing humans in 3D and placing them into a mixed reality environment is presented in this paper. The subject is captured by nine cameras surrounding her. Looking through a head-mounted-display with a camera in front pointing at a marker, the user can see the 3D image of this subject overlaid onto a mixed reality scene. The 3D images of the subject viewed from this viewpoint are constructed using a robust and fast shape-from-silhouette algorithm. The paper also presents several techniques to produce good quality and speed up the whole system. The frame rate of our system is around 25 fps using only standard Intel processor-based personal computers. Besides a remote live 3D conferencing and collaborating system, we also describe an application of the system in art and entertainment, named Magic Land, which is a mixed reality environment where captured avatars of human and 3D computer generated virtual animations can form an interactive story and play with each other. This system demonstrates many technologies in human computer interaction: mixed reality, tangible interaction, and 3D communication. The result of the user study not only emphasizes the benefits, but also addresses some issues of these technologies.

  16. Atom-surface interaction: Zero-point energy formalism

    International Nuclear Information System (INIS)

    Paranjape, V.V.

    1985-01-01

    The interaction energy between an atom and a surface formed by a polar medium is derived with use of a new approach based on the zero-point energy formalism. It is shown that the energy depends on the separation Z between the atom and the surface. With increasing Z, the energy decreases according to 1/Z 3 , while with decreasing Z the energy saturates to a finite value. It is also shown that the energy is affected by the velocity of the atom, but this correction is small. Our result for large Z is consistent with the work of Manson and Ritchie [Phys. Rev. B 29, 1084 (1984)], who follow a more traditional approach to the problem

  17. Twenty-First Century Learning: Communities, Interaction and Ubiquitous Computing

    Science.gov (United States)

    Leh, Amy S.C.; Kouba, Barbara; Davis, Dirk

    2005-01-01

    Advanced technology makes 21st century learning, communities and interactions unique and leads people to an era of ubiquitous computing. The purpose of this article is to contribute to the discussion of learning in the 21st century. The paper will review literature on learning community, community learning, interaction, 21st century learning and…

  18. Human-Robot Interaction Directed Research Project

    Science.gov (United States)

    Rochlis, Jennifer; Ezer, Neta; Sandor, Aniko

    2011-01-01

    Human-robot interaction (HRI) is about understanding and shaping the interactions between humans and robots (Goodrich & Schultz, 2007). It is important to evaluate how the design of interfaces and command modalities affect the human s ability to perform tasks accurately, efficiently, and effectively (Crandall, Goodrich, Olsen Jr., & Nielsen, 2005) It is also critical to evaluate the effects of human-robot interfaces and command modalities on operator mental workload (Sheridan, 1992) and situation awareness (Endsley, Bolt , & Jones, 2003). By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed that support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for design. Because the factors associated with interfaces and command modalities in HRI are too numerous to address in 3 years of research, the proposed research concentrates on three manageable areas applicable to National Aeronautics and Space Administration (NASA) robot systems. These topic areas emerged from the Fiscal Year (FY) 2011 work that included extensive literature reviews and observations of NASA systems. The three topic areas are: 1) video overlays, 2) camera views, and 3) command modalities. Each area is described in detail below, along with relevance to existing NASA human-robot systems. In addition to studies in these three topic areas, a workshop is proposed for FY12. The workshop will bring together experts in human-robot interaction and robotics to discuss the state of the practice as applicable to research in space robotics. Studies proposed in the area of video overlays consider two factors in the implementation of augmented reality (AR) for operator displays during teleoperation. The first of these factors is the type of navigational guidance provided by AR symbology. In the proposed

  19. Human Work Interaction Design

    DEFF Research Database (Denmark)

    Gonçalves, Frederica; Campos, Pedro; Clemmensen, Torkil

    2015-01-01

    In this paper, we review research in the emerging practice and research field of Human Work Interaction Design (HWID). We present a HWID frame-work, and a sample of 54 papers from workshops, conferences and journals from the period 2009-2014. We group the papers into six topical groups, and then ...

  20. Human-Robot Teams for Unknown and Uncertain Environments

    Science.gov (United States)

    Fong, Terry

    2015-01-01

    Man-robot interaction is the study of interactions between humans and robots. It is often referred as HRI by researchers. Human-robot interaction is a multidisciplinary field with contributions from human-computer interaction, artificial intelligence.

