WorldWideScience

Sample records for human-bovine wc3 reassortant

  1. Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq (registered)

    International Nuclear Information System (INIS)

    Matthijnssens, Jelle; Joelsson, Daniel B.; Warakomski, Donald J.; Zhou, Tingyi; Mathis, Pamela K.; Maanen, Marc-Henri van; Ranheim, Todd S.; Ciarlet, Max

    2010-01-01

    RotaTeq (registered) is a pentavalent rotavirus vaccine that contains five human-bovine reassortant strains (designated G1, G2, G3, G4, and P1) on the backbone of the naturally attenuated tissue culture-adapted parental bovine rotavirus (BRV) strain WC3. The viral genomes of each of the reassortant strains were completely sequenced and compared pairwise and phylogenetically among each other and to human rotavirus (HRV) and BRV reference strains. Reassortants G1, G2, G3, and G4 contained the VP7 gene from their corresponding HRV parent strains, while reassortants G1 and G2 also contained the VP3 gene (genotype M1) from the HRV parent strain. The P1 reassortant contained the VP4 gene from the HRV parent strain and all the other gene segments from the BRV WC3 strain. The human VP7s had a high level of overall amino acid identity (G1: 95-99%, G2: 94-99% G3: 96-100%, G4: 93-99%) when compared to those of representative rotavirus strains of their corresponding G serotypes. The VP4 of the P1 reassortant had a high identity (92-97%) with those of serotype P1A[8] HRV reference strains, while the BRV VP7 showed identities ranging from 91% to 94% to those of serotype G6 HRV strains. Sequence analyses of the BRV or HRV genes confirmed that the fundamental structure of the proteins in the vaccine was similar to those of the HRV and BRV references strains. Sequences analyses showed that RotaTeq (registered) exhibited a high degree of genetic stability as no mutations were identified in the material of each reassortant, which undergoes two rounds of replication cycles in cell culture during the manufacturing process, when compared to the final material used to fill the dosing tubes. The infectivity of each of the reassortant strains of RotaTeq (registered) , like HRV strains, did not require the presence of sialic acid residues on the cell surface. The molecular and biologic characterization of RotaTeq (registered) adds to the significant body of clinical data supporting the

  2. Concomitant use of an oral live pentavalent human-bovine reassortant rotavirus vaccine with licensed parenteral pediatric vaccines in the United States.

    Science.gov (United States)

    Rodriguez, Zoe M; Goveia, Michelle G; Stek, Jon E; Dallas, Michael J; Boslego, John W; DiNubile, Mark J; Heaton, Penny M

    2007-03-01

    A live pentavalent rotavirus vaccine (PRV) containing 5 human-bovine (WC3) reassortants expressing human serotypes G1, G2, G3, G4 and P1A[8] was evaluated in a blinded, placebo-controlled study. Possible interactions between PRV and concomitantly administered licensed pediatric vaccines were investigated in a United States-based nested substudy (Concomitant Use Study) of the Rotavirus Efficacy and Safety Trial. From 2002 to 2003, healthy infants approximately 6 to 12 weeks of age at entry were randomized to receive either 3 oral doses of PRV or placebo at 4- to 10-week intervals. Subjects were also to receive combined Haemophilus influenzae type b and hepatitis B vaccine (2 doses), diphtheria and tetanus toxoids and acellular pertussis vaccine (3 doses), inactivated poliovirus vaccine (2 doses) and pneumococcal conjugate vaccine (3 doses) on the same day; oral poliovirus vaccine was not administered. Immunogenicity was assessed by measuring antibody responses to PRV and antigens contained in the licensed vaccines. Cases of rotavirus gastroenteritis were defined by forceful vomiting and/or -3 watery or looser-than-normal stools within a 24-hour period, and detection of rotavirus antigen in the stool. Safety was assessed by reporting of adverse events using diary cards. The Concomitant Use Study enrolled 662 subjects in the PRV group and 696 subjects in the placebo group. For the 17 antigens in the concomitantly administered vaccines, antibody responses were similar in PRV and placebo recipients, except for moderately diminished antibody responses to the pertactin component of pertussis vaccine. Efficacy of PRV against rotavirus gastroenteritis of any severity was 89.5% (95% CI = 26.5-99.8%). PRV was generally well tolerated when given concomitantly with the prespecified vaccines. In this study, antibody responses to the concomitantly administered vaccines were generally similar in PRV and placebo recipients. PRV was efficacious and well tolerated when given

  3. Efficacy of a pentavalent human-bovine reassortant rotavirus vaccine against rotavirus gastroenteritis among American Indian children.

    Science.gov (United States)

    Grant, Lindsay R; Watt, James P; Weatherholtz, Robert C; Moulton, Lawrence H; Reid, Raymond; Santosham, Mathuram; O'Brien, Katherine L

    2012-02-01

    Before the widespread use of rotavirus vaccines, rotavirus was a leading cause of gastroenteritis among children. Navajo and White Mountain Apache children suffer a disproportionate burden of severe rotavirus disease compared with the general U.S. population. We enrolled Navajo and White Mountain Apache infants in a multicenter, double-blind, placebo-controlled trial of pentavalent human-bovine reassortant rotavirus vaccine (PRV). Subjects received 3 doses of vaccine or placebo at 4 to 10 week intervals, with the first dose given between 6 and 12 weeks of age. Gastroenteritis episodes were identified by active surveillance. Disease severity was determined by a standardized scoring system. There were 509 and 494 randomized children who received vaccine and placebo, respectively. Among placebo recipients, the incidence of rotavirus gastroenteritis was 34.2 episodes/100 child-years (95% confidence interval [95% CI]: 25.8-38.9) versus 8.1 episodes/100 child-years (95% CI: 5.4-12.5) in the vaccine group. The percentage of rotavirus episodes caused by serotypes G1, G2, and G3 was 72.3%, 23.4%, and 2.1%, respectively. There were no severe rotavirus episodes among vaccinees and 4 among placebo recipients. PRV was 77.1% (95% CI: 59.7-87.6), 89.5% (95% CI: 65.9-97.9), and 82.9% (95% CI: 61.1-93.6) effective against G1-G4 rotavirus disease, severe and moderate rotavirus disease combined, and outpatient visits for rotavirus disease, respectively. The risk of adverse events was similar for the vaccine and placebo groups. PRV was highly effective in preventing rotavirus disease and related health care utilization in these American Indian infants. Vaccine efficacy and immunogenicity were similar to the overall study population enrolled in the multicenter trial.

  4. Robustness of the healthcare utilization results from the Rotavirus Efficacy and Safety Trial (REST evaluating the human-bovine (WC3 reassortant pentavalent rotavirus vaccine (RV5

    Directory of Open Access Journals (Sweden)

    Van Damme Pierre

    2010-06-01

    Full Text Available Abstract Background The Rotavirus Efficacy and Safety Trial was a placebo-controlled Phase III study that evaluated the safety and efficacy of a three-dose pentavalent rotavirus vaccine (RV5 including its effect on healthcare utilization for rotavirus gastroenteritis (RVGE. The per-protocol (PP analyses, which counted events occurring 14 days after dose 3 among infants without protocol violations, have already been published. This paper evaluates the consistency of the healthcare utilization results based on the modified intention to treat (MITT analyses with the PP analyses. The MITT analyses include all infants receiving at least one dose of vaccine or placebo and follow-up begins after dose 1. The paper also explores the consistency of the results for different subgroups of the study population with different types of surveillance. Methods Data on healthcare utilization for acute gastroenteritis were collected via telephone interviews after administration of the first dose. Parents were either contacted every 6 weeks or every 2 weeks depending on the substudy in which they were enrolled. Those contacted every 2 weeks were also asked to complete symptom diaries. Poisson regression was used to evaluate the effect of RV5 on the rates of RVGE-associated healthcare encounters in all of the analyses. Results In the first 2 years after vaccination, RV5 reduced the combined rate of hospitalizations and emergency department (ED visits 88.9% (95% CI: 84.9, 91.9 for all RVGE regardless of serotype in the MITT analysis compared with a 94.5% (95% CI: 91.2, 96.6 reduction based on the G1-G4 PP analysis. By type of surveillance, the rate reductions for the G1-G4 PP analysis were 91.0% (95% CI: 81.7, 95.5 and 95.9% (95% CI: 92.2, 97.8 among parents contacted every 2 weeks (number evaluable = 4,451 and every 6 weeks (number evaluable = 52,683 respectively. Conclusions Our analyses demonstrated that the effect of RV5 on reducing the rate of hospitalizations and ED visits based on the MITT analyses were generally consistent with the PP analyses. The rate of events for subgroups with different intensities of surveillance differed but the effect of RV5 on the relative rate reductions were consistent with the results that have already been published. Trial Registration ClinicalTrials.gov number, NCT00090233

  5. Efficacy and safety of a pentavalent live human-bovine reassortant rotavirus vaccine (RV5) in healthy Chinese infants: A randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Mo, Zhaojun; Mo, Yi; Li, Mingqiang; Tao, Junhui; Yang, Xu; Kong, Jilian; Wei, Dingkai; Fu, Botao; Liao, Xueyan; Chu, Jianli; Qiu, Yuanzheng; Hille, Darcy A; Nelson, Micki; Kaplan, Susan S

    2017-10-13

    A randomized, double-blind, placebo-controlled multicenter trial was conducted in healthy Chinese infants to assess the efficacy and safety of a pentavalent live human-bovine reassortant rotavirus vaccine (RotaTeq™, RV5) against rotavirus gastroenteritis (RVGE). 4040 participants aged 6-12weeks were enrolled and randomly assigned to either 3 oral doses of RV5 (n=2020) or placebo (n=2020), administered ∼4weeks apart. The participants also received OPV and DTaP in a concomitant or staggered fashion. The primary objective was to evaluate vaccine efficacy (VE) against naturally-occurring RVGE at least 14days following the third dose. Key secondary objectives included: VE against naturally-occurring severe RVGE and VE against severe and any-severity RVGE caused by rotavirus serotypes contained in the vaccine, occurring at least 14days after the third dose. All adverse events (AEs) were collected for 30days following each dose. Serious AEs (SAEs) and intussusception cases were collected during the entire study. (ClinicalTrials.gov registry: NCT02062385). VE against RVGE of any-severity caused by any serotype was 69.3% (95% CI: 54.5, 79.7). The secondary efficacy analysis showed an efficacy of: 78.9% (95% CI: 59.1, 90.1) against severe RVGE caused by any serotype; 69.9% (95% CI: 55.2, 80.3) and 78.9% (95% CI: 59.1, 90.1) against any-severity and severe RVGE caused by serotypes contained in the vaccine, respectively. Within 30days following any vaccination, 53.5% (1079/2015) and 53.3% (1077/2019) of participants reported at least one AE, and 5.8% (116/2015) and 5.7% (116/2019) reported SAEs in the vaccine and placebo groups, respectively. No SAEs were considered vaccine-related in recipients of RV5. Two intussusception cases were reported in recipients of RV5 who recovered after receiving treatment. Neither was considered vaccine-related. In Chinese infants, RV5 was efficacious against any-severity and severe RVGE caused by any serotype and generally well

  6. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains.

    Science.gov (United States)

    Bwogi, Josephine; Jere, Khuzwayo C; Karamagi, Charles; Byarugaba, Denis K; Namuwulya, Prossy; Baliraine, Frederick N; Desselberger, Ulrich; Iturriza-Gomara, Miren

    2017-01-01

    Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.

  7. Human bovine tuberculosis - remains in the differential.

    LENUS (Irish Health Repository)

    Bilal, Shaukat

    2010-11-01

    Mycobacterium bovis is a pathogen of cattle. The unpasteurized milk of affected cattle is a source of infection in humans. Despite the screening of cattle and the pasteurization of milk, M bovis has not been eradicated. A high index of clinical suspicion is needed in symptomatic patients with a history of possible exposure. At risk groups include animal workers, farmers, meat packers, vets and zoo keepers. Humans are usually infected by the aerosol route. We present two cases of human bovine tuberculosis. One was a presumptive case and the second was a confirmed case. Both responded well to antituberculous therapy. In the confirmed case, there was evidence of transmission to the partner living in the same house. Rifampicin prophylaxis was given to the exposed case. The M. bovis from the confirmed case was isoniazid resistant, in addition to having the well known resistance to pyrazinamide. Isoniazid resistance has been described before in those who are immunocompromised. We describe it in an immunocompetent patient.

  8. Fitness cost of reassortment in human influenza.

    Directory of Open Access Journals (Sweden)

    Mara Villa

    2017-11-01

    Full Text Available Reassortment, which is the exchange of genome sequence between viruses co-infecting a host cell, plays an important role in the evolution of segmented viruses. In the human influenza virus, reassortment happens most frequently between co-existing variants within the same lineage. This process breaks genetic linkage and fitness correlations between viral genome segments, but the resulting net effect on viral fitness has remained unclear. In this paper, we determine rate and average selective effect of reassortment processes in the human influenza lineage A/H3N2. For the surface proteins hemagglutinin and neuraminidase, reassortant variants with a mean distance of at least 3 nucleotides to their parent strains get established at a rate of about 10-2 in units of the neutral point mutation rate. Our inference is based on a new method to map reassortment events from joint genealogies of multiple genome segments, which is tested by extensive simulations. We show that intra-lineage reassortment processes are, on average, under substantial negative selection that increases in strength with increasing sequence distance between the parent strains. The deleterious effects of reassortment manifest themselves in two ways: there are fewer reassortment events than expected from a null model of neutral reassortment, and reassortant strains have fewer descendants than their non-reassortant counterparts. Our results suggest that influenza evolves under ubiquitous epistasis across proteins, which produces fitness barriers against reassortment even between co-circulating strains within one lineage.

  9. Fitness cost of reassortment in human influenza.

    Science.gov (United States)

    Villa, Mara; Lässig, Michael

    2017-11-01

    Reassortment, which is the exchange of genome sequence between viruses co-infecting a host cell, plays an important role in the evolution of segmented viruses. In the human influenza virus, reassortment happens most frequently between co-existing variants within the same lineage. This process breaks genetic linkage and fitness correlations between viral genome segments, but the resulting net effect on viral fitness has remained unclear. In this paper, we determine rate and average selective effect of reassortment processes in the human influenza lineage A/H3N2. For the surface proteins hemagglutinin and neuraminidase, reassortant variants with a mean distance of at least 3 nucleotides to their parent strains get established at a rate of about 10-2 in units of the neutral point mutation rate. Our inference is based on a new method to map reassortment events from joint genealogies of multiple genome segments, which is tested by extensive simulations. We show that intra-lineage reassortment processes are, on average, under substantial negative selection that increases in strength with increasing sequence distance between the parent strains. The deleterious effects of reassortment manifest themselves in two ways: there are fewer reassortment events than expected from a null model of neutral reassortment, and reassortant strains have fewer descendants than their non-reassortant counterparts. Our results suggest that influenza evolves under ubiquitous epistasis across proteins, which produces fitness barriers against reassortment even between co-circulating strains within one lineage.

  10. Predicting Hotspots for Influenza Virus Reassortment

    Science.gov (United States)

    Gilbert, Marius; Martin, Vincent; Cappelle, Julien; Hosseini, Parviez; Njabo, Kevin Y.; Abdel Aziz, Soad; Xiao, Xiangming; Daszak, Peter; Smith, Thomas B.

    2013-01-01

    The 1957 and 1968 influenza pandemics, each of which killed ≈1 million persons, arose through reassortment events. Influenza virus in humans and domestic animals could reassort and cause another pandemic. To identify geographic areas where agricultural production systems are conducive to reassortment, we fitted multivariate regression models to surveillance data on influenza A virus subtype H5N1 among poultry in China and Egypt and subtype H3N2 among humans. We then applied the models across Asia and Egypt to predict where subtype H3N2 from humans and subtype H5N1 from birds overlap; this overlap serves as a proxy for co-infection and in vivo reassortment. For Asia, we refined the prioritization by identifying areas that also have high swine density. Potential geographic foci of reassortment include the northern plains of India, coastal and central provinces of China, the western Korean Peninsula and southwestern Japan in Asia, and the Nile Delta in Egypt. PMID:23628436

  11. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian children in the second year of life.

    Science.gov (United States)

    Bhandari, Nita; Rongsen-Chandola, Temsunaro; Bavdekar, Ashish; John, Jacob; Antony, Kalpana; Taneja, Sunita; Goyal, Nidhi; Kawade, Anand; Kang, Gagandeep; Rathore, Sudeep Singh; Juvekar, Sanjay; Muliyil, Jayaprakash; Arya, Alok; Shaikh, Hanif; Abraham, Vinod; Vrati, Sudhanshu; Proschan, Michael; Kohberger, Robert; Thiry, Georges; Glass, Roger; Greenberg, Harry B; Curlin, George; Mohan, Krishna; Harshavardhan, G V J A; Prasad, Sai; Rao, T S; Boslego, John; Bhan, Maharaj Kishan

    2014-08-11

    Rotavirus gastroenteritis is one of the leading causes of diarrhea in Indian children less than 2 years of age. The 116E rotavirus strain was developed as part of the Indo-US Vaccine Action Program and has undergone efficacy trials. This paper reports the efficacy and additional safety data in children up to 2 years of age. In a double-blind placebo controlled multicenter trial, 6799 infants aged 6-7 weeks were randomized to receive three doses of an oral human-bovine natural reassortant vaccine (116E) or placebo at ages 6, 10, and 14 weeks. The primary outcome was severe (≥11 on the Vesikari scale) rotavirus gastroenteritis. Efficacy outcomes and adverse events were ascertained through active surveillance. We randomly assigned 4532 and 2267 subjects to receive vaccine and placebo, respectively, with over 96% subjects receiving all three doses of the vaccine or placebo. The per protocol analyses included 4354 subjects in the vaccine and 2187 subjects in the placebo group. The overall incidence of severe RVGE per 100 person years was 1.3 in the vaccine group and 2.9 in the placebo recipients. Vaccine efficacy against severe rotavirus gastroenteritis in children up to 2 years of age was 55.1% (95% CI 39.9 to 66.4; pvaccine efficacy in the second year of life of 48.9% (95% CI 17.4 to 68.4; p=0.0056) was only marginally less than in the first year of life [56.3% (95% CI 36.7 to 69.9; pvaccine dose and all were reported only after the third dose. The sustained efficacy of the 116E in the second year of life is reassuring. The trial is registered with Clinical Trial Registry-India (# CTRI/2010/091/000102) and Clinicaltrials.gov (# NCT01305109). Copyright © 2014. Published by Elsevier Ltd.

  12. Efficacy of a Monovalent Human-Bovine (116E) Rotavirus Vaccine in Indian Infants: A Randomised Double Blind Placebo Controlled Trial

    Science.gov (United States)

    Bhandari, Nita; Rongsen-Chandola, Temsunaro; Bavdekar, Ashish; John, Jacob; Antony, Kalpana; Taneja, Sunita; Goyal, Nidhi; Kawade, Anand; Kang, Gagandeep; Rathore, Sudeep Singh; Juvekar, Sanjay; Muliyil, Jayaprakash; Arya, Alok; Shaikh, Hanif; Abraham, Vinod; Vrati, Sudhanshu; Proschan, Michael; Kohberger, Robert; Thiry, Georges; Glass, Roger; Greenberg, Harry B; Curlin, George; Mohan, Krishna; Harshavardhan, GVJA; Prasad, Sai; Rao, TS; Boslego, John; Bhan, Maharaj Kishan

    2015-01-01

    Background Rotavirus is the most common cause of severe dehydrating gastroenteritis in developing countries. Safe, effective, and affordable rotavirus vaccines are needed for developing countries. Methods In a double-blind placebo controlled multicentre trial, 6799 infants aged 6 to 7 weeks were randomised to receive three doses of an oral human-bovine natural reassortant vaccine (116E) or placebo at ages 6, 10, and 14 weeks. Primary outcome was severe (≥11 on the Vesikari scale) rotavirus gastroenteritis. Efficacy outcomes and adverse events were ascertained through active surveillance. Findings At analyses, the median age was 17·2 months; over 96% subjects received all three doses of the vaccine/placebo and ~1% were lost to follow up. 4532 and 2267 subjects were randomly assigned to receive vaccine and placebo, respectively. The per protocol analyses included 4354 subjects in the vaccine and 2187 subjects in the placebo group. 71 events of severe rotavirus gastroenteritis were reported in 4752 person years among the vaccinees compared to 76 events in 2360 person years in the placebo recipients; vaccine efficacy against severe rotavirus gastroenteritis was 53·6% (95% CI 35·0–66·9; Protavirus gastroenteritis episode was 55 (95% CI 37–97). The incidence of severe rotavirus gastroenteritis/100 person years was 1·5 in vaccine and 3·2 in placebo group and an incidence rate ratio of 0·46 (95% CI 0·33–0·65). The absolute rate reduction for severe rotavirus gastroenteritis was 1·7 (95% CI 2·5–0·9). Efficacy against severe gastroenteritis of any aetiology was 18·6% (95% CI 1·9–32·3); it was 24·1% (95% CI 5·8–38·7) in the first year of life. The prevalence of immediate, solicited, and serious adverse events were similar in both groups. There were six cases of intussusception amongst 4532 vaccinees and two amongst 2267 placebo recipients (P=0·73). All intussusception cases occurred after the third dose. Among vaccine and placebo recipients

  13. The stability of human, bovine and avian tuberculin purified protein derivative (PPD).

    Science.gov (United States)

    Maes, Mailis; Giménez, José Francisco; D'Alessandro, Adriana; De Waard, Jacobus H

    2011-11-15

    Guidelines recommend storing tuberculin purified protein derivative (PPD) refrigerated. However, especially in developing countries, maintaining the product refrigerated under field conditions can be difficult, limiting its use. Here we determine the effect of prolonged exposure to high temperatures on the potency of human, bovine and avian tuberculin PPD. Human, bovine and avian tuberculin PPD were stored for several weeks exposed to temperatures ranging from 37º to 100ºC. The potency was evaluated in vivo, in sensitized or naturally infected animals. Most test situations didn't affect the biological activity of the tuberculin PPDs and only very long and extreme incubations (several days at 100 °C) compromised the potency. Tuberculin PPD is very stable and can be stored or transported for long periods without refrigeration. 

  14. Possible role of reassortment in tumor therapy

    International Nuclear Information System (INIS)

    Terashima, Toyozo

    1976-01-01

    On the basis of age-dependent response pattern of cultured mammalian cells, various exogenous agents, such as x-ray, antimetabolites, and antitumor drugs, were classified into two groups, i.e., x-ray type (A) and hydroxyurea type (B). Each type of agent was specific not only for the pattern of survival response during the cell cycle but also for the inhibition of progression. The treatment of cycling cell population with either type of agent results in the reassortment of cells in relation to cell age, thereby providing a chance for successive administrations of either type of agent. Taking advantage of such specific effects of agents on the tumor cell cycle, possible schedules for efficient cell sterilization were suggested: B.X(simultaneous administration) and A-X, X-B(two successive administrations at a scheduled interval) were found promissing. Finally, it was emphasized that much more information must be collected to formulate the cellular response of cycling and non-cycling fractions of the tumor to various exogenous agents. (J.P.N.)

  15. Potential for La Crosse virus segment reassortment in nature

    Directory of Open Access Journals (Sweden)

    Geske Dave

    2008-12-01

    Full Text Available Abstract The evolutionary success of La Crosse virus (LACV, family Bunyaviridae is due to its ability to adapt to changing conditions through intramolecular genetic changes and segment reassortment. Vertical transmission of LACV in mosquitoes increases the potential for segment reassortment. Studies were conducted to determine if segment reassortment was occurring in naturally infected Aedes triseriatus from Wisconsin and Minnesota in 2000, 2004, 2006 and 2007. Mosquito eggs were collected from various sites in Wisconsin and Minnesota. They were reared in the laboratory and adults were tested for LACV antigen by immunofluorescence assay. RNA was isolated from the abdomen of infected mosquitoes and portions of the small (S, medium (M and large (L viral genome segments were amplified by RT-PCR and sequenced. Overall, the viral sequences from 40 infected mosquitoes and 5 virus isolates were analyzed. Phylogenetic and linkage disequilibrium analyses revealed that approximately 25% of infected mosquitoes and viruses contained reassorted genome segments, suggesting that LACV segment reassortment is frequent in nature.

  16. Novel reassortant swine influenza viruses are circulating in Danish pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    of the reassortant viruses comprised a HA gene similar to H1 of H1N1 avian-like swine influenza virus (SIV) and a NA gene most closely related to N2 gene of human H3N2 influenza virus that circulated in humans in the mid 1990s. The internal genes of this reassortant virus with the subtype H1avN2hu all belonged...... to the H1N1 avian-like SIV lineages. Until now this novel virus H1avN2hu has only been detected in Danish swine. The other novel reassortant virus contained the HA gene from H1N1pdm09 virus and a NA gene similar to the N2 gene of H3N2 SIV that have been circulating in European swine since the mid 1980s...

  17. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: a randomised, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Bhandari, Nita; Rongsen-Chandola, Temsunaro; Bavdekar, Ashish; John, Jacob; Antony, Kalpana; Taneja, Sunita; Goyal, Nidhi; Kawade, Anand; Kang, Gagandeep; Rathore, Sudeep Singh; Juvekar, Sanjay; Muliyil, Jayaprakash; Arya, Alok; Shaikh, Hanif; Abraham, Vinod; Vrati, Sudhanshu; Proschan, Michael; Kohberger, Robert; Thiry, Georges; Glass, Roger; Greenberg, Harry B; Curlin, George; Mohan, Krishna; Harshavardhan, G V J A; Prasad, Sai; Rao, T S; Boslego, John; Bhan, Maharaj Kishan

    2014-06-21

    Rotavirus is the most common cause of severe dehydrating gastroenteritis in developing countries. Safe, effective, and affordable rotavirus vaccines are needed in these countries. We aimed to assess the efficacy and tolerability of a monovalent human-bovine rotavirus vaccine for severe rotavirus gastroenteritis in low-resource urban and rural settings in India. We did a randomised double-blind, placebo-controlled, multicentre trial at three sites in Delhi (urban), Pune (rural), and Vellore (urban and rural) between March 11, 2011, and Nov 5, 2012. Infants aged 6-7 weeks were randomly assigned (2:1), via a central interactive voice or web response system with a block size of 12, to receive either three doses of oral human-bovine natural reassortant vaccine (116E) or placebo at ages 6-7 weeks, 10 weeks, and 14 weeks. Infants' families, study investigators, paediatricians in referral hospitals, laboratory staff, and committee members were all masked to treatment allocation. The primary outcome was incidence of severe rotavirus gastroenteritis (≥11 on the Vesikari scale). Efficacy outcomes and adverse events were ascertained through active surveillance. Analysis was by intention to treat and per protocol. The trial is registered with Clinical Trial Registry-India (CTRI/2010/091/000102) and ClinicalTrials.gov (NCT01305109). 4532 infants were assigned to receive the 116E vaccine and 2267 to receive placebo, of whom 4354 (96%) and 2187 (96%) infants, respectively, were included in the primary per-protocol efficacy analysis. 71 events of severe rotavirus gastroenteritis were reported in 4752 person-years in infants in the vaccine group compared with 76 events in 2360 person-years in those in the placebo group; vaccine efficacy against severe rotavirus gastroenteritis was 53·6% (95% CI 35·0-66·9; p=0·0013) and 56·4% (36·6-70·1; protavirus gastroenteritis episode was 55 (95% CI 37-97). The incidence of severe rotavirus gastroenteritis per 100 person-years was 1·5

  18. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs.

    Science.gov (United States)

    Han, Jae Yeon; Park, Sung Jun; Kim, Hye Kwon; Rho, Semi; Nguyen, Giap Van; Song, Daesub; Kang, Bo Kyu; Moon, Hyung Jun; Yeom, Min Joo; Park, Bong Kyun

    2012-05-01

    Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

  19. Genetic Reassortment Among the Influenza Viruses (Avian Influenza, Human Influenza and Swine Influenza in Pigs

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-12-01

    Full Text Available Influenza A virus is a hazardous virus and harm to respiratory tract. The virus infect birds, pigs, horses, dogs, mammals and humans. Pigs are important hosts in ecology of the influenza virus because they have two receptors, namely NeuAc 2,3Gal and NeuAc 2,6Gal which make the pigs are sensitive to infection of influenza virus from birds and humans and genetic reassortment can be occurred. Classical swine influenza H1N1 viruses had been circulated in pigs in North America and other countries for 80 years. In 1998, triple reassortant H3N2 swine influenza viruses that contains genes of human influenza A virus (H3N2, swine influenza virus (H1N1 and avian influenza are reported as cause an outbreaks in pigs in North America. Furthermore, the circulation of triple reassortant H3N2 swine influenza virus resulting reassortant H1N1 swine influenza and reassortant H1N2 swine influenza viruses cause infection in humans. Humans who were infected by triple reassortant swine influenza A virus (H1N1 usually made direct contact with pigs. Although without any clinical symptoms, pigs that are infected by triple reassortant swine influenza A (H1N1 can transmit infection to the humans around them. In June 2009, WHO declared that pandemic influenza of reassortant H1N1 influenza A virus (novel H1N1 has reached phase 6. In Indonesia until 2009, there were 1005 people were infected by H1N1 influenza A and 5 of them died. Novel H1N1 and H5N1 viruses have been circulated in humans and pigs in Indonesia. H5N1 reassortant and H1N1 viruses or the seasonal flu may could arise because of genetic reassortment between avian influenza and humans influenza viruses that infect pigs together.

  20. FluReF, an automated flu virus reassortment finder based on phylogenetic trees.

    Science.gov (United States)

    Yurovsky, Alisa; Moret, Bernard M E

    2011-01-01

    Reassortments are events in the evolution of the genome of influenza (flu), whereby segments of the genome are exchanged between different strains. As reassortments have been implicated in major human pandemics of the last century, their identification has become a health priority. While such identification can be done "by hand" on a small dataset, researchers and health authorities are building up enormous databases of genomic sequences for every flu strain, so that it is imperative to develop automated identification methods. However, current methods are limited to pairwise segment comparisons. We present FluReF, a fully automated flu virus reassortment finder. FluReF is inspired by the visual approach to reassortment identification and uses the reconstructed phylogenetic trees of the individual segments and of the full genome. We also present a simple flu evolution simulator, based on the current, source-sink, hypothesis for flu cycles. On synthetic datasets produced by our simulator, FluReF, tuned for a 0% false positive rate, yielded false negative rates of less than 10%. FluReF corroborated two new reassortments identified by visual analysis of 75 Human H3N2 New York flu strains from 2005-2008 and gave partial verification of reassortments found using another bioinformatics method. FluReF finds reassortments by a bottom-up search of the full-genome and segment-based phylogenetic trees for candidate clades--groups of one or more sampled viruses that are separated from the other variants from the same season. Candidate clades in each tree are tested to guarantee confidence values, using the lengths of key edges as well as other tree parameters; clades with reassortments must have validated incongruencies among segment trees. FluReF demonstrates robustness of prediction for geographically and temporally expanded datasets, and is not limited to finding reassortments with previously collected sequences. The complete source code is available from http://lcbb.epfl.ch/software.html.

  1. Interspecies and intraspecies transmission of triple reassortant H3N2 influenza A viruses

    OpenAIRE

    Lee Chang-Won; Al-Natour Mohammad Q; Yassine Hadi M; Saif Yehia M

    2007-01-01

    1. Abstract The triple reassortant H3N2 viruses were isolated for the first time from pigs in 1998 and are known to be endemic in swine and turkey populations in the United States. In 2004, we isolated two H3N2 triple reassortant viruses from two turkey breeder flocks in Ohio and Illinois. Infected hens showed no clinical signs, but experienced a complete cessation of egg production. In this study, we evaluated three triple reassortant H3N2 isolates of turkey origin and one isolate of swine o...

  2. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yi-Mo Deng

    Full Text Available BACKGROUND: Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. METHODOLOGY/PRINCIPAL FINDINGS: A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. CONCLUSIONS/SIGNIFICANCE: In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  3. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Science.gov (United States)

    Deng, Yi-Mo; Caldwell, Natalie; Barr, Ian G

    2011-01-01

    Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  4. Reassortant Avian Influenza A(H9N2) Viruses in Chickens in Retail Poultry Shops, Pakistan, 2009–2010

    Science.gov (United States)

    Angot, Angélique; Rashid, Hamad B.; Cattoli, Giovanni; Hussain, Manzoor; Trovò, Giulia; Drago, Alessandra; Valastro, Viviana; Thrusfield, Michael; Welburn, Sue; Eisler, Mark C.; Capua, Ilaria

    2015-01-01

    Phylogenetic analysis of influenza viruses collected during December 2009–February 2010 from chickens in live poultry retail shops in Lahore, Pakistan, showed influenza A(H9N2) lineage polymerase and nonstructural genes generate through inter- and intrasubtypic reassortments. Many amino acid signatures observed were characteristic of human isolates; hence, their circulation could enhance inter- or intrasubtypic reassortment. PMID:25811830

  5. Determining Human Clot Lysis Time (in vitro with Plasminogen/Plasmin from Four Species (Human, Bovine, Goat, and Swine

    Directory of Open Access Journals (Sweden)

    Omaira Cañas Bermúdez

    2015-05-01

    Full Text Available Cardiovascular disease is the leading cause of death worldwide, including failures in the plasminogen/plasmin system which is an important factor in poor lysis of blood clots. This article studies the fibrinolytic system in four species of mammals, and it identifies human plasminogen with highest thrombolysis efficiency. It examines plasminogen from four species (human, bovine, goat, and swine and identifies the most efficient one in human clot lysis in vitro. All plasminogens were identically purified by affinity chromatography. Human fibrinogen was purified by fractionation with ethanol. The purification of both plasminogen and fibrinogen was characterized by one-dimensional SDS-PAGE (10%. Human clot formation in vitro and its dissolution by plasminogen/plasmin consisted of determining lysis time from clot formation to its dilution. Purification of proteins showed greater than 95% purity, human plasminogen showed greater ability to lyse clot than animal plasminogen. The article concludes that human plasminogen/plasmin has the greatest catalysis and efficiency, as it dissolves human clot up to three times faster than that of irrational species.

  6. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant

    OpenAIRE

    Renström Lena HM; Isaksson Mats; Berg Mikael; Zohari Siamak; Widén Frederik; Metreveli Giorgi; Bálint Ádám; Wallgren Per; Belák Sándor; Segall Thomas; Kiss István

    2009-01-01

    Abstract The European swine influenza viruses (SIVs) show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority o...

  7. High growth reassortant influenza vaccine viruses: new approaches to their control.

    Science.gov (United States)

    Robertson, J S; Nicolson, C; Newman, R; Major, D; Dunleavy, U; Wood, J M

    1992-09-01

    When a new strain of an influenza virus is required to be incorporated into influenza vaccine, attempts are made to recombine such strains with laboratory adapted viruses, which will grow to high titre in order to improve the yield of the vaccine strain. It is important that such high growth reassortant vaccine strains are not contaminated with genes coding for the antigenic determinants of the high growth laboratory strain. We describe the characterization of two recent high growth reassortants and the application of the polymerase chain reaction to ensure their genetic identity and purity.

  8. A natural M RNA reassortant arising from two distinct tospovirus species

    Science.gov (United States)

    The complete nucleotide sequence of a tospovirus isolate from south Florida tomatoes was determined. Phylogenetic reconstructions of each genomic RNA segment showed that this isolate was produced by reassortment of segments from two distinct tospovirus species. The S and L segments are most closel...

  9. Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals

    Science.gov (United States)

    Baker, Steven F.; Nogales, Aitor; Finch, Courtney; Tuffy, Kevin M.; Domm, William; Perez, Daniel R.; Topham, David J.

    2014-01-01

    ABSTRACT Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or

  10. Identification of swine H1N2/pandemic H1N1 reassortant influenza virus in pigs, United States.

    Science.gov (United States)

    Ali, Ahmed; Khatri, Mahesh; Wang, Leyi; Saif, Yehia M; Lee, Chang-Won

    2012-07-06

    In October and November 2010, novel H1N2 reassortant influenza viruses were identified from pigs showing mild respiratory signs that included cough and depression. Sequence and phylogenetic analysis showed that the novel H1N2 reassortants possesses HA and NA genes derived from recent H1N2 swine isolates similar to those isolated from Midwest. Compared to the majority of reported reassortants, both viruses preserved human-like host restrictive and putative antigenic sites in their HA and NA genes. The four internal genes, PB2, PB1, PA, and NS were similar to the contemporary swine triple reassortant viruses' internal genes (TRIG). Interestingly, NP and M genes of the novel reassortants were derived from the 2009 pandemic H1N1. The NP and M proteins of the two isolates demonstrated one (E16G) and four (G34A, D53E, I109T, and V313I) amino acid changes in the M2 and NP proteins, respectively. Similar amino acid changes were also noticed upon incorporation of the 2009 pandemic H1N1 NP in other reassortant viruses reported in the U.S. Thus the role of those amino acids in relation to host adaptation need to be further investigated. The reassortments of pandemic H1N1 with swine influenza viruses and the potential of interspecies transmission of these reassortants from swine to other species including human indicate the importance of systematic surveillance of swine population to determine the origin, the prevalence of similar reassortants in the U.S. and their impact on both swine production and public health. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Science.gov (United States)

    Shcherbik, Svetlana V; Pearce, Nicholas C; Levine, Marnie L; Klimov, Alexander I; Villanueva, Julie M; Bousse, Tatiana L

    2014-01-01

    Live attenuated influenza vaccine viruses (LAIVs) can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV) and a seasonal wild-type (wt) virus. The vaccine candidates contain hemagglutinin (HA) and neuraminidase (NA) genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2) (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012) or influenza A (H7N9) (A/Anhui/1/2013) wt viruses with the MDV A/Leningrad/134/17/57(H2N2). Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  12. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Directory of Open Access Journals (Sweden)

    Svetlana V Shcherbik

    Full Text Available BACKGROUND: Live attenuated influenza vaccine viruses (LAIVs can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV and a seasonal wild-type (wt virus. The vaccine candidates contain hemagglutinin (HA and neuraminidase (NA genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. METHODOLOGY/PRINCIPAL FINDINGS: This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2 (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012 or influenza A (H7N9 (A/Anhui/1/2013 wt viruses with the MDV A/Leningrad/134/17/57(H2N2. Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  13. Quantifying the risk of pandemic influenza virus evolution by mutation and re-assortment.

    Science.gov (United States)

    Reperant, Leslie A; Grenfell, Bryan T; Osterhaus, Albert D M E

    2015-12-08

    Large outbreaks of zoonotic influenza A virus (IAV) infections may presage an influenza pandemic. However, the likelihood that an airborne-transmissible variant evolves upon zoonotic infection or co-infection with zoonotic and seasonal IAVs remains poorly understood, as does the relative importance of accumulating mutations versus re-assortment in this process. Using discrete-time probabilistic models, we determined quantitative probability ranges that transmissible variants with 1-5 mutations and transmissible re-assortants evolve after a given number of zoonotic IAV infections. The systematic exploration of a large population of model parameter values was designed to account for uncertainty and variability in influenza virus infection, epidemiological and evolutionary processes. The models suggested that immunocompromised individuals are at high risk of generating IAV variants with pandemic potential by accumulation of mutations. Yet, both immunocompetent and immunocompromised individuals could generate high viral loads of single and double mutants, which may facilitate their onward transmission and the subsequent accumulation of additional 1-2 mutations in newly-infected individuals. This may result in the evolution of a full transmissible genotype along short chains of contact transmission. Although co-infection with zoonotic and seasonal IAVs was shown to be a rare event, it consistently resulted in high viral loads of re-assortants, which may facilitate their onward transmission among humans. The prevention or limitation of zoonotic IAV infection in immunocompromised and contact individuals, including health care workers, as well as vaccination against seasonal IAVs-limiting the risk of co-infection-should be considered fundamental tools to thwart the evolution of a novel pandemic IAV by accumulation of mutations and re-assortment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    Science.gov (United States)

    Dong-Hun Lee,; Justin Bahl,; Mia Kim Torchetti,; Mary Lea Killian,; Ip, Hon S.; David E Swayne,

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  15. Interspecies and intraspecies transmission of triple reassortant H3N2 influenza A viruses.

    Science.gov (United States)

    Yassine, Hadi M; Al-Natour, Mohammad Q; Lee, Chang-Won; Saif, Yehya M

    2007-11-28

    The triple reassortant H3N2 viruses were isolated for the first time from pigs in 1998 and are known to be endemic in swine and turkey populations in the United States. In 2004, we isolated two H3N2 triple reassortant viruses from two turkey breeder flocks in Ohio and Illinois. Infected hens showed no clinical signs, but experienced a complete cessation of egg production. In this study, we evaluated three triple reassortant H3N2 isolates of turkey origin and one isolate of swine origin for their transmission between swine and turkeys. Although all 4 viruses tested share high genetic similarity in all 8 genes, only the Ohio strain (A/turkey/Ohio/313053/04) was shown to transmit efficiently both ways between swine and turkeys. One isolate, A/turkey/North Carolina/03, was able to transmit from pigs to turkeys but not vice versa. Neither of the other two viruses transmitted either way. Sequence analysis of the HA1 gene of the Ohio strain showed one amino acid change (D to A) at residue 190 of the receptor binding domain upon transmission from turkeys to pigs. The Ohio virus was then tested for intraspecies transmission in three different avian species. The virus was shown to replicate and transmit among turkeys, replicate but does not transmit among chickens, and did not replicate in ducks. Identifying viruses with varying inter- and intra-species transmission potential should be useful for further studies on the molecular basis of interspecies transmission.

  16. Full Genome Characterization of Novel DS-1-Like G8P[8] Rotavirus Strains that Have Emerged in Thailand: Reassortment of Bovine and Human Rotavirus Gene Segments in Emerging DS-1-Like Intergenogroup Reassortant Strains.

    Directory of Open Access Journals (Sweden)

    Ratana Tacharoenmuang

    Full Text Available The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotavirus strains have been recently reported in Asia, Australia, and Europe. During rotavirus surveillance in Thailand in 2013-2014, novel DS-1-like intergenogroup reassortant strains having G8P[8] genotypes (i.e., strains KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, SWL-12, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55 were identified in stool samples from hospitalized children with severe diarrhea. In this study, we determined and characterized the complete genomes of these 12 strains (seven strains, KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, and SWL-12, found in 2013 (2013 strains, and five, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55, in 2014 (2014 strains. On full genomic analysis, all 12 strains showed a unique genotype constellation comprising a mixture of genogroup 1 and 2 genes: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. With the exception of the G genotype, the unique genotype constellation of the 12 strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 was found to be shared with DS-1-like intergenogroup reassortant strains. On phylogenetic analysis, six of the 11 genes of the 2013 strains (VP4, VP2, VP3, NSP1, NSP3, and NSP5 appeared to have originated from DS-1-like intergenogroup reassortant strains, while the remaining four (VP7, VP6, VP1, and NSP2 and one (NSP4 gene appeared to be of bovine and human origin, respectively. Thus, the 2013 strains appeared to be reassortant strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, and/or human rotaviruses. On the other hand, five of the 11 genes of the 2014 strains (VP4, VP2, VP3, NSP1, and NSP3 appeared to have originated from DS-1-like intergenogroup reassortant strains, while three (VP7, VP1, and NSP2 and one (NSP4 were assumed to be of bovine and human origin, respectively. Notably, the remaining two genes, VP6 and NSP5, of the 2014 strains appeared to have originated from locally

  17. Reassortment and evolution of current human influenza A and B viruses.

    Science.gov (United States)

    Xu, Xiyan; Lindstrom, Stephen E; Shaw, Michael W; Smith, Catherine B; Hall, Henrietta E; Mungall, Bruce A; Subbarao, Kanta; Cox, Nancy J; Klimov, Alexander

    2004-07-01

    During the 2001-2002 influenza season, human influenza A (H1N2) reassortant viruses were detected globally. The hemagglutinin (HA) of these H1N2 viruses was similar to that of the A/New Caledonia/20/99 (H1N1) vaccine strain both antigenically and genetically, while their neuraminidase (NA) was antigenically and genetically related to that of recent human influenza H3N2 reference viruses such as A/Moscow/10/99. All six internal genes of the H1N2 reassortants originated from an H3N2 virus. After being detected only in eastern Asia during the past 10 years, Influenza B/Victoria/2/87 lineage viruses reappeared in many countries outside of Asia in 2001. Additionally, reassortant influenza B viruses possessing an HA similar to that of B/Shandong/7/97, a recent B/Victoria/2/87 lineage reference strain, and an NA closely related to that of B/Sichuan/379/99, a recent B/Yamagata/16/88 lineage reference strain, were isolated globally and became the predominant influenza B epidemic strain. The current influenza vaccine is expected to provide good protection against H1N2 viruses because it contains A/New Caledonia/20/99 (H1N1) and A/Panama/2007/99 (H3N2) like viruses whose H1 HA or N2 NA are antigenically similar to those of recent circulating H1N2 viruses. On the other hand, widespread circulation of influenza B Victoria lineage viruses required inclusion of a strain from this lineage in influenza vaccines for the 2002-2003 season.

  18. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant

    Directory of Open Access Journals (Sweden)

    Renström Lena HM

    2009-10-01

    Full Text Available Abstract The European swine influenza viruses (SIVs show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority of the European H1N2 swine influenza viruses described so far possess haemagglutinin (HA of the human-like H1N2 SIV viruses and the neuraminidase (NA of either the European H1N2 or H3N2 SIV-like viruses. The Swedish isolate has an avian-like SIV HA and a H3N2 SIV-like NA, which is phylogenetically more closely related to H3N2 SIV NAs from isolates collected in the early '80s than to the NA of H3N2 origin of the H1N2 viruses isolated during the last decade, as depicted by some German strains, indicative of independent acquisition of the NA genes for these two types of reassortants. The internal genes proved to be entirely of avian-like SIV H1N1 origin. The prevalence of this SIV variant in pig populations needs to be determined, as well as the suitability of the routinely used laboratory reagents to analyze this strain. The description of this H1N2 SIV adds further information to influenza epidemiology and supports the necessity of surveillance for influenza viruses in pigs.

  19. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant.

    Science.gov (United States)

    Bálint, Adám; Metreveli, Giorgi; Widén, Frederik; Zohari, Siamak; Berg, Mikael; Isaksson, Mats; Renström, Lena Hm; Wallgren, Per; Belák, Sándor; Segall, Thomas; Kiss, István

    2009-10-28

    The European swine influenza viruses (SIVs) show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority of the European H1N2 swine influenza viruses described so far possess haemagglutinin (HA) of the human-like H1N2 SIV viruses and the neuraminidase (NA) of either the European H1N2 or H3N2 SIV-like viruses. The Swedish isolate has an avian-like SIV HA and a H3N2 SIV-like NA, which is phylogenetically more closely related to H3N2 SIV NAs from isolates collected in the early '80s than to the NA of H3N2 origin of the H1N2 viruses isolated during the last decade, as depicted by some German strains, indicative of independent acquisition of the NA genes for these two types of reassortants. The internal genes proved to be entirely of avian-like SIV H1N1 origin. The prevalence of this SIV variant in pig populations needs to be determined, as well as the suitability of the routinely used laboratory reagents to analyze this strain.The description of this H1N2 SIV adds further information to influenza epidemiology and supports the necessity of surveillance for influenza viruses in pigs.

  20. Interspecies and intraspecies transmission of triple reassortant H3N2 influenza A viruses

    Directory of Open Access Journals (Sweden)

    Lee Chang-Won

    2007-11-01

    Full Text Available 1. Abstract The triple reassortant H3N2 viruses were isolated for the first time from pigs in 1998 and are known to be endemic in swine and turkey populations in the United States. In 2004, we isolated two H3N2 triple reassortant viruses from two turkey breeder flocks in Ohio and Illinois. Infected hens showed no clinical signs, but experienced a complete cessation of egg production. In this study, we evaluated three triple reassortant H3N2 isolates of turkey origin and one isolate of swine origin for their transmission between swine and turkeys. Although all 4 viruses tested share high genetic similarity in all 8 genes, only the Ohio strain (A/turkey/Ohio/313053/04 was shown to transmit efficiently both ways between swine and turkeys. One isolate, A/turkey/North Carolina/03, was able to transmit from pigs to turkeys but not vice versa. Neither of the other two viruses transmitted either way. Sequence analysis of the HA1 gene of the Ohio strain showed one amino acid change (D to A at residue 190 of the receptor binding domain upon transmission from turkeys to pigs. The Ohio virus was then tested for intraspecies transmission in three different avian species. The virus was shown to replicate and transmit among turkeys, replicate but does not transmit among chickens, and did not replicate in ducks. Identifying viruses with varying inter- and intra-species transmission potential should be useful for further studies on the molecular basis of interspecies transmission.

  1. Widespread recombination, reassortment, and transmission of unbalanced compound viral genotypes in natural arenavirus infections.

    Directory of Open Access Journals (Sweden)

    Mark D Stenglein

    2015-05-01

    Full Text Available Arenaviruses are one of the largest families of human hemorrhagic fever viruses and are known to infect both mammals and snakes. Arenaviruses package a large (L and small (S genome segment in their virions. For segmented RNA viruses like these, novel genotypes can be generated through mutation, recombination, and reassortment. Although it is believed that an ancient recombination event led to the emergence of a new lineage of mammalian arenaviruses, neither recombination nor reassortment has been definitively documented in natural arenavirus infections. Here, we used metagenomic sequencing to survey the viral diversity present in captive arenavirus-infected snakes. From 48 infected animals, we determined the complete or near complete sequence of 210 genome segments that grouped into 23 L and 11 S genotypes. The majority of snakes were multiply infected, with up to 4 distinct S and 11 distinct L segment genotypes in individual animals. This S/L imbalance was typical: in all cases intrahost L segment genotypes outnumbered S genotypes, and a particular S segment genotype dominated in individual animals and at a population level. We corroborated sequencing results by qRT-PCR and virus isolation, and isolates replicated as ensembles in culture. Numerous instances of recombination and reassortment were detected, including recombinant segments with unusual organizations featuring 2 intergenic regions and superfluous content, which were capable of stable replication and transmission despite their atypical structures. Overall, this represents intrahost diversity of an extent and form that goes well beyond what has been observed for arenaviruses or for viruses in general. This diversity can be plausibly attributed to the captive intermingling of sub-clinically infected wild-caught snakes. Thus, beyond providing a unique opportunity to study arenavirus evolution and adaptation, these findings allow the investigation of unintended anthropogenic impacts on

  2. Structures of Rotavirus Reassortants Demonstrate Correlation of Altered Conformation of the VP4 Spike and Expression of Unexpected VP4-Associated Phenotypes

    Science.gov (United States)

    Pesavento, Joseph B.; Billingsley, Angela M.; Roberts, Ed J.; Ramig, Robert F.; Prasad, B. V. Venkataram

    2003-01-01

    Numerous prior studies have indicated that viable rotavirus reassortants containing structural proteins of heterologous parental origin may express unexpected phenotypes, such as changes in infectivity and immunogenicity. To provide a structural basis for alterations in phenotypic expression, a three-dimensional structural analysis of these reassortants was conducted. The structures of the reassortants show that while VP4 generally maintains the parental structure when moved to a heterologous protein background, in certain reassortants, there are subtle alterations in the conformation of VP4. The alterations in VP4 conformation correlated with expression of unexpected VP4-associated phenotypes. Interactions between heterologous VP4 and VP7 in reassortants expressing unexpected phenotypes appeared to induce the conformational alterations seen in VP4. PMID:12584352

  3. Risk analysis of inter-species reassortment through a Rift Valley fever phlebovirus MP-12 vaccine strain.

    Directory of Open Access Journals (Sweden)

    Hoai J Ly

    Full Text Available Rift Valley fever (RVF is a mosquito-borne zoonotic disease endemic to Africa and the Arabian Peninsula. The causative agent, Rift Valley fever phlebovirus (RVFV, belongs to the genus Phlebovirus in the family Phenuiviridae and causes high rates of abortions in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral maintenance by mosquito vectors has led to sporadic RVF outbreaks in ruminants and humans in endemic countries, and effective vaccination of animals and humans may minimize the impact of this disease. A live-attenuated MP-12 vaccine strain is one of the best characterized RVFV strains, and was conditionally approved as a veterinary vaccine in the U.S. Live-attenuated RVF vaccines including MP-12 strain may form reassortant strains with other bunyavirus species. This study thus aimed to characterize the occurrence of genetic reassortment between the MP-12 strain and bunyavirus species closely related to RVFV. The Arumowot virus (AMTV and Gouleako goukovirus (GOLV, are transmitted by mosquitoes in Africa. The results of this study showed that GOLV does not form detectable reassortant strains with the MP-12 strain in co-infected C6/36 cells. The AMTV also did not form any reassortant strains with MP-12 strain in co-infected C6/36 cells, due to the incompatibility among N, L, and Gn/Gc proteins. A lack of reassortant formation could be due to a functional incompatibility of N and L proteins derived from heterologous species, and due to a lack of packaging via heterologous Gn/Gc proteins. The MP-12 strain did, however, randomly exchange L-, M-, and S-segments with a genetic variant strain, rMP12-GM50, in culture cells. The MP-12 strain is thus unlikely to form any reassortant strains with AMTV or GOLV in nature.

  4. New influenza A virus reassortments have been found in Danish swine in 2011

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2012-01-01

    ” viruses which have been circulating in Danish pigs since it was found for the first time in 1981. ii) H1N2 reassortant viruses which comprise HA from “avian like” H1N1 and NA from swine H3N2. The reassortant H1N2 virus was discovered in Danish pig for the first time in 2003 and is now well established......In 2011 a passive surveillance for influenza A virus was conducted in Danish swine. Tested samples were clinical samples from affected pigs submitted to the Danish National Veterinary Institute for swine influenza virus detection. In total 713 samples from 276 herds were analysed and about 24......% of the samples were positive for swine influenza virus. All influenza positive samples were tested for the H1N1pdm09 virus by a real time RT-PCR assay specific for the pandemic HA gene and 26% of the samples were positive. Subtyping of 90 samples by sequencing revealed the presence of; i) H1N1 “avian like...

  5. Novel reassortant of swine influenza H1N2 virus in Germany.

    Science.gov (United States)

    Zell, Roland; Motzke, Susann; Krumbholz, Andi; Wutzler, Peter; Herwig, Volker; Dürrwald, Ralf

    2008-01-01

    European porcine H1N2 influenza viruses arose after multiple reassortment steps involving a porcine influenza virus with avian-influenza-like internal segments and human H1N1 and H3N2 viruses in 1994. In Germany, H1N2 swine influenza viruses first appeared in 2000. Two German H1N2 swine influenza virus strains isolated from pigs with clinical symptoms of influenza are described. They were characterized by the neutralization test, haemagglutination inhibition (HI) test and complete sequencing of the viral genomes. The data demonstrate that these viruses represent a novel H1N2 reassortant. The viruses showed limited neutralization by sera raised against heterologous A/sw/Bakum/1,832/00-like H1N2 viruses. Sera pools from recovered pigs showed a considerably lower HI reaction, indicative of diagnostic difficulties in using the HI test to detect these viruses with A/sw/Bakum/1,832/00-like H1N2 antigens. Genome sequencing revealed the novel combination of the human-like HAH1 gene of European porcine H1N2 influenza viruses and the NAN2 gene of European porcine H3N2 viruses.

  6. Lethal infection by a novel reassortant H5N1 avian influenza A virus in a zoo-housed tiger.

    Science.gov (United States)

    He, Shang; Shi, Jianzhong; Qi, Xian; Huang, Guoqing; Chen, Hualan; Lu, Chengping

    2015-01-01

    In early 2013, a Bengal tiger (Panthera tigris) in a zoo died of respiratory distress. All specimens from the tiger were positive for HPAI H5N1, which were detected by real-time PCR, including nose swab, throat swab, tracheal swab, heart, liver, spleen, lung, kidney, aquae pericardii and cerebrospinal fluid. One stain of virus, A/Tiger/JS/1/2013, was isolated from the lung sample. Pathogenicity experiments showed that the isolate was able to replicate and cause death in mice. Phylogenetic analysis indicated that HA and NA of A/Tiger/JS/1/2013 clustered with A/duck/Vietnam/OIE-2202/2012 (H5N1), which belongs to clade 2.3.2.1. Interestingly, the gene segment PB2 shared 98% homology with A/wild duck/Korea/CSM-28/20/2010 (H4N6), which suggested that A/Tiger/JS/1/2013 is a novel reassortant H5N1 subtype virus. Immunohistochemical analysis also confirmed that the tiger was infected by this new reassortant HPAI H5N1 virus. Overall, our results showed that this Bengal tiger was infected by a novel reassortant H5N1, suggesting that the H5N1 virus can successfully cross species barriers from avian to mammal through reassortment. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Complex reassortment events of unusual G9P[4] rotavirus strains in India between 2011 and 2013.

    Science.gov (United States)

    Doan, Yen Hai; Suzuki, Yoshiyuki; Fujii, Yoshiki; Haga, Kei; Fujimoto, Akira; Takai-Todaka, Reiko; Someya, Yuichi; Nayak, Mukti K; Mukherjee, Anupam; Imamura, Daisuke; Shinoda, Sumio; Chawla-Sarkar, Mamta; Katayama, Kazuhiko

    2017-10-01

    Rotavirus A (RVA) is the predominant etiological agent of acute gastroenteritis in young children worldwide. Recently, unusual G9P[4] rotavirus strains emerged with high prevalence in many countries. Such intergenogroup reassortant strains highlight the ongoing spread of unusual rotavirus strains throughout Asia. This study was undertaken to determine the whole genome of eleven unusual G9P[4] strains detected in India during 2011-2013, and to compare them with other human and animal global RVAs to understand the exact origin of unusual G9P[4] circulating in India and other countries worldwide. Of these 11 RVAs, four G9P[4] strains were double-reassortants with the G9-VP7 and E6-NSP4 genes on a DS-1-like genetic backbone (G9-P[4]-I2-R2-C2-M2-A2-N2-T2-E6-H2). The other strains showed a complex genetic constellation, likely derived from triple reassortment event with the G9-VP7, N1-NSP2 and E6-NSP4 on a DS-1-like genetic backbone (G9-P[4]-I2-R2-C2-M2-A2-N1-T2-E6-H2). Presumably, these unusual G9P[4] strains were generated after several reassortment events between the contemporary co-circulating human rotavirus strains. Moreover, the point mutation S291L at the interaction site between inner and outer capsid proteins of VP6 gene may be important in the rapid spread of this unusual strain. The complex reassortment events within the G9[4] strains may be related to the high prevalence of mixed infections in India as reported in this study and other previous studies. Copyright © 2017. Published by Elsevier B.V.

  8. Characterisation of a rare, reassortant human G10P[14] rotavirus strain detected in Honduras.

    Science.gov (United States)

    Quaye, Osbourne; Roy, Sunando; Rungsrisuriyachai, Kunchala; Esona, Mathew D; Xu, Ziqian; Tam, Ka Ian; Banegas, Dina J Castro; Rey-Benito, Gloria; Bowen, Michael D

    2018-01-01

    Although first detected in animals, the rare rotavirus strain G10P[14] has been sporadically detected in humans in Slovenia, Thailand, United Kingdom and Australia among other countries. Earlier studies suggest that the strains found in humans resulted from interspecies transmission and reassortment between human and bovine rotavirus strains. In this study, a G10P[14] rotavirus genotype detected in a human stool sample in Honduras during the 2010-2011 rotavirus season, from an unvaccinated 30-month old boy who reported at the hospital with severe diarrhea and vomiting, was characterised to determine the possible evolutionary origin of the rare strain. For the sample detected as G10P[14], 10% suspension was prepared and used for RNA extraction and sequence independent amplification. The amplicons were sequenced by next-generation sequencing using the Illumina MiSeq 150 paired end method. The sequence reads were analysed using CLC Genomics Workbench 6.0 and phylogenetic trees were constructed using PhyML version 3.0. The next generation sequencing and phylogenetic analyses of the 11-segmented genome of the G10P[14] strain allowed classification as G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. Six of the genes (VP1, VP2, VP3, VP6, NSP2 and NSP4) were DS-1-like. NSP1 and NSP5 were AU-1-like and NSP3 was T6, which suggests that multiple reassortment events occurred in the evolution of the strain. The phylogenetic analyses and genetic distance calculations showed that the VP7, VP4, VP6, VP1, VP3, NSP1, NSP3 and NSP4 genes clustered predominantly with bovine strains. NSP2 and VP2 genes were most closely related to simian and human strains, respectively, and NSP5 was most closely related to a rhesus strain. The genetic characterisation of the G10P[14] strain from Honduras suggests that its genome resulted from multiple reassortment events which were possibly mediated through interspecies transmissions.

  9. Transmission and reassortment of avian influenza viruses at the Asian-North American interface.

    Science.gov (United States)

    Ramey, Andrew M; Pearce, John M; Ely, Craig R; Guy, Lisa M Sheffield; Irons, David B; Derksen, Dirk V; Ip, Hon S

    2010-10-25

    Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian-North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted. Copyright © 2010. Published by Elsevier Inc.

  10. Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates✩

    Science.gov (United States)

    Lukashevich, Igor S.; Carrion, Ricardo; Salvato, Maria S.; Mansfield, Keith; Brasky, Kathleen; Zapata, Juan; Cairo, Cristiana; Goicochea, Marco; Hoosien, Gia E.; Ticer, Anysha; Bryant, Joseph; Davis, Harry; Hammamieh, Rasha; Mayda, Maria; Jett, Marti; Patterson, Jean

    2008-01-01

    A single injection of ML29 reassortant vaccine for Lassa fever induces low, transient viremia, and low or moderate levels of ML29 replication in tissues of common marmosets depending on the dose of the vaccination. The vaccination elicits specific immune responses and completely protects marmosets against fatal disease by induction of sterilizing cell-mediated immunity. DNA array analysis of human peripheral blood mononuclear cells from healthy donors exposed to ML29 revealed that gene expression patterns in ML29-exposed PBMC and control, media-exposed PBMC, clustered together confirming safety profile of the ML29 in non-human primates. The ML29 reassortant is a promising vaccine candidate for Lassa fever. PMID:18692539

  11. New reassortant and enzootic European swine influenza 1 viruses transmits efficiently through direct contact in the ferret model

    DEFF Research Database (Denmark)

    Fobian, Kristina; P. Fabrizio, Thomas; Yoon, Sun-Woo

    2015-01-01

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs...... with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2 and two were new reassortants, one with avian-like H1...... and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titers in nasal wash- and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics...

  12. Case of seasonal reassortant a(H1N2) influenza virus infection, the Netherlands, March 2018

    NARCIS (Netherlands)

    Meijer, A. (Adam); C. Swaan (Corien); Voerknecht, M. (Martin); E. Jusic (Edin); van den Brink, S. (Sharon); Wijsman, L.A. (Lisa A.); A.C.G. Voordouw (Bettie); G.A. Donker (Gé); Sleven, J. (Jacqueline); Dorigo-Zetsma, W.W. (Wendelien W.); S. Svraka-Latifovic (Sanela); M. van Boven (Michiel); Haverkate, M.R. (Manon R.); A. Timen (Aura); J.T. van Dissel (Jaap); M.P.G. Koopmans D.V.M. (Marion); T.M. Bestebroer (Theo); R.A.M. Fouchier (Ron)

    2018-01-01

    textabstractA seasonal reassortant A(H1N2) influenza virus harbouring genome segments from seasonal influenza viruses A(H1N1)pdm09 (HA and NS) and A(H3N2) (PB2, PB1, PA, NP, NA and M) was identified in March 2018 in a 19-months-old patient with influenza-like illness (ILI) who presented to a general

  13. Reassortant swine influenza viruses isolated in Japan contain genes from pandemic A(H1N1) 2009.

    Science.gov (United States)

    Kanehira, Katsushi; Takemae, Nobuhiro; Uchida, Yuko; Hikono, Hirokazu; Saito, Takehiko

    2014-06-01

    In 2013, three reassortant swine influenza viruses (SIVs)-two H1N2 and one H3N2-were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human-like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human-like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human-lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human-lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  14. Case of seasonal reassortant A(H1N2) influenza virus infection, the Netherlands, March 2018.

    NARCIS (Netherlands)

    Meijer, A.; Swaan, C.M.; Voerknecht, M.; Jusic, E.; Brink, S. van den; Wijsman, L.A.; Voordouw, B.C.G.; Donker, G.A.; Sleven, J.; Dorigo-Zetsma, W.W.; Svraka, S.; Boven, M. van; Haverkate, M.R.; Timen, A.; Dissel, J.T. van; Koopmans, M.P.G.; Besteboer, T.M.; Fouchier, R.A.M.

    2018-01-01

    A seasonal reassortant A(H1N2) influenza virus harbouring genome segments from seasonal influenza viruses A(H1N1)pdm09 (HA and NS) and A(H3N2) (PB2, PB1, PA, NP, NA and M) was identified in March 2018 in a 19-months-old patient with influenza-like illness (ILI) who presented to a general

  15. Case of seasonal reassortant A(H1N2) influenza virus infection, the Netherlands, March 2018.

    NARCIS (Netherlands)

    Meijer, Adam; Swaan, Corien M; Voerknecht, Martin; Jusic, Edin; van den Brink, Sharon; Wijsman, Lisa A; Voordouw, Bettie Cg; Donker, Gé A; Sleven, Jacqueline; Dorigo-Zetsma, Wendelien W; Svraka, Sanela; van Boven, Michiel; Haverkate, Manon R; Timen, Aura; van Dissel, Jaap T; Koopmans, Marion Pg; Bestebroer, Theo M; Fouchier, Ron Am

    A seasonal reassortant A(H1N2) influenza virus harbouring genome segments from seasonal influenza viruses A(H1N1)pdm09 (HA and NS) and A(H3N2) (PB2, PB1, PA, NP, NA and M) was identified in March 2018 in a 19-months-old patient with influenza-like illness (ILI) who presented to a general

  16. Intercontinental circulation of human influenza A(H1N2) reassortant viruses during the 2001-2002 influenza season.

    Science.gov (United States)

    Xu, Xiyan; Smith, Catherine B; Mungall, Bruce A; Lindstrom, Stephen E; Hall, Henrietta E; Subbarao, Kanta; Cox, Nancy J; Klimov, Alexander

    2002-11-15

    Reassortant influenza A viruses bearing the H1 subtype of hemagglutinin (HA) and the N2 subtype of neuraminidase (NA) were isolated from humans in the United States, Canada, Singapore, Malaysia, India, Oman, Egypt, and several countries in Europe during the 2001-2002 influenza season. The HAs of these H1N2 viruses were similar to that of the A/New Caledonia/20/99(H1N1) vaccine strain both antigenically and genetically, and the NAs were antigenically and genetically related to those of recent human H3N2 reference strains, such as A/Moscow/10/99(H3N2). All 6 internal genes of the H1N2 reassortants examined originated from an H3N2 virus. This article documents the first widespread circulation of H1N2 reassortants on 4 continents. The current influenza vaccine is expected to provide good protection against H1N2 viruses, because it contains the A/New Caledonia/20/99(H1N1) and A/Moscow/10/99(H3N2)-like viruses, which have H1 and N2 antigens that are similar to those of recent H1N2 viruses.

  17. Temporal analysis of reassortment and molecular evolution of Cucumber mosaic virus: Extra clues from its segmented genome

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Kazusato, E-mail: ohshimak@cc.saga-u.ac.jp [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima (Japan); Matsumoto, Kosuke [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); Yasaka, Ryosuke [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima (Japan); Nishiyama, Mai; Soejima, Kenta [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); Korkmaz, Savas [Department of Plant Protection, Faculty of Agriculture, University of Canakkale Onsekiz Mart, Canakkale (Turkey); Ho, Simon Y.W. [School of Biological Sciences, University of Sydney, Sydney, New South Wales (Australia); Gibbs, Adrian J. [Emeritus Faculty, Australian National University, Canberra (Australia); Takeshita, Minoru [Laboratory of Plant Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki (Japan)

    2016-01-15

    Cucumber mosaic virus (CMV) is a damaging pathogen of over 200 mono- and dicotyledonous crop species worldwide. It has the broadest known host range of any virus, but the timescale of its evolution is unknown. To investigate the evolutionary history of this virus, we obtained the genomic sequences of 40 CMV isolates from brassicas sampled in Iran, Turkey and Japan, and combined them with published sequences. Our synonymous ('silent') site analyses revealed that the present CMV population is the progeny of a single ancestor existing 1550–2600 years ago, but that the population mostly radiated 295–545 years ago. We found that the major CMV lineages are not phylogeographically confined, but that recombination and reassortment is restricted to local populations and that no reassortant lineage is more than 251 years old. Our results highlight the different evolutionary patterns seen among viral pathogens of brassica crops across the world. - Highlights: • Present-day CMV lineages had a most recent common ancestor 1550–2600 years ago. • The CMV population mostly radiated less than 295–545 years ago. • No reassortant found in the present populations is more than 251 years old. • The open-reading frames evolve at around 2.3–4.7×10{sup −4} substitutions/site/year. • Synonymous codons of CMV seem to have a more precise temporal signal than all codons.

  18. Molecular signature of high yield (growth influenza a virus reassortants prepared as candidate vaccine seeds.

    Directory of Open Access Journals (Sweden)

    Manojkumar Ramanunninair

    Full Text Available Human influenza virus isolates generally grow poorly in embryonated chicken eggs. Hence, gene reassortment of influenza A wild type (wt viruses is performed with a highly egg adapted donor virus, A/Puerto Rico/8/1934 (PR8, to provide the high yield reassortant (HYR viral 'seeds' for vaccine production. HYR must contain the hemagglutinin (HA and neuraminidase (NA genes of wt virus and one to six 'internal' genes from PR8. Most studies of influenza wt and HYRs have focused on the HA gene. The main objective of this study is the identification of the molecular signature in all eight gene segments of influenza A HYR candidate vaccine seeds associated with high growth in ovo.The genomes of 14 wt parental viruses, 23 HYRs (5 H1N1; 2, 1976 H1N1-SOIV; 2, 2009 H1N1pdm; 2 H2N2 and 12 H3N2 and PR8 were sequenced using the high-throughput sequencing pipeline with big dye terminator chemistry.Silent and coding mutations were found in all internal genes derived from PR8 with the exception of the M gene. The M gene derived from PR8 was invariant in all 23 HYRs underlining the critical role of PR8 M in high yield phenotype. None of the wt virus derived internal genes had any silent change(s except the PB1 gene in X-157. The highest number of recurrent silent and coding mutations was found in NS. With respect to the surface antigens, the majority of HYRs had coding mutations in HA; only 2 HYRs had coding mutations in NA.In the era of application of reverse genetics to alter influenza A virus genomes, the mutations identified in the HYR gene segments associated with high growth in ovo may be of great practical benefit to modify PR8 and/or wt virus gene sequences for improved growth of vaccine 'seed' viruses.

  19. Surveillance programs in Denmark has revealed the circulation of novel reassortant influenza A viruses in swine

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2014-01-01

    avH1N1 and H3N2 which is different from the dominating European H1N2 subtype (1). The prevalence of the H1N1pdm09 virus in swine has increased since 2009 in some countries including Denmark. Here we present the results of the national passive surveillance program on influenza in swine performed from...... by the combination of the gene segments hemagglutinin (HA) and neuraminidase (NA). In most European countries, the avian-like (av)H1N1, the 2009 pandemic variant (H1N1pdm09), H1N2 and H3N2 subtypes have constituted the dominating SIV subtypes during recent years. In Denmark, the H1N2 subtype is a reassortant between......Swine influenza is a respiratory disease caused by multiple subtypes of influenza A virus. Swine influenza virus (SIV) is enzootic in swine populations in Europe, Asia, North and South America. The influenza A virus genome consist of eight distinct gene segments and SIV subtypes are defined...

  20. Avian influenza virus ecology in Iceland shorebirds: intercontinental reassortment and movement

    Science.gov (United States)

    Hall, Jeffrey S.; Hallgrimsson, Gunnar Thor; Suwannanarn, Kamol; Sreevatsen, Srinand; Ip, Hon S.; TeSlaa, Joshua L.; Nashold, Sean W.; Dusek, Robert J.

    2014-01-01

    Shorebirds are a primary reservoir of avian influenza viruses (AIV). We conducted surveillance studies in Iceland shorebird populations for 3 years, documenting high serological evidence of AIV exposure in shorebirds, primarily in Ruddy Turnstones (Arenaria interpres; seroprevalence = 75%). However, little evidence of virus infection was found in these shorebird populations and only two turnstone AIVs (H2N7; H5N1) were able to be phylogenetically examined. These analyses showed that viruses from Iceland shorebirds were primarily derived from Eurasian lineage viruses, yet the H2 hemagglutinin gene segment was from a North American lineage previously detected in a gull from Iceland the previous year. The H5N1 virus was determined to be low pathogenic, however the PB2 gene was closely related to the PB2 from highly pathogenic H5N1 isolates from China. Multiple lines of evidence suggest that the turnstones were infected with at least one of these AIV while in Iceland and confirm Iceland as an important location where AIV from different continents interact and reassort, creating new virus genomes. Mounting data warrant continued surveillance for AIV in wild birds in the North Atlantic, including Canada, Greenland, and the northeast USA to determine the risks of new AI viruses and their intercontinental movement in this region.

  1. Avian influenza virus ecology in Iceland shorebirds: intercontinental reassortment and movement.

    Science.gov (United States)

    Hall, Jeffrey S; Hallgrimsson, Gunnar Thor; Suwannanarn, Kamol; Sreevatsen, Srinand; Ip, Hon S; Magnusdottir, Ellen; TeSlaa, Joshua L; Nashold, Sean W; Dusek, Robert J

    2014-12-01

    Shorebirds are a primary reservoir of avian influenza viruses (AIV). We conducted surveillance studies in Iceland shorebird populations for 3 years, documenting high serological evidence of AIV exposure in shorebirds, primarily in Ruddy Turnstones (Arenaria interpres; seroprevalence=75%). However, little evidence of virus infection was found in these shorebird populations and only two turnstone AIVs (H2N7; H5N1) were able to be phylogenetically examined. These analyses showed that viruses from Iceland shorebirds were primarily derived from Eurasian lineage viruses, yet the H2 hemagglutinin gene segment was from a North American lineage previously detected in a gull from Iceland the previous year. The H5N1 virus was determined to be low pathogenic, however the PB2 gene was closely related to the PB2 from highly pathogenic H5N1 isolates from China. Multiple lines of evidence suggest that the turnstones were infected with at least one of these AIV while in Iceland and confirm Iceland as an important location where AIV from different continents interact and reassort, creating new virus genomes. Mounting data warrant continued surveillance for AIV in wild birds in the North Atlantic, including Canada, Greenland, and the northeast USA to determine the risks of new AI viruses and their intercontinental movement in this region. Published by Elsevier B.V.

  2. Appearance of reassortant European avian-origin H1 influenza A viruses of swine in Vietnam.

    Science.gov (United States)

    Takemae, N; Nguyen, P T; Le, V T; Nguyen, T N; To, T L; Nguyen, T D; Pham, V P; Vo, H V; Le, Q V T; Do, H T; Nguyen, D T; Uchida, Y; Saito, T

    2018-03-06

    Three subtypes-H1N1, H1N2 and H3N2-of influenza A viruses of swine (IAVs-S) are currently endemic in swine worldwide, but there is considerable genotypic diversity among each subtype and limited geographical distribution. Through IAVs-S monitoring in Vietnam, two H1N2 influenza A viruses were isolated from healthy pigs in Ba Ria-Vung Tau Province, Southern Vietnam, on 2 December 2016. BLAST and phylogenetic analyses revealed that their HA and NA genes were derived from those of European avian-like H1N2 IAVs-S that contained avian-origin H1 and human-like N2 genes, and were particularly closely related to those of IAVs-S circulating in the Netherlands, Germany or Denmark. In addition, the internal genes of these Vietnamese isolates were derived from human A(H1N1)pdm09 viruses, suggesting that the Vietnamese H1N2 IAVs-S are reassortants between European H1N2 IAVs-S and human A(H1N1)pdm09v. The appearance of European avian-like H1N2 IAVs-S in Vietnam marks their first transmission outside Europe. Our results and statistical analyses of the number of live pigs imported into Vietnam suggest that the European avian-like H1N2 IAVs-S may have been introduced into Vietnam with their hosts through international trade. These findings highlight the importance of quarantining imported pigs to impede the introduction of new IAVs-S. © 2018 Blackwell Verlag GmbH.

  3. Novel genetic reassortants in H9N2 influenza A viruses and their diverse pathogenicity to mice

    Directory of Open Access Journals (Sweden)

    Bi Yuhai

    2011-11-01

    Full Text Available Abstract Background H9N2 influenza A viruses have undergone extensive reassortments in different host species, and could lead to the epidemics or pandemics with the potential emergence of novel viruses. Methods To understand the genetic and pathogenic features of early and current circulating H9N2 viruses, 15 representative H9N2 viruses isolated from diseased chickens in northern China between 1998 and 2010 were characterized and compared with all Chinese H9N2 viruses available in the NCBI database. Then, the representative viruses of different genotypes were selected to study the pathogenicity in mice with the aim to investigate the adaptation and the potential pathogenicity of the novel H9N2 reassortants to mammals. Results Our results demonstrated that most of the 15 isolates were reassortants and generated four novel genotypes (B62-B65, which incorporated the gene segments from Eurasian H9N2 lineage, North American H9N2 branch, and H5N1 viruses. It was noteworthy that the newly identified genotype B65 has been prevalent in China since 2007, and more importantly, different H9N2 influenza viruses displayed a diverse pathogenicity to mice. The isolates of the 2008-2010 epidemic (genotypes B55 and B65 were lowly infectious, while two representative viruses of genotypes B0 and G2 isolated from the late 1990s were highly pathogenic to mice. In addition, Ck/SD/LY-1/08 (genotype 63, containing H5N1-like NP and PA genes was able to replicate well in mouse lungs with high virus titers but caused mild clinical signs. Conclusion Several lines of evidence indicated that the H9N2 influenza viruses constantly change their genetics and pathogenicity. Thus, the genetic evolution of H9N2 viruses and their pathogenicity to mammals should be closely monitored to prevent the emergence of novel pandemic viruses.

  4. Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009.

    Science.gov (United States)

    Shinde, Vivek; Bridges, Carolyn B; Uyeki, Timothy M; Shu, Bo; Balish, Amanda; Xu, Xiyan; Lindstrom, Stephen; Gubareva, Larisa V; Deyde, Varough; Garten, Rebecca J; Harris, Meghan; Gerber, Susan; Vagasky, Susan; Smith, Forrest; Pascoe, Neal; Martin, Karen; Dufficy, Deborah; Ritger, Kathy; Conover, Craig; Quinlisk, Patricia; Klimov, Alexander; Bresee, Joseph S; Finelli, Lyn

    2009-06-18

    Triple-reassortant swine influenza A (H1) viruses--containing genes from avian, human, and swine influenza viruses--emerged and became enzootic among pig herds in North America during the late 1990s. We report the clinical features of the first 11 sporadic cases of infection of humans with triple-reassortant swine influenza A (H1) viruses reported to the Centers for Disease Control and Prevention, occurring from December 2005 through February 2009, until just before the current epidemic of swine-origin influenza A (H1N1) among humans. These data were obtained from routine national influenza surveillance reports and from joint case investigations by public and animal health agencies. The median age of the 11 patients was 10 years (range, 16 months to 48 years), and 4 had underlying health conditions. Nine of the patients had had exposure to pigs, five through direct contact and four through visits to a location where pigs were present but without contact. In another patient, human-to-human transmission was suspected. The range of the incubation period, from the last known exposure to the onset of symptoms, was 3 to 9 days. Among the 10 patients with known clinical symptoms, symptoms included fever (in 90%), cough (in 100%), headache (in 60%), and diarrhea (in 30%). Complete blood counts were available for four patients, revealing leukopenia in two, lymphopenia in one, and thrombocytopenia in another. Four patients were hospitalized, two of whom underwent invasive mechanical ventilation. Four patients received oseltamivir, and all 11 recovered from their illness. From December 2005 until just before the current human epidemic of swine-origin influenza viruses, there was sporadic infection with triple-reassortant swine influenza A (H1) viruses in persons with exposure to pigs in the United States. Although all the patients recovered, severe illness of the lower respiratory tract and unusual influenza signs such as diarrhea were observed in some patients, including

  5. Molecular Epidemiology of a novel re-assorted epidemic strain of equine influenza virus in Pakistan in 2015-16.

    Science.gov (United States)

    Khan, Amjad; Mushtaq, Muhammad Hassan; Ahmad, Mansur Ud Din; Nazir, Jawad; Farooqi, Shahid Hussain; Khan, Asghar

    2017-08-15

    A widespread epidemic of equine influenza (EI) occurred in nonvaccinated equine population across multiple districts in Khyber Pakhtunkhwa Province of Pakistan during 2015-2016. An epidemiological surveillance study was conducted from Oct 2015 to April 2016 to investigate the outbreak. EI virus strains were isolated in embryonated eggs from suspected equines swab samples and were subjected to genome sequencing using M13 tagged segment specific primers. Phylogenetic analyses of the nucleotide sequences were concluded using Geneious. Haemagglutinin (HA), Neuraminidase (NA), Matrix (M) and nucleoprotein (NP) genes nucleotide and amino acid sequences of the isolated viruses were aligned with those of OIE recommended, FC-1, FC-2, and contemporary isolates of influenza A viruses from other species. HA and NA genes amino acid sequences were very similar to Tennessee/14 and Malaysia/15 of FC-1 and clustered with the contemporary isolates recently reported in the USA. Phylogenetic analysis showed that these viruses were mostly identical (with 99.6% and 97.4% nucleotide homology) to, and were reassortants containing chicken/Pakistan/14 (H7N3) and Canine/Beijing/10 (H3N2) like M and NP genes. Genetic analysis indicated that A/equine/Pakistan/16 viruses were most probably the result of several re-assortments between the co-circulating avian and equine viruses, and were genetically unlike the other equine viruses due to the presence of H7N3 or H3N2 like M and NP genes. Epidemiological data analysis indicated the potential chance of mixed, and management such as mixed farming system by keeping equine, canine and backyard poultry together in confined premises as the greater risk factors responsible for the re-assortments. Other factors might have contributed to the spread of the epidemic, including low awareness level, poor control of equine movements, and absence of border control disease strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Full-Genome Sequence of a Reassortant H1N2 Influenza A Virus Isolated from Pigs in Brazil.

    Science.gov (United States)

    Schmidt, Candice; Cibulski, Samuel Paulo; Muterle Varela, Ana Paula; Mengue Scheffer, Camila; Wendlant, Adrieli; Quoos Mayer, Fabiana; Lopes de Almeida, Laura; Franco, Ana Cláudia; Roehe, Paulo Michel

    2014-12-18

    In this study, the full-genome sequence of a reassortant H1N2 swine influenza virus is reported. The isolate has the hemagglutinin (HA) and neuraminidase (NA) genes from human lineage (H1-δ cluster and N2), and the internal genes (polymerase basic 1 [PB1], polymerase basic 2 [PB2], polymerase acidic [PA], nucleoprotein [NP], matrix [M], and nonstructural [NS]) are derived from human 2009 pandemic H1N1 (H1N1pdm09) virus. Copyright © 2014 Schmidt et al.

  7. Case of seasonal reassortant A(H1N2) influenza virus infection, the Netherlands, March 2018.

    Science.gov (United States)

    Meijer, Adam; Swaan, Corien M; Voerknecht, Martin; Jusic, Edin; van den Brink, Sharon; Wijsman, Lisa A; Voordouw, Bettie Cg; Donker, Gé A; Sleven, Jacqueline; Dorigo-Zetsma, Wendelien W; Svraka, Sanela; van Boven, Michiel; Haverkate, Manon R; Timen, Aura; van Dissel, Jaap T; Koopmans, Marion Pg; Bestebroer, Theo M; Fouchier, Ron Am

    2018-04-01

    A seasonal reassortant A(H1N2) influenza virus harbouring genome segments from seasonal influenza viruses A(H1N1)pdm09 (HA and NS) and A(H3N2) (PB2, PB1, PA, NP, NA and M) was identified in March 2018 in a 19-months-old patient with influenza-like illness (ILI) who presented to a general practitioner participating in the routine sentinel surveillance of ILI in the Netherlands. The patient recovered fully. Further epidemiological and virological investigation did not reveal additional cases.

  8. Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection

    OpenAIRE

    Wu, Donglin; Zou, Shumei; Bai, Tian; Li, Jing; Zhao, Xiang; Yang, Lei; Liu, Hongmin; Li, Xiaodan; Yang, Xianda; Xin, Li; Xu, Shuang; Zou, Xiaohui; Li, Xiyan; Wang, Ao; Guo, Junfeng

    2015-01-01

    Live poultry markets are a source of human infection with avian influenza A (H7N9) virus. On February 21, 2014, a poultry farmer infected with H7N9 virus was identified in Jilin, China, and H7N9 and H9N2 viruses were isolated from the patient's farm. Reassortment between these subtype viruses generated five genotypes, one of which caused the human infection. The date of H7N9 virus introduction to the farm is estimated to be between August 21, 2013 (95% confidence interval [CI] June 6, 2013-Oc...

  9. In vitro reassortment between endemic H1N2 and 2009 H1N1 pandemic swine influenza viruses generates attenuated viruses.

    Directory of Open Access Journals (Sweden)

    Ben M Hause

    Full Text Available The pandemic H1N1 (pH1N1 influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV, were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST cells with swine-derived endemic H1N2 (MN745 and pH1N1 (MN432 yielded two reassortant H1N2 viruses (R1 and R2, both possessing a matrix gene derived from pH1N1. In ST cells, the reassortant viruses had growth kinetics similar to the parental H1N2 virus and reached titers approximately 2 log(10 TCID(50/mL higher than the pH1N1 virus, while in A549 cells these viruses had similar growth kinetics. Intranasal challenge of pigs with H1N2, pH1N1, R1 or R2 found that all viruses were capable of infecting and transmitting between direct contact pigs as measured by real time reverse transcription PCR of nasal swabs. Lung samples were also PCR-positive for all challenge groups and influenza-associated microscopic lesions were detected by histology. Interestingly, infectious virus was detected in lung samples for pigs challenged with the parental H1N2 and pH1N1 at levels significantly higher than either reassortant virus despite similar levels of viral RNA. Results of our experiment suggested that the reassortant viruses generated through in vitro cell culture system were attenuated without gaining any selective growth advantage in pigs over the parental lineages. Thus, reassortant influenza viruses described in this study may provide a good system to study genetic basis of the attenuation and its mechanism.

  10. New reassortant and enzootic European swine influenza viruses transmit efficiently through direct contact in the ferret model.

    Science.gov (United States)

    Fobian, Kristina; Fabrizio, Thomas P; Yoon, Sun-Woo; Hansen, Mette Sif; Webby, Richard J; Larsen, Lars E

    2015-07-01

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2, and two were new reassortants, one with avian-like H1 and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titres in nasal wash and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics using a differentiated human bronchial epithelial cell line showed that all four viruses were able to replicate to high titres. Further, the viruses revealed preferential binding to the 2,6-α-silalylated glycans and investigation of the antiviral susceptibility of the viruses revealed that all were sensitive to neuraminidase inhibitors. These findings suggested that these viruses have the potential to infect humans and further underline the need for continued surveillance as well as biological characterization of new influenza A viruses.

  11. Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes.

    Science.gov (United States)

    Tentchev, Diana; Verdin, Eric; Marchal, Cécile; Jacquet, Monique; Aguilar, Juan M; Moury, Benoît

    2011-04-01

    Tomato spotted wilt virus (TSWV; genus Tospovirus, family Bunyaviridae) genetic diversity was evaluated by sequencing parts of the three RNA genome segments of 224 isolates, mostly from pepper and tomato crops in southern Europe. Eighty-three per cent of the isolates showed consistent clustering into three clades, corresponding to their geographical origin, Spain, France or the USA, for the three RNA segments. In contrast, the remaining 17% of isolates did not belong to the same clade for the three RNA segments and were shown to be reassortants. Among them, eight different reassortment patterns were observed. Further phylogenetic analyses provided insights into the dynamic processes of the worldwide resurgence of TSWV that, since the 1980s, has followed the worldwide dispersal of the western flower thrips (Frankliniella occidentalis) tospovirus vector. For two clades composed essentially of Old World (OW) isolates, tree topology suggested a local re-emergence of indigenous TSWV populations following F. occidentalis introductions, while it could not be excluded that the ancestors of two other OW clades were introduced from North America contemporarily with F. occidentalis. Finally, estimation of the selection intensity that has affected the evolution of the NSs and nucleocapsid proteins encoded by RNA S of TSWV suggests that the former could be involved in the breakdown of resistance conferred by the Tsw gene in pepper.

  12. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  13. A reassortment vaccine candidate as the improved formulation to induce protection against very virulent infectious bursal disease virus.

    Science.gov (United States)

    Qi, Xiaole; Chen, Yuming; Ren, Xiangang; Zhang, Lizhou; Gao, Li; Wang, Nian; Qin, Liting; Wang, Yongqiang; Gao, Yulong; Wang, Xiaomei

    2014-03-14

    Infectious bursal disease (IBD) is a highly contagious immunosuppressive disease affecting all major poultry producing areas of the world. Infectious bursal disease virus (IBDV) is genetically prone to mutation so that vaccines have to be changed accordingly. However, the traditional method of vaccine development with blind passage could not fit the style of the emergency prevention of IBDV. In this study, for the first time, a segment-reassortment attenuated IBDV rXATB, consisting of modified segment A of a prevalent strain and segment B of an attenuated strain, was designed and rescued; rXATB was stable and could induce good humoral and cellular immune responses which resulted in excellent protection against the lethal challenge of vvIBDV without obvious immunosuppression in chicken. This study revolutionarily provides a new formulation based on reverse genetics to develop new vaccine against prevalent IBDV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Identification of Two novel reassortant avian influenza a (H5N6) viruses in whooper swans in Korea, 2016.

    Science.gov (United States)

    Jeong, Jipseol; Woo, Chanjin; Ip, Hon S; An, Injung; Kim, Youngsik; Lee, Kwanghee; Jo, Seong-Deok; Son, Kidong; Lee, Saemi; Oem, Jae-Ku; Wang, Seung-Jun; Kim, Yongkwan; Shin, Jeonghwa; Sleeman, Jonathan; Jheong, Weonhwa

    2017-03-21

    On November 20, 2016 two novel strains of H5N6 highly pathogenic avian influenza virus (HPAIVs) were isolated from three whooper swans (Cygnus cygnus) at Gangjin Bay in South Jeolla province, South Korea. Identification of HPAIVs in wild birds is significant as there is a potential risk of transmission of these viruses to poultry and humans. Phylogenetic analysis revealed that Gangjin H5N6 viruses classified into Asian H5 clade 2.3.4.4 lineage and were distinguishable from H5N8 and H5N1 HPAIVs previously isolated in Korea. With the exception of the polymerase acidic (PA) gene, the viruses were most closely related to A/duck/Guangdong/01.01SZSGXJK005-Y/2016 (H5N6) (98.90 ~ 99.74%). The PA genes of the two novel Gangjin H5N6 viruses were most closely related to AIV isolates previously characterized from Korea, A/hooded crane/Korea/1176/2016 (H1N1) (99.16%) and A/environment/Korea/W133/2006 (H7N7) (98.65%). The lack of more recent viruses to A/environment/Korea/W133/2006 (H7N7) indicates the need for analysis of recent wild bird AIVs isolated in Korea because they might provide further clues as to the origin of these novel reassortant H5N6 viruses. Although research on the origins and epidemiology of these infections is ongoing, the most likely route of infection for the whooper swans was through direct or indirect contact with reassortant viruses shed by migratory wild birds in Korea. As H5N6 HPAIVs can potentially be transmitted to poultry and humans, continuous monitoring of AIVs among wild birds will help to mitigate this risk.

  15. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    Science.gov (United States)

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Novel reassortant influenza A(H1N2) virus derived from A(H1N1)pdm09 virus isolated from swine, Japan, 2012.

    Science.gov (United States)

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato; Kozawa, Kunihisa

    2013-12-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time.

  17. Evaluation of the zoonotic potential of a novel reassortant H1N2 swine influenza virus with gene constellation derived from multiple viral sources.

    Science.gov (United States)

    Lee, Jee Hoon; Pascua, Philippe Noriel Q; Decano, Arun G; Kim, Se Mi; Park, Su-Jin; Kwon, Hyeok-Il; Kim, Eun-Ha; Kim, Young-Il; Kim, HyongKyu; Kim, Seok-Yong; Song, Min-Suk; Jang, Hyung-Kwan; Park, Bong Kyun; Choi, Young Ki

    2015-08-01

    In 2011-2012, contemporary North American-like H3N2 swine influenza viruses (SIVs) possessing the 2009 pandemic H1N1 matrix gene (H3N2pM-like virus) were detected in domestic pigs of South Korea where H1N2 SIV strains are endemic. More recently, we isolated novel reassortant H1N2 SIVs bearing the Eurasian avian-like swine H1-like hemagglutinin and Korean swine H1N2-like neuraminidase in the internal gene backbone of the H3N2pM-like virus. In the present study, we clearly provide evidence on the genetic origins of the novel H1N2 SIVs virus through genetic and phylogenetic analyses. In vitro studies demonstrated that, in comparison with a pre-existing 2012 Korean H1N2 SIV [A/swine/Korea/CY03-11/2012 (CY03-11/2012)], the 2013 novel reassortant H1N2 isolate [A/swine/Korea/CY0423/2013 (CY0423-12/2013)] replicated more efficiently in differentiated primary human bronchial epithelial cells. The CY0423-12/2013 virus induced higher viral titers than the CY03-11/2012 virus in the lungs and nasal turbinates of infected mice and nasal wash samples of ferrets. Moreover, the 2013 H1N2 reassortant, but not the intact 2012 H1N2 virus, was transmissible to naïve contact ferrets via respiratory-droplets. Noting that the viral precursors have the ability to infect humans, our findings highlight the potential threat of a novel reassortant H1N2 SIV to public health and underscore the need to further strengthen influenza surveillance strategies worldwide, including swine populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Emergence of multiple clade 2.3.2.1 influenza A (H5N1) virus subgroups in Vietnam and detection of novel reassortants.

    Science.gov (United States)

    Creanga, Adrian; Thi Nguyen, Diep; Gerloff, Nancy; Thi Do, Hoa; Balish, Amanda; Dang Nguyen, Hoang; Jang, Yunho; Thi Dam, Vui; Thor, Sharmi; Jones, Joyce; Simpson, Natosha; Shu, Bo; Emery, Shannon; Berman, LaShondra; Nguyen, Ha T; Bryant, Juliet E; Lindstrom, Steve; Klimov, Alexander; Donis, Ruben O; Davis, C Todd; Nguyen, Tung

    2013-09-01

    Phylogenetic analyses of 169 influenza A(H5N1) virus genomes were conducted for samples collected through active surveillance and outbreak responses in Vietnam between September 2010 and September 2012. While clade 1.1 viruses persisted in southern regions, three genetically distinct subgroups of clade 2.3.2.1 were found in northern and central Vietnam. The identification of each subgroup corresponded with detection of novel reassortants, likely due to their overlapping circulation throughout the country. While the previously identified clade 1.1 and A/Hubei/1/2010-like 2.3.2.1 genotypes remained the predominant viruses detected, four viruses were found to be reassortants between A/Hubei/1/2010-like (HA, NA, PB2, PB1, PA, NP) and A/duck/Vietnam/NCVD-885/2010-like (M, NS) viruses and one virus was identified as having A/duck/Vietnam/NCVD-885/2010-like HA, NA, PB1, and NP with A/Hubei/1/2010-like PB2 and PA genes. Additionally, clade 2.3.2.1 A/Hong Kong/6841/2010-like viruses, first detected in mid-2012, were identified as reassortants comprised of A/Hubei/1/2010-like PB2 and PA and A/duck/Vietnam/NCVD-885/2010-like PB1, NP, NA, M, NS genes. Published by Elsevier Inc.

  19. Detection in Japan of an equine-like G3P[8] reassortant rotavirus A strain that is highly homologous to European strains across all genome segments.

    Science.gov (United States)

    Kikuchi, Wakako; Nakagomi, Toyoko; Gauchan, Punita; Agbemabiese, Chantal Ama; Noguchi, Atsuko; Nakagomi, Osamu; Takahashi, Tsutomu

    2018-03-01

    Equine-like G3P[8] rotavirus A strains with DS-1-like backbone genes have emerged since 2013. An equine-like RVA/Human-wt/JPN/15R429/2015/G3P[8] strain possessing I2-R2-C2-M2-A2-N2-T2-E2-H2 was detected in Japan in 2015. Its VP7 gene was ≥ 99.3% identical to those of equine-like G3P[4] strains detected in Japan, and the remaining 10 genes were 98.6-99.8% identical to G1P[8] double-gene reassortants detected in Japan, Thailand and the Philippines. Thus, 15R429 was likely generated through reassortment between the equine-like G3P[4] and G1P[8] reassortant strains. Notably, 15R429 was 98.5-99.8% identical across all 11 genes of the equine-like G3P[8] strains detected in Spain and Hungary in 2015.

  20. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets.

    Science.gov (United States)

    Naguib, Mahmoud M; Ulrich, Reiner; Kasbohm, Elisa; Eng, Christine L P; Hoffmann, Donata; Grund, Christian; Beer, Martin; Harder, Timm C

    2017-12-01

    The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation. IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been reported

  1. Novel Reassortant Influenza A(H5N8) Viruses among Inoculated Domestic and Wild Ducks, South Korea, 2014

    Science.gov (United States)

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Choi, Jun-Gu; Jeong, Joojin; Moon, Oun-Kyong; Yoon, Hachung; Cho, Youngmi; Kang, Young-Myong; Lee, Hee-Soo

    2015-01-01

    An outbreak of highly pathogenic avian influenza, caused by a novel reassortant influenza A (H5N8) virus, occurred among poultry and wild birds in South Korea in 2014. The aim of this study was to evaluate the pathogenesis in and mode of transmission of this virus among domestic and wild ducks. Three of the viruses had similar pathogenicity among infected domestic ducks: the H5N8 viruses were moderately pathogenic (0%–20% mortality rate); in wild mallard ducks, the H5N8 and H5N1 viruses did not cause severe illness or death; viral replication and shedding were greater in H5N8-infected mallards than in H5N1-infected mallards. Identification of H5N8 viruses in birds exposed to infected domestic ducks and mallards indicated that the viruses could spread by contact. We propose active surveillance to support prevention of the spread of this virus among wild birds and poultry, especially domestic ducks. PMID:25625281

  2. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    Science.gov (United States)

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-01-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses. PMID:27752100

  3. Variability of Emaravirus Species Associated with Sterility Mosaic Disease of Pigeonpea in India Provides Evidence of Segment Reassortment

    Science.gov (United States)

    Patil, Basavaprabhu L.; Dangwal, Meenakshi; Mishra, Ritesh

    2017-01-01

    Sterility mosaic disease (SMD) of pigeonpea is a serious constraint for cultivation of pigeonpea in India and other South Asian countries. SMD of pigeonpea is associated with two distinct emaraviruses, Pigeonpea sterility mosaic virus 1 (PPSMV-1) and Pigeonpea sterility mosaic virus 2 (PPSMV-2), with genomes consisting of five and six negative-sense RNA segments, respectively. The recently published genome sequences of both PPSMV-1 and PPSMV-2 are from a single location, Patancheru from the state of Telangana in India. However, here we present the first report of sequence variability among 23 isolates of PPSMV-1 and PPSMV-2, collected from ten locations representing six states of India. Both PPSMV-1 and PPSMV-2 are shown to be present across India and to exhibit considerable sequence variability. Variability of RNA3 sequences was higher than the RNA4 sequences for both PPSMV-1 and PPSMV-2. Additionally, the sixth RNA segment (RNA6), previously reported to be associated with only PPSMV-2, is also associated with isolates of PPSMV-1. Multiplex reverse transcription PCR (RT-PCR) analyses show that PPSMV-1 and PPSMV-2 frequently occur as mixed infections. Further sequence analyses indicated the presence of reassortment of RNA4 between isolates of PPSMV-1 and PPSMV-2. PMID:28696402

  4. Development of a rotavirus vaccine: clinical safety, immunogenicity, and efficacy of the pentavalent rotavirus vaccine, RotaTeq.

    Science.gov (United States)

    Ciarlet, Max; Schödel, Florian

    2009-12-30

    Initial approaches for rotavirus vaccines were based on the classical "Jennerian" approach and utilized simian and bovine rotavirus strains, which provided cross-protection against human rotavirus strains but did not cause illness in infants and young children because of their species-specific tropism. The demonstrated efficacy of these vaccines was not consistent across studies. Thus, human-animal reassortants containing an animal rotavirus backbone with human rotavirus surface G and/or P proteins were developed, which demonstrated more consistent efficacy than that observed with the non-reassortant rotavirus strains. The pentavalent rotavirus vaccine, RotaTeq, contains 5 human-bovine reassortant rotaviruses consisting of a bovine (WC3) backbone with human rotavirus surface proteins representative of the most common G (G1, G2, G3, G4) or P (P1A[8]) types worldwide. The present review focuses on the development of the pentavalent rotavirus vaccine RotaTeq. Results of a large-scale Phase III clinical study showed that three doses of RotaTeq were immunogenic, efficacious, and well tolerated with no increased clinical risk of intussusception. RotaTeq was efficacious against rotavirus gastroenteritis of any severity (74%) and severe disease (98-100%), using a validated clinical scoring system. Reductions in rotavirus-associated hospitalizations and emergency department (ED) visits, for up to 2 years post-vaccination, were 95% in Europe, 97% in the United States, and 90% in the Latin American/Caribbean regions. RotaTeq was recently shown to be up to 100% effective in routine use in the US in reducing hospitalizations and ED visits and 96% effective in reducing physician visits. Additional studies in 8 different locations in the US have shown 85-95% reduction in rotavirus-associated hospitalizations and/or ED visits in the first 2-2.5 years of routine use.

  5. Emergence of Double- and Triple-Gene Reassortant G1P[8] Rotaviruses Possessing a DS-1-Like Backbone after Rotavirus Vaccine Introduction in Malawi.

    Science.gov (United States)

    Jere, Khuzwayo C; Chaguza, Chrispin; Bar-Zeev, Naor; Lowe, Jenna; Peno, Chikondi; Kumwenda, Benjamin; Nakagomi, Osamu; Tate, Jacqueline E; Parashar, Umesh D; Heyderman, Robert S; French, Neil; Cunliffe, Nigel A; Iturriza-Gomara, Miren

    2018-02-01

    To combat the high burden of rotavirus gastroenteritis, multiple African countries have introduced rotavirus vaccines into their childhood immunization programs. Malawi incorporated a G1P[8] rotavirus vaccine (Rotarix) into its immunization schedule in 2012. Utilizing a surveillance platform of hospitalized rotavirus gastroenteritis cases, we examined the phylodynamics of G1P[8] rotavirus strains that circulated in Malawi before (1998 to 2012) and after (2013 to 2014) vaccine introduction. Analysis of whole genomes obtained through next-generation sequencing revealed that all randomly selected prevaccine G1P[8] strains sequenced ( n = 32) possessed a Wa-like genetic constellation, whereas postvaccine G1P[8] strains ( n = 18) had a DS-1-like constellation. Phylodynamic analyses indicated that postvaccine G1P[8] strains emerged through reassortment events between human Wa- and DS-1-like rotaviruses that circulated in Malawi from the 1990s and hence were classified as atypical DS-1-like reassortants. The time to the most recent common ancestor for G1P[8] strains was from 1981 to 1994; their evolutionary rates ranged from 9.7 × 10 -4 to 4.1 × 10 -3 nucleotide substitutions/site/year. Three distinct G1P[8] lineages chronologically replaced each other between 1998 and 2014. Genetic drift was the likely driver for lineage turnover in 2005, whereas replacement in 2013 was due to reassortment. Amino acid substitution within the outer glycoprotein VP7 of G1P[8] strains had no impact on the structural conformation of the antigenic regions, suggesting that it is unlikely that they would affect recognition by vaccine-induced neutralizing antibodies. While the emergence of DS-1-like G1P[8] rotavirus reassortants in Malawi was therefore likely due to natural genotype variation, vaccine effectiveness against such strains needs careful evaluation. IMPORTANCE The error-prone RNA-dependent RNA polymerase and the segmented RNA genome predispose rotaviruses to genetic mutation and

  6. Pathogenicity and transmission of triple reassortant H3N2 swine influenza A viruses is attenuated following Turkey embryo propagation.

    Science.gov (United States)

    Raghunath, Shobana; Pudupakam, Raghavendra Sumanth; Deventhiran, Jagadeeswaran; Tevatia, Rahul; Leroith, Tanya

    2017-03-01

    Genetic lineages of swine influenza A viruses (SIVs) have recently been established in Turkeys in the United States. To identify molecular determinants that are involved in virulence and transmission of SIVs to Turkeys, we sequentially passaged two triple reassortant H3N2 SIV isolates from Minnesota in ten day old specific-pathogen free (SPF) Turkey embryos and tested them in seven-day old Turkey poults. We found that SIV replication in Turkey embryos led to minimal mutations in and around the receptor binding and antigenic sites of the HA molecule, while other gene segments were unchanged. The predominant changes associated with Turkey embryo passage were A223V, V226A and T248I mutations in the receptor-binding and glycosylation sites of the HA molecule. Furthermore, Turkey embryo propagation altered receptor specificity in SIV strain 07-1145. Embryo passaged 07-1145 virus showed a decrease in α2, 6 sialic acid receptor binding compared to the wild type virus. Intranasal infection of wild type SIVs in one-week-old Turkey poults resulted in persistent diarrhea and all the infected birds seroconverted at ten days post infection. The 07-1145 wild type virus also transmitted to age matched in-contact birds introduced one-day post infection. Turkeys infected with embryo passaged viruses displayed no clinical signs and were not transmitted to in-contact poults. Our results suggest that Turkey embryo propagation attenuates recent TR SIVs for infectivity and transmission in one week old Turkeys. Our findings will have important implications in identifying molecular determinants that control the transmission and virulence of TR SIVs in Turkeys and other species. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Detection and Characterization of Clade 1 Reassortant H5N1 Viruses Isolated from Human Cases in Vietnam during 2013.

    Directory of Open Access Journals (Sweden)

    Sharmi W Thor

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 is endemic in Vietnamese poultry and has caused sporadic human infection in Vietnam since 2003. Human infections with HPAI H5N1 are of concern due to a high mortality rate and the potential for the emergence of pandemic viruses with sustained human-to-human transmission. Viruses isolated from humans in southern Vietnam have been classified as clade 1 with a single genome constellation (VN3 since their earliest detection in 2003. This is consistent with detection of this clade/genotype in poultry viruses endemic to the Mekong River Delta and surrounding regions. Comparison of H5N1 viruses detected in humans from southern Vietnamese provinces during 2012 and 2013 revealed the emergence of a 2013 reassortant virus with clade 1.1.2 hemagglutinin (HA and neuraminidase (NA surface protein genes but internal genes derived from clade 2.3.2.1a viruses (A/Hubei/1/2010-like; VN12. Closer analysis revealed mutations in multiple genes of this novel genotype (referred to as VN49 previously associated with increased virulence in animal models and other markers of adaptation to mammalian hosts. Despite the changes identified between the 2012 and 2013 genotypes analyzed, their virulence in a ferret model was similar. Antigenically, the 2013 viruses were less cross-reactive with ferret antiserum produced to the clade 1 progenitor virus, A/Vietnam/1203/2004, but reacted with antiserum produced against a new clade 1.1.2 WHO candidate vaccine virus (A/Cambodia/W0526301/2012 with comparable hemagglutination inhibition titers as the homologous antigen. Together, these results indicate changes to both surface and internal protein genes of H5N1 viruses circulating in southern Vietnam compared to 2012 and earlier viruses.

  8. Reassortment and mutations associated with emergence and spread of oseltamivir-resistant seasonal influenza A/H1N1 viruses in 2005-2009.

    Directory of Open Access Journals (Sweden)

    Ji-Rong Yang

    Full Text Available A dramatic increase in the frequency of the H275Y mutation in the neuraminidase (NA, conferring resistance to oseltamivir, has been detected in human seasonal influenza A/H1N1 viruses since the influenza season of 2007-2008. The resistant viruses emerged in the ratio of 14.3% and quickly reached 100% in Taiwan from September to December 2008. To explore the mechanisms responsible for emergence and spread of the resistant viruses, we analyzed the complete genome sequences of 25 viruses collected during 2005-2009 in Taiwan, which were chosen from various clade viruses, 1, 2A, 2B-1, 2B-2, 2C-1 and 2C-2 by the classification of hemagglutinin (HA sequences. Our data revealed that the dominant variant, clade 2B-1, in the 2007-2008 influenza emerged through an intra-subtype 4+4 reassortment between clade 1 and 2 viruses. The dominant variant acquired additional substitutions, including A206T in HA, H275Y and D354G in NA, L30R and H41P in PB1-F2, and V411I and P453S in basic polymerase 2 (PB2 proteins and subsequently caused the 2008-2009 influenza epidemic in Taiwan, accompanying the widespread oseltamivir-resistant viruses. We also characterized another 3+5 reassortant virus which became double resistant to oseltamivir and amantadine. Comparison of oseltamivir-resistant influenza A/H1N1 viruses belonging to various clades in our study highlighted that both reassortment and mutations were associated with emergence and spread of these viruses and the specific mutation, H275Y, conferring to antiviral resistance, was acquired in a hitch-hiking mechanism during the viral evolutionary processes.

  9. Reassortant H9N2 influenza viruses containing H5N1-like PB1 genes isolated from black-billed magpies in Southern China.

    Directory of Open Access Journals (Sweden)

    Guoying Dong

    Full Text Available H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses. Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.7 to 100% nucleotide homology in their whole genomes, and were reassortants containing BJ94-like (Ck/BJ/1/94 HA, NA, M, and NS genes, SH/F/98-like (Ck/SH/F/98 PB2, PA, and NP genes, and H5N1-like (Ck/YN/1252/03, clade 1 PB1 genes. Genetic analysis showed that BbM viruses were most likely the result of multiple reassortments between co-circulating H9N2-like and H5N1-like viruses, and were genetically different from other H9N2 viruses because of the existence of H5N1-like PB1 genes. Genotypical analysis revealed that BbM viruses evolved from diverse sources and belonged to a novel genotype (B46 discovered in our recent study. Molecular analysis suggested that BbM viruses were likely low pathogenic reassortants. However, results of our pathogenicity study demonstrated that BbM viruses replicated efficiently in chickens and a mammalian mouse model but were not lethal for infected chickens and mice. Antigenic analysis showed that BbM viruses were antigenic heterologous with the H9N2 vaccine strain. Our study is probably the first report to document and characterize H9N2 influenza viruses isolated from black-billed magpies in southern China. Our results suggest that black-billed magpies were susceptible to H9N2 influenza viruses, which raise concerns over possible transmissions of reassortant H9N2 viruses among poultry and wild birds.

  10. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus.

    Science.gov (United States)

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F

    2015-12-01

    Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 10(4)/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Genetic characterization of natural reassortant H4 subtype avian influenza viruses isolated from domestic ducks in Zhejiang province in China from 2013 to 2014.

    Science.gov (United States)

    Wu, Haibo; Peng, Xiuming; Peng, Xiaorong; Cheng, Linfang; Lu, Xiangyun; Jin, Changzhong; Xie, Tiansheng; Yao, Hangping; Wu, Nanping

    2015-12-01

    The H4 subtype of the influenza virus was first isolated in 1999 from pigs with pneumonia in Canada. H4 avian influenza viruses (AIVs) are able to cross the species barrier to infect humans. In order to better understand the genetic relationships between H4 AIV strains circulating in Eastern China and other AIV strains from Asia, a survey of domestic ducks in live poultry markets was undertaken in Zhejiang province from 2013 to 2014. In this study, 23 H4N2 (n = 14) and H4N6 (n = 9) strains were isolated from domestic ducks, and all eight gene segments of these strains were sequenced and compared to reference AIV strains available in GenBank. The isolated strains clustered primarily within the Eurasian lineage. No mutations associated with adaption to mammalian hosts or drug resistance was observed. The H4 reassortant strains were found to be of low pathogenicity in mice and able to replicate in the lung of the mice without prior adaptation. Continued surveillance is required, given the important role of domestic ducks in reassortment events leading to new AIVs.

  12. Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence?

    Science.gov (United States)

    Pereda, Ariel; Rimondi, Agustina; Cappuccio, Javier; Sanguinetti, Ramon; Angel, Matthew; Ye, Jianqiang; Sutton, Troy; Dibárbora, Marina; Olivera, Valeria; Craig, Maria I.; Quiroga, Maria; Machuca, Mariana; Ferrero, Andrea; Perfumo, Carlos; Perez, Daniel R.

    2011-01-01

    Please cite this paper as: Pereda et al. (2011) Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence? Influenza and Other Respiratory Viruses 5(6), 409–412. In this report, we describe the occurrence of two novel swine influenza viruses (SIVs) in pigs in Argentina. These viruses are the result of two independent reassortment events between the H1N1 pandemic influenza virus (H1N1pdm) and human‐like SIVs, showing the constant evolution of influenza viruses at the human–swine interface and the potential health risk of H1N1pdm as it appears to be maintained in the swine population. It must be noted that because of the lack of information regarding the circulation of SIVs in South America, we cannot discard the possibility that ancestors of the H1N1pdm or other SIVs have been present in this part of the world. More importantly, these findings suggest an ever‐expanding geographic range of potential epicenters of influenza emergence with public health risks. PMID:21668680

  13. Group A Rotaviruses in Chinese Bats: Genetic Composition, Serology, and Evidence for Bat-to-Human Transmission and Reassortment.

    Science.gov (United States)

    He, Biao; Huang, Xiaohong; Zhang, Fuqiang; Tan, Weilong; Matthijnssens, Jelle; Qin, Shaomin; Xu, Lin; Zhao, Zihan; Yang, Ling'en; Wang, Quanxi; Hu, Tingsong; Bao, Xiaolei; Wu, Jianmin; Tu, Changchun

    2017-06-15

    Bats are natural reservoirs for many pathogenic viruses, and increasing evidence supports the notion that bats can also harbor group A rotaviruses (RVAs), important causative agents of diarrhea in children and young animals. Currently, 8 RVA strains possessing completely novel genotype constellations or genotypes possibly originating from other mammals have been identified from African and Chinese bats. However, all the data were mainly based on detection of RVA RNA, present only during acute infections, which does not permit assessment of the true exposure of a bat population to RVA. To systematically investigate the genetic diversity of RVAs, 547 bat anal swabs or gut samples along with 448 bat sera were collected from five South Chinese provinces. Specific reverse transcription-PCR (RT-PCR) screening found four RVA strains. Strain GLRL1 possessed a completely novel genotype constellation, whereas the other three possessed a constellation consistent with the MSLH14-like genotype, a newly characterized group of viruses widely prevalent in Chinese insectivorous bats. Among the latter, strain LZHP2 provided strong evidence of cross-species transmission of RVAs from bats to humans, whereas strains YSSK5 and BSTM70 were likely reassortants between typical MSLH14-like RVAs and human RVAs. RVA-specific antibodies were detected in 10.7% (48/448) of bat sera by an indirect immunofluorescence assay (IIFA). Bats in Guangxi and Yunnan had a higher RVA-specific antibody prevalence than those from Fujian and Zhejiang provinces. These observations provide evidence for cross-species transmission of MSLH14-like bat RVAs to humans, highlighting the impact of bats as reservoirs of RVAs on public health. IMPORTANCE Bat viruses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), Ebola, Hendra, and Nipah viruses, are important pathogens causing outbreaks of severe emerging infectious diseases. However, little is known about bat viruses capable

  14. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik

    2013-01-01

    BACKGROUND: The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically...... and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. METHODS: Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation...... with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. RESULTS: The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European “avian-like” H1-gene...

  15. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin

    2017-01-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detec...

  16. Efficacy of single dose of a bivalent vaccine containing inactivated Newcastle disease virus and reassortant highly pathogenic avian influenza H5N1 virus against lethal HPAI and NDV infection in chickens.

    Directory of Open Access Journals (Sweden)

    Dong-Hun Lee

    Full Text Available Highly pathogenic avian influenza (HPAI and Newcastle disease (ND are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6:2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1 virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.

  17. Complete genome sequence of a novel H9N2 subtype influenza virus FJG9 strain in China reveals a natural reassortant event.

    Science.gov (United States)

    Xie, Qingmei; Yan, Zhuanqiang; Ji, Jun; Zhang, Huanmin; Liu, Jun; Sun, Yue; Li, Guangwei; Chen, Feng; Xue, Chunyi; Ma, Jingyun; Bee, Yingzuo

    2012-09-01

    A/chicken/FJ/G9/09 (FJ/G9) is an H9N2 subtype avian influenza virus (H9N2 AIV) strain causing high morbidity that was isolated from broilers in Fujian Province of China in 2009. FJ/G9 has been used as the vaccine strain against H9N2 AIV infection in Fujian Province of China. Here, we report the complete genome sequence of FJ/G9 with natural six-way reassortment, which is the most complex genotype strain in China and even in the world so far. The present findings will aid in understanding the complexity and diversity of H9N2 subtype avian influenza virus.

  18. A point mutation in the polymerase protein PB2 allows a reassortant H9N2 influenza isolate of wild-bird origin to replicate in human cells.

    Science.gov (United States)

    Hussein, Islam T.M.; Ma, Eric J.; Meixell, Brandt; Hill, Nichola J.; Lindberg, Mark S.; Albrecht , Randy A.; Bahl, Justin; Runstadler, Jonathan A.

    2016-01-01

    H9N2 influenza A viruses are on the list of potentially pandemic subtypes. Therefore, it is important to understand how genomic reassortment and genetic polymorphisms affect phenotypes of H9N2 viruses circulating in the wild bird reservoir. A comparative genetic analysis of North American H9N2 isolates of wild bird origin identified a naturally occurring reassortant virus containing gene segments derived from both North American and Eurasian lineage ancestors. The PB2 segment of this virus encodes 10 amino acid changes that distinguish it from other H9 strains circulating in North America. G590S, one of the 10 amino acid substitutions observed, was present in ~ 12% of H9 viruses worldwide. This mutation combined with R591 has been reported as a marker of pathogenicity for human pandemic 2009 H1N1 viruses. Screening by polymerase reporter assay of all the natural polymorphisms at these two positions identified G590/K591 and S590/K591 as the most active, with the highest polymerase activity recorded for the SK polymorphism. Rescued viruses containing these two polymorphic combinations replicated more efficiently in MDCK cells and they were the only ones tested that were capable of establishing productive infection in NHBE cells. A global analysis of all PB2 sequences identified the K591 signature in six viral HA/NA subtypes isolated from several hosts in seven geographic locations. Interestingly, introducing the K591 mutation into the PB2 of a human-adapted H3N2 virus did not affect its polymerase activity. Our findings demonstrate that a single point mutation in the PB2 of a low pathogenic H9N2 isolate could have a significant effect on viral phenotype and increase its propensity to infect mammals. However, this effect is not universal, warranting caution in interpreting point mutations without considering protein sequence context.

  19. Virulence and transmissibility of H1N2 influenza virus in ferrets imply the continuing threat of triple-reassortant swine viruses.

    Science.gov (United States)

    Pascua, Philippe Noriel Q; Song, Min-Suk; Lee, Jun Han; Baek, Yun Hee; Kwon, Hyeok-il; Park, Su-Jin; Choi, Eun Hye; Lim, Gyo-Jin; Lee, Ok-Jun; Kim, Si-Wook; Kim, Chul-Joong; Sung, Moon Hee; Kim, Myung Hee; Yoon, Sun-Woo; Govorkova, Elena A; Webby, Richard J; Webster, Robert G; Choi, Young-Ki

    2012-09-25

    Efficient worldwide swine surveillance for influenza A viruses is urgently needed; the emergence of a novel reassortant pandemic H1N1 (pH1N1) virus in 2009 demonstrated that swine can be the direct source of pandemic influenza and that the pandemic potential of viruses prevalent in swine populations must be monitored. We used the ferret model to assess the pathogenicity and transmissibility of predominant Korean triple-reassortant swine (TRSw) H1N2 and H3N2 influenza viruses genetically related to North American strains. Although most of the TRSw viruses were moderately pathogenic, one [A/Swine/Korea/1204/2009; Sw/1204 (H1N2)] was virulent in ferrets, causing death within 10 d of inoculation, and was efficiently transmitted to naive contact ferrets via respiratory droplets. Although molecular analysis did not reveal known virulence markers, the Sw/1204 virus acquired mutations in hemagglutinin (HA) (Asp-225-Gly) and neuraminidase (NA) (Ser-315-Asn) proteins during the single ferret passage. The contact-Sw/1204 virus became more virulent in mice, replicated efficiently in vitro, extensively infected human lung tissues ex vivo, and maintained its ability to replicate and transmit in swine. Reverse-genetics studies further indicated that the HA(225G) and NA(315N) substitutions contributed substantially in altering virulence and transmissibility. These findings support the continuing threat of some field TRSw viruses to human and animal health, reviving concerns on the capacity of pigs to create future pandemic viruses. Apart from warranting continued and enhanced global surveillance, this study also provides evidence on the emerging roles of HA(225G) and NA(315N) as potential virulence markers in mammals.

  20. Molecular evolution of avian reovirus: evidence for genetic diversity and reassortment of the S-class genome segments and multiple cocirculating lineages

    International Nuclear Information System (INIS)

    Liu, Hung J.; Lee, Long H.; Hsu, Hsiao W.; Kuo, Liam C.; Liao, Ming H.

    2003-01-01

    Nucleotide sequences of the S-class genome segments of 17 field-isolates and vaccine strains of avian reovirus (ARV) isolated over a 23-year period from different hosts, pathotypes, and geographic locations were examined and analyzed to define phylogenetic profiles and evolutionary mechanism. The S1 genome segment showed noticeably higher divergence than the other S-class genes. The σC-encoding gene has evolved into six distinct lineages. In contrast, the other S-class genes showed less divergence than that of the σC-encoding gene and have evolved into two to three major distinct lineages, respectively. Comparative sequence analysis provided evidence indicating extensive sequence divergence between ARV and other orthoreoviruses. The evolutionary trees of each gene were distinct, suggesting that these genes evolve in an independent manner. Furthermore, variable topologies were the result of frequent genetic reassortment among multiple cocirculating lineages. Results showed genetic diversity correlated more closely with date of isolation and geographic sites than with host species and pathotypes. This is the first evidence demonstrating genetic variability among circulating ARVs through a combination of evolutionary mechanisms involving multiple cocirculating lineages and genetic reassortment. The evolutionary rates and patterns of base substitutions were examined. The evolutionary rate for the σC-encoding gene and σC protein was higher than for the other S-class genes and other family of viruses. With the exception of the σC-encoding gene, which nonsynonymous substitutions predominate over synonymous, the evolutionary process of the other S-class genes can be explained by the neutral theory of molecular evolution. Results revealed that synonymous substitutions predominate over nonsynonymous in the S-class genes, even though genetic diversity and substitution rates vary among the viruses

  1. Molecular and antigenic characterization of reassortant H3N2 viruses from turkeys with a unique constellation of pandemic H1N1 internal genes.

    Directory of Open Access Journals (Sweden)

    Yohannes Berhane

    Full Text Available Triple reassortant (TR H3N2 influenza viruses cause varying degrees of loss in egg production in breeder turkeys. In this study we characterized TR H3N2 viruses isolated from three breeder turkey farms diagnosed with a drop in egg production. The eight gene segments of the virus isolated from the first case submission (FAV-003 were all of TR H3N2 lineage. However, viruses from the two subsequent case submissions (FAV-009 and FAV-010 were unique reassortants with PB2, PA, nucleoprotein (NP and matrix (M gene segments from 2009 pandemic H1N1 and the remaining gene segments from TR H3N2. Phylogenetic analysis of the HA and NA genes placed the 3 virus isolates in 2 separate clades within cluster IV of TR H3N2 viruses. Birds from the latter two affected farms had been vaccinated with a H3N4 oil emulsion vaccine prior to the outbreak. The HAl subunit of the H3N4 vaccine strain had only a predicted amino acid identity of 79% with the isolate from FAV-003 and 80% for the isolates from FAV-009 and FAV-0010. By comparison, the predicted amino acid sequence identity between a prototype TR H3N2 cluster IV virus A/Sw/ON/33853/2005 and the three turkey isolates from this study was 95% while the identity between FAV-003 and FAV-009/10 isolates was 91%. When the previously identified antigenic sites A, B, C, D and E of HA1 were examined, isolates from FAV-003 and FAV-009/10 had a total of 19 and 16 amino acid substitutions respectively when compared with the H3N4 vaccine strain. These changes corresponded with the failure of the sera collected from turkeys that received this vaccine to neutralize any of the above three isolates in vitro.

  2. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model.

    Science.gov (United States)

    Arunorat, Jirapat; Charoenvisal, Nataya; Woonwong, Yonlayong; Kedkovid, Roongtham; Jittimanee, Supattra; Sitthicharoenchai, Panchan; Kesdangsakonwut, Sawang; Poolperm, Pariwat; Thanawongnuwech, Roongroje

    2017-10-01

    Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Identification of Human H1N2 and Human-Swine Reassortant H1N2 and H1N1 Influenza A Viruses among Pigs in Ontario, Canada (2003 to 2005)†

    OpenAIRE

    Karasin, Alexander I.; Carman, Suzanne; Olsen, Christopher W.

    2006-01-01

    Since 2003, three novel genotypes of H1 influenza viruses have been recovered from Canadian pigs, including a wholly human H1N2 virus and human-swine reassortants. These isolates demonstrate that human-lineage H1N2 viruses are infectious for pigs and that viruses with a human PB1/swine PA/swine PB2 polymerase complex can replicate in pigs.

  4. Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China.

    Science.gov (United States)

    Qiao, Chuanling; Liu, Liping; Yang, Huanliang; Chen, Yan; Xu, Huiyang; Chen, Hualan

    2014-12-01

    The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. Transmissions of the pandemic 2009/H1N1 virus from humans to poultry and other species of mammals were reported from several continents during the course of the 2009 H1N1 pandemic. Reassortant H1N1, H1N2, and H3N2 viruses containing genes of the pandemic 2009/H1N1 viruses appeared in pigs in some countries. In winter of 2012, a total of 2600 nasal swabs were collected from healthy pigs in slaughterhouses located throughout 10 provinces in China. The isolated viruses were subjected to genetic and antigenic analysis. Two novel triple-reassortant H1N2 influenza viruses were isolated from swine in China in 2012, with the HA gene derived from Eurasian avian-like swine H1N1, the NA gene from North American swine H1N2, and the six internal genes from the pandemic 2009/H1N1 viruses. The two viruses had similar antigenic features and some significant changes in antigenic characteristics emerged when compared to the previously identified isolates. We inferred that the novel reassortant viruses in China may have arisen from the accumulation of the three types of influenza viruses, which further indicates that swine herds serve as "mixing vessels" for influenza viruses. Influenza virus reassortment is an ongoing process, and our findings highlight the urgent need for continued influenza surveillance among swine herds. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark.

    Science.gov (United States)

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik; Nielsen, Jens; Bøtner, Anette; Heegaard, Peter M H; Fomsgaard, Anders; Viuff, Birgitte; Hjulsager, Charlotte Kristiane

    2013-09-18

    The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an "avian-like" H1N1 virus by an experimental infection study. Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an "avian-like" H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European "avian-like" H1-gene and a European "swine-like" N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish "avian-like" H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. The "avian-like" H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant between circulating swine "avian-like" H1N1 and H3N2. The Danish

  6. Genetic and phylogenetic analysis of multi-continent human influenza A(H1N2) reassortant viruses isolated in 2001 through 2003.

    Science.gov (United States)

    Chen, M-J; La, T; Zhao, P; Tam, J S; Rappaport, R; Cheng, S-M

    2006-12-01

    Genetic analyses were performed on 228 influenza A(H1) viruses derived from clinical subjects participating in an experimental vaccine trial conducted in 20 countries on four continents between 2001 and 2003. HA1 phylogenetic analysis of these viruses showed multiple clades circulated around the world with regional prevalence patterns. Sixty-five of the A(H1) viruses were identified as A(H1N2), 40 of which were isolated from South Africa. The A(H1) sequences of these viruses cluster with published H1N2 viruses phylogenetically and share with them diagnostic signature V169A and A193T changes. The results also showed for the first time that H1N2 viruses were prominent in South Africa during the 2001-2002 influenza season, accounting for over 90% of the A(H1) cases in our study, and infecting both children (29/31) and the elderly (11/13). Phylogenetic analysis of the 65 H1N2 viruses we identified, in conjunction with the 56 recent H1N2 viruses currently available in the database, provided a comprehensive view of the circulation and evolution of distinct clades of H1N2 viruses in a temporal manner between early 2001 and mid-2003, shortly after the appearance of these recent reassortant viruses in or near year 2000.

  7. PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine.

    Science.gov (United States)

    Xu, Guanlong; Zhang, Xuxiao; Liu, Qinfang; Bing, Guoxia; Hu, Zhe; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua; Sun, Yipeng

    2017-08-01

    Previous studies have identified a functional role of PA-X for influenza viruses in mice and avian species; however, its role in swine remains unknown. Toward this, we constructed PA-X deficient virus (Sw-FS) in the background of a Triple-reassortment (TR) H1N2 swine influenza virus (SIV) to assess the impact of PA-X in viral virulence in pigs. Expression of PA-X in TR H1N2 SIV enhanced viral replication and host protein synthesis shutoff, and inhibited the mRNA levels of type I IFNs and proinflammatory cytokines in porcine cells. A delay of proinflammatory responses was observed in lungs of pigs infected by wild type SIV (Sw-WT) compared to Sw-FS. Furthermore, Sw-WT virus replicated and transmitted more efficiently than Sw-FS in pigs. These results highlight the importance of PA-X in the moderation of virulence and immune responses of TR SIV in swine, which indicated that PA-X is a pro-virulence factor in TR SIV in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [Phylogenetic analysis of human/swine/avian gene reassortant H1N2 influenza A virus isolated from a pig in China].

    Science.gov (United States)

    Chen, Yixiang; Meng, Xueqiong; Liu, Qi; Huang, Xia; Huang, Shengbin; Liu, Cuiquan; Shi, Kaichuang; Guo, Jiangang; Chen, Fangfang; Hu, Liping

    2008-04-01

    Our aim in this study was to determine the genetic characterization and probable origin of the H1N2 swine influenza virus (A/Swine/Guangxi/13/2006) (Sw/GX/13/06) from lung tissue of a pig in Guangxi province, China. Eight genes of Sw/GX/13/06 were cloned and genetically analyzed. The hemagglutinin (HA), nucleoprotein (NP), matrix (M) and non-structural (NS) genes of Sw/GX/13/06 were most closely related to genes from the classical swine H1N1 influenza virus lineage. The neuraminidase (NA) and PB1 genes were most closely related to the corresponding genes from the human influenza H3N2 virus lineage. The remaining two genes PA and PB2 polymerase genes were most closely related to the genes from avian influenza virus lineage. Phylogenetic analyses revealed that Sw/GX/13/06 was a human/swine/avian H1N2 virus, and closely related to H1N2 viruses isolated from pigs in United States (1999-2001) and Korea (2002). To our knowledge, Sw/GX/13/06 was the first triple-reassortant H1N2 influenza A virus isolated from a pig in China. Whether the Sw/GX/13/06 has a potential threat to breeding farm and human health remains to be further investigated.

  9. Transcriptome Analysis of Human Peripheral Blood Mononuclear Cells Exposed to Lassa Virus and to the Attenuated Mopeia/Lassa Reassortant 29 (ML29), a Vaccine Candidate

    Science.gov (United States)

    Zapata, Juan Carlos; Carrion, Ricardo; Patterson, Jean L.; Crasta, Oswald; Zhang, Yan; Mani, Sachin; Jett, Marti; Poonia, Bhawna; Djavani, Mahmoud; White, David M.; Lukashevich, Igor S.; Salvato, Maria S.

    2013-01-01

    Lassa virus (LASV) is the causative agent of Lassa Fever and is responsible for several hundred thousand infections and thousands of deaths annually in West Africa. LASV and the non-pathogenic Mopeia virus (MOPV) are both rodent-borne African arenaviruses. A live attenuated reassortant of MOPV and LASV, designated ML29, protects rodents and primates from LASV challenge and appears to be more attenuated than MOPV. To gain better insight into LASV-induced pathology and mechanism of attenuation we performed gene expression profiling in human peripheral blood mononuclear cells (PBMC) exposed to LASV and the vaccine candidate ML29. PBMC from healthy human subjects were exposed to either LASV or ML29. Although most PBMC are non-permissive for virus replication, they remain susceptible to signal transduction by virus particles. Total RNA was extracted and global gene expression was evaluated during the first 24 hours using high-density microarrays. Results were validated using RT-PCR, flow cytometry and ELISA. LASV and ML29 elicited differential expression of interferon-stimulated genes (ISG), as well as genes involved in apoptosis, NF-kB signaling and the coagulation pathways. These genes could eventually serve as biomarkers to predict disease outcomes. The remarkable differential expression of thrombomodulin, a key regulator of inflammation and coagulation, suggests its involvement with vascular abnormalities and mortality in Lassa fever disease. PMID:24069471

  10. Transcriptome analysis of human peripheral blood mononuclear cells exposed to Lassa virus and to the attenuated Mopeia/Lassa reassortant 29 (ML29, a vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Zapata

    Full Text Available Lassa virus (LASV is the causative agent of Lassa Fever and is responsible for several hundred thousand infections and thousands of deaths annually in West Africa. LASV and the non-pathogenic Mopeia virus (MOPV are both rodent-borne African arenaviruses. A live attenuated reassortant of MOPV and LASV, designated ML29, protects rodents and primates from LASV challenge and appears to be more attenuated than MOPV. To gain better insight into LASV-induced pathology and mechanism of attenuation we performed gene expression profiling in human peripheral blood mononuclear cells (PBMC exposed to LASV and the vaccine candidate ML29. PBMC from healthy human subjects were exposed to either LASV or ML29. Although most PBMC are non-permissive for virus replication, they remain susceptible to signal transduction by virus particles. Total RNA was extracted and global gene expression was evaluated during the first 24 hours using high-density microarrays. Results were validated using RT-PCR, flow cytometry and ELISA. LASV and ML29 elicited differential expression of interferon-stimulated genes (ISG, as well as genes involved in apoptosis, NF-kB signaling and the coagulation pathways. These genes could eventually serve as biomarkers to predict disease outcomes. The remarkable differential expression of thrombomodulin, a key regulator of inflammation and coagulation, suggests its involvement with vascular abnormalities and mortality in Lassa fever disease.