  1. Interactive Evolution of Complex Behaviours Through Skill Encapsulation

    DEFF Research Database (Denmark)

    González de Prado Salas, Pablo; Risi, Sebastian

    2017-01-01

    Human-based computation (HBC) is an emerging research area in which humans and machines collaborate to solve tasks that neither one can solve in isolation. In evolutionary computation, HBC is often realized through interactive evolutionary computation (IEC), in which a user guides evolution by it...... in evolutionary computation and, as the results in this paper show, IEC-ESP is able to solve complex control problems that are challenging for a traditional fitness-based approach.......Human-based computation (HBC) is an emerging research area in which humans and machines collaborate to solve tasks that neither one can solve in isolation. In evolutionary computation, HBC is often realized through interactive evolutionary computation (IEC), in which a user guides evolution...... by iteratively selecting the parents for the next generation. IEC has shown promise in a variety of different domains, but evolving more complex or hierarchically composed behaviours remains challenging with the traditional IEC approach. To overcome this challenge, this paper combines the recently introduced ESP...

  2. Choosing between different AI approaches? The scientific benefits of the confrontation, and the new collaborative era between humans and machines

    Directory of Open Access Journals (Sweden)

    Jordi Vallverdú

    2008-07-01

    Full Text Available AI is a multidisciplinary activity that involves specialists from several fields, and we can say that the aim of science, and AI science, is solving problems. AI and computer sciences are been creating a new kind of making science, that we can call in silico science. Both models top-eown and bottomup are useful for e-scientific research. There is no a real controversy between them. Besides, the extended mind model of human cognition, involves human-machine interactions. Huge amount of data requires new ways to make and organize scientific practices: supercomputers, grids, distributed computing, specific software and middleware and, basically, more efficient and visual ways to interact with information. This is one of the key points to understand contemporary relationships between humans and machines: usability of scientific data.

  3. HuRECA: Human Reliability Evaluator for Computer-based Control Room Actions

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Lee, Seung Jun; Jang, Seung Cheol

    2011-01-01

    As computer-based design features such as computer-based procedures (CBP), soft controls (SCs), and integrated information systems are being adopted in main control rooms (MCR) of nuclear power plants, a human reliability analysis (HRA) method capable of dealing with the effects of these design features on human reliability is needed. From the observations of human factors engineering verification and validation experiments, we have drawn some major important characteristics on operator behaviors and design-related influencing factors (DIFs) from the perspective of human reliability. Firstly, there are new DIFs that should be considered in developing an HRA method for computer-based control rooms including especially CBP and SCs. In the case of the computer-based procedure rather than the paper-based procedure, the structural and managerial elements should be considered as important PSFs in addition to the procedural contents. In the case of the soft controllers, the so-called interface management tasks (or secondary tasks) should be reflected in the assessment of human error probability. Secondly, computer-based control rooms can provide more effective error recovery features than conventional control rooms. Major error recovery features for computer-based control rooms include the automatic logic checking function of the computer-based procedure and the information sharing feature of the general computer-based designs

  4. Design for interaction between humans and intelligent systems during real-time fault management

    Science.gov (United States)

    Malin, Jane T.; Schreckenghost, Debra L.; Thronesbery, Carroll G.

    1992-01-01

    Initial results are reported to provide guidance and assistance for designers of intelligent systems and their human interfaces. The objective is to achieve more effective human-computer interaction (HCI) for real time fault management support systems. Studies of the development of intelligent fault management systems within NASA have resulted in a new perspective of the user. If the user is viewed as one of the subsystems in a heterogeneous, distributed system, system design becomes the design of a flexible architecture for accomplishing system tasks with both human and computer agents. HCI requirements and design should be distinguished from user interface (displays and controls) requirements and design. Effective HCI design for multi-agent systems requires explicit identification of activities and information that support coordination and communication between agents. The effects are characterized of HCI design on overall system design and approaches are identified to addressing HCI requirements in system design. The results include definition of (1) guidance based on information level requirements analysis of HCI, (2) high level requirements for a design methodology that integrates the HCI perspective into system design, and (3) requirements for embedding HCI design tools into intelligent system development environments.