  11. Isolation of a Reassortant H1N2 Swine Flu Strain of Type “Swine-Human-Avian” and Its Genetic Variability Analysis

    Directory of Open Access Journals (Sweden)

    Long-Bai Wang

    2018-01-01

    Full Text Available We isolated an influenza strain named A/Swine/Fujian/F1/2010 (H1N2 from a pig suspected to be infected with swine flu. The results of electron microscopy, hemagglutination (HA assay, hemagglutination inhibition (HI assay, and whole genome sequencing analysis suggest that it was a reassortant virus of swine (H1N1 subtype, human (H3N2 subtype, and avian influenza viruses. To further study the genetic evolution of A/Swine/Fujian/F1/2010 (H1N2, we cloned its whole genome fragments using RT-PCR and performed phylogenetic analysis on the eight genes. As a result, the nucleotide sequences of HA, NA, PB1, PA, PB2, NP, M, and NS gene are similar to those of A/Swine/Shanghai/1/2007(H1N2 with identity of 98.9%, 98.9%, 99.0%, 98.6%, 99.0%, 98.9%, 99.3%, and 99.3%, respectively. Similar to A/Swine/Shanghai/1/2007(H1N2, we inferred that the HA, NP, M, and NS gene fragments of A/Swine/Fujian/F1/2010 (H1N2 strain were derived from classical swine influenza H3N2 subtype, NA and PB1 were derived from human swine influenza H3N2 subtype, and PB2 and PA genes were derived from avian influenza virus. This further validates the role of swine as a “mixer” for influenza viruses.

  12. Whole genome characterisation of a porcine-like human reassortant G26P[19] Rotavirus A strain detected in a child hospitalised for diarrhoea in Nepal, 2007.

    Science.gov (United States)

    Agbemabiese, Chantal Ama; Nakagomi, Toyoko; Gauchan, Punita; Sherchand, Jeevan Bahadur; Pandey, Basu Dev; Cunliffe, Nigel A; Nakagomi, Osamu

    2017-10-01

    A rare G26 Rotavirus A strain RVA/Human-wt/NPL/07N1760/2007/G26P[19] was detected in a child hospitalised for acute diarrhoea in Kathmandu, Nepal. The complete genome of 07N1760 was determined in order to explore its evolutionary history as well as examine its relationship to a Vietnamese strain RVA/Human-wt/VNM/30378/2009/G26P[19], the only G26 strain whose complete genotype constellation is known. The genotype constellation of 07N1760 was G26-P[19]-I12-R1-C1-M1-A8-N1-T1-E1-H1, a unique constellation identical to that of the Vietnamese 30378 except the VP6 gene. Phylogenetic analysis revealed that both strains were unrelated at the lineage level despite their similar genotype constellation. The I12 VP6 gene of 07N1760 was highly divergent from the six currently deposited I12 sequences in the GenBank. Except for its NSP2 gene, the remaining genes of 07N1760 shared lineages with porcine and porcine-like human RVA genes. The NSP2 gene belonged to a human RVA N1 lineage which was distinct from typical porcine and porcine-like human lineages. In conclusion, the Nepali G26P[19] strain 07N1760 was a porcine RVA strain which derived an NSP2 gene from a human Wa-like RVA strain by intra-genotype reassortment probably after transmission to the human host. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Live attenuated tetravalent (G1-G4) bovine-human reassortant rotavirus vaccine (BRV-TV): Randomized, controlled phase III study in Indian infants.

    Science.gov (United States)

    Saluja, Tarun; Palkar, Sonali; Misra, Puneet; Gupta, Madhu; Venugopal, Potula; Sood, Ashwani Kumar; Dhati, Ravi Mandyam; Shetty, Avinash; Dhaded, Sangappa Malappa; Agarkhedkar, Sharad; Choudhury, Amlan; Kumar, Ramesh; Balasubramanian, Sundaram; Babji, Sudhir; Adhikary, Lopa; Dupuy, Martin; Chadha, Sangeet Mohan; Desai, Forum; Kukian, Darshna; Patnaik, Badri Narayan; Dhingra, Mandeep Singh

    2017-06-16

    Rotavirus remains the leading cause of diarrhoea among children rotavirus vaccine (BRV-TV) over the licensed human-bovine pentavalent rotavirus vaccine RV5. Phase III single-blind study (parents blinded) in healthy infants randomized (1:1) to receive three doses of BRV-TV or RV5 at 6-8, 10-12, and 14-16weeks of age. All concomitantly received a licensed diphtheria, tetanus, pertussis, hepatitis B, Haemophilus influenzae type b conjugate vaccine (DTwP-HepB-Hib) and oral polio vaccine (OPV). Immunogenic non-inferiority was evaluated in terms of the inter-group difference in anti-rotavirus serum IgA seroresponse (primary endpoint), and seroprotection/seroresponse rates to DTwP-HepB-Hib and OPV vaccines. Seroresponse was defined as a ≥4-fold increase in titers from baseline to D28 post-dose 3. Non-inferiority was declared if the difference between groups (based on the lower limit of the 95% confidence interval [CI]) was above -10%. Each subject was evaluated for solicited adverse events 7days and unsolicited & serious adverse events 28days following each dose of vaccination. Of 1195 infants screened, 1182 were randomized (590 to BRV-TV; 592 to RV5). Non-inferiority for rotavirus serum IgA seroresponse was not established: BRV-TV, 47.1% (95%CI: 42.8; 51.5) versus RV5, 61.2% (95%CI: 56.8; 65.5); difference between groups, -14.08% (95%CI: -20.4; -7.98). Serum IgA geometric mean concentrations at D28 post-dose 3 were 28.4 and 50.1U/ml in BRV-TV and RV5 groups, respectively. For all DTwP-HepB-Hib and OPV antigens, seroprotection/seroresponse was elicited in both groups and the -10% non-inferiority criterion between groups was met. There were 16 serious adverse events, 10 in BRV-TV group and 6 in RV5 group; none were classified as vaccine related. Both groups had similar vaccine safety profiles. BRV-TV was immunogenic but did not meet immunogenic non-inferiority criteria to RV5 when administered concomitantly with routine pediatric antigens in infants. Copyright © 2017

  14. Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses

    Science.gov (United States)

    Ramey, Andy M.; Reeves, Andrew; Teslaa, Joshua L.; Nashold, Sean W.; Donnelly, Tyrone F.; Bahl, Justin; Hall, Jeffrey S.

    2016-01-01

    Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November–December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds.

  15. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China.

    Science.gov (United States)

    Peng, Xiuming; Wu, Haibo; Xu, Lihua; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Xie, Tiansheng; Lu, Xiangyun; Wu, Nanping

    2016-06-01

    Pandemic outbreaks of H1N1 swine influenza virus have been reported since 2009. Reassortant H1N2 viruses that contain genes from the pandemic H1N1 virus have been isolated in Italy and the United States. However, there is limited information regarding the molecular characteristics of reassortant H1N2 swine influenza viruses in eastern China. Active influenza surveillance programs in Zhejiang Province identified a novel H1N2 influenza virus isolated from pigs displaying clinical signs of influenza virus infection. Whole-genome sequencing was performed and this strain was compared with other influenza viruses available in GenBank. Phylogenetic analysis suggested that the novel strain contained genes from the 2009 pandemic human H1N1 and swine H3N2 viruses. BALB/c mice were infected with the isolated virus to assess its virulence in mice. While the novel H1N2 isolate replicated well in mice, it was found to be less virulent. These results provide additional evidence that swine serve as intermediate hosts or 'mixing vessels' for novel influenza viruses. They also emphasize the importance of surveillance in the swine population for use as an early warning system for influenza outbreaks in swine and human populations.

  16. Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus.

    Directory of Open Access Journals (Sweden)

    Subaschandrabose Rajesh Kumar

    Full Text Available BACKGROUND: Avian influenza A H7N7 virus poses a pandemic threat to human health because of its ability for direct transmission from domestic poultry to humans and from human to human. The wide zoonotic potential of H7N7 combined with an antiviral immunity inhibition similar to pandemic 1918 H1N1 and 2009 H1N1 influenza viruses is disconcerting and increases the risk of a putative H7N7 pandemic in the future, underlining the urgent need for vaccine development against this virus. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we developed a recombinant vaccine by expressing the H7N7-HA protein on the surface of baculovirus (Bac-HA. The protective efficacy of the live Bac-HA vaccine construct was evaluated in a mouse model by challenging mice immunized intranasally (i.n. or subcutaneously (s.c. with high pathogenic mouse adapted H7N7 reassorted strain. Although s.c. injection of live Bac-HA induced higher specific IgG than i.n. immunization, the later resulted in an elevated neutralization titer. Interestingly, 100% protection from the lethal viral challenge was only observed for the mice immunized intranasally with live Bac-HA, whereas no protection was achieved in any other s.c. or i.n. immunized mice groups. In addition, we also observed higher mucosal IgA as well as increased IFN-γ and IL-4 responses in the splenocytes of the surviving mice coupled with a reduced viral titer and diminished histopathological signs in the lungs. CONCLUSION: Our results indicated that protection from high pathogenic H7N7 (NL/219/03 virus requires both mucosal and systemic immune responses in mice. The balance between Th1 and Th2 cytokines is also required for the protection against the H7N7 pathogen. Intranasal administration of live Bac-HA induced all these immune responses and protected the mice from lethal viral challenge. Therefore, live Bac-HA is an effective vaccine candidate against H7N7 viral infections.

  17. A randomized Phase III clinical trial to assess the efficacy of a bovine-human reassortant pentavalent rotavirus vaccine in Indian infants.

    Science.gov (United States)

    Kulkarni, Prasad S; Desai, Sajjad; Tewari, Tushar; Kawade, Anand; Goyal, Nidhi; Garg, Bishan Swarup; Kumar, Dinesh; Kanungo, Suman; Kamat, Veena; Kang, Gagandeep; Bavdekar, Ashish; Babji, Sudhir; Juvekar, Sanjay; Manna, Byomkesh; Dutta, Shanta; Angurana, Rama; Dewan, Deepika; Dharmadhikari, Abhijeet; Zade, Jagdish K; Dhere, Rajeev M; Fix, Alan; Power, Maureen; Uprety, Vidyasagar; Parulekar, Varsha; Cho, Iksung; Chandola, Temsunaro R; Kedia, Vikash K; Raut, Abhishek; Flores, Jorge

    2017-10-27

    Rotavirus is the most common cause of moderate-to-severe infant diarrhoea in developing countries, resulting in enormous morbidity, mortality, and economic burden. A bovine-human reassortant pentavalent rotavirus vaccine (BRV-PV) targeting the globally most common strains was developed in India and tested in a randomized, double-blind, placebo-controlled end-point driven Phase III efficacy clinical trial implemented at six sites across India. Infants 6 to 8weeks of age were randomized (1:1) to receive three oral doses of BRV-PV or placebo at 6, 10, and 14weeks of age along with routine vaccines. Home visit surveillance was conducted to detect severe rotavirus gastroenteritis (SRVGE) and safety outcomes until the children reached two years of age. A total of 3749 infants received BRV-PV while 3751 received placebo. At the time of the primary end-point (when the minimum number of cases needed for analysis were accrued) the vaccine efficacy against SRVGE was 36% (95% CI 11.7, 53.6, p=0.0067) in the per protocol (PP) analysis, and 41.9% (95% CI 21.1, 57.3, p=0.0005) in the intent to treat (ITT) analysis. Vaccine efficacy over the entire follow-up period (until children reached two years of age) was 39.5% (95% CI 26.7, 50, protavirus cases (VSRVGE, Vesikari score≥16) was 60.5% (95% CI 17.7, 81, p=0.0131) at the time of the primary analysis and 54.7% (95% CI 29.7, 70.8, p=0.0004) for the complete follow-period in the PP population. The incidence of solicited, unsolicited, and serious adverse events were similar in both the vaccine and placebo groups. Likewise, the number of intussusceptions and deaths were similar between both groups. Thus, BRV-PV is an effective, well tolerated and safe vaccine in Indian infants. (Trial registration: Clinical Trials.Gov [NCT 02133690] and Clinical Trial Registry of India [CTRI/2013/05/003667]). Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. PB1-F2 Protein Does Not Impact the Virulence of Triple-Reassortant H3N2 Swine Influenza Virus in Pigs but Alters Pathogenicity and Transmission in Turkeys.

    Science.gov (United States)

    Deventhiran, Jagadeeswaran; Kumar, Sandeep R P; Raghunath, Shobana; Leroith, Tanya; Elankumaran, Subbiah

    2016-01-01

    PB1-F2 protein, the 11th influenza A virus (IAV) protein, is considered to play an important role in primary influenza virus infection and postinfluenza secondary bacterial pneumonia in mice. The functional role of PB1-F2 has been reported to be a strain-specific and host-specific phenomenon. Its precise contribution to the pathogenicity and transmission of influenza virus in mammalian host, such as swine, and avian hosts, such as turkeys, remain largely unknown. In this study, we explored the role of PB1-F2 protein of triple-reassortant (TR) H3N2 swine influenza virus (SIV) in pigs and turkeys. Using the eight-plasmid reverse genetics system, we rescued wild-type SIV A/swine/Minnesota/1145/2007 (H3N2) (SIV 1145-WT), a PB1-F2 knockout mutant (SIV 1145-KO), and its N66S variant (SIV 1145-N66S). The ablation of PB1-F2 in SIV 1145 modulated early-stage apoptosis but did not affect the viral replication in swine alveolar macrophage cells. In pigs, PB1-F2 expression did not affect nasal shedding, lung viral load, immunophenotypes, and lung pathology. On the other hand, in turkeys, SIV 1145-KO infected poults, and its in-contacts developed clinical signs earlier than SIV 1145-WT groups and also displayed more extensive histopathological changes in intestine. Further, turkeys infected with SIV 1145-N66S displayed poor infectivity and transmissibility. The more extensive histopathologic changes in intestine and relative transmission advantage observed in turkeys infected with SIV 1145-KO need to be further explored. Taken together, these results emphasize the host-specific roles of PB1-F2 in the pathogenicity and transmission of IAV. Novel triple-reassortant H3N2 swine influenza virus emerged in 1998 and spread rapidly among the North American swine population. Subsequently, it showed an increased propensity to reassort, generating a range of reassortants. Unlike classical swine influenza virus, TR SIV produces a full-length PB1-F2 protein, which is considered an important

  19. Full genomic analysis of an influenza A (H1N2 virus identified during 2009 pandemic in Eastern India: evidence of reassortment event between co-circulating A(H1N1pdm09 and A/Brisbane/10/2007-like H3N2 strains

    Directory of Open Access Journals (Sweden)

    Mukherjee Tapasi Roy

    2012-10-01

    Full Text Available Abstract Background During the pandemic [Influenza A(H1N1pdm09] period in 2009-2010, an influenza A (Inf-A virus with H1N2 subtype (designated as A/Eastern India/N-1289/2009 was detected from a 25 years old male from Mizoram (North-eastern India. Objective To characterize full genome of the H1N2 influenza virus. Methods For initial detection of Influenza viruses, amplification of matrix protein (M gene of Inf-A and B viruses was carried out by real time RT-PCR. Influenza A positive viruses are then further subtyped with HA and NA gene specific primers. Sequencing and the phylogenetic analysis was performed for the H1N2 strain to understand its origin. Results The outcome of this full genome study revealed a unique reassortment event where the N-1289 virus acquired it’s HA gene from a 2009 pandemic H1N1 virus with swine origin and the other genes from H3N2-like viruses of human origin. Conclusions This study provides information on possibility of occurrence of reassortment events during influenza season when infectivity is high and two different subtypes of Inf-A viruses co-circulate in same geographical location.

  20. Full genomic analysis of an influenza A (H1N2) virus identified during 2009 pandemic in Eastern India: evidence of reassortment event between co-circulating A(H1N1)pdm09 and A/Brisbane/10/2007-like H3N2 strains.

    Science.gov (United States)

    Mukherjee, Tapasi Roy; Agrawal, Anurodh S; Chakrabarti, Sekhar; Chawla-Sarkar, Mamta

    2012-10-11

    During the pandemic [Influenza A(H1N1)pdm09] period in 2009-2010, an influenza A (Inf-A) virus with H1N2 subtype (designated as A/Eastern India/N-1289/2009) was detected from a 25 years old male from Mizoram (North-eastern India). To characterize full genome of the H1N2 influenza virus. For initial detection of Influenza viruses, amplification of matrix protein (M) gene of Inf-A and B viruses was carried out by real time RT-PCR. Influenza A positive viruses are then further subtyped with HA and NA gene specific primers. Sequencing and the phylogenetic analysis was performed for the H1N2 strain to understand its origin. The outcome of this full genome study revealed a unique reassortment event where the N-1289 virus acquired it's HA gene from a 2009 pandemic H1N1 virus with swine origin and the other genes from H3N2-like viruses of human origin. This study provides information on possibility of occurrence of reassortment events during influenza season when infectivity is high and two different subtypes of Inf-A viruses co-circulate in same geographical location.

  1. The temperature-sensitive and attenuation phenotypes conferred by mutations in the influenza virus PB2, PB1, and NP genes are influenced by the species of origin of the PB2 gene in reassortant viruses derived from influenza A/California/07/2009 and A/WSN/33 viruses.

    Science.gov (United States)

    Broadbent, Andrew J; Santos, Celia P; Godbout, Rachel A; Subbarao, Kanta

    2014-11-01

    Live attenuated influenza vaccines in the United States are derived from a human virus that is temperature sensitive (ts), characterized by restricted (≥ 100-fold) replication at 39 °C. The ts genetic signature (ts sig) has been mapped to 5 loci in 3 genes: PB1 (391 E, 581 G, and 661 T), PB2 (265 S), and NP (34 G). However, when transferred into avian and swine influenza viruses, only partial ts and attenuation phenotypes occur. To investigate the reason for this, we introduced the ts sig into the human origin virus A/WSN/33 (WSN), the avian-origin virus A/Vietnam/1203/04 (VN04), and the swine origin triple-reassortant 2009 pandemic H1N1 virus A/California/07/2009 (CA07), which contains gene segments from human, avian, and swine viruses. The VN04(ts sig) and CA07(ts sig) viruses replicated efficiently in Madin-Darby canine kidney (MDCK) cells at 39 °C, but the replication of WSN(ts sig) was restricted ≥ 100-fold compared to that at 33 °C. Reassortant CA07(ts sig) viruses were generated with individual polymerase gene segments from WSN, and vice versa. Only ts sig viruses with a PB2 gene segment derived from WSN were restricted in replication ≥ 100-fold at 39 °C. In ferrets, the CA07(ts sig) virus replicated in the upper and lower respiratory tract, but the replication of a reassortant CA07(ts sig) virus with a WSN PB2 gene was severely restricted in the lungs. Taken together, these data suggest that the origin of the PB2 gene segment influences the ts phenotype in vitro and attenuation in vivo. This could have implications for the design of novel live vaccines against animal origin influenza viruses. Live attenuated influenza vaccines (LAIVs) on temperature-sensitive (ts) backbones derived from animal origin influenza viruses are being sought for use in the poultry and swine industries and to protect people against animal origin influenza. However, inserting the ts genetic signature from a licensed LAIV backbone fails to fully attenuate these viruses. Our

  2. Bovine rotavirus pentavalent vaccine development in India.

    Science.gov (United States)

    Zade, Jagdish K; Kulkarni, Prasad S; Desai, Sajjad A; Sabale, Rajendra N; Naik, Sameer P; Dhere, Rajeev M

    2014-08-11

    A bovine rotavirus pentavalent vaccine (BRV-PV) containing rotavirus human-bovine (UK) reassortant strains of serotype G1, G2, G3, G4 and G9 has been developed by the Serum Institute of India Ltd, in collaboration with the National Institute of Allergy and Infectious Diseases (NIAID), USA. The vaccine underwent animal toxicity studies and Phase I and II studies in adults, toddlers and infants. It has been found safe and immunogenic and will undergo a large Phase III study to assess efficacy against severe rotavirus gastroenteritis. Copyright © 2014. Published by Elsevier Ltd.

  3. Inmunogenicidad, inocuidad y eficacia de una vacuna tetravalente obtenida por recombinación genética de rotavirus aislados de monos rhesus y seres humanos en Belém, Brasil Immunogenicity, safety and efficacy of tetravalent rhesus-human, reassortant rotavirus vaccine in Belém, Brazil

    Directory of Open Access Journals (Sweden)

    A. C. Linhares

    1998-05-01

    son lo suficientemente alentadores para justificar que en países en desarrollo se hagan otros estudios de esta vacuna con una dosis mayor para tratar de mejorar su inmunogenicidad y eficacia.A tetravalent rhesus-human reassortant rotavirus (RRV-TV vaccine (4 x 10(4 plaque-forming units/dose was evaluated for safety, immunogenicity and efficacy in a prospective, randomized, double-blind, placebo-controlled trial involving 540 Brazilian infants. Doses of vaccine or placebo were given at ages, 1, 3 and 5 months. No significant differences were noted in the occurrence of diarrhoea or vomiting in vaccine and placebo recipients following each dose. Low-grade fever occurred on days 3­5 in 2­3% of vaccinees after the first dose, but not after the second or third doses of vaccine. An IgA antibody response to rhesus rotavirus (RRV occurred in 58% of vaccinees and 33% of placebo recipients. Neutralizing antibody responses to individual serotypes did not exceed 20% when measured by fluorescent focus reduction, but exceeded 40% when assayed by plaque reduction neutralization. There were 91 cases of rotavirus diarrhoea among the 3-dose (vaccine or placebo recipients during two years of follow-up, 36 of them among children given the vaccine. Overall vaccine efficacy was 8% (P = 0.005 against any diarrhoea and 35% (P = 0.03 against any rotavirus diarrhoea. Protection during the first year of follow-up, when G serotype 1 rotavirus predominated, was 57% (P = 0.008, but fell to 12% in the second year. Similar results were obtained when analysis was restricted to episodes in which rotavirus was the only identified pathogen. There was a tendency for enhanced protection by vaccine against illness associated with an average of 6 or more stools per day. These results are sufficiently encouraging to warrant further studies of this vaccine in developing countries using a higher dosage in an attempt to improve its immunogenicity and efficacy.

  4. Nutritional status in relation to the efficacy of the rhesus-human reassortant, tetravalent rotavirus vaccine (RRV-TV in infants from Belém, Pará State, Brazil Relação entre o estado nutricional e a eficácia da vacina tetravalente contra rotavírus de origem símio-humana, geneticamente rearranjada (RRV-TV, em crianças de Belém, Pará, Brasil

    Directory of Open Access Journals (Sweden)

    Alexandre C. LINHARES

    2002-02-01

    Full Text Available The rhesus-human reassortant, tetravalent rotavirus vaccine (RRV-TV was licensed for routine use in the United States of America but it was recently withdrawn from the market because of its possible association with intussusception as an adverse event. The protective efficacy of 3 doses of RRV-TV, in its lower-titer (4 x 10(4 pfu/dose formulation, was evaluated according to the nutritional status of infants who participated in a phase III trial in Belém, Northern Brazil. A moderate protection conferred by RRV-TV was related to weight-for-age Z-scores (WAZ greater than -1 only, with rates of 38% (p = 0.04 and 40% (p = 0.04 for all- and- pure rotavirus diarrhoeal cases, respectively. In addition, there was a trend for greater efficacy (43%, p = 0.05 among infants reaching an height-for-age Z-score (HAZ of > -1. Taking WAZ, HAZ and weight-for-height Z-score (WHZ indices 0.05 if both placebo and vaccine groups are compared. There was no significant difference if rates of mixed and pure rotavirus diarrhoeal cases are compared in relation to HAZ, WAZ and weight-for-height Z-score (WHZ indices. Although a low number of malnourished infants could be identified in the present study, our data show some evidence that malnutrition may interfere with the efficacy of rotavirus vaccines in developing countries.A vacina tetravalente contra rotavírus de origem símio-humana, geneticamente rearranjada (RRV-TV, foi licenciada para uso rotineiro nos Estados Unidos da América do Norte; entretanto, tal imunizante foi removido do mercado, uma vez que a intussuscepção emergiu como possível evento adverso vacinal. A eficácia da RRV-TV - em sua formulação menos concentrada (10 x 10(4 pfu/dose - foi avaliada no tocante ao estado nutricional das crianças que integraram estudo caracterizado como de fase III, levado a efeito em Belém, região norte do Brasil. Observou-se proteção (moderada apenas entre os indivíduos com escore "Z" (peso-por-idade, WAZ superior

  5. LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples.

    Science.gov (United States)

    Dong, Xue; Zhou, Shiyue; Mechref, Yehia

    2016-06-01

    Oligosaccharides in milk not only provide nutrition to the infants but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat, and human milks using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat, and human milk samples (without isomeric consideration) were 11, 8, and 11, respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat, and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by porous graphitic carbon LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using porous graphitic carbon column. Permethylation of the glycan structures facilitated the interpretation of MS/MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Reassortment Group A Rotavirus from Straw-colored Fruit Bat (Eidolon helvum)

    Centers for Disease Control (CDC) Podcasts

    2010-12-02

    In this podcast, Dr. Mathew Esona of the Division of Viral Diseases at CDC describes the discovery of a unique Group A rotavirus isolated from fruit bats in Kenya.  Created: 12/2/2010 by National Center for Emerging and Zoonotic Infectious Diseases, National Center for Immunization and Respiratory Diseases.   Date Released: 12/2/2010.

  7. An emerging avian influenza A virus H5N7 is a genetic reassortant of highly pathogenic genes

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2006-01-01

    We full genome characterised the newly discovered avian influenza virus H5N7 subtype combination isolated from a stock of Danish game ducks to investigate the composition of the genome and possible features of high pathogenicity. It was found that the haemagglutinin and the acidic polymerase gene...... low pathogenic avian influenza A viruses. (c) 2006 Elsevier Ltd. All rights reserved....

  8. Viral replication kinetics and in vitro cytopathogenicity of parental and reassortant strains of bluetongue virus serotype 1, 6 and 8

    NARCIS (Netherlands)

    Coetzee, M.P.A.; Vuuren, van M.; Stokstad, M.; Myrmel, M.; Gennip, van H.G.P.; Rijn, van P.A.; Venter, E.H.

    2014-01-01

    Bluetongue virus (BTV), a segmented dsRNA virus, is the causative agent of bluetongue (BT), an economically important viral haemorrhagic disease of ruminants. Bluetongue virus can exchange its genome segments in mammalian or insect cells that have been co-infected with more than one strain of the

  9. Human group A rotavirus infections in children in Denmark; detection of reassortant G9 strains and zoonotic P 14 strains

    DEFF Research Database (Denmark)

    Midgley, S.; Bottiger, B.; Jensen, T. G.

    2014-01-01

    One of the leading causes of severe childhood gastroenteritis are group A rotaviruses, and they have been found to be associated with similar to 40% of the annual gastroenteritis-associated hospitalizations in young Danish children......One of the leading causes of severe childhood gastroenteritis are group A rotaviruses, and they have been found to be associated with similar to 40% of the annual gastroenteritis-associated hospitalizations in young Danish children...

  10. Kuru

    Science.gov (United States)

    ... type to also change shape. Other TSEs include Creutzfeldt-Jakob disease and fatal familial insomnia in humans, bovine spongiform ... type to also change shape. Other TSEs include Creutzfeldt-Jakob disease and fatal familial insomnia in humans, bovine spongiform ...

  11. Reassortant clade 2.3.4.4 Avian Influenza A(H5N6) Virus in a wild Mandarin Duck, South Korea, 2016

    Science.gov (United States)

    Highly pathogenic avian influenza viruses (HPAIV) have caused significant economic losses in the poultry industries and represents a serious threat to public health. H5N1 HPAIV was first detected in 1996 from a domestic goose in Guangdong China (Gs/GD) and has subsequently evolved into 10 geneticall...

  12. Complete Genome Sequence of a Novel Reassortant Avian Influenza H1N2 Virus Isolated from a Domestic Sparrow in 2012

    OpenAIRE

    Xie, Zhixun; Guo, Jie; Xie, Liji; Liu, Jiabo; Pang, Yaoshan; Deng, Xianwen; Xie, Zhiqin; Fan, Qing; Luo, Sisi

    2013-01-01

    We report here the complete genome sequence of a novel H1N2 avian influenza virus strain, A/Sparrow /Guangxi/GXs-1/2012 (H1N2), isolated from a sparrow in the Guangxi Province of southern China in 2012. All of the 8 gene segments (hemagglutinin [HA], nucleoprotein [NP], matrix [M], polymerase basic 2 [PB2], neuraminidase [NA], polymerase acidic [PA], polymerase basic 1 [PB1], and nonstructural [NS] genes) of this natural recombinant virus are attributed to the Eurasian lineage, and phylogenet...

  13. Multiple reassorted viruses as cause of highly pathogenic avian influenza A(H5N8) virus epidemic, the Netherlands, 2016

    NARCIS (Netherlands)

    Beerens, Nancy; Heutink, Rene; Bergervoet, Saskia A.; Harders, Frank; Bossers, Alex; Koch, Guus

    2017-01-01

    In 2016, an epidemic of highly pathogenic avian influenza A virus subtype H5N8 in the Netherlands caused mass deaths among wild birds, and several commercial poultry farms and captive bird holdings were affected. We performed complete genome sequencing to study the relationship between the wild bird

  14. Prevention of rotavirus gastroenteritis in infants and children: rotavirus vaccine safety, efficacy, and potential impact of vaccines

    Directory of Open Access Journals (Sweden)

    Aruna Chandran

    2010-07-01

    Full Text Available Aruna Chandran1, Sean Fitzwater1, Anjie Zhen2, Mathuram Santosham11Department of International Health, Division of Health Systems, 2Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USAAbstract: Rotavirus infection is the most common cause of severe gastroenteritis globally, with greater than 86% of deaths occurring in low-income and middle-income countries. There are two rotavirus vaccines currently licensed in the United States and prequalified by the World Health Organization. RV1 is a monovalent attenuated human rotavirus strain, given orally in two doses. RV5 is a pentavalent human-bovine reassortant rotavirus vaccine, given orally in three doses. A third rotavirus vaccine, LLV, is a lamb rotavirus strain given orally as a single dose, which is currently available only in China. RV1 and RV5 have been shown to be highly efficacious in developed countries, and initial results from trials in Africa and Asia are promising as well. At least three other vaccines are in development, which are being developed by manufacturers of developing countries. Further studies are needed to clarify issues including administration of oral rotavirus vaccines with breastfeeding and other oral vaccines, and alterations in dosing schedule. Using new data on global diarrheal burden, rotavirus is estimated to cause 390,000 deaths in children younger than 5 years. Should rotavirus vaccines be introduced in the routine immunization programs of all countries, a potential of 170,000 deaths could be prevented annually. The largest impact on mortality would be seen in low-income and middle-income countries, despite poor immunization coverage and lower efficacy. Therefore, international efforts are needed to ensure that rotavirus vaccines reach the populations with highest burden of rotavirus disease.Keywords: vaccination, mortality, rotavirus, gastroenteritis

  15. Swine Influenza Viruses – Evolution and Zoonotic Potential

    DEFF Research Database (Denmark)

    Fobian, Kristina

    reassortants (H1avN2hu and H1pdmN2sw). The two reassortants were detected for the first time in 2011 and have since then become established and are now circulating in Danish pigs. Viral replication in nasal wash samples and viral load in respiratory organs were determined. Growth kinetics of the four SIVs were...

  16. A reverse genetic analysis of human Influenza A virus H1N2

    OpenAIRE

    Anton, Aline

    2010-01-01

    Reassortment between influenza A viruses of different subtypes rarely appears. Even in a community where H1N1 and H3N2 viruses co-circulate, reassortment to produce persistent viruses of mixed gene segments does not readily occur. H1N2 viruses, that circulated between 2001-2003 were considered to have arisen through the reassortment of the two human influenza subtypes H1N1 and H3N2. Due to the fact they make such a rare appearance, H1N2 viruses used to have new characteristics compared to the...

  17. Assessment of zoonotic potential of four European swine influenza viruses in the ferret model

    DEFF Research Database (Denmark)

    Fobian, Kristina; P. Fabrizio, Thomas; Yoon, Sun-Woo

    herds and enhanced focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Of the four viruses, two were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2 and two were new reassortants, one with avian......The reverse zoonotic events that introduced the 2009 pandemic influenza virus into swine herds have drastically increased the diversity of reassortants throughout Europe. The pandemic potential of these novel reassortments is unknown, hence necessitating enhanced surveillance of European swine...... to neuraminidase inhibitors. These findings suggest that the investigated viruses have the potential to infect humans and further underline the need for continued surveillance as well as pandemic and zoonotic assessment of new influenza reassortants....

  18. Whole-Genome Characterization of a Novel Human Influenza A(H1N2) Virus Variant, Brazil.

    Science.gov (United States)

    Resende, Paola Cristina; Born, Priscila Silva; Matos, Aline Rocha; Motta, Fernando Couto; Caetano, Braulia Costa; Debur, Maria do Carmo; Riediger, Irina Nastassja; Brown, David; Siqueira, Marilda M

    2017-01-01

    We report the characterization of a novel reassortant influenza A(H1N2) virus not previously reported in humans. Recovered from a a pig farm worker in southeast Brazil who had influenza-like illness, this virus is a triple reassortant containing gene segments from subtypes H1N2 (hemagglutinin), H3N2 (neuraminidase), and pandemic H1N1 (remaining genes).

  19. Neuraminidase and hemagglutinin matching patterns of a highly pathogenic avian and two pandemic H1N1 influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhang

    Full Text Available BACKGROUND: Influenza A virus displays strong reassortment characteristics, which enable it to achieve adaptation in human infection. Surveying the reassortment and virulence of novel viruses is important in the prevention and control of an influenza pandemic. Meanwhile, studying the mechanism of reassortment may accelerate the development of anti-influenza strategies. METHODOLOGY/PRINCIPAL FINDINGS: The hemagglutinin (HA and neuraminidase (NA matching patterns of two pandemic H1N1 viruses (the 1918 and current 2009 strains and a highly pathogenic avian influenza A virus (H5N1 were studied using a pseudotyped particle (pp system. Our data showed that four of the six chimeric HA/NA combinations could produce infectious pps, and that some of the chimeric pps had greater infectivity than did their ancestors, raising the possibility of reassortment among these viruses. The NA of H5N1 (A/Anhui/1/2005 could hardly reassort with the HAs of the two H1N1 viruses. Many biological characteristics of HA and NA, including infectivity, hemagglutinating ability, and NA activity, are dependent on their matching pattern. CONCLUSIONS/SIGNIFICANCE: Our data suggest the existence of an interaction between HA and NA, and the HA NA matching pattern is critical for valid viral reassortment.

  20. Age-dependent differences in cytokine and antibody responses after experimental RSV infection in a bovine model

    DEFF Research Database (Denmark)

    Grell, S.N.; Riber, Ulla; Tjørnehøj, Kirsten

    2005-01-01

    Respiratory syncytial virus (RSV) causes severe respiratory disease in both infants and calves. As in humans, bovine RSV (BRSV) infections are most severe in the first 6 months of life. In this study, experimental infection with BRSV was performed in calves aged 1-5, 9-16 or 32-37 weeks. Compared...

  1. Prion Protein Self Interactions; a gateway to novel therapeutic strategies?

    NARCIS (Netherlands)

    Rigter, A.; Langeveld, J.P.M.; Zijderveld, van F.G.; Bossers, A.

    2010-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are fatal neurodegenerative disorders and include among others Creutzfeldt–Jakob disease in humans, bovine spongiform encephalopathy (BSE) in cattle, and scrapie in sheep. The central event in disease development in TSEs is the

  2. Bovine Staphylococcus aureus secretes the leukocidin LukMF′ to kill migrating neutrophils through CCR1

    NARCIS (Netherlands)

    Vrieling, M.; Koymans, K.J.; Heesterbeek, D.A.C.; Aerts, P.C.; Rutten, V.P.M.G.; de Haas, C.J.C.; van Kessel, K.P.M.; Koets, A.P.; Nijland, R; van Strijp, J.A.G.

    2015-01-01

    Although Staphylococcus aureus is best known for infecting humans, bovine-specific strains are a major cause of mastitis in dairy cattle. The bicomponent leukocidin LukMF′, exclusively harbored by S. aureus of ruminant origin, is a virulence factor associated with bovine infections. In this study,

  3. Bovine Staphylococcus aureus secretes the leukocidin LukMF' to kill migrating neutrophils through CCR1

    NARCIS (Netherlands)

    Vrieling, M.; Koymans, K.J.; Heesterbeek, D.A.C.; Aerts, P.C.; Rutten, V.P.M.G.; Haas, de C.J.C.; Kessel, van K.P.M.; Koets, A.P.; Nijland, R.; Strijp, van J.A.G.

    2015-01-01

    Although Staphylococcus aureus is best known for infecting humans, bovine-specific strains are a major cause of mastitis in dairy cattle. The bicomponent leukocidin LukMF′, exclusively harbored by S. aureus of ruminant origin, is a virulence factor associated with bovine infections. In this study,

  4. Testing the Effect of Internal Genes Derived from a Wild-Bird-Origin H9N2 Influenza A Virus on the Pathogenicity of an A/H7N9 Virus

    Directory of Open Access Journals (Sweden)

    Wen Su

    2015-09-01

    Full Text Available Since 2013, avian influenza A(H7N9 viruses have diversified into multiple lineages by dynamically reassorting with other viruses, especially H9N2, in Chinese poultry. Despite concerns about the pandemic threat posed by H7N9 viruses, little is known about the biological properties of H7N9 viruses that may recruit internal genes from genetically distinct H9N2 viruses circulating among wild birds. Here, we generated 63 H7N9 reassortants derived from an avian H7N9 and a wild-bird-origin H9N2 virus. Compared with the wild-type parent, 25/63 reassortants had increased pathogenicity in mice. A reassortant containing PB1 of the H9N2 virus was highly lethal to mice and chickens but was not transmissible to guinea pigs by airborne routes; however, three substitutions associated with adaptation to mammals conferred airborne transmission to the virus. The emergence of the H7N9-pandemic reassortant virus highlights that continuous monitoring of H7N9 viruses is needed, especially at the domestic poultry/wild bird interface.

  5. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

    Science.gov (United States)

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

  6. Internal Gene Cassette from a Genotype S H9N2 Avian Influenza Virus Attenuates the Pathogenicity of H5 Viruses in Chickens and Mice

    Directory of Open Access Journals (Sweden)

    Xiaoli Hao

    2017-10-01

    Full Text Available H9N2 avian influenza virus (AIV of genotype S frequently donate internal genes to facilitate the generation of novel reassortants such as H7N9, H10N8, H5N2 and H5N6 AIVs, posing an enormous threat to both human health and poultry industry. However, the pathogenicity and transmission of reassortant H5 viruses with internal gene cassette of genotype S H9N2-origin in chickens and mice remain unknown. In this study, four H5 reassortants carrying the HA and NA genes from different clades of H5 viruses and the remaining internal genes from an H9N2 virus of the predominant genotype S were generated by reverse genetics. We found that all four H5 reassortant viruses showed attenuated virulence in both chickens and mice, thus leading to increased the mean death times compared to the corresponding parental viruses. Consistently, the polymerase activity and replication ability in mammalian and avian cells, and the cytokine responses in the lungs of chickens and mice were also decreased when compared to their respective parental viruses. Moreover, these reassortants transmitted from birds to birds by direct contact but not by an airborne route. Our data indicate that the internal genes as a whole cassette from genotype S H9N2 viruses play important roles in reducing the pathogenicity of the H5 recombinants in chickens and mice, and might contribute to the circulation in avian or mammalian hosts.

  7. Assignment of simian rotavirus SA11 temperature-sensitive mutant groups B and E to genome segments

    International Nuclear Information System (INIS)

    Gombold, J.L.; Estes, M.K.; Ramig, R.F.

    1985-01-01

    Recombinant (reassortant) viruses were selected from crosses between temperature-sensitive (ts) mutants of simian rotavirus SA11 and wild-type human rotavirus Wa. The double-stranded genome RNAs of the reassortants were examined by electrophoresis in Tris-glycine-buffered polyacrylamide gels and by dot hybridization with a cloned DNA probe for genome segment 2. Analysis of replacements of genome segments in the reassortants allowed construction of a map correlating genome segments providing functions interchangeable between SA11 and Wa. The reassortants revealed a functional correspondence in order of increasing electrophoretic mobility of genome segments. Analysis of the parental origin of genome segments in ts+ SA11/Wa reassortants derived from the crosses SA11 tsB(339) X Wa and SA11 tsE(1400) X Wa revealed that the group B lesion of tsB(339) was located on genome segment 3 and the group E lesion of tsE(1400) was on segment 8

  8. Assignment of simian rotavirus SA11 temperature-sensitive mutant groups B and E to genome segments

    Energy Technology Data Exchange (ETDEWEB)

    Gombold, J.L.; Estes, M.K.; Ramig, R.F.

    1985-05-01

    Recombinant (reassortant) viruses were selected from crosses between temperature-sensitive (ts) mutants of simian rotavirus SA11 and wild-type human rotavirus Wa. The double-stranded genome RNAs of the reassortants were examined by electrophoresis in Tris-glycine-buffered polyacrylamide gels and by dot hybridization with a cloned DNA probe for genome segment 2. Analysis of replacements of genome segments in the reassortants allowed construction of a map correlating genome segments providing functions interchangeable between SA11 and Wa. The reassortants revealed a functional correspondence in order of increasing electrophoretic mobility of genome segments. Analysis of the parental origin of genome segments in ts+ SA11/Wa reassortants derived from the crosses SA11 tsB(339) X Wa and SA11 tsE(1400) X Wa revealed that the group B lesion of tsB(339) was located on genome segment 3 and the group E lesion of tsE(1400) was on segment 8.

  9. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002755 gi|15841371 >1wc3A 2 197 10 178 6e-16 ... pdb|1YBU|D Chain D, Mycobacterium Tuberculosis...C, ... Mycobacterium Tuberculosis Adenylyl Cyclase Rv1900c Chd, ... In Complex With A Substrat...e Analog. pdb|1YBU|B Chain B, ... Mycobacterium Tuberculosis Adenylyl Cycl...ase Rv1900c Chd, ... In Complex With A Substrate Analog. pdb|1YBU|A Chain A, ... Mycobacterium Tuberculosis

  10. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000962 gi|15609037 >1wc3A 2 197 10 178 6e-16 ... pdb|1YBU|D Chain D, Mycobacterium Tuberculosis...C, ... Mycobacterium Tuberculosis Adenylyl Cyclase Rv1900c Chd, ... In Complex With A Substrat...e Analog. pdb|1YBU|B Chain B, ... Mycobacterium Tuberculosis Adenylyl Cycl...ase Rv1900c Chd, ... In Complex With A Substrate Analog. pdb|1YBU|A Chain A, ... Mycobacterium Tuberculosis

  11. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002945 gi|31793093 >1wc3A 2 197 10 178 6e-16 ... pdb|1YBU|D Chain D, Mycobacterium Tuberculosis...C, ... Mycobacterium Tuberculosis Adenylyl Cyclase Rv1900c Chd, ... In Complex With A Substrat...e Analog. pdb|1YBU|B Chain B, ... Mycobacterium Tuberculosis Adenylyl Cycl...ase Rv1900c Chd, ... In Complex With A Substrate Analog. pdb|1YBU|A Chain A, ... Mycobacterium Tuberculosis

  12. Rotavirus vaccines: an overview.

    OpenAIRE

    Midthun, K; Kapikian, A Z

    1996-01-01

    Rotavirus vaccine development has focused on the delivery of live attenuated rotavirus strains by the oral route. The initial "Jennerian" approach involving bovine (RIT4237, WC3) or rhesus (RRV) rotavirus vaccine candidates showed that these vaccines were safe, well tolerated, and immunogenic but induced highly variable rates of protection against rotavirus diarrhea. The goal of a rotavirus vaccine is to prevent severe illness that can lead to dehydration in infants and young children in both...

  13. The evolutionary genetics and emergence of avian influenza viruses in wild birds.

    Directory of Open Access Journals (Sweden)

    Vivien G Dugan

    2008-05-01

    Full Text Available We surveyed the genetic diversity among avian influenza virus (AIV in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA and neuraminidase (NA subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient "genome constellations," continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses.

  14. Vacinas contra rotavírus e papilomavírus humano (HPV Vaccines against rotavirus and human papillomavirus (HPV

    Directory of Open Access Journals (Sweden)

    Alexandre C. Linhares

    2006-07-01

    -se que a implementação de vacinas de elevada eficácia na prevenção de tumores benignos e malignos causados por alguns tipos de HPV leve a uma queda acentuada das taxas desses tumores, os quais afetam milhões de pessoas em todo o mundo.OBJECTIVE: To briefly review strategies aimed at the development of rotavirus and HPV vaccines, with emphasis on the current status of studies assessing the safety, reactogenicity, immunogenicity and efficacy of recently developed vaccines. SOURCES OF DATA: This review focuses on articles published from 1996 to 2006, mainly those from the last five years, with special emphasis on data obtained from recently completed studies involving a new live attenuated human rotavirus vaccine and a virus-like particle (HPV vaccine. SUMMARY OF THE FINDINGS: Strategies for developing rotavirus vaccines ranged from Jennerian approaches to the new human-derived rotavirus vaccine. Currently, two rotavirus vaccines are recognized as both efficacious and safe: a pentavalent human-bovine reassortant vaccine and a vaccine derived from an attenuated rotavirus of human origin. The second of these has been evaluated in more than 70,000 infants all over the world. Prophylactic vaccines against HPV have been tested in more than 25,000 young individuals around the world. Results from phase II and III clinical studies indicate that such vaccines against the most common types of HPV, those linked to both genital warts and 70% of cervical cancers, are safe and highly efficacious. CONCLUSIONS: A future rotavirus immunization program covering 60 to 80% of infants worldwide is likely to reduce by at least 50% the number of rotavirus-associated hospitalizations and deaths. It is also reasonable to expect that implementation of HPV prophylactic vaccines will reduce the burden of the HPV-related diseases that presently impact millions of people around the world.

  15. Characterization of an artificial swine-origin influenza virus with the same gene combination as H1N1/2009 virus: a genesis clue of pandemic strain.

    Science.gov (United States)

    Zhao, Xueli; Sun, Yipeng; Pu, Juan; Fan, Lihong; Shi, Weimin; Hu, Yanxin; Yang, Jun; Xu, Qi; Wang, Jingjing; Hou, Dongjun; Ma, Guangpeng; Liu, Jinhua

    2011-01-01

    Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1) with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus). Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.

  16. Characterization of an artificial swine-origin influenza virus with the same gene combination as H1N1/2009 virus: a genesis clue of pandemic strain.

    Directory of Open Access Journals (Sweden)

    Xueli Zhao

    Full Text Available Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1 with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus. Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.

  17. Multiple daily fractionation in radiotherapy: biological rationale and preliminary clinical experiences

    Energy Technology Data Exchange (ETDEWEB)

    Arcangeli, G [Instituto Medico Scientifico, Rome (Italy). Dept. of Oncology; Mauro, F; Morelli, D; Nervi, C

    1979-09-01

    The biological bases of radiation dose fractionation are reviewed and discussed with special emphasis on reassortment. Experimental data on animal model systems are presented to clarify that reassortment has to be added to sublethal damage repair and reoxygenation in the rationale for an optimized radiotherapy course according to tumor cell kinetics. Clinical results on several human tumors treated with twice or thrice daily fractions are described. These results show that some clinically radioresistant tumors (especially if not characterized by a relatively long clinical doubling line) can be satisfactorily dealt with using multiple daily fractionation. Clinical observations indicate that a relatively high cumulative daily dose (200 + 150 + 150 rad) can be safely administered.

  18. Identification of the two rotavirus genes determining neutralization specificities

    International Nuclear Information System (INIS)

    Offit, P.A.; Blavat, G.

    1986-01-01

    Bovine rotavirus NCDV and simian rotavirus SA-11 represent two distinct rotavirus serotypes. A genetic approach was used to determine which viral gene segments segregated with serotype-specific viral neutralization. There were 16 reassortant rotarviruses derived by coinfection of MA-104 cells in vitro with the SA-11 and NCDV strains. The parental origin of reassortant rotavirus double-stranded RNA segments was determined by gene segment mobility in polyacrylamide gels and by hybridization with radioactively labeled parental viral transcripts. The authors found that two rotavirus gene segments found previously to code for outer capsid proteins vp3 and vp7 cosegreated with virus neutralization specificities

  19. Identification of the two rotavirus genes determining neutralization specificities

    Energy Technology Data Exchange (ETDEWEB)

    Offit, P.A.; Blavat, G.

    1986-01-01

    Bovine rotavirus NCDV and simian rotavirus SA-11 represent two distinct rotavirus serotypes. A genetic approach was used to determine which viral gene segments segregated with serotype-specific viral neutralization. There were 16 reassortant rotarviruses derived by coinfection of MA-104 cells in vitro with the SA-11 and NCDV strains. The parental origin of reassortant rotavirus double-stranded RNA segments was determined by gene segment mobility in polyacrylamide gels and by hybridization with radioactively labeled parental viral transcripts. The authors found that two rotavirus gene segments found previously to code for outer capsid proteins vp3 and vp7 cosegreated with virus neutralization specificities.

  20. Structure of rat acidic fibroblast growth factor at 1.4 Å resolution

    International Nuclear Information System (INIS)

    Kulahin, Nikolaj; Kiselyov, Vladislav; Kochoyan, Arthur; Kristensen, Ole; Kastrup, Jette Sandholm; Berezin, Vladimir; Bock, Elisabeth; Gajhede, Michael

    2007-01-01

    The structure of rat acidic fibroblast growth factor was determined and compared with those of human, bovine and newt origin. The rat and human structures were found to be very similar. Fibroblast growth factors (FGFs) constitute a family of 22 structurally related heparin-binding polypeptides that are involved in the regulation of cell growth, survival, differentiation and migration. Here, a 1.4 Å resolution X-ray structure of rat FGF1 is presented. Two molecules are present in the asymmetric unit of the crystal and they coordinate a total of five sulfate ions. The structures of human, bovine and newt FGF1 have been published previously. Human and rat FGF1 are found to have very similar structures

  1. Procedure for the preparation of tritium-labelled insulins

    International Nuclear Information System (INIS)

    Bienert, M.; Haensicke, A.; Beyermann, M.; Kaufmann, K.D.; Oehlke, J.; Klauschenz, E.; Bespalowa, S.; Titov, M.; Pleiss, U.

    1986-01-01

    This invention is concerned with a procedure for the preparation of specific 3 H-labelled insulins with sequences of human, bovine or porcine insulins and without simultaneous chemical modifications of the insulin. On the basis of this procedure a 3 H 2 -Typ (B26)-insulin can be obtained in good yield and purity with a specific radioactivity appropriate to biopharmaceutical and pharmacokinetic purposes in medicine and pharmaceutical industry, resp

  2. Procedure for the preparation of tritium-labelled insulins. Verfahren zur Herstellung von Tritium-markierten Insulinen

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, M; Haensicke, A; Beyermann, M; Kaufmann, K D; Oehlke, J; Klauschenz, E; Bespalowa, S; Titov, M; Pleiss, U

    1986-12-17

    This invention is concerned with a procedure for the preparation of specific /sup 3/H-labelled insulins with sequences of human, bovine or porcine insulins and without simultaneous chemical modifications of the insulin. On the basis of this procedure a /sup 3/H/sub 2/-Typ (B26)-insulin can be obtained in good yield and purity with a specific radioactivity appropriate to biopharmaceutical and pharmacokinetic purposes in medicine and pharmaceutical industry, resp.

  3. Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013

    DEFF Research Database (Denmark)

    J. Watson, Simon; Langat, Pinky; M. Reid, Scott

    2015-01-01

    )pdm09 becoming established at a mean frequency of 8% across European countries. Notably, swine in the United Kingdom have largely had a replacement of the endemic Eurasian avian virus-like (“avian-like”) genotypes with A(H1N1)pdm09-derived genotypes. The high number of reassortant genotypes observed...

  4. Comparative pathogenicity study of ten different betanodavirus strains in experimentally infected European sea bass, Dicentrarchus labrax (L.)

    DEFF Research Database (Denmark)

    Vendramin, Niccolò; Toffan, A.; Mancin, M.

    2014-01-01

    nervous necrosis virus (SJNNV), tiger puffer nervous necrosis virus and barfin flounder nervous necrosis virus, with the RGNNV genotype appearing as the most widespread in the Mediterranean region, although SJNNV-type strains and reassortant viruses have also been reported. The existence...

  5. Commentary

    African Journals Online (AJOL)

    ebutamanya

    2015-10-12

    Oct 12, 2015 ... Swine influenza is a highly contagious acute respiratory disease of pigs [2]. Human transmission occurs by inhalation or ingestion of droplets .... B et al. Human case of swine influenza A (H1N1) triple reassortant virus infection, Wisconsin. Emerg Infect Dis. 2008;14:1470-2. PubMed | Google Scholar. 6.

  6. Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments

    NARCIS (Netherlands)

    Wichgers Schreur, Paul J.; Kortekaas, Jeroen

    2016-01-01

    The bunyavirus genome comprises a small (S), medium (M), and large (L) RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging.

  7. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Dang, Thai Trung; Nguyen, Phi Hung

    2012-01-01

    The emergence of the H1N1 swine flu pandemic has the possibility to develop the occurrence of disaster- or drug-resistant viruses by additional reassortments in novel influenza A virus. In the course of an anti-influenza screening program for natural products, 10 xanthone derivatives (1-10) were ...

  8. Reduced experimental infectivity and transmissibility of intercontinental H5 (H5N8 and H5N2) compared to Eurasian H5N1 highly pathogenic avian influenza viruses for chickens, turkeys, and Japanese quail

    Science.gov (United States)

    H5N1 high pathogenicity avian influenza (HPAI) virus (HPAIV) emerged in 1996 in Guangdong China and has since spread to infect and cause deaths in wild birds, poultry and humans in over 63 countries in Asia, Europe and Africa; and more recently a reassortant H5N8 clade 2.3.4.4 HPAI virus has spread ...

  9. A highly pathogenic avian influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrated increased replication and transmission in pigs

    Science.gov (United States)

    This study investigated the pathogenicity and transmissibility of a reverse-genetics derived highly pathogenic avian influenza (HPAI) H5N1 influenza A virus (IAV), A/Iraq/775/06, and a reassortant virus comprised of the HA and NA from A/Iraq/775/06 and the internal genes of a 2009 pandemic H1N1, A/N...

  10. Genetic characterization of H1N2 swine influenza virus isolated in China and its pathogenesis and inflammatory responses in mice.

    Science.gov (United States)

    Zhang, Yan; Wang, Nan; Cao, Jiyue; Chen, Huanchun; Jin, Meilin; Zhou, Hongbo

    2013-09-01

    In 2009, two H1N2 influenza viruses were isolated from trachea swabs of pigs in Hubei in China. We compared these sequences with the other 18 complete genome sequences of swine H1N2 isolates from China during 2004 to 2010 and undertook extensive analysis of their evolutionary patterns. Six different genotypes - two reassortants between triple reassortant (TR) H3N2 and classical swine (CS) H1N1 virus, three reassortants between TR H1N2, Eurasian avian-like H1N1 swine virus and H9N2 swine virus, and one reassortant between H1N1, H3N2 human virus and CS H1N1 virus - were observed in these 20 swine H1N2 isolates. The TR H1N2 swine virus is the predominant genotype, and the two Hubei H1N2 isolates were located in this cluster. We also used a mouse model to examine the pathogenesis and inflammatory responses of the two isolates. The isolates replicated efficiently in the lung, and exhibited a strong inflammatory response, serious pathological changes and mortality in infected mice. Given the role that swine can play as putative "genetic mixing vessels" and the observed transmission of TR H1N2 in ferrets, H1N2 influenza surveillance in pigs should be increased to minimize the potential threat to public health.

  11. Influenza A virus infection dynamics in swine farms in Belgium, France, Italy and Spain 2006-2008

    NARCIS (Netherlands)

    Kyriakis, C.S.; Rose, N.; Foni, E.; Maldonado, J.; Loeffen, W.L.A.; Madec, F.; Simon, G.; Reeth, K.

    2013-01-01

    Avian-like H1N1 and reassortant H3N2 and H1N2 influenza A viruses with a human-like haemagglutinin have been co-circulating in swine in Europe for more than a decade. We aimed to examine the infection dynamics of the three swine influenza virus (SIV) lineages at the farm level, and to identify

  12. History of Swine influenza viruses in Asia.

    Science.gov (United States)

    Zhu, Huachen; Webby, Richard; Lam, Tommy T Y; Smith, David K; Peiris, Joseph S M; Guan, Yi

    2013-01-01

    The pig is one of the main hosts of influenza A viruses and plays important roles in shaping the current influenza ecology. The occurrence of the 2009 H1N1 pandemic influenza virus demonstrated that pigs could independently facilitate the genesis of a pandemic influenza strain. Genetic analyses revealed that this virus was derived by reassortment between at least two parent swine influenza viruses (SIV), from the northern American triple reassortant H1N2 (TR) and European avian-like H1N1 (EA) lineages. The movement of live pigs between different continents and subsequent virus establishment are preconditions for such a reassortment event to occur. Asia, especially China, has the largest human and pig populations in the world, and seems to be the only region frequently importing pigs from other continents. Virological surveillance revealed that not only classical swine H1N1 (CS), and human-origin H3N2 viruses circulated, but all of the EA, TR and their reassortant variants were introduced into and co-circulated in pigs in this region. Understanding the long-term evolution and history of SIV in Asia would provide insights into the emergence of influenza viruses with epidemic potential in swine and humans.

  13. Novel Eurasian highly pathogenic influenza A H5 viruses in wild birds, Washington, USA

    Science.gov (United States)

    Ip, Hon S.; Kim Torchetti, Mia; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara L.; Shearn-Bochsler, Valerie I.; Killian, Mary Lea; Pederson, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  14. Reoccurrence of H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses in wild birds during 2016

    Science.gov (United States)

    The Asian-origin H5N1 A/goose/Guangdong/1/1996 (Gs/GD) lineage of high pathogenicity avian influenza viruses (HPAIV) has become widespread across four continents, affecting poultry, wild birds and humans. H5N1 HPAIV has evolved into multiple hemagglutinin (HA) genetic clades and reassorting with dif...

  15. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    Science.gov (United States)

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  16. Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in the Netherlands, December 2017.

    Science.gov (United States)

    Beerens, Nancy; Koch, Guus; Heutink, Rene; Harders, Frank; Vries, D P Edwin; Ho, Cynthia; Bossers, Alex; Elbers, Armin

    2018-04-17

    A novel highly pathogenic avian influenza A(H5N6) virus affecting wild birds and commercial poultry was detected in the Netherlands in December 2017. Phylogenetic analysis demonstrated that the virus is a reassortant of H5N8 clade 2.3.4.4 viruses and not related to the Asian H5N6 viruses that caused human infections.

  17. Microevolution of Puumala hantavirus during a complete population cycle of its host, the bank vole (Myodes glareolus.

    Directory of Open Access Journals (Sweden)

    Maria Razzauti

    Full Text Available Microevolution of Puumala hantavirus (PUUV was studied throughout a population cycle of its host, the bank vole (Myodes glareolus. We monitored PUUV variants circulating in the host population in Central Finland over a five-year period that included two peak-phases and two population declines. Of 1369 bank voles examined, 360 (26.3% were found infected with PUUV. Partial sequences of each of the three genome segments were recovered (approx. 12% of PUUV genome from 356 bank voles. Analyses of these sequences disclosed the following features of PUUV evolution: 1 nucleotide substitutions are mostly silent and deduced amino acid changes are mainly conservative, suggesting stabilizing selection at the protein level; 2 the three genome segments accumulate mutations at a different rate; 3 some of the circulating PUUV variants are frequently observed while others are transient; 4 frequently occurring PUUV variants are composed of the most abundant segment genotypes (copious and new transient variants are continually generated; 5 reassortment of PUUV genome segments occurs regularly and follows a specific pattern of segments association; 6 prevalence of reassortant variants oscillates with season and is higher in the autumn than in the spring; and 7 reassortants are transient, i.e., they are not competitively superior to their parental variants. Collectively, these observations support a quasi-neutral mode of PUUV microevolution with a steady generation of transient variants, including reassortants, and preservation of a few preferred genotypes.

  18. Mapping the risk of avian influenza in wild birds in the US

    Science.gov (United States)

    Trevon L. Fuller; Sassan S. Saatchi; Emily E. Curd; Erin Toffelmier; Henri A. Thomassen; Wolfgang Buermann; David F. DeSante; Mark P. Nott; James F. Saracco; C. J. Ralph; John D. Alexander; John P. Pollinger; Thomas B. Smith.

    2010-01-01

    Avian influenza virus (AIV) is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur...

  19. Rapidly expanding range of highly pathogenic avian influenza viruses

    Science.gov (United States)

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  20. Variable epidemiology of the three outbreaks of unrelated highly pathogenic avian influenza viruses in the United States, 2014-2017

    Science.gov (United States)

    Three unrelated highly pathogenic avian influenza (HPAI) outbreaks have occurred in the United States (US) during 2014-2017. Late in 2014, Canada reported the first outbreak of an H5N2 reassortment virus between the A/goose/Guangdong/1/1996 (Gs/GD)-lineage H5Nx clade 2.3.4.4A HPAI and North American...

  1. Epidemiology of avian influenza in agricultural and other man-made systems

    Science.gov (United States)

    Over thousands of years, mankind has changed the natural ecosystems of birds by domestication and their influenza A viruses (IAVs) have reassorted and adapted to new systems and hosts. At high risk for introduction of IAVs from free-living aquatic birds are outdoor reared domestic poultry, especial...

  2. Influenza A (H3N2) virus in swine at agricultural fairs and transmission to humans, Michigan and Ohio, USA, 2016

    Science.gov (United States)

    An 18 case outbreak of variant H3N2 influenza A occurred during 2016 after exposure to influenza-infected swine at seven agricultural fairs. Sixteen cases were infected with a reassortant between 2010-2011 human seasonal H3N2 strains and viruses endemic in North American swine, a viral lineage incre...

  3. Molucular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013

    NARCIS (Netherlands)

    Watson, S.J.; Langat, P.; Reid, S.; Lam, T.; Cotten, M.; Kelly, M.; Reeth, Van K.; Qiu, Y.; Simon, G.; Bonin, E.; Foni, E.; Chiapponi, C.; Larsen, L.; Hjulsager, C.; Markowska-Daniel, I.; Urbaniak, K.; Durrwald, R.; Schlegel, M.; Huovilainen, A.; Davidson, I.; Dan, A.; Loeffen, W.L.A.; Edwards, S.; Bublot, M.; Vila, T.; Maldonado, J.; Valls, L.; Brown, I.H.; Pybus, O.G.; Kellam, P.

    2015-01-01

    The emergence in humans of the A(H1N1)pdm09 influenza virus, a complex reassortant virus of swine origin, highlighted the importance of worldwide influenza virus surveillance in swine. To date, large-scale surveillance studies have been reported for southern China and North America, but such data

  4. Establishment of an H6N2 Influenza Virus Lineage in Domestic Ducks in Southern China ▿ †

    Science.gov (United States)

    Huang, K.; Bahl, J.; Fan, X. H.; Vijaykrishna, D.; Cheung, C. L.; Webby, R. J.; Webster, R. G.; Chen, H.; Smith, Gavin J. D.; Peiris, J. S. M.; Guan, Y.

    2010-01-01

    Multiple reassortment events between different subtypes of endemic avian influenza viruses have increased the genomic diversity of influenza viruses circulating in poultry in southern China. Gene exchange from the natural gene pool to poultry has contributed to this increase in genetic diversity. However, the role of domestic ducks as an interface between the natural gene pool and terrestrial poultry in the influenza virus ecosystem has not been fully characterized. Here we phylogenetically and antigenically analyzed 170 H6 viruses isolated from domestic ducks from 2000 to 2005 in southern China, which contains the largest population of domestic ducks in the world. Three distinct hemagglutinin lineages were identified. Group I contained the majority of isolates with a single internal gene complex and was endemic in domestic ducks in Guangdong from the late 1990s onward. Group II was derived from reassortment events in which the surface genes of group I viruses were replaced with novel H6 and N2 genes. Group III represented H6 viruses that undergo frequent reassortment with multiple virus subtypes from the natural gene pool. Surprisingly, H6 viruses endemic in domestic ducks and terrestrial poultry seldom reassort, but gene exchanges between viruses from domestic ducks and migratory ducks occurred throughout the surveillance period. These findings suggest that domestic ducks in southern China mediate the interaction of viruses between different gene pools and facilitate the generation of novel influenza virus variants circulating in poultry. PMID:20463062

  5. Evolution of highly pathogenic avian H5N1 influenza viruses

    Energy Technology Data Exchange (ETDEWEB)

    Macken, Catherine A [Los Alamos National Laboratory; Green, Margaret A [Los Alamos National Laboratory

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data sets used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging

  6. The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1 are responsible for pathogenicity in ducks

    Directory of Open Access Journals (Sweden)

    Kajihara Masahiro

    2013-02-01

    Full Text Available Abstract Background Wild ducks are the natural hosts of influenza A viruses. Duck influenza, therefore, has been believed inapparent infection with influenza A viruses, including highly pathogenic avian influenza viruses (HPAIVs in chickens. In fact, ducks experimentally infected with an HPAIV strain, A/Hong Kong/483/1997 (H5N1 (HK483, did not show any clinical signs. Another HPAIV strain, A/whooper swan/Mongolia/3/2005 (H5N1 (MON3 isolated from a dead swan, however, caused neurological dysfunction and death in ducks. Method To understand the mechanism whereby MON3 shows high pathogenicity in ducks, HK483, MON3, and twenty-four reassortants generated between these two H5N1 viruses were compared for their pathogenicity in domestic ducks. Results None of the ducks infected with MON3-based single-gene reassortants bearing the PB2, NP, or NS gene segment of HK483 died, and HK483-based single-gene reassortants bearing PB2, NP, or NS genes of MON3 were not pathogenic in ducks, suggesting that multiple gene segments contribute to the pathogenicity of MON3 in ducks. All the ducks infected with the reassortant bearing PB2, PA, HA, NP, and NS gene segments of MON3 died within five days post-inoculation, as did those infected with MON3. Each of the viruses was assessed for replication in ducks three days post-inoculation. MON3 and multi-gene reassortants pathogenic in ducks were recovered from all of the tissues examined and replicated with high titers in the brains and lungs. Conclusion The present results indicate that multigenic factors are responsible for efficient replication of MON3 in ducks. In particular, virus growth in the brain might correlate with neurological dysfunction and the disease severity.

  7. Composting of solids separated from anaerobically digested animal manure

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-01-01

    ), woodchips (WC), bio-char (BC), barley straw (BS) and lupin residues (LR) and were included at a DS:BA of 3:1 or 6:1, resulting in nine treatments: CTDS (control, DS only), PT3:1, PT6:1, WC3:1, WC6:1, BC3:1, BC6:1, BS3:1 and LR3:1. Depending on treatment, C losses via CO2 and CH4 emissions accounted for 41...

  8. Transmission of influenza reflects seasonality of wild birds across the annual cycle

    Science.gov (United States)

    Hill, Nichola J.; Ma, Eric J.; Meixell, Brandt W.; Lindberg, Mark S.; Boyce, Walter M.; Runstadler, Jonathan A.

    2016-01-01

    Influenza A Viruses (IAV) in nature must overcome shifting transmission barriers caused by the mobility of their primary host, migratory wild birds, that change throughout the annual cycle. Using a phylogenetic network of viral sequences from North American wild birds (2008–2011) we demonstrate a shift from intraspecific to interspecific transmission that along with reassortment, allows IAV to achieve viral flow across successive seasons from summer to winter. Our study supports amplification of IAV during summer breeding seeded by overwintering virus persisting locally and virus introduced from a wide range of latitudes. As birds migrate from breeding sites to lower latitudes, they become involved in transmission networks with greater connectivity to other bird species, with interspecies transmission of reassortant viruses peaking during the winter. We propose that switching transmission dynamics may be a critical strategy for pathogens that infect mobile hosts inhabiting regions with strong seasonality.

  9. Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus.

    Science.gov (United States)

    Sun, Hailiang; Blackmon, Sherry; Yang, Guohua; Waters, Kaitlyn; Li, Tao; Tangwangvivat, Ratanaporn; Xu, Yifei; Shyu, Daniel; Wen, Feng; Cooley, Jim; Senter, Lucy; Lin, Xiaoxu; Jarman, Richard; Hanson, Larry; Webby, Richard; Wan, Xiu-Feng

    2017-11-01

    Two subtypes of influenza A virus (IAV), avian-origin canine influenza virus (CIV) H3N2 (CIV-H3N2) and equine-origin CIV H3N8 (CIV-H3N8), are enzootic in the canine population. Dogs have been demonstrated to seroconvert in response to diverse IAVs, and naturally occurring reassortants of CIV-H3N2 and the 2009 H1N1 pandemic virus (pdmH1N1) have been isolated. We conducted a thorough phenotypic evaluation of CIV-H3N2 in order to assess its threat to human health. Using ferret-generated antiserum, we determined that CIV-H3N2 is antigenically distinct from contemporary human H3N2 IAVs, suggesting that there may be minimal herd immunity in humans. We assessed the public health risk of CIV-H3N2 × pandemic H1N1 (pdmH1N1) reassortants by characterizing their in vitro genetic compatibility and in vivo pathogenicity and transmissibility. Using a luciferase minigenome assay, we quantified the polymerase activity of all possible 16 ribonucleoprotein (RNP) complexes (PB2, PB1, PA, NP) between CIV-H3N2 and pdmH1N1, identifying some combinations that were more active than either parental virus complex. Using reverse genetics and fixing the CIV-H3N2 hemagglutinin (HA), we found that 51 of the 127 possible reassortant viruses were viable and able to be rescued. Nineteen of these reassortant viruses had high-growth phenotypes in vitro , and 13 of these replicated in mouse lungs. A single reassortant with the NP and HA gene segments from CIV-H3N2 was selected for characterization in ferrets. The reassortant was efficiently transmitted by contact but not by the airborne route and was pathogenic in ferrets. Our results suggest that CIV-H3N2 reassortants may pose a moderate risk to public health and that the canine host should be monitored for emerging IAVs. IMPORTANCE IAV pandemics are caused by the introduction of novel viruses that are capable of efficient and sustained transmission into a human population with limited herd immunity. Dogs are a a potential mixing vessel for avian

  10. Characterization of incompletely typed rotavirus strains from Guinea-Bissau: identification of G8 and G9 types and a high frequency of mixed infections

    DEFF Research Database (Denmark)

    Fischer, TK; Page, NA; Griffin, DD

    2003-01-01

    Among 167 rotavirus specimens collected from young children in a suburban area of Bissau, Guinea-Bissau, from 1996 to 1998, most identifiable strains belonged to the uncommon P[6], G2 type and approximately 50% remained incompletely typed. In the present study, 76 such strains were further......%, respectively, identical to other African G8 and G9 strains. Multiple G and/or P types were identified at a high frequency (59%), including two previously undescribed mixed infections, P[4]P[6], G2G8 and P[4]P[6], G2G9. These mixed infections most likely represent naturally occurring reassortance of rotavirus......] and P[6] primer binding sites were detected. These findings highlight the need for regular evaluation of the multiplex primer PCR method and typing primers. The high frequency of uncommon as well as reassortant rotavirus strains in countries where rotavirus is an important cause of child mortality...

  11. Characterization of incompletely typed rotavirus strains from Guinea-Bissau: identification of G8 and G9 types and a high frequency of mixed infections

    DEFF Research Database (Denmark)

    Fischer, T.K.; Page, N.A.; Griffin, D.D.

    2003-01-01

    %, respectively, identical to other African G8 and G9 strains. Multiple G and/or P types were identified at a high frequency (59%), including two previously undescribed mixed infections, P[4]P[6], G2G8 and P[4]P[6], G2G9. These mixed infections most likely represent naturally occurring reassortance of rotavirus......] and P[6] primer binding sites were detected. These findings highlight the need for regular evaluation of the multiplex primer PCR method and typing primers. The high frequency of uncommon as well as reassortant rotavirus strains in countries where rotavirus is an important cause of child mortality...... underscores the need for extensive strain surveillance as a basis to develop appropriate rotavirus vaccine candidates....

  12. UCLA High Speed, High Volume Laboratory Network for Infectious Diseases

    Science.gov (United States)

    2008-04-01

    of Human Influenza A( H1N2 ) Reassortant Viruses during the 2001–2002 Influenza Season. Journal Infectious Diseases 2002;186:1490–1493...X, Smith CB, Mungall BA, Lindstrom SE, Hall HE, Subbarao K, et al. Intercontinental circulation of human influenza A( H1N2 ) reas- sortant viruses...numerous samples containing highly pathologic avian influenza and other select agents (dual-use). With FY07 (available), FY08 (available) and FY 09

  13. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003

    NARCIS (Netherlands)

    Reeth, K.; Brown, I.H.; Durrwald, R.; Foni, E.; Labarque, G.; Lenihan, P.; Maldonado, J.; Markowska-Daniel, I.; Pensaert, M.; Pospisil, Z.; Koch, G.

    2008-01-01

    Objectives Avian-like H1N1 and human-like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human-like H1 emerged in the mid 1990s. This study, which was part of the EC-funded 'European Surveillance

  14. Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry

    Science.gov (United States)

    2007-05-30

    Intercontinental circulation of human influenza A( H1N2 ) reassortant viruses during the 2001–2002 influenza season. J Infect Dis 186: 1490–1493. 6. Taubenberger...Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry Rangarajan Sampath1*, Kevin L. Russell2, Christian Massire1, Mark W...Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America Background. Effective influenza surveillance requires

  15. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China

    OpenAIRE

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and...

  16. Different evolutionary trends of swine H1N2 influenza viruses in Italy compared to European viruses.

    Science.gov (United States)

    Moreno, Ana; Gabanelli, Elena; Sozzi, Enrica; Lelli, Davide; Chiapponi, Chiara; Ciccozzi, Massimo; Zehender, Gianguglielmo; Cordioli, Paolo

    2013-12-01

    European H1N2 swine influenza viruses (EU H1N2SIVs) arose from multiple reassortment events among human H1N1, human H3N2, and avian influenza viruses. We investigated the evolutionary dynamics of 53 Italian H1N2 strains by comparing them with EU H1N2 SIVs. Hemagglutinin (HA) phylogeny revealed Italian strains fell into four groups: Group A and B (41 strains) had a human H1 similar to EU H1N2SIVs, which probably originated in 1986. However Group B (38 strains) formed a subgroup that had a two-amino acid deletion at positions 146/147 in HA. Group C (11 strains) contained an avian H1 that probably originated in 1996, and Group D (1 strain) had an H1 characteristic of the 2009 pandemic strain. Neuraminidase (NA) phylogeny suggested a series of genomic reassortments had occurred. Group A had an N2 that originated from human H3N2 in the late 1970s. Group B had different human N2 that most likely arose from a reassortment with the more recent human H3N2 virus, which probably occurred in 2000. Group C had an avian-like H1 combined with an N2 gene from one of EU H1N2SIVs, EU H3N2SIVs or Human H3N2. Group D was part of the EU H3N2SIVs clade. Although selection pressure for HA and NA was low, several positively selected sites were identified in both proteins, some of which were antigenic, suggesting selection influenced the evolution of SIV. The data highlight different evolutionary trends between European viruses and currently circulating Italian B strains and show the establishment of reassortant strains involving human viruses in Italian pigs.

  17. Molecular characterization of field infectious bursal disease virus isolates from Nigeria

    Directory of Open Access Journals (Sweden)

    Ijeoma O. Nwagbo

    2016-12-01

    Full Text Available Aim: To characterize field isolates of infectious bursal disease virus (IBDV from outbreaks in nine states in Nigeria through reverse transcription polymerase chain reaction (RT-PCR and sequence analysis of portions of the VP2 and VP1 genes and to determine the presence or absence of reassortant viruses. Materials and Methods: A total of 377 bursa samples were collected from 201 suspected IBD outbreaks during 2009 to 2014 from nine states in Nigeria. Samples were subjected to RT-PCR using VP2 and VP1 gene specific primers, and the resulting PCR products were sequenced. Results: A total of 143 samples were positive for IBDV by RT-PCR. These assays amplified a 743 bp fragment from nt 701 to 1444 in the IBDV VP2 hypervariable region (hvVP2 of segment A and a 722 bp fragment from nt 168 to 889 in the VP1 gene of segment B. RT-PCR products were sequenced, aligned and compared with reference IBDV sequences obtained from GenBank. All but one hvVP2 sequence showed similarity to very virulent IBDV (vvIBDV reference strains, yet only 3 of the VP1 67 VP1 sequences showed similarity to the VP1 gene of vvIBDV. Phylogenetic analysis revealed a new lineage of Nigerian reassortant IBDV strains. Conclusion: Phylogenetic analysis of partial sequences of genome segment A and B of IBDV in Nigeria confirmed the existence of vvIBDV in Nigeria. In addition, we noted the existence of reassortant IBDV strains with novel triplet amino acid motifs at positions 145, 146 and 147 in the reassorted Nigerian IBDV.

  18. Geographical and Historical Patterns in the Emergences of Novel Highly Pathogenic Avian Influenza (HPAI H5 and H7 Viruses in Poultry

    Directory of Open Access Journals (Sweden)

    Madhur S. Dhingra

    2018-06-01

    Full Text Available Over the years, the emergence of novel H5 and H7 highly pathogenic avian influenza viruses (HPAI has been taking place through two main mechanisms: first, the conversion of a low pathogenic into a highly pathogenic virus, and second, the reassortment between different genetic segments of low and highly pathogenic viruses already in circulation. We investigated and summarized the literature on emerging HPAI H5 and H7 viruses with the aim of building a spatio-temporal database of all these recorded conversions and reassortments events. We subsequently mapped the spatio-temporal distribution of known emergence events, as well as the species and production systems that they were associated with, the aim being to establish their main characteristics. From 1959 onwards, we identified a total of 39 independent H7 and H5 LPAI to HPAI conversion events. All but two of these events were reported in commercial poultry production systems, and a majority of these events took place in high-income countries. In contrast, a total of 127 reassortments have been reported from 1983 to 2015, which predominantly took place in countries with poultry production systems transitioning from backyard to intensive production systems. Those systems are characterized by several co-circulating viruses, multiple host species, regular contact points in live bird markets, limited biosecurity within value chains, and frequent vaccination campaigns that impose selection pressures for emergence of novel reassortants. We conclude that novel HPAI emergences by these two mechanisms occur in different ecological niches, with different viral, environmental and host associated factors, which has implications in early detection and management and mitigation of the risk of emergence of novel HPAI viruses.

  19. Determining the Infectious Dose of Influenza Aerosols in a Mouse Model

    Science.gov (United States)

    2012-06-20

    suggests significant potential for delivery as an aerosol weapon . Our scope of interest includes evaluation of RPE and clinical significance of chemically...media for 0, 60, 90 or 120 mins to evaluate stability of the organism in the buffer. The optical density (OD) was read (SmartSpec Plus, Bio -Rad...2012). Because of influenza’s ability to reassort based on surface proteins ( antigenic drift), the risk is that the recombination of genetic material

  20. A novel monoclonal antibody effective against lethal challenge with swine-lineage and 2009 pandemic H1N1 influenza viruses in mice

    Science.gov (United States)

    The HA protein of the 2009 pandemic H1N1viruses (14 H1N1pdm) is antigenically closely related to the HA of classical North American swine H1N1 influenza viruses (cH1N1). Since 1998, through reassortment and incorporation of HA genes from human H3N2 and H1N1 influenza viruses, swine influenza strains...

  1. Polymerase discordance in novel swine influenza H3N2v constellations is tolerated in swine but not human respiratory epithelial cells.

    Directory of Open Access Journals (Sweden)

    Joshua D Powell

    Full Text Available Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09 in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA segment occurred within swine H3N2 with ∼ 80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection.

  2. Polymerase Discordance in Novel Swine Influenza H3N2v Constellations Is Tolerated in Swine but Not Human Respiratory Epithelial Cells

    Science.gov (United States)

    Powell, Joshua D.; Dlugolenski, Daniel; Nagy, Tamas; Gabbard, Jon; Lee, Christopher; Tompkins, Stephen M.; Tripp, Ralph A.

    2014-01-01

    Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09) in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA) segment occurred within swine H3N2 with ∼80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA) showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection. PMID:25330303

  3. Full-Genome Analysis of Avian Influenza A(H5N1) Virus from a Human, North America, 2013

    Science.gov (United States)

    Pabbaraju, Kanti; Tellier, Raymond; Wong, Sallene; Li, Yan; Bastien, Nathalie; Tang, Julian W.; Drews, Steven J.; Jang, Yunho; Davis, C. Todd; Tipples, Graham A.

    2014-01-01

    Full-genome analysis was conducted on the first isolate of a highly pathogenic avian influenza A(H5N1) virus from a human in North America. The virus has a hemagglutinin gene of clade 2.3.2.1c and is a reassortant with an H9N2 subtype lineage polymerase basic 2 gene. No mutations conferring resistance to adamantanes or neuraminidase inhibitors were found. PMID:24755439

  4. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  5. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens.

    Science.gov (United States)

    Vergara-Alert, Júlia; Busquets, Núria; Ballester, Maria; Chaves, Aida J; Rivas, Raquel; Dolz, Roser; Wang, Zhongfang; Pleschka, Stephan; Majó, Natàlia; Rodríguez, Fernando; Darji, Ayub

    2014-01-25

    Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5-types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7-virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.

  6. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest

    OpenAIRE

    Christine L. P. Eng; Joo Chuan Tong; Tin Wee Tan

    2017-01-01

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains th...

  7. Group A rotavirus gastroenteritis: post-vaccine era, genotypes and zoonotic transmission

    Science.gov (United States)

    Luchs, Adriana; Timenetsky, Maria do Carmo Sampaio Tavares

    2016-01-01

    ABSTRACT This article provides a review of immunity, diagnosis, and clinical aspects of rotavirus disease. It also informs about the changes in epidemiology of diarrheal disease and genetic diversity of circulating group A rotavirus strains following the introduction of vaccines. Group A rotavirus is the major pathogen causing gastroenteritis in animals. Its segmented RNA genome can lead to the emergence of new or unusual strains in human populations via interspecies transmission and/or reassortment events. PMID:27462899

  8. Clinical and Molecular Characteristics of Human Rotavirus G8P[8] Outbreak Strain, Japan, 2014.

    Science.gov (United States)

    Kondo, Kenji; Tsugawa, Takeshi; Ono, Mayumi; Ohara, Toshio; Fujibayashi, Shinsuke; Tahara, Yasuo; Kubo, Noriaki; Nakata, Shuji; Higashidate, Yoshihito; Fujii, Yoshiki; Katayama, Kazuhiko; Yoto, Yuko; Tsutsumi, Hiroyuki

    2017-06-01

    During March-July 2014, rotavirus G8P[8] emerged as the predominant cause of rotavirus gastroenteritis among children in Hokkaido Prefecture, Japan. Clinical characteristics were similar for infections caused by G8 and non-G8 strains. Sequence and phylogenetic analyses suggest the strains were generated by multiple reassortment events between DS-1-like P[8] strains and bovine strains from Asia.

  9. Cytokines: applications in domestic food animals.

    Science.gov (United States)

    Blecha, F

    1991-01-01

    Cytokines such as human, bovine, and porcine interferons and human and bovine interleukin-1 and interleukin-2 have been used in vivo in cattle and pigs. Colony-stimulating factors and tumor necrosis factor alpha have been evaluated in vitro in food animals. Studies to evaluate cytokines in domestic food animals have shown that specific and nonspecific immunomodulation is possible in immunosuppressed or pathogen-exposed animals. Cytokine prophylaxis or therapy in food animals may have the greatest potential for control of respiratory disease and mastitis.

  10. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States.

    Science.gov (United States)

    Vincent, Amy L; Ma, Wenjun; Lager, Kelly M; Gramer, Marie R; Richt, Juergen A; Janke, Bruce H

    2009-10-01

    H1 influenza A viruses that were distinct from the classical swine H1 lineage were identified in pigs in Canada in 2003–2004; antigenic and genetic characterization identified the hemagglutinin (HA) as human H1 lineage. The viruses identified in Canadian pigs were human lineage in entirety or double (human–swine) reassortants. Here, we report the whole genome sequence analysis of four human-like H1 viruses isolated from U.S. swine in 2005 and 2007. All four isolates were characterized as triple reassortants with an internal gene constellation similar to contemporary U.S. swine influenza virus (SIV), with HA and neuraminidase (NA) most similar to human influenza virus lineages. A 2007 human-like H1N1 was evaluated in a pathogenesis and transmission model and compared to a 2004 reassortant H1N1 SIV isolate with swine lineage HA and NA. The 2007 isolate induced disease typical of influenza virus and was transmitted to contact pigs; however, the kinetics and magnitude differed from the 2004 H1N1 SIV. This study indicates that the human-like H1 SIV can efficiently replicate and transmit in the swine host and now co-circulates with contemporary SIVs as a distinct genetic cluster of H1 SIV.

  11. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    International Nuclear Information System (INIS)

    Ocaña-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert; Stech, Jürgen; Stech, Olga; Summerfield, Artur

    2012-01-01

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-κB translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  12. Diversity and evolution of avian influenza viruses in live poultry markets, free-range poultry and wild wetland birds in China.

    Science.gov (United States)

    Chen, Liang-Jun; Lin, Xian-Dan; Guo, Wen-Ping; Tian, Jun-Hua; Wang, Wen; Ying, Xu-Hua; Wang, Miao-Ruo; Yu, Bin; Yang, Zhan-Qiu; Shi, Mang; Holmes, Edward C; Zhang, Yong-Zhen

    2016-04-01

    The wide circulation of novel avian influenza viruses (AIVs) highlights the risk of pandemic influenza emergence in China. To investigate the prevalence and genetic diversity of AIVs in different ecological contexts, we surveyed AIVs in live poultry markets (LPMs), free-range poultry and the wetland habitats of wild birds in Zhejiang and Hubei provinces. Notably, LPMs contained the highest frequency of AIV infection, and the greatest number of subtypes (n = 9) and subtype co-infections (n = 14), as well as frequent reassortment, suggesting that they play an active role in fuelling AIV transmission. AIV-positive samples were also identified in wild birds in both provinces and free-range poultry in one sampling site close to a wetland region in Hubei. H9N2, H7N9 and H5N1 were the most commonly sampled subtypes in the LPMs from Zhejiang, whilst H5N6 and H9N2 were the dominant subtypes in the LPMs from Hubei. Phylogenetic analyses of the whole-genome sequences of 43 AIVs revealed that three reassortant H5 subtypes were circulating in LMPs in both geographical regions. Notably, the viruses sampled from the wetland regions and free-range poultry contained complex reassortants, for which the origins of some segments were unclear. Overall, our study highlights the extent of AIV genetic diversity in two highly populated parts of central and south-eastern China, particularly in LPMs, and emphasizes the need for continual surveillance.

  13. Analysis of Coinfections with A/H1N1 Strain Variants among Pigs in Poland by Multitemperature Single-Strand Conformational Polymorphism

    Directory of Open Access Journals (Sweden)

    Krzysztof Lepek

    2015-01-01

    Full Text Available Monitoring and control of infections are key parts of surveillance systems and epidemiological risk prevention. In the case of influenza A viruses (IAVs, which show high variability, a wide range of hosts, and a potential of reassortment between different strains, it is essential to study not only people, but also animals living in the immediate surroundings. If understated, the animals might become a source of newly formed infectious strains with a pandemic potential. Special attention should be focused on pigs, because of the receptors specific for virus strains originating from different species, localized in their respiratory tract. Pigs are prone to mixed infections and may constitute a reservoir of potentially dangerous IAV strains resulting from genetic reassortment. It has been reported that a quadruple reassortant, A(H1N1pdm09, can be easily transmitted from humans to pigs and serve as a donor of genetic segments for new strains capable of infecting humans. Therefore, it is highly desirable to develop a simple, cost-effective, and rapid method for evaluation of IAV genetic variability. We describe a method based on multitemperature single-strand conformational polymorphism (MSSCP, using a fragment of the hemagglutinin (HA gene, for detection of coinfections and differentiation of genetic variants of the virus, difficult to identify by conventional diagnostic.

  14. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland); Stech, Juergen; Stech, Olga [Friedrich-Loeffler Institut, Greifswald-Insel Riems (Germany); Summerfield, Artur, E-mail: artur.summerfield@ivi.admin.ch [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland)

    2012-05-25

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  15. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China.

    Science.gov (United States)

    Gu, Min; Chen, Hongzhi; Li, Qunhui; Huang, Junqing; Zhao, Mingjun; Gu, Xiaobing; Jiang, Kaijun; Wang, Xiaoquan; Peng, Daxin; Liu, Xiufan

    2014-12-05

    Avian influenza viruses of subtype H9N2 are widely prevalent in poultry in many Asian countries, and the segmented nature of the viral genome results in multiple distinct genotypes via reassortment. In this study, genetic evolution of H9N2 viruses circulating in eastern China during 2007-2013 was analyzed. The results showed that the diversity of the gene constellations generated six distinct genotypes, in which a novel genotype (S) bearing the backbone of A/chicken/Shanghai/F/98-like viruses by acquiring A/quail/Hong Kong/G1/97-like polymerase basic subunit 2 and matrix genes has gradually established its ecological niche and been consistently prevalent in chicken flocks in eastern China since its first detection in 2007. Furthermore, genotype S possessed the peculiarity to donate most of its gene segments to other emerging influenza A viruses in China, including the novel reassortant highly pathogenic avian influenza H5N2, the 2013 novel H7N7, H7N9 and the latest reassortant H10N8 viruses, with potential threat to poultry industry and human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Inferring epidemiologic dynamics from viral evolution: 2014–2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America

    Science.gov (United States)

    Grear, Daniel R.; Hall, Jeffrey S.; Dusek, Robert; Ip, Hon S.

    2018-01-01

    Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low-pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self-sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time-rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.

  17. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus.

    Science.gov (United States)

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2015-04-01

    The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603-4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the emergence of the H3N2

  18. Influenza A Viruses of Swine (IAV-S) in Vietnam from 2010 to 2015: Multiple Introductions of A(H1N1)pdm09 Viruses into the Pig Population and Diversifying Genetic Constellations of Enzootic IAV-S.

    Science.gov (United States)

    Takemae, Nobuhiro; Harada, Michiyo; Nguyen, Phuong Thanh; Nguyen, Tung; Nguyen, Tien Ngoc; To, Thanh Long; Nguyen, Tho Dang; Pham, Vu Phong; Le, Vu Tri; Do, Hoa Thi; Vo, Hung Van; Le, Quang Vinh Tin; Tran, Tan Minh; Nguyen, Thanh Duy; Thai, Phuong Duy; Nguyen, Dang Hoang; Le, Anh Quynh Thi; Nguyen, Diep Thi; Uchida, Yuko; Saito, Takehiko

    2017-01-01

    Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1

  19. Immune responses to implanted human collagen graft in rats

    International Nuclear Information System (INIS)

    Quteish, D.; Dolby, A.E.

    1991-01-01

    Immunity to collagen implants may be mediated by cellular and humoral immune responses. To examine the possibility of such immunological reactivity and crossreactivity to collagen, 39 Sprague-Dawley rats (female, 10 weeks old, approximately 250 g wt) were implanted subcutaneously at thigh sites with crosslinked, freeze-dried human placental type I collagen grafts (4x4x2 mm) which had been irradiated (520 Gray) or left untreated. Blood was obtained by intracardiac sampling prior to implantation or from normal rats, and at various times afterwards when the animals were sacrificed. The sera from these animals were examined for circulating antibodies to human, bovine and rat tail (type I) collagens by enzyme-linked immunosorbent assay (ELISA). Also, the lymphoblastogenic responses of spleen lymphocytes from the irradiated collagen-implanted animals were assessed in culture by measuring thymidine uptake with autologous and normal rat sera in the presence of human bovine type I collagens. Implantation of the irradiated and non-irradiated collagen graft in rats led to a significant increase in the level of circulating antibodies to human collagen. Also antibody to bovine and rat tail collagens was detectable in the animals implanted with irradiated collagen grafts but at a lower level than the human collagen. There was a raised lymphoblastogenic response to both human and bovine collagens. The antibody level and lymphoblastogenesis to the tested collagens gradually decreased towards the end of the post-implantation period. (author)

  20. A randomized controlled trial to evaluate the effects of high Protein Complete (lActo VEgetaRian (PACER diet in non-diabetic obese Asian Indians in North India

    Directory of Open Access Journals (Sweden)

    Swati Bhardwaj

    2017-12-01

    There was significant weight loss along with improvements in cardio-metabolic risk factors among both the groups post intervention. Percent reductions in the intervention group for weight (6.1± 2.9; p < 0.001, WC (3.9 ± 1.7; p < 0.001, FPG (5.9 ± 3.2; p < 0.001, total cholesterol (10.2 ± 6.3: p < 0.001, serum triacylglycerol (13.6 ± 10.6; p < 0.001 and low-density lipoprotein cholesterol (11.9 ± 7.1; p < 0.001] were significantly greater than the control diet group. In summary, intervention with a PACER diet (high protein, high fat and moderately low carbohydrate, lacto-vegetarian diet showed significant improvement in weight loss, body composition and cardio-metabolic profile as compared to a standard vegetarian diet among obese Asian Indians in north India.

  1. 为荣誉而战,Inso的防守反击——Insomnia vs Sky

    Institute of Scientific and Technical Information of China (English)

    午夜游魂

    2006-01-01

    当今世界三大Human领袖人物莫过Sky、Tod和Insomnia。其中Insomnia这位老将从不抱怨某某种族、某某战术不平衡,而且至今还在钻研新的战术,并应用到实战中,不能不让人肃然起敬。本场比赛是WC3L上WE和SK一场较量。虽然SK已经0:3落败,但是为荣誉而战的重任就交给了老将Insomnia,在面对以打法凶狠著称的Sky时,Inso勇不放弃的精神却让这场“人皇之战”的悬念保留到了最后一刻。

  2. Genetic Evidence for an Interferon-Antagonistic Function of Rift Valley Fever Virus Nonstructural Protein NSs

    Science.gov (United States)

    Bouloy, Michèle; Janzen, Christian; Vialat, Pierre; Khun, Huot; Pavlovic, Jovan; Huerre, Michel; Haller, Otto

    2001-01-01

    Rift Valley fever virus (RVFV), a phlebovirus of the family Bunyaviridae, is a major public health threat in Egypt and sub-Saharan Africa. The viral and host cellular factors that contribute to RVFV virulence and pathogenicity are still poorly understood. All pathogenic RVFV strains direct the synthesis of a nonstructural phosphoprotein (NSs) that is encoded by the smallest (S) segment of the tripartite genome and has an undefined accessory function. In this report, we show that MP12 and clone 13, two attenuated RVFV strains with mutations in the NSs gene, were highly virulent in IFNAR−/− mice lacking the alpha/beta interferon (IFN-α/β) receptor but remained attenuated in IFN-γ receptor-deficient mice. Both attenuated strains proved to be excellent inducers of early IFN-α/β production. In contrast, the virulent strain ZH548 failed to induce detectable amounts of IFN-α/β and replicated extensively in both IFN-competent and IFN-deficient mice. Clone 13 has a defective NSs gene with a large in-frame deletion. This defect in the NSs gene results in expression of a truncated protein which is rapidly degraded. To investigate whether the presence of the wild-type NSs gene correlated with inhibition of IFN-α/β production, we infected susceptible IFNAR−/− mice with S gene reassortant viruses. When the S segment of ZH548 was replaced by that of clone 13, the resulting reassortants became strong IFN inducers. When the defective S segment of clone 13 was exchanged with the wild-type S segment of ZH548, the reassortant virus lost the capacity to stimulate IFN-α/β production. These results demonstrate that the ability of RVFV to inhibit IFN-α/β production correlates with viral virulence and suggest that the accessory protein NSs is an IFN antagonist. PMID:11152510

  3. Molecular Epidemiology and Phylogenetic Analyses of Influenza B Virus in Thailand during 2010 to 2014

    Science.gov (United States)

    Tewawong, Nipaporn; Suwannakarn, Kamol; Prachayangprecha, Slinporn; Korkong, Sumeth; Vichiwattana, Preeyaporn; Vongpunsawad, Sompong; Poovorawan, Yong

    2015-01-01

    Influenza B virus remains a major contributor to the seasonal influenza outbreak and its prevalence has increased worldwide. We investigated the epidemiology and analyzed the full genome sequences of influenza B virus strains in Thailand between 2010 and 2014. Samples from the upper respiratory tract were collected from patients diagnosed with influenza like-illness. All samples were screened for influenza A/B viruses by one-step multiplex real-time RT-PCR. The whole genome of 53 influenza B isolates were amplified, sequenced, and analyzed. From 14,418 respiratory samples collected during 2010 to 2014, a total of 3,050 tested positive for influenza virus. Approximately 3.27% (471/14,418) were influenza B virus samples. Fifty three isolates of influenza B virus were randomly chosen for detailed whole genome analysis. Phylogenetic analysis of the HA gene showed clusters in Victoria clades 1A, 1B, 3, 5 and Yamagata clades 2 and 3. Both B/Victoria and B/Yamagata lineages were found to co-circulate during this time. The NA sequences of all isolates belonged to lineage II and consisted of viruses from both HA Victoria and Yamagata lineages, reflecting possible reassortment of the HA and NA genes. No significant changes were seen in the NA protein. The phylogenetic trees generated through the analysis of the PB1 and PB2 genes closely resembled that of the HA gene, while trees generated from the analysis of the PA, NP, and M genes showed similar topology. The NS gene exhibited the pattern of genetic reassortment distinct from those of the PA, NP or M genes. Thus, antigenic drift and genetic reassortment among the influenza B virus strains were observed in the isolates examined. Our findings indicate that the co-circulation of two distinct lineages of influenza B viruses and the limitation of cross-protection of the current vaccine formulation provide support for quadrivalent influenza vaccine in this region. PMID:25602617

  4. Evolution and adaptation of the pandemic A/H1N1 2009 influenza virus

    Directory of Open Access Journals (Sweden)

    Ducatez MF

    2011-07-01

    Full Text Available Mariette F Ducatez, Thomas P Fabrizio, Richard J WebbyDepartment of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USAAbstract: The emergence of the 2009 H1N1 pandemic influenza virus [A(H1N1pdm09] has provided the public health community with many challenges, but also the scientific community with an opportunity to monitor closely its evolution through the processes of drift and shift. To date, and despite having circulated in humans for nearly two years, little antigenic variation has been observed in the A(H1N1pdm09 viruses. However, as the A(H1N1pdm09 virus continues to circulate and the immunologic pressure within the human population increases, future antigenic change is almost a certainty. Several coinfections of A(H1N1pdm09 and seasonal A(H1N1 or A(H3N2 viruses have been observed, but no reassortant viruses have been described in humans, suggesting a lack of fitness of reassortant viruses or a lack of opportunities for interaction of different viral lineages. In contrast, multiple reassortment events have been detected in swine populations between A(H1N1 pdm09 and other endemic swine viruses. Somewhat surprisingly, many of the well characterized influenza virus virulence markers appear to have limited impact on the phenotype of the A(H1N1pdm09 viruses when they have been introduced into mutant viruses in laboratory settings. As such, it is unclear what the evolutionary path of the pandemic virus will be, but the monitoring of any changes in the circulating viruses will remain a global public and animal health priority.Keywords: influenza, pandemic, evolution, adaptation

  5. A High Diversity of Eurasian Lineage Low Pathogenicity Avian Influenza A Viruses Circulate among Wild Birds Sampled in Egypt

    Science.gov (United States)

    Gerloff, Nancy A.; Jones, Joyce; Simpson, Natosha; Balish, Amanda; ElBadry, Maha Adel; Baghat, Verina; Rusev, Ivan; de Mattos, Cecilia C.; de Mattos, Carlos A.; Zonkle, Luay Elsayed Ahmed; Kis, Zoltan; Davis, C. Todd; Yingst, Sam; Cornelius, Claire; Soliman, Atef; Mohareb, Emad; Klimov, Alexander; Donis, Ruben O.

    2013-01-01

    Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring. PMID:23874653

  6. Genome sequence analysis of five Canadian isolates of strawberry mottle virus reveals extensive intra-species diversity and a longer RNA2 with increased coding capacity compared to a previously characterized European isolate.

    Science.gov (United States)

    Bhagwat, Basdeo; Dickison, Virginia; Ding, Xinlun; Walker, Melanie; Bernardy, Michael; Bouthillier, Michel; Creelman, Alexa; DeYoung, Robyn; Li, Yinzi; Nie, Xianzhou; Wang, Aiming; Xiang, Yu; Sanfaçon, Hélène

    2016-06-01

    In this study, we report the genome sequence of five isolates of strawberry mottle virus (family Secoviridae, order Picornavirales) from strawberry field samples with decline symptoms collected in Eastern Canada. The Canadian isolates differed from the previously characterized European isolate 1134 in that they had a longer RNA2, resulting in a 239-amino-acid extension of the C-terminal region of the polyprotein. Sequence analysis suggests that reassortment and recombination occurred among the isolates. Phylogenetic analysis revealed that the Canadian isolates are diverse, grouping in two separate branches along with isolates from Europe and the Americas.

  7. Eight challenges in phylodynamic inference

    Directory of Open Access Journals (Sweden)

    Simon D.W. Frost

    2015-03-01

    Full Text Available The field of phylodynamics, which attempts to enhance our understanding of infectious disease dynamics using pathogen phylogenies, has made great strides in the past decade. Basic epidemiological and evolutionary models are now well characterized with inferential frameworks in place. However, significant challenges remain in extending phylodynamic inference to more complex systems. These challenges include accounting for evolutionary complexities such as changing mutation rates, selection, reassortment, and recombination, as well as epidemiological complexities such as stochastic population dynamics, host population structure, and different patterns at the within-host and between-host scales. An additional challenge exists in making efficient inferences from an ever increasing corpus of sequence data.

  8. A Historical Perspective of Influenza A(H1N2) Virus

    OpenAIRE

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase ...

  9. Genetic Characterization of H1N2 Influenza A Viruses Isolated from Pigs throughout the United States

    OpenAIRE

    Karasin, Alexander I.; Landgraf, John; Swenson, Sabrina; Erickson, Gene; Goyal, Sagar; Woodruff, Mary; Scherba, Gail; Anderson, Gary; Olsen, Christopher W.

    2002-01-01

    An H1N2 influenza A virus was isolated from a pig in the United States for the first time in 1999 (A. I. Karasin, G. A. Anderson, and C. W. Olsen, J. Clin. Microbiol. 38:2453-2456, 2000). H1N2 viruses have been isolated subsequently from pigs in many states. Phylogenetic analyses of eight such viruses isolated from pigs in Indiana, Illinois, Minnesota, Ohio, Iowa, and North Carolina during 2000 to 2001 showed that these viruses are all of the same reassortant genotype as that of the initial H...

  10. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses

    OpenAIRE

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-01-01

    Background The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. Findings The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decrease...

  11. Analysis of Host Range Restriction Determinants in the Rabbit Model: Comparison of Homologous and Heterologous Rotavirus Infections

    Science.gov (United States)

    Ciarlet, Max; Estes, Mary K.; Barone, Christopher; Ramig, Robert F.; Conner, Margaret E.

    1998-01-01

    The main limitation of both the rabbit and mouse models of rotavirus infection is that human rotavirus (HRV) strains do not replicate efficiently in either animal. The identification of individual genes necessary for conferring replication competence in a heterologous host is important to an understanding of the host range restriction of rotavirus infections. We recently reported the identification of the P type of the spike protein VP4 of four lapine rotavirus strains as being P[14]. To determine whether VP4 is involved in host range restriction in rabbits, we evaluated infection in rotavirus antibody-free rabbits inoculated orally with two P[14] HRVs, PA169 (G6) and HAL1166 (G8), and with several other HRV strains and animal rotavirus strains of different P and G types. We also evaluated whether the parental rhesus rotavirus (RRV) (P5B[3], G3) and the derived RRV-HRV reassortant candidate vaccine strains RRV × D (G1), RRV × DS-1 (G2), and RRV × ST3 (G4) would productively infect rabbits. Based on virus shedding, limited replication was observed with the P[14] HRV strains and with the SA11 Cl3 (P[2], G3) and SA11 4F (P6[1], G3) animal rotavirus strains, compared to the homologous ALA strain (P[14], G3). However, even limited infection provided complete protection from rotavirus infection when rabbits were challenged orally 28 days postinoculation (DPI) with 103 50% infective doses of ALA rabbit rotavirus. Other HRVs did not productively infect rabbits and provided no significant protection from challenge, in spite of occasional seroconversion. Simian RRV replicated as efficiently as lapine ALA rotavirus in rabbits and provided complete protection from ALA challenge. Live attenuated RRV reassortant vaccine strains resulted in no, limited, or productive infection of rabbits, but all rabbits were completely protected from heterotypic ALA challenge. The altered replication efficiency of the reassortants in rabbits suggests a role for VP7 in host range restriction

  12. Generation and Characterization of Live Attenuated Influenza A(H7N9 Candidate Vaccine Virus Based on Russian Donor of Attenuation.

    Directory of Open Access Journals (Sweden)

    Svetlana Shcherbik

    Full Text Available Avian influenza A (H7N9 virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV to provide temperature sensitive, cold-adapted and attenuated phenotypes.LAIV candidate A/Anhui/1/2013(H7N9-CDC-LV7A (abbreviated as CDC-LV7A, based on the Russian MDV, A/Leningrad/134/17/57 (H2N2, was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9RG-LV1 and A(H7N9RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9 virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7.Our data indicate that the A/Anhui/1/2013(H7N9-CDC-LV7A reassortant virus is a safe and genetically stable candidate vaccine virus that is now available for

  13. H5N2 Highly Pathogenic Avian Influenza Viruses from the US 2014-2015 outbreak have an unusually long pre-clinical period in turkeys

    OpenAIRE

    Spackman, Erica; Pantin-Jackwood, Mary J.; Kapczynski, Darrell R.; Swayne, David E.; Suarez, David L.

    2016-01-01

    Background From December 2014 through June 2015, the US experienced the most costly highly pathogenic avian influenza (HPAI) outbreak to date. Most cases in commercial poultry were caused by an H5N2 strain which was a reassortant with 5 Eurasian lineage genes, including a clade 2.3.4.4 goose/Guangdong/1996 lineage hemagglutinin, and 3 genes from North American wild waterfowl low pathogenicity avian influenza viruses. The outbreak primarily affected turkeys and table-egg layer type chickens. T...

  14. Virulence determinants of pandemic influenza viruses

    Science.gov (United States)

    Tscherne, Donna M.; García-Sastre, Adolfo

    2011-01-01

    Influenza A viruses cause recurrent, seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. The ability of influenza A viruses to adapt to various hosts and undergo reassortment events ensures constant generation of new strains with unpredictable degrees of pathogenicity, transmissibility, and pandemic potential. Currently, the combination of factors that drives the emergence of pandemic influenza is unclear, making it impossible to foresee the details of a future outbreak. Identification and characterization of influenza A virus virulence determinants may provide insight into genotypic signatures of pathogenicity as well as a more thorough understanding of the factors that give rise to pandemics. PMID:21206092

  15. The Genetic Diversity of Influenza A Viruses in Wild Birds in Peru

    Science.gov (United States)

    Nelson, Martha I.; Pollett, Simon; Ghersi, Bruno; Silva, Maria; Simons, Mark P.; Icochea, Eliana; Gonzalez, Armando E.; Segovia, Karen; Kasper, Matthew R.; Montgomery, Joel M.; Bausch, Daniel G.

    2016-01-01

    Our understanding of the global ecology of avian influenza A viruses (AIVs) is impeded by historically low levels of viral surveillance in Latin America. Through sampling and whole-genome sequencing of 31 AIVs from wild birds in Peru, we identified 10 HA subtypes (H1-H4, H6-H7, H10-H13) and 8 NA subtypes (N1-N3, N5-N9). The majority of Peruvian AIVs were closely related to AIVs found in North America. However, unusual reassortants, including a H13 virus containing a PA segment related to extremely divergent Argentinian viruses, suggest that substantial AIV diversity circulates undetected throughout South America. PMID:26784331

  16. Fitness of Pandemic H1N1 and Seasonal influenza A viruses during Co-infection: Evidence of competitive advantage of pandemic H1N1 influenza versus seasonal influenza.

    Science.gov (United States)

    Perez, Daniel Roberto; Sorrell, Erin; Angel, Matthew; Ye, Jianqiang; Hickman, Danielle; Pena, Lindomar; Ramirez-Nieto, Gloria; Kimble, Brian; Araya, Yonas

    2009-08-24

    On June 11, 2009 the World Health Organization (WHO) declared a new H1N1 influenza pandemic. This pandemic strain is as transmissible as seasonal H1N1 and H3N2 influenza A viruses. Major concerns facing this pandemic are whether the new virus will replace, co-circulate and/or reassort with seasonal H1N1 and/or H3N2 human strains. Using the ferret model, we investigated which of these three possibilities were most likely favored. Our studies showed that the current pandemic virus is more transmissible than, and has a biological advantage over, prototypical seasonal H1 or H3 strains.

  17. A simple method for the parallel deep sequencing of full influenza A genomes

    DEFF Research Database (Denmark)

    Kampmann, Marie-Louise; Fordyce, Sarah Louise; Avila Arcos, Maria del Carmen

    2011-01-01

    Given the major threat of influenza A to human and animal health, and its ability to evolve rapidly through mutation and reassortment, tools that enable its timely characterization are necessary to help monitor its evolution and spread. For this purpose, deep sequencing can be a very valuable tool....... This study reports a comprehensive method that enables deep sequencing of the complete genomes of influenza A subtypes using the Illumina Genome Analyzer IIx (GAIIx). By using this method, the complete genomes of nine viruses were sequenced in parallel, representing the 2009 pandemic H1N1 virus, H5N1 virus...

  18. Alpha1-acid glycoprotein post-translational modifications: a comparative two dimensional electrophoresis based analysis

    Directory of Open Access Journals (Sweden)

    P. Roncada

    2010-04-01

    Full Text Available Alpha1-acid glycoprotein (AGP is an immunomodulatory protein expressed by hepatocytes in response to the systemic reaction that follows tissue damage caused by inflammation, infection or trauma. A proteomic approach based on two dimensional electrophoresis, immunoblotting and staining of 2DE gels with dyes specific for post-translational modifications (PTMs such as glycosylation and phosphorylation has been used to evaluate the differential interspecific protein expression of AGP purified from human, bovine and ovine sera. By means of these techniques, several isoforms have been identified in the investigated species: they have been found to change both with regard to the number of isoforms expressed under physiological condition and with regard to the quality of PTMs (i.e. different oligosaccharidic chains, presence/absence of phosphorilations. In particular, it is suggested that bovine serum AGP may have one of the most complex pattern of PTMs among serum proteins of mammals studied so far.

  19. Teeth characterization using ion beam analysis

    International Nuclear Information System (INIS)

    Rizzutto, M.A.; Added, N.; Tabacniks, M.H.; Falla-Sotelo, F.; Curado, J.F.; Francci, C.; Markarian, R.A.; Quinelato, A.; Youssef, F.; Mori, M.; Youssef, M.

    2006-01-01

    A collaboration project between the School of Dentistry and the Institute of Physics of the University of Sao Paulo has been established to measure elemental concentrations in teeth by proton induced X-ray emission (PIXE) and heavy ion elastic recoil detection analysis (HI-ERDA) techniques. Data on trace elements in human, bovine and swine teeth, analyzed by PIXE with a 2.4 MeV proton beam, were compared and concentrations for several elements were obtained with tens of μg/g sensitivity. HI-ERDA measurements employing a 52 MeV Cl beam were done to evaluate changes in elementary concentration in dental enamel after bleaching treatment with different products in 25 bovine incisors teeth. This nondestructive technique allowed the measurements of Ca, P, O and C concentrations above the limit of 100 μg/g. (author)

  20. alpha-Lactalbumin species variation, HAMLET formation, and tumor cell death.

    Science.gov (United States)

    Pettersson, Jenny; Mossberg, Ann-Kristin; Svanborg, Catharina

    2006-06-23

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of apo alpha-lactalbumin and oleic acid, formed in casein after low pH treatment of human milk. This study examined if HAMLET-like complexes are present in casein from different species and if isolated alpha-lactalbumin from those species can form such complexes with oleic acid. Casein from human, bovine, equine, and porcine milk was separated by ion exchange chromatography and active complexes were only found in human casein. This was not explained by alpha-lactalbumin sequence variation, as purified bovine, equine, porcine, and caprine alpha-lactalbumins formed complexes with oleic acid with biological activity similar to HAMLET. We conclude that structural variation of alpha-lactalbumins does not preclude the formation of HAMLET-like complexes and that natural HAMLET formation in casein was unique to human milk, which also showed the highest oleic acid content.

  1. Radioimmunoassays for catalase and glutathion peroxidase

    International Nuclear Information System (INIS)

    Baret, A.; Courtiere, A.; Lorry, D.; Puget, K.; Michelson, A.M.

    1982-01-01

    Specific and sensitive radioimmunoassays for human, bovine and rat catalase (CAT) and glutathion Peroxidase (GPX) are described. The obtained values are expressed as enzymatic units per μg of immunoreactive protein. They appear to closely correspond to specific activities of the purified enzymes determined by colorimetric protein-assay. Indeed, the values of the specific activities of purified human CAT is 57.9 k/mg and that of purified rat GPX is 180 units/mg. This result validates the present RIAs and the association of the two techniques allows the determination of a further parameter. In conclusion, RIAs for CAT and GPX can be applied with great specificity and sensitivity to a wide variety of human, rat and bovine medias

  2. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  3. Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, Bangladesh

    Science.gov (United States)

    Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Smith, Gavin J.D.; Fourment, Mathieu; Walker, David; McClenaghan, Laura; Alam, S.M. Rabiul; Hasan, M. Kamrul; Seiler, Patrick; Franks, John; Danner, Angie; Barman, Subrata; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.

    2013-01-01

    Human infection with avian influenza A(H9N2) virus was identified in Bangladesh in 2011. Surveillance for influenza viruses in apparently healthy poultry in live-bird markets in Bangladesh during 2008–2011 showed that subtype H9N2 viruses are isolated year-round, whereas highly pathogenic subtype H5N1 viruses are co-isolated with subtype H9N2 primarily during the winter months. Phylogenetic analysis of the subtype H9N2 viruses showed that they are reassortants possessing 3 gene segments related to subtype H7N3; the remaining gene segments were from the subtype H9N2 G1 clade. We detected no reassortment with subtype H5N1 viruses. Serologic analyses of subtype H9N2 viruses from chickens revealed antigenic conservation, whereas analyses of viruses from quail showed antigenic drift. Molecular analysis showed that multiple mammalian-specific mutations have become fixed in the subtype H9N2 viruses, including changes in the hemagglutinin, matrix, and polymerase proteins. Our results indicate that these viruses could mutate to be transmissible from birds to mammals, including humans. PMID:23968540

  4. Determining the phylogenetic and phylogeographic origin of highly pathogenic avian influenza (H7N3) in Mexico.

    Science.gov (United States)

    Lu, Lu; Lycett, Samantha J; Leigh Brown, Andrew J

    2014-01-01

    Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter.

  5. Two genotypes of H1N2 swine influenza viruses appeared among pigs in China.

    Science.gov (United States)

    Xu, Chuantian; Zhu, Qiyun; Yang, Huanliang; Zhang, Xiumei; Qiao, Chuanling; Chen, Yan; Xin, Xiaoguang; Chen, Hualan

    2009-10-01

    H1N2 is one of the main subtypes of influenza, which circulates in swine all over the world. To investigate the prevalence and genetic of H1N2 in swine of China. Two H1N2 swine influenza viruses were isolated from Tianjin and Guangdong province of China in 2004 and 2006, respectively. The molecular evolution of eight gene segments was analyzed. A/Swine/Tianjin/1/2004 has low identity with A/Swine/Guangdong/2006; in the phylogenetic tree of PA gene, A/Swine/Guangdong/1/2006 and A/Swine/Guangxi/1/2006 along with the H1N2 swine isolates of North America formed a cluster; and A/Swine/Tianjin/2004 and A/Swine/Zhejiang/2004, along with the classical H1N1 swine isolates formed another cluster; except that NA gene of A/Swine/Tianjin/1/2004 fell into the cluster of the H3N2 human influenza virus, indicating the reassortment between H3N2 human and H1N1 swine influenza viruses. Two different genotypes of H1N2 appeared among pigs in China. A/swine/Guangdong/1/06 was probably from H1N2 swine influenza viruses of North America; while A/swine/Tianjin/1/04 maybe come from reassortments of classical H1N1 swine and H3N2 human viruses prevalent in North America.

  6. European Surveillance Network for Influenza in Pigs: Surveillance Programs, Diagnostic Tools and Swine Influenza Virus Subtypes Identified in 14 European Countries from 2010 to 2013

    DEFF Research Database (Denmark)

    Simon, Gaelle; Larsen, Lars Erik; Duerrwald, Ralf

    2014-01-01

    : avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence....... For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some......Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs...

  7. [Molecular analyses of human influenza viruses. Circulation of new variants since 1995/96].

    Science.gov (United States)

    Biere, B; Schweiger, B

    2008-09-01

    The evolution of influenza viruses is increasingly pursued by molecular analyses that complement classical methods. The analyses focus on the two surface proteins hemagglutinin (HA) and neuraminidase (NA) which determine the viral antigenic profile. Influenza A(H3N2) viruses are exceptionally variable, so that usually at least two virus variants cocirculate at the same time. Together with influenza B viruses they caused approximately 90% of influenza virus infections in Germany during the last 12 seasons, while influenza A(H1N1) viruses only played a subordinate part. Unexpectedly, reassorted viruses of subtype A(H1N2) appeared during the seasons 2001/02 and 2002/03, but were isolated only rarely and gained no epidemiological significance. Furthermore, during the season 2001/02 influenza B viruses of the Victoria-lineage reappeared in Germany and other countries of the northern hemisphere after 10 years of absence. These viruses reassorted with the cocirculating Yamagata-like influenza B viruses, as could be seen by the appearance of viruses with a Victoria-like HA and a Yamagata-like NA.

  8. Quartet-based methods to reconstruct phylogenetic networks.

    Science.gov (United States)

    Yang, Jialiang; Grünewald, Stefan; Xu, Yifei; Wan, Xiu-Feng

    2014-02-20

    Phylogenetic networks are employed to visualize evolutionary relationships among a group of nucleotide sequences, genes or species when reticulate events like hybridization, recombination, reassortant and horizontal gene transfer are believed to be involved. In comparison to traditional distance-based methods, quartet-based methods consider more information in the reconstruction process and thus have the potential to be more accurate. We introduce QuartetSuite, which includes a set of new quartet-based methods, namely QuartetS, QuartetA, and QuartetM, to reconstruct phylogenetic networks from nucleotide sequences. We tested their performances and compared them with other popular methods on two simulated nucleotide sequence data sets: one generated from a tree topology and the other from a complicated evolutionary history containing three reticulate events. We further validated these methods to two real data sets: a bacterial data set consisting of seven concatenated genes of 36 bacterial species and an influenza data set related to recently emerging H7N9 low pathogenic avian influenza viruses in China. QuartetS, QuartetA, and QuartetM have the potential to accurately reconstruct evolutionary scenarios from simple branching trees to complicated networks containing many reticulate events. These methods could provide insights into the understanding of complicated biological evolutionary processes such as bacterial taxonomy and reassortant of influenza viruses.

  9. Adaptation of high-growth influenza H5N1 vaccine virus in Vero cells: implications for pandemic preparedness.

    Directory of Open Access Journals (Sweden)

    Yu-Fen Tseng

    Full Text Available Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14, a reassortant virus between A/Vietnam/1194/2004 (H5N1 virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15 was generated and can grow over 10(8 TCID(50/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes.

  10. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    International Nuclear Information System (INIS)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-01-01

    Highlights: ► Vero cell-based HPAI H5N1 vaccine with stable high yield. ► Stable high yield derived from the YNVa H3N2 backbone. ► H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  11. A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets

    International Nuclear Information System (INIS)

    Joseph, Tomy; McAuliffe, Josephine; Lu, Bin; Vogel, Leatrice; Swayne, David; Jin, Hong; Kemble, George; Subbarao, Kanta

    2008-01-01

    The appearance of human infections caused by avian influenza A H7 subtype viruses underscores their pandemic potential and the need to develop vaccines to protect humans from viruses of this subtype. A live attenuated H7N3 virus vaccine was generated by reverse genetics using the HA and NA genes of a low pathogenicity A/chicken/BC/CN-6/04 (H7N3) virus and the six internal protein genes of the cold-adapted A/Ann Arbor/6/60 ca (H2N2) virus. The reassortant H7N3 BC 04 ca vaccine virus was temperature sensitive and showed attenuation in mice and ferrets. Intranasal immunization with one dose of the vaccine protected mice and ferrets when challenged with homologous and heterologous H7 viruses. The reassortant H7N3 BC 04 ca vaccine virus showed comparable levels of attenuation, immunogenicity and efficacy in mice and ferret models. The safety, immunogenicity, and efficacy of this vaccine in mice and ferrets support the evaluation of this vaccine in clinical trials

  12. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015.

    Science.gov (United States)

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F; Shi, Weifeng; Lei, Fumin

    2015-08-11

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.

  13. Outbreaks of influenza A virus in farmed mink (Neovison vison) in Denmark: molecular characterization of the viruses

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Breum, Solvej Østergaard; Trebbien, Ramona

    2012-01-01

    that the virus was a human/swine reassortant, with the H and N gene most related to human H3N2 viruses circulating in 2005. The remaining 6 genes were most closely related to H1N2 influenza viruses circulating in Danish swine. This virus had not previously been described in swine, mink or humans. PCRs assays...... specifically targeting the new reassortant were developed and used to screen influenza positive samples from humans and swine in Denmark with negative results. Thus, there was no evidence that this virus had spread to humans or was circulating in Danish pigs. In 2010 and 2011, influenza virus was again...... diagnosed in diseased mink in a few farms. The genetic typing showed that the virus was similar to the pandemic H1N1 virus circulating in humans and swine. The H3N2 virus was not detected in 2010 and 2011. Taken together, these findings indicate that mink is highly susceptible for influenza A virus of human...

  14. Outbreaks of Influenza A Virus in Farmed Mink (Neovison vison) in Denmark: Molecular characterization of the involved viruses

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Breum, Solvej Østergaard; Trebbien, Ramona

    mink farms with respiratory symptoms. Full-genome sequencing showed that the virus was a human/swine reassortant, with the H and N gene most related to human H3N2 viruses circulating in 2005. The remaining 6 genes were most closely related to H1N2 influenza viruses circulating in Danish swine....... This virus had not previously been described in swine, mink nor humans. PCRs assays specifically targeting the new reassortant were developed and used to screen influenza positive samples from humans and swine in Denmark with negative results. Thus, there was no evidence that this virus had spread to humans...... or was circulating in Danish pigs. In 2010 and 2011, influenza virus was again diagnosed in diseased mink in a few farms. The genetic typing showed that the virus was similar to the pandemic H1N1 virus circulating in humans and swine. The H3N2 virus was not detected in 2010 and 2011. Taken together, these findings...

  15. Phylogenetic and recombination analysis of tomato spotted wilt virus.

    Directory of Open Access Journals (Sweden)

    Sen Lian

    Full Text Available Tomato spotted wilt virus (TSWV severely damages and reduces the yield of many economically important plants worldwide. In this study, we determined the whole-genome sequences of 10 TSWV isolates recently identified from various regions and hosts in Korea. Phylogenetic analysis of these 10 isolates as well as the three previously sequenced isolates indicated that the 13 Korean TSWV isolates could be divided into two groups reflecting either two different origins or divergences of Korean TSWV isolates. In addition, the complete nucleotide sequences for the 13 Korean TSWV isolates along with previously sequenced TSWV RNA segments from Korea and other countries were subjected to phylogenetic and recombination analysis. The phylogenetic analysis indicated that both the RNA L and RNA M segments of most Korean isolates might have originated in Western Europe and North America but that the RNA S segments for all Korean isolates might have originated in China and Japan. Recombination analysis identified a total of 12 recombination events among all isolates and segments and five recombination events among the 13 Korea isolates; among the five recombinants from Korea, three contained the whole RNA L segment, suggesting reassortment rather than recombination. Our analyses provide evidence that both recombination and reassortment have contributed to the molecular diversity of TSWV.

  16. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    Science.gov (United States)

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  17. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China); Wang, Yue [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Yingxin Lane 100, Xicheng District, Beijing 100052, People' s Republic of China (China); Liao, Guoyang [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  18. Detection of uncommon G3P[3] rotavirus A (RVA) strain in rat possessing a human RVA-like VP6 and a novel NSP2 genotype.

    Science.gov (United States)

    Ianiro, Giovanni; Di Bartolo, Ilaria; De Sabato, Luca; Pampiglione, Guglielmo; Ruggeri, Franco M; Ostanello, Fabio

    2017-09-01

    Rotavirus is one of the leading causes of acute gastroenteritis in infants and young children. RVAs infect not only humans but also a wide range of mammals including rats, which represent a reservoir of several other zoonotic pathogens. Due to the segmented nature of the RVA genome, animal RVA strains can easily adapt to the human host by reassortment with co-infecting human viruses. This study aims to detect and characterize RVA in the intestinal content of Italian sinantropic rats (Rattus rattus). Out of 40 samples examined following molecular approach, one resulted positive for RVA. The molecular characterization of VP1-4, 6 and 7, and NSP1-5 genes by sequencing revealed the genomic constellation G3-P[3]-I1-R11-C11-M10-A22-N18-T14-E18-H13. This uncommon genomic combination includes: the VP1-4,VP7, the NSP1, 3, 4 and 5 gene segments, closely related to those of RVA from rodents, the N18 novel genotype established for the NSP2 gene segment and the human Wa-like VP6 gene, suggesting interspecies reassortment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Swine influenza virus: evolution mechanism and epidemic characterization--a review].

    Science.gov (United States)

    Qi, Xian; Lu, Chengping

    2009-09-01

    Pigs may play an important role in the evolution and ecology of influenza A virus. The tracheal epithelium of pigs contain both SA alpha 2,6 Gal and SA alpha 2,3 Gal receptors and can be infected with swine, human and avian viruses, therefore, pigs have been considered as an intermediate host for the adaptation of avian influenza viruses to humans or as mixing vessels for the generation of genetically reassortant viruses. Evolution patterns among swine influenza viruses including evolution of host adaptation, antigenic drift and genetic reassortment, and the latter is the main one. Unlike human influenza viruses, swine viruses have different epizootiological patterns in different areas of world, which is enzootic and geographic dependence. Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2, and these include classical swine H1N1, avian-like H1N1, human-like H3N2, reassortant H3N2 and various genotype H1N2 viruses. In Europe, North America and China, influenza A viruses circulating in pigs are distinct in the genetic characteristics and genetic sources. Since 1979, three subtypes, avian-like H1N1, reassortant H1N2 and H3N2 viruses, have been co-circulating in European swine. Before 1998, classical H1N1 viruses were the exclusive cause of swine influenza in North America. However, after that, three triple-reassortant H1N2, H3N2 and H1N1 viruses with genes of human, swine and avian virus began to emerge in pigs. Genetically, the pandemic viruses emerging in human, so called influenza A (H1N1) viruses, contain genes from both Europe and North American SIV lineages. SIV is not the same as Europe and the United States in the prevalence and genetic background in China, mainly classical swine H1N1 and human-like H3N2 type virus. However, in recent years, SIV from Europe and North America have been introduced into Chinese pig herds, so more attention should be given on the evolutionary of SIV in China

  20. Childhood socioeconomic position, adult socioeconomic position and social mobility in relation to markers of adiposity in early adulthood: evidence of differential effects by gender in the 1978/79 Ribeirao Preto cohort study.

    Science.gov (United States)

    Aitsi-Selmi, A; Batty, G D; Barbieri, M A; Silva, A A M; Cardoso, V C; Goldani, M Z; Marmot, M G; Bettiol, H

    2013-03-01

    Longitudinal studies drawn from high-income countries demonstrate long-term associations of early childhood socioeconomic deprivation with increased adiposity in adulthood. However, there are very few data from resource-poor countries where there are reasons to anticipate different gradients. Accordingly, we sought to characterise the nature of the socioeconomic status (SES)-adiposity association in Brazil. We use data from the Ribeirao Preto Cohort Study in Brazil in which 9067 newborns were recruited via their mothers in 1978/79 and one-in-three followed up in 2002/04 (23-25years). SES, based on family income (salaries, interest on savings, pensions and so on), was assessed at birth and early adulthood, and three different adiposity measures (body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR)) ascertained at follow-up. The association between childhood SES, adult SES and social mobility (defined as four permutations of SES in childhood and adulthood: low-low, low-high, high-low, high-high), and the adiposity measures was examined using linear regression. There was evidence that the association between SES and the three markers of adiposity was modified by gender in both adulthood (P<0.02 for all outcomes) and childhood SES (P<0.02 for WC and WHR). Thus, in an unadjusted model, linear regression analyses showed that higher childhood SES was associated with lower adiposity in women (coefficient (95% confidence intervals) BMI: -1.49 (-2.29,-0.69); WC: -3.85 (-5.73,-1.97); WHR: -0.03 (-0.04,-0.02)). However, in men, higher childhood SES was related to higher adiposity (BMI: 1.03 (0.28,-1.78); WC: 3.15 (1.20, 5.09); WHR: 0.009 (-0.001, 0.019)) although statistical significance was not seen in all analyses. There was a suggestion that adult SES (but not adult health behaviours or birthweight) accounted for these relationships in women only. Upward mobility was associated with protection against greater adiposity in women but not men. In the

  1. Sequence and phylogenetic analysis of H7N3 avian influenza viruses isolated from poultry in Pakistan 1995-2004

    Directory of Open Access Journals (Sweden)

    Siddique Naila

    2010-06-01

    Full Text Available Abstract Background Avian influenza virus (AIV infections have caused heavy economic losses to the poultry industry in Pakistan as well as numerous other regions worldwide. The first introduction of H7N3 AIV to Pakistan occurred during 1995, since then H7N3, H9N2 and H5N1 AIVs have each been sporadically isolated. This report evaluates the genetic origin of the H7N3 viruses from Pakistan collected 1995-2004 and how they disseminated within the country. To accomplish this we produced whole genome sequences for 6 H7N3 viruses and data for the HA and NA genes of an additional 7 isolates. All available sequence from H7N3 AIV from Pakistan was included in the analysis. Results Phylogenetic analysis revealed that there were two introductions of H7 into Pakistan and one N3 introduction. Only one of the H7 introductions appears to have become established in poultry in Pakistan, while the other was isolated from two separate outbreaks 6 years apart. The data also shows that reassortment has occurred between H7N3 and H9N2 viruses in the field, likely during co-infection of poultry. Also, with the exception of these few reassortant isolates, all 8 genes in the predominant H7N3 virus lineage have evolved to be phylogenetically distinct. Conclusions Although rigorous control measures have been implemented in commercial poultry in Pakistan, AIV is sporadically transmitted to poultry and among the different poultry industry compartments (broilers, broiler breeders, table egg layers. Since there is one primary H7 lineage which persists and that has reassorted with the H9N2 AIV in poultry, it suggests that there is a reservoir with some link commercial poultry. On a general level, this offers insight into the molecular ecology of AIV in poultry where the virus has persisted despite vaccination and biosecurity. This data also illustrates the importance of sustained surveillance for AIVs in poultry.

  2. From where did the 2009 'swine-origin' influenza A virus (H1N1 emerge?

    Directory of Open Access Journals (Sweden)

    Armstrong John S

    2009-11-01

    Full Text Available Abstract The swine-origin influenza A (H1N1 virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative

  3. European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013.

    Directory of Open Access Journals (Sweden)

    Gaëlle Simon

    Full Text Available Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010-2013 aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%, human-like reassortant swine H1N2 (13% and human-like reassortant swine H3N2 (9.1%, as well as pandemic A/H1N1 2009 (H1N1pdm virus (10.3%. Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections.