  5. Free-ranging dogs show age related plasticity in their ability to follow human pointing.

    Science.gov (United States)

    Bhattacharjee, Debottam; N, Nikhil Dev; Gupta, Shreya; Sau, Shubhra; Sarkar, Rohan; Biswas, Arpita; Banerjee, Arunita; Babu, Daisy; Mehta, Diksha; Bhadra, Anindita

    2017-01-01

    Differences in pet dogs' and captive wolves' ability to follow human communicative intents have led to the proposition of several hypotheses regarding the possession and development of social cognitive skills in dogs. It is possible that the social cognitive abilities of pet dogs are induced by indirect conditioning through living with humans, and studying free-ranging dogs can provide deeper insights into differentiating between innate abilities and conditioning in dogs. Free-ranging dogs are mostly scavengers, indirectly depending on humans for their sustenance. Humans can act both as food providers and as threats to these dogs, and thus understanding human gestures can be a survival need for the free-ranging dogs. We tested the responsiveness of such dogs in urban areas toward simple human pointing cues using dynamic proximal points. Our experiment showed that pups readily follow proximal pointing and exhibit weaker avoidance to humans, but stop doing so at the later stages of development. While juveniles showed frequent and prolonged gaze alternations, only adults adjusted their behaviour based on the reliability of the human experimenter after being rewarded. Thus free-ranging dogs show a tendency to respond to human pointing gestures, with a certain level of behavioural plasticity that allows learning from ontogenic experience.

  6. Using Noninvasive Wearable Computers to Recognize Human Emotions from Physiological Signals

    Directory of Open Access Journals (Sweden)

    Nasoz Fatma

    2004-01-01

    Full Text Available We discuss the strong relationship between affect and cognition and the importance of emotions in multimodal human computer interaction (HCI and user modeling. We introduce the overall paradigm for our multimodal system that aims at recognizing its users' emotions and at responding to them accordingly depending upon the current context or application. We then describe the design of the emotion elicitation experiment we conducted by collecting, via wearable computers, physiological signals from the autonomic nervous system (galvanic skin response, heart rate, temperature and mapping them to certain emotions (sadness, anger, fear, surprise, frustration, and amusement. We show the results of three different supervised learning algorithms that categorize these collected signals in terms of emotions, and generalize their learning to recognize emotions from new collections of signals. We finally discuss possible broader impact and potential applications of emotion recognition for multimodal intelligent systems.

  7. Flooring-systems and their interaction with furniture and humans

    DEFF Research Database (Denmark)

    Frier, Christian; Pedersen, Lars; Andersen, Lars Vabbersgaard

    2017-01-01

    Flooring-system designs may be sensitive in terms of their vibrational performance due the risk that serviceability-limit-state problems may be encountered. For evaluating the vibrational performance of a flooring system at the design stage, decisions must be made by the engineer in charge...... of computations. Passive humans and/or furniture are often present on a floor. Typically, these masses and their way of interacting with the floor mass are ignored in predictions of vibrational behaviour of the flooring system. Utilizing a shell finite-element model, the paper explores and quantifies how non......-structural mass can influence central parameters describing the dynamic behaviour of the flooring system with focus on elevated non-structural mass. © 2017 The Authors. Published by Elsevier Ltd....

  8. Social interactions through the eyes of macaques and humans.

    Directory of Open Access Journals (Sweden)

    Richard McFarland

    Full Text Available Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression. Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys' gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of

  9. Capturing Order in Social Interactions

    OpenAIRE

    Vinciarelli, Alessandro

    2009-01-01

    As humans appear to be literally wired for social interaction, it is not surprising to observe that social aspects of human behavior and psychology attract interest in the computing community as well. The gap between social animal and unsocial machine was tolerable when computers were nothing else than improved versions of old tools (e.g., word processors replacing typewriters), but nowadays computers go far beyond that simple role. Today, computers are the natural means for a wide spectrum o...

  10. Interaction of Citrinin with Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Miklós Poór

    2015-12-01

    Full Text Available Citrinin (CIT is a mycotoxin produced by several Aspergillus, Penicillium, and Monascus species. CIT occurs worldwide in different foods and drinks and causes health problems for humans and animals. Human serum albumin (HSA is the most abundant plasma protein in human circulation. Albumin forms stable complexes with many drugs and xenobiotics; therefore, HSA commonly plays important role in the pharmacokinetics or toxicokinetics of numerous compounds. However, the interaction of CIT with HSA is poorly characterized yet. In this study, the complex formation of CIT with HSA was investigated using fluorescence spectroscopy and ultrafiltration techniques. For the deeper understanding of the interaction, thermodynamic, and molecular modeling studies were performed as well. Our results suggest that CIT forms stable complex with HSA (logK ~ 5.3 and its primary binding site is located in subdomain IIA (Sudlow’s Site I. In vitro cell experiments also recommend that CIT-HSA interaction may have biological relevance. Finally, the complex formations of CIT with bovine, porcine, and rat serum albumin were investigated, in order to test the potential species differences of CIT-albumin interactions.

  11. Designing Interactions for Learning: Physicality, Interactivity, and Interface Effects in Digital Environments

    Science.gov (United States)

    Hoffman, Daniel L.