  4. NS Segment of a 1918 Influenza A Virus-Descendent Enhances Replication of H1N1pdm09 and Virus-Induced Cellular Immune Response in Mammalian and Avian Systems

    Science.gov (United States)

    Petersen, Henning; Mostafa, Ahmed; Tantawy, Mohamed A.; Iqbal, Azeem A.; Hoffmann, Donata; Tallam, Aravind; Selvakumar, Balachandar; Pessler, Frank; Beer, Martin; Rautenschlein, Silke; Pleschka, Stephan

    2018-01-01

    The 2009 pandemic influenza A virus (IAV) H1N1 strain (H1N1pdm09) has widely spread and is circulating in humans and swine together with other human and avian IAVs. This fact raises the concern that reassortment between H1N1pdm09 and co-circulating viruses might lead to an increase of H1N1pdm09 pathogenicity in different susceptible host species. Herein, we explored the potential of different NS segments to enhance the replication dynamics, pathogenicity and host range of H1N1pdm09 strain A/Giessen/06/09 (Gi-wt). The NS segments were derived from (i) human H1N1- and H3N2 IAVs, (ii) highly pathogenic- (H5- or H7-subtypes) or (iii) low pathogenic avian influenza viruses (H7- or H9-subtypes). A significant increase of growth kinetics in A549 (human lung epithelia) and NPTr (porcine tracheal epithelia) cells was only noticed in vitro for the reassortant Gi-NS-PR8 carrying the NS segment of the 1918-descendent A/Puerto Rico/8/34 (PR8-wt, H1N1), whereas all other reassortants showed either reduced or comparable replication efficiencies. Analysis using ex vivo tracheal organ cultures of turkeys (TOC-Tu), a species susceptible to IAV H1N1 infection, demonstrated increased replication of Gi-NS-PR8 compared to Gi-wt. Also, Gi-NS-PR8 induced a markedly higher expression of immunoregulatory and pro-inflammatory cytokines, chemokines and interferon-stimulated genes in A549 cells, THP-1-derived macrophages (dHTP) and TOC-Tu. In vivo, Gi-NS-PR8 induced an earlier onset of mortality than Gi-wt in mice, whereas, 6-week-old chickens were found to be resistant to both viruses. These data suggest that the specific characteristics of the PR8 NS segments can impact on replication, virus induced cellular immune responses and pathogenicity of the H1N1pdm09 in different avian and mammalian host species. PMID:29623073

  5. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  6. Characterization of low pathogenicity avian influenza viruses isolated from wild birds in Mongolia 2005 through 2007

    Directory of Open Access Journals (Sweden)

    Sodnomdarjaa Ruuragchaa

    2009-11-01

    Full Text Available Abstract Background Since the emergence of H5N1 high pathogenicity (HP avian influenza virus (AIV in Asia, numerous efforts worldwide have focused on elucidating the relative roles of wild birds and domestic poultry movement in virus dissemination. In accordance with this a surveillance program for AIV in wild birds was conducted in Mongolia from 2005-2007. An important feature of Mongolia is that there is little domestic poultry production in the country, therefore AIV detection in wild birds would not likely be from spill-over from domestic poultry. Results During 2005-2007 2,139 specimens representing 4,077 individual birds of 45 species were tested for AIV by real time RT-PCR (rRT-PCR and/or virus isolation. Bird age and health status were recorded. Ninety rRT-PCR AIV positive samples representing 89 individual birds of 19 species including 9 low pathogenicity (LP AIVs were isolated from 6 species. A Bar-headed goose (Anser indicus, a Whooper swan (Cygnus cygnus and 2 Ruddy shelducks (Tadorna ferruginea were positive for H12N3 LP AIV. H16N3 and H13N6 viruses were isolated from Black-headed gulls (Larus ridibundus. A Red-crested pochard (Rhodonessa rufina and 2 Mongolian gulls (Larus vagae mongolicus were positive for H3N6 and H16N6 LP AIV, respectively. Full genomes of each virus isolate were sequenced and analyzed phylogenetically and were most closely related to recent European and Asian wild bird lineage AIVs and individual genes loosely grouped by year. Reassortment occurred within and among different years and subtypes. Conclusion Detection and/or isolation of AIV infection in numerous wild bird species, including 2 which have not been previously described as hosts, reinforces the wide host range of AIV within avian species. Reassortment complexity within the genomes indicate the introduction of new AIV strains into wild bird populations annually, however there is enough over-lap of infection for reassortment to occur. Further work is

  7. Protocol: Transmission and prevention of influenza in Hutterites: Zoonotic transmission of influenza A: swine & swine workers

    Directory of Open Access Journals (Sweden)

    Loeb Mark

    2009-11-01

    Full Text Available Abstract Background Among swine, reassortment of influenza virus genes from birds, pigs, and humans could generate influenza viruses with pandemic potential. Humans with acute infection might also be a source of infection for swine production units. This article describes the study design and methods being used to assess influenza A transmission between swine workers and pigs. We hypothesize that transmission of swine influenza viruses to humans, transmission of human influenza viruses to swine, and reassortment of human and swine influenza A viruses is occurring. The project is part of a Team Grant; all Team Grant studies include active surveillance for influenza among Hutterite swine farmers in Alberta, Canada. This project also includes non-Hutterite swine farms that are experiencing swine respiratory illness. Methods/Design Nurses conduct active surveillance for influenza-like-illness (ILI, visiting participating communally owned and operated Hutterite swine farms twice weekly. Nasopharyngeal swabs and acute and convalescent sera are obtained from persons with any two such symptoms. Swabs are tested for influenza A and B by a real time RT-PCR (reverse transcriptase polymerase chain reaction at the Alberta Provincial Laboratory for Public Health (ProvLab. Test-positive participants are advised that they have influenza. The occurrence of test-positive swine workers triggers sampling (swabbing, acute and convalescent serology of the swine herd by veterinarians. Specimens obtained from swine are couriered to St. Jude Children's Research Hospital, Memphis, TN for testing. Veterinarians and herd owners are notified if animal specimens are test-positive for influenza. If swine ILI occurs, veterinarians obtain samples from the pigs; test-positives from the animals trigger nurses to obtain specimens (swabbing, acute and convalescent serology from the swine workers. ProvLab cultures influenza virus from human specimens, freezes these cultures and

  8. Origins and Evolutionary Dynamics of H3N2 Canine Influenza Virus.

    Science.gov (United States)

    Zhu, Henan; Hughes, Joseph; Murcia, Pablo R

    2015-05-01

    Influenza A viruses (IAVs) are maintained mainly in wild birds, and despite frequent spillover infections of avian IAVs into mammals, only a small number of viruses have become established in mammalian hosts. A new H3N2 canine influenza virus (CIV) of avian origin emerged in Asia in the mid-2000s and is now circulating in dog populations of China and South Korea, and possibly in Thailand. The emergence of CIV provides new opportunities for zoonotic infections and interspecies transmission. We examined 14,764 complete IAV genomes together with all CIV genomes publicly available since its first isolation until 2013. We show that CIV may have originated as early as 1999 as a result of segment reassortment among Eurasian and North American avian IAV lineages. We also identified amino acid changes that might have played a role in CIV emergence, some of which have not been previously identified in other cross-species jumps. CIV evolves at a lower rate than H3N2 human influenza viruses do, and viral phylogenies exhibit geographical structure compatible with high levels of local transmission. We detected multiple intrasubtypic and heterosubtypic reassortment events, including the acquisition of the NS segment of an H5N1 avian influenza virus that had previously been overlooked. In sum, our results provide insight into the adaptive changes required by avian viruses to establish themselves in mammals and also highlight the potential role of dogs to act as intermediate hosts in which viruses with zoonotic and/or pandemic potential could originate, particularly with an estimated dog population of ∼ 700 million. Influenza A viruses circulate in humans and animals. This multihost ecology has important implications, as past pandemics were caused by IAVs carrying gene segments of both human and animal origin. Adaptive evolution is central to cross-species jumps, and this is why understanding the evolutionary processes that shape influenza A virus genomes is key to elucidating

  9. Being Normal Weight but Feeling Overweight in Adolescence May Affect Weight Development into Young Adulthood—An 11-Year Followup: The HUNT Study, Norway

    Directory of Open Access Journals (Sweden)

    Koenraad Cuypers

    2012-01-01

    Full Text Available Objectives. To explore if self-perceived overweight in normal weight adolescents influence their weight development into young adulthood and if so, whether physical activity moderates this association. Methods. A longitudinal study of 1196 normal weight adolescents (13–19 yrs who were followed up as young adults (24–30 yrs in the HUNT study. Lifestyle and health issues were assessed employing questionnaires, and standardized anthropometric measurements were taken. Chi square calculations and regression analyses were performed to investigate the associations between self-perceived overweight and change in BMI or waist circumference (WC adjusted for age, age squared, sex, and other relevant cofactors. Results. Adolescents, defined as being normal weight, but who perceived themselves as overweight had a larger weight gain into young adulthood than adolescents who perceived themselves as normal weight (difference in BMI: 0.66 units [CI95%: 0.1, 1.2] and in WC: 3.46 cm [CI95%: 1.8, 5.1]. Level of physical activity was not found to moderate this association. Conclusions. This study reveals that self-perceived overweight during adolescence may affect development of weight from adolescence into young adulthood. This highlights the importance of also focusing on body image in public health interventions against obesity, favouring a “healthy” body weight taking into account natural differences in body shapes.

  10. Being Normal Weight but Feeling Overweight in Adolescence May Affect Weight Development into Young Adulthood-An 11-Year Followup: The HUNT Study, Norway.

    Science.gov (United States)

    Cuypers, Koenraad; Kvaløy, Kirsti; Bratberg, Grete; Midthjell, Kristian; Holmen, Jostein; Holmen, Turid Lingaas

    2012-01-01

    Objectives. To explore if self-perceived overweight in normal weight adolescents influence their weight development into young adulthood and if so, whether physical activity moderates this association. Methods. A longitudinal study of 1196 normal weight adolescents (13-19 yrs) who were followed up as young adults (24-30 yrs) in the HUNT study. Lifestyle and health issues were assessed employing questionnaires, and standardized anthropometric measurements were taken. Chi square calculations and regression analyses were performed to investigate the associations between self-perceived overweight and change in BMI or waist circumference (WC) adjusted for age, age squared, sex, and other relevant cofactors. Results. Adolescents, defined as being normal weight, but who perceived themselves as overweight had a larger weight gain into young adulthood than adolescents who perceived themselves as normal weight (difference in BMI: 0.66 units [CI95%: 0.1, 1.2] and in WC: 3.46 cm [CI95%: 1.8, 5.1]). Level of physical activity was not found to moderate this association. Conclusions. This study reveals that self-perceived overweight during adolescence may affect development of weight from adolescence into young adulthood. This highlights the importance of also focusing on body image in public health interventions against obesity, favouring a "healthy" body weight taking into account natural differences in body shapes.

  11. Atomic composition of WC/ and Zr/O-terminated diamond Schottky interfaces close to ideality

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Araújo, D. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Fiori, A. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Traoré, A. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Villar, M.P. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Eon, D.; Muret, P.; Pernot, J. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Teraji, T. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan)

    2017-02-15

    Highlights: • Metal/O-terminated diamond interfaces are analyzed by a variety of TEM techniques. • Thermal treatment is shown to modify structural and chemical interface properties. • Electrical behavior vs annealing is shown to be related with interface modification. • Interfaces are characterized with atomic resolution to probe inhomogeneities. • Oxide formation and modification is demonstrated in both Schottky diodes. - Abstract: Electrical and nano-structural properties of Zr and WC-based Schottky power diodes are compared and used for investigating oxide-related effects at the diamond/metal interface. Differences in Schottky barrier heights and ideality factors of both structures are shown to be related with the modification of the oxygen-terminated diamond/metal interface configuration. Oxide formation, oxide thickness variations and interfacial oxygen redistribution, associated with thermal treatment are demonstrated. Ideality factors close to ideality (n{sub WC} = 1.02 and n{sub Zr} = 1.16) are obtained after thermal treatment and are shown to be related with the relative oxygen content at the surface (OCR{sub WC} = 3.03 and OCR{sub Zr} = 1.5). Indeed, thermal treatment at higher temperatures is shown to promote an escape of oxygen for the case of the WC diode, while it generates a sharper accumulation of oxygen at the metal/diamond interface for the case of Zr diode. Therefore, the metal-oxygen affinity is shown to be a key parameter to improve diamond-based Schottky diodes.

  12. Can abdominal bioelectrical impedance refine the determination of visceral fat from waist circumference?

    International Nuclear Information System (INIS)

    Watson, S; Blundell, H L; Evans, W D; Griffiths, H; Newcombe, R G; Rees, D A

    2009-01-01

    Ryo et al (2005 Diabetes Care 28 451–3) reported a new method for measuring the visceral fat area (VFA) by combining abdominal bioelectrical impedance analysis (BIA) with measurement of waist circumference (WC), but very few methodological details were provided. Furthermore, the study did not test the use of WC alone as an indicator of VFA even though others had previously reported a strong correlation. We sought to determine the optimal measurement technique and analysis for measuring VFA by abdominal BIA and WC. 18 volunteers (age 23–64 years) underwent measurement of WC, abdominal impedance (Bodystat 500 four-electrode system) and a single cross-sectional CT scan at the umbilicus. VFA derived using WC 3 and measurements of abdominal impedance from electrode pairs sited at the flank predicted the value of VFA measured by CT with correlation r = 0.904 (p 1.9 alone, without involving BIA at all, provided a similar correlation (r = 0.923). Our small preliminary study shows that abdominal BIA is potentially a practicable non-invasive technique for measurement of VFA but casts doubt on whether it adds any value to the use of WC alone. Larger studies are now required to test this finding. (note)

  13. Group A rotavirus in Brazilian bats: description of novel T15 and H15 genotypes.

    Science.gov (United States)

    Asano, Karen Miyuki; Gregori, Fabio; Hora, Aline Santana; Scheffer, Karin Corrêa; Fahl, Willian Oliveira; Iamamoto, Keila; Mori, Enio; Silva, Fernanda Dornelas Florentino; Taniwaki, Sueli Akemi; Brandão, Paulo Eduardo

    2016-11-01

    This study aimed to survey for group A rotaviruses (RVA) in bats from Brazil and to perform phylogenetic inferences for VP4, VP7, NSP3, NSP4 and NSP5 genes. RVA was found in 9.18 % (28/305) of tested samples. The partial genotype constellation of a Molossus molossus RVA strain was G3-P[3]-Ix-Rx-Cx-Mx-Ax-Nx-T3-E3-H6, and that of a Glossophaga soricina RVA strain was G20-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-T15-Ex-H15. These findings demonstrate an important role of bats in RVA epidemiology and provide evidence of participation of bat RVA strains in interspecies transmission and reassortment events.

  14. Current situation of H9N2 subtype avian influenza in China.

    Science.gov (United States)

    Gu, Min; Xu, Lijun; Wang, Xiaoquan; Liu, Xiufan

    2017-09-15

    In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.

  15. Oseltamivir (Tamiflu® in the environment, resistance development in influenza A viruses of dabbling ducks and the risk of transmission of an oseltamivir-resistant virus to humans – a review

    Directory of Open Access Journals (Sweden)

    Josef D. Järhult

    2012-06-01

    Full Text Available The antiviral drug oseltamivir (Tamiflu® is a cornerstone in influenza pandemic preparedness plans worldwide. However, resistance to the drug is a growing concern. The active metabolite oseltamivir carboxylate (OC is not degraded in surface water or sewage treatment plants and has been detected in river water during seasonal influenza outbreaks. The natural influenza reservoir, dabbling ducks, can thus be exposed to OC in aquatic environments. Environmental-like levels of OC induce resistance development in influenza A/H1N1 virus in mallards. There is a risk of resistance accumulation in influenza viruses circulating among wild birds when oseltamivir is used extensively. By reassortment or direct transmission, oseltamivir resistance can be transmitted to humans potentially causing a resistant pandemic or human-adapted highly-pathogenic avian influenza virus. There is a need for more research on resistance development in the natural influenza reservoir and for a prudent use of antivirals.

  16. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity...... of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment...

  17. Inferring the Clonal Structure of Viral Populations from Time Series Sequencing.

    Directory of Open Access Journals (Sweden)

    Donatien F Chedom

    2015-11-01

    Full Text Available RNA virus populations will undergo processes of mutation and selection resulting in a mixed population of viral particles. High throughput sequencing of a viral population subsequently contains a mixed signal of the underlying clones. We would like to identify the underlying evolutionary structures. We utilize two sources of information to attempt this; within segment linkage information, and mutation prevalence. We demonstrate that clone haplotypes, their prevalence, and maximum parsimony reticulate evolutionary structures can be identified, although the solutions may not be unique, even for complete sets of information. This is applied to a chain of influenza infection, where we infer evolutionary structures, including reassortment, and demonstrate some of the difficulties of interpretation that arise from deep sequencing due to artifacts such as template switching during PCR amplification.

  18. An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus.

    Science.gov (United States)

    Juozapaitis, Mindaugas; Aguiar Moreira, Étori; Mena, Ignacio; Giese, Sebastian; Riegger, David; Pohlmann, Anne; Höper, Dirk; Zimmer, Gert; Beer, Martin; García-Sastre, Adolfo; Schwemmle, Martin

    2014-07-23

    In 2012, the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the haemagglutinin and neuraminidase proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event.

  19. Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea.

    Science.gov (United States)

    Kim, Young-Il; Park, Su-Jin; Kwon, Hyeok-Il; Kim, Eun-Ha; Si, Young-Jae; Jeong, Ju-Hwan; Lee, In-Won; Nguyen, Hiep Dinh; Kwon, Jin-Jung; Choi, Won Suk; Song, Min-Suk; Kim, Chul-Joong; Choi, Young-Ki

    2017-09-01

    During the outbreaks of highly pathogenic avian influenza (HPAI) H5N6 viruses in 2016 in South Korea, novel H5N8 viruses were also isolated from migratory birds. Phylogenetic analysis revealed that the HA gene of these H5N8 viruses belonged to clade 2.3.4.4, similarly to recent H5Nx viruses, and originated from A/Brk/Korea/Gochang1/14(H5N8), a minor lineage of H5N8 that appeared in 2014 and then disappeared. At least four reassortment events occurred with different subtypes (H5N8, H7N7, H3N8 and H10N7) and a chicken challenge study revealed that they were classified as HPAI viruses according to OIE criteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. MicroRNA regulation of TLRs in a post-influenza animal model

    DEFF Research Database (Denmark)

    Brogaard, Louise; Heegaard, Peter M. H.; Larsen, Lars Erik

    in the post-IAV infected individual. Using the pig as an animal model, we have identified microRNAs (miRNAs) that are differentially expressed in lung tissue two weeks after challenge compared to uninfected controls, i.e. well after the infection has cleared. The role for differential expression of mi......RNA at this late time point remains unclear. We therefore seek to examine the potential involvement of miRNAs in the translational regulation of TLRs and associated proteins, thus contributing to the lowered responsiveness to bacterial TLR ligands at this late time point, making the individual vulnerable...... to secondary infections. Methods and outcome Pigs were experimentally challenged with a Danish reassortant IAV strain (A/sw/Denmark/12687/03(H1N2)). Lung tissue was harvested 14 days after challenge, as well as from uninfected control animals. Using RNAseq and high-throughput RT-qPCR, we quantified...

  1. Swine influenza viruses isolated in 1983, 2002 and 2009 in Sweden exemplify different lineages

    Directory of Open Access Journals (Sweden)

    Metreveli Giorgi

    2010-12-01

    Full Text Available Abstract Swine influenza virus isolates originating from outbreaks in Sweden from 1983, 2002 and 2009 were subjected to nucleotide sequencing and phylogenetic analysis. The aim of the studies was to obtain an overview on their potential relatedness as well as to provide data for broader scale studies on swine influenza epidemiology. Nonetheless, analyzing archive isolates is justified by the efforts directed to the comprehension of the appearance of pandemic H1N1 influenza virus. Interestingly, this study illustrates the evolution of swine influenza viruses in Europe, because the earliest isolate belonged to 'classical' swine H1N1, the subsequent ones to Eurasian 'avian-like' swine H1N1 and reassortant 'avian-like' swine H1N2 lineages, respectively. The latter two showed close genetic relatedness regarding their PB2, HA, NP, and NS genes, suggesting common ancestry. The study substantiates the importance of molecular surveillance for swine influenza viruses.

  2. [An overview on swine influenza viruses].

    Science.gov (United States)

    Yang, Shuai; Zhu, Wen-Fei; Shu, Yue-Long

    2013-05-01

    Swine influenza viruses (SIVs) are respiratory pathogens of pigs. They cause both economic bur den in livestock-dependent industries and serious global public health concerns in humans. Because of their dual susceptibility to human and avian influenza viruses, pigs are recognized as intermediate hosts for genetic reassortment and interspecies transmission. Subtypes H1N1, H1N2, and H3N2 circulate in swine populations around the world, with varied origin and genetic characteristics among different continents and regions. In this review, the role of pigs in evolution of influenza A viruses, the genetic evolution of SIVs and interspecies transmission of SIVs are described. Considering the possibility that pigs might produce novel influenza viruses causing more outbreaks and pandemics, routine epidemiological surveillance of influenza viruses in pig populations is highly recommended.

  3. Mechanisms and Factors that Influence High Frequency Retroviral Recombination

    Science.gov (United States)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga; Mens, Helene; Pathak, Vinay K.; Hu, Wei-Shau

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development. PMID:21994801

  4. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline

    2015-01-01

    such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine......The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute...... to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages...

  5. Strategies for subtyping influenza viruses circulating in the Danish pig population

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2010-01-01

    in the Danish pig population functional and rapid subtyping assays are required. The conventional RT-PCR influenza subtyping assays developed by Chiapponi et al. (2003) have been implemented and used for typing of influenza viruses found positive in a pan influenza A real time RT-PCR assay. The H1 and N1 assays......Influenza viruses are endemic in the Danish pig population and the dominant circulating subtypes are H1N1, a Danish H1N2 reassortant, and H3N2. Here we present our current and future strategies for influenza virus subtyping. For diagnostic and surveillance of influenza subtypes circulating...... were specific when applied on Danish influenza positive samples, whereas the N2 assay consistently showed several unspecific PCR products. A subset of positive influenza samples detected by the real time RT-PCR screening assay could not be subtyped using these assays. Therefore, new influenza subtyping...

  6. Epidemiology, Evolution, and Recent Outbreaks of Avian Influenza Virus in China.

    Science.gov (United States)

    Su, Shuo; Bi, Yuhai; Wong, Gary; Gray, Gregory C; Gao, George F; Li, Shoujun

    2015-09-01

    Novel reassortants of H7N9, H10N8, and H5N6 avian influenza viruses (AIVs) are currently circulating in China's poultry flocks, occasionally infecting humans and other mammals. Combined with the sometimes enzootic H5N1 and H9N2 strains, this cauldron of genetically diverse AIVs pose significant risks to public health. Here, we review the epidemiology, evolution, and recent outbreaks of AIVs in China, discuss reasons behind the recent increase in the emergence of novel AIVs, and identify warning signs which may point to the emergence of a potentially virulent and highly transmissible AIV to humans. This review will be useful to authorities who consider options for the detection and control of AIV transmission in animals and humans, with the goal of preventing future epidemics and pandemics. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. The consequences of pleistocene climate change on lowland neotropical vegetation

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, P.E.; Colinvaux, P.A. (Smithsonian Tropical Research Institute, Panama City (Panama))

    1994-06-01

    Palynological reconstructions indicate that lowland tropical America was subject to intense cooling during the last ice-age. The descent of presently montane taxa into the lowlands of Amazonia and Minas Gerais indicate temperature depressions ranging from 5[degrees]C to 9[degrees]C cooler-than-present. The strengthened incursion of southerly airmasses caused a reassortment of vegetation throughout Amazonia. Presently allopatric species are found to have been sympatric as novel forest assemblages and formed and dissolved. Modest drying, perhaps a 20% reduction in precipitation, accounts for all the records that show a Pleistocene expansion of savanna. No evidence is found to support the fragmentation of Amazonian forests during glacial times, and the hypothesis of forest refuges as an explanation of tropical speciation is rejected on empirical grounds.

  8. The comparison of pathology in ferrets infected by H9N2 avian influenza viruses with different genomic features.

    Science.gov (United States)

    Gao, Rongbao; Bai, Tian; Li, Xiaodan; Xiong, Ying; Huang, Yiwei; Pan, Ming; Zhang, Ye; Bo, Hong; Zou, Shumei; Shu, Yuelong

    2016-01-15

    H9N2 avian influenza virus circulates widely in poultry and has been responsible for sporadic human infections in several regions. Few studies have been conducted on the pathogenicity of H9N2 AIV isolates that have different genomic features. We compared the pathology induced by a novel reassortant H9N2 virus and two currently circulating H9N2 viruses that have different genomic features in ferrets. The results showed that the three viruses can induce infections with various amounts of viral shedding in ferrets. The novel H9N2 induced respiratory infection, but no pathological lesions were observed in lung tissues. The other two viruses induced mild to intermediate pathological lesions in lung tissues, although the clinical signs presented mildly in ferrets. The pathological lesions presented a diversity consistent with viral replication in ferrets. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Evidence for mating between isolates of Colletotrichum gloeosporioides with different host specificities.

    Science.gov (United States)

    Cisar, C R; Spiegel, F W; TeBeest, D O; Trout, C

    1994-04-01

    Individual isolates of the ubiquitous plant pathogen Colletotrichum gloeosporioides (teleomorph Glomerella cingulata) can have very restricted host ranges. Isolates that share the same host range are considered to be genetically discrete units, and sexual compatibility has been reported to be limited to individuals that share the same host range. However, we have recently observed that some isolates of C. gloeosporioides that are specifically pathogenic to different, distantly-related hosts are sexually compatible. Ascospore progeny from one such cross were randomly isolated and outcrossing was verified by the reassortment of several RFLP markers among the progeny. In addition, the progeny were analyzed for pathogenicity to parental hosts. The implications of sexual compatibility between C. gloeosporioides isolates with different host specificities on the evolution of Colletotrichum species are discussed.

  10. Molecular characterization of different equine-like G3 rotavirus strains from Germany.

    Science.gov (United States)

    Pietsch, Corinna; Liebert, Uwe G

    2018-01-01

    The genetic heterogeneity of rotaviruses constitutes a substantial burden to human and animal health. Occasional interspecies transmissions can generate novel virus strains in the human population. We detected equine-like G3P[8] strains in feces sampled from three children in Germany in 2015 and 2016, respectively. Thereof two showed a DS-1-like backbone. In one strain the NSP2 gene segment was of distinct genotype (G3-P[8]-I2-R2-C2-M2-A2-N1-T2-E2-H2). Phylogenetic analyses of the German strains showed a relation to other equine-like G3 rotaviruses circulating in different countries. The reconstruction of reassortment events in the evolution of novel equine-like G3 rotaviruses suggests an independent introduction of the three strains into the local human rotavirus population. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; El-Shesheny, Rabeh; Shehata, Mahmoud M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2018-02-01

    The majority of the Egyptian swine population was culled in the aftermath of the 2009 H1N1 pandemic, but small-scale growing remains. We sampled pigs from piggeries and an abattoir in Cairo. We found virological evidence of infection with avian H9N2 and H5N1 viruses as well as human pandemic H1N1 influenza virus. Serological evidence suggested previous exposure to avian H5N1 and H9N2, human pandemic H1N1, and swine avian-like and human-like viruses. This raises concern about potential reassortment of influenza viruses in pigs and highlights the need for better control and prevention of influenza virus infection in pigs.

  12. Avian Influenza.

    Science.gov (United States)

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  13. 2.1 Natural History of Highly Pathogenic Avian Influenza H5N1

    Science.gov (United States)

    Sonnberg, Stephanie; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans. PMID:23735535

  14. THE MOLECULAR EVOLUTION OF THE MOST DANGEROUS EMERGING VIRUS INFECTIONS

    Directory of Open Access Journals (Sweden)

    Popov NN

    2016-03-01

    Full Text Available In this paper we reviewed what is known about the emerging viruses, the hosts that they originate in, and the molecular events that drive their emergence. When a pathogen crosses over from animals to humans, or an existing human disease suddenly increases in incidence, the infectious disease is said to be ‘emerging’. Most of the emerging pathogens originate from nonhuman animal species which has been termed natural reservoirs. The number of emerging infectious diseases has increased over the last few decades, driven by both anthropogenic and environmental factors such as population growth, urbanization, global travel and trade, intensification of livestock production. Now it has been believed that the emergence process may include four steps. On the first step the exposure of the humans to a novel virus occures. On the second step the subset of the viruses overcome the cross-species barrier. Host shifts have resulted in multiple human pandemics, such as HIV from chimps the H1N1, ‘‘spanish flu’’ from birds, SARS-CoV and virus Ebola from bats. Then some viruses enables to transmit from one human to another. And on the last step the viruses that are sufficiently transmissible between humans cause outbreaks and become endemic in human populations without the requirement of a natural reservoir. This review aims to discuss the molecular mechanisms that govern virus cross-species transmission and following stage, using the emergence of HIV, SARS-CoV, virus Ebola and influenza virus A as the models.Populations of many viruses harbour abundant genetic variability due to a combination of high mutation, recombination or reassortation rates and large population sizes. Mutations and recombinations has been associated with the increases in virulence, the evasion of host immunity and the evolution of resistance to antivirals. Genetic alterations in one species may results in the acquisition of variations that allow them to overcome cross species

  15. Itaya virus, a Novel Orthobunyavirus Associated with Human Febrile Illness, Peru

    Science.gov (United States)

    Hontz, Robert D.; Guevara, Carolina; Halsey, Eric S.; Silvas, Jesus; Santiago, Felix W.; Widen, Steven G.; Wood, Thomas G.; Casanova, Wilma; Vasilakis, Nikos; Watts, Douglas M.; Kochel, Tadeusz J.; Ebihara, Hideki

    2015-01-01

    Our genetic analyses of uncharacterized bunyaviruses isolated in Peru identified a possible reassortant virus containing small and large gene segment sequences closely related to the Caraparu virus and a medium gene segment sequence potentially derived from an unidentified group C orthobunyavirus. Neutralization tests confirmed serologic distinction among the newly identified virus and the prototype and Caraparu strains. This virus, named Itaya, was isolated in 1999 and 2006 from febrile patients in the cities of Iquitos and Yurimaguas in Peru. The geographic distance between the 2 cases suggests that the Itaya virus could be widely distributed throughout the Amazon basin in northeastern Peru. Identification of a new Orthobunyavirus species that causes febrile disease in humans reinforces the need to expand viral disease surveillance in tropical regions of South America. PMID:25898901

  16. Role for migratory wild birds in the global spread of avian influenza H5N8

    Science.gov (United States)

    ,; Ip, Hon S.

    2016-01-01

    Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014–2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.

  17. [History of vaccination: from empiricism towards recombinant vaccines].

    Science.gov (United States)

    Guérin, N

    2007-01-01

    Two hundreds years after the discovery of the smallpox vaccine, immunization remains one of the most powerful tools of preventive medicine. Immunization was born with Jenner, then Pasteur and expanded during the 19th and 20th century. It started with the empirical observation of cross-immunity between two diseases, cowpox and smallpox. It became a real science, with pathogen isolation, culture and attenuation or inactivation, to prepare a vaccine. Together with clinical and biological efficacy studies and adverse events assessments, it constructed the concept of "vaccinology". Protein conjugation of polyosidic vaccines has made possible early immunisation of infants. Nowadays, recombinant, reassortant, or virus-like particles technologies open the road for new vaccines. Ongoing research opens the way for the development of new vaccines that will help to control transmittable diseases for which we are lacking antimicrobial agents.

  18. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity

    DEFF Research Database (Denmark)

    Chen, Li-Mei; Blixt, Klas Ola; Stevens, James

    2012-01-01

    Acquisition of a2-6 sialoside receptor specificity by a2-3 specific highly-pathogenic avian influenza viruses (H5N1) is thought to be a prerequisite for efficient transmission in humans. By in vitro selection for binding a2-6 sialosides, we identified four variant viruses with amino acid....... Unlike the wild type H5N1, this mutant virus was transmitted by direct contact in the ferret model although not by airborne respiratory droplets. However, a reassortant virus with the mutant hemagglutinin, a human N2 neuraminidase and internal genes from an H5N1 virus was partially transmitted via...... respiratory droplets. The complex changes required for airborne transmissibility in ferrets suggest that extensive evolution is needed for H5N1 transmissibility in humans....

  19. Itaya virus, a Novel Orthobunyavirus Associated with Human Febrile Illness, Peru.

    Science.gov (United States)

    Hontz, Robert D; Guevara, Carolina; Halsey, Eric S; Silvas, Jesus; Santiago, Felix W; Widen, Steven G; Wood, Thomas G; Casanova, Wilma; Vasilakis, Nikos; Watts, Douglas M; Kochel, Tadeusz J; Ebihara, Hideki; Aguilar, Patricia V

    2015-05-01

    Our genetic analyses of uncharacterized bunyaviruses isolated in Peru identified a possible reassortant virus containing small and large gene segment sequences closely related to the Caraparu virus and a medium gene segment sequence potentially derived from an unidentified group C orthobunyavirus. Neutralization tests confirmed serologic distinction among the newly identified virus and the prototype and Caraparu strains. This virus, named Itaya, was isolated in 1999 and 2006 from febrile patients in the cities of Iquitos and Yurimaguas in Peru. The geographic distance between the 2 cases suggests that the Itaya virus could be widely distributed throughout the Amazon basin in northeastern Peru. Identification of a new Orthobunyavirus species that causes febrile disease in humans reinforces the need to expand viral disease surveillance in tropical regions of South America.

  20. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Horvath, A; Andersen, I; Junker, K

    2001-01-01

    . These studies were extended to comprise five mouse-adapted influenza A strains, two swine influenza A strains, a mink influenza A virus, a ferret influenza A reassortant virus, a influenza B virus and a parainfluenza 3 virus. The HA activity of all these viruses was inhibited by SAP. Western blotting showed......Serum amyloid P component (SAP) binds in vitro Ca(2+)-dependently to several ligands including oligosaccharides with terminal mannose and galactose. We have earlier reported that SAP binds to human influenza A virus strains, inhibiting hemagglutinin (HA) activity and virus infectivity in vitro...... that SAP bound to HA trimers, monomers and HA1 and HA2 subunits of influenza A virus. Binding studies indicated that galactose, mannose and fucose moieties contributed to the SAP reacting site(s). Intranasal administration of human SAP to mice induced no demonstrable toxic reactions, and circulating...

  1. Selective Bottlenecks Shape Evolutionary Pathways Taken during Mammalian Adaptation of a 1918-like Avian Influenza Virus.

    Science.gov (United States)

    Moncla, Louise H; Zhong, Gongxun; Nelson, Chase W; Dinis, Jorge M; Mutschler, James; Hughes, Austin L; Watanabe, Tokiko; Kawaoka, Yoshihiro; Friedrich, Thomas C

    2016-02-10

    Avian influenza virus reassortants resembling the 1918 human pandemic virus can become transmissible among mammals by acquiring mutations in hemagglutinin (HA) and polymerase. Using the ferret model, we trace the evolutionary pathway by which an avian-like virus evolves the capacity for mammalian replication and airborne transmission. During initial infection, within-host HA diversity increased drastically. Then, airborne transmission fixed two polymerase mutations that do not confer a detectable replication advantage. In later transmissions, selection fixed advantageous HA1 variants. Transmission initially involved a "loose" bottleneck, which became strongly selective after additional HA mutations emerged. The stringency and evolutionary forces governing between-host bottlenecks may therefore change throughout host adaptation. Mutations occurred in multiple combinations in transmitted viruses, suggesting that mammalian transmissibility can evolve through multiple genetic pathways despite phenotypic constraints. Our data provide a glimpse into avian influenza virus adaptation in mammals, with broad implications for surveillance on potentially zoonotic viruses. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Potential safety issues and other factors that may affect the introduction and uptake of rotavirus vaccines

    Science.gov (United States)

    Aliabadi, N.; Tate, J.E.; Parashar, U.D.

    2018-01-01

    Rotavirus vaccines have demonstrated significant impact in reducing the burden of morbidity and mortality from childhood diarrhoea in countries that have implemented routine vaccination to date. Despite this success, in many countries, rotavirus vaccine coverage remains lower than that of other routine childhood vaccines. Several issues may potentially affect vaccine uptake, namely safety concerns related to intussusception with consequent age restrictions on rotavirus vaccination, contamination with porcine circovirus, vaccine-derived reassortant strains and hospitalization in newborn nurseries at time of administration of live oral rotavirus vaccine. In addition to these safety concerns, other factors may also affect uptake, including lower vaccine efficacy in the developing world, potential emergence of strains escaping from vaccine protection resulting in lower overall impact of a vaccination programme and sustainable vaccine financing. Although further work is needed to address some of these concerns, global policy bodies have reaffirmed that the benefits of rotavirus vaccination outweigh the risks, and vaccine use is recommended globally. PMID:27129416

  3. Rotavirus vaccines

    Directory of Open Access Journals (Sweden)

    Kang G

    2006-01-01

    Full Text Available Rotavirus, the most common cause of severe diarrhea and a leading cause of mortality in children, has been a priority target for vaccine development for the past several years. The first rotavirus vaccine licensed in the United States was withdrawn because of an association of the vaccine with intussusception. However, the need for a vaccine is greatest in the developing world, because the benefits of preventing deaths due to rotavirus disease are substantially greater than the risk of intussusception. Early vaccines were based on animal strains. More recently developed and licenced vaccines are either animal-human reassortants or are based on human strains. In India, two candidate vaccines are in the development process, but have not yet reached efficacy trials. Many challenges regarding vaccine efficacy and safety remain. In addition to completing clinical evaluations of vaccines in development in settings with the highest disease burden and virus diversity, there is also a need to consider alternative vaccine development strategies.

  4. Potential safety issues and other factors that may affect the introduction and uptake of rotavirus vaccines.

    Science.gov (United States)

    Aliabadi, N; Tate, J E; Parashar, U D

    2016-12-01

    Rotavirus vaccines have demonstrated significant impact in reducing the burden of morbidity and mortality from childhood diarrhoea in countries that have implemented routine vaccination to date. Despite this success, in many countries, rotavirus vaccine coverage remains lower than that of other routine childhood vaccines. Several issues may potentially affect vaccine uptake, namely safety concerns related to intussusception with consequent age restrictions on rotavirus vaccination, contamination with porcine circovirus, vaccine-derived reassortant strains and hospitalization in newborn nurseries at time of administration of live oral rotavirus vaccine. In addition to these safety concerns, other factors may also affect uptake, including lower vaccine efficacy in the developing world, potential emergence of strains escaping from vaccine protection resulting in lower overall impact of a vaccination programme and sustainable vaccine financing. Although further work is needed to address some of these concerns, global policy bodies have reaffirmed that the benefits of rotavirus vaccination outweigh the risks, and vaccine use is recommended globally. Published by Elsevier Ltd.

  5. Novel H7N2 and H5N6 Avian Influenza A Viruses in Sentinel Chickens: A Sentinel Chicken Surveillance Study

    Directory of Open Access Journals (Sweden)

    Teng Zhao

    2016-11-01

    Full Text Available In 2014, surveillance of sentinel chicken for avian influenza virus was conducted in aquatic bird habitat near Wuxi City, Jiangsu Province, China. Two H7N2, one H5N6, and two H9N2 viruses were isolated. Sequence analysis revealed that the H7N2 virus is a novel reassortant of H7N9 and H9N2 viruses and H5N6 virus is a reassortant of H5N1 clade 2.3.4 and H6N6 viruses. Substitutions V186 and L226 (H3 numbering in the hemagglutinin (HA gene protein was found in two H7N2 viruses but not in the H5N6 virus. Two A138 and A160 mutations were identified in the HA gene protein of all three viruses but a P128 mutation was only in the H5N6 virus. A deletion of three and eleven amino acids in the neuraminidase stalk region was found in two H7N2 and H5N6 viruses, respectively. Moreover, a mutation of N31 in M2 protein was observed in both two H7N2 viruses. High similarity of these isolated viruses to viruses previously identified among poultry and humans, suggests that peridomestic aquatic birds may play a role in sustaining novel virus transmission. Therefore, continued surveillance is needed to monitor these avian influenza viruses in wild bird and domestic poultry that may pose a threat to poultry and human health.

  6. Avian influenza A (H9N2: computational molecular analysis and phylogenetic characterization of viral surface proteins isolated between 1997 and 2009 from the human population

    Directory of Open Access Journals (Sweden)

    Idrees Muhammad

    2010-11-01

    Full Text Available Abstract Background H9N2 avian influenza A viruses have become panzootic in Eurasia over the last decade and have caused several human infections in Asia since 1998. To study their evolution and zoonotic potential, we conducted an in silico analysis of H9N2 viruses that have infected humans between 1997 and 2009 and identified potential novel reassortments. Results A total of 22 hemagglutinin (HA and neuraminidase (NA nucleotide and deduced amino acid sequences were retrieved from the NCBI flu database. It was identified that mature peptide sequences of HA genes isolated from humans in 2009 had glutamine at position 226 (H3 of the receptor binding site, indicating a preference to bind to the human α (2-6 sialic acid receptors, which is different from previously isolated viruses and studies where the presence of leucine at the same position contributes to preference for human receptors and presence of glutamine towards avian receptors. Similarly, strains isolated in 2009 possessed new motif R-S-N-R in spite of typical R-S-S-R at the cleavage site of HA, which isn't reported before for H9N2 cases in humans. Other changes involved loss, addition, and variations in potential glycosylation sites as well as in predicted epitopes. The results of phylogenetic analysis indicated that HA and NA gene segments of H9N2 including those from current and proposed vaccine strains belong to two different Eurasian phylogenetic lineages confirming possible genetic reassortments. Conclusions These findings support the continuous evolution of avian H9N2 viruses towards human as host and are in favor of effective surveillance and better characterization studies to address this issue.

  7. Genetic makeup of amantadine-resistant and oseltamivir-resistant human influenza A/H1N1 viruses.

    Science.gov (United States)

    Zaraket, Hassan; Saito, Reiko; Suzuki, Yasushi; Baranovich, Tatiana; Dapat, Clyde; Caperig-Dapat, Isolde; Suzuki, Hiroshi

    2010-04-01

    The emergence and widespread occurrence of antiviral drug-resistant seasonal human influenza A viruses, especially oseltamivir-resistant A/H1N1 virus, are major concerns. To understand the genetic background of antiviral drug-resistant A/H1N1 viruses, we performed full genome sequencing of prepandemic A/H1N1 strains. Seasonal influenza A/H1N1 viruses, including antiviral-susceptible viruses, amantadine-resistant viruses, and oseltamivir-resistant viruses, obtained from several areas in Japan during the 2007-2008 and 2008-2009 influenza seasons were analyzed. Sequencing of the full genomes of these viruses was performed, and the phylogenetic relationships among the sequences of each individual genome segment were inferred. Reference genome sequences from the Influenza Virus Resource database were included to determine the closest ancestor for each segment. Phylogenetic analysis revealed that the oseltamivir-resistant strain evolved from a reassortant oseltamivir-susceptible strain (clade 2B) which circulated in the 2007-2008 season by acquiring the H275Y resistance-conferring mutation in the NA gene. The oseltamivir-resistant lineage (corresponding to the Northern European resistant lineage) represented 100% of the H1N1 isolates from the 2008-2009 season and further acquired at least one mutation in each of the polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), hemagglutinin (HA), and neuraminidase (NA) genes. Therefore, a reassortment event involving two distinct oseltamivir-susceptible lineages, followed by the H275Y substitution in the NA gene and other mutations elsewhere in the genome, contributed to the emergence of the oseltamivir-resistant lineage. In contrast, amantadine-resistant viruses from the 2007-2008 season distinctly clustered in clade 2C and were characterized by extensive amino acid substitutions across their genomes, suggesting that a fitness gap among its genetic components might have driven these mutations to maintain it in the

  8. A human-like H1N2 influenza virus detected during an outbreak of acute respiratory disease in swine in Brazil.

    Science.gov (United States)

    Schaefer, Rejane; Rech, Raquel Rubia; Gava, Danielle; Cantão, Mauricio Egídio; da Silva, Marcia Cristina; Silveira, Simone; Zanella, Janice Reis Ciacci

    2015-01-01

    Passive monitoring for detection of influenza A viruses (IAVs) in pigs has been carried out in Brazil since 2009, detecting mostly the A(H1N1)pdm09 influenza virus. Since then, outbreaks of acute respiratory disease suggestive of influenza A virus infection have been observed frequently in Brazilian pig herds. During a 2010-2011 influenza monitoring, a novel H1N2 influenza virus was detected in nursery pigs showing respiratory signs. The pathologic changes were cranioventral acute necrotizing bronchiolitis to subacute proliferative and purulent bronchointerstitial pneumonia. Lung tissue samples were positive for both influenza A virus and A(H1N1)pdm09 influenza virus based on RT-qPCR of the matrix gene. Two IAVs were isolated in SPF chicken eggs. HI analysis of both swine H1N2 influenza viruses showed reactivity to the H1δ cluster. DNA sequencing was performed for all eight viral gene segments of two virus isolates. According to the phylogenetic analysis, the HA and NA genes clustered with influenza viruses of the human lineage (H1-δ cluster, N2), whereas the six internal gene segments clustered with the A(H1N1)pdm09 group. This is the first report of a reassortant human-like H1N2 influenza virus derived from pandemic H1N1 virus causing an outbreak of respiratory disease in pigs in Brazil. The emergence of a reassortant IAV demands the close monitoring of pigs through the full-genome sequencing of virus isolates in order to enhance genetic information about IAVs circulating in pigs.

  9. Two different genotypes of H1N2 swine influenza virus isolated in northern China and their pathogenicity in animals.

    Science.gov (United States)

    Yang, Huanliang; Chen, Yan; Qiao, Chuanling; Xu, Chuantian; Yan, Minghua; Xin, Xiaoguang; Bu, Zhigao; Chen, Hualan

    2015-02-25

    During 2006 and 2007, two swine-origin triple-reassortant influenza A (H1N2) viruses were isolated from pigs in northern China, and the antigenic characteristics of the hemagglutinin protein of the viruses were examined. Genotyping and phylogenetic analyses demonstrated different emergence patterns for the two H1N2 viruses, Sw/Hebei/10/06 and Sw/Tianjin/1/07. Sequences for the other genes encoding the internal proteins were compared with the existing data to determine their origins and establish the likely mechanisms of genetic reassortment. Sw/Hebei/10/06 is an Sw/Indiana/9K035/99-like virus, whereas Sw/Tianjin/1/07 represents a new H1N2 genotype with surface genes of classic swine and human origin and internal genes originating from the Eurasian avian-like swine H1N1 virus. Six-week-old female BALB/c mice infected with the Sw/HeB/10/06 and Sw/TJ/1/07 viruses showed an average weight loss of 12.8% and 8.1%, respectively. Healthy six-week-old pigs were inoculated intranasally with either the Sw/HeB/10/06 or Sw/TJ/1/07 virus. No considerable changes in the clinical presentation were observed post-inoculation in any of the virus-inoculated groups, and the viruses effectively replicated in the nasal cavity and lung tissue. Based on the results, it is possible that the new genotype of the swine H1N2 virus that emerged in China may become widespread in the swine population and pose a potential threat to public health. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China.

    Science.gov (United States)

    Yu, Hai; Zhang, Peng-Chao; Zhou, Yan-Jun; Li, Guo-Xin; Pan, Jie; Yan, Li-Ping; Shi, Xiao-Xiao; Liu, Hui-Li; Tong, Guang-Zhi

    2009-08-21

    As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or "mixing vessels", and swine influenza virus surveillance in China should be given a high priority.

  11. [Molecular characterization of human influenza viruses--a look back on the last 10 years].

    Science.gov (United States)

    Schweiger, Brunhilde

    2006-01-01

    Influenza A (H3N2) viruses and influenza B viruses have caused more than 90% of influenza infections in Germany during the last then years. Continuous and extensive antigenic variation was evident for both the hemagglutinin (HA) and neuraminidase (NA) surface proteins of H3N2 and influenza B viruses. Molecular characterisation revealed an ongoing genetic drift even in years when the antigenic profiles of circulating strains were indistinguishable from those of the previous season. Retrospective phylogenetic studies showed that viruses similar to vaccine strains circulated one or two years before a given strain was recommended as vaccine strain. New drift variants of H3N2 viruses with significantly changed antigenic features appeared during the seasons 1997/1998 and 2002/2003. Most influenza seasons were characterised by a co-circulation of at least two different lineages of H3N2 viruses. Genetic reassortment between H3N2 viruses belonging to separate lineages caused the different evolutionary pathways of the HA and viruses was responsible for the occurrence of H1N2 viruses during the season 2001/02. This new subtype has been detected only sporadically in Germany. The evolution of influenza B viruses was characterised by the re-emergence of B/Victoria/2/87-lineage viruses and their co-circulation with viruses of the B/Yamagata/16/88-lineage. Reassortant B viruses possessing a Victoria/87-lineage HA and a Yamagata/88-like NA were predominant in Germany during 2002/03 and 2004/05.

  12. Genomic characterization of H1N2 swine influenza viruses in Italy.

    Science.gov (United States)

    Moreno, Ana; Chiapponi, Chiara; Boniotti, Maria Beatrice; Sozzi, Enrica; Foni, Emanuela; Barbieri, Ilaria; Zanoni, Maria Grazia; Faccini, Silvia; Lelli, Davide; Cordioli, Paolo

    2012-05-04

    Three subtypes (H1N1, H1N2, and H3N2) are currently diffused worldwide in pigs. The H1N2 subtype was detected for the first time in Italian pigs in 1998. To investigate the genetic characteristics and the molecular evolution of this subtype in Italy, we conducted a phylogenetic analysis of whole genome sequences of 26 strains isolated from 1998 to 2010. Phylogenetic analysis of HA and NA genes showed differences between the older (1998-2003) and the more recent strains (2003-2010). The older isolates were closely related to the established European H1N2 lineage, whereas the more recent isolates possessed a different NA deriving from recent human H3N2 viruses. Two other reassortant H1N2 strains have been detected: A/sw/It/22530/02 has the HA gene that is closely related to H1N1 viruses; A/sw/It/58769/10 is an uncommon strain with an HA that is closely related to H1N1 and an NA similar to H3N2 SIVs. Amino acid analysis revealed interesting features: a deletion of two amino acids (146-147) in the HA gene of the recent isolates and two strains isolated in 1998; the presence of the uncommon aa change (N66S), in the PB1-F2 protein in strains isolated from 2009 to 2010, which is said to have contributed to the increased virulence. These results demonstrate the importance of pigs as mixing vessels for animal and human influenza and show the presence and establishment of reassortant strains involving human viruses in pigs in Italy. These findings also highlighted different genomic characteristics of the NA gene the recent Italian strains compared to circulating European viruses. Published by Elsevier B.V.

  13. Virological surveillance and preliminary antigenic characterization of influenza viruses in pigs in five European countries from 2006 to 2008.

    Science.gov (United States)

    Kyriakis, C S; Brown, I H; Foni, E; Kuntz-Simon, G; Maldonado, J; Madec, F; Essen, S C; Chiapponi, C; Van Reeth, K

    2011-03-01

    This study presents the results of the virological surveillance for swine influenza viruses (SIVs) in Belgium, UK, Italy, France and Spain from 2006 to 2008. Our major aims were to clarify the occurrence of the three SIV subtypes - H1N1, H3N2 and H1N2 - at regional levels, to identify novel reassortant viruses and to antigenically compare SIVs with human H1N1 and H3N2 influenza viruses. Lung tissue and/or nasal swabs from outbreaks of acute respiratory disease in pigs were investigated by virus isolation. The hemagglutinin (HA) and neuraminidase (NA) subtypes were determined using standard methods. Of the total 169 viruses, 81 were classified as 'avian-like' H1N1, 36 as human-like H3N2 and 47 as human-like H1N2. Only five novel reassortant viruses were identified: two H1N1 viruses had a human-like HA and three H1N2 viruses an avian-like HA. All three SIV subtypes were detected in Belgium, Italy and Spain, while only H1N1 and H1N2 viruses were found in UK and Northwestern France. Cross-hemagglutination inhibition (HI) tests with hyperimmune sera against selected older and recent human influenza viruses showed a strong antigenic relationship between human H1N1 and H3N2 viruses from the 1980s and H1N2 and H3N2 human-like SIVs, confirming their common origin. However, antisera against human viruses isolated during the last decade did not react with currently circulating H1 or H3 SIVs, suggesting that especially young people may be, to some degree, susceptible to SIV infections. © 2009 Blackwell Verlag GmbH.

  14. Risk for interspecies transmission of zoonotic pathogens during poultry processing and pork production in Peru: A qualitative study.

    Science.gov (United States)

    Carnero, A M; Kitayama, K; Diaz, D A; Garvich, M; Angulo, N; Cama, V A; Gilman, R H; Bayer, A M

    2018-03-30

    Interspecies transmission of pathogens is an unfrequent but naturally occurring event and human activities may favour opportunities not previously reported. Reassortment of zoonotic pathogens like influenza A virus can result from these activities. Recently, swine and birds have played a central role as "mixing vessels" for epidemic and pandemic events related to strains like H1N1 and H5N1. Unsafe practices in poultry markets and swine farms can lead to interspecies transmission, favouring the emergence of novel strains. Thus, understanding practices that lead to interspecies interactions is crucial. This qualitative study aimed to evaluate poultry processing practices in formal and informal markets and the use of leftovers by swine farmers in three Peruvian cities: Lima (capital), Tumbes (coastal) and Tarapoto (jungle). We conducted 80 direct observations at formal and informal markets and interviewed 15 swine farmers. Processors slaughter and pluck chickens and vendors and/or processors eviscerate chickens. Food safety and hygiene practices were suboptimal or absent, although some heterogeneity was observed between cities and chicken vendors versus processors. Both vendors (76%) and processors (100%) sold the chicken viscera leftovers to swine farmers, representing the main source of chicken viscera for swine farms (53%). Swine farmers fed the chicken viscera to their swine. Chicken viscera cooking times varied widely and were insufficient in some cases. Non-abattoired poultry leads to the sale of poultry leftovers to small-scale swine farms, resulting in indirect but frequent interspecies contacts that can lead to interspecies transmission of bacterial pathogens or the reassortment of influenza A viruses. These interactions are exacerbated by suboptimal safety and hygiene conditions. People involved in these activities constitute an at-risk population who could play a central role in preventing the transmission of pathogens between species. Educational

  15. Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karunya Srinivasan

    Full Text Available Avian influenza subtypes such as H5, H7 and H9 are yet to adapt to the human host so as to establish airborne transmission between humans. However, lab-generated reassorted viruses possessing hemagglutinin (HA and neuraminidase (NA genes from an avian H9 isolate and other genes from a human-adapted (H3 or H1 subtype acquired two amino acid changes in HA and a single amino acid change in NA that confer respiratory droplet transmission in ferrets. We previously demonstrated for human-adapted H1, H2 and H3 subtypes that quantitative binding affinity of their HA to α2→6 sialylated glycan receptors correlates with respiratory droplet transmissibility of the virus in ferrets. Such a relationship remains to be established for H9 HA. In this study, we performed a quantitative biochemical characterization of glycan receptor binding properties of wild-type and mutant forms of representative H9 HAs that were previously used in context of reassorted viruses in ferret transmission studies. We demonstrate here that distinct molecular interactions in the glycan receptor-binding site of different H9 HAs affect the glycan-binding specificity and affinity. Further we show that α2→6 glycan receptor-binding affinity of a mutant H9 HA carrying Thr-189→Ala amino acid change correlates with the respiratory droplet transmission in ferrets conferred by this change. Our findings contribute to a framework for monitoring the evolution of H9 HA by understanding effects of molecular changes in HA on glycan receptor-binding properties.

  16. The effect of ecosystem biodiversity on virus genetic diversity depends on virus species: A study of chiltepin-infecting begomoviruses in Mexico.

    Science.gov (United States)

    Rodelo-Urrego, Manuel; García-Arenal, Fernando; Pagán, Israel

    2015-01-01

    Current declines in biodiversity put at risk ecosystem services that are fundamental for human welfare. Increasing evidence indicates that one such service is the ability to reduce virus emergence. It has been proposed that the reduction of virus emergence occurs at two levels: through a reduction of virus prevalence/transmission and, as a result of these epidemiological changes, through a limitation of virus genetic diversity. Although the former mechanism has been studied in a few host-virus interactions, very little is known about the association between ecosystem biodiversity and virus genetic diversity. To address this subject, we estimated genetic diversity, synonymous and non-synonymous nucleotide substitution rates, selection pressures, and frequency of recombinants and re-assortants in populations of Pepper golden mosaic virus (PepGMV) and Pepper huasteco yellow vein virus (PHYVV) that infect chiltepin plants in Mexico. We then analyzed how these parameters varied according to the level of habitat anthropization, which is the major cause of biodiversity loss. Our results indicated that genetic diversity of PepGMV (but not of PHYVV) populations increased with the loss of biodiversity at higher levels of habitat anthropization. This was mostly the consequence of higher rates of synonymous nucleotide substitutions, rather than of adaptive selection. The frequency of recombinants and re-assortants was higher in PepGMV populations infecting wild chiltepin than in those infecting cultivated ones, suggesting that genetic exchange is not the main mechanism for generating genetic diversity in PepGMV populations. These findings provide evidence that biodiversity may modulate the genetic diversity of plant viruses, but it may differentially affect even two closely related viruses. Our analyses may contribute to understanding the factors involved in virus emergence.

  17. Phylogenetic diversity and genotypical complexity of H9N2 influenza A viruses revealed by genomic sequence analysis.

    Directory of Open Access Journals (Sweden)

    Guoying Dong

    Full Text Available H9N2 influenza A viruses have become established worldwide in terrestrial poultry and wild birds, and are occasionally transmitted to mammals including humans and pigs. To comprehensively elucidate the genetic and evolutionary characteristics of H9N2 influenza viruses, we performed a large-scale sequence analysis of 571 viral genomes from the NCBI Influenza Virus Resource Database, representing the spectrum of H9N2 influenza viruses isolated from 1966 to 2009. Our study provides a panoramic framework for better understanding the genesis and evolution of H9N2 influenza viruses, and for describing the history of H9N2 viruses circulating in diverse hosts. Panorama phylogenetic analysis of the eight viral gene segments revealed the complexity and diversity of H9N2 influenza viruses. The 571 H9N2 viral genomes were classified into 74 separate lineages, which had marked host and geographical differences in phylogeny. Panorama genotypical analysis also revealed that H9N2 viruses include at least 98 genotypes, which were further divided according to their HA lineages into seven series (A-G. Phylogenetic analysis of the internal genes showed that H9N2 viruses are closely related to H3, H4, H5, H7, H10, and H14 subtype influenza viruses. Our results indicate that H9N2 viruses have undergone extensive reassortments to generate multiple reassortants and genotypes, suggesting that the continued circulation of multiple genotypical H9N2 viruses throughout the world in diverse hosts has the potential to cause future influenza outbreaks in poultry and epidemics in humans. We propose a nomenclature system for identifying and unifying all lineages and genotypes of H9N2 influenza viruses in order to facilitate international communication on the evolution, ecology and epidemiology of H9N2 influenza viruses.

  18. PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection

    Directory of Open Access Journals (Sweden)

    Wang Qiang

    2012-06-01

    Full Text Available Abstract Background Although gene exchange is not likely to occur freely, reassortment between the H5N1 highly pathogenic avian influenza virus (HPAIV and currently circulating human viruses is a serious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported to activate the influenza replicon activity. Methods The replicon activities of PR8 and WSN strains (H1N1 of influenza containing PA from HPAIV A/Cambodia/P0322095/2005 (H5N1 and the activity of the chimeric RNA polymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (C-PA was then reconstituted and its growth in cells and pathogenicity in mice examined. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells were compared with those of WSN-infected cells. Results The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and C-PA replicated better than WSN in cells. However, the multi-step growth of C-PA and its pathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cells but not in WSN-infected cells. Conclusions Apoptosis and interferon were strongly induced early in C-PA infection, which protected the uninfected cells from expansion of viral infection. In this case, these classical host-virus interactions contributed to the attenuation of this strongly replicating virus.

  19. Adaptive evolution during the establishment of European avian-like H1N1 influenza A virus in swine.

    Science.gov (United States)

    Joseph, Udayan; Vijaykrishna, Dhanasekaran; Smith, Gavin J D; Su, Yvonne C F

    2018-04-01

    An H1N1 subtype influenza A virus with all eight gene segments derived from wild birds (including mallards), ducks and chickens, caused severe disease outbreaks in swine populations in Europe beginning in 1979 and successfully adapted to form the European avian-like swine (EA-swine) influenza lineage. Genes of the EA-swine lineage that are clearly segregated from its closest avian relatives continue to circulate in swine populations globally and represent a unique opportunity to study the adaptive process of an avian-to-mammalian cross-species transmission. Here, we used a relaxed molecular clock model to test whether the EA-swine virus originated through the introduction of a single avian ancestor as an entire genome, followed by an analysis of host-specific selection pressures among different gene segments. Our data indicated independent introduction of gene segments via transmission of avian viruses into swine followed by reassortment events that occurred at least 1-4 years prior to the EA-swine outbreak. All EA-swine gene segments exhibit greater selection pressure than avian viruses, reflecting both adaptive pressures and relaxed selective constraints that are associated with host switching. Notably, we identified key amino acid mutations in the viral surface proteins (H1 and N1) that play a role in adaptation to new hosts. Following the establishment of EA-swine lineage, we observed an increased frequency of intrasubtype reassortment of segments compared to the earlier strains that has been associated with adaptive amino acid replacements, disease severity and vaccine escape. Taken together, our study provides key insights into the adaptive changes in viral genomes following the transmission of avian influenza viruses to swine and the early establishment of the EA-swine lineage.

  20. Molecular evolution of H1N1 swine influenza in Guangdong, China, 2016-2017.

    Science.gov (United States)

    Cai, Mengkai; Huang, Junming; Bu, Dexin; Yu, Zhiqing; Fu, Xinliang; Ji, Chihai; Zhou, Pei; Zhang, Guihong

    2018-06-01

    Swine are the main host of the H1N1 swine influenza virus (SIV), however, H1N1 can also infect humans and occasionally cause serious respiratory disease. To trace the evolution of the SIV in Guangdong, China, we performed an epidemic investigation during the period of 2016-2017. Nine H1N1 influenza viruses were isolated from swine nasal swabs. Antigenic analysis revealed that these viruses belonged to two distinct antigenic groups, represented by A/Swine/Guangdong/101/2016 and A/Swine/Guangdong/52/2017. Additionally, three genotypes, known as GD52/17-like, GD493/17-like and GD101/16-like, were identified by phylogenetic analysis. Importantly, the genotypes including a minimum of 4 pdm/09-origin internal genes have become prevalent in China in recent years. A total of 2966 swine serum samples were used to perform hemagglutination inhibition (HI) tests, and the results showed that the seroprevalence values of SW/GD/101/16 (32.2% in 2016, 32.1% in 2017) were significantly higher than the seroprevalence values of SW/GD/52/17 (18.0% in 2016, 16.7% in 2017). Our study showed that the three reassortant genotypes of H1N1 SIV currently circulating in China are stable, but H1N1pdm09 poses challenges to human health by the introduction of internal genes into these reassortant genotypes. Strengthening SIV surveillance is therefore critical for SIV control and minimizing its potential threat to public health. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    2014-10-01

    Full Text Available Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV. Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1. This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2 showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  2. Epidemiology of avian influenza in wild aquatic birds in a biosecurity hotspot, North Queensland, Australia.

    Science.gov (United States)

    Hoque, Md Ahasanul; Burgess, Graham William; Cheam, Ai Lee; Skerratt, Lee Francis

    2015-01-01

    Migratory birds may introduce highly pathogenic H5N1 avian influenza from Southeast Asia into Australia via North Queensland, a key stopover along the East Asian-Australasian Flyway, with severe consequences for trade and human health. A 3-year repeated cross sectional study on the epidemiology of avian influenza in Australian nomadic wild aquatic birds was conducted in this potential biosecurity hotspot using molecular and serological techniques. Avian influenza virus subtypes H6 and H9 were commonly present in the studied population. It is likely that one of the H6 viruses was newly introduced through migratory birds confirming the perceived biosecurity risk. The matrix gene of another H6 virus was similar to the Australian H7 subtypes, which suggests the reassortment of a previously introduced H6 and local viruses. Similarly, a H9 subtype had a matrix gene similar to that found in Asian H9 viruses suggesting reassortment of viruses originated from Australia and Asia. Whilst H5N1 was not found, the serological study demonstrated a constant circulation of the H5 subtype in the sampled birds. The odds of being reactive for avian influenza viral antibodies were 13.1(95% CI: 5.9-28.9) for Pacific Black Ducks over Plumed Whistling Ducks, highlighting that some species of waterfowl pose a greater biosecurity risk. Antibody titres were slightly higher during warm wet compared with warm dry weather. Routine surveillance programmes should be established to monitor the introduction of avian influenza viruses from Asia and the interactions of the introduced viruses with resident viruses in order to better detect emerging pathogens in aquatic birds of North Queensland. Surveillance should be targeted towards highly susceptible species such as the Pacific Black Duck and carried out during favourable environmental conditions for viral transmission such as the wet season in northern Australia. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Diversity of group A rotavirus genes detected in the Triângulo Mineiro region, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Carolina Bernardes Dulgheroff

    Full Text Available ABSTRACT Group A rotaviruses are the main causative agent of infantile gastroenteritis. The segmented nature of the viral genome allows reassortment of genome segments, which can generate genetic variants. In this study, we characterized the diversity of the VP7, VP4 (VP8*, VP6, NSP4, and NSP5 genes of the rotaviruses that circulated from 2005 to 2011 in the Triângulo Mineiro (TM region of Brazil. Samples with genotypes G2 (sublineages IVa-1 and IVa-3, G1 (sublineage I-A, G9 (lineage III, G12 (lineages II and III, G8 (lineage II, G3 (lineage III, P[4] (sublineages IVa and IVb, P[8] (sublineages P[8]-3.6, P[8]-3.3, and P[8]-3.1, I2 (lineage VII, E2 (lineages VI, XII, and X, and H2 (lineage III were identified. The associations found in the samples were G1, G9, or G12 with P[8]-I1-E1-H1; G2 or G8 with P[4]-I2-E2-H2; G12 with I3-E3-H6; and G3 with P[4]-I2-E3-H3 (previously unreported combination. Reassortment events in G2P[4] strains and an apparent pattern of temporal segregation within the lineages were observed. Five TM samples contained genes that exhibited high nucleotide and amino acid identities with strains of animal origin. The present study includes a period of pre- and post-introduction of rotavirus vaccination in all Brazilian territories, thereby serving as a basis for monitoring changes in the genetic constitution of rotaviruses. The results also contribute to the understanding of the diversity and evolution of rotaviruses in a global context.

  4. Evolution of highly pathogenic H5N1 avian influenza viruses in Vietnam between 2001 and 2007.

    Directory of Open Access Journals (Sweden)

    Xiu-Feng Wan

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA, continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes.

  5. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    Science.gov (United States)

    Zhou, Bin; Ma, Jingjiao; Liu, Qinfang; Bawa, Bhupinder; Wang, Wei; Shabman, Reed S; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B; Richt, Juergen A; Wentworth, David E; Ma, Wenjun

    2014-10-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  6. Phylogenetic and evolutionary history of influenza B viruses, which caused a large epidemic in 2011-2012, Taiwan.

    Directory of Open Access Journals (Sweden)

    Ji-Rong Yang

    Full Text Available The annual recurrence of the influenza epidemic is considered to be primarily associated with immune escape due to changes to the virus. In 2011-2012, the influenza B epidemic in Taiwan was unusually large, and influenza B was predominant for a long time. To investigate the genetic dynamics of influenza B viruses during the 2011-2012 epidemic, we analyzed the sequences of 4,386 influenza B viruses collected in Taiwan from 2004 to 2012. The data provided detailed insight into the flux patterns of multiple genotypes. We found that a re-emergent TW08-I virus, which was the major genotype and had co-circulated with the two others, TW08-II and TW08-III, from 2007 to 2009 in Taiwan, successively overtook TW08-II in March and then underwent a lineage switch in July 2011. This lineage switch was followed by the large epidemic in Taiwan. The whole-genome compositions and phylogenetic relationships of the representative viruses of various genotypes were compared to determine the viral evolutionary histories. We demonstrated that the large influenza B epidemic of 2011-2012 was caused by Yamagata lineage TW08-I viruses that were derived from TW04-II viruses in 2004-2005 through genetic drifts without detectable reassortments. The TW08-I viruses isolated in both 2011-2012 and 2007-2009 were antigenically similar, indicating that an influenza B virus have persisted for 5 years in antigenic stasis before causing a large epidemic. The results suggest that in addition to the emergence of new variants with mutations or reassortments, other factors, including the interference of multi-types or lineages of influenza viruses and the accumulation of susceptible hosts, can also affect the scale and time of an influenza B epidemic.

  7. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent.

    Directory of Open Access Journals (Sweden)

    Abdulahi Alfonso-Morales

    Full Text Available Infectious bursal disease (IBD is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV strains worldwide.Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population.This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for

  8. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent.

    Science.gov (United States)

    Alfonso-Morales, Abdulahi; Rios, Liliam; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Ganges, Llilianne; Díaz de Arce, Heidy; Majó, Natàlia; Núñez, José I; Pérez, Lester J

    2015-01-01

    Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for molecular

  9. Novel approach for identification of influenza virus host range and zoonotic transmissible sequences by determination of host-related associative positions in viral genome segments.

    Science.gov (United States)

    Kargarfard, Fatemeh; Sami, Ashkan; Mohammadi-Dehcheshmeh, Manijeh; Ebrahimie, Esmaeil

    2016-11-16

    Recent (2013 and 2009) zoonotic transmission of avian or porcine influenza to humans highlights an increase in host range by evading species barriers. Gene reassortment or antigenic shift between viruses from two or more hosts can generate a new life-threatening virus when the new shuffled virus is no longer recognized by antibodies existing within human populations. There is no large scale study to help understand the underlying mechanisms of host transmission. Furthermore, there is no clear understanding of how different segments of the influenza genome contribute in the final determination of host range. To obtain insight into the rules underpinning host range determination, various supervised machine learning algorithms were employed to mine reassortment changes in different viral segments in a range of hosts. Our multi-host dataset contained whole segments of 674 influenza strains organized into three host categories: avian, human, and swine. Some of the sequences were assigned to multiple hosts. In point of fact, the datasets are a form of multi-labeled dataset and we utilized a multi-label learning method to identify discriminative sequence sites. Then algorithms such as CBA, Ripper, and decision tree were applied to extract informative and descriptive association rules for each viral protein segment. We found informative rules in all segments that are common within the same host class but varied between different hosts. For example, for infection of an avian host, HA14V and NS1230S were the most important discriminative and combinatorial positions. Host range identification is facilitated by high support combined rules in this study. Our major goal was to detect discriminative genomic positions that were able to identify multi host viruses, because such viruses are likely to cause pandemic or disastrous epidemics.

  10. Identification of three new isolates of Tomato spotted wilt virus from different hosts in China: molecular diversity, phylogenetic and recombination analyses.

    Science.gov (United States)

    Zhang, Zhenjia; Wang, Deya; Yu, Chengming; Wang, Zenghui; Dong, Jiahong; Shi, Kerong; Yuan, Xuefeng

    2016-01-14

    Destructive diseases caused by Tomato spotted wilt virus (TSWV) have been reported associated with many important plants worldwide. Recently, TSWV was reported to infect different hosts in China. It is of value to clone TSWV isolates from different hosts and examine diversity and evolution among different TSWV isolates in China as well as worldwide. RT-PCR was used to clone the full-length genome (L, M and S segments) of three new isolates of TSWV that infected different hosts (tobacco, red pepper and green pepper) in China. Identity of nucleotide and amino acid sequences among TSWV isolates were analyzed by DNAMAN. MEGA 5.0 was used to construct phylogenetic trees. RDP4 was used to detect recombination events during evolution of these isolates. Whole-genome sequences of three new TSWV isolates in China were determined. Together with other available isolates, 29 RNA L, 62 RNA M and 66 RNA S of TSWV isolates were analyzed for molecular diversity, phylogenetic and recombination events. This analysis revealed that the entire TSWV genome, especially the M and S RNAs, had major variations in genomic size that mainly involve the A-U rich intergenic region (IGR). Phylogenetic analyses on TSWV isolates worldwide revealed evidence for frequent reassortments in the evolution of tripartite negative-sense RNA genome. Significant numbers of recombination events with apparent 5' regional preference were detected among TSWV isolates worldwide. Moreover, TSWV isolates with similar recombination events usually had closer relationships in phylogenetic trees. All five Chinese TSWV isolates including three TSWV isolates of this study and previously reported two isolates can be divided into two groups with different origins based on molecular diversity and phylogenetic analysis. During their evolution, both reassortment and recombination played roles. These results suggest that recombination could be an important mechanism in the evolution of multipartite RNA viruses, even negative

  11. Characterization of incompletely typed rotavirus strains from Guinea-Bissau: identification of G8 and G9 types and a high frequency of mixed infections

    International Nuclear Information System (INIS)

    Fischer, T.K.; Page, N.A.; Griffin, D.D.; Eugen-Olsen, J.; Pedersen, A.G.; Valentiner-Branth, P.; Moelbak, K.; Sommerfelt, H.; Nielsen, N. Munk

    2003-01-01

    Among 167 rotavirus specimens collected from young children in a suburban area of Bissau, Guinea-Bissau, from 1996 to 1998, most identifiable strains belonged to the uncommon P[6], G2 type and approximately 50% remained incompletely typed. In the present study, 76 such strains were further characterized. Due to interprimer interaction during the standard multiplex PCR approach, modifications of this procedure were implemented. The modified analyses revealed a high frequency of G2, G8, and G9 genotypes, often combined with P[4] and/or P[6]. The Guinean G8 and G9 strains were 97 and 98%, respectively, identical to other African G8 and G9 strains. Multiple G and/or P types were identified at a high frequency (59%), including two previously undescribed mixed infections, P[4]P[6], G2G8 and P[4]P[6], G2G9. These mixed infections most likely represent naturally occurring reassortance of rotavirus strains. Detection of such strains among the previously incompletely typed strains indicates a potential underestimation of mixed infections, if only a standard multiplex PCR procedure is followed. Furthermore cross-priming of the G3 primer with the G8 primer binding site and silent mutations at the P[4] and P[6] primer binding sites were detected. These findings highlight the need for regular evaluation of the multiplex primer PCR method and typing primers. The high frequency of uncommon as well as reassortant rotavirus strains in countries where rotavirus is an important cause of child mortality underscores the need for extensive strain surveillance as a basis to develop appropriate rotavirus vaccine candidates

  12. Heterogeneity of Bovine Peripheral Blood Monocytes

    Directory of Open Access Journals (Sweden)

    Jamal Hussen

    2017-12-01

    Full Text Available Peripheral blood monocytes of several species can be divided into different subpopulations with distinct phenotypic and functional properties. Herein, we aim at reviewing published work regarding the heterogeneity of the recently characterized bovine monocyte subsets. As the heterogeneity of human blood monocytes was widely studied and reviewed, this work focuses on comparing bovine monocyte subsets with their human counterparts regarding their phenotype, adhesion and migration properties, inflammatory and antimicrobial functions, and their ability to interact with neutrophilic granulocytes. In addition, the differentiation of monocyte subsets into functionally polarized macrophages is discussed. Regarding phenotype and distribution in blood, bovine monocyte subsets share similarities with their human counterparts. However, many functional differences exist between monocyte subsets from the two species. In contrast to their pro-inflammatory functions in human, bovine non-classical monocytes show the lowest phagocytosis and reactive oxygen species generation capacity, an absent ability to produce the pro-inflammatory cytokine IL-1β after inflammasome activation, and do not have a role in the early recruitment of neutrophils into inflamed tissues. Classical and intermediate monocytes of both species also differ in their response toward major monocyte-attracting chemokines (CCL2 and CCL5 and neutrophil degranulation products (DGP in vitro. Such differences between homologous monocyte subsets also extend to the development of monocyte-derived macrophages under the influence of chemokines like CCL5 and neutrophil DGP. Whereas the latter induce the differentiation of M1-polarized macrophages in human, bovine monocyte-derived macrophages develop a mixed M1/M2 macrophage phenotype. Although only a few bovine clinical trials analyzed the correlation between changes in monocyte composition and disease, they suggest that functional differences between

  13. Lactobacillus ruminis strains cluster according to their mammalian gut source.

    Science.gov (United States)

    O' Donnell, Michelle M; Harris, Hugh Michael B; Lynch, Denise B; Ross, Reynolds Paul; O'Toole, Paul W

    2015-04-01

    Lactobacillus ruminis is a motile Lactobacillus that is autochthonous to the human gut, and which may also be isolated from other mammals. Detailed characterization of L. ruminis has previously been restricted to strains of human and bovine origin. We therefore sought to expand our bio-bank of strains to identify and characterise isolates of porcine and equine origin by comparative genomics. We isolated five strains from the faeces of horses and two strains from pigs, and compared their motility, biochemistry and genetic relatedness to six human isolates and three bovine isolates including the type strain 27780(T). Multilocus sequence typing analysis based on concatenated sequence data for six individual loci separated the 16 L. ruminis strains into three clades concordant with human, bovine or porcine, and equine sources. Sequencing the genomes of four additional strains of human, bovine, equine and porcine origin revealed a high level of genome synteny, independent of the source animal. Analysis of carbohydrate utilization, stress survival and technological robustness in a combined panel of sixteen L. ruminis isolates identified strains with optimal survival characteristics suitable for future investigation as candidate probiotics. Under laboratory conditions, six human isolates of L. ruminis tested were aflagellate and non-motile, whereas all 10 strains of bovine, equine and porcine origin were motile. Interestingly the equine and porcine strains were hyper-flagellated compared to bovine isolates, and this hyper-flagellate phenotype correlated with the ability to swarm on solid medium containing up to 1.8% agar. Analysis by RNA sequencing and qRT-PCR identified genes for the biosynthesis of flagella, genes for carbohydrate metabolism and genes of unknown function that were differentially expressed in swarming cells of an equine isolate of L. ruminis. We suggest that Lactobacillus ruminis isolates have potential to be used in the functional food industry. We

  14. Tuberculin purified protein derivative (PPD) immunoassay as an in vitro alternative assay for identity and confirmation of potency.

    Science.gov (United States)

    Ho, Mei M; Kairo, Satnam K; Corbel, Michael J

    2006-01-01

    Tuberculin purified protein derivative (PPD) currently can only be standardised by delayed hypersensitivity skin reactions in sensitised guinea pigs. An in vitro dot blot immunoassay was developed for both identity and confirmation of potency estimation of PPD. Polyclonal antibodies (mainly IgG) were generated and immunoreacted with human, bovine and, to lesser extent, avian PPD preparations. Combining size exclusion chromatography (FPLC-SEC) and dot blot immunoassay, the results showed that PPD preparations were mixtures of very heterogeneous tuberculoproteins ranging in size from very large aggregates to very small degraded molecules. All individual fractions of PPD separated by size were immunoreactive, although those of the largest molecular sizes appeared the most immunoreactive in this in vitro dot blot immunoassay. This method is very sensitive and specific to tuberculoproteins and can be an in vitro alternative for the in vivo intradermal skin assay which uses guinea pigs for identity of PPD preparations. Although the capacity of PPD to elicit cell-mediated immune responses on intradermal testing has to be confirmed by in vivo assay, the dot blot immunoassay offers a rapid, sensitive and animal-free alternative to in vivo testing for confirming the identity of PPD preparations with appropriate potencies. This alternative assay would be particularly useful for national regulatory laboratories for confirming the data of manufacturers and thus reducing the use of animals.

  15. Species Differences in the Binding of Sodium 4-Phenylbutyrate to Serum Albumin.

    Science.gov (United States)

    Yamasaki, Keishi; Enokida, Taisuke; Taguchi, Kazuaki; Miyamura, Shigeyuki; Kawai, Akito; Miyamoto, Shuichi; Maruyama, Toru; Seo, Hakaru; Otagiri, Masaki

    2017-09-01

    Sodium 4-phenylbutyrate (PB) is clinically used as a drug for treating urea cycle disorders. Recent research has shown that PB also has other pharmacologic activities, suggesting that it has the potential for use as a drug for treating other disorders. In the process of drug development, preclinical testing using experimental animals is necessary to verify the efficacy and safety of PB. Although the binding of PB to human albumin has been studied, our knowledge of its binding to albumin from the other animal species is extremely limited. To address this issue, we characterized the binding of PB to albumin from several species (human, bovine, rabbit, and rat). The results indicated that PB interacts with 1 high-affinity site of albumin from these species, which corresponds to site II of human albumin. The affinities of PB to human and bovine albumins were higher than those to rabbit and rat albumin, and that to rabbit albumin was the lowest. Binding and molecular docking studies using structurally related compounds of PB suggested that species differences in the affinity are attributed to differences in the structural feature of the PB-binding sites on albumins (e.g., charge distribution, hydrophobicity, shape, or size). Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Sparteine monooxygenase in brain and liver: Identified by the dopamine uptake blocker [3H]GBR-12935

    International Nuclear Information System (INIS)

    Kalow, W.; Tyndale, R.F.; Niznik, H.B.; Inaba, T.

    1990-01-01

    P450IID6 (human sparteine monooxygenase) metabolizes many drugs including neuroleptics, antidepressants, and beta-blockers. The P450IID6 exists in human, bovine, rat and canine brains, but in very low quantities causing methodological difficulties in its assessment. Work with [ 3 H]GBR-12935; 1-[2-(diphenylmethoxy) ethyl]-4-(3-phenyl propyl) piperazine has shown that it binds a neuronal/hepatic protein with high affinity (∼7nM) and a rank order of inhibitory potency suggesting that the binding protein is cytochrome P450IID6. The binding was used to predict that d-amphetamine and methamphetamine would interact with P450IID6. Inhibition studies indicated that these compounds were competitive inhibitors of P450IID6. Haloperidol (HAL) and it's metabolite hydroxy-haloperidol (RHAL) are both competitive inhibitors of P450IID6 activity and were found to inhibit [ 3 H]GBR-12935 binding. K i values of twelve compounds (known to interact with the DA transporter or P450IID6) for [ 3 H]GRB-12935 binding and P450IID6 activity. The techniques are now available for measurements of cytochrome P450IID6 in healthy and diseased brain/liver tissue using radio-receptor binding assay techniques with [ 3 H]GBR-12935

  17. Type II collagen in cartilage evokes peptide-specific tolerance and skews the immune response.

    Science.gov (United States)

    Malmström, V; Kjellén, P; Holmdahl, R

    1998-06-01

    T cell recognition of type II collagen (CII) is a crucial event in the induction of collagen-induced arthritis in the mouse. Several CII peptides have been shown to be of importance, dependent on which MHC haplotype the mouse carries. By sequencing the rat CII and comparing the sequence with mouse, human, bovine and chicken CII, we have found that the immunodominant peptides all differ at critical positions compared with the autologous mouse sequence. Transgenic expression of the immunodominant Aq-restricted heterologous CII 256-270 epitope inserted into type I collagen (TSC mice) or type II collagen (MMC-1 mice) led to epitope-specific tolerance. Immunization of TSC mice with chick CII led to arthritis and immune responses, dependent on the subdominant, Aq-restricted and chick-specific CII 190-200 epitope. Immunization of F1 mice, expressing both H-2q and H-2r as well as transgenic expression of the Aq-restricted CII 256-270 epitope in cartilage, with bovine CII, led to arthritis, dependent on the Ar-restricted, bovine-specific epitope CII 607-621. These data show that the immunodominance of CII recognition is directed towards heterologous determinants, and that T cells directed towards the corresponding autologous epitopes are tolerated without evidence of active suppression.

  18. Autologous albumin enhances the humoral immune response to capsular polysaccharide covalently co-attached to bacteria-sized latex beads

    Science.gov (United States)

    Colino, Jesus; Duke, Leah; Snapper, Clifford M.

    2014-01-01

    Abundant autologous proteins, like serum albumin, should be immunologically inert. However, individuals with no apparent predisposition to autoimmune disease can develop immune responses to autologous therapeutic proteins. Protein aggregation is a potential major trigger of these responses. Adsorption of proteins to particles provides macromolecular size and may generate structural changes in the protein, resembling aggregation. Using aldehyde/sulfate latex beads coated with murine serum albumin (MSA), we found that mice mounted MSA-specific IgG responses that were dependent on CD4+ T cells. IgG were specific for MSA adsorbed to solid surfaces and non-cross-reactive with human, bovine or pig albumins. T cells induced in response to MSA, augmented the primary and induced boosted secondary IgG and IgM responses specific for the T cell-independent antigen, capsular polysaccharide of Streptococcus pneumoniae type 14 (PPS14), when the latter was attached to the same bead. Similar to the anti-MSA IgG response, the boosted PPS14-specific IgG secondary response was CD4+ T cell-dependent, displayed a typical carrier effect, and was enhanced by, but did not require, Toll-like receptor stimulation. These results provide a potential mechanism for the induction of responses to autoantigens unable to induce specific T cell responses, and provide new insights into polysaccharide-specific immunity. PMID:24481921

  19. Population structure and virulence gene profiles of Streptococcus agalactiae collected from different hosts worldwide.

    Science.gov (United States)

    Morach, Marina; Stephan, Roger; Schmitt, Sarah; Ewers, Christa; Zschöck, Michael; Reyes-Velez, Julian; Gilli, Urs; Del Pilar Crespo-Ortiz, María; Crumlish, Margaret; Gunturu, Revathi; Daubenberger, Claudia A; Ip, Margaret; Regli, Walter; Johler, Sophia

    2018-03-01

    Streptococcus agalactiae is a leading cause of morbidity and mortality among neonates and causes severe infections in pregnant women and nonpregnant predisposed adults, in addition to various animal species worldwide. Still, information on the population structure of S. agalactiae and the geographical distribution of different clones is limited. Further data are urgently needed to identify particularly successful clones and obtain insights into possible routes of transmission within one host species and across species borders. We aimed to determine the population structure and virulence gene profiles of S. agalactiae strains from a diverse set of sources and geographical origins. To this end, 373 S. agalactiae isolates obtained from humans and animals from five different continents were typed by DNA microarray profiling. A total of 242 different S. agalactiae strains were identified and further analyzed. Particularly successful clonal lineages, hybridization patterns, and strains were identified that were spread across different continents and/or were present in more than one host species. In particular, several strains were detected in both humans and cattle, and several canine strains were also detected in samples from human, bovine, and porcine hosts. The findings of our study suggest that although S. agalactiae is well adapted to various hosts including humans, cattle, dogs, rodents, and fish, interspecies transmission is possible and occurs between humans and cows, dogs, and rabbits. The virulence and resistance gene profiles presented enable new insights into interspecies transmission and make a crucial contribution to the identification of suitable targets for therapeutic agents and vaccines.

  20. 1H NMR spectra of vertebrate [2Fe-2S] ferredoxins. Hyperfine resonances suggest different electron delocalization patterns from plant ferredoxins

    International Nuclear Information System (INIS)

    Skjeldal, L.; Markley, J.L.; Coghlan, V.M.; Vickery, L.E.

    1991-01-01

    The authors report the observation of paramagnetically shifted (hyperfine) proton resonances from vertebrate mitochondrial [2Fe-2S] ferredoxins. The hyperfine signals of human, bovine, and chick [2Fe-2S] ferredoxins are described and compared with those of Anabena 7120 vegetative ferredoxin, a plant-type [2Fe-2S] ferredoxin studied previously. The hyperfine resonances of the three vertebrate ferredoxins were very similar to one another both in the oxidized state and in the reduced state, and slow (on the NMR scale) electron self-exchange was observed in partially reduced samples. For the oxidized vertebrate ferredoxins, hyperfine signals were observed downfield of the diamagnetic envelope from +13 to +50 ppm, and the general pattern of peaks and their anti-Curie temperature dependence are similar to those observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed both upfield (-2 to -18 ppm) and downfield (+15 to +45 ppm), and all were found to exhibit Curie-type temperature dependence. These results indicate that the contact-shifted resonances in the reduced vertebrate ferredoxins detect different spin magnetization from those in the reduced plant ferredoxins and suggest that plant and vertebrate ferredoxins have fundamentally different patterns of electron delocalization in the reduced [2Fe-2S] center

  1. Lack of Aquaporin 3 in bovine erythrocyte membranes correlates with low glycerol permeation.

    Science.gov (United States)

    Campos, Elisa; Moura, Teresa F; Oliva, Abel; Leandro, Paula; Soveral, Graça

    2011-05-13

    In general, erythrocytes are highly permeable to water, urea and glycerol. However, expression of aquaporin isoforms in erythrocytes appears to be species characteristic. In the present study, human (hRBC) and bovine (bRBC) erythrocytes were chosen for comparative studies due to their significant difference in membrane glycerol permeability. Osmotic water permeability (P(f)) at 23°C was (2.89 ± 0.37) × 10(-2) and (5.12 ± 0.61) × 10(-2)cms(-1) for human and bovine cells, respectively, with similar activation energies for water transport. Glycerol permeability (P(gly)) for human ((1.37 ± 0.26) × 10(-5)cms(-1)) differed in three orders of magnitude from bovine erythrocytes ((5.82 ± 0.37) × 10(-8)cms(-1)) that also showed higher activation energy for glycerol transport. When compared to human, bovine erythrocytes showed a similar expression pattern of AQP1 glycosylated forms on immunoblot analysis, though in slight higher levels, which could be correlated with the 1.5-fold larger P(f) found. However, AQP3 expression was not detectable. Immunofluorescence analysis confirmed the absence of AQP3 expression in bovine erythrocyte membranes. In conclusion, lack of AQP3 in bovine erythrocytes points to the lipid pathway as responsible for glycerol permeation and explains the low glycerol permeability and high E(a) for transport observed in ruminants. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Cloning of zebrafish activin type IIB receptor (ActRIIB) cDNA and mRNA expression of ActRIIB in embryos and adult tissues.

    Science.gov (United States)

    Garg, R R; Bally-Cuif, L; Lee, S E; Gong, Z; Ni, X; Hew, C L; Peng, C

    1999-07-20

    A full-length cDNA encoding for activin type IIB receptor (ActRIIB) was cloned from zebrafish embryos. It encodes a protein with 509 amino acids consisting of a signal peptide, an extracellular ligand binding domain, a single transmembrane region, and an intracellular kinase domain with predicted serine/threonine specificity. The extracellular domain shows 74-91% sequence identity to human, bovine, mouse, rat, chicken, Xenopus and goldfish activin type IIB receptors, while the transmembrane region and the kinase domain show 67-78% and 82-88% identity to these known activin IIB receptors, respectively. In adult zebrafish, ActRIIB mRNA was detected by RT-PCR in the gonads, as well as in non-reproductive tissues, including the brain, heart and muscle. In situ hybridization on ovarian sections further localized ActRIIB mRNA to cytoplasm of oocytes at different stages of development. Using whole-mount in situ hybridization, ActRIIB mRNA was found to be expressed at all stages of embryogenesis examined, including the sphere, shield, tail bud, and 6-7 somite. These results provide the first evidence that ActRIIB mRNA is widely distributed in fish embryonic and adult tissues. Cloning of zebrafish ActRIIB demonstrates that this receptor is highly conserved during vertebrate evolution and provides a basis for further studies on the role of activin in reproduction and development in lower vertebrates.

  3. Assessment of the repeatability and border-plate effects of the B158/B60 enzyme-linked-immunosorbent assay for the detection of circulating antigens (Ag-ELISA) of Taenia saginata.

    Science.gov (United States)

    Jansen, Famke; Dorny, Pierre; Berkvens, Dirk; Van Hul, Anke; Van den Broeck, Nick; Makay, Caroline; Praet, Nicolas; Gabriël, Sarah

    2016-08-30

    The monoclonal antibody-based circulating antigen detecting ELISA (B158/B60 Ag-ELISA) has been used elaborately in several studies for the diagnosis of human, bovine and porcine cysticercosis. Interpretation of test results requires a good knowledge of the test characteristics, including the repeatability and the effect of the borders of the ELISA plates. Repeatability was tested for 4 antigen-negative and 5 antigen-positive reference bovine serum samples by calculating the Percentage Coefficient of Variation (%CV) within and between plates, within and between runs, overall, for two batches of monoclonal antibodies and by 2 laboratory technicians. All CV values obtained were below 20% (except one: 24.45%), which indicates a good repeatability and a negligible technician error. The value of 24.45% for indicating the variability between batches of monoclonal antibodies for one positive sample is still acceptable for repeatability measures. Border effects were determined by calculating the %CV values between the inner and outer wells of one plate for 2 positive serum samples. Variability is a little more present in the outer wells but this effect is very small and no significant border effect was found. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition.

    Science.gov (United States)

    Liu, Jin; Xu, Congfeng; Hsu, Li-Chung; Luo, Yunping; Xiang, Rong; Chuang, Tsung-Hsien

    2010-02-01

    Toll-like receptors play important roles in regulating immunity against microbial infections. Toll-like receptor 8 (TLR8) belongs to a subfamily comprising TLR7, TLR8 and TLR9. Human TLR8 mediates anti-viral immunity by recognizing ssRNA viruses, and triggers potent anti-viral and antitumor immune responses upon ligation by synthetic small molecular weight ligands. Interestingly, distinct from human TLR8, mouse TLR8 was not responsive to ligand stimulation in the absence of polyT-oligodeoxynucleotides (polyT-ODN). The molecular basis for this distinct ligand recognition is still unclear. In the present study, we compared the activation of TLR8 from different species including mouse, rat, human, bovine, porcine, horse, sheep, and cat by ligand ligations. Only the TLR8s from the rodent species (i.e., mouse and rat TLR8s) failed to respond to ligand stimulation in the absence of polyT-ODN. Multiple sequence alignment analysis suggested that these two rodent TLR8s lack a five-amino-acid motif that is conserved in the non-rodent species with varied sequence. This small motif is located in an undefined region of the hTLR8 ectodomain, immediately following LRR-14. Deletion mutation analysis suggested that this motif is essential for the species-specific ligand recognition of hTLR8, whereas it is not required for self-dimerization and intracellular localization of this receptor. (c) 2009 Elsevier Ltd. All rights reserved.

  5. The influence of thiazolidinediones on adipogenesis in vitro and in vivo: potential modifiers of intramuscular adipose tissue deposition in meat animals.

    Science.gov (United States)

    Hausman, G J; Poulos, S P; Pringle, T D; Azain, M J

    2008-04-01

    Thiazolidinediones (TZD) are insulin sensitizing agents currently used for the treatment of type 2 diabetes and are widely used as adipogenic agents because they are ligands of peroxisome proliferator-activated receptor gamma (PPARgamma), a key adipogenic transcription factor. In vivo and in vitro studies of TZD as potential modifiers of intramuscular or marbling adipogenesis are reviewed. Thiazolidinedione-induced adipogenesis has been reported in numerous cell culture systems, including rodent, human, bovine, and porcine adipose tissue stromal-vascular (S-V) cell cultures. Studies of porcine S-V cell cultures derived from semitendinosus muscle show that TZD can potentially modify intramuscular or marbling adipogenesis. Preadipocyte recruitment was TZD-dependent in muscle S-V cultures but TZD-independent in adipose S-V cultures. There appear to be differences between adipocytes in muscle and subcutaneous adipose tissue, reminiscent of differences observed in adipocytes from different adipose tissue depots. Troglitazone, a TZD, induces marbling adipogenesis without inhibiting myogenesis when cells are grown on laminin precoated culture dishes. Additionally, troglitazone treatment does not increase lipid content in porcine adipose tissue or muscle S-V cell cultures. Thiazolidinedione treatment increases lipid content of muscle in rodents and humans; however, rosiglitazone treatment for 49 d in pigs did not influence muscle lipid content and meat quality, but several significant changes in muscle fatty acid composition were observed. Although timing of treatment with TZD needs to be optimized, evidence suggests these compounds may enhance marbling deposition in swine.

  6. Accumulation and recovery capacity of heavy metals in sand mine ponds of the Otamiri River in Owerri, Nigeria

    Directory of Open Access Journals (Sweden)

    Dike Henry Ogbuagu

    2014-01-01

    Full Text Available This study investigated the levels, index of accumulation and recovery capacity of heavy metals (Pb, Cd, Cu, Ni, Zn, Fe, Mn in sand mine ponds of the Otamiri River in Owerri, Nigeria during the wet season of 2012. Water (WC and sediment samples (SD were collected from six sampling points, with WC 1-WC 3 and SD 1-SD 3 located within a derelict mine pond and WC 4-WC 6 and SD 4-SD 6 located within an actively mined pond. The pH was determined in situ and levels of heavy metals measured with the atomic absorption spectrophotometer. The student’s t-test, index of geoaccumulation (Igeo, accumulation factor (AF and pond recovery capacity (PRC were computed for the ponds. There was significant spatial heterogeneity in mean levels of the heavy metals in sediments (sig. t=0.029 at P Zn (4.932> Cu (4.743 > Mn (4.326 > Pb (3.214 > Ni (2.483 > Cd (1.649, AF was Zn (1.513 > Cd (1.179 > Fe (1.082 > Ni (1.048 > Mn (1.042 > Cu (1.032 > Pb (0.987 and PRC was Zn (33.891 > Cd (15.165 > Fe (7.604 > Ni (4.608 > Mn (4.047 > Cu (3.052 > Pb (-1.373. Active mining led to extreme contamination of the ponds with Fe, strong to extreme contaminations with Cu, Zn and Mn, strong contamination with Pb, moderate to strong contamination with Ni and moderate contamination with Cd. However, Pb showed deficit recovery capacity and this could portend unfavourable ecological consequences on resident biota and raises public health concerns among resource dependants of the river. Strict enforcement of regulations on in-stream sand mining should be applied.

  7. Application of heat treatment and dispersive strengthening concept in interlayer deposition to enhance diamond film adherence

    Energy Technology Data Exchange (ETDEWEB)

    Lin Chiiruey [Tatung Inst. of Technol., Taipei (Taiwan, Province of China). Dept. of Mech. Eng.; Kuo Chengtzu; Chang Rueyming [Institute of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30050 (Taiwan, Province of China)

    1997-10-31

    Two different deposition processes were carried out to enhance adherence of diamond films on WC+3-5%Co substrate with Ti-Si as the interlayer. One process can be called two-step diamond deposition process. Another process can be called interlayer heat treatment process. Diamond films were deposited by a microwave plasma chemical vapor deposition system. Ti and Si interlayer are deposited by DC sputter and an E-gun, respectively. Film morphologies, interface structure and film quality were examined by SEM, XRD, Auger electron spectroscopy and Raman spectroscopy. The residual stresses and adhesion strengths of the films were determined by Raman spectroscopy and indentation adhesion testing, respectively. Comparing the regular one-step diamond deposition process with the present two different new processes, the average dP/dX values, which are a measure of the adherence of the film, are 354 kgf/mm, 494 kgf/mm and 787 kgf/mm, respectively. In other words, the interlayer heat treatment process gives the best film adherence on average. For the two-step diamond deposition process, the interlayer thickness and the percent diamond surface coverage of the first diamond deposition step are the main parameters, and there exists an optimum Ti thickness and percent diamond coverage for the best film adherence. The main contribution to better film adherence is not a large difference in residual stress, but is due to the following reasons. The interlayer heat treatment can transform amorphous Si to polycrystalline Si, and may form strong TiC and SiC bonding. The polycrystalline Si and the diamond particles from the first diamond deposition step can be an effective seeds to enhance diamond nucleation. (orig.) 11 refs.

  8. Swine-origin influenza A (H3N2) virus infection in two children--Indiana and Pennsylvania, July-August 2011.

    Science.gov (United States)

    2011-09-09

    Influenza A viruses are endemic in many animal species, including humans, swine, and wild birds, and sporadic cases of transmission of influenza A viruses between humans and animals do occur, including human infections with avian-origin influenza A viruses (i.e., H5N1 and H7N7) and swine-origin influenza A viruses (i.e., H1N1, H1N2, and H3N2). Genetic analysis can distinguish animal origin influenza viruses from the seasonal human influenza viruses that circulate widely and cause annual epidemics. This report describes two cases of febrile respiratory illness caused by swine-origin influenza A (H3N2) viruses identified on August 19 and August 26, 2011, and the current investigations. No epidemiologic link between the two cases has been identified, and although investigations are ongoing, no additional confirmed human infections with this virus have been detected. These viruses are similar to eight other swine-origin influenza A (H3N2) viruses identified from previous human infections over the past 2 years, but are unique in that one of the eight gene segments (matrix [M] gene) is from the 2009 influenza A (H1N1) virus. The acquisition of the M gene in these two swine-origin influenza A (H3N2) viruses indicates that they are "reassortants" because they contain genes of the swine-origin influenza A (H3N2) virus circulating in North American pigs since 1998 and the 2009 influenza A (H1N1) virus that might have been transmitted to pigs from humans during the 2009 H1N1 pandemic. However, reassortments of the 2009 influenza A (H1N1) virus with other swine influenza A viruses have been reported previously in swine. Clinicians who suspect influenza virus infection in humans with recent exposure to swine should obtain a nasopharyngeal swab from the patient for timely diagnosis at a state public health laboratory and consider empiric neuraminidase inhibitor antiviral treatment to quickly limit potential human transmission.

  9. Application of new vaccine technologies for the control of transboundary diseases.

    Science.gov (United States)

    Swayne, D E

    2004-01-01

    Vaccines have played an important role in the control of diseases of livestock and poultry, including Transboundary Diseases. In the future, vaccines will play a greater role in controlling these diseases. Historically, inactivated whole viruses in various adjuvant systems have been used and will continue to be used in the near future. For the future, emerging technologies will allow targeted use of only the protective antigens of the pathogen and will provide the opportunity for differentiating between vaccinated and field-exposed animals. Furthermore, the expression of cytokines by vaccines will afford earlier or greater enhancement of protection than can be achieved by the protective response elicited by the antigenic epitopes of the pathogen alone. Avian influenza (AI) is a good case for studying future trends in vaccine design and use. Inactivated AI virus (AIV) vaccines will continue as the primary vaccines used over the next 10 years. These vaccines will use homologous haemagglutinin sub-types, either from the use of field strains or the generation of new strains through the use of infectious clones produced in the laboratory. The latter will allow creation of high growth reassortants, which will provide consistent high yields of antigen and result in potent vaccines. New viral and bacterial vectors with inserts of AIV haemagglutinin gene will be developed and potentially used in the field. Such new vectors will include herpesvirus-turkey, infectious laryngotracheitis virus, adenoviruses, various types of paramyxoviruses and Salmonella sp. In addition, there is a theoretical possibility of gene-deleted mutants that would allow the use of live AIV vaccines, but the application of such vaccines has inherent dangers for gene reassortment with field viruses in the generation of disease-causing strains. Subunit haemagglutinin protein and DNA haemagglutinin gene vaccines are possible, but with current technologies, the cost is prohibitive. In the future, effective

  10. Mapping the risk of avian influenza in wild birds in the US

    Directory of Open Access Journals (Sweden)

    Nott Mark P

    2010-06-01

    Full Text Available Abstract Background Avian influenza virus (AIV is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur and how high pathogenicity influenza might travel if it enters wild bird populations in the US. Modelling the number of AIV cases is important because the rate of co-infection with multiple AIV subtypes increases with the number of cases and co-infection is the source of reassortment events that give rise to new strains of influenza, which occurred before the 1968 pandemic. Aquatic birds in the orders Anseriformes and Charadriiformes have been recognized as reservoirs of AIV since the 1970s. However, little is known about influenza prevalence in terrestrial birds in the order Passeriformes. Since passerines share the same habitat as poultry, they may be more effective transmitters of the disease to humans than aquatic birds. We analyze 152 passerine species including the American Robin (Turdus migratorius and Swainson's Thrush (Catharus ustulatus. Methods We formulate a regression model to predict AIV cases throughout the US at the county scale as a function of 12 environmental variables, sampling effort, and proximity to other counties with influenza outbreaks. Our analysis did not distinguish between types of influenza, including low or highly pathogenic forms. Results Analysis of 13,046 cloacal samples collected from 225 bird species in 41 US states between 2005 and 2008 indicates that the average prevalence of influenza in passerines is greater than the prevalence in eight other avian orders. Our regression model identifies the Great Plains and the Pacific Northwest as high-risk areas for AIV. Highly significant predictors of AIV include the amount of

  11. Evidence for Cross-species Influenza A Virus Transmission Within Swine Farms, China: A One Health, Prospective Cohort Study.

    Science.gov (United States)

    Ma, Mai-Juan; Wang, Guo-Lin; Anderson, Benjamin D; Bi, Zhen-Qiang; Lu, Bing; Wang, Xian-Jun; Wang, Chuang-Xin; Chen, Shan-Hui; Qian, Yan-Hua; Song, Shao-Xia; Li, Min; Lednicky, John A; Zhao, Teng; Wu, Meng-Na; Cao, Wu-Chun; Gray, Gregory C

    2018-02-01

    Our understanding of influenza A virus transmission between humans and pigs is limited. Beginning in 2015, we used a One Health approach and serial sampling to prospectively study 299 swine workers and 100 controls, their 9000 pigs, and 6 pig farm environments in China for influenza A viruses (IAVs) using molecular, culture, and immunological techniques. Study participants were closely monitored for influenza-like illness (ILI) events. Upon enrollment, swine workers had higher serum neutralizing antibody titers against swine H1N1 and higher nasal wash total immunoglobulin A (IgA) and specific IgA titers against swine H1N1 and H3N2 viruses. Over a period of 12 months, IAVs were detected by quantitative reverse-transcription polymerase chain reaction in 46 of 396 (11.6%) environmental swabs, 235 of 3300 (7.1%) pig oral secretion, 23 of 396 (5.8%) water, 20 of 396 (5.1%) aerosol, and 19 of 396 (4.8%) fecal-slurry specimens. Five of 32 (15.6%) participants with ILI events had nasopharyngeal swab specimens that were positive for IAV, and 17 (53.1%) demonstrated 4-fold rises in neutralization titers against a swine virus. Reassorted Eurasian avian-lineage H1N1, A(H1N1)pdm09-like, and swine-lineage H3N2 viruses were identified in pig farms. The A(H1N1)pdm09-like H1N1 viruses identified in swine were nearly genetically identical to the human H1N1 viruses isolated from the participants with ILI. There was considerable evidence of A(H1N1)pdm09-like, swine-lineage H1N1, and swine-lineage H3N2 viruses circulating, likely reassorting, and likely crossing species within the pig farms. These data suggest that stronger surveillance for novel influenza virus emergence within swine farms is imperative. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  12. Comparative distribution of human and avian type sialic acid influenza receptors in the pig

    Directory of Open Access Journals (Sweden)

    Perez Belinda

    2010-01-01

    Full Text Available Abstract Background A major determinant of influenza infection is the presence of virus receptors on susceptible host cells to which the viral haemagglutinin is able to bind. Avian viruses preferentially bind to sialic acid α2,3-galactose (SAα2,3-Gal linked receptors, whereas human strains bind to sialic acid α2,6-galactose (SAα2,6-Gal linked receptors. To date, there has been no detailed account published on the distribution of SA receptors in the pig, a model host that is susceptible to avian and human influenza subtypes, thus with potential for virus reassortment. We examined the relative expression and spatial distribution of SAα2,3-GalG(1-3GalNAc and SAα2,6-Gal receptors in the major organs from normal post-weaned pigs by binding with lectins Maackia amurensis agglutinins (MAA II and Sambucus nigra agglutinin (SNA respectively. Results Both SAα2,3-Gal and SAα2,6-Gal receptors were extensively detected in the major porcine organs examined (trachea, lung, liver, kidney, spleen, heart, skeletal muscle, cerebrum, small intestine and colon. Furthermore, distribution of both SA receptors in the pig respiratory tract closely resembled the published data of the human tract. Similar expression patterns of SA receptors between pig and human in other major organs were found, with exception of the intestinal tract. Unlike the limited reports on the scarcity of influenza receptors in human intestines, we found increasing presence of SAα2,3-Gal and SAα2,6-Gal receptors from duodenum to colon in the pig. Conclusions The extensive presence of SAα2,3-Gal and SAα2,6-Gal receptors in the major organs examined suggests that each major organ may be permissive to influenza virus entry or infection. The high similarity of SA expression patterns between pig and human, in particular in the respiratory tract, suggests that pigs are not more likely to be potential hosts for virus reassortment than humans. Our finding of relative abundance of SA receptors

  13. Molecular Evolution and Emergence of H5N6 Avian Influenza Virus in Central China.

    Science.gov (United States)

    Du, Yingying; Chen, Mingyue; Yang, Jiayun; Jia, Yane; Han, Shufang; Holmes, Edward C; Cui, Jie

    2017-06-15

    H5N6 avian influenza virus (AIV) has posed a potential threat to public health since its emergence in China in 2013. To understand the evolution and emergence of H5N6 AIV in the avian population, we performed molecular surveillance of live poultry markets (LPMs) in Wugang Prefecture, Hunan Province, in central China, during 2014 and 2015. Wugang Prefecture is located on the Eastern Asian-Australian migratory bird flyway, and a human death due to an H5N6 virus was reported in the prefecture on 21 November 2016. In total, we sampled and sequenced the complete genomes of 175 H5N6 AIVs. Notably, our analysis revealed that H5N6 AIVs contain at least six genotypes arising from segment reassortment, including a rare variant that possesses an HA gene derived from H5N1 clade 2.3.2 and a novel NP gene that has its origins with H7N3 viruses. In addition, phylogenetic analysis revealed that genetically similar H5N6 AIVs tend to cluster according to their geographic regions of origin. These results help to reveal the evolutionary behavior of influenza viruses prior to their emergence in humans. IMPORTANCE The newly emerged H5N6 influenza A virus has caused more than 10 human deaths in China since 2013. In November 2016, a human death due to an H5N6 virus, in Wugang Prefecture, Hunan Province, was confirmed by the WHO. To better understand the evolution and emergence of H5N6 viruses, we surveyed live poultry markets (LPMs) in Wugang Prefecture before the reported human death, with a focus on revealing the diversity and genomic origins of H5N6 in birds during 2014 and 2015. In general, H5N6 viruses in this region were most closely related to H5N1 clade 2.3.4.4, with the exception of one virus with an HA gene derived from clade 2.3.2 such that it represents a novel reassortant. Clearly, the ongoing surveillance of LPMs is central to monitoring the emergence of pathogenic influenza viruses. Copyright © 2017 American Society for Microbiology.

  14. Molecular epidemiology and genetic evolution of the whole genome of G3P[8] human rotavirus in Wuhan, China, from 2000 through 2013.

    Directory of Open Access Journals (Sweden)

    Yuan-Hong Wang

    Full Text Available Rotaviruses are a major etiologic agent of gastroenteritis in infants and young children worldwide. Since the latter of the 1990s, G3 human rotaviruses referred to as "new variant G3" have emerged and spread in China, being a dominant genotype until 2010, although their genomic evolution has not yet been well investigated.The complete genomes of 33 G3P[8] human rotavirus strains detected in Wuhan, China, from 2000 through 2013 were analyzed. Phylogenetic trees of concatenated sequences of all the RNA segments and individual genes were constructed together with published rotavirus sequences.Genotypes of 11 gene segments of all the 33 strains were assigned to G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, belonging to Wa genogroup. Phylogenetic analysis of the concatenated full genome sequences indicated that all the modern G3P[8] strains were assigned to Cluster 2 containing only one clade of G3P[8] strains in the US detected in the 1970s, which was distinct from Cluster 1 comprising most of old G3P[8] strains. While main lineages of all the 11 gene segments persisted during the study period, different lineages appeared occasionally in RNA segments encoding VP1, VP4, VP6, and NSP1-NSP5, exhibiting various allele constellations. In contrast, only a single lineage was detected for VP7, VP2, and VP3 genes. Remarkable lineage shift was observed for NSP1 gene; lineage A1-2 emerged in 2007 and became dominant in 2008-2009 epidemic season, while lineage A1-1 persisted throughout the study period.Chinese G3P[8] rotavirus strains have evolved since 2000 by intra-genogroup reassortment with co-circulating strains, accumulating more reassorted genes over the years. This is the first large-scale whole genome-based study to assess the long-term evolution of common human rotaviruses (G3P[8] in an Asian country.

  15. Highly pathogenic avian influenza virus H5N1 controls type I IFN induction in chicken macrophage HD-11 cells: a polygenic trait that involves NS1 and the polymerase complex

    Science.gov (United States)

    2012-01-01

    Background Influenza A viruses are well characterized to antagonize type I IFN induction in infected mammalian cells. However, limited information is available for avian cells. It was hypothesised that avian influenza viruses (AIV) with distinct virulence may interact differently with the avian innate immune system. Therefore, the type I IFN responses induced by highly virulent and low virulent H5N1 AIV and reassortants thereof were analysed in chicken cells. Results The highly pathogenic (HP) AIV A/chicken/Yamaguchi/7/04 (H5N1) (Yama) did not induce type I IFN in infected chicken HD-11 macrophage-like cells. This contrasted with an NS1 mutant Yama virus (Yama-NS1A144V) and with the attenuated H5N1 AIV A/duck/Hokkaido/Vac-1/04 (Vac) carrying the haemagglutinin (HA) of the Yama virus (Vac-Yama/HA), that both induced type I IFN in these cells. The substitution of the NS segment from Yama with that from Vac in the Yama backbone resulted in induction of type I IFN secretion in HD-11 cells. However, vice versa, the Yama NS segment did not prevent type I IFN induction by the Vac-Yama/HA virus. This was different with the PB1/PB2/PA segment reassortant Yama and Vac-Yama/HA viruses. Whereas the Yama virus with the Vac PB1/PB2/PA segments induced type I IFN in HD-11 cells, the Vac-Yama/HA virus with the Yama PB1/PB2/PA segments did not. As reported for mammalian cells, the expression of H5N1 PB2 inhibited the activation of the IFN-β promoter in chicken DF-1 fibroblast cells. Importantly, the Yama PB2 was more potent at inhibiting the IFN-β promoter than the Vac PB2. Conclusions The present study demonstrates that the NS1 protein and the polymerase complex of the HPAIV Yama act in concert to antagonize chicken type I IFN secretion in HD-11 cells. PB2 alone can also exert a partial inhibitory effect on type I IFN induction. In conclusion, the control of type I IFN induction by H5N1 HPAIV represents a complex phenotype that involves a particular viral gene constellation

  16. Complete-proteome mapping of human influenza A adaptive mutations: implications for human transmissibility of zoonotic strains.

    Science.gov (United States)

    Miotto, Olivo; Heiny, A T; Albrecht, Randy; García-Sastre, Adolfo; Tan, Tin Wee; August, J Thomas; Brusic, Vladimir

    2010-02-03

    There is widespread concern that H5N1 avian influenza A viruses will emerge as a pandemic threat, if they become capable of human-to-human (H2H) transmission. Avian strains lack this capability, which suggests that it requires important adaptive mutations. We performed a large-scale comparative analysis of proteins from avian and human strains, to produce a catalogue of mutations associated with H2H transmissibility, and to detect their presence in avian isolates. We constructed a dataset of influenza A protein sequences from 92,343 public database records. Human and avian sequence subsets were compared, using a method based on mutual information, to identify characteristic sites where human isolates present conserved mutations. The resulting catalogue comprises 68 characteristic sites in eight internal proteins. Subtype variability prevented the identification of adaptive mutations in the hemagglutinin and neuraminidase proteins. The high number of sites in the ribonucleoprotein complex suggests interdependence between mutations in multiple proteins. Characteristic sites are often clustered within known functional regions, suggesting their functional roles in cellular processes. By isolating and concatenating characteristic site residues, we defined adaptation signatures, which summarize the adaptive potential of specific isolates. Most adaptive mutations emerged within three decades after the 1918 pandemic, and have remained remarkably stable thereafter. Two lineages with stable internal protein constellations have circulated among humans without reassorting. On the contrary, H5N1 avian and swine viruses reassort frequently, causing both gains and losses of adaptive mutations. Human host adaptation appears to be complex and systemic, involving nearly all influenza proteins. Adaptation signatures suggest that the ability of H5N1 strains to infect humans is related to the presence of an unusually high number of adaptive mutations. However, these mutations appear

  17. Type 1 Ig-E mediated allergy to human insulin, insulin analogues and beta-lactam antibiotics Hipersensibilidade imediata a insulina humana, análogos de insulina e a antibióticos beta-lactâmicos

    Directory of Open Access Journals (Sweden)

    Pedro Andrade

    2012-12-01

    Full Text Available Insulin, a crucial therapeutic agent for diabetes mellitus, has been rarely associated with hypersensitivity events. We present a 69-year-old type-2 diabetic patient with urticariform lesions on the sites of subcutaneous injection of insulin. The patient denied any known allergies, except for an unspecific cutaneous reaction after intramuscular penicillin administration in childhood. Prick tests revealed positive reactions to all tested human insulins and insulin analogues. Serum IgE levels were above normal range and RAST tests were positive for human, bovine and porcine insulins, as well as beta-lactams. Type 1 IgEmediated allergy to insulin analogues demands a prompt diagnosis and represents a significant therapeutic challenge in diabetic patients.A insulina é um agente indispensável para o controlo da diabetes mellitus. Os efeitos adversos da sua administração, em particular fenómenos de hipersensibilidade, são raros. Apresentamos um doente de 69 anos, diabético do tipo 2, com episódios recorrentes de lesões urticariformes nos locais de administração subcutânea de insulina. Negava alergias medicamentosas, à excepção de reacção não especificada na infância após penicilina intramuscular. Foram realizados testes cutâneos por puntura (prick tests com diversos tipos de insulina humana e análogos, todos com reacções positivas, associando elevação dos níveis de IgE sérica e provas RAST positivas para as insulinas humana, bovina e porcina e para os antibióticos beta-lactâmicos. A alergia a análogos de insulina exige um diagnóstico precoce, originando um desafio terapêutico importante no doente diabético.

  18. Inferring source attribution from a multiyear multisource data set of Salmonella in Minnesota.

    Science.gov (United States)

    Ahlstrom, C; Muellner, P; Spencer, S E F; Hong, S; Saupe, A; Rovira, A; Hedberg, C; Perez, A; Muellner, U; Alvarez, J

    2017-12-01

    Salmonella enterica is a global health concern because of its widespread association with foodborne illness. Bayesian models have been developed to attribute the burden of human salmonellosis to specific sources with the ultimate objective of prioritizing intervention strategies. Important considerations of source attribution models include the evaluation of the quality of input data, assessment of whether attribution results logically reflect the data trends and identification of patterns within the data that might explain the detailed contribution of different sources to the disease burden. Here, more than 12,000 non-typhoidal Salmonella isolates from human, bovine, porcine, chicken and turkey sources that originated in Minnesota were analysed. A modified Bayesian source attribution model (available in a dedicated R package), accounting for non-sampled sources of infection, attributed 4,672 human cases to sources assessed here. Most (60%) cases were attributed to chicken, although there was a spike in cases attributed to a non-sampled source in the second half of the study period. Molecular epidemiological analysis methods were used to supplement risk modelling, and a visual attribution application was developed to facilitate data exploration and comprehension of the large multiyear data set assessed here. A large amount of within-source diversity and low similarity between sources was observed, and visual exploration of data provided clues into variations driving the attribution modelling results. Results from this pillared approach provided first attribution estimates for Salmonella in Minnesota and offer an understanding of current data gaps as well as key pathogen population features, such as serotype frequency, similarity and diversity across the sources. Results here will be used to inform policy and management strategies ultimately intended to prevent and control Salmonella infection in the state. © 2017 Blackwell Verlag GmbH.

  19. A case study characterizing animal fecal sources in surface water using a mitochondrial DNA marker.

    Science.gov (United States)

    Bucci, John P; Shattuck, Michelle D; Aytur, Semra A; Carey, Richard; McDowell, William H

    2017-08-01

    Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal's gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher's test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.

  20. Origin of fecal contamination in waters from contrasted areas: stanols as Microbial Source Tracking markers.

    Science.gov (United States)

    Derrien, M; Jardé, E; Gruau, G; Pourcher, A M; Gourmelon, M; Jadas-Hécart, A; Pierson Wickmann, A C

    2012-09-01

    Improving the microbiological quality of coastal and river waters relies on the development of reliable markers that are capable of determining sources of fecal pollution. Recently, a principal component analysis (PCA) method based on six stanol compounds (i.e. 5β-cholestan-3β-ol (coprostanol), 5β-cholestan-3α-ol (epicoprostanol), 24-methyl-5α-cholestan-3β-ol (campestanol), 24-ethyl-5α-cholestan-3β-ol (sitostanol), 24-ethyl-5β-cholestan-3β-ol (24-ethylcoprostanol) and 24-ethyl-5β-cholestan-3α-ol (24-ethylepicoprostanol)) was shown to be suitable for distinguishing between porcine and bovine feces. In this study, we tested if this PCA method, using the above six stanols, could be used as a tool in "Microbial Source Tracking (MST)" methods in water from areas of intensive agriculture where diffuse fecal contamination is often marked by the co-existence of human and animal sources. In particular, well-defined and stable clusters were found in PCA score plots clustering samples of "pure" human, bovine and porcine feces along with runoff and diluted waters in which the source of contamination is known. A good consistency was also observed between the source assignments made by the 6-stanol-based PCA method and the microbial markers for river waters contaminated by fecal matter of unknown origin. More generally, the tests conducted in this study argue for the addition of the PCA method based on six stanols in the MST toolbox to help identify fecal contamination sources. The data presented in this study show that this addition would improve the determination of fecal contamination sources when the contamination levels are low to moderate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Evidence for ovarian tumor necrosis factor

    Energy Technology Data Exchange (ETDEWEB)

    Roby, K.F.

    1989-01-01

    Ovarian folliculogenesis and luteal formation occur concomitantly with the development of new blood vessels that function in nutritional support of the developing follicles. As follicles undergo atresia and the corpus luteum regresses, blood vessels supplying these tissues degenerate. The first study determined if the ovary contained factors that might regulate ovarian angiogenesis. The bovine ovary was subjected to ammonium sulfate (AS) precipitation and the precipitates (ppt.) were assayed in vitro for effects on endothelial cell (CPAE) and fibroblast (3T3 and L929) incorporation of {sup 3}H-thymidine. Heparin sepharose (HS) chromatography of the 80% AS ppt. revealed the inhibitory activity on CPAE and L929 cells did not bind to HS but was found in the HS column breakthrough (80% BT). Sizing chromatography of the 80% BT indicated thymidine incorporation inhibitory activity exhibited a molecular weight of 30,000-50,000 Daltons. TNF was immunohistochemically localized in the human, bovine and rat ovary. Frozen sections were incubated with polyclonal antibody to human recombinant TNF. Antigen-antibody binding was visualized using a Biotin-StreptAvidin peroxidase technique. Immunoreactive TNF (I-TNF) was localized in corpora lutea and the more antral layers of granulosa cells in antral follicles. Incubation of sections with anti-TNF in the presence of excess TNF resulted in lose of immunostaining. Cell blotting and ELISA further indicated I-TNF was present in granulosa cells. In order to determine whether TNF had an effect on follicular steroidogenesis, preovulatory follicles from cyclic proestrus rats were incubated in vitro for up to 24 hours with various doses of human recombinant TNF. Stepwise increases in progesterone (P) accumulation in the incubation media were observed with 30-300 pM TNF.

  2. Quantitation of species differences in albumin–ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: A test case with some Sudlow's site I ligands

    International Nuclear Information System (INIS)

    Poór, Miklós; Li, Yin; Matisz, Gergely; Kiss, László; Kunsági-Máté, Sándor; Kőszegi, Tamás

    2014-01-01

    Albumin, the most abundant plasma protein is an approximately 67 kDa sized water-soluble macromolecule. Since several drugs and xenobiotics circulate in the blood at least partially in albumin-bound form, albumin plays a key role in the pharmacokinetics/toxicokinetics of these chemicals. Most of the drugs and xenobiotics are Sudlow's site I ligands. In numerous studies, bovine serum albumin (BSA) is used for modeling albumin–ligand interactions and the results are extrapolated to human serum albumin (HSA). Furthermore, only limited information is available related to albumin–ligand interactions of different albumin species. Therefore, in our study, we have focused on the quantification of differences between bovine, human and rat serum albumin (RSA) using four Sudlow's site I ligands (luteolin, ochratoxin A, phenylbutazone and warfarin). Interactions were analyzed by fluorescence spectroscopy. Stability constants as well as competing capacities of the ligands were determined, and thermodynamic study was also performed. Our results highlight that there could be major differences between BSA, HSA and RSA in their ligand binding properties. Based on our observations we emphasize that in molecular aspects BSA behaves considerably differently from HSA or from albumins of other species therefore, it is strongly recommended to apply at least some confirmatory measurements when data obtained from other species are attempted to be extrapolated to HSA. -- Highlights: • Albumin–ligand interactions of human, bovine and rat albumins were studied. • Four Sudlow's site I ligands were tested by fluorescence spectroscopy. • Substantial differences were found in stability constants among albumin complexes. • Competing capacity of ligands showed major differences in the studied species. • Data obtained for BSA cannot be directly extrapolated to human albumin

  3. Quantitation of species differences in albumin–ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: A test case with some Sudlow's site I ligands

    Energy Technology Data Exchange (ETDEWEB)

    Poór, Miklós [Institute of Laboratory Medicine, University of Pécs, Ifjúság u. 13, Pécs H-7624 (Hungary); Li, Yin; Matisz, Gergely [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, Pécs H-7624 (Hungary); Kiss, László [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); Kunsági-Máté, Sándor [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, Pécs H-7624 (Hungary); Kőszegi, Tamás, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pécs, Ifjúság u. 13, Pécs H-7624 (Hungary)

    2014-01-15

    Albumin, the most abundant plasma protein is an approximately 67 kDa sized water-soluble macromolecule. Since several drugs and xenobiotics circulate in the blood at least partially in albumin-bound form, albumin plays a key role in the pharmacokinetics/toxicokinetics of these chemicals. Most of the drugs and xenobiotics are Sudlow's site I ligands. In numerous studies, bovine serum albumin (BSA) is used for modeling albumin–ligand interactions and the results are extrapolated to human serum albumin (HSA). Furthermore, only limited information is available related to albumin–ligand interactions of different albumin species. Therefore, in our study, we have focused on the quantification of differences between bovine, human and rat serum albumin (RSA) using four Sudlow's site I ligands (luteolin, ochratoxin A, phenylbutazone and warfarin). Interactions were analyzed by fluorescence spectroscopy. Stability constants as well as competing capacities of the ligands were determined, and thermodynamic study was also performed. Our results highlight that there could be major differences between BSA, HSA and RSA in their ligand binding properties. Based on our observations we emphasize that in molecular aspects BSA behaves considerably differently from HSA or from albumins of other species therefore, it is strongly recommended to apply at least some confirmatory measurements when data obtained from other species are attempted to be extrapolated to HSA. -- Highlights: • Albumin–ligand interactions of human, bovine and rat albumins were studied. • Four Sudlow's site I ligands were tested by fluorescence spectroscopy. • Substantial differences were found in stability constants among albumin complexes. • Competing capacity of ligands showed major differences in the studied species. • Data obtained for BSA cannot be directly extrapolated to human albumin.

  4. Informed consent: cultural and religious issues associated with the use of allogeneic and xenogeneic mesh products.

    Science.gov (United States)

    Jenkins, Eric D; Yip, Michael; Melman, Lora; Frisella, Margaret M; Matthews, Brent D

    2010-04-01

    Our aim was to investigate the views of major religions and cultural groups regarding the use of allogeneic and xenogeneic mesh for soft tissue repair. We contacted representatives from Judaism, Islam, Buddhism, Hinduism, Scientology, and Christianity (Baptists, Methodists, Seventh-Day Adventists, Catholics, Lutherans, Church of Jesus Christ of Latter-Day Saints, Evangelical, and Jehovah's Witnesses). We also contacted American Vegan and People for the Ethical Treatment of Animals (PETA). Standardized questionnaires were distributed to the religious and cultural authorities. Questions solicited views on the consumption of beef and pork products and the acceptability of human-, bovine-, or porcine-derived acellular grafts. Dietary restrictions among Jews and Muslims do not translate to tissue implantation restriction. Approximately 50% of Seventh-day Adventists and 40% of Buddhists practice vegetarianism, which may translate into a refusal of the use of xenogeneic tissue. Some Hindus categorically prohibit the use of human tissue and animal products; others allow the donation and receipt of human organs and tissues. PETA is opposed to all uses of animals, but not to human acellular grafts or organ transplantation. Some vegans prefer allogeneic to xenogeneic tissue. Allogeneic and xenogeneic acellular grafts are acceptable among Scientologists, Baptists, Lutherans, Evangelicals, and Catholics. Methodists, Jehovah's Witnesses, and The Church of Jesus Christ of Latter-Day Saints leave the decision up to the individual. Knowledge of religious and cultural preferences regarding biologic mesh assists the surgeon in obtaining a culturally sensitive informed consent for procedures involving acellular allogeneic or xenogeneic grafts. Copyright (c) 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Emerging and potentially emerging viruses in water environments

    Directory of Open Access Journals (Sweden)

    Giuseppina La Rosa

    2012-12-01

    Full Text Available Among microorganisms, viruses are best fit to become emerging pathogens since they are able to adapt not only by mutation but also through recombination and reassortment and can thus become able to infect new hosts and to adjust to new environments. Enteric viruses are among the commonest and most hazardous waterborne pathogens, causing both sporadic and outbreak-related illness. The main health effect associated with enteric viruses is gastrointestinal illness, but they can also cause respiratory symptoms, conjunctivitis, hepatitis, central nervous system infections, and chronic diseases. Non-enteric viruses, such as respiratory and epitheliotrophic viruses are not considered waterborne, as they are not readily transmitted to water sources from infected individuals. The present review will focus on viral pathogens shown to be transmitted through water. It will also provide an overview of viruses that had not been a concern for waterborne transmission in the past, but that may represent potentially emerging waterborne pathogens due to their occurrence and persistence in water environments.

  6. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs.

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J; Bredenbeek, Peter J; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S; Lukashevich, Igor S

    2011-02-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV-GP1 and -GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and -GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF proteins and LASV GP antigens in infected cells. YF17D/LASV-GP1 and -GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1 and -GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Further characterization of field strains of rotavirus from Nigeria VP4 genotype P6 most frequently identified among symptomatically infected children.

    Science.gov (United States)

    Adah, M I; Rohwedder, A; Olaleye, O D; Durojaiye, O A; Werchau, H

    1997-10-01

    Polymerase chain reaction was utilized to characterize the VP4 types of 39 Rotavirus field isolates from symptomatically infected children in Nigeria. Genotype P6 was identified most frequently, occurring in 41.03 per cent of the typed specimens. Genotype P8 was identified as the next most prevalent (33.3% per cent). Genotype p6 was widespread (68.75 per cent) among infected neonates in Southern Nigeria, but mix infection was more prevalent (70 per cent) among Northern Nigerian children. Four distinct strains were identified with four different P genotypes. Overall strain G1P8 predominated (22.22 per cent) followed by G3P6 (17.8 per cent). Strain G1P8 was most prevalent (70 per cent) among infants aged 3.1-9 months, but strain G3P6 was most frequently identified among neonates occurance of mix infection genotype demonstrates the potential for reassortment events among different rotavirus genogroups in Nigeria. The epidemiological implications of these findings for rotavirus vaccine development and application in the country were discussed.

  8. Revalidation and genetic characterization of new members of Group C (Orthobunyavirus genus, Peribunyaviridae family) isolated in the Americas.

    Science.gov (United States)

    Nunes, Márcio Roberto Teixeira; de Souza, William Marciel; Acrani, Gustavo Olszanski; Cardoso, Jedson Ferreira; da Silva, Sandro Patroca; Badra, Soraya Jabur; Figueiredo, Luiz Tadeu Moraes; Vasconcelos, Pedro Fernando da Costa

    2018-01-01

    Group C serogroup includes members of the Orthobunyavirus genus (family Peribunyaviridae) and comprises 15 arboviruses that can be associated with febrile illness in humans. Although previous studies described the genome characterization of Group C orthobunyavirus, there is a gap in genomic information about the other viruses in this group. Therefore, in this study, complete genomes of members of Group C serogroup were sequenced or re-sequenced and used for genetic characterization, as well as to understand their phylogenetic and evolutionary aspects. Thus, our study reported the genomes of three new members in Group C virus (Apeu strain BeAn848, Itaqui strain BeAn12797 and Nepuyo strain BeAn10709), as well as re-sequencing of original strains of five members: Caraparu (strain BeAn3994), Madrid (strain BT4075), Murucutu (strain BeAn974), Oriboca (strain BeAn17), and Marituba (strain BeAn15). These viruses presented a typical genomic organization related to members of the Orthobunyavirus genus. Interestingly, all viruses of this serogroup showed an open reading frame (ORF) that encodes the putative nonstructural NSs protein that precedes the nucleoprotein ORF, an unprecedented fact in Group C virus. Also, we confirmed the presence of natural reassortment events. This study expands the genomic information of Group C viruses, as well as revalidates the genomic organization of viruses that were previously reported.

  9. Genome-wide evolutionary dynamics of influenza B viruses on a global scale.

    Directory of Open Access Journals (Sweden)

    Pinky Langat

    2017-12-01

    Full Text Available The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally.

  10. Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4 Virus: Equivocal Pathogenicity and Implications for Surveillance Following Natural Infection in Breeder Ducks in the United Kingdom.

    Science.gov (United States)

    Núñez, A; Brookes, S M; Reid, S M; Garcia-Rueda, C; Hicks, D J; Seekings, J M; Spencer, Y I; Brown, I H

    2016-02-01

    Since early 2014, several outbreaks involving novel reassortant highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been detected in poultry and wild bird species in Asia, Europe and North America. These viruses have been detected in apparently healthy and dead wild migratory birds, as well as in domestic chickens, turkeys, geese and ducks. In this study, we describe the pathology of an outbreak of H5N8 HPAIV in breeder ducks in the UK. A holding with approximately 6000 breeder ducks, aged approximately 60 weeks, showed a gradual reduction in egg production and increased mortality over a 7-day period. Post-mortem examination revealed frequent fibrinous peritonitis, with severely haemorrhagic ovarian follicles and occasional splenic and pancreatic necrosis and high incidence of mycotic granulomas in the air sacs and lung. Low-to-moderate levels of HPAI H5N8 virus were detected mainly in respiratory and digestive tract, with minor involvement of other organs. Although histopathological examination confirmed the gross pathology findings, intralesional viral antigen detection by immunohistochemistry was not observed. Immunolabelled cells were rarely only present in inflamed air sacs and serosa, usually superficial to granulomatous inflammation. Abundant bacterial microcolonies were observed in haemorrhagic ovaries and oviduct. The limited viral tissue distribution and presence of inter-current fungal and bacterial infections suggest a minor role for HPAIV H5N8 in clinical disease in layer ducks. © 2015 Crown copyright.

  11. Molecular detection and characterization of Influenza 'C' viruses from western India.

    Science.gov (United States)

    Potdar, V A; Hinge, D D; Dakhave, M R; Manchanda, A; Jadhav, N; Kulkarni, P B; Chadha, M S

    2017-10-01

    Since 2003, India has had a well-established influenza surveillance network, though Influenza C virus was not the focus of study. We therefore retrospectively analyzed clinical samples from Pune, western India collected during January 2009 to August 2015, by real-time RT-PCR. Three of 2530 samples of patients with influenza-like illness (ILI) or severe acute respiratory illness (SARI) showed positivity for Influenza C virus infection, while 105 and 31 samples were positive for Influenza A and B viruses respectively. Influenza C viruses were successfully isolated using the embryonated egg system and whole genomes were sequenced and analyzed phylogenetically. HE gene-based phylogeny showed that two viruses C/India/P119564/2011 and C/India P121719/2012 clustered with the C/Sao Paulo/378/82 (SP82) lineage, whereas C/India/P135047/2013 clustered with the C/Kanagawa/1/76 (KA76) lineage. The internal gene of these viruses grouped in two lineages. The PB1, PB2, M and NS genes of the study viruses grouped with C/Yamagata/26/81 (YA81), while the P3 (PA) and NP genes grouped with C/Mississippi/80 (MS80). Bayesian clock studies conclude that the Indian strains may have emerged through multiple reassortment events. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities.