    2013-01-01

    The purpose of the study is to better understand the role of physicality, interactivity, and interface effects in learning with digital content. Drawing on work in cognitive science, human-computer interaction, and multimedia learning, the study argues that interfaces that promote physical interaction can provide "conceptual leverage"…

  12. Decreasing Computational Time for VBBinaryLensing by Point Source Approximation

    Science.gov (United States)

    Tirrell, Bethany M.; Visgaitis, Tiffany A.; Bozza, Valerio

    2018-01-01

    The gravitational lens of a binary system produces a magnification map that is more intricate than a single object lens. This map cannot be calculated analytically and one must rely on computational methods to resolve. There are generally two methods of computing the microlensed flux of a source. One is based on ray-shooting maps (Kayser, Refsdal, & Stabell 1986), while the other method is based on an application of Green’s theorem. This second method finds the area of an image by calculating a Riemann integral along the image contour. VBBinaryLensing is a C++ contour integration code developed by Valerio Bozza, which utilizes this method. The parameters at which the source object could be treated as a point source, or in other words, when the source is far enough from the caustic, was of interest to substantially decrease the computational time. The maximum and minimum values of the caustic curves produced, were examined to determine the boundaries for which this simplification could be made. The code was then run for a number of different maps, with separation values and accuracies ranging from 10-1 to 10-3, to test the theoretical model and determine a safe buffer for which minimal error could be made for the approximation. The determined buffer was 1.5+5q, with q being the mass ratio. The theoretical model and the calculated points worked for all combinations of the separation values and different accuracies except the map with accuracy and separation equal to 10-3 for y1 max. An alternative approach has to be found in order to accommodate a wider range of parameters.

  13. Human immunodeficiencies related to APC/T cell interaction

    Directory of Open Access Journals (Sweden)

    Marinos eKallikourdis

    2015-08-01

    Full Text Available The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APC in the T cell area of secondary lymphoid organs and the formation of highly organized inter-cellular junctions referred to as the immune synapses. In vivo live-cell imaging of APC-T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. Here we will discuss in details the mechanisms of defective APC-T cell communications in Wiskott-Aldrich syndrome (WAS and in warts, hypogammaglobulinemia, infections, myelokathexis syndrome (WHIM. In addition, we will summarize the evidences pointing to a compromised conjugate formation in WIP deficiency, DOCK8 deficiency and X-linked lymphoproliferative syndrome.

  14. The effect of phase advance errors between interaction points on beam halos

    International Nuclear Information System (INIS)

    Chen, T.; Irwin, J.; Siemann, R.H.

    1995-01-01

    Phase advance errors between interaction points (IP) break the symmetry of multi-IP colliders. This symmetry breaking introduces new, lower order resonances which may chance the halo from the beam-beam interaction dramatically. In this paper, the mechanism of introducing new resonances is discussed. Simulation results showing the changes due to phase advance errors are presented. Simulation results are compared with experimental measurements at VEPP-2M

  15. The Past, Present and Future of Human Computer Interaction

    KAUST Repository

    Churchill, Elizabeth

    2018-01-01

    into our environments. From our homes to the urban and rural spaces, we traverse everyday. We are increasingly able toヨoften required toヨmanage and configure multiple, interconnected devices and program their interactions. Artificial intelligence (AI

  16. Prediction of surgical view of neurovascular decompression using interactive computer graphics.

    Science.gov (United States)

    Kin, Taichi; Oyama, Hiroshi; Kamada, Kyousuke; Aoki, Shigeki; Ohtomo, Kuni; Saito, Nobuhito

    2009-07-01

    To assess the value of an interactive visualization method for detecting the offending vessels in neurovascular compression syndrome in patients with facial spasm and trigeminal neuralgia. Computer graphics models are created by fusion of fast imaging employing steady-state acquisition and magnetic resonance angiography. High-resolution magnetic resonance angiography and fast imaging employing steady-state acquisition were performed preoperatively in 17 patients with neurovascular compression syndromes (facial spasm, n = 10; trigeminal neuralgia, n = 7) using a 3.0-T magnetic resonance imaging scanner. Computer graphics models were created with computer software and observed interactively for detection of offending vessels by rotation, enlargement, reduction, and retraction on a graphic workstation. Two-dimensional images were reviewed by 2 radiologists blinded to the clinical details, and 2 neurosurgeons predicted the offending vessel with the interactive visualization method before surgery. Predictions from the 2 imaging approaches were compared with surgical findings. The vessels identified during surgery were assumed to be the true offending vessels. Offending vessels were identified correctly in 16 of 17 patients (94%) using the interactive visualization method and in 10 of 17 patients using 2-dimensional images. These data demonstrated a significant difference (P = 0.015 by Fisher's exact method). The interactive visualization method data corresponded well with surgical findings (surgical field, offending vessels, and nerves). Virtual reality 3-dimensional computer graphics using fusion magnetic resonance angiography and fast imaging employing steady-state acquisition may be helpful for preoperative simulation.

  17. Human thermoregulation model of RF-EMF interaction

    International Nuclear Information System (INIS)

    Niedermayr, F.

    2012-01-01

    A thermal model has been developed which allows accurate temperature computations in high resolution anatomical models. The model is based on the basic thermal model described by Pennes which neglects any of the thermoregulatory mechanisms in humans. The thermal model developed here overcomes major simplifications by the mathematical consideration of these mechanisms which is needed for modeling a physiologically correct reaction to a thermal stimulus. The local blood perfusion, as well as the local metabolic rate, is modified as a function of the local tissue temperature. The model implemented increases the blood temperature on the basis of the absorbed energy. The heat exchange at the tissue/air interface, including the skin and respiratory tract, is also improved. The model takes not only the heat dissipation by radiation, conduction and convection into consideration but also the insensible loss of water by evaporation. Furthermore, the thermal model also accounts for the active heat dissipation by sweating. The generic implementation of the thermal model makes it possible to use it for different human models (children, adults, pregnant women) and it is also possible to take implants into consideration. The performance of the model is validated by comparing the simulation results to actual temperature measurements in humans. The thermal model is used to compute the temperature elevation in humans exposed to radiofrequency electromagnetic fields. Until now, the tissue heating caused by radiofrequency electromagnetic fields could only be estimated by a surrogate, namely the specific absorption rate. The temperature elevations in children of different sizes and ages as well as pregnant women at different gestational stages exposed to plane waves is computed. Furthermore, the temperature elevation in human bodies is computed for a diagnostic modality (magnetic resonance imaging) and a therapeutic modality (medical diathermy). (author) [de

  18. HCI in Mobile and Ubiquitous Computing

    OpenAIRE

    椎尾, 一郎; 安村, 通晃; 福本, 雅明; 伊賀, 聡一郎; 増井, 俊之

    2003-01-01

    This paper provides some perspectives to human computer interaction in mobile and ubiquitous computing. The review covers overview of ubiquitous computing, mobile computing and wearable computing. It also summarizes HCI topics on these field, including real-world oriented interface, multi-modal interface, context awareness and in-visible computers. Finally we discuss killer applications for coming ubiquitous computing era.

  19. Advances in Computational Fluid-Structure Interaction and Flow Simulation Conference

    CERN Document Server

    Takizawa, Kenji

    2016-01-01

    This contributed volume celebrates the work of Tayfun E. Tezduyar on the occasion of his 60th birthday. The articles it contains were born out of the Advances in Computational Fluid-Structure Interaction and Flow Simulation (AFSI 2014) conference, also dedicated to Prof. Tezduyar and held at Waseda University in Tokyo, Japan on March 19-21, 2014. The contributing authors represent a group of international experts in the field who discuss recent trends and new directions in computational fluid dynamics (CFD) and fluid-structure interaction (FSI). Organized into seven distinct parts arranged by thematic topics, the papers included cover basic methods and applications of CFD, flows with moving boundaries and interfaces, phase-field modeling, computer science and high-performance computing (HPC) aspects of flow simulation, mathematical methods, biomedical applications, and FSI. Researchers, practitioners, and advanced graduate students working on CFD, FSI, and related topics will find this collection to be a defi...

  20. Talking with the alien: interaction with computers in the GP consultation.

    Science.gov (United States)

    Dowell, Anthony; Stubbe, Maria; Scott-Dowell, Kathy; Macdonald, Lindsay; Dew, Kevin

    2013-01-01

    This study examines New Zealand GPs' interaction with computers in routine consultations. Twenty-eight video-recorded consultations from 10 GPs were analysed in micro-detail to explore: (i) how doctors divide their time and attention between computer and patient; (ii) the different roles ascribed to the computer; and (iii) how computer use influences the interactional flow of the consultation. All GPs engaged with the computer in some way for at least 20% of each consultation, and on average spent 12% of time totally focussed on the computer. Patterns of use varied; most GPs inputted all or most notes during the consultation, but a few set aside dedicated time afterwards. The computer acted as an additional participant enacting roles like information repository and legitimiser of decisions. Computer use also altered some of the normal 'rules of engagement' between doctor and patient. Long silences and turning away interrupted the smooth flow of conversation, but various 'multitasking' strategies allowed GPs to remain engaged with patients during episodes of computer use (e.g. signposting, online commentary, verbalising while typing, social chat). Conclusions were that use of computers has many benefits but also significantly influences the fine detail of the GP consultation. Doctors must consciously develop strategies to manage this impact.

  1. Domestic Dogs Use Contextual Information and Tone of Voice when following a Human Pointing Gesture

    NARCIS (Netherlands)

    Scheider, Linda; Grassmann, Susanne; Kaminski, Juliane; Tomasello, Michael

    2011-01-01

    Domestic dogs are skillful at using the human pointing gesture. In this study we investigated whether dogs take contextual information into account when following pointing gestures, specifically, whether they follow human pointing gestures more readily in the context in which food has been found

  2. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

    DEFF Research Database (Denmark)

    also deeply appreciate the huge amount of time donated to this process by the 211-member program committee, who paid their own way to attend the face-to-face program committee meeting, an event larger than the average ACM conference. We are proud of the work of the CHI 2013 program committee and hope...... a tremendous amount of work from all areas of the human-computer interaction community. As co-chairs of the process, we are amazed at the ability of the community to organize itself to accomplish this task. We would like to thank the 2680 individual reviewers for their careful consideration of these papers. We...

  3. Human-computer interface glove using flexible piezoelectric sensors

    Science.gov (United States)

    Cha, Youngsu; Seo, Jeonggyu; Kim, Jun-Sik; Park, Jung-Min

    2017-05-01

    In this note, we propose a human-computer interface glove based on flexible piezoelectric sensors. We select polyvinylidene fluoride as the piezoelectric material for the sensors because of advantages such as a steady piezoelectric characteristic and good flexibility. The sensors are installed in a fabric glove by means of pockets and Velcro bands. We detect changes in the angles of the finger joints from the outputs of the sensors, and use them for controlling a virtual hand that is utilized in virtual object manipulation. To assess the sensing ability of the piezoelectric sensors, we compare the processed angles from the sensor outputs with the real angles from a camera recoding. With good agreement between the processed and real angles, we successfully demonstrate the user interaction system with the virtual hand and interface glove based on the flexible piezoelectric sensors, for four hand motions: fist clenching, pinching, touching, and grasping.

  4. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.

    Science.gov (United States)

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2016-05-01

    In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. The results revealed a peak stress of 135.70kPa brought about by detonation upsurge on the cornea at the distance of 25cm. The highest von Mises stresses were observed on the sclera (267.3kPa), whereas the lowest one was seen on the vitreous body (0.002kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye. Copyright © 2016 Elsevier Ltd

  5. Curvature computation in volume-of-fluid method based on point-cloud sampling

    Science.gov (United States)

    Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.

    2018-01-01

    This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.

  6. A Human/Computer Learning Network to Improve Biodiversity Conservation and Research

    OpenAIRE

    Kelling, Steve; Gerbracht, Jeff; Fink, Daniel; Lagoze, Carl; Wong, Weng-Keen; Yu, Jun; Damoulas, Theodoros; Gomes, Carla

    2012-01-01

    In this paper we describe eBird, a citizen-science project that takes advantage of the human observational capacity to identify birds to species, which is then used to accurately represent patterns of bird occurrences across broad spatial and temporal extents. eBird employs artificial intelligence techniques such as machine learning to improve data quality by taking advantage of the synergies between human computation and mechanical computation. We call this a Human-Computer Learning Network,...

  7. Dynamics of Information as Natural Computation

    Directory of Open Access Journals (Sweden)

    Gordana Dodig Crnkovic

    2011-08-01

    Full Text Available Processes considered rendering information dynamics have been studied, among others in: questions and answers, observations, communication, learning, belief revision, logical inference, game-theoretic interactions and computation. This article will put the computational approaches into a broader context of natural computation, where information dynamics is not only found in human communication and computational machinery but also in the entire nature. Information is understood as representing the world (reality as an informational web for a cognizing agent, while information dynamics (information processing, computation realizes physical laws through which all the changes of informational structures unfold. Computation as it appears in the natural world is more general than the human process of calculation modeled by the Turing machine. Natural computing is epitomized through the interactions of concurrent, in general asynchronous computational processes which are adequately represented by what Abramsky names “the second generation models of computation” [1] which we argue to be the most general representation of information dynamics.

  8. The effects of undergraduate nursing student-faculty interaction outside the classroom on college grade point average.

    Science.gov (United States)

    Al-Hussami, Mahmoud; Saleh, Mohammad Y N; Hayajneh, Ferial; Abdalkader, Raghed Hussein; Mahadeen, Alia I

    2011-09-01

    The effects of student-faculty interactions in higher education have received considerable empirical attention. However, there has been no empirical study that has examined the relation between student-faculty interaction and college grade point average. This is aimed at identifying the effect of nursing student-faculty interaction outside the classroom on students' semester college grade point average at a public university in Jordan. The research was cross-sectional study of the effect of student-faculty interaction outside the classroom on the students' semester college grade point average of participating juniors and seniors. Total interaction of the students was crucial as it is extremely significant (t = 16.2, df = 271, P ≤ 0.001) in relation to students' academic scores between those students who had ≥70 and those who had <70 academic scores. However, gender differences between students, and other variables were not significant either to affect students' academic scores or students' interaction. This study provides some evidence that student-faculty interactions outside classrooms are significantly associated with student's academically achievements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies

    Directory of Open Access Journals (Sweden)

    Qiu JX

    2015-02-01

    Full Text Available Jia-Xuan Qiu,1,2 Zhi-Wei Zhou,3 Zhi-Xu He,4 Xueji Zhang,5 Shu-Feng Zhou,3 Shengrong Zhu11Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China; 2Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 4Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China; 5Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of ChinaAbstract: Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, ß-bisabolene, ß-sesquiphelandrene, 6-gingerdione, (--zingiberene, and methyl-6-isogingerol and human cytochrome P450 (CYP 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A

  10. Computational Complexity and Human Decision-Making.

    Science.gov (United States)

    Bossaerts, Peter; Murawski, Carsten

    2017-12-01

    The rationality principle postulates that decision-makers always choose the best action available to them. It underlies most modern theories of decision-making. The principle does not take into account the difficulty of finding the best option. Here, we propose that computational complexity theory (CCT) provides a framework for defining and quantifying the difficulty of decisions. We review evidence showing that human decision-making is affected by computational complexity. Building on this evidence, we argue that most models of decision-making, and metacognition, are intractable from a computational perspective. To be plausible, future theories of decision-making will need to take into account both the resources required for implementing the computations implied by the theory, and the resource constraints imposed on the decision-maker by biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Fast covariance estimation for innovations computed from a spatial Gibbs point process

    DEFF Research Database (Denmark)

    Coeurjolly, Jean-Francois; Rubak, Ege

    In this paper, we derive an exact formula for the covariance of two innovations computed from a spatial Gibbs point process and suggest a fast method for estimating this covariance. We show how this methodology can be used to estimate the asymptotic covariance matrix of the maximum pseudo...

  12. Computational modeling of turn-taking dynamics in spoken conversations

    OpenAIRE

    Chowdhury, Shammur Absar

    2017-01-01

    The study of human interaction dynamics has been at the center for multiple research disciplines in- cluding computer and social sciences, conversational analysis and psychology, for over decades. Recent interest has been shown with the aim of designing computational models to improve human-machine interaction system as well as support humans in their decision-making process. Turn-taking is one of the key aspects of conversational dynamics in dyadic conversations and is an integral part of hu...

  13. Computational analysis of RNA-protein interaction interfaces via the Voronoi diagram.

    Science.gov (United States)

    Mahdavi, Sedigheh; Mohades, Ali; Salehzadeh Yazdi, Ali; Jahandideh, Samad; Masoudi-Nejad, Ali

    2012-01-21

    Cellular functions are mediated by various biological processes including biomolecular interactions, such as protein-protein, DNA-protein and RNA-protein interactions in which RNA-Protein interactions are indispensable for many biological processes like cell development and viral replication. Unlike the protein-protein and protein-DNA interactions, accurate mechanisms and structures of the RNA-Protein complexes are not fully understood. A large amount of theoretical evidence have shown during the past several years that computational geometry is the first pace in understanding the binding profiles and plays a key role in the study of intricate biological structures, interactions and complexes. In this paper, RNA-Protein interaction interface surface is computed via the weighted Voronoi diagram of atoms. Using two filter operations provides a natural definition for interface atoms as classic methods. Unbounded parts of Voronoi facets that are far from the complex are trimmed using modified convex hull of atom centers. This algorithm is implemented to a database with different RNA-Protein complexes extracted from Protein Data Bank (PDB). Afterward, the features of interfaces have been computed and compared with classic method. The results show high correlation coefficients between interface size in the Voronoi model and the classical model based on solvent accessibility, as well as high accuracy and precision in comparison to classical model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Non-self-adjoint Schrödinger operators with nonlocal one-point interactions

    Czech Academy of Sciences Publication Activity Database

    Kuzhel, S.; Znojil, Miloslav

    2017-01-01

    Roč. 11, č. 4 (2017), s. 923-944 ISSN 1735-8787 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : 1-dimensional Schrodinger operator * nonlocal one-point interactions * boundary triplet Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.833, year: 2016

  15. Human ear recognition by computer

    CERN Document Server

    Bhanu, Bir; Chen, Hui

    2010-01-01

    Biometrics deals with recognition of individuals based on their physiological or behavioral characteristics. The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. Unlike the fingerprint and iris, it can be easily captured from a distance without a fully cooperative subject, although sometimes it may be hidden with hair, scarf and jewellery. Also, unlike a face, the ear is a relatively stable structure that does not change much with the age and facial expressions. ""Human Ear Recognition by Computer"" is the first book o

  16. The peak efficiency calibration of volume source using 152Eu point source in computer

    International Nuclear Information System (INIS)

    Shen Tingyun; Qian Jianfu; Nan Qinliang; Zhou Yanguo

    1997-01-01

    The author describes the method of the peak efficiency calibration of volume source by means of 152 Eu point source for HPGe γ spectrometer. The peak efficiency can be computed by Monte Carlo simulation, after inputting parameter of detector. The computation results are in agreement with the experimental results with an error of +-3.8%, with an exception one is about +-7.4%

  17. L'ordinateur a visage humain (The Computer in Human Guise).

    Science.gov (United States)

    Otman, Gabriel

    1986-01-01

    Discusses the tendency of humans to describe parts and functions of a computer with terminology that refers to human characteristics; for example, parts of the body (electronic brain), intellectual activities (optical memory), and physical activities (command). Computers are also described through metaphors, connotations, allusions, and analogies…

  18. A computational framework for automation of point defect calculations

    International Nuclear Information System (INIS)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei

    2017-01-01

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  19. Human interactions with sirenians (manatees and dugongs)

    Science.gov (United States)

    Bonde, Robert K.; Flint, Mark

    2017-01-01

    There are three extant sirenian species of the Trichechidae family and one living Dugongidae family member. Given their close ties to coastal and often urbanized habitats, sirenians are exposed to many types of anthropogenic activities that result in challenges to their well-being, poor health, and even death. In the wild, they are exposed to direct and indirect local pressures as well as subject to large-scale stressors such as global climate change acting on regions or entire genetic stocks. In captivity, they are subject to husbandry and management practices based on our collective knowledge, or in some cases lack thereof, of their needs and welfare. It is therefore reasonable to consider that their current imperiled status is very closely linked to our actions. In this chapter, we identify and define human interactions that may impact dugongs and manatees, including hunting, fisheries, boat interactions, negative interactions with man-made structures, disease and contaminants, and global climate change. We examine techniques used to investigate these impacts and the influence of sirenian biology and of changing human behaviors on potential outcomes. We examine how this differs for dugongs and manatees in the wild and for those held in captivity. Finally, we provide possible mitigation strategies and ways to assess the efforts we are making to improve the welfare of individuals and to conserve these species. This chapter identifies how the welfare of these species is intrinsically linked to the human interactions these animals experience, and how the nature of these interactions has changed with societal shifts. We proffer suggested ways to minimize negative impacts. Current knowledge should be used to minimize negative human interactions and impacts, to promote positive impacts, and to protect these animals for the future.

  20. [The point-digital interpretation and the choice of the dermatoglyphic patterns on human fingers for diagnostics of consanguineous relationship].

    Science.gov (United States)

    Zvyagin, V N; Rakitin, V A; Fomina, E E

    The objective of the present study was the development of the point-digital model for the scaless interpretation of the dermatoglyphic papillary patterns on human fingers that would allow to comprehensively describe, in digital terms, the main characteristics of the traits and perform the quantitative assessment of the frequency of their inheritance. A specially developed computer program, D.glyphic. 7-14 was used to mark the dermatoglyphic patterns on the fingerprints obtained from 30 familial triplets (father + mother + child).The values of all the studied traits for kinship diagnostics were found by calculating the ratios of the sums of differences between the traits in the parent-parent pairs to those in the respective parent-child pairs. The algorithms for the point marking of the traits and reading out the digital information about them have been developed. The traditional dermatoglyphic patterns were selected and the novel ones applied for the use in the framework of the point-digital model for the interpretation of the for diagnostics of consanguineous relationship. The present experimental study has demonstrated the high level of inheritance of the selected traits and the possibility to develop the algorithms and computation techniques for the calculation of consanguineous relationship coefficients based on these traits.