    Science.gov (United States)

    To, Kelvin K W; Chan, Jasper F W; Chen, Honglin; Li, Lanjuan; Yuen, Kwok-Yung

    2013-09-01

    Infection with either influenza A H5N1 virus in 1997 or avian influenza A H7N9 virus in 2013 caused severe pneumonia that did not respond to typical or atypical antimicrobial treatment, and resulted in high mortality. Both viruses are reassortants with internal genes derived from avian influenza A H9N2 viruses that circulate in Asian poultry. Both viruses have genetic markers of mammalian adaptation in their haemagglutinin and polymerase PB2 subunits, which enhanced binding to human-type receptors and improved replication in mammals, respectively. Hong Kong (affected by H5N1 in 1997) and Shanghai (affected by H7N9 in 2013) are two rapidly flourishing cosmopolitan megacities that were increasing in human population and poultry consumption before the outbreaks. Both cities are located along the avian migratory route at the Pearl River delta and Yangtze River delta. Whether the widespread use of the H5N1 vaccine in east Asia-with suboptimum biosecurity measures in live poultry markets and farms-predisposed to the emergence of H7N9 or other virus subtypes needs further investigation. Why H7N9 seems to be more readily transmitted from poultry to people than H5N1 is still unclear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The nest architecture of the Florida harvester ant, Pogonomyrmex badius.

    Science.gov (United States)

    Tschinkel, Walter R

    2004-01-01

    The architecture of the subterranean nests of the Florida harvester ant, Pogonomyrmex badius, was studied through excavation and casting. Nests are composed of two basic units: descending shafts and horizontal chambers. Shafts form helices with diameters of 4 to 6 cm, and descend at an angle of about 15-20 degrees near the surface, increasing to about 70 degrees below about 50 cm in depth. Superficial chambers (engaging in digging, rather than an increase in their rate of work. All ages of workers produced similar top-heavy nests. When different ages of workers from different levels of a mature colony were allowed to re-assort themselves in a vertical test apparatus buried in the soil, older workers moved upward to assume positions in the upper parts of the nest, much as in the colonies from which they were taken. The vertical organization of workers based on age is therefore the product of active movement and choice. A possible template imparting information on depth is a carbon dioxide gradient. Carbon dioxide concentrations increased 5-fold between the surface and the depths of the nest. A preference of young workers for high carbon dioxide concentrations, and a tendency for workers to dig more under low carbon dioxide concentrations could explain both the vertical age-distribution of workers, and the top-heaviness of the nest's architecture.

  14. Genomic segments RNA1 and RNA2 of Prunus necrotic ringspot virus codetermine viral pathogenicity to adapt to alternating natural Prunus hosts.

    Science.gov (United States)

    Cui, Hongguang; Hong, Ni; Wang, Guoping; Wang, Aiming

    2013-05-01

    Prunus necrotic ringspot virus (PNRSV) affects Prunus fruit production worldwide. To date, numerous PNRSV isolates with diverse pathological properties have been documented. To study the pathogenicity of PNRSV, which directly or indirectly determines the economic losses of infected fruit trees, we have recently sequenced the complete genome of peach isolate Pch12 and cherry isolate Chr3, belonging to the pathogenically aggressive PV32 group and mild PV96 group, respectively. Here, we constructed the Chr3- and Pch12-derived full-length cDNA clones that were infectious in the experimental host cucumber and their respective natural Prunus hosts. Pch12-derived clones induced much more severe symptoms than Chr3 in cucumber, and the pathogenicity discrepancy between Chr3 and Pch12 was associated with virus accumulation. By reassortment of genomic segments, swapping of partial genomic segments, and site-directed mutagenesis, we identified the 3' terminal nucleotide sequence (1C region) in RNA1 and amino acid K at residue 279 in RNA2-encoded P2 as the severe virulence determinants in Pch12. Gain-of-function experiments demonstrated that both the 1C region and K279 of Pch12 were required for severe virulence and high levels of viral accumulation. Our results suggest that PNRSV RNA1 and RNA2 codetermine viral pathogenicity to adapt to alternating natural Prunus hosts, likely through mediating viral accumulation.

  15. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    Science.gov (United States)

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Overvågning af influenza A virus i svin i 2014

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Lars Erik

    sekvensanalyse for at bestemme subtypen. Disse analyser viste, at de to mest almindelige subtyper i danske svin i 2014 var den danske variant af H1N2 og H1N1pdm09. Prævalensen af det almindelige svineinfluenza virus ”avian-like swine” H1N1 subtype er faldet drastisk og forekom i 2014 tilsyneladende mindre...... hyppigt end H1N1pdm09 subtypen. Influenzavirus af subtypen H3N2, der har cirkuleret i Danmark siden 1990, blev påvist i en enkelt indsendelse i 2014, hvilket også var tilfældet i 2013. Den centraleuropæiske variant af H1N2, der har et human-like HA gen, er i lighed med tidligere år ikke påvist i danske...... 2014 skyldes øget smitteoverførsel fra mennesker til svin. Resultaterne af overvågningen i 2014 underbygger antagelsen om at de nye reassortments fra de foregående år: H1N2hu, H1pdmN2hu og H1pdmN2sw, nu er fast etableret i de danske svinebesætninger. Ud over disse subtyper blev der i 2014 fundet en...

  17. Influenza A Viruses of Human Origin in Swine, Brazil.

    Science.gov (United States)

    Nelson, Martha I; Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-08-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil's swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009-2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance.

  18. Genetic characterization of H1N2 influenza a virus isolated from sick pigs in Southern China in 2010.

    Science.gov (United States)

    Kong, Wei Li; Huang, Liang Zong; Qi, Hai Tao; Cao, Nan; Zhang, Liang Quan; Wang, Heng; Guan, Shang Song; Qi, Wen Bao; Jiao, Pei Rong; Liao, Ming; Zhang, Gui Hong

    2011-10-13

    In China H3N2 and H1N1 swine influenza viruses have been circulating for many years. In January 2010, before swine were infected with foot and mouth disease in Guangdong, some pigs have shown flu-like symptoms: cough, sneeze, runny nose and fever. We collected the nasopharyngeal swab of all sick pigs as much as possible. One subtype H1N2 influenza viruses were isolated from the pig population. The complete genome of one isolate, designated A/swine/Guangdong/1/2010(H1N2), was sequenced and compared with sequences available in GenBank. The nucleotide sequences of all eight viral RNA segments were determined, and then phylogenetic analysis was performed using the neighbor-joining method. HA, NP, M and NS were shown to be closely to swine origin. PB2 and PA were close to avian origin, but NA and PB1were close to human origin. It is a result of a multiple reassortment event. In conclusion, our finding provides further evidence about the interspecies transmission of avian influenza viruses to pigs and emphasizes the importance of reinforcing swine influenza virus (SIV) surveillance, especially before the emergence of highly pathogenic FMDs in pigs in Guangdong.

  19. Genetic characterization of influenza A viruses circulating in pigs and isolated in north-east Spain during the period 2006-2007.

    Science.gov (United States)

    Baratelli, Massimiliano; Córdoba, Lorena; Pérez, Lester J; Maldonado, Jaime; Fraile, Lorenzo; Núñez, José I; Montoya, Maria

    2014-04-01

    Swine influenza virus is one of the most important pathogens involved in the swine respiratory disease complex. Recent serological surveys showed a high prevalence of swine influenza strains belonging to the H1N1, H1N2 and H3N2 subtypes circulating in pigs in Spain. However, little is known about their genome sequence. Five swine influenza strains were isolated from some unrelated outbreaks occurred during 2006-2007, and their complete genome sequences were determined. Phylogenetic analysis revealed that they belonged to the lineages "Avian-Like" H1N1, "Human-Like" H3N2, and "Human-Like" H1N2, showing tight relationships with early or contemporary strains described in Europe. Notably, one virus of the H1N2 subtype showed genetic and antigenic divergence with the European contemporary strains or vaccinal strains of the same subtype, suggesting that some local and divergent clusters of the virus may pass unnoticed in routinary subtyping. Finally, analysis on the entire pattern of genome segments suggested that a second reassortment event could have influenced the evolution of that divergent H1N2 strain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Genetic analysis and antigenic characterization of swine origin influenza viruses isolated from humans in the United States, 1990-2010.

    Science.gov (United States)

    Shu, Bo; Garten, Rebecca; Emery, Shannon; Balish, Amanda; Cooper, Lynn; Sessions, Wendy; Deyde, Varough; Smith, Catherine; Berman, LaShondra; Klimov, Alexander; Lindstrom, Stephen; Xu, Xiyan

    2012-01-05

    Swine influenza viruses (SIV) have been recognized as important pathogens for pigs and occasional human infections with swine origin influenza viruses (SOIV) have been reported. Between 1990 and 2010, a total of twenty seven human cases of SOIV infections have been identified in the United States. Six viruses isolated from 1990 to 1995 were recognized as classical SOIV (cSOIV) A(H1N1). After 1998, twenty-one SOIV recovered from human cases were characterized as triple reassortant (tr_SOIV) inheriting genes from classical swine, avian and human influenza viruses. Of those twenty-one tr_SOIV, thirteen were of A(H1N1), one of A(H1N2), and seven of A(H3N2) subtype. SOIV characterized were antigenically and genetically closely related to the subtypes of influenza viruses circulating in pigs but distinct from contemporary influenza viruses circulating in humans. The diversity of subtypes and genetic lineages in SOIV cases highlights the importance of continued surveillance at the animal-human interface. Copyright © 2011. Published by Elsevier Inc.

  1. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza.

    Directory of Open Access Journals (Sweden)

    Nicholas J Negovetich

    2011-04-01

    Full Text Available Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94% were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%, and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets.

  2. Comparison of two H1N2 swine influenza A viruses from disease outbreaks in pigs in Sweden during 2009 and 2010.

    Science.gov (United States)

    Metreveli, Giorgi; Emmoth, Eva; Zohari, Siamak; Bálint, Adám; Widén, Frederik; Muradrasoli, Shaman; Wallgren, Per; Belák, Sándor; Leblanc, Neil; Berg, Mikael; Kiss, István

    2011-04-01

    The influenza A virus subtypes H1N1, H1N2 and H3N2 are prevalent in pig populations worldwide. In the present study, two relatively uncommon swine influenza virus (SIV) H1N2 subtypes, isolated in Sweden in 2009 and 2010, were compared regarding their molecular composition and biological characteristics. The differences regarding markers purportedly related to pathogenicity, host adaptation or replication efficiency. They included a truncated PB1-F2 protein in the earlier isolate but a full length version in the more recent one; differences in the number of haemagglutinin glycosylation sites, including a characteristic human one; and a nuclear export protein with altered export signal. Of particular interest, the NS1 amino acid sequence of swine H1N2-2009 and 2010 has a 'unique or very unusual' PDZ binding domain (RPKV) at the C-terminal of the protein, a motif that has been implicated as a virulence marker. Concerning biological properties, these viruses reached lower titre and showed reduced cytopathogenicity in MDCK cells compared with an avian-like H1N1 isolate A/swine/Lidkoping/1193/2002 belonging to the same lineage as the 2009 and 2010 isolates. The findings should contribute to better understanding of factors related to the survival/extinction of this uncommon reassortant variant.

  3. Genetic characterization of H1N2 influenza a virus isolated from sick pigs in Southern China in 2010

    Directory of Open Access Journals (Sweden)

    Kong Wei

    2011-10-01

    Full Text Available Abstract In China H3N2 and H1N1 swine influenza viruses have been circulating for many years. In January 2010, before swine were infected with foot and mouth disease in Guangdong, some pigs have shown flu-like symptoms: cough, sneeze, runny nose and fever. We collected the nasopharyngeal swab of all sick pigs as much as possible. One subtype H1N2 influenza viruses were isolated from the pig population. The complete genome of one isolate, designated A/swine/Guangdong/1/2010(H1N2, was sequenced and compared with sequences available in GenBank. The nucleotide sequences of all eight viral RNA segments were determined, and then phylogenetic analysis was performed using the neighbor-joining method. HA, NP, M and NS were shown to be closely to swine origin. PB2 and PA were close to avian origin, but NA and PB1were close to human origin. It is a result of a multiple reassortment event. In conclusion, our finding provides further evidence about the interspecies transmission of avian influenza viruses to pigs and emphasizes the importance of reinforcing swine influenza virus (SIV surveillance, especially before the emergence of highly pathogenic FMDs in pigs in Guangdong.

  4. A historical perspective of influenza A(H1N2) virus.

    Science.gov (United States)

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals.

  5. Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method

    Directory of Open Access Journals (Sweden)

    Dan Dou

    2017-07-01

    Full Text Available Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections.

  6. Genome-wide evolutionary dynamics of influenza B viruses on a global scale

    Science.gov (United States)

    Langat, Pinky; Bowden, Thomas A.; Edwards, Stephanie; Gall, Astrid; Rambaut, Andrew; Daniels, Rodney S.; Russell, Colin A.; Pybus, Oliver G.; McCauley, John

    2017-01-01

    The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally. PMID:29284042

  7. Swine flu - A pandemic outbreak

    Directory of Open Access Journals (Sweden)

    Jini George

    Full Text Available Hippocrates had described influenza like outbreak in 412 B.C. and since then repeated influenza like epidemics and pandemics have been recorded in recent times. One of the greatest killers of all time was the pandemic of swine flu (Spanish flu of 1918-1919, when 230 million people died. Annual influenza epidemics are estimated to affect 5–15% of the global population, resulting in severe illness in 3–5 million patients causing 250,000–500,000 deaths worldwide. Severe illness and deaths occur mainly in the high-risk populations of infants, the elderly and chronically ill patients. The 2009 outbreak of swine flu is thought to be a mutation more specifically a reassortment of four known strains of influenza A virus subtype H1N1; one endemic in humans, one endemic in birds, and two endemic in pigs. WHO officially declared the outbreak to be a pandemic on June 11, 2009, but stressed that the new designation was a result of the global "spread of the virus," not its severity. [Vet World 2009; 2(12.000: 472-474

  8. Inference of Ancestral Recombination Graphs through Topological Data Analysis

    Science.gov (United States)

    Cámara, Pablo G.; Levine, Arnold J.; Rabadán, Raúl

    2016-01-01

    The recent explosion of genomic data has underscored the need for interpretable and comprehensive analyses that can capture complex phylogenetic relationships within and across species. Recombination, reassortment and horizontal gene transfer constitute examples of pervasive biological phenomena that cannot be captured by tree-like representations. Starting from hundreds of genomes, we are interested in the reconstruction of potential evolutionary histories leading to the observed data. Ancestral recombination graphs represent potential histories that explicitly accommodate recombination and mutation events across orthologous genomes. However, they are computationally costly to reconstruct, usually being infeasible for more than few tens of genomes. Recently, Topological Data Analysis (TDA) methods have been proposed as robust and scalable methods that can capture the genetic scale and frequency of recombination. We build upon previous TDA developments for detecting and quantifying recombination, and present a novel framework that can be applied to hundreds of genomes and can be interpreted in terms of minimal histories of mutation and recombination events, quantifying the scales and identifying the genomic locations of recombinations. We implement this framework in a software package, called TARGet, and apply it to several examples, including small migration between different populations, human recombination, and horizontal evolution in finches inhabiting the Galápagos Islands. PMID:27532298

  9. Influenza A Viruses of Human Origin in Swine, Brazil

    Science.gov (United States)

    Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-01-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil’s swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009–2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance. PMID:26196759

  10. Directed genetic modification of African horse sickness virus by reverse genetics

    Directory of Open Access Journals (Sweden)

    Elaine Vermaak

    2015-07-01

    Full Text Available African horse sickness virus (AHSV, a member of the Orbivirus genus in the family Reoviridae, is an arthropod-transmitted pathogen that causes a devastating disease in horses with a mortality rate greater than 90%. Fundamental research on AHSV and the development of safe, efficacious vaccines could benefit greatly from an uncomplicated genetic modification method to generate recombinant AHSV. We demonstrate that infectious AHSV can be recovered by transfection of permissive mammalian cells with transcripts derived in vitro from purified AHSV core particles. These findings were expanded to establish a genetic modification system for AHSV that is based on transfection of the cells with a mixture of purified core transcripts and a synthetic T7 transcript. This approach was applied successfully to recover a directed cross-serotype reassortant AHSV and to introduce a marker sequence into the viral genome. The ability to manipulate the AHSV genome and engineer specific mutants will increase understanding of AHSV replication and pathogenicity, as well as provide a tool for generating designer vaccine strains.

  11. Toroidal surface complexes of bacteriophage φ12 are responsible for host-cell attachment

    International Nuclear Information System (INIS)

    Leo-Macias, Alejandra; Katz, Garrett; Wei Hui; Alimova, Alexandra; Katz, A.; Rice, William J.; Diaz-Avalos, Ruben; Hu Guobin; Stokes, David L.; Gottlieb, Paul

    2011-01-01

    Cryo-electron tomography and subtomogram averaging are utilized to determine that the bacteriophage φ12, a member of the Cystoviridae family, contains surface complexes that are toroidal in shape, are composed of six globular domains with six-fold symmetry, and have a discrete density connecting them to the virus membrane-envelope surface. The lack of this kind of spike in a reassortant of φ12 demonstrates that the gene for the hexameric spike is located in φ12's medium length genome segment, likely to the P3 open reading frames which are the proteins involved in viral-host cell attachment. Based on this and on protein mass estimates derived from the obtained averaged structure, it is suggested that each of the globular domains is most likely composed of a total of four copies of P3a and/or P3c proteins. Our findings may have implications in the study of the evolution of the cystovirus species in regard to their host specificity. - Research Highlights: → Subtomogram averaging reveals enhanced detail of a φ12 cystovirus surface protein complex. → The surface protein complex has a toroidal shape and six-fold symmetry. → It is encoded by the medium-size genome segment. → The proteins of the surface complex most likely are one copy of P3a and three copies of P3c.

  12. The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis.

    Science.gov (United States)

    Margaria, P; Bosco, L; Vallino, M; Ciuffo, M; Mautino, G C; Tavella, L; Turina, M

    2014-05-01

    Tomato spotted wilt virus (TSWV) is the type member of tospoviruses (genus Tospovirus), plant-infecting viruses that cause severe damage to ornamental and vegetable crops. Tospoviruses are transmitted by thrips in the circulative propagative mode. We generated a collection of NSs-defective TSWV isolates and showed that TSWV coding for truncated NSs protein could not be transmitted by Frankliniella occidentalis. Quantitative reverse transcription (RT)-PCR and immunostaining of individual insects detected the mutant virus in second-instar larvae and adult insects, demonstrating that insects could acquire and accumulate the NSs-defective virus. Nevertheless, adults carried a significantly lower viral load, resulting in the absence of transmission. Genome sequencing and analyses of reassortant isolates showed genetic evidence of the association between the loss of competence in transmission and the mutation in the NSs coding sequence. Our findings offer new insight into the TSWV-thrips interaction and Tospovirus pathogenesis and highlight, for the first time in the Bunyaviridae family, a major role for the S segment, and specifically for the NSs protein, in virulence and efficient infection in insect vector individuals. Our work is the first to show a role for the NSs protein in virus accumulation in the insect vector in the Bunyaviridae family: demonstration was obtained for the system TSWV-F. occidentalis, arguably one of the most damaging combination for vegetable crops. Genetic evidence of the involvement of the NSs protein in vector transmission was provided with multiple approaches.

  13. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks

    Science.gov (United States)

    Reeves, Andrew B.; Pearce, John M.; Ramey, Andy M.; Meixell, Brandt; Runstadler, Jonathan A.

    2011-01-01

    The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4 years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99% identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0–10 km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0–9 days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America.

  14. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States.

    Science.gov (United States)

    Bevins, S N; Dusek, R J; White, C L; Gidlewski, T; Bodenstein, B; Mansfield, K G; DeBruyn, P; Kraege, D; Rowan, E; Gillin, C; Thomas, B; Chandler, S; Baroch, J; Schmit, B; Grady, M J; Miller, R S; Drew, M L; Stopak, S; Zscheile, B; Bennett, J; Sengl, J; Brady, Caroline; Ip, H S; Spackman, E; Killian, M L; Torchetti, M K; Sleeman, J M; Deliberto, T J

    2016-07-06

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented.

  15. High rates of detection of Clade 2.3.4.4 Highly Pathogenic Avian Influenza H5 viruses in wild birds in the Pacific Northwest during the winter of 2014-2015

    Science.gov (United States)

    Ip, Hon S.; Dusek, Robert J.; Bodenstein, Barbara L.; Kim Torchetti, Mia; DeBruyn, Paul; Mansfield, Kristin G.; DeLiberto, Thomas; Sleeman, Jonathan M.

    2016-01-01

    In 2014, Clade 2.3.4.4 H5N8 highly pathogenic avian influenza (HPAI) viruses spread across the Republic of Korea and ultimately were reported in China, Japan, Russia and Europe. Mortality associated with a reassortant HPAI H5N2 virus was detected in poultry farms in Western Canada at the end of November. The same strain (with identical genetic structure) was then detected in free-living wild birds that had died prior to December 8 of unrelated causes in Whatcom County, Washington, USA in an area contiguous with the index Canadian location. A gyrfalcon (Falco rusticolus) that had hunted and fed on an American wigeon (Anas americana) on December 6 in the same area and died two days later, tested positive for the Eurasian origin HPAI H5N8. Subsequently, an Active Surveillance Program using hunter-harvest waterfowl in Washington and Oregon detected ten HPAI H5 viruses, of three different subtypes (four H5N2, three H5N8 and three H5N1) with 4 segments in common (HA, PB2, NP and MA). In addition, a mortality-based Passive Surveillance Program detected 18 HPAI (14 H5N2 and four H5N8) cases from Idaho, Kansas, Oregon, Minnesota, Montana, Washington and Wisconsin. Comparatively, mortality-based passive surveillance appears to be detecting these HPAI infections at a higher rate than active surveillance during the period following initial introduction into the US.

  16. Evolutionary genetics of highly pathogenic H5N1 avian influenza viruses isolated from whooper swans in northern Japan in 2008.

    Science.gov (United States)

    Usui, Tatsufumi; Yamaguchi, Tsuyoshi; Ito, Hiroshi; Ozaki, Hiroichi; Murase, Toshiyuki; Ito, Toshihiro

    2009-12-01

    In April and May 2008, highly pathogenic avian influenza viruses subtype H5N1 were isolated from dead or moribund whooper swans in Aomori, Akita and Hokkaido prefectures in northern Japan. To trace the genetic lineage of the isolates, the nucleotide sequences of all eight genes were determined and phylogenetically analyzed. The Japanese strains were nearly identical to chicken viruses isolated in Russia in April 2008 and closely related to viruses isolated from dead wild birds in Hong Kong in 2007-2008. Their HA genes clustered in clade 2.3.2. On the other hand, NA and the other internal genes were closely related to those of clade 2.3.4 viruses (genotype V) whose NP genes originated from an HA clade 2.3.2 virus. In conclusion, the H5N1 viruses isolated in Japan, Russia and Hong Kong were derived from a common ancestor virus belonging to genotype V that was generated from genetic reassortment events between viruses of HA clades 2.3.2 and 2.3.4.

  17. Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Albertha R. van Zyl

    2016-03-01

    Full Text Available Bluetongue virus (BTV causes severe disease in domestic and wild ruminants, and has recently caused several outbreaks in Europe. Current vaccines include live-attenuated and inactivated viruses; while these are effective, there is risk of reversion to virulence by mutation or reassortment with wild type viruses. Subunit or virus-like particle (VLP vaccines are safer options: VLP vaccines produced in insect cells by expression of the four BTV capsid proteins are protective against challenge; however, this is a costly production method. We investigated production of BTV VLPs in plants via Agrobacterium-mediated transient expression, an inexpensive production system very well suited to developing country use. Leaves infiltrated with recombinant pEAQ-HT vectors separately encoding the four BTV-8 capsid proteins produced more proteins than recombinant pTRA vectors. Plant expression using the pEAQ-HT vector resulted in both BTV-8 core-like particles (CLPs and VLPs; differentially controlling the concentration of infiltrated bacteria significantly influenced yield of the VLPs. In situ localisation of assembled particles was investigated by using transmission electron microscopy (TEM and it was shown that a mixed population of core-like particles (CLPs, consisting of VP3 and VP7 and VLPs were present as paracrystalline arrays in the cytoplasm of plant cells co-expressing all four capsid proteins.

  18. Phylogenetic analysis of Puumala virus strains from Central Europe highlights the need for a full-genome perspective on hantavirus evolution.

    Science.gov (United States)

    Szabó, Róbert; Radosa, Lukáš; Ličková, Martina; Sláviková, Monika; Heroldová, Marta; Stanko, Michal; Pejčoch, Milan; Osterberg, Anja; Laenen, Lies; Schex, Susanne; Ulrich, Rainer G; Essbauer, Sandra; Maes, Piet; Klempa, Boris

    2017-12-01

    Puumala virus (PUUV), carried by bank voles (Myodes glareolus), is the medically most important hantavirus in Central and Western Europe. In this study, a total of 523 bank voles (408 from Germany, 72 from Slovakia, and 43 from Czech Republic) collected between the years 2007-2012 were analyzed for the presence of hantavirus RNA. Partial PUUV genome segment sequences were obtained from 51 voles. Phylogenetic analyses of all three genome segments showed that the newfound strains cluster with other Central and Western European PUUV strains. The new sequences from Šumava (Bohemian Forest), Czech Republic, are most closely related to the strains from the neighboring Bavarian Forest, a known hantavirus disease outbreak region. Interestingly, the Slovak strains clustered with the sequences from Bohemian and Bavarian Forests only in the M but not S segment analyses. This well-supported topological incongruence suggests a segment reassortment event or, as we analyzed only partial sequences, homologous recombination. Our data highlight the necessity of sequencing all three hantavirus genome segments and of a broader bank vole screening not only in recognized endemic foci but also in regions with no reported human hantavirus disease cases.

  19. Value of post-licensure data on benefits and risks of vaccination to inform vaccine policy: The example of rotavirus vaccines.

    Science.gov (United States)

    Parashar, Umesh D; Cortese, Margaret M; Payne, Daniel C; Lopman, Benjamin; Yen, Catherine; Tate, Jacqueline E

    2015-11-27

    In 1999, the first rhesus-human reassortant rotavirus vaccine licensed in the United States was withdrawn within a year of its introduction after it was linked with intussusception at a rate of ∼1 excess case per 10,000 vaccinated infants. While clinical trials of 60,000-70,000 infants of each of the two current live oral rotavirus vaccines, RotaTeq (RV5) and Rotarix (RV1), did not find an association with intussusception, post-licensure studies have documented a risk in several high and middle income countries, at a rate of ∼1-6 excess cases per 100,000 vaccinated infants. However, considering this low risk against the large health benefits of vaccination that have been observed in many countries, including in countries with a documented vaccine-associated intussusception risk, policy makers and health organizations around the world continue to support the routine use of RV1 and RV5 in national infant immunization programs. Because the risk and benefit data from affluent settings may not be directly applicable to developing countries, further characterization of any associated intussusception risk following rotavirus vaccination as well as the health benefits of vaccination is desirable for low income settings. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Ltd.. All rights reserved.

  20. A multi-country study of intussusception in children under 2 years of age in Latin America: analysis of prospective surveillance data.

    Science.gov (United States)

    Sáez-Llorens, Xavier; Velázquez, F Raúl; Lopez, Pio; Espinoza, Felix; Linhares, Alexandre C; Abate, Hector; Nuñez, Ernesto; Venegas, Guillermo; Vergara, Rodrigo; Jimenez, Ana L; Rivera, Maribel; Aranza, Carlos; Richardson, Vesta; Macias-Parra, Mercedes; Palacios, Guillermo Ruiz; Rivera, Luis; Ortega-Barria, Eduardo; Cervantes, Yolanda; Rüttimann, Ricardo; Rubio, Pilar; Acosta, Camilo J; Newbern, Claire; Verstraeten, Thomas; Breuer, Thomas

    2013-05-27

    Intussusception (IS) is a form of acute intestinal obstruction that occurs mainly in infants and is usually of unknown cause. An association between IS and the first licensed rotavirus vaccine, a reassortant-tetravalent, rhesus-based rotavirus vaccine (RRV-TV), led to the withdrawal of the vaccine. New rotavirus vaccines have now been developed and extensively studied for their potential association with IS. This study aimed to describe the epidemiology and to estimate the incidence of IS in Latin American infants prior to new vaccine introduction. Children under 2 years of age representing potential IS cases were enrolled in 16 centers in 11 Latin American countries from January 2003 to May 2005. IS cases were classified as definite, probable, possible or suspected as stated on the Brighton Collaboration Working Group guidelines. From 517 potential cases identified, 476 (92%) cases were classified as definite, 21 probable, 10 possible and 10 suspected for intussusception. Among the 476 definite IS cases, the median age at presentation was 6.4 months with 89% of cases aged days with a high prevalence of surgery as the primary treatment (65%). Most cases (88%) made a complete recovery, but 13 (3%) died. No clear seasonal pattern of IS cases emerged. This study describes the epidemiology and estimates the incidence of IS in Latin American infants prior to the introduction of new rotavirus vaccines. The incidence of IS was found to vary between different countries, as observed in previous studies. Clinical study identifier 999910/204 (SERO-EPI-IS-204).

  1. Influenza a virus migration and persistence in North American wild birds.

    Directory of Open Access Journals (Sweden)

    Justin Bahl

    Full Text Available Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.

  2. A review of highly pathogenic avian influenza in birds, with an emphasis on Asian H5N1 and recommendations for prevention and control.

    Science.gov (United States)

    Kelly, Terra R; Hawkins, Michelle G; Sandrock, Christian E; Boyce, Walter M

    2008-03-01

    Avian influenza is a disease of both veterinary and public health importance. Influenza A viruses infect a range of hosts, including humans, and can cause significant morbidity and mortality. These viruses have high genetic variability, and new strains develop through both mutation and reassortment. Modes of transmission as well as the location of viral shedding may differ both by host species and by viral strain. Clinical signs of influenza A virus infection in birds vary considerably depending on the viral subtype, environmental factors, and age, health status, and species of the bird and range from decreased egg production and gastrointestinal manifestations to nervous system disorders and respiratory signs. Most commonly, peracute death with minimal clinical disease is observed in poultry infected with a highly pathogenic avian influenza virus. There are various prevention and control strategies for avian influenza, including education, biosecurity, surveillance, culling of infected animals, and vaccination. These strategies will differ by institution and current federal regulations. Each institution should have an established biosecurity protocol that can be properly instituted. Lastly, human health precautions, such as proper hand hygiene, personal protective equipment, and employee health monitoring, are imperative for at-risk individuals.

  3. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis.

    Science.gov (United States)

    Liu, Quan; He, Biao; Huang, Si-Yang; Wei, Feng; Zhu, Xing-Quan

    2014-08-01

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging haemorrhagic fever that was first described in rural areas of China. The causative agent, SFTS virus (SFTSV), is a novel phlebovirus in the Bunyaviridae family. Since the first report in 2010, SFTS has been found in 11 provinces of China, with about 2500 reported cases, and an average case-fatality rate of 7·3%. The disease was also reported in Japan and Korea in 2012; Heartland virus, another phlebovirus genetically closely related to SFTSV, was isolated from two patients in the USA. The disease has become a substantial risk to public health, not only in China, but also in other parts of the world. The virus could undergo rapid evolution by gene mutation, reassortment, and homologous recombination in tick vectors and vertebrate reservoir hosts. No specific treatment of SFTS is available, and avoiding tick bites is an important measure to prevent the infection and transmission of SFTSV. This Review provides information on the molecular characteristics and ecology of this emerging tick-borne virus and describes the epidemiology, clinical signs, pathogenesis, diagnosis, treatment, and prevention of human infection with SFTSV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Bringing influenza vaccines into the 21st century.

    Science.gov (United States)

    Settembre, Ethan C; Dormitzer, Philip R; Rappuoli, Rino

    2014-01-01

    The recent H7N9 influenza outbreak in China highlights the need for influenza vaccine production systems that are robust and can quickly generate substantial quantities of vaccines that target new strains for pandemic and seasonal immunization. Although the influenza vaccine system, a public-private partnership, has been effective in providing vaccines, there are areas for improvement. Technological advances such as mammalian cell culture production and synthetic vaccine seeds provide a means to increase the speed and accuracy of targeting new influenza strains with mass-produced vaccines by dispensing with the need for egg isolation, adaptation, and reassortment of vaccine viruses. New influenza potency assays that no longer require the time-consuming step of generating sheep antisera could further speed vaccine release. Adjuvants that increase the breadth of the elicited immune response and allow dose sparing provide an additional means to increase the number of available vaccine doses. Together these technologies can improve the influenza vaccination system in the near term. In the longer term, disruptive technologies, such as RNA-based flu vaccines and 'universal' flu vaccines, offer a promise of a dramatically improved influenza vaccine system.

  5. The nonadaptive nature of the H1N1 2009 Swine Flu pandemic contrasts with the adaptive facilitation of transmission to a new host

    Directory of Open Access Journals (Sweden)

    Abdussamad Juwaeriah

    2011-01-01

    Full Text Available Abstract Background The emergence of the 2009 H1N1 Influenza pandemic followed a multiple reassortment event from viruses originally circulating in swines and humans, but the adaptive nature of this emergence is poorly understood. Results Here we base our analysis on 1180 complete genomes of H1N1 viruses sampled in North America between 2000 and 2010 in swine and human hosts. We show that while transmission to a human host might require an adaptive phase in the HA and NA antigens, the emergence of the 2009 pandemic was essentially nonadaptive. A more detailed analysis of the NA protein shows that the 2009 pandemic sequence is characterized by novel epitopes and by a particular substitution in loop 150, which is responsible for a nonadaptive structural change tightly associated with the emergence of the pandemic. Conclusions Because this substitution was not present in the 1918 H1N1 pandemic virus, we posit that the emergence of pandemics is due to epistatic interactions between sites distributed over different segments. Altogether, our results are consistent with population dynamics models that highlight the epistatic and nonadaptive rise of novel epitopes in viral populations, followed by their demise when the resulting virus is too virulent.

  6. SNPer: an R library for quantitative variant analysis on single nucleotide polymorphisms among influenza virus populations.

    Directory of Open Access Journals (Sweden)

    Unitsa Sangket

    Full Text Available Influenza virus (IFV can evolve rapidly leading to genetic drifts and shifts resulting in human and animal influenza epidemics and pandemics. The genetic shift that gave rise to the 2009 influenza A/H1N1 pandemic originated from a triple gene reassortment of avian, swine and human IFVs. More minor genetic alterations in genetic drift can lead to influenza drug resistance such as the H274Y mutation associated with oseltamivir resistance. Hence, a rapid tool to detect IFV mutations and the potential emergence of new virulent strains can better prepare us for seasonal influenza outbreaks as well as potential pandemics. Furthermore, identification of specific mutations by closely examining single nucleotide polymorphisms (SNPs in IFV sequences is essential to classify potential genetic markers associated with potentially dangerous IFV phenotypes. In this study, we developed a novel R library called "SNPer" to analyze quantitative variants in SNPs among IFV subpopulations. The computational SNPer program was applied to three different subpopulations of published IFV genomic information. SNPer queried SNPs data and grouped the SNPs into (1 universal SNPs, (2 likely common SNPs, and (3 unique SNPs. SNPer outperformed manual visualization in terms of time and labor. SNPer took only three seconds with no errors in SNP comparison events compared with 40 hours with errors using manual visualization. The SNPer tool can accelerate the capacity to capture new and potentially dangerous IFV strains to mitigate future influenza outbreaks.

  7. The ENSO-pandemic influenza connection: coincident or causal?

    Science.gov (United States)

    Shaman, J. L.; Lipsitch, M.

    2011-12-01

    The El Niño-Southern Oscillation (ENSO) is a coupled ocean-atmosphere system in the tropical Pacific, which affects weather conditions, including temperatures, precipitation, winds and storm activity, across the planet. ENSO has two extreme phases marked by either warmer (El Niño) or cooler (La Niña) than average sea surface temperatures in the central equatorial Pacific. We find that the 4 most recent human influenza pandemics (1918, 1957, 1968, 2009), all of which were first identified in boreal spring or summer, were preceded by La Niña conditions in the equatorial Pacific. Changes in ENSO have been shown to alter the migration, stopover time, fitness and interspecies mixing of migratory birds, and consequently likely affect their mixing with domestic animals. We hypothesize that La Niña conditions bring divergent influenza subtypes together in some parts of the world and favor the reassortment of influenza through simultaneous multiple infection of individual hosts and the generation of novel pandemic strains. We propose approaches to test this hypothesis using influenza population genetics, virus prevalence in various host species, and avian migration patterns.

  8. Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents.

    Directory of Open Access Journals (Sweden)

    Wen-Ping Guo

    2013-02-01

    Full Text Available Hantaviruses are among the most important zoonotic pathogens of humans and the subject of heightened global attention. Despite the importance of hantaviruses for public health, there is no consensus on their evolutionary history and especially the frequency of virus-host co-divergence versus cross-species virus transmission. Documenting the extent of hantavirus biodiversity, and particularly their range of mammalian hosts, is critical to resolving this issue. Here, we describe four novel hantaviruses (Huangpi virus, Lianghe virus, Longquan virus, and Yakeshi virus sampled from bats and shrews in China, and which are distinct from other known hantaviruses. Huangpi virus was found in Pipistrellus abramus, Lianghe virus in Anourosorex squamipes, Longquan virus in Rhinolophus affinis, Rhinolophus sinicus, and Rhinolophus monoceros, and Yakeshi virus in Sorex isodon, respectively. A phylogenetic analysis of the available diversity of hantaviruses reveals the existence of four phylogroups that infect a range of mammalian hosts, as well as the occurrence of ancient reassortment events between the phylogroups. Notably, the phylogenetic histories of the viruses are not always congruent with those of their hosts, suggesting that cross-species transmission has played a major role during hantavirus evolution and at all taxonomic levels, although we also noted some evidence for virus-host co-divergence. Our phylogenetic analysis also suggests that hantaviruses might have first appeared in Chiroptera (bats or Soricomorpha (moles and shrews, before emerging in rodent species. Overall, these data indicate that bats are likely to be important natural reservoir hosts of hantaviruses.

  9. Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon

    Science.gov (United States)

    Burbridge, Rachel E.; Mayle, Francis E.; Killeen, Timothy J.

    2004-03-01

    Pollen and charcoal records from two large, shallow lakes reveal that throughout most of the past 50,000 yr Noel Kempff Mercado National Park, in northeastern lowland Bolivia (southwestern Amazon Basin), was predominantly covered by savannas and seasonally dry semideciduous forests. Lowered atmospheric CO 2 concentrations, in combination with a longer dry season, caused expansion of dry forests and savannas during the last glacial period, especially at the last glacial maximum. These ecosystems persisted until the mid-Holocene, although they underwent significant species reassortment. Forest communities containing a mixture of evergreen and semideciduous species began to expand between 6000 and 3000 14C yr B.P. Humid evergreen rain forests expanded to cover most of the area within the past 2000 14C yr B.P., coincident with a reduction in fire frequencies. Comparisons between modern pollen spectra and vegetation reveal that the Moraceae-dominated rain forest pollen spectra likely have a regional source area at least 2-3 km beyond the lake shore, whereas the grass- and sedge-dominated savanna pollen spectra likely have a predominantly local source area. The Holocene vegetation changes are consistent with independent paleoprecipitation records from the Bolivian Altiplano and paleovegetation records from other parts of southwestern Amazonia. The progressive expansion in rain forests through the Holocene can be largely attributed to enhanced convective activity over Amazonia, due to greater seasonality of insolation in the Southern Hemisphere tropics driven by the precession cycle according to the Milankovitch Astronomical Theory.

  10. Correlates of protection against human rotavirus disease and the factors influencing protection in low-income settings.

    Science.gov (United States)

    Clarke, E; Desselberger, U

    2015-01-01

    Rotaviruses (RV) are the leading cause of gastroenteritis in infants and children worldwide and are associated with high mortality predominately in low-income settings. The virus is classified into G and P serotypes and further into P genotypes based on differences in the surface-exposed proteins VP7 and VP4, respectively. Infection results in a variable level of protection from subsequent reinfection and disease. This protection is predominantly homotypic in some settings, whereas broader heterotypic protection is reported in other cohorts. Two antigenically distinct oral RV vaccines are licensed and are being rolled out widely, including in resource-poor setting, with funding provided by the GAVI alliance. First is a monovalent vaccine derived from a live-attenuated human RV strain, whereas the second is a pentavalent bovine-human reassortment vaccine. Both vaccines are highly efficacious in high-income settings, but greatly reduced levels of protection are reported in low-income countries. Here, the current challenges facing mucosal immunologists and vaccinologists aiming to define immunological correlates and to understand the variable levels of protection conferred by these vaccines in humans is considered. Such understanding is critical to maximize the public health impact of the current vaccines and also to the development of the next generation of RV vaccines, which are needed.

  11. Genetic analysis of human and swine influenza A viruses isolated in Northern Italy during 2010-2015.

    Science.gov (United States)

    Chiapponi, C; Ebranati, E; Pariani, E; Faccini, S; Luppi, A; Baioni, L; Manfredi, R; Carta, V; Merenda, M; Affanni, P; Colucci, M E; Veronesi, L; Zehender, G; Foni, E

    2018-02-01

    Influenza A virus (IAV) infection in swine plays an important role in the ecology of influenza viruses. The emergence of new IAVs comes through different mechanisms, with the genetic reassortment of genes between influenza viruses, also originating from different species, being common. We performed a genetic analysis on 179 IAV isolates from humans (n. 75) and pigs (n. 104) collected in Northern Italy between 2010 and 2015, to monitor the genetic exchange between human and swine IAVs. No cases of human infection with swine strains were noticed, but direct infections of swine with H1N1pdm09 strains were detected. Moreover, we pointed out a continuous circulation of H1N1pdm09 strains in swine populations evidenced by the introduction of internal genes of this subtype. These events contribute to generating new viral variants-possibly endowed with pandemic potential-and emphasize the importance of continuous surveillance at both animal and human level. © 2017 The Authors. Zoonoses and Public Health published by Blackwell Verlag GmbH.

  12. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J.; Bredenbeek, Peter J.; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S.; Lukashevich, Igor S.

    2010-01-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV GP1 and GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and –GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF and LASV GP proteins in infected cells. YF17D/LASV-GP1&GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1&GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. PMID:21145373

  13. Clinical Expectations for Better Influenza Virus Vaccines—Perspectives from the Young Investigators’ Point of View

    Directory of Open Access Journals (Sweden)

    Kristin G.-I. Mohn

    2018-05-01

    Full Text Available The influenza virus is one of a few viruses that is capable of rendering an otherwise healthy person acutly bedridden for several days. This impressive knock-out effect, without prodromal symptoms, challenges our immune system. The influenza virus undergoes continuous mutations, escaping our pre-existing immunity and causing epidemics, and its segmented genome is subject to reassortment, resulting in novel viruses with pandemic potential. The personal and socieoeconomic burden from influenza is high. Vaccination is the most cost-effective countermeasure, with several vaccines that are available. The current limitations in vaccine effectivness, combined with the need for yearly updating of vaccine strains, is a driving force for research into developing new and improved influenza vaccines. The lack of public concern about influenza severity, and misleading information concerning vaccine safety contribute to low vaccination coverage even in high-risk groups. The success of future influeza vaccines will depend on an increased public awarness of the disease, and hence, the need for vaccination—aided through improved rapid diagnositics. The vaccines must be safe and broadly acting, with new, measurable correlates of protection and robust post-marketing safety studies, to improve the confidence in influenza vaccines.

  14. A mini-review of Bunyaviruses recorded in India.

    Science.gov (United States)

    Yadav, Pragya D; Chaubal, Gouri Y; Shete, Anita M; Mourya, Devendra T

    2017-05-01

    Newly emerging and re-emerging viral infections are of major public health concern. Bunyaviridae family of viruses comprises a large group of animal viruses. Clinical symptoms exhibited by persons infected by viruses belonging to this family vary from mild-to-severe diseases i.e., febrile illness, encephalitis, haemorrhagic fever and acute respiratory illness. Several arthropods-borne viruses have been discovered and classified at serological level in India in the past. Some of these are highly pathogenic as the recent emergence and spread of Crimean-Congo haemorrhagic fever virus and presence of antibodies against Hantavirus in humans in India have provided evidences that it may become one of the emerging diseases in this country. For many of the discovered viruses, we still need to study their relevance to human and animal health. Chittoor virus, a variant of Batai virus; Ganjam virus, an Asian variant of Nairobi sheep disease virus; tick-borne viruses such as Bhanja, Palma and mosquito-borne viruses such as Sathuperi, Thimiri, Umbre and Ingwavuma viruses have been identified as the members of this family. As Bunyaviruses are three segmented RNA viruses, they can reassort the segments into genetically distinct viruses in target cells. This ability is believed to play a major role in evolution, pathogenesis and epidemiology of the viruses. Here, we provide a comprehensive overview of discovery, emergence and distribution of Bunyaviruses in India.

  15. A mini-review of Bunyaviruses recorded in India

    Directory of Open Access Journals (Sweden)

    Pragya D Yadav

    2017-01-01

    Full Text Available Newly emerging and re-emerging viral infections are of major public health concern. Bunyaviridae family of viruses comprises a large group of animal viruses. Clinical symptoms exhibited by persons infected by viruses belonging to this family vary from mild-to-severe diseases i.e., febrile illness, encephalitis, haemorrhagic fever and acute respiratory illness. Several arthropods-borne viruses have been discovered and classified at serological level in India in the past. Some of these are highly pathogenic as the recent emergence and spread of Crimean-Congo haemorrhagic fever virus and presence of antibodies against Hantavirus in humans in India have provided evidences that it may become one of the emerging diseases in this country. For many of the discovered viruses, we still need to study their relevance to human and animal health. Chittoor virus, a variant of Batai virus; Ganjam virus, an Asian variant of Nairobi sheep disease virus; tick-borne viruses such as Bhanja, Palma and mosquito-borne viruses such as Sathuperi, Thimiri, Umbre and Ingwavuma viruses have been identified as the members of this family. As Bunyaviruses are three segmented RNA viruses, they can reassort the segments into genetically distinct viruses in target cells. This ability is believed to play a major role in evolution, pathogenesis and epidemiology of the viruses. Here, we provide a comprehensive overview of discovery, emergence and distribution of Bunyaviruses in India.

  16. Avian and human influenza A virus receptors in trachea and lung of animals.

    Science.gov (United States)

    Thongratsakul, Sukanya; Suzuki, Yasuo; Hiramatsu, Hiroaki; Sakpuaram, Thavajchai; Sirinarumitr, Theerapol; Poolkhet, Chaithep; Moonjit, Pattra; Yodsheewan, Rungrueang; Songserm, Thaweesak

    2010-12-01

    Influenza A viruses are capable of crossing the specific barrier between human beings and animals resulting in interspecies transmission. The important factor of potential infectivity of influenza A viruses is the suitability of the receptor binding site of the host and viruses. The affinities of avian and human influenza virus to bind with the receptors and the distributions of receptors in animals are different. This study aims to investigate the anatomical distribution of avian and human influenza virus receptors using the double staining lectin histochemistry method. Double staining of lectin histochemistry was performed to identify both SA alpha2,3 Gal and SA alpha2,6 Gal receptors in trachea and lung tissue of dogs, cats, tigers, ferret, pigs, ducks and chickens. We have demonstrated that avian and human influenza virus receptors were abundantly present in trachea, bronchus and bronchiole, but in alveoli of dogs, cats and tigers showed SA alpha2,6 Gal only. Furthermore, endothelial cells in lung tissues showed presence of SA alpha2,3 Gal. The positive sites of both receptors in respiratory tract, especially in the trachea, suggest that all mammalian species studied can be infected with avian influenza virus. These findings suggested that dogs and cats in close contact with humans should be of greater concern as an intermediate host for avian influenza A in which there is the potential for viral adaptation and reassortment.

  17. North Atlantic migratory bird flyways provide routes for intercontinental movement of avian influenza viruses

    Science.gov (United States)

    Dusek, Robert J.; Hallgrimsson, Gunnar T.; Ip, Hon S.; Jónsson, Jón E.; Sreevatsan, Srinand; Nashold, Sean W.; TeSlaa, Joshua L.; Enomoto, Shinichiro; Halpin, Rebecca A.; Lin, Xudong; Federova, Nadia; Stockwell, Timothy B.; Dugan, Vivien G.; Wentworth, David E.; Hall, Jeffrey S.

    2014-01-01

    Avian influenza virus (AIV) in wild birds has been of increasing interest over the last decade due to the emergence of AIVs that cause significant disease and mortality in both poultry and humans. While research clearly demonstrates that AIVs can move across the Pacific or Atlantic Ocean, there has been no data to support the mechanism of how this occurs. In spring and autumn of 2010 and autumn of 2011 we obtained cloacal swab samples from 1078 waterfowl, gulls, and shorebirds of various species in southwest and west Iceland and tested them for AIV. From these, we isolated and fully sequenced the genomes of 29 AIVs from wild caught gulls (Charadriiformes) and waterfowl (Anseriformes) in Iceland. We detected viruses that were entirely (8 of 8 genomic segments) of American lineage, viruses that were entirely of Eurasian lineage, and viruses with mixed American-Eurasian lineage. Prior to this work only 2 AIVs had been reported from wild birds in Iceland and only the sequence from one segment was available in GenBank. This is the first report of finding AIVs of entirely American lineage and Eurasian lineage, as well as reassortant viruses, together in the same geographic location. Our study demonstrates the importance of the North Atlantic as a corridor for the movement of AIVs between Europe and North America.

  18. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt.

    Science.gov (United States)

    Kandeil, Ahmed; Kayed, Ahmed; Moatasim, Yassmin; Webby, Richard J; McKenzie, Pamela P; Kayali, Ghazi; Ali, Mohamed A

    2017-07-01

    A newly emerged H5N8 influenza virus was isolated from green-winged teal in Egypt during December 2016. In this study, we provide a detailed characterization of full genomes of Egyptian H5N8 viruses and some virological features. Genetic analysis demonstrated that the Egyptian H5N8 viruses are highly pathogenic avian influenza viruses. Phylogenetic analysis revealed that the genome of the Egyptian H5N8 viruses was related to recently characterized reassortant H5N8 viruses of clade 2.3.4.4 isolated from different Eurasian countries. Multiple peculiar mutations were characterized in the Egyptian H5N8 viruses, which probably permits transmission and virulence of these viruses in mammals. The Egyptian H5N8 viruses preferentially bound to avian-like receptors rather than human-like receptors. Also, the Egyptian H5N8 viruses were fully sensitive to amantadine and neuraminidase inhibitors. Chicken sera raised against commercial inactivated avian influenza-H5 vaccines showed no or very low reactivity with the currently characterized H5N8 viruses in agreement with the genetic dissimilarity. Surveillance of avian influenza in waterfowl provides early warning of specific threats to poultry and human health and hence should be continued.

  19. Highly Pathogenic Avian Influenza A(H5N1) Viruses at the Animal-Human Interface in Vietnam, 2003-2010.

    Science.gov (United States)

    Creanga, Adrian; Hang, Nguyen Le Khanh; Cuong, Vuong Duc; Nguyen, Ha T; Phuong, Hoang Vu Mai; Thanh, Le Thi; Thach, Nguyen Co; Hien, Pham Thi; Tung, Nguyen; Jang, Yunho; Balish, Amanda; Dang, Nguyen Hoang; Duong, Mai Thuy; Huong, Ngo Thu; Hoa, Do Ngoc; Tho, Nguyen Dang; Klimov, Alexander; Kapella, Bryan K; Gubareva, Larisa; Kile, James C; Hien, Nguyen Tran; Mai, Le Quynh; Davis, C Todd

    2017-09-15

    Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Investigation of avian influenza virus in poultry and wild birds due to novel avian-origin influenza A(H10N8) in Nanchang City, China.

    Science.gov (United States)

    Ni, Xiansheng; He, Fenglan; Hu, Maohong; Zhou, Xianfeng; Wang, Bin; Feng, Changhua; Wu, Yumei; Li, Youxing; Tu, Junling; Li, Hui; Liu, Mingbin; Chen, Haiying; Chen, Shengen

    2015-01-01

    Multiple reassortment events within poultry and wild birds had resulted in the establishment of another novel avian influenza A(H10N8) virus, and finally resulted in human death in Nanchang, China. However, there was a paucity of information on the prevalence of avian influenza virus in poultry and wild birds in Nanchang area. We investigated avian influenza virus in poultry and wild birds from live poultry markets, poultry countyards, delivery vehicles, and wild-bird habitats in Nanchang. We analyzed 1036 samples from wild birds and domestic poultry collected from December 2013 to February 2014. Original biological samples were tested for the presence of avian influenza virus using specific primer and probe sets of H5, H7, H9, H10 and N8 subtypes by real-time RT-PCR. In our analysis, the majority (97.98%) of positive samples were from live poultry markets. Among the poultry samples from chickens and ducks, AIV prevalence was 26.05 and 30.81%, respectively. Mixed infection of different HA subtypes was very common. Additionally, H10 subtypes coexistence with N8 was the most prevalent agent during the emergence of H10N8. This event illustrated a long-term surveillance was so helpful for pandemic preparedness and response. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Homologous recombination is a force in the evolution of canine distemper virus.

    Science.gov (United States)

    Yuan, Chaowen; Liu, Wenxin; Wang, Yingbo; Hou, Jinlong; Zhang, Liguo; Wang, Guoqing

    2017-01-01

    Canine distemper virus (CDV) is the causative agent of canine distemper (CD) that is a highly contagious, lethal, multisystemic viral disease of receptive carnivores. The prevalence of CDV is a major concern in susceptible animals. Presently, it is unclear whether intragenic recombination can contribute to gene mutations and segment reassortment in the virus. In this study, 25 full-length CDV genome sequences were subjected to phylogenetic and recombinational analyses. The results of phylogenetic analysis, intragenic recombination, and nucleotide selection pressure indicated that mutation and recombination occurred in the six individual genes segment (H, F, P, N, L, M) of the CDV genome. The analysis also revealed pronounced genetic diversity in the CDV genome according to the geographically distinct lineages (genotypes), namely Asia-1, Asia-2, Asia-3, Europe, America-1, and America-2. The six recombination events were detected using SimPlot and RDP programs. The analysis of selection pressure demonstrated that a majority of the nucleotides in the CDV individual gene were under negative selection. Collectively, these data suggested that homologous recombination acts as a key force driving the genetic diversity and evolution of canine distemper virus.

  2. Sequence analysis of L RNA of Lassa virus

    International Nuclear Information System (INIS)

    Vieth, Simon; Torda, Andrew E.; Asper, Marcel; Schmitz, Herbert; Guenther, Stephan

    2004-01-01

    The L RNA of three Lassa virus strains originating from Nigeria, Ghana/Ivory Coast, and Sierra Leone was sequenced and the data subjected to structure predictions and phylogenetic analyses. The L gene products had 2218-2221 residues, diverged by 18% at the amino acid level, and contained several conserved regions. Only one region of 504 residues (positions 1043-1546) could be assigned a function, namely that of an RNA polymerase. Secondary structure predictions suggest that this domain is very similar to RNA-dependent RNA polymerases of known structure encoded by plus-strand RNA viruses, permitting a model to be built. Outside the polymerase region, there is little structural data, except for regions of strong alpha-helical content and probably a coiled-coil domain at the N terminus. No evidence for reassortment or recombination during Lassa virus evolution was found. The secondary structure-assisted alignment of the RNA polymerase region permitted a reliable reconstruction of the phylogeny of all negative-strand RNA viruses, indicating that Arenaviridae are most closely related to Nairoviruses. In conclusion, the data provide a basis for structural and functional characterization of the Lassa virus L protein and reveal new insights into the phylogeny of negative-strand RNA viruses

  3. Group A rotavirus gastroenteritis: post-vaccine era, genotypes and zoonotic transmission.

    Science.gov (United States)

    Luchs, Adriana; Timenetsky, Maria do Carmo Sampaio Tavares

    2016-01-01

    ABSTRACTThis article provides a review of immunity, diagnosis, and clinical aspects of rotavirus disease. It also informs about the changes in epidemiology of diarrheal disease and genetic diversity of circulating group A rotavirus strains following the introduction of vaccines. Group A rotavirus is the major pathogen causing gastroenteritis in animals. Its segmented RNA genome can lead to the emergence of new or unusual strains in human populations via interspecies transmission and/or reassortment events.RESUMOEste artigo fornece uma revisão sobre imunidade, diagnóstico e aspectos clínicos da doença causada por rotavírus. Também aponta as principais mudanças no perfil epidemiológico da doença diarreica e na diversidade genética das cepas circulantes de rotavírus do grupo A, após a introdução vacinal. O rotavírus do grupo A é o principal patógeno associado à gastroenterite em animais. Seu genoma RNA segmentado pode levar ao surgimento de cepas novas ou incomuns na população humana, por meio de transmissão entre espécies e eventos de rearranjo.

  4. Increase in the rate of recombinants in tomato (Lycopersicon esculentum L.) after in vitro regeneration.

    Science.gov (United States)

    Sibi, M; Biglary, M; Demarly, Y

    1984-07-01

    Modification to the cross-over (C. O.) rate of tomato (Lycopersicon esculentum) was attempted by using in vitro plant regeneration. F1 hybrids with the same genetical homozygous background were compared at two loci: "bs-ms32" on chromosome I, and "aa-d" on chromosome II. For each, the genetic distance separating the two markers was about 20 to 30 map units. One cotyledon of each F2 hybrid seedling was used as in vitro tissue culture material, while the rest of the plantlet was grown as a control. Recombination rates of the selfed progenies from each regenerated and matched control couple were compared. For the first set of markers 59,000 seeds were analysed (5 controls' and 7 regenerated progenies), and for the second, 11,000 (5 controls' and 8 regenerated progenies). There were significant increases in the genetic distance between markers in about half the regenerated individuals. For the first set the increases ranged from 6.07 to 6.91 units out of a control distance of the 19.84 to 25.65, corresponding to lengthenings of 30.59 to 35.29%. For the second set they ranged from 4.92 to 6.04 out of a control distance of 25.05 to 26.57, representing increases of 19.64 to 22.75%. Such a phenomenon can be important either from a fundamental or practical viewpoint, regarding selection efficiency in plants, and potential for gene reassortment.

  5. Protection from the 2009 H1N1 pandemic influenza by an antibody from combinatorial survivor-based libraries.

    Directory of Open Access Journals (Sweden)

    Arun K Kashyap

    2010-07-01

    Full Text Available Influenza viruses elude immune responses and antiviral chemotherapeutics through genetic drift and reassortment. As a result, the development of new strategies that attack a highly conserved viral function to prevent and/or treat influenza infection is being pursued. Such novel broadly acting antiviral therapies would be less susceptible to virus escape and provide a long lasting solution to the evolving virus challenge. Here we report the in vitro and in vivo activity of a human monoclonal antibody (A06 against two isolates of the 2009 H1N1 pandemic influenza virus. This antibody, which was obtained from a combinatorial library derived from a survivor of highly pathogenic H5N1 infection, neutralizes H5N1, seasonal H1N1 and 2009 "Swine" H1N1 pandemic influenza in vitro with similar potency and is capable of preventing and treating 2009 H1N1 influenza infection in murine models of disease. These results demonstrate broad activity of the A06 antibody and its utility as an anti-influenza treatment option, even against newly evolved influenza strains to which there is limited immunity in the general population.

  6. Inhibition of influenza A virus replication by influenza B virus nucleoprotein: An insight into interference between influenza A and B viruses

    Energy Technology Data Exchange (ETDEWEB)

    Wanitchang, Asawin; Narkpuk, Jaraspim; Jaru-ampornpan, Peera; Jengarn, Juggagarn [Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120 (Thailand); Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th [Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120 (Thailand)

    2012-10-10

    Given that co-infection of cells with equivalent titers of influenza A and B viruses (FluA and FluB) has been shown to result in suppression of FluA growth, it is possible that FluB-specific proteins might hinder FluA polymerase activity and replication. We addressed this possibility by individually determining the effect of each gene of FluB on the FluA polymerase assay and found that the nucleoprotein of FluB (NP{sub FluB}) inhibits polymerase activity of FluA in a dose-dependent manner. Mutational analyses of NP{sub FluB} suggest that functional NP{sub FluB} is necessary for this inhibition. Slower growth of FluA was also observed in MDCK cells stably expressing NP{sub FluB}. Further analysis of NP{sub FluB} indicated that it does not affect nuclear import of NP{sub FluA}. Taken together, these findings suggest a novel role of NP{sub FluB} in inhibiting replication of FluA, providing more insights into the mechanism of interference between FluA and FluB and the lack of reassortants between them.

  7. Molecular epidemiology of influenza A(H1N1pdm09 viruses from Pakistan in 2009-2010.

    Directory of Open Access Journals (Sweden)

    Uzma Bashir Aamir

    Full Text Available In early 2009, a novel influenza A(H1N1 virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.The first case of human infection with A(H1N1pdm09 in Pakistan was detected on 18(th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31(st August 2010. The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.Influenza A(H1N1pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.

  8. Genome characterisation of the newly discovered avian influenza A H5N7 virus subtype combination

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, K.J.

    2007-01-01

    In Denmark, in 2003, a previously unknown subtype combination of avian influenza A virus, H5N7 (A/Mallard/Denmark/64650/03), was isolated from a flock of 12,000 mallards. The H5N7 subtype combination might be a reassortant between recent European avian influenza A H5, H7, and a third subtype......) and the human-fatal A/Netherlands/219/03 (H7N7), respectively. The basic polymerase 1 and 2 genes were phylogenetically equidistant to both A/Duck/Denmark/65047/04 (H5N2) and A/Chicken/Netherlands/1/03 (H7N7). The nucleoprotein and matrix gene had highest nucleotide sequence similarity to the H6 subtypes A....../Duck/Hong Kong/3096/99 (H6N2) and A/WDk/ST/1737/2000 (H6N8), respectively. All genes of the H5N7 strain were of avian origin, and no further evidence of pathogenicity to humans has been found....

  9. Presence of viruses in wild eels Anguilla anguilla L, from the Albufera Lake (Spain).

    Science.gov (United States)

    Bandín, I; Souto, S; Cutrín, J M; López-Vázquez, C; Olveira, J G; Esteve, C; Alcaide, E; Dopazo, C P

    2014-07-01

    A virological analysis was conducted on wild eels from the Albufera Lake (Spain). A total of 179 individuals at different growth stages were collected in two different surveys (2004 and 2008). Presence of anguillid herpesvirus (AngHV-1), aquabirnavirus and betanodavirus was confirmed by PCR procedures in both surveys, although the number of detections was clearly higher in 2008 (83% of the eels analysed resulted positive for virus presence). AngHV-1 was the viral agent most frequently detected, followed by aquabirnaviruses. Betanodaviruses were detected by the first time in wild eels, and although the detections were only made by nested PCR, high percentage of positives were achieved. In addition, in 2008, seven aquabirnaviruses were isolated. Phylogenetic analysis performed using partial sequences of both genomic segments of aquabirnaviruses indicated that the seven isolates could be typed as WB (genogroup I) on the basis of segment A sequences, but when segment B was used six of them clustered with C1 strain (genogroup V) and one was typed as Ab (genogroup II). These results indicate natural reassortment between different strains of aquabirnaviruses in the eels. Although betanodaviruses were not isolated in cell culture, the analysis of the sequence of the nested PCR product indicated that they clustered with SJNNV genotype. The diversity of viral agents and the high level of viral detections suggest that viral infections may play a more prominent role in the decline of the European eel than initially thought. © 2014 John Wiley & Sons Ltd.

  10. Pathobiology and transmission of highly and low pathogenic avian influenza viruses in European quail (Coturnix c. coturnix).

    Science.gov (United States)

    Bertran, Kateri; Dolz, Roser; Busquets, Núria; Gamino, Virginia; Vergara-Alert, Júlia; Chaves, Aida J; Ramis, Antonio; Abad, F Xavier; Höfle, Ursula; Majó, Natàlia

    2013-03-28

    European quail (Coturnix c. coturnix) may share with Japanese quail (Coturnix c. japonica) its potential as an intermediate host and reservoir of avian influenza viruses (AIV). To elucidate this question, European quail were experimentally challenged with two highly pathogenic AIV (HPAIV) (H7N1/HP and H5N1/HP) and one low pathogenic AIV (LPAIV) (H7N2/LP). Contact animals were also used to assess the viral transmission among birds. Severe neurological signs and mortality rates of 67% (H7N1/HP) and 92% (H5N1/HP) were observed. Although histopathological findings were present in both HPAIV-infected groups, H5N1/HP-quail displayed a broader viral antigen distribution and extent of microscopic lesions. Neither clinical nor pathological involvement was observed in LPAIV-infected quail. Consistent long-term viral shedding and effective transmission to naive quail was demonstrated for the three studied AIV. Drinking water arose as a possible transmission route and feathers as a potential origin of HPAIV dissemination. The present study demonstrates that European quail may play a major role in AI epidemiology, highlighting the need to further understand its putative role as an intermediate host for avian/mammalian reassortant viruses.

  11. Antineoplastic drugs and radiation: comparison of the phenomena determining the effectiveness of fractionated treatments

    International Nuclear Information System (INIS)

    Mauro, F.; Briganti, G.; Nervi, C.

    1983-01-01

    In the last ten years the criteria for effective radiotherapy regimens have been rediscussed by analyzing the dependence of radiation response upon the radiobiological phenomena affecting the results of fractionated treatments. In the original definition of H.R. Withers, these phenomena have been referred to as the four R's of radiotherapy, and today we suspect that their number may be higher than that. By analogy, and in spite of the fact that chemical cytotoxic agents are seldom radiomimetic in the strict sense of the word, a similar general analysis could be used to discuss the effectiveness of fractionated administrations of anti-neoplastic drugs. However, information is only available for the cell-cycle age-dependence of lethal and kinetic effects and the repair from potentially lethal damage induced by these agents. In the present work, an attempt is made to discuss some of the neglected R's of chemotherapy, with the aim of establishing (not exclusively empirical) criteria for drug scheduling and of clarifying some of the observations on interaction between agents. In particular, with regard to antineoplastic drugs, published and unpublished information is available not only for the well-known phenomenon of reassortment, but also for the shape of the survival curve, recovery (or potentiation) between dose fraction, and recruitment. Some advantages (and pitfalls) can be evidenced when applying this kind of radiobiological approach to chemotherapy

  12. Proteotyping for the rapid identification of influenza virus and other biopathogens.

    Science.gov (United States)

    Downard, Kevin M

    2013-11-21

    The influenza virus is one of the most deadly infectious agents known to man and has been responsible for the deaths of some hundred million lives throughout human history. The need to rapidly and reliably survey circulating virus strains down to the molecular level is ever present. This tutorial describes the development and application of a new proteotyping approach that harnesses the power of high resolution of mass spectrometry to characterise the influenza virus, and by extension other bacterial and viral pathogens. The approach is shown to be able to type, subtype, and determine the lineage of human influenza virus strains through the detection of one or more signature peptide ions in the mass spectrum of whole virus digests. Pandemic strains can be similarly distinguished from seasonal ones, and new computer algorithms have been written to allow reassorted strains that pose the greatest pandemic risk to be rapidly identified from such datasets. The broader application of the approach is further demonstrated here for the parainfluenza virus, a virus which can be life threatening to children and presents similar clinical symptoms to influenza.

  13. Avian influenza virus transmission to mammals.

    Science.gov (United States)

    Herfst, S; Imai, M; Kawaoka, Y; Fouchier, R A M

    2014-01-01

    Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.

  14. Avian and human influenza virus compatible sialic acid receptors in little brown bats.

    Science.gov (United States)

    Chothe, Shubhada K; Bhushan, Gitanjali; Nissly, Ruth H; Yeh, Yin-Ting; Brown, Justin; Turner, Gregory; Fisher, Jenny; Sewall, Brent J; Reeder, DeeAnn M; Terrones, Mauricio; Jayarao, Bhushan M; Kuchipudi, Suresh V

    2017-04-06

    Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA α2,3-Gal and SA α2,6-Gal receptors could facilitate genetic reassortment of avian and human IAVs. We found abundant co-expression of both avian (SA α2,3-Gal) and human (SA α2,6-Gal) type SA receptors in little brown bats (LBBs) that were compatible with avian and human IAV binding. This first ever study of IAV receptors in a bat species suggest that LBBs, a widely-distributed bat species in North America, could potentially be co-infected with avian and human IAVs, facilitating the emergence of zoonotic strains.

  15. Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.

    Directory of Open Access Journals (Sweden)

    Paritosh K Biswas

    Full Text Available The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1 is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA and multiplicative seasonal autoregressive integrated moving average (SARIMA to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s as inputs did not improve the performance of any multivariable models, but relative humidity (RH was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA order at lag 1 month is considered.

  16. Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts

    Science.gov (United States)

    Lee, Taehyung

    2017-01-01

    In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals. PMID:29236050

  17. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest.

    Science.gov (United States)

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2017-05-25

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak.

  18. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest

    Directory of Open Access Journals (Sweden)

    Christine L. P. Eng

    2017-05-01

    Full Text Available Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak.

  19. Dissemination, divergence and establishment of H7N9 influenza viruses in China.

    Science.gov (United States)

    Lam, Tommy Tsan-Yuk; Zhou, Boping; Wang, Jia; Chai, Yujuan; Shen, Yongyi; Chen, Xinchun; Ma, Chi; Hong, Wenshan; Chen, Yin; Zhang, Yanjun; Duan, Lian; Chen, Peiwen; Jiang, Junfei; Zhang, Yu; Li, Lifeng; Poon, Leo Lit Man; Webby, Richard J; Smith, David K; Leung, Gabriel M; Peiris, Joseph S M; Holmes, Edward C; Guan, Yi; Zhu, Huachen

    2015-06-04

    Since 2013 the occurrence of human infections by a novel avian H7N9 influenza virus in China has demonstrated the continuing threat posed by zoonotic pathogens. Although the first outbreak wave that was centred on eastern China was seemingly averted, human infections recurred in October 2013 (refs 3-7). It is unclear how the H7N9 virus re-emerged and how it will develop further; potentially it may become a long-term threat to public health. Here we show that H7N9 viruses have spread from eastern to southern China and become persistent in chickens, which has led to the establishment of multiple regionally distinct lineages with different reassortant genotypes. Repeated introductions of viruses from Zhejiang to other provinces and the presence of H7N9 viruses at live poultry markets have fuelled the recurrence of human infections. This rapid expansion of the geographical distribution and genetic diversity of the H7N9 viruses poses a direct challenge to current disease control systems. Our results also suggest that H7N9 viruses have become enzootic in China and may spread beyond the region, following the pattern previously observed with H5N1 and H9N2 influenza viruses.

  20. Molecular epidemiology of H9N2 influenza viruses in Northern Europe.

    Science.gov (United States)

    Lindh, Erika; Ek-Kommonen, Christine; Väänänen, Veli-Matti; Vaheri, Antti; Vapalahti, Olli; Huovilainen, Anita

    2014-08-27

    Low pathogenic avian influenza viruses are maintained in wild bird populations throughout the world. Avian influenza viruses are characterized by their efficient ability to reassort and adapt, which enables them to cross the species barrier and enhances their zoonotic potential. Influenza viruses of the H9N2 subtype appear endemic among poultry in Eurasia. They usually exist as low-pathogenic strains and circulate between wild bird populations, poultry and birds sold at live bird markets. Direct transmission of H9N2 viruses, with receptor specificities similar to human influenza strains, to pigs and humans has been reported on several occasions. H9N2 virus was first encountered in Finland in 2009, during routine screening of hunted wild waterfowl. The next year, H9N2 influenza viruses were isolated from wild birds on four occasions, including once from a farmed mallard. We have investigated the relationship between the reared and wild bird isolates by sequencing the hemagglutinin and the neuraminidase genes of the Finnish H9N2 viruses. Nucleotide sequence comparison and phylogenetic analyses indicate that H9N2 was transmitted from wild birds to reared birds in 2010, and that highly identical strains have been circulating in Europe during the last few years. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Roles of outer capsid proteins as determinants of pathogenicity and host range restriction of avian rotaviruses in a suckling mouse model

    International Nuclear Information System (INIS)

    Mori, Yoshio; Borgan, Mohammed Ali; Takayama, Mutsuyo; Ito, Naoto; Sugiyama, Makoto; Minamoto, Nobuyuki

    2003-01-01

    We previously demonstrated that a pigeon rotavirus, PO-13, but not turkey strains Ty-3 and Ty-1 and a chicken strain, Ch-1, induced diarrhea in heterologous suckling mice. In this study, it was suggested that these avirulent strains, but not PO-13, were inactivated immediately in gastrointestinal tracts of suckling mice when they were orally inoculated. To determine which viral proteins contribute to the differences between the pathogenicitiy and the inactivation of PO-13 and Ty-3 in suckling mice, six PO-13 x Ty-3 reassortant strains that had the genes of the outer capsid proteins, VP4 and VP7, derived from the opposite strain were prepared and were orally inoculated to suckling mice. A single strain that had both PO-13 VP4 and VP7 with the genetic background of Ty-3 had an intermediate virulence for suckling mice. Three strains with Ty-3 VP7, regardless of the origin of VP4, rapidly disappeared from gastrointestinal tracts of suckling mice. These results indicated that the difference between the pathogenicity of PO-13 and that of Ty-3 was mainly dependent on both their VP4 and VP7. In particular, VP7 was found to be related to the inactivation of Ty-3 in gastrointestinal tracts of suckling mice

  2. A novel type of VP4 carried by a porcine rotavirus strain

    International Nuclear Information System (INIS)

    Liprandi, Ferdinando; Gerder, Marlene; Bastidas, Zoleida; Lopez, Jose A.; Pujol, Flor H.; Ludert, Juan E.; Joelsson, Daniel B.; Ciarlet, Max

    2003-01-01

    The gene encoding the VP8* trypsin-cleavage product of the VP4 protein of porcine rotavirus strain A34 was sequenced, and the predicted amino acid (aa) sequence was compared to the homologous region of all known P genotypes. The aa sequence of the VP8* of strain A34 shared low identity, ranging from 39% (bovine strain B223, P8[11]) to 76% (human strain 69M, P4[10]), with the homologous sequences of representative strains of the remaining 21 P genotypes. Phylogenetic relationships showed that the VP8* of strain A34 shares a common evolutionary lineage with those of human 69M (P4[10]) and equine H-2 (P4[12]) strains. Hyperimmune sera raised to strain A34 and to a genetic reassortant strain containing the VP4 gene from strain A34, both with high homologous neutralization titer via VP4, failed to neutralize strains representative of 15 different P genotypes. These results indicate that strain A34 should be considered as prototype of a new P genotype and serotype (P14[23]) and provide further evidence for the vast genetic and antigenic diversity of group A rotaviruses

  3. Concentration of acrylamide in a polyacrylamide gel affects VP4 gene coding assignment of group A equine rotavirus strains with P[12] specificity

    Science.gov (United States)

    2010-01-01

    Background It is universally acknowledged that genome segment 4 of group A rotavirus, the major etiologic agent of severe diarrhea in infants and neonatal farm animals, encodes outer capsid neutralization and protective antigen VP4. Results To determine which genome segment of three group A equine rotavirus strains (H-2, FI-14 and FI-23) with P[12] specificity encodes the VP4, we analyzed dsRNAs of strains H-2, FI-14 and FI-23 as well as their reassortants by polyacrylamide gel electrophoresis (PAGE) at varying concentrations of acrylamide. The relative position of the VP4 gene of the three equine P[12] strains varied (either genome segment 3 or 4) depending upon the concentration of acrylamide. The VP4 gene bearing P[3], P[4], P[6], P[7], P[8] or P[18] specificity did not exhibit this phenomenon when the PAGE running conditions were varied. Conclusions The concentration of acrylamide in a PAGE gel affected VP4 gene coding assignment of equine rotavirus strains bearing P[12] specificity. PMID:20573245

  4. Lack of nonspecific protection against all-cause nonrotavirus gastroenteritis by vaccination with orally administered rotavirus vaccine.

    Science.gov (United States)

    Grant, Lindsay; Watt, James; Moulton, Lawrence; Weatherholtz, Robert; Reid, Raymond; Santosham, Mathuram; O'Brien, Katherine

    2013-06-01

    Acute gastroenteritis (AGE) is recognized as a global, common threat to child survival, especially in developing countries. Rotavirus, in particular, has been implicated as a leading cause of severe AGE; however, there are numerous other pathogens that also cause AGE. Several studies have demonstrated that oral vaccination against rotavirus has generated the unanticipated benefit of protecting against AGE caused by nonrotavirus pathogens. Safety and efficacy of the pentavalent bovine-human reassortant rotavirus vaccine were studied in multiple populations, including children of the Navajo and White Mountain Apache tribes in the southwestern United States. Stool specimens were collected from children with AGE and tested for rotavirus using an enzyme immunoassay. Analyses were conducted to detect the presence or absence of a vaccine effect on incidence, severity, and duration of AGE in which rotavirus was not detected. The majority of AGE (N = 558: 472 nonrotavirus vs 86 rotavirus) occurred between August 2002 and March 2004 among children ranging from ages 4 to 23 months. The incidence of nonrotavirus AGE was similar by vaccine groups with an incidence rate ratio of 1.07 (incidence rate ratio = vaccinated/unvaccinated, 95% confidence interval 0.89-1.29). The hazards of first, second, third, or any AGE in which rotavirus was not detected differed little by vaccination status (P > 0.05). Duration of symptoms and severity of nonrotavirus AGE were similar by vaccine group. There was no vaccine effect on frequency or severity of nonrotavirus AGE.

  5. Efficacy, immunogenicity, and safety of two doses of a tetravalent rotavirus vaccine RRV-TV in Ghana with the first dose administered during the neonatal period.

    Science.gov (United States)

    Armah, George E; Kapikian, Albert Z; Vesikari, Timo; Cunliffe, Nigel; Jacobson, Robert M; Burlington, D Bruce; Ruiz, Leonard P

    2013-08-01

    Oral rhesus/rhesus-human reassortant rotavirus tetravalent vaccine (RRV-TV) was licensed in 1998 but withdrawn in 1999 due to a rare association with intussusception, which occurred disproportionately in infants receiving their first dose at ≥90 days of age. This study examined RRV-TV for the prevention of rotavirus gastroenteritis (RV-GE) in Ghana, West Africa, with infants receiving the first dose during the neonatal period and the second before 60 days of age. In a double-blinded, randomized, placebo-controlled trial in Navrongo, Ghana, we recruited neonates to receive 2 doses of RRV-TV or placebo and followed them to age 12 months. In the intention-to-treat population of 998 infants, we measured a vaccine efficacy of 63.1% against RV-GE of any severity associated with any of the 4 serotypes represented in the vaccine and 60.7% against RV-GE associated with any rotavirus serotype. RRV-TV in a 2-dose schedule with the first dose during the neonatal period is efficacious in preventing RV-GE in rural Ghana. Neonatal dosing results in early protection and may be the optimum schedule to avoid or significantly reduce intussusception, now reported to be associated in international settings with the 2 most widely marketed, licensed, live virus, oral rotavirus vaccines.

  6. Comparative analysis of pentavalent rotavirus vaccine strains and G8 rotaviruses identified during vaccine trial in Africa.

    Science.gov (United States)

    Heylen, Elisabeth; Zeller, Mark; Ciarlet, Max; Lawrence, Jody; Steele, Duncan; Van Ranst, Marc; Matthijnssens, Jelle

    2015-10-06

    RotaTeqTM is a pentavalent rotavirus vaccine based on a bovine rotavirus genetic backbone in vitro reassorted with human outer capsid genes. During clinical trials of RotaTeqTM in Sub-Saharan Africa, the vaccine efficacy over a 2-year follow-up was lower against the genotypes contained in the vaccine than against the heterotypic G8P[6] and G8P[1] rotavirus strains of which the former is highly prevalent in Africa. Complete genome analyses of 43 complete rotavirus genomes collected during phase III clinical trials of RotaTeqTM in Sub-Saharan Africa, were conducted to gain insight into the high level of cross-protection afforded by RotaTeqTM against these G8 strains. Phylogenetic analysis revealed the presence of a high number of bovine rotavirus gene segments in these human G8 strains. In addition, we performed an in depth analysis on the individual amino acid level which showed that G8 rotaviruses were more similar to the RotaTeqTM vaccine than non-G8 strains. Because RotaTeqTM possesses a bovine genetic backbone, the high vaccine efficacy against G8 strains might be partially explained by the fact that all these strains contain a complete or partial bovine-like backbone. Altogether, this study supports the hypothesis that gene segments other than VP7 and VP4 play a role in vaccine-induced immunity.

  7. Sperm subpopulational dinamycs during the cryopreservation procedure in caprine (Capra aegagrus hircus ejaculates

    Directory of Open Access Journals (Sweden)

    Barbas JP

    2017-08-01

    Full Text Available The objective of the present research was to determine specific sperm subpopulational dynamics in different processing steps during cryopreservation process by using objective functional sperm kinematic descriptors in goat ejaculates. Fresh ejaculates (n=40 collected from eight bucks were analised for volume, concentration, sperm viability, acrosome integrity, and sperm motility using computer-assisted sperm analysis (CASA system. Eight sperm kinematic descriptors (VCL, VSL, VAP, LIN, STR, BCF, ALH, and WOB were assessed using CASA system after five different handling step (1st: fresh semen collection (F; 2nd: 1st washing/centrifugation step (1WC; 3rd: 2nd washing / centrifugation step (2WC; 4th: cooling step at 4ºC (CL; and 5th: post-thawing step at 37ºC (PT during a standard cryopreservation protocol for goat semen. The results obtained from the kinematic parameters were analysed by using Principal Component Analysis (PCA and multivariate clustering procedures to identify specific kinematic subpopulations and establish the relationship between the distribution of the subpopulations found and the functional sperm motility in each step. Except for the 1st (SbpF1-SbpF3 and 4th (SbpCL1-SbpCL3 intervals, four sperm kinematic subpopulations (Sbp1LC1-Sbp1LC4, Sbp2LC1-Sbp2LC4 and SbpPD1-SbpPD4 were observed. Based on kinematic velocity parameters and the subpopulation disclosed, rapid, slow, vigorous, passive, non-progressive and progressive sperm were discerned. Moreover, based on kinematic linearity parameters and depending on the subpopulation uncovered, curvilinear, regular-linear, parabolic and erratic-non-linear trajectories were detected. Subpopulations remained varible throughout handling steps and multiple significant differences among the sperm kinematic parameters were observed (p<0.001 as well as in the frequency of distribution of kinematic subpopulations among steps (p<0.05. In conclusion, this study confirms the variability and

  8. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples

    Science.gov (United States)

    Mijatovic-Rustempasic, Slavica; Esona, Mathew D.; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D.

    2016-01-01

    100% sensitivity, 100% specificity, 86–89% efficiency and a limit of detection of 12–400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82–90% efficiency and limit of detection of 120–4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains. PMID:26839745

  9. THE STRENGTHS, WEAKNESSES, OPPORTUNITIES, AND THREATS (SWOTs) ANALYSES OF THE EBOLA VIRUS – PAPER RETRACTED

    Science.gov (United States)

    Babalola, Michael Oluyemi

    2016-01-01

    Background: Owing to the extreme virulence and case fatality rate of ebola virus disease (EVD), there had been so much furore, panic and public health emergency about the possible pandemic from the recent West African outbreak of the disease, with attendant handful research, both in the past and most recently. The magnitude of the epidemic of ebola virus disease has prompted global interest and urgency in the discovery of measures to mitigate the impact of the disease. Researchers in the academia and the industry were pressured to only focus on the development of effective and safe ebola virus vaccines, without consideration of the other aspects to this virus, which may influence the success or otherwise of a potential vaccine. The objective of this review was to adopt the SWOT concept to elucidate the biological Strengths, Weaknesses, Opportunities, and Threats to Ebola virus as a pathogen, with a view to understanding and devising holistic strategies at combating and overcoming the scourge of EVD. Method: This systematic review and narrative synthesis utilized Medline, PubMed, Google and other databases to select about 150 publications on ebola and ebola virus disease using text word searches to generate the specific terms. Relevant publications were reviewed and compared, findings were synthesized using a narrative method and summarized qualitatively. Results: Some of the identified strengths of ebola virus include: Ebola virus is an RNA virus with inherent capability to mutate, reassort and recombine to generate mutant or reassortant virulent strains; Ebola virus has a broad cellular tropism; Natural Reservoir of ebola virus is unconfirmed but fruit bats, arthropods, and plants are hypothesized; Ebola virus primarily targets and selectively destroys the immune system; Ebola viruses possess accessory proteins that inhibits the host’ immune responses; Secreted glycoprotein (sGP), a truncated soluble protein that triggers immune activation and increased vascular

  10. Sequence analysis of the whole genomes of five African human G9 rotavirus strains.

    Science.gov (United States)

    Nyaga, Martin M; Jere, Khuzwayo C; Peenze, Ina; Mlera, Luwanika; van Dijk, Alberdina A; Seheri, Mapaseka L; Mphahlele, M Jeffrey

    2013-06-01

    The G9 rotaviruses are amongst the most common global rotavirus strains causing severe childhood diarrhoea. However, the whole genomes of only a few G9 rotaviruses have been fully sequenced and characterised of which only one G9P[6] and one G9P[8] are from Africa. We determined the consensus sequence of the whole genomes of five African human group A G9 rotavirus strains, four G9P[8] strains and one G9P[6] strain collected in Cameroon (central Africa), Kenya (eastern Africa), South Africa and Zimbabwe (southern Africa) in 1999, 2009 and 2010. Strain RVA/Human-wt/ZWE/MRC-DPRU1723/2009/G9P[8] from Zimbabwe, RVA/Human-wt/ZAF/MRC-DPRU4677/2010/G9P[8] from South Africa, RVA/Human-wt/CMR/1424/2009/G9P[8] from Cameroon and RVA/Human-wt/KEN/MRC-DPRU2427/2010/G9P[8] from Kenya were on a Wa-like genetic backbone and were genotyped as G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Strain RVA/Human-wt/ZAF/MRC-DPRU9317/1999/G9P[6] from South Africa was genotyped as G9-P[6]-I2-R2-C2-M2-A2-N1-T2-E2-H2. Rotavirus A strain MRC-DPRU9317 is the second G9 strain to be reported on a DS-1-like genetic backbone, the other being RVA/Human-wt/ZAF/GR10924/1999/G9P[6]. MRC-DPRU9317 was found to be a reassortant between DS-1-like (I2, R2, C2, M2, A2, T2, E2 and H2) and Wa-like (N1) genome segments. All the genome segments of the five strains grouped strictly according to their genotype Wa- or DS-1-like clusters. Within their respective genotypes, the genome segments of the three G9 study strains from southern Africa clustered most closely with rotaviruses from the same geographical origin and with those with the same G and P types. The highest nucleotide identity of genome segments of the study strains from eastern and central Africa regions on a Wa-like backbone was not limited to rotaviruses with G9P[8] genotypes only, they were also closely related to G12P[6], G8P[8], G1P[8] and G11P[25] rotaviruses, indicating a close inter-genotype relationship between the G9 and other rotavirus genotypes

  11. Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets.

    Science.gov (United States)

    Herfst, Sander; Mok, Chris K P; van den Brand, Judith M A; van der Vliet, Stefan; Rosu, Miruna E; Spronken, Monique I; Yang, Zifeng; de Meulder, Dennis; Lexmond, Pascal; Bestebroer, Theo M; Peiris, J S Malik; Fouchier, Ron A M; Richard, Mathilde

    2018-01-01

    Since their emergence in 1997, A/H5N1 influenza viruses of the A/goose/Guangdong/1/96 lineage have diversified in multiple genetic and antigenic clades upon continued circulation in poultry in several countries in Eurasia and Africa. Since 2009, reassortant viruses carrying clade 2.3.4.4 hemagglutinin (HA) and internal and neuraminidase (NA) genes of influenza A viruses of different avian origin have been detected, yielding various HA-NA combinations, such as A/H5N1, A/H5N2, A/H5N3, A/H5N5, A/H5N6, and A/H5N8. Previous studies reported on the low pathogenicity and lack of airborne transmission of A/H5N2 and A/H5N8 viruses in the ferret model. However, although A/H5N6 viruses are the only clade 2.3.4.4 viruses that crossed the species barrier and infected humans, the risk they pose for human health remains poorly characterized. Here, the characterization of A/H5N6 A/Guangzhou/39715/2014 virus in vitro and in ferrets is described. This A/H5N6 virus possessed high polymerase activity, mediated by the E627K substitution in the PB2 protein, which corresponds to only one biological trait out of the three that were previously shown to confer airborne transmissibility to A/H5N1 viruses between ferrets. This might explain its lack of airborne transmission between ferrets. After intranasal inoculation, A/H5N6 virus replicated to high titers in the respiratory tracts of ferrets and was excreted for at least 6 days. Moreover, A/H5N6 virus caused severe pneumonia in ferrets upon intratracheal inoculation. Thus, A/H5N6 virus causes a more severe disease in ferrets than previously investigated clade 2.3.4.4 viruses, but our results demonstrate that the risk from airborne spread is currently low. IMPORTANCE Avian influenza A viruses are a threat to human health, as they cross the species barrier and infect humans occasionally, often with severe outcome. The antigenic and genetic diversity of A/H5 viruses from the A/goose/Guangdong/1/96 lineage is increasing, due to continued

  12. THE STRENGTHS, WEAKNESSES, OPPORTUNITIES, AND THREATS (SWOTs) ANALYSES OF THE EBOLA VIRUS - PAPER RETRACTED.

    Science.gov (United States)

    Babalola, Michael Oluyemi

    2016-01-01

    Owing to the extreme virulence and case fatality rate of ebola virus disease (EVD), there had been so much furore, panic and public health emergency about the possible pandemic from the recent West African outbreak of the disease, with attendant handful research, both in the past and most recently. The magnitude of the epidemic of ebola virus disease has prompted global interest and urgency in the discovery of measures to mitigate the impact of the disease. Researchers in the academia and the industry were pressured to only focus on the development of effective and safe ebola virus vaccines, without consideration of the other aspects to this virus, which may influence the success or otherwise of a potential vaccine. The objective of this review was to adopt the SWOT concept to elucidate the biological Strengths, Weaknesses, Opportunities, and Threats to Ebola virus as a pathogen, with a view to understanding and devising holistic strategies at combating and overcoming the scourge of EVD. This systematic review and narrative synthesis utilized Medline, PubMed, Google and other databases to select about 150 publications on ebola and ebola virus disease using text word searches to generate the specific terms. Relevant publications were reviewed and compared, findings were synthesized using a narrative method and summarized qualitatively. Some of the identified strengths of ebola virus include: Ebola virus is an RNA virus with inherent capability to mutate, reassort and recombine to generate mutant or reassortant virulent strains; Ebola virus has a broad cellular tropism; Natural Reservoir of ebola virus is unconfirmed but fruit bats, arthropods, and plants are hypothesized; Ebola virus primarily targets and selectively destroys the immune system; Ebola viruses possess accessory proteins that inhibits the host' immune responses; Secreted glycoprotein (sGP), a truncated soluble protein that triggers immune activation and increased vascular permeability is uniquely

  13. Streptococcus pneumoniae Coinfection Is Correlated with the Severity of H1N1 Pandemic Influenza

    Science.gov (United States)

    Cisterna, Daniel; Savji, Nazir; Bussetti, Ana Valeria; Kapoor, Vishal; Hui, Jeffrey; Tokarz, Rafal; Briese, Thomas; Baumeister, Elsa; Lipkin, W. Ian

    2009-01-01

    Background Initial reports in May 2009 of the novel influenza strain H1N1pdm estimated a case fatality rate (CFR) of 0.6%, similar to that of seasonal influenza. In July 2009, however, Argentina reported 3056 cases with 137 deaths, representing a CFR of 4.5%. Potential explanations for increased CFR included virus reassortment or genetic drift, or infection of a more vulnerable population. Virus genomic sequencing of 26 Argentinian samples representing both severe and mild disease indicated no evidence of reassortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence. Furthermore, no evidence was found for increased frequency of risk factors for H1N1pdm disease. Methods/Principal Findings We examined nasopharyngeal swab samples (NPS) from 199 cases of H1N1pdm infection from Argentina with MassTag PCR, testing for 33 additional microbial agents. The study population consisted of 199 H1N1pdm-infected subjects sampled between 23 June and 4 July 2009. Thirty-nine had severe disease defined as death (n = 20) or hospitalization (n = 19); 160 had mild disease. At least one additional agent of potential pathogenic importance was identified in 152 samples (76%), including Streptococcus pneumoniae (n = 62); Haemophilus influenzae (n = 104); human respiratory syncytial virus A (n = 11) and B (n = 1); human rhinovirus A (n = 1) and B (n = 4); human coronaviruses 229E (n = 1) and OC43 (n = 2); Klebsiella pneumoniae (n = 2); Acinetobacter baumannii (n = 2); Serratia marcescens (n = 1); and Staphylococcus aureus (n = 35) and methicillin-resistant S. aureus (MRSA, n = 6). The presence of S. pneumoniae was strongly correlated with severe disease. S. pneumoniae was present in 56.4% of severe cases versus 25% of mild cases; more than one-third of H1N1pdm NPS with S. pneumoniae were from subjects with severe disease (22 of 62 S. pneumoniae-positive NPS, p = 0

  14. Role of the B Allele of Influenza A Virus Segment 8 in Setting Mammalian Host Range and Pathogenicity.

    Science.gov (United States)

    Turnbull, Matthew L; Wise, Helen M; Nicol, Marlynne Q; Smith, Nikki; Dunfee, Rebecca L; Beard, Philippa M; Jagger, Brett W; Ligertwood, Yvonne; Hardisty, Gareth R; Xiao, Haixia; Benton, Donald J; Coburn, Alice M; Paulo, Joao A; Gygi, Steven P; McCauley, John W; Taubenberger, Jeffery K; Lycett, Samantha J; Weekes, Michael P; Dutia, Bernadette M; Digard, Paul

    2016-10-15

    Two alleles of segment 8 (NS) circulate in nonchiropteran influenza A viruses. The A allele is found in avian and mammalian viruses, but the B allele is viewed as being almost exclusively found in avian viruses. This might reflect the fact that one or both of its encoded proteins (NS1 and NEP) are maladapted for replication in mammalian hosts. To test this, a number of clade A and B avian virus-derived NS segments were introduced into human H1N1 and H3N2 viruses. In no case was the peak virus titer substantially reduced following infection of various mammalian cell types. Exemplar reassortant viruses also replicated to similar titers in mice, although mice infected with viruses with the avian virus-derived segment 8s had reduced weight loss compared to that achieved in mice infected with the A/Puerto Rico/8/1934 (H1N1) parent. In vitro, the viruses coped similarly with type I interferons. Temporal proteomics analysis of cellular responses to infection showed that the avian virus-derived NS segments provoked lower levels of expression of interferon-stimulated genes in cells than wild type-derived NS segments. Thus, neither the A nor the B allele of avian virus-derived NS segments necessarily attenuates virus replication in a mammalian host, although the alleles can attenuate disease. Phylogenetic analyses identified 32 independent incursions of an avian virus-derived A allele into mammals, whereas 6 introductions of a B allele were identified. However, A-allele isolates from birds outnumbered B-allele isolates, and the relative rates of Aves-to-Mammalia transmission were not significantly different. We conclude that while the introduction of an avian virus segment 8 into mammals is a relatively rare event, the dogma of the B allele being especially restricted is misleading, with implications in the assessment of the pandemic potential of avian influenza viruses. Influenza A virus (IAV) can adapt to poultry and mammalian species, inflicting a great socioeconomic

  15. Molecular Characterizations of Surface Proteins Hemagglutinin and Neuraminidase from Recent H5Nx Avian Influenza Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hua; Carney, Paul J.; Mishin, Vasiliy P.; Guo, Zhu; Chang, Jessie C.; Wentworth, David E.; Gubareva, Larisa V.; Stevens, James; Schultz-Cherry, S.

    2016-04-06

    ABSTRACT

    During 2014, a subclade 2.3.4.4 highly pathogenic avian influenza (HPAI) A(H5N8) virus caused poultry outbreaks around the world. In late 2014/early 2015, the virus was detected in wild birds in Canada and the United States, and these viruses also gave rise to reassortant progeny, composed of viral RNA segments (vRNAs) from both Eurasian and North American lineages. In particular, viruses were found with N1, N2, and N8 neuraminidase vRNAs, and these are collectively referred to as H5Nx viruses. In the United States, more than 48 million domestic birds have been affected. Here we present a detailed structural and biochemical analysis of the surface antigens of H5N1, H5N2, and H5N8 viruses in addition to those of a recent human H5N6 virus. Our results with recombinant hemagglutinin reveal that these viruses have a strict avian receptor binding preference, while recombinantly expressed neuraminidases are sensitive to FDA-approved and investigational antivirals. Although H5Nx viruses currently pose a low risk to humans, it is important to maintain surveillance of these circulating viruses and to continually assess future changes that may increase their pandemic potential.

    IMPORTANCEThe H5Nx viruses emerging in North America, Europe, and Asia pose a great public health concern. Here we report a molecular and structural study of the major surface proteins of several H5Nx influenza viruses. Our results improve the understanding of these new viruses and provide important information on their receptor preferences and susceptibilities to antivirals, which are central to pandemic risk assessment.

  16. Mitigation approaches to combat the flu pandemic.

    Science.gov (United States)

    Chawla, Raman; Sharma, Rakesh Kumar; Madaan, Deepali; Dubey, Neha; Arora, Rajesh; Goel, Rajeev; Singh, Shefali; Kaushik, Vinod; Singh, Pankaj Kumar; Chabbra, Vivek; Bhardwaj, Janak Raj

    2009-07-01

    Management of flu pandemic is a perpetual challenge for the medical fraternity since time immemorial. Animal to human transmission has been observed thrice in the last century within an average range of 11-39 years of antigenic recycling. The recent outbreak of influenza A (H1N1, also termed as swine flu), first reported in Mexico on April 26, 2009, occurred in the forty first year since last reported flu pandemic (July 1968). Within less than 50 days, it has assumed pandemic proportions (phase VI) affecting over 76 countries with 163 deaths/35,928 cases (as on 15(th) June 2009). It indicated the re-emergence of genetically reassorted virus having strains endemic to humans, swine and avian (H5N1). The World Health Organisation (WHO) member states have already pulled up their socks and geared up to combat such criticalities. Earlier outbreaks of avian flu (H5N1) in different countries led WHO to develop pandemic preparedness strategies with national/regional plans on pandemic preparedness. Numerous factors related to climatic conditions, socio-economic strata, governance and sharing of information/logistics at all levels have been considered critical indicators in monitoring the dynamics of escalation towards a pandemic situation.The National Disaster Management Authority (NDMA), Government of India, with the active cooperation of UN agencies and other stakeholders/experts has formulated a concept paper on role of nonhealth service providers during pandemics in April 2008 and released national guidelines - management of biological disasters in July 2008. These guidelines enumerate that the success of medical management endeavors like pharmaceutical (anti-viral Oseltamivir and Zanamivir therapies), nonpharmaceutical interventions and vaccination development etc., largely depends on level of resistance offered by mutagenic viral strain and rationale use of pharmaco therapeutic interventions. This article describes the mitigation approach to combat flu pandemic with

  17. Memory T-cell immune response in healthy young adults vaccinated with live attenuated influenza A (H5N2) vaccine.

    Science.gov (United States)

    Chirkova, T V; Naykhin, A N; Petukhova, G D; Korenkov, D A; Donina, S A; Mironov, A N; Rudenko, L G

    2011-10-01

    Cellular immune responses of both CD4 and CD8 memory/effector T cells were evaluated in healthy young adults who received two doses of live attenuated influenza A (H5N2) vaccine. The vaccine was developed by reassortment of nonpathogenic avian A/Duck/Potsdam/1402-6/68 (H5N2) and cold-adapted A/Leningrad/134/17/57 (H2N2) viruses. T-cell responses were measured by standard methods of intracellular cytokine staining of gamma interferon (IFN-γ)-producing cells and a novel T-cell recognition of antigen-presenting cells by protein capture (TRAP) assay based on the trogocytosis phenomenon, namely, plasma membrane exchange between interacting immune cells. TRAP enables the detection of activated trogocytosis-positive T cells after virus stimulation. We showed that two doses of live attenuated influenza A (H5N2) vaccine promoted both CD4 and CD8 T-memory-cell responses in peripheral blood of healthy young subjects in the clinical study. Significant differences in geometric mean titers (GMTs) of influenza A (H5N2)-specific IFN-γ(+) cells were observed at day 42 following the second vaccination, while peak levels of trogocytosis(+) T cells were detected earlier, on the 21st day after the second vaccination. The inverse correlation of baseline levels compared to postvaccine fold changes in GMTs of influenza-specific CD4 and CD8 T cells demonstrated that baseline levels of these specific cells could be considered a predictive factor of vaccine immunogenicity.

  18. [Evaluation of immunogenicity and safety of 2 immunizations with allantoic intranasal live influenza vaccine Ultragrivac].

    Science.gov (United States)

    Shishkina, L N; Mazurkova, N A; Ternovoĭ, V A; Bulychev, L E; Tumanov, Iu V; Skarnovich, M O; Kabanov, A S; Ryndiuk, N N; Kuzubov, V I; Mironov, A N; Stavskiĭ, E A; Drozdov, I G

    2011-01-01

    Evaluate reactogenicity, safety and immunogenicity in phase 2 clinical trials of 2 immunization schedules with Ultragrivac--an allantoic intranasal life influenza vaccine based on A/17/ duck/Potsdam/86/92 [17/H5] reassortant strain. 4 groups of volunteers participated in the study: group 1--40 individuals were vaccinated twice with a 10 day interval; group 2--40 individuals were vaccinated twice with a 21 day interval; group 3 (control)--10 individuals received placebo twice with a 10 day interval; group 4 (control)--10 individuals received placebo twice with a 21 day interval. Local (secretory IgA), cellular and humoral immune response were evaluated. Humoral immunity was evaluated by the intensity of increase of geometric mean antibody titers against 2 influenza virus strains A/17/duck/Potsdam/86/92 [17/H5] and A/chicken/Suzdalka/Nov-1 1/2005 (H5N1), and by the level of significant (4 times or more) antibody seroconversions after the vaccination. After the use of Ultragrivac the level of secretory IgA in the nasal cavity of vaccinated volunteers in the groups with revaccination intervals of 10 and 21 days increased significantly. The second immunization with 10 or 21 day intervals significantly increased postvaccinal humoral immune response. Humoral immune response induction after 2 vaccinations with 10 day interval was no less effective than with 21 day interval. Ultragrivac allantoic intranasal live influenza vaccine is areactogenic, harmless for vaccinated individuals, safe for those around, and has immunogenic properties against not only homologous virus A(H5N2), but also against influenza strain A(H5N1).

  19. [Results of clinical trials on reactogenicity, safety, and immunogenicity of influenza allantoic intranasal live vaccine "Ultragrivac" (type A/H5N2)].

    Science.gov (United States)

    Mazurkova, N A; Ryndiuk, N N; Shishkina, L N; Ternovoĭ, V A; Tumanov, Iu V; Bulychev, L E; Skarnovich, M O; Kabanov, A S; Panchenko, S G; Aleĭnikov, R P; Il'ina, T N; Kuzubov, V I; Mel'nikov, S Ia; Mironov, A N; Korovkin, S A; Sergeev, A N; Drozdov, I G

    2010-01-01

    Results of phase II of a clinical trial of the influenza allantoic intranasal live vaccine "Ultragrivac" (type A/H5N2) are presented. The vaccine was developed based on strain /17/Duck/Potsdam/86/92 H5N2 [17/H5] - reassortant of two viruses, /Leningrad/134/17/57 (H2N2) and /Duck/Potsdam/1402-86 (H5N2), obtained from the Virology Department, St. Petersburg Institute of Experimental Medicine.Two schemes of immunization (with revaccination on days 10 and 21) were used. Evaluation of vaccine immunogenicity included determination of local, cellular and humoral immunity. A significant rise in the level of secretory IgA in the nasal cavity of vaccinated volunteers (with revaccination on days 10 and 21) was documented after application of the vaccine. The postvaccination humoral immune response was estimated from the level of significant (4-fold and more) antibody seroconversions, geometric mean titers of antibodies to two strains of influenza virus /17/Duck/Potsdam/86/92 H5N2 [17/H5] and /Chicken/Suzdalka/Nov-11/2005 (H5N1), and their incremental rate. Results of measurement of antibody titers in hemagglutination-inhibition assay are presented, with two antigens being used to analyse all serum samples from volunteers twice vaccinated with influenza vaccine "Ultragrivac" at 10 and 21 day intervals. Result of phase II of this clinical study show that influenza allantoic intranasal live vaccine "Ultragrivac" is nonreactogenic and safe for both vaccinated and surrounding individuals. Moreover, it is sufficiently immunogenic with respect not only to homologous virus A(H5N2) but also to the A(H5N1) strain.

  20. Dialects of the DNA uptake sequence in Neisseriaceae.

    Directory of Open Access Journals (Sweden)

    Stephan A Frye

    2013-04-01

    Full Text Available In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS, which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS-dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5'-CTG-3' is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS-dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic

  1. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers.

    Science.gov (United States)

    Carrion, Ricardo; Bredenbeek, Peter; Jiang, Xiaohong; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S

    2012-11-20

    Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.

  2. Avian Influenza: Myth or Mass Murder?

    Directory of Open Access Journals (Sweden)

    Carol Louie

    2005-01-01

    Full Text Available The purpose of the present article was to determine whether avian influenza (AI is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat. Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A viruses reviewed were classified as pandemic because they met three key criteria: first, the viruses were highly pathogenic within the human population; second, the viruses were easily transmissible from person to person; and finally, the viruses were novel, such that a large proportion of the population was susceptible to infection. Information about the H5N1 subtype of AI has also been critically assessed. Evidence suggests that this AI subtype is both novel and highly pathogenic. The mortality rate from epidemics in Thailand in 2004 was as high as 66%. Clearly, this virus is aggressive. It causes a high death rate, proving that humans have a low immunity to the disease. To date, there has been little evidence to suggest that AI can spread among humans. There have been cases where the virus has transferred from birds to humans, in settings such as farms or open markets with live animal vending. If AI were to undergo a genetic reassortment that allowed itself to transmit easily from person to person, then a serious pandemic could ensue, resulting in high morbidity and mortality. Experts at the World Health Organization and the United States Centers for Disease Control and Prevention agree that AI has the potential to undergo an antigenic shift, thus triggering the next pandemic.

  3. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  4. In situ molecular identification of the Influenza A (H1N1 2009 Neuraminidase in patients with severe and fatal infections during a pandemic in Mexico City

    Directory of Open Access Journals (Sweden)

    Ocadiz-Delgado Rodolfo

    2013-01-01

    Full Text Available Abstract Background In April 2009, public health surveillance detected an increased number of influenza-like illnesses in Mexico City’s hospitals. The etiological agent was subsequently determined to be a spread of a worldwide novel influenza A (H1N1 triple reassortant. The purpose of the present study was to demonstrate that molecular detection of pandemic influenza A (H1N1 2009 strains is possible in archival material such as paraffin-embedded lung samples. Methods In order to detect A (H1N1 virus sequences in archived biological samples, eight paraffin-embedded lung samples from patients who died of pneumonia and respiratory failure were tested for influenza A (H1N1 Neuraminidase (NA RNA using in situ RT-PCR. Results We detected NA transcripts in 100% of the previously diagnosed A (H1N1-positive samples as a cytoplasmic signal. No expression was detected by in situ RT-PCR in two Influenza-like Illness A (H1N1-negative patients using standard protocols nor in a non-related cervical cell line. In situ relative transcription levels correlated with those obtained when in vitro RT-PCR assays were performed. Partial sequences of the NA gene from A (H1N1-positive patients were obtained by the in situ RT-PCR-sequencing method. Sequence analysis showed 98% similarity with influenza viruses reported previously in other places. Conclusions We have successfully amplified specific influenza A (H1N1 NA sequences using stored clinical material; results suggest that this strategy could be useful when clinical RNA samples are quantity limited, or when poor quality is obtained. Here, we provide a very sensitive method that specifically detects the neuraminidase viral RNA in lung samples from patients who died from pneumonia caused by Influenza A (H1N1 outbreak in Mexico City.

  5. Cross-seasonal patterns of avian influenza virus in breeding and wintering migratory birds: a flyway perspective

    Science.gov (United States)

    Hill, Nichola J.; Takekawa, John Y.; Cardona, Carol J.; Meixell, Brandt W.; Ackerman, Joshua T.; Runstadler, Jonathan A.; Boyce, Walter M.

    2012-01-01

    The spread of avian influenza viruses (AIV) in nature is intrinsically linked with the movements of wild birds. Wild birds are the reservoirs for the virus and their migration may facilitate the circulation of AIV between breeding and wintering areas. This cycle of dispersal has become widely accepted; however, there are few AIV studies that present cross-seasonal information. A flyway perspective is critical for understanding how wild birds contribute to the persistence of AIV over large spatial and temporal scales, with implications for how to focus surveillance efforts and identify risks to public health. This study characterized spatio-temporal infection patterns in 10,389 waterfowl at two important locations within the Pacific Flyway--breeding sites in Interior Alaska and wintering sites in California's Central Valley during 2007-2009. Among the dabbling ducks sampled, the northern shoveler (Anas clypeata) had the highest prevalence of AIV at both breeding (32.2%) and wintering (5.2%) locations. This is in contrast to surveillance studies conducted in other flyways that have identified the mallard (Anas platyrhynchos) and northern pintail (Anas acuta) as hosts with the highest prevalence. A higher diversity of AIV subtypes was apparent at wintering (n=42) compared with breeding sites (n=17), with evidence of mixed infections at both locations. Our study suggests that wintering sites may act as an important mixing bowl for transmission among waterfowl in a flyway, creating opportunities for the reassortment of the virus. Our findings shed light on how the dynamics of AIV infection of wild bird populations can vary between the two ends of a migratory flyway.

  6. Cold-adapted live attenuated influenza vaccines developed in Russia: Can they contribute to meeting the needs for influenza control in other countries?

    International Nuclear Information System (INIS)

    Kendal, Alan P.

    1997-01-01

    It is now more than 30 years since the first cold-adapted influenza viruses were developed in Russia as potential live, attenuated vaccines. In the past 15-20 years considerable experience has been gained from Russian and joint Russian-US laboratory and clinical studies with type A monovalent and bivalent vaccines prepared with genetic reassortant viruses derived from one of these cold-adapted viruses in particular, A/Leningrad/134/57. More recent experiences include use of trivalent cold-adapted vaccines with a type B component. The overall high level of safety of individual and combined vaccines in pre-school and school-aged children, with illness reductions in open field trials equivalent to that seen with inactivated vaccines, is such as to suggest that practical measures might now be justified to facilitate expansion of the use of these vaccines to other countries. It is proposed that further experimentation with the Russian cold-adapted live attenuated vaccines should be focused on issues that will relate to the public health perspective, i.e. selection of the single best candidate type A and B vaccines for intense study using as criteria their potential for meeting licensing requirements outside Russia, and documenting the clinical protective efficacy of a single vaccine dose compared to two doses as studied until now. Resolution of these issues is important to ensure that costs for future live vaccine production, control, and utilization will be kept at lowest levels so that expanded use of live vaccines will have maximum cost-benefit and affordability. To guide those interested in these issues, examples are given of populations for whom a licensed live cold-adapted vaccine might be considered, together with indications of extra data needed to fully validate each suggested use

  7. Understanding the undelaying mechanism of HA-subtyping in the level of physic-chemical characteristics of protein.

    Directory of Open Access Journals (Sweden)

    Mansour Ebrahimi

    Full Text Available The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896 of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms, percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for

  8. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Directory of Open Access Journals (Sweden)

    Wendy Gibson

    2015-03-01

    Full Text Available Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr responsible for sleeping sickness (Human African Trypanosomiasis, HAT in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  9. Multiple virus lineages sharing recent common ancestry were associated with a Large Rift Valley fever outbreak among livestock in Kenya during 2006-2007.

    Science.gov (United States)

    Bird, Brian H; Githinji, Jane W K; Macharia, Joseph M; Kasiiti, Jacqueline L; Muriithi, Rees M; Gacheru, Stephen G; Musaa, Joseph O; Towner, Jonathan S; Reeder, Serena A; Oliver, Jennifer B; Stevens, Thomas L; Erickson, Bobbie R; Morgan, Laura T; Khristova, Marina L; Hartman, Amy L; Comer, James A; Rollin, Pierre E; Ksiazek, Thomas G; Nichol, Stuart T

    2008-11-01

    Rift Valley fever (RVF) virus historically has caused widespread and extensive outbreaks of severe human and livestock disease throughout Africa, Madagascar, and the Arabian Peninsula. Following unusually heavy rainfall during the late autumn of 2006, reports of human and animal illness consistent with RVF virus infection emerged across semiarid regions of the Garissa District of northeastern Kenya and southern Somalia. Following initial RVF virus laboratory confirmation, a high-throughput RVF diagnostic facility was established at the Kenyan Central Veterinary Laboratories in Kabete, Kenya, to support the real-time identification of infected livestock and to facilitate outbreak response and control activities. A total of 3,250 specimens from a variety of animal species, including domesticated livestock (cattle, sheep, goats, and camels) and wildlife collected from a total of 55 of 71 Kenyan administrative districts, were tested by molecular and serologic assays. Evidence of RVF infection was found in 9.2% of animals tested and across 23 districts of Kenya, reflecting the large number of affected livestock and the geographic extent of the outbreak. The complete S, M, and/or L genome segment sequence was obtained from a total of 31 RVF virus specimens spanning the entire known outbreak period (December-May) and geographic areas affected by RVF virus activity. Extensive genomic analyses demonstrated the concurrent circulation of multiple virus lineages, gene segment reassortment, and the common ancestry of the 2006/2007 outbreak viruses with those from the 1997-1998 east African RVF outbreak. Evidence of recent increases in genomic diversity and effective population size 2 to 4 years prior to the 2006-2007 outbreak also was found, indicating ongoing RVF virus activity and evolution during the interepizootic/epidemic period. These findings have implications for further studies of basic RVF virus ecology and the design of future surveillance/diagnostic activities, and

  10. Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments.

    Directory of Open Access Journals (Sweden)

    Paul J Wichgers Schreur

    2016-08-01

    Full Text Available The bunyavirus genome comprises a small (S, medium (M, and large (L RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging. Accumulating evidence suggests that genomes of viruses with eight or more genome segments are incorporated into virions by highly selective processes. Remarkably, little is known about the genome packaging process of the tri-segmented bunyaviruses. Here, we evaluated, by single-molecule RNA fluorescence in situ hybridization (FISH, the intracellular spatio-temporal distribution and replication kinetics of the Rift Valley fever virus (RVFV genome and determined the segment composition of mature virions. The results reveal that the RVFV genome segments start to replicate near the site of infection before spreading and replicating throughout the cytoplasm followed by translocation to the virion assembly site at the Golgi network. Despite the average intracellular S, M and L genome segments approached a 1:1:1 ratio, major differences in genome segment ratios were observed among cells. We also observed a significant amount of cells lacking evidence of M-segment replication. Analysis of two-segmented replicons and four-segmented viruses subsequently confirmed the previous notion that Golgi recruitment is mediated by the Gn glycoprotein. The absence of colocalization of the different segments in the cytoplasm and the successful rescue of a tri-segmented variant with a codon shuffled M-segment suggested that inter-segment interactions are unlikely to drive the copackaging of the different segments into a single virion. The latter was confirmed by direct visualization of RNPs inside mature virions which showed that the majority of virions lack one or more genome segments. Altogether, this study suggests that RVFV genome packaging is a non-selective process.

  11. Mitigation Approaches to Combat the Flu Pandemic

    Science.gov (United States)

    Chawla, Raman; Sharma, Rakesh Kumar; Madaan, Deepali; Dubey, Neha; Arora, Rajesh; Goel, Rajeev; Singh, Shefali; Kaushik, Vinod; Singh, Pankaj Kumar; Chabbra, Vivek; Bhardwaj, Janak Raj

    2009-01-01

    Management of flu pandemic is a perpetual challenge for the medical fraternity since time immemorial. Animal to human transmission has been observed thrice in the last century within an average range of 11-39 years of antigenic recycling. The recent outbreak of influenza A (H1N1, also termed as swine flu), first reported in Mexico on April 26, 2009, occurred in the forty first year since last reported flu pandemic (July 1968). Within less than 50 days, it has assumed pandemic proportions (phase VI) affecting over 76 countries with 163 deaths/35,928 cases (as on 15th June 2009). It indicated the re-emergence of genetically reassorted virus having strains endemic to humans, swine and avian (H5N1). The World Health Organisation (WHO) member states have already pulled up their socks and geared up to combat such criticalities. Earlier outbreaks of avian flu (H5N1) in different countries led WHO to develop pandemic preparedness strategies with national/regional plans on pandemic preparedness. Numerous factors related to climatic conditions, socio-economic strata, governance and sharing of information/logistics at all levels have been considered critical indicators in monitoring the dynamics of escalation towards a pandemic situation. The National Disaster Management Authority (NDMA), Government of India, with the active cooperation of UN agencies and other stakeholders/experts has formulated a concept paper on role of nonhealth service providers during pandemics in April 2008 and released national guidelines - management of biological disasters in July 2008. These guidelines enumerate that the success of medical management endeavors like pharmaceutical (anti-viral Oseltamivir and Zanamivir therapies), nonpharmaceutical interventions and vaccination development etc., largely depends on level of resistance offered by mutagenic viral strain and rationale use of pharmaco therapeutic interventions. This article describes the mitigation approach to combat flu pandemic with its

  12. Understanding the undelaying mechanism of HA-subtyping in the level of physic-chemical characteristics of protein.

    Science.gov (United States)

    Ebrahimi, Mansour; Aghagolzadeh, Parisa; Shamabadi, Narges; Tahmasebi, Ahmad; Alsharifi, Mohammed; Adelson, David L; Hemmatzadeh, Farhid; Ebrahimie, Esmaeil

    2014-01-01

    The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and

  13. Elevated mutation rate during meiosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rattray, Alison; Santoyo, Gustavo; Shafer, Brenda; Strathern, Jeffrey N

    2015-01-01

    Mutations accumulate during all stages of growth, but only germ line mutations contribute to evolution. While meiosis contributes to evolution by reassortment of parental alleles, we show here that the process itself is inherently mutagenic. We have previously shown that the DNA synthesis associated with repair of a double-strand break is about 1000-fold less accurate than S-phase synthesis. Since the process of meiosis involves many programmed DSBs, we reasoned that this repair might also be mutagenic. Indeed, in the early 1960's Magni and Von Borstel observed elevated reversion of recessive alleles during meiosis, and found that the revertants were more likely to be associated with a crossover than non-revertants, a process that they called "the meiotic effect." Here we use a forward mutation reporter (CAN1 HIS3) placed at either a meiotic recombination coldspot or hotspot near the MAT locus on Chromosome III. We find that the increased mutation rate at CAN1 (6 to 21 -fold) correlates with the underlying recombination rate at the locus. Importantly, we show that the elevated mutation rate is fully dependent upon Spo11, the protein that introduces the meiosis specific DSBs. To examine associated recombination we selected for random spores with or without a mutation in CAN1. We find that the mutations isolated this way show an increased association with recombination (crossovers, loss of crossover interference and/or increased gene conversion tracts). Polζ appears to contribute about half of the mutations induced during meiosis, but is not the only source of mutations for the meiotic effect. We see no difference in either the spectrum or distribution of mutations between mitosis and meiosis. The correlation of hotspots with elevated mutagenesis provides a mechanism for organisms to control evolution rates in a gene specific manner.

  14. Dialects of the DNA Uptake Sequence in Neisseriaceae

    Science.gov (United States)

    Frye, Stephan A.; Nilsen, Mariann; Tønjum, Tone; Ambur, Ole Herman

    2013-01-01

    In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS), which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS–dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5′-CTG-3′ is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS–dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic transformation

  15. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003.

    Science.gov (United States)

    Van Reeth, Kristien; Brown, Ian H; Dürrwald, Ralf; Foni, Emanuela; Labarque, Geoffrey; Lenihan, Patrick; Maldonado, Jaime; Markowska-Daniel, Iwona; Pensaert, Maurice; Pospisil, Zdenek; Koch, Guus

    2008-05-01

    Avian-like H1N1 and human-like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human-like H1 emerged in the mid 1990s. This study, which was part of the EC-funded 'European Surveillance Network for Influenza in Pigs 1', aimed to determine the seroprevalence of the H1N2 virus in different European regions and to compare the relative prevalences of each SIV between regions. Laboratories from Belgium, the Czech Republic, Germany, Italy, Ireland, Poland and Spain participated in an international serosurvey. A total of 4190 sow sera from 651 farms were collected in 2002-2003 and examined in haemagglutination inhibition tests against H1N1, H3N2 and H1N2. In Belgium, Germany, Italy and Spain seroprevalence rates to each of the three SIV subtypes were high (> or =30% of the sows seropositive) to very high (> or =50%), except for a lower H1N2 seroprevalence rate in Italy (13.8%). Most sows in these countries with high pig populations had antibodies to two or three subtypes. In Ireland, the Czech Republic and Poland, where swine farming is less intensive, H1N1 was the dominant subtype (8.0-11.7% seropositives) and H1N2 and H3N2 antibodies were rare (0-4.2% seropositives). Thus, SIV of H1N1, H3N2 and H1N2 subtype are enzootic in swine producing regions of Western Europe. In Central Europe, SIV activity is low and the circulation of H3N2 and H1N2 remains to be confirmed. The evolution and epidemiology of SIV throughout Europe is being further monitored through a second 'European Surveillance Network for Influenza in Pigs'.

  16. Multiplex RT-PCR assay for differentiating European swine influenza virus subtypes H1N1, H1N2 and H3N2.

    Science.gov (United States)

    Chiapponi, Chiara; Moreno, Ana; Barbieri, Ilaria; Merenda, Marianna; Foni, Emanuela

    2012-09-01

    In Europe, three major swine influenza viral (SIV) subtypes (H1N1, H1N2 and H3N2) have been isolated in pigs. Developing a test that is able to detect and identify the subtype of the circulating strain rapidly during an outbreak of respiratory disease in the pig population is of essential importance. This study describes two multiplex RT-PCRs which distinguish the haemagglutinin (HA) gene and the neuraminidase (NA) gene of the three major subtypes of SIV circulating in Europe. The HA PCR was able to identify the lineage (avian or human) of the HA of H1 subtypes. The analytical sensitivity of the test, considered to be unique, was assessed using three reference viruses. The detection limit corresponded to 1×10(-1) TCID(50)/200μl for avian-like H1N1, 1×10(0) TCID(50)/200μl for human-like H1N2 and 1×10(1) TCID(50)/200μl for H3N2 SIV. The multiplex RT-PCR was first carried out on a collection of 70 isolated viruses showing 100% specificity and then on clinical samples, from which viruses had previously been isolated, resulting in an 89% positive specificity of the viral subtype. Finally, the test was able to identify the viral subtype correctly in 56% of influenza A positive samples, from which SIV had not been isolated previously. It was also possible to identify mixed viral infections and the circulation of a reassortant strain before performing genomic studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Complete genome sequence of a novel influenza A H1N2 virus circulating in swine from Central Bajio region, Mexico.

    Science.gov (United States)

    Sánchez-Betancourt, J I; Cervantes-Torres, J B; Saavedra-Montañez, M; Segura-Velázquez, R A

    2017-12-01

    The aim of this study was to perform the complete genome sequence of a swine influenza A H1N2 virus strain isolated from a pig in Guanajuato, México (A/swine/Mexico/GtoDMZC01/2014) and to report its seroprevalence in 86 counties at the Central Bajio zone. To understand the evolutionary dynamics of the isolate, we undertook a phylogenetic analysis of the eight gene segments. These data revealed that the isolated virus is a reassortant H1N2 subtype, as its genes are derived from human (HA, NP, PA) and swine (M, NA, PB1, PB2 and NS) influenza viruses. Pig serum samples were analysed by the hemagglutination inhibition test, using wild H1N2 and H3N2 strains (A/swine/México/Mex51/2010 [H3N2]) as antigen sources. Positive samples to the H1N2 subtype were processed using the field-isolated H1N1 subtype (A/swine/México/Ver37/2010 [H1N1]). Seroprevalence to the H1N2 subtype was 26.74% in the sampled counties, being Jalisco the state with highest seroprevalence to this subtype (35.30%). The results herein reported demonstrate that this new, previously unregistered influenza virus subtype in México that shows internal genes from other swine viral subtypes isolated in the past 5 years, along with human virus-originated genes, is widely distributed in this area of the country. © 2017 Blackwell Verlag GmbH.

  18. Enhanced pneumonia and disease in pigs vaccinated with an inactivated human-like (δ-cluster) H1N2 vaccine and challenged with pandemic 2009 H1N1 influenza virus.

    Science.gov (United States)

    Gauger, Phillip C; Vincent, Amy L; Loving, Crystal L; Lager, Kelly M; Janke, Bruce H; Kehrli, Marcus E; Roth, James A

    2011-03-24

    Influenza is an economically important respiratory disease affecting swine world-wide with potential zoonotic implications. Genetic reassortment and drift has resulted in genetically and antigenically distinct swine influenza viruses (SIVs). Consequently, prevention of SIV infection is challenging due to the increased rate of genetic change and a potential lack of cross-protection between vaccine strains and circulating novel isolates. This report describes a vaccine-heterologous challenge model in which pigs were administered an inactivated H1N2 vaccine with a human-like (δ-cluster) H1 six and three weeks before challenge with H1 homosubtypic, heterologous 2009 pandemic H1N1. At necropsy, macroscopic and microscopic pneumonia scores were significantly higher in the vaccinated and challenged (Vx/Ch) group compared to non-vaccinated and challenged (NVx/Ch) pigs. The Vx/Ch group also demonstrated enhanced clinical disease and a significantly elevated pro-inflammatory cytokine profile in bronchoalveolar lavage fluid compared to the NVx/Ch group. In contrast, viral shedding and replication were significantly higher in NVx/Ch pigs although all challenged pigs, including Vx/Ch pigs, were shedding virus in nasal secretions. Hemagglutination inhibition (HI) and serum neutralizing (SN) antibodies were detected to the priming antigen in the Vx/Ch pigs but no measurable cross-reacting HI or SN antibodies were detected to pandemic H1N1 (pH1N1). Overall, these results suggest that inactivated SIV vaccines may potentiate clinical signs, inflammation and pneumonia following challenge with divergent homosubtypic viruses that do not share cross-reacting HI or SN antibodies. Published by Elsevier Ltd.

  19. Genomic analysis of influenza A virus from captive wild boars in Brazil reveals a human-like H1N2 influenza virus.

    Science.gov (United States)

    Biondo, Natalha; Schaefer, Rejane; Gava, Danielle; Cantão, Mauricio E; Silveira, Simone; Mores, Marcos A Z; Ciacci-Zanella, Janice R; Barcellos, David E S N

    2014-01-10

    Influenza is a viral disease that affects human and several animal species. In Brazil, H1N1, H3N2 and 2009 pandemic H1N1 A(H1N1)pdm09 influenza A viruses (IAV) circulate in domestic swine herds. Wild boars are also susceptible to IAV infection but in Brazil until this moment there are no reports of IAV infection in wild boars or in captive wild boars populations. Herein the occurrence of IAV in captive wild boars with the presence of lung consolidation lesions during slaughter was investigated. Lung samples were screened by RT-PCR for IAV detection. IAV positive samples were further analyzed by quantitative real-time PCR (qRRT-PCR), virus isolation, genomic sequencing, histopathology and immunohistochemistry (IHC). Eleven out of 60 lungs (18.3%) were positive for IAV by RT-PCR and seven out of the eleven were also positive for A(H1N1)pdm09 by qRRT-PCR. Chronic diffuse bronchopneumonia was observed in all samples and IHC analysis was negative for influenza A antigen. Full genes segments of H1N2 IAV were sequenced using Illumina's genome analyzer platform (MiSeq). The genomic analysis revealed that the HA and NA genes clustered with IAVs of the human lineage and the six internal genes were derived from the H1N1pdm09 IAV. This is the first report of a reassortant human-like H1N2 influenza virus infection in captive wild boars in Brazil and indicates the need to monitor IAV evolution in Suidae populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    Science.gov (United States)

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  1. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    Science.gov (United States)

    Grgić, Helena; Costa, Marcio; Friendship, Robert M; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  2. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    Directory of Open Access Journals (Sweden)

    Helena Grgić

    Full Text Available The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1pdm09. One H1N2 isolate had hemagglutinin (HA, polymerase A (PA and non-structural (NS genes closely related to A(H1N1pdm09, and neuraminidase (NA, matrix (M, polymerase B1 (PB1, polymerase B2 (PB2, and nucleoprotein (NP genes originating from a triple-reassortant H3N2 virus (tr H3N2. The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  3. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype.

    Science.gov (United States)

    Deblanc, C; Gorin, S; Quéguiner, S; Gautier-Bouchardon, A V; Ferré, S; Amenna, N; Cariolet, R; Simon, G

    2012-05-25

    Swine influenza virus (SIV) and Mycoplasma hyopneumoniae (Mhp) are widespread in farms and are major pathogens involved in the porcine respiratory disease complex (PRDC). The aim of this experiment was to compare the pathogenicity of European avian-like swine H1N1 and European human-like reassortant swine H1N2 viruses in naïve pigs and in pigs previously infected with Mhp. Six groups of SPF pigs were inoculated intra-tracheally with either Mhp, or H1N1, or H1N2 or Mhp+H1N1 or Mhp+H1N2, both pathogens being inoculated at 21 days intervals in these two last groups. A mock-infected group was included. Although both SIV strains induced clinical signs when singly inoculated, results indicated that the H1N2 SIV was more pathogenic than the H1N1 virus, with an earlier shedding and a greater spread in lungs. Initial infection with Mhp before SIV inoculation increased flu clinical signs and pathogenesis (hyperthermia, loss of appetite, pneumonia lesions) due to the H1N1 virus but did not modify significantly outcomes of H1N2 infection. Thus, Mhp and SIV H1N1 appeared to act synergistically, whereas Mhp and SIV H1N2 would compete, as H1N2 infection led to the elimination of Mhp in lung diaphragmatic lobes. In conclusion, SIV would be a risk factor for the severity of respiratory disorders when associated with Mhp, depending on the viral subtype involved. This experimental model of coinfection with Mhp and avian-like swine H1N1 is a relevant tool for studying the pathogenesis of SIV-associated PRDC and testing intervention strategies for the control of the disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Drug susceptibility of influenza A/H3N2 strains co-circulating during 2009 influenza pandemic: first report from Mumbai.

    Science.gov (United States)

    Gohil, Devanshi J; Kothari, Sweta T; Shinde, Pramod S; Chintakrindi, Anand S; Meharunkar, Rhuta; Warke, Rajas V; Kanyalkar, Meena A; Chowdhary, Abhay S; Deshmukh, Ranjana A

    2015-01-01

    From its first instance in 1977, resistance to amantadine, a matrix (M2) inhibitor has been increasing among influenza A/H3N2, thus propelling the use of oseltamivir, a neuraminidase (NA) inhibitor as a next line drug. Information on drug susceptibility to amantadine and neuraminidase inhibitors for influenza A/H3N2 viruses in India is limited with no published data from Mumbai. This study aimed at examining the sensitivity to M2 and NA inhibitors of influenza A/H3N2 strains isolated from 2009 to 2011 in Mumbai. Nasopharyngeal swabs positive for influenza A/H3N2 virus were inoculated on Madin-Darby canine kidney (MDCK) cell line for virus isolation. Molecular analysis of NA and M2 genes was used to detect known mutations contributing to resistance. Resistance to neuraminidase was assayed using a commercially available chemiluminescence based NA-Star assay kit. Genotypically, all isolates were observed to harbor mutations known to confer resistance to amantadine. However, no know mutations conferring resistance to NA inhibitors were detected. The mean IC50 value for oseltamivir was 0.25 nM. One strain with reduced susceptibility to the neuraminidase inhibitor (IC₅₀=4.08 nM) was isolated from a patient who had received oseltamivir treatment. Phylogenetic analysis postulate the emergence of amantadine resistance in Mumbai may be due to genetic reassortment with the strains circulating in Asia and North America. Surveillance of drug susceptibility helped us to identify an isolate with reduced sensitivity to oseltamivir. Therefore, we infer that such surveillance would help in understanding possible trends underlying the emergence of resistant variants in humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma1.

    Science.gov (United States)

    Chappell, J D; Gunn, V L; Wetzel, J D; Baer, G S; Dermody, T S

    1997-03-01

    The reovirus attachment protein, sigma1, determines numerous aspects of reovirus-induced disease, including viral virulence, pathways of spread, and tropism for certain types of cells in the central nervous system. The sigma1 protein projects from the virion surface and consists of two distinct morphologic domains, a virion-distal globular domain known as the head and an elongated fibrous domain, termed the tail, which is anchored into the virion capsid. To better understand structure-function relationships of sigma1 protein, we conducted experiments to identify sequences in sigma1 important for viral binding to sialic acid, a component of the receptor for type 3 reovirus. Three serotype 3 reovirus strains incapable of binding sialylated receptors were adapted to growth in murine erythroleukemia (MEL) cells, in which sialic acid is essential for reovirus infectivity. MEL-adapted (MA) mutant viruses isolated by serial passage in MEL cells acquired the capacity to bind sialic acid-containing receptors and demonstrated a dependence on sialic acid for infection of MEL cells. Analysis of reassortant viruses isolated from crosses of an MA mutant virus and a reovirus strain that does not bind sialic acid indicated that the sigma1 protein is solely responsible for efficient growth of MA mutant viruses in MEL cells. The deduced sigma1 amino acid sequences of the MA mutant viruses revealed that each strain contains a substitution within a short region of sequence in the sigma1 tail predicted to form beta-sheet. These studies identify specific sequences that determine the capacity of reovirus to bind sialylated receptors and suggest a location for a sialic acid-binding domain. Furthermore, the results support a model in which type 3 sigma1 protein contains discrete receptor binding domains, one in the head and another in the tail that binds sialic acid.

  6. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Science.gov (United States)

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  7. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation.

    Science.gov (United States)

    Delviks-Frankenberry, Krista A; Nikolaitchik, Olga A; Burdick, Ryan C; Gorelick, Robert J; Keele, Brandon F; Hu, Wei-Shau; Pathak, Vinay K

    2016-05-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic

  8. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012–2016

    Science.gov (United States)

    Li, Meng; Zhao, Na; Luo, Jing; Li, Yuan; Chen, Lin; Ma, Jiajun; Zhao, Lin; Yuan, Guohui; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; He, Hongxuan

    2017-01-01

    H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased c