WorldWideScience

Sample records for human tryptase-2 tryp2

  1. Neutrophilia, gelatinase release and microvascular leakage induced by human mast cell tryptase in a mouse model: Lack of a role of protease-activated receptor 2 (PAR2).

    Science.gov (United States)

    Khedr, M E M S; Abdelmotelb, A M; Pender, S L F; Zhou, X; Walls, A F

    2018-05-01

    Tryptase, the most abundant protease of the human mast cell, has been implicated as a key mediator of allergic inflammation that acts through activation of PAR2. To investigate the contribution of PAR2 in the pro-inflammatory actions mediated by tryptase in a mice model. We have injected recombinant human βII-tryptase into the peritoneum of PAR2-deficient and wild-type C57BL/6 mice. After 6, 12 and 24 hours, mice were killed, peritoneal lavage performed and inflammatory changes investigated. Tryptase stimulated an increase in neutrophil numbers in the peritoneum, but responses did not differ between PAR2-deficient and wild-type mice. Heat inactivation of tryptase or pre-incubation with a selective tryptase inhibitor reduced neutrophilia, but neutrophil accumulation was not elicited with a peptide agonist of PAR2 (SLIGRL-NH 2 ). Zymography indicated that tryptase stimulated the release of matrix metalloproteinases (MMP) 2 and 9 in the peritoneum of both mouse strains. Studies involving immunomagnetic isolation of neutrophils suggested that neutrophils represent the major cellular source of tryptase-induced MMP2 and MMP9. At 24 hours after tryptase injection, there was increased microvascular leakage as indicated by high levels of albumin in peritoneal lavage fluid, and this appeared to be partially abolished by heat-inactivating tryptase or addition of a protease inhibitor. There was no corresponding increase in levels of histamine or total protein. The extent of tryptase-induced microvascular leakage or gelatinase release into the peritoneum did not differ between PAR2-deficient and wild-type mice. Our findings indicate that tryptase is a potent stimulus for neutrophil accumulation, MMP release and microvascular leakage. Although these actions required an intact catalytic site, the primary mechanism of tryptase in vivo would appear to involve processes independent of PAR2. © 2018 The Authors. Clinical & Experimental Allergy Published by John Wiley & Sons Ltd.

  2. Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Côté Claude H

    2011-10-01

    Full Text Available Abstract Background Mast cells contribute to tissue repair in fibrous tissues by stimulating proliferation of fibroblasts through the release of tryptase which activates protease-activated receptor-2 (PAR-2. The possibility that a tryptase/PAR-2 signaling pathway exists in skeletal muscle cell has never been investigated. The aim of this study was to evaluate whether tryptase can stimulate myoblast proliferation and determine the downstream cascade. Methods Proliferation of L6 rat skeletal myoblasts stimulated with PAR-2 agonists (tryptase, trypsin and SLIGKV was assessed. The specificity of the tryptase effect was evaluated with a specific inhibitor, APC-366. Western blot analyses were used to evaluate the expression and functionality of PAR-2 receptor and to assess the expression of COX-2. COX-2 activity was evaluated with a commercial activity assay kit and by measurement of PGF2α production. Proliferation assays were also performed in presence of different prostaglandins (PGs. Results Tryptase increased L6 myoblast proliferation by 35% above control group and this effect was completely inhibited by APC-366. We confirmed the expression of PAR-2 receptor in vivo in skeletal muscle cells and in satellite cells and in vitro in L6 cells, where PAR-2 was found to be functional. Trypsin and SLIGKV increased L6 cells proliferation by 76% and 26% above control, respectively. COX-2 activity was increased following stimulation with PAR-2 agonist but its expression remained unchanged. Inhibition of COX-2 activity by NS-398 abolished the stimulation of cell proliferation induced by tryptase and trypsin. Finally, 15-deoxy-Δ-12,14-prostaglandin J2 (15Δ-PGJ2, a product of COX-2-derived prostaglandin D2, stimulated myoblast proliferation, but not PGE2 and PGF2α. Conclusions Taken together, our data show that tryptase can stimulate myoblast proliferation and this effect is part of a signaling cascade dependent on PAR-2 activation and on the downstream

  3. Potent selective nonpeptidic inhibitors of human lung tryptase

    OpenAIRE

    Burgess, Laurence E.; Newhouse, Bradley J.; Ibrahim, Prabha; Rizzi, James; Kashem, Mohammed A.; Hartman, Ann; Brandhuber, Barbara J.; Wright, Clifford D.; Thomson, David S.; Vigers, Guy P. A.; Koch, Kevin

    1999-01-01

    Human lung tryptase, a homotetrameric serine protease unique to mast cell secretory granules, has been implicated in the pathogenesis of asthma. A hypothesis that tethered symmetrical inhibitors might bridge two adjacent active sites was explored via a rationally designed series of bisbenzamidines. These compounds demonstrated a remarkable distanced-defined structure–activity relationship against human tryptase with one series possessing subnanomolar potencies. Additional evidence supporting ...

  4. Potent selective nonpeptidic inhibitors of human lung tryptase

    Science.gov (United States)

    Burgess, Laurence E.; Newhouse, Bradley J.; Ibrahim, Prabha; Rizzi, James; Kashem, Mohammed A.; Hartman, Ann; Brandhuber, Barbara J.; Wright, Clifford D.; Thomson, David S.; Vigers, Guy P. A.; Koch, Kevin

    1999-01-01

    Human lung tryptase, a homotetrameric serine protease unique to mast cell secretory granules, has been implicated in the pathogenesis of asthma. A hypothesis that tethered symmetrical inhibitors might bridge two adjacent active sites was explored via a rationally designed series of bisbenzamidines. These compounds demonstrated a remarkable distanced-defined structure–activity relationship against human tryptase with one series possessing subnanomolar potencies. Additional evidence supporting the concept of active-site bridging is also presented. PMID:10411878

  5. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    International Nuclear Information System (INIS)

    Vanderslice, P.; Ballinger, S.M.; Tam, E.K.; Goldstein, S.M.; Craik, C.S.; Caughey, G.H.

    1990-01-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the ∼1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5' regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family

  6. Cloning and Expression of TRYP6 Gene from Leishmania major (MRHO/IR/75/ER

    Directory of Open Access Journals (Sweden)

    G Eslami

    2008-06-01

    Full Text Available Background: Leishmania, needs to detoxify the macrophage derived potent peroxides (H2O2. Tryparedoxin path­way contains tryparedoxin peroxidase (TSA or TRYP. The aim of the study was to detect the full-length gene se­quence and its encoded protein of the LmTRYP6 gene (EU251502, and comparison the gene sequence with LmTRYP6 (LmjF15.1140, another previously reported member of this gene family.Methods: L.major (MRHO/IR/75/ER promastigotes were cultured, DNA and RNA were extracted and the inter­ested gene was amplified using PCR and RT-PCR methods.  PCR/ RT-PCR fragments were purified and cloned first in pTZ57R/T and then in pET15b expression vector. The expressed protein was verified using western blot method. Char­acterization of the expressed protein was performed bioinformatically.Results: Molecular evaluation revealed that the cloned LmTRYP6 gene (EU251502 encoded a predicted 184 amino acid long protein with a theoretical isoelectric point of 6.1101. Alignment showed a number of changes in amino acid composition including the replacement of highly conserved Trp177 by Cys in LmTRYP6 (ABX26130.Conclusion: So far no study has been done on this group, i.e.  TRYP6 gene, from tryparedoxin peroxidase family. The low homology with LmTRYP6 (LmjF15.1140 and vast array of differences observed in the gene under study (LmTRYP6; EU251502 could open new windows in the field of anti-Leishmania combat. Based on its important role in the viability and successful establishment of the parasite in the host organism it looks to be very good candi­date for vaccine development and any other sort of novel drug development.

  7. Generation of Anaphylatoxins by Human β-Tryptase from C3, C4, and C51

    Science.gov (United States)

    Fukuoka, Yoshihiro; Xia, Han-Zhang; Sanchez-Muñoz, Laura B.; Dellinger, Anthony L.; Escribano, Luis; Schwartz, Lawrence B.

    2009-01-01

    Both mast cells and complement participate in innate and acquired immunity. The current study examines whether β-tryptase, the major protease of human mast cells, can directly generate bioactive complement anaphylatoxins. Important variables included pH, monomeric vs tetrameric forms of β-tryptase, and the β-tryptase-activating polyanion. The B12 mAb was used to stabilize β-tryptase in its monomeric form. C3a and C4a were best generated from C3 and C4, respectively, by monomeric β-tryptase in the presence of low molecular weight dextran sulfate or heparin at acidic pH. High molecular weight polyanions increased degradation of these anaphylatoxins. C5a was optimally generated from C5 at acidic pH by β-tryptase monomers in the presence of high molecular weight dextran sulfate and heparin polyanions, but also was produced by β-tryptase tetramers under these conditions. Mass spectrometry verified that the molecular mass of each anaphylatoxin was correct. Both β-tryptase-generated C5a and C3a (but not C4a) were potent activators of human skin mast cells. These complement anaphylatoxins also could be generated by β-tryptase in releasates of activated skin mast cells. Of further biologic interest, β-tryptase also generated C3a from C3 in human plasma at acidic pH. These results suggest β-tryptase might generate complement anaphylatoxins in vivo at sites of inflammation, such as the airway of active asthma patients where the pH is acidic and where elevated levels of β-tryptase and complement anaphylatoxins are detected. PMID:18424754

  8. Tryptase-positive mast cells correlate with angiogenesis in early breast cancer patients.

    Science.gov (United States)

    Ranieri, Girolamo; Ammendola, Michele; Patruno, Rosa; Celano, Giuseppe; Zito, Francesco Alfredo; Montemurro, Severino; Rella, Addolorata; Di Lecce, Valentina; Gadaleta, Cosmo Damiano; Battista De Sarro, Giovanni; Ribatti, Domenico

    2009-07-01

    Literature data indicate that mast cells (MCs) are involved in tumor angiogenesis due to the release of several pro-angiogenetic factors among which tryptase, a serine protease stored in MCs granules, is one of the most active. However, no data are available concerning the role of MCs in angiogenesis in primary human breast cancer. In this study, we have evaluated the correlations between the number of MCs positive to tryptase (MCDPT), the area occupied by MCs positive to tryptase (MCAPT) and microvascular density (MVD) and endothelial area (EA) in a series of 88 primary T1-3, N0-2 M0 female breast cancer, by means of immunohistochemistry and image analysis methods. Data demonstrated a significant (r = from 0.78 to 0.89; p-value from 0.001 to 0.002 by Pearson's analysis respectively) correlation between MCDPT, MCAPT, MVD, EA to each other. No correlation concerning MCDPT, MCAPT, MVD, EA and the main clinicopathological features was found. Our results suggest that tryptase-positive MCs play a role in breast cancer angiogenesis. In this context several tryptase inhibitors such as gabexate mesilate and nafamostat mesilate might be evaluated in clinical trials as a new anti-angiogenetic approach.

  9. Tryptase potentiates enteric nerve activation by histamine and serotonin: Relevance for the effects of mucosal biopsy supernatants from irritable bowel syndrome patients.

    Science.gov (United States)

    Ostertag, D; Annahazi, A; Krueger, D; Michel, K; Demir, I E; Ceyhan, G O; Zeller, F; Schemann, M

    2017-09-01

    We previously showed that mucosal biopsy supernatants from irritable bowel syndrome patients activated neurons despite low concentrations of tryptase, histamine, and serotonin which individually would not cause spike discharge. We studied the potentiating responses between these mediators on excitability of enteric neurons. Calcium-imaging was performed using the calcium-sensitive dye Fluo-4 AM in human submucous plexus preparations from 45 individuals. Histamine, serotonin, and tryptase were applied alone and in combinations to evaluate nerve activation which was assessed by analyzing increase in intracellular Ca 2+ ([Ca 2+ ] i ), the proportion of responding neurons and the product of both defined as Ca-neuroindex (NI). Protease activated receptor (PAR) 2 activating peptide, PAR2 antagonist and the serine protease-inhibitor FUT-175 were used to particularly investigate the role of proteases. Histamine or serotonin (1 μmol/L each) evoked only few small responses (median NI [25%/75%]: 0 [0/148]; 85 [0/705] respectively). Their combined application evoked statistically similar responses (216 [21/651]). Addition of the PAR2 activator tryptase induced a significantly higher Ca-NI (1401 [867/4075]) compared to individual application of tryptase or to coapplied histamine and serotonin. This synergistic potentiation was neither mimicked by PAR2 activating peptide nor reversed by the PAR2 antagonist GB83, but abolished by FUT-175. We observed synergistic potentiation between histamine, serotonin, and tryptase in enteric neurons, which is mediated by proteolytic activity rather than PAR2 activation. This explained neuronal activation by a cocktail of these mediators despite their low concentrations and despite a relatively small PAR2-mediated response in human submucous neurons. © 2017 John Wiley & Sons Ltd.

  10. Differences in sampling techniques on total post-mortem tryptase.

    Science.gov (United States)

    Tse, R; Garland, J; Kesha, K; Elstub, H; Cala, A D; Ahn, Y; Stables, S; Palmiere, C

    2017-11-20

    The measurement of mast cell tryptase is commonly used to support the diagnosis of anaphylaxis. In the post-mortem setting, the literature recommends sampling from peripheral blood sources (femoral blood) but does not specify the exact sampling technique. Sampling techniques vary between pathologists, and it is unclear whether different sampling techniques have any impact on post-mortem tryptase levels. The aim of this study is to compare the difference in femoral total post-mortem tryptase levels between two sampling techniques. A 6-month retrospective study comparing femoral total post-mortem tryptase levels between (1) aspirating femoral vessels with a needle and syringe prior to evisceration and (2) femoral vein cut down during evisceration. Twenty cases were identified, with three cases excluded from analysis. There was a statistically significant difference (paired t test, p sampling methods. The clinical significance of this finding and what factors may contribute to it are unclear. When requesting post-mortem tryptase, the pathologist should consider documenting the exact blood collection site and method used for collection. In addition, blood samples acquired by different techniques should not be mixed together and should be analyzed separately if possible.

  11. Increased mast cell tryptase in sudden infant death - anaphylaxis, hypoxia or artefact?

    Science.gov (United States)

    Edston, E; Gidlund, E; Wickman, M; Ribbing, H; Van Hage-Hamsten, M

    1999-12-01

    Increased concentrations of mast cell tryptase in post mortem blood have frequently been observed in sudden infant deaths but the cause of this has not yet been clarified. The aim was to evaluate factors (immunological, morphological and anamnestic data) behind the observed increase in mast cell tryptase in sudden infant deaths with elevated tryptase. Mast cell tryptase and total immunoglobulin (Ig) E were measured in post mortem sera from 44 infants younger than 1.5 years. Radioallergosorbent tests were performed for possible allergens (mixture for relevant food allergens, Phadiatop and latex). IgG subclasses, IgM, and complement factors (C3, C4 and factor B) were measured with radial immunodiffusion. Mast cells, labelled with antibodies against mast cell tryptase, were counted in the lungs and heart. The circumstances of death and medical history of the deceased infant and family were obtained through police and hospital records. In 40% of the SIDS cases tryptase was elevated (>10 microg/L). Total IgE in serum was increased in 33% compared with clinical reference values but showed no association with mast cell tryptase. RAST tests were positive in three cases. In one of these cases both tryptase and total IgE were elevated. The only variable that was associated with high tryptase values was prone position at death (P Children with elevated total IgE also displayed high concentrations of IgG1 and IgG2. Infants who died in the spring had significantly higher IgE than the others (P < or = 0.05). The results do not support the hypothesis that the elevated tryptase concentrations in sudden infant death are caused by allergy. The association between prone position at death and elevated tryptase could hypothetically be explained by mast cell degranulation due to, for example, a hypoxic stimulus in these infants.

  12. The autocrine role of tryptase in pressure overload-induced mast cell activation, chymase release and cardiac fibrosis

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2016-03-01

    Results and conclusion: The results indicate the presence of PAR-2 on MCs and that tryptase inhibition and nedocromil prevented TAC-induced fibrosis and increases in MC density, activation, and chymase release. Tryptase also significantly increased chymase concentration in ventricular slice culture media, which was prevented by the tryptase inhibitor. Hydroxyproline concentration in culture media was significantly increased with tryptase incubation as compared to the control group and the tryptase group incubated with nafamostat mesilate or chymostatin. We conclude that tryptase contributes to TAC-induced cardiac fibrosis primarily via activation of MCs and the amplified release of chymase.

  13. Diagnostic Value of Tryptase in Food Allergic Reactions: A Prospective Study of 160 Adult Peanut Challenges.

    Science.gov (United States)

    Dua, Shelley; Dowey, James; Foley, Loraine; Islam, Sabita; King, Yvonne; Ewan, Pamela; Clark, Andrew T

    2018-02-27

    Serum tryptase is useful in diagnosing drug and venom anaphylaxis. Its utility in food anaphylaxis is unknown. The objective of this study was to determine whether tryptase rises in food allergic reactions, optimal sampling time points, and a diagnostic cutoff for confirming a clinical reaction. Characterized peanut allergic patients were recruited and underwent up to 4 peanut challenges and 1 placebo challenge each. Tryptase was measured serially on challenge days both before (baseline) and during the challenge. The peak percentage tryptase rise (peak/baseline) was related to reaction severity. Receiver operating characteristic (ROC) curves were generated establishing an optimal diagnostic cutoff. Tryptase was analyzed in 160 reactive (9% anaphylaxis) and 45 nonreactive (placebo) challenges in 50 adults aged 18 to 39 years. Tryptase rose above the normal range (11.4 ng/mL) in 4 of 160 reactions. When compared with baseline levels, a rise was observed in 100 of 160 (62.5%) reactions and 0 of 45 placebo challenges. The median rise (95% confidence interval [CI]) for all reactions was 25% (13.3% to 33.3%) and 70.8% (33.3% to 300%) during anaphylaxis. Peak levels occurred at 2 hours and correlated with severity (P food allergic reactions, and correlates with symptom severity. Comparing peak reaction levels at 2 hours with baseline is essential. A rise in tryptase of 30% is associated with food allergic reactions. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  14. Immunoprofiling of human uterine mast cells identifies three phenotypes and expression of ERβ and glucocorticoid receptor [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bianca De Leo

    2017-05-01

    Full Text Available Background: Human mast cells (MCs are long-lived tissue-resident immune cells characterised by granules containing the proteases chymase and/or tryptase. Their phenotype is modulated by their tissue microenvironment. The human uterus has an outer muscular layer (the myometrium surrounding the endometrium, both of which play an important role in supporting a pregnancy. The endometrium is a sex steroid target tissue consisting of epithelial cells (luminal, glandular surrounded by a multicellular stroma, with the latter containing an extensive vascular compartment as well as fluctuating populations of immune cells that play an important role in regulating tissue function. The role of MCs in the human uterus is poorly understood with little known about their regulation or the impact of steroids on their differentiation status. The current study had two aims: 1 To investigate the spatial and temporal location of uterine MCs and determine their phenotype; 2 To determine whether MCs express receptors for steroids implicated in uterine function, including oestrogen (ERα, ERβ, progesterone (PR and glucocorticoids (GR. Methods: Tissue samples from women (n=46 were used for RNA extraction or fixed for immunohistochemistry. Results: Messenger RNAs encoded by TPSAB1 (tryptase and CMA1 (chymase were detected in endometrial tissue homogenates. Immunohistochemistry revealed the relative abundance of tryptase MCs was myometrium>basal endometrium>functional endometrium. We show for the first time that uterine MCs are predominantly of the classical MC subtypes: (positive, +; negative, - tryptase+/chymase- and tryptase+/chymase+, but a third subtype was also identified (tryptase-/chymase+. Tryptase+ MCs were of an ERβ+/ERα-/PR-/GR+ phenotype mirroring other uterine immune cell populations, including natural killer cells. Conclusions: Endometrial tissue resident immune MCs have three protease-specific phenotypes. Expression of both ERβ and GR in MCs mirrors

  15. Serum concentrations of mast cell tryptase are reduced in heavy drinkers

    DEFF Research Database (Denmark)

    Beceiro, Carmen; Campos, Joaquín; Valcarcel, Maria-Angeles

    2015-01-01

    BACKGROUND: Baseline serum tryptase concentrations are commonly used in clinical practice as a marker of the body's mast cell burden. This study aimed to investigate serum tryptase concentrations in heavy drinkers. METHODS: Serum tryptase concentrations were determined in 126 heavy drinkers (75...... test positivity) was not associated with serum tryptase concentrations in heavy drinkers. CONCLUSIONS: Serum concentrations of mast cell tryptase are lower in heavy drinkers than in healthy controls....

  16. The utility of serum tryptase in the diagnosis of food-induced anaphylaxis.

    Science.gov (United States)

    Wongkaewpothong, Patcharaporn; Pacharn, Punchama; Sripramong, Chaweewan; Boonchoo, Siribangon; Piboonpocanun, Surapon; Visitsunthorn, Nualanong; Vichyanond, Pakit; Jirapongsananuruk, Orathai

    2014-07-01

    This study investigates the utility of serum tryptase for the confirmation of shrimp-induced anaphylaxis. Patients with a history of shrimp allergy and positive skin prick tests (SPT) to commercial shrimp extract were recruited for shrimp challenges. Serum total tryptase was obtained at baseline and 60 min (peak) after the onset of symptoms. Thirty-nine patients were challenged. There were 12 patients with anaphylaxis, 20 with mild reactions and 7 without symptoms (control group). Characteristic features and baseline tryptase were not different among the 3 groups. The peak tryptase levels were higher than the baseline in anaphylaxis and mild reaction groups (P11.4 µg/L with 17% sensitivity, 100% specificity, infinity positive LR and 0.83 negative LR. The best cut-off for delta-tryptase was ≥0.8 µg/L with 83% sensitivity, 93% specificity, 11.86 positive LR and 0.18 negative LR. The best cut-off for tryptase ratio was ≥1.5 with 92% sensitivity, 96% specificity, 23 positive LR and 0.08 negative LR. The peak tryptase level should be compared with the baseline value to confirm anaphylaxis. The tryptase ratio provide the best sensitivity, specificity, positive and negative LR than a single peak serum tryptase for the confirmation of shrimp-induced anaphylaxis.

  17. Effect of general anesthesia and orthopedic surgery on serum tryptase

    DEFF Research Database (Denmark)

    Garvey, Lene H; Bech, Birgitte Louise; Mosbech, Holger

    2010-01-01

    Mast cell tryptase is used clinically in the evaluation of anaphylaxis during anesthesia, because symptoms and signs of anaphylaxis are often masked by the effect of anesthesia. No larger studies have examined whether surgery and anesthesia affect serum tryptase. The aim of this study...... was to investigate the effect of anesthesia and surgery on serum tryptase in the absence of anaphylaxis....

  18. Mast cell-restricted, tetramer-forming tryptases induce aggrecanolysis in articular cartilage by activating matrix metalloproteinase-3 and -13 zymogens.

    Science.gov (United States)

    Magarinos, Natalia J; Bryant, Katherine J; Fosang, Amanda J; Adachi, Roberto; Stevens, Richard L; McNeil, H Patrick

    2013-08-01

    Mouse mast cell protease (mMCP)-6-null C57BL/6 mice lost less aggrecan proteoglycan from the extracellular matrix of their articular cartilage during inflammatory arthritis than wild-type (WT) C57BL/6 mice, suggesting that this mast cell (MC)-specific mouse tryptase plays prominent roles in articular cartilage catabolism. We used ex vivo mouse femoral head explants to determine how mMCP-6 and its human ortholog hTryptase-β mediate aggrecanolysis. Exposure of the explants to recombinant hTryptase-β, recombinant mMCP-6, or lysates harvested from WT mouse peritoneal MCs (PMCs) significantly increased the levels of enzymatically active matrix metalloproteinases (MMP) in cartilage and significantly induced aggrecan loss into the conditioned media, relative to replicate explants exposed to medium alone or lysates collected from mMCP-6-null PMCs. Treatment of cartilage explants with tetramer-forming tryptases generated aggrecan fragments that contained C-terminal DIPEN and N-terminal FFGVG neoepitopes, consistent with MMP-dependent aggrecanolysis. In support of these data, hTryptase-β was unable to induce aggrecan release from the femoral head explants obtained from Chloe mice that resist MMP cleavage at the DIPEN↓FFGVG site in the interglobular domain of aggrecan. In addition, the abilities of mMCP-6-containing lysates from WT PMCs to induce aggrecanolysis were prevented by inhibitors of MMP-3 and MMP-13. Finally, recombinant hTryptase-β was able to activate latent pro-MMP-3 and pro-MMP-13 in vitro. The accumulated data suggest that human and mouse tetramer-forming tryptases are MMP convertases that mediate cartilage damage and the proteolytic loss of aggrecan proteoglycans in arthritis, in part, by activating the zymogen forms of MMP-3 and MMP-13, which are constitutively present in articular cartilage.

  19. Immunoexpression of tryptase-positive mast cells in periapical granulomas and radicular cysts.

    Science.gov (United States)

    Costa Neto, H; de Andrade, A L D L; Gordón-Núñez, M A; Freitas, R de A; Galvão, H C

    2015-08-01

    To evaluate and compare the immunoexpression of tryptase in samples of periapical granulomas (PGs) and radicular cysts (RCs) correlating it with the type of lesion, localization, intensity of the inflammatory infiltrate and thickness of the cystic epithelial lining, in order to gain insight into the phlogistic role of these cells in the lesions studied. Twenty-five PGs and twenty-five RCs obtained from human teeth without endodontic treatment were submitted to morphological and immunohistochemical analysis using anti-tryptase antibody. Mast cells were identified and counted in three regions: intra-epithelial, central/superficial and deep portions. The data were analysed using the Mann-Whitney U-test (P periapical lesions in a larger number in periapical granulomas than in radicular cysts, in both central/superficial and deep regions. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Humoral and In Vivo Cellular Immunity against the Raw Insect-Derived Recombinant Leishmania infantum Antigens KMPII, TRYP, LACK, and papLe22 in Dogs from an Endemic Area

    Science.gov (United States)

    Todolí, Felicitat; Solano-Gallego, Laia; de Juan, Rafael; Morell, Pere; del Carmen Núñez, Maria; Lasa, Rodrigo; Gómez-Sebastián, Silvia; Escribano, José M.; Alberola, Jordi; Rodríguez-Cortés, Alhelí

    2010-01-01

    Leishmania infantum causes visceral leishmaniasis, a severe zoonotic and systemic disease that is fatal if left untreated. Identification of the antigens involved in Leishmania-specific protective immune response is a research priority for the development of effective control measures. For this purpose, we evaluated, in 27 dogs from an enzootic zone, specific humoral and cellular immune response by delayed-type hypersensitivity (DTH) skin test both against total L. infantum antigen and the raw Trichoplusia ni insect-derived kinetoplastid membrane protein-11 (rKMPII), tryparedoxin peroxidase (rTRYP), Leishmania homologue of receptors for activated C kinase (rLACK), and 22-kDa potentially aggravating protein of Leishmania (rpapLe22) antigens from this parasite. rTRYP induced the highest number of positive DTH responses (55% of leishmanin skin test [LST]-positive dogs), showing that TRYP antigen is an important T cell immunogen, and it could be a promising vaccine candidate against this disease. When TRYP-DTH and KMPII-DTH tests were evaluated in parallel, 82% of LST-positive dogs were detected, suggesting that both antigens could be considered as components of a standardized DTH immunodiagnostic tool for dogs. PMID:21118936

  1. Dual functionality of β-tryptase protomers as both proteases and cofactors in the active tetramer.

    Science.gov (United States)

    Maun, Henry R; Liu, Peter S; Franke, Yvonne; Eigenbrot, Charles; Forrest, William F; Schwartz, Lawrence B; Lazarus, Robert A

    2018-04-16

    Human β-tryptase, a tetrameric trypsin-like serine protease, is an important mediator of the allergic inflammatory responses in asthma. During acute hypersensitivity reactions, mast cells degranulate, releasing active tetramer as a complex with proteoglycans. Extensive efforts have focused on developing therapeutic β-tryptase inhibitors, but its unique activation mechanism is less well explored. Tryptase is active only after proteolytic removal of the pro-domain followed by tetramer formation via two distinct symmetry-related interfaces. We show that the cleaved I16G mutant cannot tetramerize, likely due to impaired insertion of its N-terminus into its 'activation pocket', indicating allosteric linkage at multiple sites on each protomer. We engineered cysteines into each of the two distinct interfaces (Y75C for small or I99C for large) to assess the activity of each tetramer and disulfide-locked dimer. Using size-exclusion chromatography and enzymatic assays, we demonstrate that the two large tetramer interfaces regulate enzymatic activity, elucidating the importance of this protein-protein interaction for allosteric regulation. Notably, the I99C large interface dimer is active, even in the absence of heparin. We show that a monomeric β-tryptase mutant (I99C*:Y75A:Y37bA where C* is cysteinylated Cys99) cannot form a dimer or tetramer, yet is active, but only in the presence of heparin. Thus heparin both stabilizes the tetramer and allosterically conditions the active site. We hypothesize that each β-tryptase protomer in the tetramer has two distinct roles, acting both as a protease and as a cofactor for its neighboring protomer, to allosterically regulate enzymatic activity, providing a rationale for direct correlation of tetramer stability with proteolytic activity. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.

  2. Elevated Serum Tryptase and Endothelin in Patients with ST Segment Elevation Myocardial Infarction: Preliminary Report.

    Science.gov (United States)

    Lewicki, Lukasz; Siebert, Janusz; Marek-Trzonkowska, Natalia; Masiewicz, Emilia; Kolinski, Tomasz; Reiwer-Gostomska, Magdalena; Targonski, Radoslaw; Trzonkowski, Piotr

    2015-01-01

    An inflammatory response plays a crucial role in myocardial damage after an acute myocardial infarction. To measure serum concentrations of several mediators in patients with an acute myocardial infarction (STEMI) and to assess their potential relationship with a risk of coronary instability. The 33 patients with STEMI and 19 healthy volunteers were analyzed. The clinical data were obtained; as well serum concentrations of tryptase, endothelin (ET-1), angiogenin, soluble c-kit, and PDGF were measured. Patients with STEMI had higher serum tryptase and ET-1 than healthy volunteers (2,5 ± 0,4 ng/mL versus 1,1 ± 0,4 ng/mL and 0,7 ± 0,1 ng/mL versus 0,3 ± 0,1 ng/mL, resp.). Subjects with significant lesion in left anterior descending artery (LAD) had lower serum ET-1 compared to those with normal LAD (0,6 ± 0,2 pg/mL versus 0,9 ± 0,4 pg/mL). Patients with three-vessel coronary artery disease (CAD) had higher level of soluble c-kit compared to those with one- or two-vessel CAD: 19,9 ± 24,1 ng/mL versus 5,6 ± 1,9 ng/mL. Elevated serum tryptase and ET-1 may be markers of increased coronary instability; some cytokines may be related to the extension of CAD.

  3. Copper Regulates Maturation and Expression of an MITF:Tryptase Axis in Mast Cells.

    Science.gov (United States)

    Hu Frisk, Jun Mei; Kjellén, Lena; Kaler, Stephen G; Pejler, Gunnar; Öhrvik, Helena

    2017-12-15

    Copper has previously been implicated in the regulation of immune responses, but the impact of this metal on mast cells is poorly understood. In this article, we address this issue and show that copper starvation of mast cells causes increased granule maturation, as indicated by higher proteoglycan content, stronger metachromatic staining, and altered ultrastructure in comparison with nontreated cells, whereas copper overload has the opposite effects. In contrast, copper status did not impact storage of histamine in mast cells, nor did alterations in copper levels affect the ability of mast cells to degranulate in response to IgER cross-linking. A striking finding was decreased tryptase content in mast cells with copper overload, whereas copper starvation increased tryptase content. These effects were associated with corresponding shifts in tryptase mRNA levels, suggesting that copper affects tryptase gene regulation. Mechanistically, we found that alterations in copper status affected the expression of microphthalmia-associated transcription factor, a transcription factor critical for driving tryptase expression. We also found evidence supporting the concept that the effects on microphthalmia-associated transcription factor are dependent on copper-mediated modulation of MAPK signaling. Finally, we show that, in MEDNIK syndrome, a condition associated with low copper levels and a hyperallergenic skin phenotype, including pruritis and dermatitis, the number of tryptase-positive mast cells is increased. Taken together, our findings reveal a hitherto unrecognized role for copper in the regulation of mast cell gene expression and maturation. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. Postmortem serum levels of tryptase and total and specific IgE in fatal asthma.

    Science.gov (United States)

    Salkie, M L; Mitchell, I; Revers, C W; Karkhanis, A; Butt, J; Tough, S; Green, F H

    1998-01-01

    Sera were obtained postmortem from 55 subjects classified into three groups; death due to asthma (FA, n = 21), asthmatic but death not due to asthma (NFA, n = 24) and a nonasthmatic control group (NAC, n = 10). A full autopsy was performed on all cases and a medical history, including details of allergies, was obtained by questionnaire from the next of kin. Grading of asthma severity by either questionnaire or autopsy was comparable (tP = 0.435, p > 0.05) and the mean pathology-grade was significantly higher for the FA group (3.375) compared to the NFA group (2.375), p 2.0 micrograms/L) in 21/55 sera (38%) and there was no significant difference between the groups. ROC plots showed that tryptase levels did not discriminate between the FA and NFA groups, even if specimens were collected within 24 hours after death. Total IgE was significantly elevated in the FA group (geometric mean 140.3 kU/L) compared to the other two groups (NFA 30.2 kU/L, NAC 9.4 kU/L), p = 0.05. Fatal asthmatics also had a greater positivity (67%) to a screen for common inhalant allergens than did the other groups (NFA 30%, NAC 20%). Sera with a positive screen were tested against a panel of 10 common aero-allergens. Each sample was then assigned a number (N) and a score (S), dependent on either the number of allergens positive (N) or the total sum of pluses for all allergens (S). Both the N and S values were higher for the FA group (N = 98, S = 264) than the NFA group (N = 52, S = 151) and NAC group (N = 4, S = 8). The ratio (S/N) which gives an index (I) was 2.69, 2.90, and 2.00, respectively. Tryptase was poorly correlated to the total IgE level (r = 0.036); however, mean values for N and S were significantly different (N 6.81, S 4.50, and N 19.25, S 11.5, p or = 2.0 micrograms/L, respectively. We conclude that total and specific IgE may be useful predictors of asthma severity but that postmortem tryptase is not useful in the diagnosis of a fatal asthmatic attack.

  5. Skin tags: A link between lesional mast cell count/tryptase expression and obesity and dyslipidemia

    Directory of Open Access Journals (Sweden)

    Samar Abdallah M Salem

    2013-01-01

    Full Text Available Background:The etiology of skin tags (STs is not fully understood. A relation to diabetes mellitus and obesity was suggested. Few studies of possible mast cells (MCs involvement were reported. Tyrptase is a mast cell mediator and a potent fibroblast growth factor. It may provide a molecular link between mast cell activation and fibrosis. Aims: The aim was to assess clinical and laboratory findings in patients with STs, and the possible link between obesity, dyslipidemia, and lesional MC count/tryptase expression. Materials and Methods: A total of 20 patients with STs were subjected to clinical examination, estimation of body mass index (BMI, fasting blood glucose (FBG, postprandial blood glucose (PPBG, serum cholesterol and triglycerides, abdominal ultrasound for fatty liver assessment, in addition to study of MCs through staining for MC tryptase in two skin biopsies; lesional and nonlesional (control. Results:All patients showed abnormally high BMI and hypertriglyceridemia, with abnormal sonographic pattern in 15 patients (75%. STs number positively correlated with the age of patients. STs showed significantly higher MC counts and tryptase expression, compared with control skin ( P < 0.001, with no correlation of the STs number or MC count with BMI, FBG, PPBG or serum cholesterol. Obese patients showed a significantly higher MC count than overweight and there was a positive correlation between MC count and serum triglycerides. Axilla and under breast STs showed a higher MC count compared with other sites. Conclusions:STs seem to be related to obesity and hypertriglyceridemia. MCs with their tryptase are possibly involved in pathogenesis of STs. MC count is related to the associated factors; obesity and serum triglycerides. MC tryptase expression is a reliable method for accurate tissue MC counting.

  6. Histamine and tryptase in nasal lavage fluid after allergen challenge

    DEFF Research Database (Denmark)

    Jacobi, H H; Skov, P S; Poulsen, L K

    1999-01-01

    BACKGROUND: Antihistamines (H1-receptor antagonists) act by competitive antagonism of histamine at H1-receptors. In addition, high concentrations of some antihistamines inhibit allergen-induced histamine release from mast cells in vitro. OBJECTIVE: The purpose of this study was to determine...... the effect of intranasal azelastine or systemic cetirizine (both potent antihistamines) on the allergen-induced release of mast-cell mediators from the human nasal mucosa in vivo. METHODS: Patients allergic to birch pollen (n = 11) and control subjects not allergic to birch pollen (n = 5) were included......, nasal allergen challenges were performed, and the number of sneezes were counted. In addition, nasal lavage fluid was collected, and the levels of mast-cell mediators (histamine and tryptase) were measured. RESULTS: The allergen challenge of patients allergic to pollen produced sneezing...

  7. Human Lung Mast Cell Products Regulate Airway Smooth Muscle CXCL10 Levels.

    Science.gov (United States)

    Alkhouri, H; Cha, V; Tong, K; Moir, L M; Armour, C L; Hughes, J M

    2014-01-01

    In asthma, the airway smooth muscle (ASM) produces CXCL10 which may attract CXCR3(+) mast/T cells to it. Our aim was to investigate the effects of mast cell products on ASM cell CXCL10 production. ASM cells from people with and without asthma were stimulated with IL-1 β , TNF- α , and/or IFN γ and treated with histamine (1-100  μ M) ± chlorpheniramine (H1R antagonist; 1  μ M) or ranitidine (H2R antagonist; 50  μ M) or tryptase (1 nM) ± leupeptin (serine protease inhibitor; 50  μ M), heat-inactivated tryptase, or vehicle for 4 h or 24 h. Human lung mast cells (MC) were isolated and activated with IgE/anti-IgE and supernatants were collected after 2 h or 24 h. The supernatants were added to ASM cells for 48 h and ASM cell CXCL10 production detected using ELISA (protein) and real-time PCR (mRNA). Histamine reduced IL-1 β /TNF- α -induced CXCL10 protein, but not mRNA, levels independent of H1 and H2 receptor activation, whereas tryptase and MC 2 h supernatants reduced all cytokine-induced CXCL10. Tryptase also reduced CXCL10 levels in a cell-free system. Leupeptin inhibited the effects of tryptase and MC 2 h supernatants. MC 24 h supernatants contained TNF- α and amplified IFN γ -induced ASM cell CXCL10 production. This is the first evidence that MC can regulate ASM cell CXCL10 production and its degradation. Thus MC may regulate airway myositis in asthma.

  8. Characterization of inflammatory cell infiltrate in human dental pulpitis.

    Science.gov (United States)

    Bruno, K F; Silva, J A; Silva, T A; Batista, A C; Alencar, A H G; Estrela, C

    2010-11-01

    To evaluate the microscopic characteristics and densities (per mm(2) ) of tryptase(+) mast cells, CD4(+) T helper lymphocytes, CD45RO(+) memory T lymphocytes, foxp3(+) T regulatory lymphocytes, CD20(+) B lymphocytes, CD68(+) macrophages, and CD31(+) blood vessels in human dental pulpitis (n=38) and healthy pulpal tissue (n=6). The pulps of 38 human teeth with a clinical diagnosis of irreversible pulpitis were removed by pulpectomy. The pulp tissue was immersed in 10% buffered formalin for evaluation using light microscopy. Tryptase, CD4, CD45RO, foxp3, CD20, CD68, and CD31 expressions were analysed using immunohistochemistry; other microscopic features, such as intensity of inflammatory infiltrate and collagen deposition, were evaluated using haematoxylin and eosin stain. Wilcoxon and Mann-Whitney tests were used for statistical analysis. The significance level was set at α=5%. Two microscopic patterns of pulpitis were found: group 1 (G1) (n=15) had an intense inflammatory infiltrate and mild collagen deposition; conversely, group 2 (G2) (n=23) had a scarce inflammatory infiltrate and intense collagen deposition. The numbers of CD68(+) macrophages (P=0.004) and CD20(+) B (P=0.068) lymphocytes and the density of blood vessels (P=0.002) were higher in G1 than in G2. However, a similar number of CD4(+) and CD45RO(+) T lymphocytes was found in both groups (P>0.05). When present, tryptase(+) mast cells were equally distributed in G1 and G2, whereas foxp3(+) T regulatory lymphocytes were detected in 59% and 14% of the samples of G1 and G2. Controls exhibited lower numbers of foxp3, tryptase, CD4, CD45RO, CD68 and CD20 positive cells than G1 and G2. Irreversible pulpitis had distinct microscopic features with important quantitative and qualitative differences in inflammatory cell infiltration. © 2010 International Endodontic Journal.

  9. Development and validation of a simple method for the extraction of human skin melanocytes.

    Science.gov (United States)

    Wang, Yinjuan; Tissot, Marion; Rolin, Gwenaël; Muret, Patrice; Robin, Sophie; Berthon, Jean-Yves; He, Li; Humbert, Philippe; Viennet, Céline

    2018-03-21

    Primary melanocytes in culture are useful models for studying epidermal pigmentation and efficacy of melanogenic compounds, or developing advanced therapy medicinal products. Cell extraction is an inevitable and critical step in the establishment of cell cultures. Many enzymatic methods for extracting and growing cells derived from human skin, such as melanocytes, are described in literature. They are usually based on two enzymatic steps, Trypsin in combination with Dispase, in order to separate dermis from epidermis and subsequently to provide a suspension of epidermal cells. The objective of this work was to develop and validate an extraction method of human skin melanocytes being simple, effective and applicable to smaller skin samples, and avoiding animal reagents. TrypLE™ product was tested on very limited size of human skin, equivalent of multiple 3-mm punch biopsies, and was compared to Trypsin/Dispase enzymes. Functionality of extracted cells was evaluated by analysis of viability, morphology and melanin production. In comparison with Trypsin/Dispase incubation method, the main advantages of TrypLE™ incubation method were the easier of separation between dermis and epidermis and the higher population of melanocytes after extraction. Both protocols preserved morphological and biological characteristics of melanocytes. The minimum size of skin sample that allowed the extraction of functional cells was 6 × 3-mm punch biopsies (e.g., 42 mm 2 ) whatever the method used. In conclusion, this new procedure based on TrypLE™ incubation would be suitable for establishment of optimal primary melanocytes cultures for clinical applications and research.

  10. Correlations Between the Density of Tryptase Positive Mast Cells (DMCT and that of New Blood Vessels (CD105+ in Patients with Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Micu Gianina Viorica

    2016-06-01

    Full Text Available Mast cells proteases, tryptase and chymase are directly involved in the growth and progression of solid tumors due to their important role in tumor angiogenesis. We examined the density of tryptase positive mast cells and the mean density of new blood vessels in gastric malignant tumors of patients with and without Helicobacter pylori infection, using immunohistochemical staining for tryptase (for mast cells and CD 105 (for new vessels. Tryptase and CD 105 expression was detected in gastrectomy specimens. In this study, mast cell density correlates with angiogenesis and the growth and progression of gastric cancer. It also shows that the participation of Helicobacter pylori infection in the growth and progress of gastric neoplasia is due to an increase of peritumoral angiogenesis, with subsequent local and distant tumor spread and perivascular growth, but without perineural and nodal involvement.

  11. Relevance of histamine and tryptase concentrations in nasal secretions after nasal challenges with phosphate buffered saline and allergen

    Directory of Open Access Journals (Sweden)

    D. Wang

    1995-01-01

    Full Text Available In this prospective study, a quantitative determination of histamine and tryptase in nasal secretions after nasal phosphate buffered saline (PBS and allergen challenge was performed in 18 atopic patients who were compared with ten non-allergic healthy volunteers. The aim of the study was to determine the normal and pathological concentrations of these important mediators in nasal secretions. The second objective was to test the relevance of these two mast cell secreted mediators after nasal challenge. Results showed that the concentrations of tryptase in almost all samples were under the minimal detection limit (< 0.5 μU/g and only a sigrtificant increase of tryptase (median, 28 μU/g occurred immediately after nasal allergen challenge in the patient group. Histamine concentration significantly increased after every nasal PBS challenge (median, 69 ng/g after first PBS challenge and 165 ng/g after second PBS challenge in the control group, as well as in the patient group after both PBS (median, 69 ng/g and allergen (median, 214 ng/g challenge. On the other hand, a rapid onset of sneezing and increase in nasal airway resistance was experienced only in the patient group after nasal allergen challenge, but did not occur after PBS challenge even though the histamine concentrations significantly increased in both groups. This study suggests that tryptase is a more preferable marker than histamine in quantitative monitoring of mast cell activation especially during the early phase nasal allergic reaction.

  12. Emerging Roles for MAS-Related G Protein-Coupled Receptor-X2 in Host Defense Peptide, Opioid, and Neuropeptide-Mediated Inflammatory Reactions.

    Science.gov (United States)

    Ali, Hydar

    2017-01-01

    Mast cells (MCs) are tissue-resident immune cells that contribute to host defense but are best known for their roles in allergic and inflammatory diseases. In humans, MCs are divided into two subtypes based on the protease content of their secretory granules. Thus, human lung MCs contain only tryptase and are known as MC T , whereas skin MCs contain both tryptase and chymase and are known as MC TC . Patients with severe asthma display elevated MCs in the lung, which undergo phenotypic change from MC T to MC TC . Although the human genome contains four Mas related G protein coupled receptor X (MRGPRX) genes, an important feature of MC TC is that they selectively express MRGPRX2. It is activated by antimicrobial host defense peptides such as human β-defensins and the cathelicidin LL-37 and likely contributes to host defense. MRGPRX2 is also a receptor for the neuropeptide substance P, major basic protein, eosinophil peroxidase, opioids, and many FDA-approved cationic drugs. Increased expression of MRGPRX2 or enhanced downstream signaling likely contributes to chronic inflammatory diseases such as rosacea, atopic dermatitis, chronic urticaria, and severe asthma. In this chapter, I will discuss the expression profile and function of MRGPRX1-4 and review the emerging roles of MRGPRX2 on host defense, chronic inflammatory diseases, and drug-induced pseudoallergic reactions. I will also examine the novel aspects of MRGPRX2 signaling in MCs as it related to degranulation and review the mechanisms of its regulation. © 2017 Elsevier Inc. All rights reserved.

  13. Serum Total Tryptase Level Confirms Itself as a More Reliable Marker of Mast Cells Burden in Mast Cell Leukaemia (Aleukaemic Variant

    Directory of Open Access Journals (Sweden)

    P. Savini

    2015-01-01

    Full Text Available Mast cell leukemia (MCL is a very rare form of systemic mastocytosis (SM with a short median survival of 6 months. We describe a case of a 65-year-old woman with aleukaemic variant of MCL with a very high serum total tryptase level of 2255 μg/L at diagnosis, which occurred following an episode of hypotensive shock. She fulfilled the diagnostic criteria of SM, with a bone marrow smear infiltration of 50–60% of atypical mast cells (MCs. She tested negative for the KIT D816V mutation, without any sign of organ damage (no B- or C-findings and only few mediator-related symptoms. She was treated with antihistamine alone and then with imatinib for the appearance of anemia. She maintained stable tryptase level and a very indolent clinical course for twenty-two months; then, she suddenly progressed to acute MCL with a serum tryptase level up to 12960 μg/L. The patient died due to haemorrhagic diathesis twenty-four months after diagnosis. This clinical case maybe represents an example of the chronic form of mast cell leukemia, described as unpredictable disease, in which the serum total tryptase level has confirmed itself as a reliable marker of mast cells burden regardless of the presence of other signs or symptoms.

  14. Identification of metabolites of the tryptase inhibitor CRA-9249: observation of a metabolite derived from an unexpected hydroxylation pathway.

    Science.gov (United States)

    Yu, Walter; Dener, Jeffrey M; Dickman, Daniel A; Grothaus, Paul; Ling, Yun; Liu, Liang; Havel, Chris; Malesky, Kimberly; Mahajan, Tania; O'Brian, Colin; Shelton, Emma J; Sperandio, David; Tong, Zhiwei; Yee, Robert; Mordenti, Joyce J

    2006-08-01

    The metabolites of the tryptase inhibitor CRA-9249 were identified after exposure to liver microsomes. CRA-9249 was found to be degraded rapidly in liver microsomes from rabbit, dog, cynomolgus monkey, and human, and less rapidly in microsomes from rat. The key metabolites included cleavage of an aryl ether, in addition to an unexpected hydroxylation of the amide side chain adjacent to the amide nitrogen. The chemical structures of both metabolites were confirmed by synthesis and comparison to material isolated from the liver microsomes. Several suspected hydroxylated metabolites were also synthesized and analyzed as part of the structure identification process.

  15. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    Science.gov (United States)

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs. Copyright © 2015 the American Physiological Society.

  16. Mast cell mediator tryptase levels after inhalation or intravenous administration of high doses pharmaceutically prepared heroin

    NARCIS (Netherlands)

    Rook, E. J.; van Zanten, A. P.; van den Brink, W.; van Ree, J. M.; Beijnen, J. H.

    2006-01-01

    BACKGROUND: Opioids like morphine and heroin induce mast cell degranulation in vitro. The release of mast cell mediators like histamine and tryptase may lead to allergic symptoms. In this study it was investigated whether mast cell mediator release also occurs in vivo in addicted patients who

  17. Added sensitivity of component-resolved diagnosis in hymenoptera venom-allergic patients with elevated serum tryptase and/or mastocytosis

    DEFF Research Database (Denmark)

    Michel, J B; Brockow, K; Darsow, U

    2016-01-01

    BACKGROUND: Anaphylaxis caused by hymenoptera venom allergy is associated with elevation of baseline serum tryptase (sBT) and/or mastocytosis in about 5% of patients. Up to now, no information has become available on single venom allergen sIgE reactivity and the usefulness of component......-resolved approaches to diagnose this high-risk patient group. To address the component-resolved sIgE sensitization pattern and diagnostic sensitivity in hymenoptera venom-allergic patients with elevated sBT levels and/or mastocytosis, a panel of yellow jacket and honeybee venom allergens was applied on a widely used...... IgE immunoassay platform. METHODS: Fifty-three patients with mastocytosis and/or elevated sBT tryptase level and systemic reactions to hymenoptera venoms were analyzed for their IgE reactivity to recombinant yellow jacket and honeybee venom allergens by Immulite3 g. RESULTS: sIgE reactivity to Ves v...

  18. TRYPTASE OF ORAL LIQUID AND IgE-ANTIBODIES AS A MARKER OF ALLERGIC INFLAMMATION IN THE ORAL MUCOSA

    Directory of Open Access Journals (Sweden)

    I. Yu. Karpuk

    2018-01-01

    Full Text Available The goal of present study was to determine the levels of mast cell tryptase (MCT in whole saliva, and blood serum IgE antibodies in patients with intolerance for dental prosthetic materials (IDM before and after removal of prosthetic constructs. We have conducted examination of the patients suffering from the IDM symptoms, who were divided into 2 groups depending on the time span between the end of prosthetic treatment and emergence of pathological symptoms: group 1 (n = 19, 1 to 14 days (symptoms emerged immediately after treatment; group 2, (n = 18, IDM symptoms occuring 6 months to 5 years later; group 3 (n = 16, controls without complaints for IDM. Whole saliva (WS samples were collected before removal of prosthetic constructs and 1 month later. In group 1, salivary MCT was detected in 16 subjects (84.2% before removal of prosthetic constructs, while 1 month after MCT not detectable in saliva (p < 0.001. Salivary MCT in control group was not detected both before and after removal of prosthetic constructions. Hence, mast cell tryptase in whole saliva could be a diagnostic marker for intolerance to dental materials. In group 1 of the patients, we detected IgE antibodies to Ni-HSA in 78.9% of patients, IgE antibodies to Cr-HSA in 68.4% of patients and IgE to Co-HSA in 52.6% of patients. Salivary MCT levels strongly correlated with IgE levels to Ni-HSA (Rspearman = 0.9; p < 0.05, showing moderate correlation with Cr-HSA (Rspearman = 0.7; p < 0.05. The data obtained suggest some prevalence of immediate type immune reaction against dental materials. Notable local increase of MCT level could be an important diagnostic marker of local inflammatory process initiation. MCT in whole saliva was found only in 3 patients (16.7% from group 2; those had IgE antibodies to metal ions in blood serum, thus indicating IgE-dependent reaction type. Other patients from group 2 were likely to develop a different type of allergic reaction, e. g. delayed or

  19. Immunomodulatory activity of interleukin-27 in human chronic periapical diseases.

    Science.gov (United States)

    Li, Juan; Wang, Rong; Huang, Shi-Guang

    2017-01-01

    This study aims to observe expression of IL-27 on different cells in periapical tissues of different types of human chronic periapical diseases. Periapical tissue specimens of 60 donors, including healthy control (n=20), periapical granuloma group (n=20) and radicular cysts group (n=20), were fixed in 10% buffered formalin, stained with hematoxylin and eosin for histopathology. Then specimens were stained with double- immuno-fluorescence assay for identification of IL-27-tryptase (mast cells, MCs), IL-27-CD14 (mononuclear phagocyte cells, MPs) and IL-27-CD31 (endothelial cells, ECs) double-positive cells in periapical tissues. The results indicated that compared with healthy control, the densities (cells/mm 2 ) of IL-27-tryptase, IL-27-CD14 and IL-27-CD31 double-positive cells were significantly increased in human chronic periapical diseases (periapical granuloma group and radicular cysts group) ( P cysts group was significantly higher than those in periapical granuloma group ( P periapical granuloma group had no significant difference with those in radicular cysts group ( P =0.170 and 0.138, respectively). IL-27-CD14 double positive cells density achieved to peak among three cell groups in radicular cysts groups. In conclusion, IL-27 expressed in MCs, MPs and ECs of human chronic periapical diseases with different degrees. IL-27-tryptase double-positive cells may participate in pathogenic mechanism of chronic periapical diseases, especially for formation of fibrous in periapical cysts. IL-27-CD14 and IL-27-CD31 double-positive cells may participate in immunologic response to resist periapical infection, and they may play an dual role in pathogenesis and localization of periapical diseases.

  20. Structure of human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7)

    International Nuclear Information System (INIS)

    Arai, Ryoichi; Yoshikawa, Seiko; Murayama, Kazutaka; Imai, Yuzuru; Takahashi, Ryosuke; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2006-01-01

    The crystal structure of human UBE2G2/UBC7 was solved at 2.56 Å resolution. The superimposition of UBE2G2 on UbcH7 in a c-Cbl–UbcH7–ZAP70 ternary complex suggested that the two loop regions of UBE2G2 interact with the RING domain in a similar way as UbcH7. The human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7) is involved in protein degradation, including a process known as endoplasmic reticulum-associated degradation (ERAD). The crystal structure of human UBE2G2/UBC7 was solved at 2.56 Å resolution. The UBE2G2 structure comprises a single domain consisting of an antiparallel β-sheet with four strands, five α-helices and two 3 10 -helices. Structural comparison of human UBE2G2 with yeast Ubc7 indicated that the overall structures are similar except for the long loop region and the C-terminal helix. Superimposition of UBE2G2 on UbcH7 in a c-Cbl–UbcH7–ZAP70 ternary complex suggested that the two loop regions of UBE2G2 interact with the RING domain in a similar way to UbcH7. In addition, the extra loop region of UBE2G2 may interact with the RING domain or its neighbouring region and may be involved in the binding specificity and stability

  1. Analysis of Inflammatory Mediators in Prediabetes and Newly Diagnosed Type 2 Diabetes Patients

    OpenAIRE

    Wang, Zhen; Shen, Xu-Hui; Feng, Wen-Ming; Ye, Guo-fen; Qiu, Wei; Li, Bo

    2016-01-01

    This study evaluated the inflammatory markers in prediabetes and newly diagnosed type 2 diabetes mellitus (T2DM). Inflammatory markers levels were analyzed using one-way analysis of covariance and the association with prediabetes or T2DM risks was examined by logistic regression models. Our data showed increased levels of hypersensitivity C-reactive protein (hs-CRP), interleukin (IL-4), IL-10, and tryptase in prediabetes subjects and hs-CRP, immunoglobulin E (IgE), IL-4, and IL-10 in T2DM sub...

  2. Effect of lipopolysaccharide (LPS and peptidoglycan (PGN on human mast cell numbers, cytokine production, and protease composition

    Directory of Open Access Journals (Sweden)

    Wu Yalin

    2008-08-01

    Full Text Available Abstract Background Human mast cell (HuMC maturation occurs in tissues interfacing with the external environment, exposing both mast cell progenitors and mature mast cells, to bacteria and their products. It is unknown, however, whether long- or short-term exposure to bacteria-derived toll-like receptor (TLR ligands, such as lipopolysaccharide (LPS or peptidoglycan (PGN, influences HuMC biology. Results Over 6 wks of culture, LPS had minimal effect on HuMC numbers but increased CD117, tryptase and chymase expression. PGN inhibited HuMC development. For mature mast cells, LPS in the presence of rhSCF (10 ng/ml increased CD117, tryptase, chymase and carboxypeptidase expression, primarily in CD117low HuMC. LPS decreased FcεRI expression and β-hexosaminidase release; but had no effect on LTC4 and PGD2 production. PGN reduced HuMC numbers; and CD117 and tryptase expression. IL-1β and IL-6 (in addition to IL-8 and IL-12 were detected in short-term culture supernatants of LPS treated cells, and reproduced the increases in CD117, tryptase, chymase, and carboxypeptidase expression observed in the presence of LPS. Comparative studies with mouse bone marrow-derived mast cells from wild type, but not TLR4 knockout mice, showed increases in mRNA of mouse mast cell chymases MMCP-1, MMCP-2 and MMCP-4. Conclusion PGN inhibits HuMC growth, while LPS exerts its primary effects on mature HuMC by altering cytokine production and protease composition, particularly at low concentrations of SCF. These data demonstrate the ability of bacterial products to alter HuMC mediator production, granular content, and number which may be particularly relevant at mucosal sites where HuMC are exposed to these products.

  3. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA enhances CD8+ T Cell responses providing protection against Leishmania (Viannia.

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2011-06-01

    Full Text Available Leishmania (Viannia parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective.Using a newly developed mouse model of chronic L. (Viannia panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP could provide protection against infection/disease.Heterologous prime - boost (DNA/MVA vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V. panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses.Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that

  4. ATP-dependent transport of statins by human and rat MRP2/Mrp2

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Lucy C.J., E-mail: Luc_ellis@yahoo.co.uk [Section of Translational Medicine, Division of Applied Biology, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); Hawksworth, Gabrielle M. [Section of Translational Medicine, Division of Applied Biology, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); Weaver, Richard J. [Biologie Servier, Drug Safety Research Centre, 905 Route de Saran, 45520 Gidy (France)

    2013-06-01

    Multidrug resistance associated protein-2, MRP2 (human), Mrp2 (rat) are an efflux transporter, responsible for the transport of numerous endogenous and xenobiotic compounds including taurocholate, methotrexate and carboxydichlorofluorescein (CDF). The present study aims to characterise transport of statins by human and rat MRP2/Mrp2 using membrane and vesicle preparations. All statins tested (simvastatin, pravastatin, pitavastatin, fluvastatin, atorvastatin, lovastatin and rosuvastatin) stimulated vanadate-sensitive ATPase activity in membranes expressing human or rat MRP2/Mrp2, suggesting that all statins are substrates of human and rat MRP2/Mrp2. The substrate affinity (Km) of all statins for MRP2/Mrp2 was comparable and no correlation between lipophilicity (logD{sub 7.0}) and Km was seen. All statins also inhibited uptake of the fluorescent Mrp2 substrate, CDF (1 μM) into vesicles expressing human or rat MRP2/Mrp2 with similar IC{sub 50} values. Fitting of the inhibitory data to the hill slope equation, gave hill coefficients (h) of greater than one, suggesting that transport involved more than one binding site for inhibitors of MPR2 and Mrp2. We conclude that statins were transported by both human and rat MRP2/Mrp2 with similar affinity. Statins were also shown to compete with other substrates for transport by MRP2/Mrp2 and that this transport involved more than one binding site on the Mrp2/MRP2 protein. - Highlights: • We characterised MRP2 (human)/Mrp2 (rat)-mediated transport of statins. • We show statins were transported by human and rat MRP2/Mrp2. • Statins competed with a known substrate for transport by MRP2/Mrp2. • Competition involved more than one binding site on the MRP2/Mrp2 protein.

  5. ATP-dependent transport of statins by human and rat MRP2/Mrp2

    International Nuclear Information System (INIS)

    Ellis, Lucy C.J.; Hawksworth, Gabrielle M.; Weaver, Richard J.

    2013-01-01

    Multidrug resistance associated protein-2, MRP2 (human), Mrp2 (rat) are an efflux transporter, responsible for the transport of numerous endogenous and xenobiotic compounds including taurocholate, methotrexate and carboxydichlorofluorescein (CDF). The present study aims to characterise transport of statins by human and rat MRP2/Mrp2 using membrane and vesicle preparations. All statins tested (simvastatin, pravastatin, pitavastatin, fluvastatin, atorvastatin, lovastatin and rosuvastatin) stimulated vanadate-sensitive ATPase activity in membranes expressing human or rat MRP2/Mrp2, suggesting that all statins are substrates of human and rat MRP2/Mrp2. The substrate affinity (Km) of all statins for MRP2/Mrp2 was comparable and no correlation between lipophilicity (logD 7.0 ) and Km was seen. All statins also inhibited uptake of the fluorescent Mrp2 substrate, CDF (1 μM) into vesicles expressing human or rat MRP2/Mrp2 with similar IC 50 values. Fitting of the inhibitory data to the hill slope equation, gave hill coefficients (h) of greater than one, suggesting that transport involved more than one binding site for inhibitors of MPR2 and Mrp2. We conclude that statins were transported by both human and rat MRP2/Mrp2 with similar affinity. Statins were also shown to compete with other substrates for transport by MRP2/Mrp2 and that this transport involved more than one binding site on the Mrp2/MRP2 protein. - Highlights: • We characterised MRP2 (human)/Mrp2 (rat)-mediated transport of statins. • We show statins were transported by human and rat MRP2/Mrp2. • Statins competed with a known substrate for transport by MRP2/Mrp2. • Competition involved more than one binding site on the MRP2/Mrp2 protein

  6. Mast Cell Tryptase Reduces Junctional Adhesion Molecule-A (JAM-A) Expression in Intestinal Epithelial Cells: Implications for the Mechanisms of Barrier Dysfunction in Irritable Bowel Syndrome.

    LENUS (Irish Health Repository)

    Wilcz-Villega, Ewa M

    2013-07-01

    The objective of this study was to investigate how mast cell tryptase may influence intestinal permeability and tight junction (TJ) proteins in vitro and explore translation to irritable bowel syndrome (IBS).

  7. [Preparation and preliminary application of rabbit anti-human PON2 antibodies(paraoxonase-2)].

    Science.gov (United States)

    Chen, Miao; Yang, Jin-Ju; Li, Shu-Zhen; Liu, Xiao-Lan; Liu, Ying; Zhang, Lin-Jie; Gao, Jian-En; Sun, Qi-Hong

    2008-07-01

    To preparation and characterize the rabbit polyclonal antibodies against human PON2 (paraoxonase-2). A fragment of human PON2 gene which was of low homology with rabbits but of higher hydrophilicity and immunogenicity was selected for recombinant expression in prokaryotic expression system. The rabbits were immunized with the purified GST fusion protein 3 times. The specificity and sensitivity of the anti-human PON2 polyclonal antibodies were detected by Western blot and indirect immunofluorescence. The GST-PON2 fusion protein was highly expressed in Ecoli with a molecular weight of 46 kDa. Western blot analysis proved the rabbit polyclonal antibodies could specifically recognize 39 kDa native PON2 protein expressed in several cells and tissues, such as HeLa cells, U937 cells, and human liver tissue. Indirect immunofluorescence analysis confirmed that PON2 protein was located in the cytoplasm of SY5Y cells. The rabbit polyclonal antibodies against human PON2 can specifically recognize natural protein expressed in human cells and tissues, Which can be used for further study and clinical detection of human PON2.

  8. Human milk H2O2 content: does it benefit preterm infants?

    Science.gov (United States)

    Cieslak, Monika; Ferreira, Cristina H F; Shifrin, Yulia; Pan, Jingyi; Belik, Jaques

    2018-03-01

    BackgroundHuman milk has a high content of the antimicrobial compound hydrogen peroxide (H 2 O 2 ). As opposed to healthy full-term infants, preterm neonates are fed previously expressed and stored maternal milk. These practices may favor H 2 O 2 decomposition, thus limiting its potential benefit to preterm infants. The goal of this study was to evaluate the factors responsible for H 2 O 2 generation and degradation in breastmilk.MethodsHuman donors' and rats' milk, along with rat mammary tissue were evaluated. The role of oxytocin and xanthine oxidase on H 2 O 2 generation, its pH-dependent stability, as well as its degradation via lactoperoxidase and catalase was measured in milk.ResultsBreast tissue xanthine oxidase is responsible for the H 2 O 2 generation and its milk content is dependent on oxytocin stimulation. Stability of the human milk H 2 O 2 content is pH-dependent and greatest in the acidic range. Complete H 2 O 2 degradation occurs when human milk is maintained, longer than 10 min, at room temperature and this process is suppressed by lactoperoxidase and catalase inhibition.ConclusionFresh breastmilk H 2 O 2 content is labile and quickly degrades at room temperature. Further investigation on breastmilk handling techniques to preserve its H 2 O 2 content, when gavage-fed to preterm infants is warranted.

  9. Predictors of severe systemic anaphylactic reactions in patients with Hymenoptera venom allergy: importance of baseline serum tryptase-a study of the European Academy of Allergology and Clinical Immunology Interest Group on Insect Venom Hypersensitivity.

    Science.gov (United States)

    Ruëff, Franziska; Przybilla, Bernhard; Biló, Maria Beatrice; Müller, Ulrich; Scheipl, Fabian; Aberer, Werner; Birnbaum, Joëlle; Bodzenta-Lukaszyk, Anna; Bonifazi, Floriano; Bucher, Christoph; Campi, Paolo; Darsow, Ulf; Egger, Cornelia; Haeberli, Gabrielle; Hawranek, Thomas; Körner, Michael; Kucharewicz, Iwona; Küchenhoff, Helmut; Lang, Roland; Quercia, Oliviero; Reider, Norbert; Severino, Maurizio; Sticherling, Michael; Sturm, Gunter Johannes; Wüthrich, Brunello

    2009-11-01

    Severe anaphylaxis to honeybee or vespid stings is associated with a variety of risk factors, which are poorly defined. Our aim was to evaluate the association of baseline serum tryptase concentrations and other variables routinely recorded during patient evaluation with the frequency of past severe anaphylaxis after a field sting. In this observational multicenter study, we enrolled 962 patients with established bee or vespid venom allergy who had a systemic reaction after a field sting. Data were collected on tryptase concentration, age, sex, culprit insect, cardiovascular medication, and the number of preceding minor systemic reactions before the index field sting. A severe reaction was defined as anaphylactic shock, loss of consciousness, or cardiopulmonary arrest. The index sting was defined as the hitherto first, most severe systemic field-sting reaction. Relative rates were calculated with generalized additive models. Two hundred six (21.4%) patients had a severe anaphylactic reaction after a field sting. The frequency of this event increased significantly with higher tryptase concentrations (nonlinear association). Other factors significantly associated with severe reactions after a field sting were vespid venom allergy, older age, male sex, angiotensin-converting enzyme inhibitor medication, and 1 or more preceding field stings with a less severe systemic reaction. In patients with honeybee or vespid venom allergy, baseline serum tryptase concentrations are associated with the risk for severe anaphylactic reactions. Preventive measures should include substitution of angiotensin-converting enzyme inhibitors.

  10. Human mast cell neutral proteases generate modified LDL particles with increased proteoglycan binding.

    Science.gov (United States)

    Maaninka, Katariina; Nguyen, Su Duy; Mäyränpää, Mikko I; Plihtari, Riia; Rajamäki, Kristiina; Lindsberg, Perttu J; Kovanen, Petri T; Öörni, Katariina

    2018-04-13

    Subendothelial interaction of LDL with extracellular matrix drives atherogenesis. This interaction can be strengthened by proteolytic modification of LDL. Mast cells (MCs) are present in atherosclerotic lesions, and upon activation, they degranulate and release a variety of neutral proteases. Here we studied the ability of MC proteases to cleave apoB-100 of LDL and affect the binding of LDL to proteoglycans. Mature human MCs were differentiated from human peripheral blood-derived CD34 + progenitors in vitro and activated with calcium ionophore to generate MC-conditioned medium. LDL was incubated in the MC-conditioned medium or with individual MC proteases, and the binding of native and modified LDL to isolated human aortic proteoglycans or to human atherosclerotic plaques ex vivo was determined. MC proteases in atherosclerotic human coronary artery lesions were detected by immunofluorescence and qPCR. Activated human MCs released the neutral proteases tryptase, chymase, carboxypeptidase A3, cathepsin G, and granzyme B. Of these, cathepsin G degraded most efficiently apoB-100, induced LDL fusion, and enhanced binding of LDL to isolated human aortic proteoglycans and human atherosclerotic lesions ex vivo. Double immunofluoresence staining of human atherosclerotic coronary arteries for tryptase and cathepsin G indicated that lesional MCs contain cathepsin G. In the lesions, expression of cathepsin G correlated with the expression of tryptase and chymase, but not with that of neutrophil proteinase 3. The present study suggests that cathepsin G in human atherosclerotic lesions is largely derived from MCs and that activated MCs may contribute to atherogenesis by enhancing LDL retention. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Human factor H-related protein 2 (CFHR2 regulates complement activation.

    Directory of Open Access Journals (Sweden)

    Hannes U Eberhardt

    Full Text Available Mutations and deletions within the human CFHR gene cluster on chromosome 1 are associated with diseases, such as dense deposit disease, CFHR nephropathy or age-related macular degeneration. Resulting mutant CFHR proteins can affect complement regulation. Here we identify human CFHR2 as a novel alternative pathway complement regulator that inhibits the C3 alternative pathway convertase and terminal pathway assembly. CFHR2 is composed of four short consensus repeat domains (SCRs. Two CFHR2 molecules form a dimer through their N-terminal SCRs, and each of the two C-terminal ends can bind C3b. C3b bound CFHR2 still allows C3 convertase formation but the CFHR2 bound convertases do not cleave the substrate C3. Interestingly CFHR2 hardly competes off factor H from C3b. Thus CFHR2 likely acts in concert with factor H, as CFHR2 inhibits convertases while simultaneously allowing factor H assisted degradation by factor I.

  12. Role of protease-activated receptor-2 in inflammation, and its possible implications as a putative mediator of periodontitis

    Directory of Open Access Journals (Sweden)

    M Holzhausen

    2005-03-01

    Full Text Available Proteinase-activated receptor-2 (PAR2 belongs to a novel subfamily of G-protein-coupled receptors with seven-transmembrane domains. This receptor is widely distributed throughout the body and seems to be importantly involved in inflammatory processes. PAR2 can be activated by serine proteases such as trypsin, mast cell tryptase, and bacterial proteases, such as gingipain produced by Porphyromonas gingivalis. This review describes the current stage of knowledge of the possible mechanisms that link PAR2 activation with periodontal disease, and proposes future therapeutic strategies to modulate the host response in the treatment of periodontitis.

  13. Human metapneumovirus M2-2 protein inhibits innate immune response in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Junping Ren

    Full Text Available Human metapneumovirus (hMPV is a leading cause of lower respiratory infection in young children, the elderly and immunocompromised patients. Repeated hMPV infections occur throughout life. However, immune evasion mechanisms of hMPV infection are largely unknown. Recently, our group has demonstrated that hMPV M2-2 protein, an important virulence factor, contributes to immune evasion in airway epithelial cells by targeting the mitochondrial antiviral-signaling protein (MAVS. Whether M2-2 regulates the innate immunity in human dendritic cells (DC, an important family of immune cells controlling antigen presenting, is currently unknown. We found that human DC infected with a virus lacking M2-2 protein expression (rhMPV-ΔM2-2 produced higher levels of cytokines, chemokines and IFNs, compared to cells infected with wild-type virus (rhMPV-WT, suggesting that M2-2 protein inhibits innate immunity in human DC. In parallel, we found that myeloid differentiation primary response gene 88 (MyD88, an essential adaptor for Toll-like receptors (TLRs, plays a critical role in inducing immune response of human DC, as downregulation of MyD88 by siRNA blocked the induction of immune regulatory molecules by hMPV. Since M2-2 is a cytoplasmic protein, we investigated whether M2-2 interferes with MyD88-mediated antiviral signaling. We found that indeed M2-2 protein associated with MyD88 and inhibited MyD88-dependent gene transcription. In this study, we also identified the domains of M2-2 responsible for its immune inhibitory function in human DC. In summary, our results demonstrate that M2-2 contributes to hMPV immune evasion by inhibiting MyD88-dependent cellular responses in human DC.

  14. Rheumatic Disease: Protease-Activated Receptor-2 in Synovial Joint Pathobiology

    Directory of Open Access Journals (Sweden)

    Kendal McCulloch

    2018-05-01

    Full Text Available Protease-activated receptor-2 (PAR2 is one member of a small family of transmembrane, G-protein-coupled receptors. These receptors are activated via cleavage of their N terminus by serine proteases (e.g., tryptase, unveiling an N terminus tethered ligand which binds to the second extracellular loop of the receptor. Increasing evidence has emerged identifying key pathophysiological roles for PAR2 in both rheumatoid arthritis (RA and osteoarthritis (OA. Importantly, this includes both pro-inflammatory and destructive roles. For example, in murine models of RA, the associated synovitis, cartilage degradation, and subsequent bone erosion are all significantly reduced in the absence of PAR2. Similarly, in experimental models of OA, PAR2 disruption confers protection against cartilage degradation, subchondral bone osteosclerosis, and osteophyte formation. This review focuses on the role of PAR2 in rheumatic disease and its potential as an important therapeutic target for treating pain and joint degradation.

  15. Sequence of human protamine 2 cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Domenjoud, L; Fronia, C; Uhde, F; Engel, W [Universitaet Goettingen (West Germany)

    1988-08-11

    The authors report the cloning and sequencing of a cDNA clone for human protamine 2 (hp2), isolated from a human testis cDNA library cloned in the vector {lambda}-gt11. A 66mer oligonucleotide, that corresponds to an amino acid sequence which is highly conserved between hp2 and mouse protamine 2 (mp2) served as hybridization probe. The homology between the amino acid sequence deduced from our cDNA and the published amino acid sequence for hp2 is 100%.

  16. In silico modeling of human α2C-adrenoreceptor interaction with filamin-2.

    Directory of Open Access Journals (Sweden)

    Marcin Pawlowski

    Full Text Available Vascular smooth muscle α2C-adrenoceptors (α2C-ARs mediate vasoconstriction of small blood vessels, especially arterioles. Studies of endogenous receptors in human arteriolar smooth muscle cells (referred to as microVSM and transiently transfected receptors in heterologous HEK293 cells show that the α2C-ARs are perinuclear receptors that translocate to the cell surface under cellular stress and elicit a biological response. Recent studies in microVSM unraveled a crucial role of Rap1A-Rho-ROCK-F-actin pathways in receptor translocation, and identified protein-protein interaction of α2C-ARs with the actin binding protein filamin-2 as an essential step in the process. To better understand the molecular nature and specificity of this interaction, in this study, we constructed comparative models of human α2C-AR and human filamin-2 proteins. Finally, we performed in silico protein-protein docking to provide a structural platform for the investigation of human α2C-AR and filamin-2 interactions. We found that electrostatic interactions seem to play a key role in this complex formation which manifests in interactions between the C-terminal arginines of α2C-ARs (particularly R454 and R456 and negatively charged residues from filamin-2 region between residues 1979 and 2206. Phylogenetic and sequence analysis showed that these interactions have evolved in warm-blooded animals.

  17. Abnormal Sensory Protein Expression and Urothelial Dysfunction in Ketamine-Related Cystitis in Humans

    Directory of Open Access Journals (Sweden)

    Yao Chou Tsai

    2016-09-01

    Full Text Available Purpose The aim of this study was to analyze patterns of sensory protein expression and urothelial dysfunction in ketamine-related cystitis (KC in humans. Methods Biopsies of bladder mucosa were performed in 29 KC patients during cystoscopy. Then specimens were analyzed for tryptase, zonula occludens-1 (ZO-1, E-cadherin, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL with immunofluorescence staining and quantification. In addition, 10 healthy control bladder specimens were analyzed and compared with the KC specimens. Another 16 whole bladder specimens obtained from partial cystectomy were also analyzed for the muscarinic receptors M2 and M3, endothelial nitric oxide synthase (eNOS, inducible nitric oxide synthase (iNOS, β-3 adrenergic receptors (β3-ARs, and the P2X3 receptor by western blotting. In addition, 3 normal control bladder specimens were analyzed and compared with the KC specimens. Results The KC bladder mucosa revealed significantly less expression of ZO-1 and E-cadherin, and greater expression of TUNEL and tryptase activity than the control samples. The expression of M3 and β3-AR in the KC specimens was significantly greater than in the controls. The expression of iNOS, eNOS, M2, and P2X3 was not significantly different between the KC and control specimens. Conclusions The bladder tissue of KC patients revealed significant urothelial dysfunction, which was associated with mast-cell mediated inflammation, increased urothelial cell apoptosis, and increased expression of the M3 and β3-AR.

  18. Serum tryptase monitoring in indolent systemic mastocytosis: association with disease features and patient outcome.

    Directory of Open Access Journals (Sweden)

    Almudena Matito

    Full Text Available BACKGROUND: Serum baseline tryptase (sBT is a minor diagnostic criterion for systemic mastocytosis (SM of undetermined prognostic impact. We monitored sBT levels in indolent SM (ISM patients and investigated its utility for predicting disease behaviour and outcome. METHODS: In total 74 adult ISM patients who were followed for ≥48 months and received no cytoreductive therapy were retrospectively studied. Patients were classified according to the pattern of evolution of sBT observed. RESULTS: Overall 16/74 (22% cases had decreasing sBT levels, 48 (65% patients showed increasing sBT levels and 10 (13% patients showed a fluctuating pattern. Patients with significantly increasing sBT (sBT slope ≥0.15 after 48 months of follow-up showed a slightly greater rate of development of diffuse bone sclerosis (13% vs. 2% and hepatomegaly plus splenomegaly (16% vs. 5%, as well as a significantly greater frequency of multilineage vs. mast cells (MC-restricted KIT mutation (p = 0.01 together with a greater frequency of cases with progression of ISM to smouldering and aggressive SM (p = 0.03, and a shorter progression-free survival (p = 0.03. CONCLUSIONS: Monitoring of sBT in ISM patients is closely associated with poor prognosis disease features as well as with disease progression, pointing out the need for a closer follow-up in ISM patients with progressively increasing sBT values.

  19. 2-Chlorohexadecanal and 2-chlorohexadecanoic acid induce COX-2 expression in human coronary artery endothelial cells

    OpenAIRE

    Messner, Maria C.; Albert, Carolyn J.; Ford, David A.

    2008-01-01

    2-Chlorohexadecanal (2-ClHDA), a 16-carbon chain chlorinated fatty aldehyde that is produced by reactive chlorinating species attack of plasmalogens, is elevated in atherosclerotic plaques, infarcted myocardium, and activated leukocytes. We tested the hypothesis that 2-ClHDA and its metabolites, 2-chlorohexadecanoic acid (2-ClHA) and 2-chlorohexadecanol (2-ClHOH), induce COX-2 expression in human coronary artery endothelial cells (HCAEC). COX-2 protein expression increased in response to 2-Cl...

  20. Structural History of Human SRGAP2 Proteins.

    Science.gov (United States)

    Sporny, Michael; Guez-Haddad, Julia; Kreusch, Annett; Shakartzi, Sivan; Neznansky, Avi; Cross, Alice; Isupov, Michail N; Qualmann, Britta; Kessels, Michael M; Opatowsky, Yarden

    2017-06-01

    In the development of the human brain, human-specific genes are considered to play key roles, conferring its unique advantages and vulnerabilities. At the time of Homo lineage divergence from Australopithecus, SRGAP2C gradually emerged through a process of serial duplications and mutagenesis from ancestral SRGAP2A (3.4-2.4 Ma). Remarkably, ectopic expression of SRGAP2C endows cultured mouse brain cells, with human-like characteristics, specifically, increased dendritic spine length and density. To understand the molecular mechanisms underlying this change in neuronal morphology, we determined the structure of SRGAP2A and studied the interplay between SRGAP2A and SRGAP2C. We found that: 1) SRGAP2A homo-dimerizes through a large interface that includes an F-BAR domain, a newly identified F-BAR extension (Fx), and RhoGAP-SH3 domains. 2) SRGAP2A has an unusual inverse geometry, enabling associations with lamellipodia and dendritic spine heads in vivo, and scaffolding of membrane protrusions in cell culture. 3) As a result of the initial partial duplication event (∼3.4 Ma), SRGAP2C carries a defective Fx-domain that severely compromises its solubility and membrane-scaffolding ability. Consistently, SRGAP2A:SRAGP2C hetero-dimers form, but are insoluble, inhibiting SRGAP2A activity. 4) Inactivation of SRGAP2A is sensitive to the level of hetero-dimerization with SRGAP2C. 5) The primal form of SRGAP2C (P-SRGAP2C, existing between ∼3.4 and 2.4 Ma) is less effective in hetero-dimerizing with SRGAP2A than the modern SRGAP2C, which carries several substitutions (from ∼2.4 Ma). Thus, the genetic mutagenesis phase contributed to modulation of SRGAP2A's inhibition of neuronal expansion, by introducing and improving the formation of inactive SRGAP2A:SRGAP2C hetero-dimers, indicating a stepwise involvement of SRGAP2C in human evolutionary history. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Human eye colour and HERC2, OCA2 and MATP

    DEFF Research Database (Denmark)

    Mengel-From, Jonas; Børsting, Claus; Sanchez, Juan J

    2010-01-01

    Prediction of human eye colour by forensic genetic methods is of great value in certain crime investigations. Strong associations between blue/brown eye colour and the SNP loci rs1129038 and rs12913832 in the HERC2 gene were recently described. Weaker associations between eye colour and other...... genetic markers also exist. In 395 randomly selected Danes, we investigated the predictive values of various combinations of SNP alleles in the HERC2, OCA2 and MATP (SLC45A2) genes and compared the results to the eye colours as they were described by the individuals themselves. The highest predictive...

  2. Identification and characterization of human GUKH2 gene in silico.

    Science.gov (United States)

    Katoh, Masuko; Katoh, Masaru

    2004-04-01

    Drosophila Guanylate-kinase holder (Gukh) is an adaptor molecule bridging Discs large (Dlg) and Scribble (Scrib), which are implicated in the establishment and maintenance of epithelial polarity. Here, we searched for human homologs of Drosophila gukh by using bioinformatics, and identified GUKH1 and GUKH2 genes. GUKH1 was identical to Nance-Horan syndrome (NHS) gene, while GUKH2 was a novel gene. FLJ35425 (AK092744.1), DKFZp686P1949 (BX647246.1) and KIAA1357 (AB037778.1) cDNAs were derived from human GUKH2 gene. Nucleotide sequence of GUKH2 cDNA was determined by assembling 5'-part of FLJ35425 cDNA and entire region of DKFZp686P1949 cDNA. Human GUKH2 gene consists of 8 exons. Exon 5 (132 bp) of GUKH2 gene was spliced out in GUKH2 cDNA due to alternative splicing. GUKH2-REPS1 locus at human chromosome 6q24.1 and GUKH1-REPS2 locus at human chromosome Xp22.22-p22.13 are paralogous regions within the human genome. Mouse Gukh2 and zebrafish gukh2 genes were also identified. N-terminal part of human GUKH2, mouse Gukh2 and zebrafish gukh2 proteins were completely divergent from human GUKH1 protein. Human GUKH2 and GUKH1, consisting of eight GUKH homology (GKH1-GKH8) domains and Proline-rich domain, showed 28.5% total-amino-acid identity. GKH1, GKH4, GKH5, GKH7 and GKH8 domains were conserved among human GUKH1, human GUKH2 and Drosophila Gukh. Because human homologs of Drosophila dlg (DLG1-DLG7) as well as human homologs of Drosophila scrib (SCRIB, ERBB2IP and Densin-180) are cancer-associated genes, human homologs of Drosophila gukh (GUKH1 and GUKH2) are predicted cancer-associated genes.

  3. The intestinal barrier in irritable bowel syndrome: subtype-specific effects of the systemic compartment in an in vitro model.

    Directory of Open Access Journals (Sweden)

    Samefko Ludidi

    Full Text Available Irritable bowel syndrome (IBS is a disorder with multifactorial pathophysiology. Intestinal barrier may be altered, especially in diarrhea-predominant IBS (IBS-D. Several mediators may contribute to increased intestinal permeability in IBS.We aimed to assess effects of tryptase and LPS on in vitro permeability using a 3-dimensional cell model after basolateral cell exposure. Furthermore, we assessed the extent to which these mediators in IBS plasma play a role in intestinal barrier function.Caco-2 cells were grown in extracellular matrix to develop into polarized spheroids and were exposed to tryptase (10 - 50 mU, LPS (1 - 50 ng/mL and two-fold diluted plasma samples of 7 patients with IBS-D, 7 with constipation-predominant IBS (IBS-C and 7 healthy controls (HC. Barrier function was assessed by the flux of FITC-dextran (FD4 using live cell imaging. Furthermore, plasma tryptase and LPS were determined.Tryptase (20 and 50 mU and LPS (6.25 - 50 ng/mL significantly increased Caco-2 permeability versus control (all P< 0.05. Plasma of IBS-D only showed significantly elevated median tryptase concentrations (7.1 [3.9 - 11.0] vs. 4.2 [2.2 - 7.0] vs. 4.2 [2.5 - 5.9] μg/mL; P<0.05 and LPS concentrations (3.65 [3.00 - 6.10] vs. 3.10 [2.60-3.80] vs. 2.65 [2.40 - 3.40] EU/ml; P< 0.05 vs. IBS-C and HC. Also, plasma of IBS-D increased Caco-2 permeability versus HC (0.14450 ± 0.00472 vs. 0.00021 ± 0.00003; P < 0.001, which was attenuated by selective inhibition of tryptase and LPS (P< 0.05.Basolateral exposure of spheroids to plasma of IBS-D patients resulted in a significantly increased FD4 permeation, which was partially abolished by selective inhibition of tryptase and LPS. These findings point to a role of systemic tryptase and LPS in the epithelial barrier alterations observed in patients with IBS-D.

  4. Regulation of MT1-MMP/MMP-2/TIMP-2 axis in human placenta

    Directory of Open Access Journals (Sweden)

    Vincent ZL

    2015-10-01

    Full Text Available Zoë L Vincent,1,2 Murray D Mitchell,l,3 Anna P Ponnampalam1,2 1Liggins Institute, 2Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand; 3University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia Abstract: Matrix metalloproteinases (MMPs and specific endogenous tissue inhibitors of metalloproteinases (TIMPs mediate rupture of the fetal membranes in both physiological and pathological conditions. MMPs and TIMPs are subject to regulation by DNA methylation in human malignancies and pre-eclampsia. To determine if membrane type 1 MMP (MT1-MMP, MMP2, and TIMP2 are regulated by DNA methylation in human placentas, we employed an in vitro model where human placental tissues were collected at term gestation and cultured with methylation inhibiting agent 5-aza-2′deoxycytidine (AZA and lipopolysaccharide. The results suggest that DNA methylation is not directly involved in the regulation of MT1-MMP in placental tissue; however, remodeling of chromatin by a pharmacologic agent such as AZA potentiates an infection-related increase in MT1-MMP. MT1-MMP is a powerful activator of MMP2 and this action, coupled with either no change or a decrease in TIMP2 concentrations, favors a gelatinolytic state leading to extracellular matrix degradation, which could predispose fetal membranes to rupture prematurely during inflammation. Keywords: placenta, epigenetic regulation, DNA methylation, MMPs, labor

  5. Roles of Human CYP2A6 and Monkey CYP2A24 and 2A26 Cytochrome P450 Enzymes in the Oxidation of 2,5,2',5'-Tetrachlorobiphenyl.

    Science.gov (United States)

    Shimada, Tsutomu; Kakimoto, Kensaku; Takenaka, Shigeo; Koga, Nobuyuki; Uehara, Shotaro; Murayama, Norie; Yamazaki, Hiroshi; Kim, Donghak; Guengerich, F Peter; Komori, Masayuki

    2016-12-01

    2,5,2',5'-Tetrachlorobiphenyl (TCB) induced type I binding spectra with cytochrome P450 (P450) 2A6 and 2A13, with K s values of 9.4 and 0.51 µM, respectively. However, CYP2A6 oxidized 2,5,2',5'-TCB to form 4-hydroxylated products at a much higher rate (∼1.0 minute -1 ) than CYP2A13 (∼0.02 minute -1 ) based on analysis by liquid chromatography-tandem mass spectrometry. Formation of 4-hydroxy-2,5,2',5'-TCB by CYP2A6 was greater than that of 3-hydroxy-2,5,2',5'-TCB and three other hydroxylated products. Several human P450 enzymes, including CYP1A1, 1A2, 1B1, 2B6, 2D6, 2E1, 2C9, and 3A4, did not show any detectable activities in oxidizing 2,5,2',5'-TCB. Cynomolgus monkey CYP2A24, which shows 95% amino acid identity to human CYP2A6, catalyzed 4-hydroxylation of 2,5,2',5'-TCB at a higher rate (∼0.3 minute -1 ) than CYP2A26 (93% identity to CYP2A6, ∼0.13 minute -1 ) and CYP2A23 (94% identity to CYP2A13, ∼0.008 minute -1 ). None of these human and monkey CYP2A enzymes were catalytically active in oxidizing other TCB congeners, such as 2,4,3',4'-, 3,4,3',4'-, and 3,5,3',5'-TCB. Molecular docking analysis suggested that there are different orientations of interaction of 2,5,2',5'-TCB with the active sites (over the heme) of human and monkey CYP2A enzymes, and that ligand interaction energies (U values) of bound protein-ligand complexes show structural relationships of interaction of TCBs and other ligands with active sites of CYP2A enzymes. Catalytic differences in human and monkey CYP2A enzymes in the oxidation of 2,5,2',5'-TCB are suggested to be due to amino acid changes at substrate recognition sites, i.e., V110L, I209S, I300F, V365M, S369G, and R372H, based on the comparison of primary sequences. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. The transcriptome of the human mast cell leukemia cells HMC-1.2: an approach to identify specific changes in the gene expression profile in KitD816V systemic mastocytosis.

    Science.gov (United States)

    Haenisch, B; Herms, S; Molderings, G J

    2013-05-01

    To circumvent the costly isolation procedure associated with tissue mast cells, human mast cell lines such as HMC-1 are employed in mastocytosis research, but their relation to mutated mast cells in systemic mastocytosis has not been investigated systematically. In the present study, we determined the transcriptome of HMC-1.2 cells and compared the expression data with those reported in the literature for normal human resting lung and tonsillar mast cells as well as leukocytes from peripheral blood and mononuclear cells from bone marrow aspirates of patients with D816 V-positive systemic mastocytosis. Our results suggest that HMC-1.2 cells are an appropriate model for the investigation of this variant of systemic mast cell activation disease. The data confirm previous suggestions that the pathologically increased activity of mast cells in patients with D816 V-positive systemic mastocytosis can be deduced from the detection of mutation-related changes in the gene expression profile in leukocytes from peripheral blood and in mononuclear cells from bone marrow aspirates. Thus, mutation-related changes of the expression profile can serve as surrogates (besides clustering of mast cells, expression of CD25, and increased release of tryptase) for the presence of the mutation D816 V in tyrosine kinase Kit in patients with systemic mastocytosis according to the WHO criteria. Whether this also holds true for systemic mast cell activation disease caused by other mutations in Kit or other mast cell activity-related genes is a subject for future studies.

  7. Human eye colour and HERC2, OCA2 and MATP

    DEFF Research Database (Denmark)

    Mengel-From, Jonas; Børsting, Claus; Sanchez, Juan J.

    2010-01-01

    Prediction of human eye colour by forensic genetic methods is of great value in certain crime investigations. Strong associations between blue/brown eye colour and the SNP loci rs1129038 and rs12913832 in the HERC2 gene were recently described. Weaker associations between eye colour and other...... value of typing either the HERC2 SNPs rs1129038 and/or rs12913832 that are in strong linkage disequilibrium was observed when eye colour was divided into two groups, (1) blue, grey and green (light) and (2) brown and hazel (dark). Sequence variations in rs11636232 and rs7170852 in HERC2, rs1800407...... genetic markers also exist. In 395 randomly selected Danes, we investigated the predictive values of various combinations of SNP alleles in the HERC2, OCA2 and MATP (SLC45A2) genes and compared the results to the eye colours as they were described by the individuals themselves. The highest predictive...

  8. Characterization of the human pH- and PKA-activated ClC-2G(2 alpha) Cl- channel.

    Science.gov (United States)

    Sherry, A M; Stroffekova, K; Knapp, L M; Kupert, E Y; Cuppoletti, J; Malinowska, D H

    1997-08-01

    A ClC-2G(2 alpha) Cl- channel was identified to be present in human lung and stomach, and a partial cDNA for this Cl- channel was cloned from a human fetal lung library. A full-length expressible human ClC-2G(2 alpha) cDNA was constructed by ligation of mutagenized expressible rabbit ClC-2G(2 alpha) cDNA with the human lung ClC-2G(2 alpha) cDNA, expressed in oocytes, and characterized at the single-channel level. Adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) treatment increased the probability of opening of the channel (Po). After PKA activation, the channel exhibited a linear (r = 0.99) current-voltage curve with a slope conductance of 22.1 +/- 0.8 pS in symmetric 800 mM tetraethylammonium chloride (TEACl; pH 7.4). Under fivefold gradient conditions of TEACl, a reversal potential of +21.5 +/- 2.8 mV was measured demonstrating anion-to-cation discrimination. As previously demonstrated for the rabbit ClC-2G(2 alpha) Cl- channel, the human analog, hClC-2G(2 alpha), was active at pH 7.4 as well as when the pH of the extracellular face of the channel (trans side of the bilayer; pHtrans) was asymmetrically reduced to pH 3.0. The extent of PKA activation was dependent on pHtrans. With PKA treatment, Po increased fourfold with a pHtrans of 7.4 and eightfold with a pHtrans of 3.0. Effects of sequential PKA addition followed by pHtrans reduction on the same channel suggested that the PKA- and pH-dependent increases in channel Po were separable and cumulative. Northern analysis showed ClC-2G(2 alpha) mRNA to be present in human adult and fetal lung and adult stomach, and quantitative reverse transcriptase-polymerase chain reaction showed this channel to be present in the adult human lung and stomach at about one-half the level found in fetal lung. The findings of the present study suggest that the ClC-2G(2 alpha) Cl- channel may play an important role in Cl- transport in the fetal and adult human lung.

  9. Human organic cation transporter 2 (hOCT2): Inhibitor studies using S2-hOCT2 cells

    International Nuclear Information System (INIS)

    Chiba, Shoetsu; Ikawa, Toru; Takeshita, Hiroshi; Kanno, Sanae; Nagai, Tomonori; Takada, Meri; Mukai, Toshiji; Wempe, Michael F.

    2013-01-01

    Highly expressed in kidney and located on the basolateral membrane, human organic cation transporter 2 (hOCT2) can transport various compounds (i.e. drugs and toxins) into the proximal tubular cell. Using cultured proximal tubule cells stably expressing hOCT2 (i.e. S2-hOCT2 cells), we sought to probe different compound classes (e.g. analgesics, anti-depressants, anti-psychotics, disinfectant, herbicides, insecticides, local anesthetic, muscarinic acetylcholine receptor antagonist, sedatives, steroid hormone, stimulants and toxins) for their ability to inhibit 14 C-TEA uptake, a prototypical OCT2 substrate. Aconitine, amitriptyline, atropine, chlorpyrifos, diazepam, fenitrothion, haloperidol, lidocaine, malathion, mianserin, nicotine and triazolam significantly inhibited 14 C-TEA uptake; IC 50 values were 59.2, 2.4, 2.0, 20.7, 32.3, 13.2, 32.5, 104.6, 71.1, 17.7, 52.8 and 65.5 μM, respectively. In addition, aconitine, amitriptyline, atropine, chlorpyrifos, fenitrothion, haloperidol, lidocaine, and nicotine displayed competitive inhibition with K i values of 145.6, 2.5, 2.4, 24.8, 16.9, 51.6, 86.8 and 57.7 μM, respectively. These in vitro data support the notion that compounds pertaining to a wide variety of different drug classes have the potential to decrease renal clearance of drugs transported via hOCT2. Consequently, these data warrant additional studies to probe hOCT2 and its role to influence drug pharmacokinetics

  10. Profiling gene expression induced by protease-activated receptor 2 (PAR2 activation in human kidney cells.

    Directory of Open Access Journals (Sweden)

    Jacky Y Suen

    Full Text Available Protease-Activated Receptor-2 (PAR2 has been implicated through genetic knockout mice with cytokine regulation and arthritis development. Many studies have associated PAR2 with inflammatory conditions (arthritis, airways inflammation, IBD and key events in tumor progression (angiogenesis, metastasis, but they have relied heavily on the use of single agonists to identify physiological roles for PAR2. However such probes are now known not to be highly selective for PAR2, and thus precisely what PAR2 does and what mechanisms of downstream regulation are truly affected remain obscure. Effects of PAR2 activation on gene expression in Human Embryonic Kidney cells (HEK293, a commonly studied cell line in PAR2 research, were investigated here by comparing 19,000 human genes for intersecting up- or down-regulation by both trypsin (an endogenous protease that activates PAR2 and a PAR2 activating hexapeptide (2f-LIGRLO-NH(2. Among 2,500 human genes regulated similarly by both agonists, there were clear associations between PAR2 activation and cellular metabolism (1,000 genes, the cell cycle, the MAPK pathway, HDAC and sirtuin enzymes, inflammatory cytokines, and anti-complement function. PAR-2 activation up-regulated four genes more than 5 fold (DUSP6, WWOX, AREG, SERPINB2 and down-regulated another six genes more than 3 fold (TXNIP, RARG, ITGB4, CTSD, MSC and TM4SF15. Both PAR2 and PAR1 activation resulted in up-regulated expression of several genes (CD44, FOSL1, TNFRSF12A, RAB3A, COPEB, CORO1C, THBS1, SDC4 known to be important in cancer. This is the first widespread profiling of specific activation of PAR2 and provides a valuable platform for better understanding key mechanistic roles of PAR2 in human physiology. Results clearly support the development of both antagonists and agonists of human PAR2 as potential disease modifying therapeutic agents.

  11. Naturally occurring glucagon-like peptide-2 (GLP-2) receptors in human intestinal cell lines.

    Science.gov (United States)

    Sams, Anette; Hastrup, Sven; Andersen, Marie; Thim, Lars

    2006-02-17

    Although clinical trials with GLP-2 receptor agonists are currently ongoing, the mechanisms behind GLP-2-induced intestinal epithelial growth remain to be understood. To approach the GLP-2 mechanism of action this study aimed to identify intestinal cell lines endogenously expressing the GLP-2 receptor. Here we report the first identification of a cell line endogenously expressing functional GLP-2 receptors. The human intestinal epithelial cell line, FHC, expressed GLP-2 receptor encoding mRNA (RT-PCR) and GLP-2 receptor protein (Western blot). In cultured FHC cells, GLP-2 induced concentration dependent cAMP accumulation (pEC(50)=9.7+/-0.04 (mean+/-S.E.M., n=4)). In addition, a naturally occurring human intestinal fibroblast cell line, 18Co, endogenously expressing GLP-2 receptor encoding mRNA (RT-PCR) and protein (Western blot) was identified. No receptor functionality (binding or G-protein signalling) could be demonstrated in 18Co cells. The identified gut-relevant cell lines provide tools for future clarification of the mechanisms underlying GLP-2-induced epithelial growth.

  12. CCL2 binding is CCR2 independent in primary adult human astrocytes.

    Science.gov (United States)

    Fouillet, A; Mawson, J; Suliman, O; Sharrack, B; Romero, I A; Woodroofe, M N

    2012-02-09

    Chemokines are low relative molecular mass proteins, which have chemoattractant actions on many cell types. The chemokine, CCL2, has been shown to play a major role in the recruitment of monocytes in central nervous system (CNS) lesions in multiple sclerosis (MS). Since resident astrocytes constitute a major source of chemokine synthesis including CCL2, we were interested to assess the regulation of CCL2 by astrocytes. We showed that CCL2 bound to the cell surface of astrocytes and binding was not modulated by inflammatory conditions. However, CCR2 protein was not detected nor was activation of the classical CCR2 downstream signaling pathways. Recent studies have shown that non-signaling decoy chemokine receptors bind and modulate the expression of chemokines at site of inflammation. Here, we show that the D6 chemokine decoy receptor is constitutively expressed by primary human adult astrocytes at both mRNA and protein level. In addition, CCL3, which binds to D6, but not CCL19, which does not bind to D6, displaced CCL2 binding to astrocytes; indicating that CCL2 may bind to this cell type via the D6 receptor. Our results suggest that CCL2 binding to primary adult human astrocytes is CCR2-independent and is likely to be mediated via the D6 decoy chemokine receptor. Therefore we propose that astrocytes are implicated in both the establishment of chemokine gradients for the migration of leukocytes into and within the CNS and in the regulation of CCL2 levels at inflammatory sites in the CNS. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    International Nuclear Information System (INIS)

    Tao, Jun; Xiang, Jun-Jian; Li, Dan; Deng, Ning; Wang, Hong; Gong, Yi-Ping

    2010-01-01

    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10 -9 M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  14. BST2/Tetherin enhances entry of human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Kasinath Viswanathan

    2011-11-01

    Full Text Available Interferon-induced BST2/Tetherin prevents budding of vpu-deficient HIV-1 by tethering mature viral particles to the plasma membrane. BST2 also inhibits release of other enveloped viruses including Ebola virus and Kaposi's sarcoma associated herpesvirus (KSHV, indicating that BST2 is a broadly acting antiviral host protein. Unexpectedly however, recovery of human cytomegalovirus (HCMV from supernatants of BST2-expressing human fibroblasts was increased rather than decreased. Furthermore, BST2 seemed to enhance viral entry into cells since more virion proteins were released into BST2-expressing cells and subsequent viral gene expression was elevated. A significant increase in viral entry was also observed upon induction of endogenous BST2 during differentiation of the pro-monocytic cell line THP-1. Moreover, treatment of primary human monocytes with siRNA to BST2 reduced HCMV infection, suggesting that BST2 facilitates entry of HCMV into cells expressing high levels of BST2 either constitutively or in response to exogenous stimuli. Since BST2 is present in HCMV particles we propose that HCMV entry is enhanced via a reverse-tethering mechanism with BST2 in the viral envelope interacting with BST2 in the target cell membrane. Our data suggest that HCMV not only counteracts the well-established function of BST2 as inhibitor of viral egress but also employs this anti-viral protein to gain entry into BST2-expressing hematopoietic cells, a process that might play a role in hematogenous dissemination of HCMV.

  15. Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy.

    Science.gov (United States)

    Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M M; Danhof, Meindert; Proost, Johannes H

    2016-04-01

    To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs. A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses. Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol. The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.

  16. 31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes.

    Science.gov (United States)

    Petersen, A; Kristensen, S R; Jacobsen, J P; Hørder, M

    1990-08-17

    Absolute 31P-NMR measurements of ATP, ADP and 2,3-diphosphoglycerate (2,3-DPG) in oxygenated and partly deoxygenated human erythrocytes, compared to measurements by standard assays after acid extraction, show that ATP is only 65% NMR visible, ADP measured by NMR is unexpectedly 400% higher than the enzymatic measurement and 2,3-DPG is fully NMR visible, regardless of the degree of oxygenation. These results show that binding to hemoglobin is unlikely to cause the decreased visibility of ATP in human erythrocytes as deoxyhemoglobin binds the phosphorylated metabolites more tightly than oxyhemoglobin. The high ADP visibility is unexplained. The levels of free Mg2+ [( Mg2+]free) in human erythrocytes are 225 mumol/l at an oxygen saturation of 98.6% and instead of the expected increase, the level decreased to 196 mumol/l at an oxygen saturation of 38.1% based on the separation between the alpha- and beta-ATP peaks. [Mg2+]free in the erythrocytes decreased to 104 mumol/l at a high 2,3-DPG concentration of 25.4 mmol/l red blood cells (RBC) and a normal ATP concentration of 2.05 mmol/l RBC. By increasing the ATP concentration to 3.57 mmol/l RBC, and with a high 2,3-DPG concentration of 24.7 mmol/l RBC, the 31P-NMR measured [Mg2+]free decreased to 61 mumol/l. These results indicate, that the 31P-NMR determined [Mg2+]free in human erythrocytes, based solely on the separation of the alpha- and beta-ATP peaks, does not give a true measure of intracellular free Mg2+ changes with different oxygen saturation levels. Furthermore the measurement is influenced by the concentration of the Mg2+ binding metabolites ATP and 2,3-DPG. Failure to take these factors into account when interpreting 31P-NMR data from human erythrocytes may explain some discrepancies in the literature regarding [Mg2+]free.

  17. CARMA2sh and ULK2 control pathogen-associated molecular patterns recognition in human keratinocytes: psoriasis-linked CARMA2sh mutants escape ULK2 censorship.

    Science.gov (United States)

    Scudiero, Ivan; Mazzone, Pellegrino; D'Andrea, Luca E; Ferravante, Angela; Zotti, Tiziana; Telesio, Gianluca; De Rubis, Gabriele; Reale, Carla; Pizzulo, Maddalena; Muralitharan, Shanmugakonar; Vito, Pasquale; Stilo, Romania

    2017-02-23

    The molecular complexes formed by specific members of the family of CARMA proteins, the CARD domain-containing adapter molecule BCL10 and MALT1 (CBM complex) represent a central hub in regulating activation of the pleiotropic transcription factor NF-κB. Recently, missense mutations in CARMA2sh have been shown to cause psoriasis in a dominant manner and with high penetrancy. Here, we demonstrate that in human keratinocytes CARMA2sh plays an essential role in the signal transduction pathway that connects pathogen-associated molecular patterns recognition to NF-κB activation. We also find that the serine/threonine kinase ULK2 binds to and phosphorylates CARMA2sh, thereby inhibiting its capacity to activate NF-κB by promoting lysosomal degradation of BCL10, which is essential for CARMA2sh-mediated NF-κB signaling. Remarkably, CARMA2sh mutants associated with psoriasis escape ULK2 inhibition. Finally, we show that a peptide blocking CARD-mediated BCL10 interactions reduces the capacity of psoriasis-linked CARMA2sh mutants to activate NF-κB. Our work elucidates a fundamental signaling mechanism operating in human keratinocytes and opens to novel potential tools for the therapeutical treatment of human skin disorders.

  18. Human Robotic Systems (HRS): Robonaut 2 Technologies Element

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the Robonaut 2 (R2) Technology Project Element within Human Robotic Systems (HRS) is to developed advanced technologies for infusion into the Robonaut 2...

  19. Expression of oncogen c-erbB-2 (neu/HER-2) in human breast cancer

    International Nuclear Information System (INIS)

    Michelin, Severino C.; Mayo, Jose

    2000-01-01

    Breast cancer continues to be one of the leading causes of death from cancer among women and represents the most serious challenge to therapeutic control. Amplification and overexpression of the c-erbB-2 proto-oncogene occurs in as many as 30 % of all breast cancers and has been correlated with lymph node metastasis and poor prognosis in breast cancer patients. This gene know as neu, HER-2 or c-erbB-2 in among those most frequently altered in human cancer. It was first identified as a transforming gene activated in chemically induced rat neuroectodermal tumors. Early critical studies linked changes in erbB-2 expression and gene copy number to several human cancer, notably breast, ovarian and gastric cancer. Owing to its accessible location at the cell surface, erbB-2 is now under intensive scrutiny as a therapeutic target. In this review we will summarize the involvement of the c-erbB-2 gene in tumorigenesis. (author)

  20. Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Austin, Mark C; Szewczyk, Bernadeta; Daigle, Mireille; Stockmeier, Craig A; Albert, Paul R

    2009-08-01

    Altered expression of serotonin-1A (5-HT1A) receptors, both presynaptic in the raphe nuclei and post-synaptic in limbic and cortical target areas, has been implicated in mood disorders such as major depression and anxiety. Within the 5-HT1A receptor gene, a powerful dual repressor element (DRE) is regulated by two protein complexes: Freud-1/CC2D1A and a second, unknown repressor. Here we identify human Freud-2/CC2D1B, a Freud-1 homologue, as the second repressor. Freud-2 distribution was examined with Northern and Western blot, reverse transcriptase polymerase chain reaction, and immunohistochemistry/immunofluorescence; Freud-2 function was examined by electrophoretic mobility shift, reporter assay, and Western blot. Freud-2 RNA was widely distributed in brain and peripheral tissues. Freud-2 protein was enriched in the nuclear fraction of human prefrontal cortex and hippocampus but was weakly expressed in the dorsal raphe nucleus. Freud-2 immunostaining was co-localized with 5-HT1A receptors, neuronal and glial markers. In prefrontal cortex, Freud-2 was expressed at similar levels in control and depressed male subjects. Recombinant hFreud-2 protein bound specifically to 5' or 3' human DRE adjacent to the Freud-1 site. Human Freud-2 showed strong repressor activity at the human 5-HT1A or heterologous promoter in human HEK-293 5-HT1A-negative cells and neuronal SK-N-SH cells, a model of postsynaptic 5-HT1A receptor-positive cells. Furthermore, small interfering RNA knockdown of endogenous hFreud-2 expression de-repressed 5-HT1A promoter activity and increased levels of 5-HT1A receptor protein in SK-N-SH cells. Human Freud-2 binds to the 5-HT1A DRE and represses the human 5-HT1A receptor gene to regulate its expression in non-serotonergic cells and neurons.

  1. Analysis of Several PLA2 mRNA in Human Meningiomas

    OpenAIRE

    Denizot, Yves; De Armas, Rafael; Durand, Karine; Robert, Sandrine; Moreau, Jean-Jacques; Caire, Fran?ois; Weinbreck, Nicolas; Labrousse, Fran?ois

    2010-01-01

    In view of the important oncogenic action of phospholipase A2(PLA2) we investigated PLA2 transcripts in human meningiomas. Real-time PCR was used to investigate PLA2 transcripts in 26 human meningioma tumors. Results indicated that three Ca2+-dependent high molecular weight PLA2 (PLA2-IVA, PLA2-IVB, PLA2-IVC), one Ca2+-independent high molecular weight PLA2 (PLA2-VI) and five low molecular weight secreted forms of PLA2 (PLA2-IB, PLA2-IIA, PLA2-III, PLA2-V, and PLA2-XII) are expressed with PLA...

  2. Substrate Specificity, Membrane Topology, and Activity Regulation of Human Alkaline Ceramidase 2 (ACER2)*

    OpenAIRE

    Sun, Wei; Jin, Junfei; Xu, Ruijuan; Hu, Wei; Szulc, Zdzislaw M.; Bielawski, Jacek; Obeid, Lina M.; Mao, Cungui

    2010-01-01

    Human alkaline ceramidase 2 (ACER2) plays an important role in cellular responses by regulating the hydrolysis of ceramides in cells. Here we report its biochemical characterization, membrane topology, and activity regulation. Recombinant ACER2 was expressed in yeast mutant cells (Δypc1Δydc1) that lack endogenous ceramidase activity, and microsomes from ACER2-expressiong yeast cells were used to biochemically characterize ACER2. ACER2 catalyzed the hydrolysis of various ceramides and followed...

  3. Antiproliferative activity of recombinant human interferon-λ2 ...

    African Journals Online (AJOL)

    Antiproliferative activity of recombinant human interferon-λ2 expressed in stably ... The representing 26 kDa protein band of IFN-λ2 was detected by SDS-PAGE and ... The antiproliferative activity of hIFN-λ2 was determined by MTT assay.

  4. Differential genomic effects of six different TiO2 nanomaterials on human liver HepG2 cells

    Science.gov (United States)

    Engineered nanoparticles are reported to cause liver toxicity in vivo. To better assess the mechanism of the in vivo liver toxicity, we used the human hepatocarcinoma cells (HepG2) as a model system. Human HepG2 cells were exposed to 6 TiO2 nanomaterials (with dry primary partic...

  5. MSX2 Induces Trophoblast Invasion in Human Placenta.

    Directory of Open Access Journals (Sweden)

    Hao Liang

    Full Text Available Normal implantation depends on appropriate trophoblast growth and invasion. Inadequate trophoblast invasion results in pregnancy-related disorders, such as early miscarriage and pre-eclampsia, which are dangerous to both the mother and fetus. Msh Homeobox 2 (MSX2, a member of the MSX family of homeobox proteins, plays a significant role in the proliferation and differentiation of various cells and tissues, including ectodermal organs, teeth, and chondrocytes. Recently, MSX2 was found to play important roles in the invasion of cancer cells into adjacent tissues via the epithelial-mesenchymal transition (EMT. However, the role of MSX2 in trophoblastic invasion during placental development has yet to be explored. In the present study, we detected MSX2 expression in cytotrophoblast, syncytiotrophoblast, and extravillous cytotrophoblast cells of first or third trimester human placentas via immunohistochemistry analysis. Furthermore, we found that the in vitro invasive ability of HTR8/SVneo cells was enhanced by exogenous overexpression of MSX2, and that this effect was accompanied by increased protein expression of matrix metalloproteinase-2 (MMP-2, vimentin, and β-catenin. Conversely, treatment of HTR8/SVneo cells with MSX2-specific siRNAs resulted in decreased protein expression of MMP-2, vimentin, and β-catenin, and reduced invasion levels in a Matrigel invasion test. Notably, however, treatment with the MSX2 overexpression plasmid and the MSX2 siRNAs had no effect on the mRNA expression levels of β-catenin. Meanwhile, overexpression of MSX2 and treatment with the MSX2-specific siRNA resulted in decreased and increased E-cadherin expression, respectively, in JEG-3 cells. Lastly, the protein expression levels of MSX2 were significantly lower in human pre-eclamptic placental villi than in the matched control placentas. Collectively, our results suggest that MSX2 may induce human trophoblast cell invasion, and dysregulation of MSX2 expression may

  6. Age-Dependent Human Hepatic Carboxylesterase 1 (Ces1) and Carboxylesterase 2 (Ces2) Postnatal Ontogeny

    Science.gov (United States)

    Human hepatic carboxylesterase 1 and 2 (CES1 and CES2) are important for ester- and amide- bond containing pharmaceutical and environmental chemical disposition. Despite concern regarding juvenile sensitivity to such compounds, CES1 and CES2 ontogeny has not been well characteriz...

  7. 7 CFR 2.92 - Director, Office of Human Resources Management.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Director, Office of Human Resources Management. 2.92... Secretary for Administration § 2.92 Director, Office of Human Resources Management. (a) Delegations... Human Resources Management: (1) Formulate and issue Department policy, standards, rules and regulations...

  8. The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: comparison of sugar fed and blood fed sand flies.

    Science.gov (United States)

    Dostálová, Anna; Votýpka, Jan; Favreau, Amanda J; Barbian, Kent D; Volf, Petr; Valenzuela, Jesus G; Jochim, Ryan C

    2011-05-10

    Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. Leishmania development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. In this work we sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female Phlebotomus perniciosus and compared the transcript expression profiles. A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. These molecules were evaluated relative to other published sand fly transcripts. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (PperPer1), two chymotrypsin-like proteins (PperChym1 and PperChym2), a putative trypsin (PperTryp3) and four putative microvillar proteins (PperMVP1, 2, 4 and 5). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (PperTryp1 and PperTryp2), a chymotrypsin (PperChym3) and a microvillar protein (PperMVP3). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in Leishmania infantum-infected and uninfected sand flies, which identified the L. infantum-induced down regulation of PperTryp3 at 24 hours post-blood meal. This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of P. perniciosus, an important vector of visceral leishmaniasis in the Old World. Through the comparative

  9. Data in support of FSH induction of IRS-2 in human granulosa cells: Mapping the transcription factor binding sites in human IRS-2 promoter

    Directory of Open Access Journals (Sweden)

    Surleen Kaur

    2016-03-01

    Full Text Available Insulin receptor substrate-2 (IRS-2 plays critical role in the regulation of various metabolic processes by insulin and IGF-1. The defects in its expression and/or function are linked to diseases like polycystic ovary syndrome (PCOS, insulin resistance and cancer. To predict the transcription factors (TFs responsible for the regulation of human IRS-2 gene expression, the transcription factor binding sites (TFBS and the corresponding TFs were investigated by analysis of IRS-2 promoter sequence using MatInspector Genomatix software (Cartharius et al., 2005 [1]. The ibid data is part of author׳s publication (Anjali et al., 2015 [2] that explains Follicle stimulating hormone (FSH mediated IRS-2 promoter activation in human granulosa cells and its importance in the pathophysiology of PCOS. Further analysis was carried out for binary interactions of TF regulatory genes in IRS-2 network using Cytoscape software tool and R-code. In this manuscript, we describe the methodology used for the identification of TFBSs in human IRS-2 promoter region and provide details on experimental procedures, analysis method, validation of data and also the raw files. The purpose of this article is to provide the data on all TFBSs in the promoter region of human IRS-2 gene as it has the potential for prediction of the regulation of IRS-2 gene in normal or diseased cells from patients with metabolic disorders and cancer. Keywords: IRS-2, TFBS, FSH, SP1, ChIP

  10. Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice

    Science.gov (United States)

    Hanif, Ahmad; Edin, Matthew L.; Zeldin, Darryl C.; Morisseau, Christophe; Falck, John R.

    2017-01-01

    Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome (CYP) P450 epoxygenases, and to ω-terminal hydroxyeicosatetraenoic acids (HETEs) by ω-hydroxylases. EETs and HETEs often have opposite biologic effects; EETs are vasodilatory and protect against ischemia/reperfusion injury, while ω-terminal HETEs are vasoconstrictive and cause vascular dysfunction. Other oxylipins, such as epoxyoctadecaenoic acids (EpOMEs), hydroxyoctadecadienoic acids (HODEs), and prostanoids also have varied vascular effects. Post-ischemic vasodilation in the heart, known as coronary reactive hyperemia (CRH), protects against potential damage to the heart muscle caused by ischemia. The relationship among CRH response to ischemia, in mice with altered levels of CYP2J epoxygenases has not yet been investigated. Therefore, we evaluated the effect of endothelial overexpression of the human cytochrome P450 epoxygenase CYP2J2 in mice (Tie2-CYP2J2 Tr) on oxylipin profiles and CRH. Additionally, we evaluated the effect of pharmacologic inhibition of CYP-epoxygenases and inhibition of ω-hydroxylases on CRH. We hypothesized that CRH would be enhanced in isolated mouse hearts with vascular endothelial overexpression of human CYP2J2 through modulation of oxylipin profiles. Similarly, we expected that inhibition of CYP-epoxygenases would reduce CRH, whereas inhibition of ω-hydroxylases would enhance CRH. Compared to WT mice, Tie2-CYP2J2 Tr mice had enhanced CRH, including repayment volume, repayment duration, and repayment/debt ratio (P iso-PGF2α (P < 0.05). Inhibition of CYP epoxygenases with MS-PPOH attenuated CRH (P < 0.05). Ischemia caused a decrease in mid-chain HETEs (5-, 11-, 12-, 15-HETEs P < 0.05) and HODEs (P < 0.05). These data demonstrate that vascular endothelial overexpression of CYP2J2, through changing the oxylipin profiles, enhances CRH. Inhibition of CYP epoxygenases decreases CRH, whereas inhibition of ω-hydroxylases enhances CRH. PMID:28328948

  11. Inactivation of human DGAT2 by oxidative stress on cysteine residues

    Science.gov (United States)

    Choi, Kwangman; Kwon, Eun Bin; Kang, Mingu; Kim, Dong-eun; Jeong, Hyejeong; Kim, Janghwan; Kim, Jong Heon; Kim, Mun Ock; Han, Sang-Bae

    2017-01-01

    Diacylglycerol acyltransferases (DGATs) have a crucial role in the biosynthesis of triacylglycerol (TG), the major storage form of metabolic energy in eukaryotic organisms. Even though DGAT2, one of two distinct DGATs, has a vital role in TG biosynthesis, little is known about the regulation of DGAT2 activity. In this study, we examined the role of cysteine and its oxidation in the enzymatic activity of human DGAT2 in vitro. Human DGAT2 activity was considerably inhibited not only by thiol-modifying reagents (NEM and IA) but also by ROS-related chemicals (H2O2 and β-lapachone), while human DGAT1 and GPAT1 were little affected. Particularly, ROS-related chemicals concomitantly induced intermolecular disulfide crosslinking of human DGAT2. Both the oxidative inactivation and disulfide crosslinking were almost completely reversed by the treatment with DTT, a disulfide-reducing agent. These results clearly demonstrated the significant role of ROS-induced intermolecular crosslinking in the inactivation of human DGAT2 and also suggested DGAT2 as a redox-sensitive regulator in TG biosynthesis. PMID:28700690

  12. Expression of human ferredoxin and assembly of the [2Fe-2S] center in Escherichia coli

    International Nuclear Information System (INIS)

    Coghlan, V.M.; Vickery, L.E.

    1989-01-01

    A cDNA fragment encoding human ferredoxin, a mitochondrial [2Fe-2S] protein, was introduced into Escherichia coli by using an expression vector based on the approach of Nagai and Thogersen. Expression was under control of the λP L promoter and resulted in production of ferredoxin as a cleavable fusion protein with an amino-terminal fragment derived from bacteriophage λcII protein. The fusion protein was isolated from the soluble fraction of induced cells and was specifically cleaved to yield mature recombinant ferredoxin. The recombinant protein was shown to be identical in size to ferredoxin isolated from human placenta (13,546 Da) by NaDodSO 4 /PAGE and partial amino acid sequencing. E. coli cells expressing human ferredoxin were brown in color, and absorbance and electron paramagnetic resonance spectra of the purified recombinant protein established that the [2Fe-2S]center was assembled and incorporated into ferredoxin in vivo. Recombinant ferredoxin was active in steroid hydroxylations when reconstituted with cytochromes P-450 sec and P-450 11β and exhibited rates comparable to those observed for ferredoxin isolated from human placenta. This expression system should be useful in production of native and structurally altered forms of human ferredoxin for studies of ferredoxin structure and function

  13. SNAI2/Slug promotes growth and invasion in human gliomas

    International Nuclear Information System (INIS)

    Yang, Hong Wei; Menon, Lata G; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2010-01-01

    Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known. To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer. Using this approach, we identified the oncogenic transcriptional repressor, SNAI2/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. SNAI2 mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of SNAI2/Slug increased glioblastoma cell proliferation and invasion in vitro and promoted angiogenesis and glioblastoma growth in vivo. Importantly, knockdown of endogenous SNAI2/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model. This genome-scale approach has thus identified SNAI2/Slug as a regulator of growth and invasion in human gliomas

  14. Ser2 is the autophosphorylation site in the beta subunit from bicistronically expressed human casein kinase-2 and from native rat liver casein kinase-2 beta

    DEFF Research Database (Denmark)

    Boldyreff, B; James, P; Staudenmann, W

    1993-01-01

    Human casein kinase-2 (CK-2) subunits alpha and beta were bicistronically expressed in bacteria. The recombinant holoenzyme shared all investigated properties with the native CK-2 from mammalian sources (rat liver, Krebs II mouse ascites tumour cells). Contrary to recombinant human CK-2 produced...

  15. ETS1 mediates MEK1/2-dependent overexpression of cancerous inhibitor of protein phosphatase 2A (CIP2A in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Anchit Khanna

    2011-03-01

    Full Text Available EGFR-MEK-ERK signaling pathway has an established role in promoting malignant growth and disease progression in human cancers. Therefore identification of transcriptional targets mediating the oncogenic effects of the EGFR-MEK-ERK pathway would be highly relevant. Cancerous inhibitor of protein phosphatase 2A (CIP2A is a recently characterized human oncoprotein. CIP2A promotes malignant cell growth and is over expressed at high frequency (40-80% in most of the human cancer types. However, the mechanisms inducing its expression in cancer still remain largely unexplored. Here we present systematic analysis of contribution of potential gene regulatory mechanisms for high CIP2A expression in cancer. Our data shows that evolutionary conserved CpG islands at the proximal CIP2A promoter are not methylated both in normal and cancer cells. Furthermore, sequencing of the active CIP2A promoter region from altogether seven normal and malignant cell types did not reveal any sequence alterations that would increase CIP2A expression specifically in cancer cells. However, treatment of cancer cells with various signaling pathway inhibitors revealed that CIP2A mRNA expression was sensitive to inhibition of EGFR activity as well as inhibition or activation of MEK-ERK pathway. Moreover, MEK1/2-specific siRNAs decreased CIP2A protein expression. Series of CIP2A promoter-luciferase constructs were created to identify proximal -27 to -107 promoter region responsible for MEK-dependent stimulation of CIP2A expression. Additional mutagenesis and chromatin immunoprecipitation experiments revealed ETS1 as the transcription factor mediating stimulation of CIP2A expression through EGFR-MEK pathway. Thus, ETS1 is probably mediating high CIP2A expression in human cancers with increased EGFR-MEK1/2-ERK pathway activity. These results also suggest that in addition to its established role in invasion and angiogenesis, ETS1 may support malignant cellular growth via regulation of

  16. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    Science.gov (United States)

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-04

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated.

  17. Human fat cell alpha-2 adrenoceptors. I. Functional exploration and pharmacological definition with selected alpha-2 agonists and antagonists

    International Nuclear Information System (INIS)

    Galitzky, J.; Mauriege, P.; Berlan, M.; Lafontan, M.

    1989-01-01

    This study was undertaken to investigate more fully the pharmacological characteristics of the human fat cell alpha-2 adrenoceptor. Biological assays were performed on intact isolated fat cells while radioligand binding studies were carried out with [ 3 H]yohimbine in membranes. These pharmacological studies brought: (1) a critical definition of the limits of the experimental conditions required for the exploration of alpha-2 adrenergic responsiveness on human fat cells and membranes; (2) an improvement in the pharmacological definition of the human fat cell postsynaptic alpha-2 adrenoceptor. Among alpha-2 agonists, UK-14,304 was the most potent and the relative order of potency was: UK-14,304 greater than p-aminoclonidine greater than clonidine = B-HT 920 greater than rilmenidine. For alpha-2 antagonists, the potency order was: yohimbine greater than idazoxan greater than SK ampersand F-86,466 much greater than benextramine; (3) a description of the impact of benextramine (irreversible alpha-1/alpha-2 antagonist) on human fat cell alpha-2 adrenergic receptors and on human fat cell function; the drug inactivates the alpha-2 adrenergic receptors with a minor impact on beta adrenergic receptors and without noticeable alterations of fat cell function as assessed by preservation of beta adrenergic and Al-adenosine receptor-mediated lipolytic responses; and (4) a definition of the relationship existing between alpha-2 adrenergic receptor occupancy, inhibition of adenylate cyclase activity and antilipolysis with full and partial agonists. The existence of a receptor reserve must be taken into account when evaluating alpha-2 adrenergic receptor distribution and regulation of human fat cells

  18. Radiation enhanced reactivation of irradiated human adenovirus type 2 in human cells

    International Nuclear Information System (INIS)

    Jeeves, W.P.

    1981-04-01

    Radiation-enhanced reactivation (ER) of a radiation-damaged mammalian virus is the term given to the observation that the survival of irradiated virus can be enhanced by irradiation of an appropriate host cell prior to infection. In this work, both UV-enhanced reactivation (UVER) and gamma-ray-enhanced reactivation (γRER) of irradiated human adenovirus type 2 (AD 2) were studied in a variety of normal and DNA repair-deficient human fibroblast host cell strains. In order to examine the lesion specificity of ER in human cells, experiments were performed using UV-irradiated and γ-irradiated virus. The investigation was carried out using a sensitive technique of indirect immunofluorescence, according to which irradiated and unirradiated cell cultures were infected with irradiated or unirradiated AD 2 and were subsequently examined for the presence of viral structural antigens ('V' Ag) at a fixed time after infection

  19. Human CYP2E1 mediates the formation of glycidamide from acrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Settels, Eva; Appel, Klaus E. [Federal Institute for Risk Assessment, Center for Experimental Toxicology, Berlin (Germany); Bernauer, Ulrike; Gundert-Remy, Ursula [Federal Institute for Risk Assessment, Department of Safety of Substances and Preparations, Berlin (Germany); Palavinskas, Richard; Klaffke, Horst S. [Federal Institute for Risk Assessment, Center for Analytical Chemistry, Berlin (Germany)

    2008-10-15

    Regarding the cancer risk assessment of acrylamide (AA) it is of basic interest to know, as to what amount of the absorbed AA is metabolized to glycidamide (GA) in humans, compared to what has been observed in laboratory animals. GA is suspected of being the ultimate carcinogenic metabolite of AA. From experiments with CYP2E1-deficient mice it can be concluded that AA is metabolized to GA primarily by CYP2E1. We therefore examined whether CYP2E1 is involved in GA formation in non-rodent species with the focus on humans by using human CYP2E1 supersomes trademark, marmoset and human liver microsomes and in addition, genetically engineered V79 cells expressing human CYP2E1 (V79h2E1 cells). Special emphasis was placed on the analytical detection of GA, which was performed by gas chromatography/mass spectrometry. The results show that AA is metabolized to GA in human CYP2E1 supersomes trademark, in marmoset and human liver microsomes as well as in V79h2E1 cells. The activity of GA formation is highest in supersomes trademark; in human liver it is somewhat higher than in marmoset liver. A monoclonal CYP2E1 human selective antibody (MAB-2E1) and diethyldithiocarbamate (DDC) were used as specific inhibitors of CYP2E1. The generation of GA could be inhibited by MAB-2E1 to about 80% in V79h2E1 cells and to about 90% in human and marmoset liver microsomes. Also DDC led to an inhibition of about 95%. In conclusion, AA is metabolized to GA by human CYP2E1. Overall, the present work describes (1) the application and refinement of a sensitive methodology in order to determine low amounts of GA, (2) the applicability of genetically modified V79 cell lines in order to investigate specific questions concerning metabolism and (3) the involvement, for the first time, of human CYP2E1 in the formation of GA from AA. Further studies will compare the activities of GA formation in genetically engineered V79 cells expressing CYP2E1 from different species. (orig.)

  20. Neuropharmacology of Purinergic Receptors in Human Submucous Plexus: Involvement of P2X1, P2X2, P2X3 Channels, P2Y and A3 Metabotropic Receptors in Neurotransmission

    Science.gov (United States)

    Liñán-Rico, A.; Wunderlich, JE.; Enneking, JT.; Tso, DR.; Grants, I.; Williams, KC.; Otey, A.; Michel, K.; Schemann, M.; Needleman, B.; Harzman, A.; Christofi, FL.

    2015-01-01

    Rationale The role of purinergic signaling in the human ENS is not well understood. We sought to further characterize the neuropharmacology of purinergic receptors in human ENS and test the hypothesis that endogenous purines are critical regulators of neurotransmission. Experimental Approach LSCM-Fluo-4-(Ca2+)-imaging of postsynaptic Ca2+ transients (PSCaTs) was used as a reporter of neural activity. Synaptic transmission was evoked by fiber tract electrical stimulation in human SMP surgical preparations. Pharmacological analysis of purinergic signaling was done in 1,556 neurons from 234 separate ganglia 107 patients; immunochemical labeling for P2XRs of neurons in ganglia from 19 patients. Real-time MSORT (Di-8-ANEPPS) imaging was used to test effects of adenosine on fast excitatory synaptic potentials (fEPSPs). Results Synaptic transmission is sensitive to pharmacological manipulations that alter accumulation of extracellular purines. Apyrase blocks PSCaTs in a majority of neurons. An ecto-NTPDase-inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP or adenosine deaminase augments PSCaTs. Blockade of reuptake/deamination of eADO inhibits PSCaTs. Adenosine inhibits fEPSPs and PSCaTs (IC50=25μM), sensitive to MRS1220-antagonism (A3AR). A P2Y agonist ADPβS inhibits PSCaTs (IC50=111nM) in neurons without stimulatory ADPβS responses (EC50=960nM). ATP or a P2X1,2,2/3 (α,β-MeATP) agonist evokes fast, slow, biphasic Ca2+ transients or Ca2+ oscillations (EC50=400μM). PSCaTs are sensitive to P2X1 antagonist NF279. Low (20nM) or high (5μM) concentrations of P2X antagonist TNP-ATP block PSCaTs in different neurons; proportions of neurons with P2XR-ir follow the order P2X2>P2X1≫P2X3; P2X1+ P2X2 and P2X3+P2X2 are co-localized. RT-PCR identified mRNA-transcripts for P2X1-7,P2Y1,2,12-14R. Responsive neurons were also identified by HuC/D-ir. Conclusions Purines are critical regulators of neurotransmission in the human enteric nervous system. Purinergic signaling involves

  1. Crystal structure of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  2. Estimating limits for natural human embryo mortality [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gavin E. Jarvis

    2016-12-01

    Full Text Available Natural human embryonic mortality is generally considered to be high. Values of 70% and higher are widely cited. However, it is difficult to determine accurately owing to an absence of direct data quantifying embryo loss between fertilisation and implantation. The best available data for quantifying pregnancy loss come from three published prospective studies (Wilcox, Zinaman and Wang with daily cycle by cycle monitoring of human chorionic gonadotrophin (hCG in women attempting to conceive. Declining conception rates cycle by cycle in these studies indicate that a proportion of the study participants were sub-fertile. Hence, estimates of fecundability and pre-implantation embryo mortality obtained from the whole study cohort will inevitably be biased. This new re-analysis of aggregate data from these studies confirms the impression that discrete fertile and sub-fertile sub-cohorts were present. The proportion of sub-fertile women in the three studies was estimated as 28.1% (Wilcox, 22.8% (Zinaman and 6.0% (Wang. The probability of conceiving an hCG pregnancy (indicating embryo implantation was, respectively, 43.2%, 38.1% and 46.2% among normally fertile women, and 7.6%, 2.5% and 4.7% among sub-fertile women. Pre-implantation loss is impossible to calculate directly from available data although plausible limits can be estimated. Based on this new analysis and a model for evaluating reproductive success and failure it is proposed that a plausible range for normal human embryo and fetal mortality from fertilisation to birth is 40-60%.

  3. Neuropharmacology of purinergic receptors in human submucous plexus: Involvement of P2X₁, P2X₂, P2X₃ channels, P2Y and A₃ metabotropic receptors in neurotransmission.

    Science.gov (United States)

    Liñán-Rico, A; Wunderlich, J E; Enneking, J T; Tso, D R; Grants, I; Williams, K C; Otey, A; Michel, K; Schemann, M; Needleman, B; Harzman, A; Christofi, F L

    2015-08-01

    The role of purinergic signaling in human ENS is not well understood. We sought to further characterize the neuropharmacology of purinergic receptors in human ENS and test the hypothesis that endogenous purines are critical regulators of neurotransmission. LSCM-Fluo-4/(Ca(2+))-imaging of postsynaptic Ca(2+) transients (PSCaTs) was used as a reporter of synaptic transmission evoked by fiber tract electrical stimulation in human SMP surgical preparations. Pharmacological analysis of purinergic signaling was done in 1,556 neurons (identified by HuC/D-immunoreactivity) in 235 ganglia from 107 patients; P2XR-immunoreactivity was evaluated in 19 patients. Real-time MSORT (Di-8-ANEPPS) imaging tested effects of adenosine on fast excitatory synaptic potentials (fEPSPs). Synaptic transmission is sensitive to pharmacological manipulations that alter accumulation of extracellular purines: Apyrase blocks PSCaTs in a majority of neurons. An ecto-NTPDase-inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP or adenosine deaminase augments PSCaTs. Blockade of reuptake/deamination of eADO inhibits PSCaTs. Adenosine inhibits fEPSPs and PSCaTs (IC50 = 25 µM), sensitive to MRS1220-antagonism (A3AR). A P2Y agonist ADPβS inhibits PSCaTs (IC50 = 111 nM) in neurons without stimulatory ADPbS responses (EC50 = 960 nM). ATP or a P2X1,2,2/3 (α,β-MeATP) agonist evokes fast, slow, biphasic Ca(2+) transients or Ca(2+) oscillations (ATP,EC50 = 400 mM). PSCaTs are sensitive to P2X1 antagonist NF279. Low (20 nM) or high (5 µM) concentrations of P2X antagonist TNP-ATP block PSCaTs in different neurons; proportions of neurons with P2XR-immunoreactivity follow the order P2X2 > P2X1 > P2X3; P2X1 + P2X2 and P2X3 + P2X2 are co-localized. RT-PCR identified mRNA-transcripts for P2X1-7, P2Y1,2,12-14R. Purines are critical regulators of neurotransmission in human ENS. Purinergic signaling involves P2X1, P2X2, P2X3 channels, P2X1 + P2X2 co-localization and inhibitory P2Y or A3 receptors. These are

  4. Co-infection of human herpesvirus type 2 (HHV-2) and human immunodeficiency virus (HIV) among pregnant women in Rio de Janeiro, Brazil.

    Science.gov (United States)

    Lima, Lyana Rodrigues Pinto; Fernandes, Luis Eduardo Barros Costa; Villela, Daniel A M; Morgado, Mariza Gonçalves; Pilotto, José Henrique; de Paula, Vanessa Salete

    2018-03-01

    Pregnant women who are infected with the Human Immunodeficiency Virus (HIV) are particularly vulnerable to severe and recurrent infections with Human Herpesvirus 2 (HHV-2). Neonatal transmission of HHV-2 has been associated with malformations and neurological sequelae in infants, which makes it very important to perform antenatal monitoring for genital herpes. In the study, 134 pregnant women infected with HIV were tested for HHV-2 IgM and IgG using an enzyme-linked immunosorbent assay (ELISA) and had HHV-2 DNA analyzed by Real Time Polymerase Chain Reaction (qPCR). Fisher's exact test was applied to analyze the epidemiological dates (p pregnant women infected with HIV had HHV-2 IgG and 3.75% of them showed HHV-2 viremia. HHV-2 IgM was found in 6% of the pregnant women and 25% of them had HHV-2 viremia. The risk factors associated with HHV-2 seropositive were age under 20 and a CD4/CD8 ratio > 1. Our study found high HHV-2/HIV coinfection prevalence and HHV-2 viremia among patients with recurrent and primary genital infection, reinforcing the need of prevention and control of HHV-2 infection in order to avoid this virus transmission.

  5. Determination of residual Kryptofix 2.2.2 levels in [18F]-labeled radiopharmaceuticals for human use

    International Nuclear Information System (INIS)

    Scott, Peter J.H.; Kilbourn, Michael R.

    2007-01-01

    4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (Kryptofix 2.2.2) is used in the routine preparation of [ 18 F]-labeled tracers employed in positron emission tomography (PET) imaging. Confirming the absence of Kryptofix in radiopharmaceuticals is a quality control criterion required before they can be released for human use. Analysis of Kryptofix levels using the iodoplatinate spot-test can be complicated by false-positive results due to nitrogen containing tracers and/or false-negative results caused by added stabilizers. To overcome this issue, we have developed a universal TLC method for the rapid and reliable determination of Kryptofix levels in the wide range of fluorine-18 radiopharmaceuticals we prepare, including complex multi-component formulations

  6. The combined action of mast cell chymase, tryptase and carboxypeptidase A3 protects against melanoma colonization of the lung

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Paivandy, Aida; Gustafson, Ann-Marie

    2017-01-01

    Mast cell secretory granules are densely packed with various bioactive mediators including proteases of chymase, tryptase and CPA3 type. Previous studies have indicated that mast cells can affect the outcome of melanoma but the contribution of the mast cell granule proteases to such effects has......, suggesting that multiple mast cell protease deficiency might affect T cell or NKT cell populations. In line with this, we found that the Mcpt4/Mcpt6/Cpa3-deficiency was associated with a reduction in cells expressing CD1d, a MHC class 1-like molecule that is crucial for presenting antigen to invariant NKT (i......NKT) cells. Together, these findings indicate a protective role of mast cell-specific proteases in melanoma dissemination, and suggest that this effect involves a CXCL16/CD1d/NKT cell axis....

  7. Involvement of Transglutaminase-2 in α-MSH-Induced Melanogenesis in SK-MEL-2 Human Melanoma Cells.

    Science.gov (United States)

    Kim, Hyun Ji; Lee, Hye Ja; Park, Mi Kyung; Gang, Kyung Jin; Byun, Hyun Jung; Park, Jeong Ho; Kim, Mi Kyung; Kim, Soo Youl; Lee, Chang Hoon

    2014-05-01

    Skin hyperpigmentation is one of the most common skin disorders caused by abnormal melanogenesis. The mechanism and key factors at play are not fully understood. Previous reports have indicated that cystamine (CTM) inhibits melanin synthesis, though its molecular mechanism in melanogenesis remains unclear. In the present study, we investigated the effect of CTM on melanin production using ELISA reader and the expression of proteins involved in melanogenesis by Western blotting, and examined the involvement of transglutaminase-2 (Tgase-2) in SK-MEL-2 human melanoma cells by gene silencing. In the results, CTM dose-dependently suppressed melanin production and dendrite extension in α-MSH-induced melanogenesis of SK-MEL-2 human melanoma cells. CTM also suppressed α-MSH-induced chemotactic migration as well as the expressions of melanogenesis factors TRP-1, TRP-2 and MITF in α-MSH-treated SK-MEL-2 cells. Meanwhile, gene silencing of Tgase-2 suppressed dendrite extension and the expressions of TRP-1 and TRP-2 in α-MSH-treated SK-MEL-2 cells. Overall, these findings suggested that CTM suppresses α-MSH-induced melanogenesis via Tgase-2 inhibition and that therefore, Tgase-2 might be a new target in hyperpigmentation disorder therapy.

  8. Dexmedetomidine attenuates H2O2-induced cell death in human osteoblasts.

    Science.gov (United States)

    Yoon, Ji-Young; Park, Jeong-Hoon; Kim, Eun-Jung; Park, Bong-Soo; Yoon, Ji-Uk; Shin, Sang-Wook; Kim, Do-Wan

    2016-12-01

    Reactive oxygen species play critical roles in homeostasis and cell signaling. Dexmedetomidine, a specific agonist of the α 2 -adrenoceptor, has been commonly used for sedation, and it has been reported to have a protective effect against oxidative stress. In this study, we investigated whether dexmedetomidine has a protective effect against H 2 O 2 -induced oxidative stress and the mechanism of H 2 O 2 -induced cell death in normal human fetal osteoblast (hFOB) cells. Cells were divided into three groups: control group-cells were incubated in normoxia without dexmedetomidine, hydrogen peroxide (H 2 O 2 ) group-cells were exposed to H 2 O 2 (200 µM) for 2 h, and Dex/H 2 O 2 group-cells were pretreated with dexmedetomidine (5 µM) for 2 h then exposed to H 2 O 2 (200 µM) for 2 h. Cell viability and apoptosis were evaluated. Osteoblast maturation was determined by assaying bone nodular mineralization. Expression levels of bone-related proteins were determined by western blot. Cell viability was significantly decreased in the H 2 O 2 group compared with the control group, and this effect was improved by dexmedetomidine. The Hoechst 33342 and Annexin-V FITC/PI staining revealed that dexmedetomidine effectively decreased H 2 O 2 -induced hFOB cell apoptosis. Dexmedetomidine enhanced the mineralization of hFOB cells when compared to the H 2 O 2 group. In western blot analysis, bone-related protein was increased in the Dex/H 2 O 2 group. We demonstrated the potential therapeutic value of dexmedetomidine in H 2 O 2 -induced oxidative stress by inhibiting apoptosis and enhancing osteoblast activity. Additionally, the current investigation could be evidence to support the antioxidant potential of dexmedetomidine in vitro.

  9. Blockade of human P2X7 receptor function with a monoclonal antibody.

    Science.gov (United States)

    Buell, G; Chessell, I P; Michel, A D; Collo, G; Salazzo, M; Herren, S; Gretener, D; Grahames, C; Kaur, R; Kosco-Vilbois, M H; Humphrey, P P

    1998-11-15

    A monoclonal antibody (MoAb) specific for the human P2X7 receptor was generated in mice. As assessed by flow cytometry, the MoAb labeled human blood-derived macrophage cells natively expressing P2X7 receptors and cells transfected with human P2X7 but not other P2X receptor types. The MoAb was used to immunoprecipitate the human P2X7 receptor protein, and in immunohistochemical studies on human lymphoid tissue, P2X7 receptor labeling was observed within discrete areas of the marginal zone of human tonsil sections. The antibody also acted as a selective antagonist of human P2X7 receptors in several functional studies. Thus, whole cell currents, elicited by the brief application of 2',3'-(4-benzoyl)-benzoyl-ATP in cells expressing human P2X7, were reduced in amplitude by the presence of the MoAb. Furthermore, preincubation of human monocytic THP-1 cells with the MoAb antagonized the ability of P2X7 agonists to induce the release of interleukin-1beta.

  10. Nuclear Regulatory Commission Human Factors Program Plan. Revision 2

    International Nuclear Information System (INIS)

    1986-04-01

    This document is the Second Annual Revision to the NRC Human Factors Program Plan. The first edition was published in August 1983. Revision 1 was published in July of 1984. Purpose of the NRC Human Factors Program is to ensure that proper consideration is given to human factors in the design and operation of nuclear power plants. This document describes the plans of the Office of Nuclear Reactor Regulation to address high priority human factors concerns of importance to reactor safety in FY 1986 and FY 1987. Revision 2 of the plan incorporates recent Commission decisions and policies bearing on the human factors aspects of reactor safety regulation. With a few exceptions, the principal changes from prior editions reflect a shift from developing new requirements to staff evaluation of industry progress in resolving human factors issues. The plan addresses seven major program elements: (1) Training, (2) Licensing Examinations, (3) Procedures, (4) Man-Machine Interface, (5) Staffing and Qualifications, (6) Management and Organization, and (7) Human Performance

  11. AcEST: BP915170 [AcEST

    Lifescience Database Archive (English)

    Full Text Available es... 37 0.63 tr|Q33563|Q33563_9TRYP EATRO 164 kinetoplast (CR4) OS=Trypanosom... 35 2.4 tr|B6Y2K9|B6Y2K9_AN...1 IILFIFFFYFVLCFLYCCFY 90 >tr|B6Y2K9|B6Y2K9_ANATH Putative uncharacterized protei

  12. Tocopherol metabolites 2, 5, 7, 8-tetramethyl-2-(2'-carboxyethyl)-6-hydroxychroman (alpha-CEHC) and 2, 7, 8-trimethyl-2-(2'-carboxyethyl)-6-hydroxychroman (gamma-CEHC) in human serum after a single dose of natural vitamin E.

    Science.gov (United States)

    Radosavac, Dragan; Graf, Peter; Polidori, M Cristina; Sies, Helmut; Stahl, Wilhelm

    2002-06-01

    alpha- and gamma-Tocopherol are vitamin E compounds in human blood and tissues. alpha-CEHC (2,5,7,8-tetramethyl-2-(2'-carboxyethyl)-6-hydroxychroman) and gamma-CEHC (2,7,8-trimethyl-2-(2'-carboxyethyl)-6-hydroxychroman) have been identified as water-soluble metabolites which are excreted with the urine in humans. To assess over-time changes of serum levels of alpha- and gamma-CEHC in humans after a single dose of vitamin E from a natural source. Twenty-one healthy subjects ingested a single dose of vitamin E (306 mg of RRR-alpha-tocopherol and 1.77 mg of gamma-tocopherol). Blood was collected before (baseline) and 2, 6, 12, 24, 35, 50, and 74 h after ingestion. Serum was separated and levels of alpha- and gamma-tocopherol and alpha- and gamma-CEHC were determined by HPLC. After vitamin E ingestion, a statistically significant increase was observed for alpha-tocopherol and alpha-CEHC. Maximum serum levels for both compounds were measured 12 h after application (33.3 +/- 11.1 micromol alpha-toco-pherol /L and 42.4 +/- 18.3 nmol alpha-CEHC /L); baseline values were reached again after 72 h. While gamma-tocopherol levels decreased during the study period, an increase in the metabolite gamma-CEHC was observed. The optical isomer formed in the metabolism of RRR-alpha-tocopherol was assigned as S-alpha-CEHC. alpha-CEHC levels increase after administration of a single dose of natural vitamin E in humans. The appearance of the metabolite in blood parallels that of the parent compound. The gamma-tocopherol analog appears to be metabolized more efficiently than alpha-tocopherol.

  13. Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP)

    International Nuclear Information System (INIS)

    Knudsen, Gabriel A.; Hughes, Michael F.; Sanders, J. Michael; Hall, Samantha M.; Birnbaum, Linda S.

    2016-01-01

    2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) are novel brominated flame retardants used in consumer products. A parallelogram approach was used to predict human dermal absorption and flux for EH-TBB and BEH-TEBP. [ 14 C]-EH-TBB or [ 14 C]-BEH-TEBP was applied to human or rat skin at 100 nmol/cm 2 using a flow-through system. Intact rats received analogous dermal doses. Treated skin was washed and tape-stripped to remove “unabsorbed” [ 14 C]-radioactivity after continuous exposure (24 h). “Absorbed” was quantified using dermally retained [ 14 C]-radioactivity; “penetrated” was calculated based on [ 14 C]-radioactivity in media (in vitro) or excreta + tissues (in vivo). Human skin absorbed EH-TBB (24 ± 1%) while 0.2 ± 0.1% penetrated skin. Rat skin absorbed more (51 ± 10%) and was more permeable (2 ± 0.5%) to EH-TBB in vitro; maximal EH-TBB flux was 11 ± 7 and 102 ± 24 pmol-eq/cm 2 /h for human and rat skin, respectively. In vivo, 27 ± 5% was absorbed and 13% reached systemic circulation after 24 h (maximum flux was 464 ± 65 pmol-eq/cm 2 /h). BEH-TEBP in vitro penetrance was minimal (< 0.01%) for rat or human skin. BEH-TEBP absorption was 12 ± 11% for human skin and 41 ± 3% for rat skin. In vivo, total absorption was 27 ± 9%; 1.2% reached systemic circulation. In vitro maximal BEH-TEBP flux was 0.3 ± 0.2 and 1 ± 0.3 pmol-eq/cm 2 /h for human and rat skin; in vivo maximum flux for rat skin was 16 ± 7 pmol-eq/cm 2 /h. EH-TBB was metabolized in rat and human skin to tetrabromobenzoic acid. BEH-TEBP-derived [ 14 C]-radioactivity in the perfusion media could not be characterized. < 1% of the dose of EH-TBB and BEH-TEHP is estimated to reach the systemic circulation following human dermal exposure under the conditions tested. Chemical compounds studied in this article: 2-Ethylhexyl 2,3,4,5-tetrabromobenzoate (PubChem CID: 71316600; CAS No. 183658-27-7 FW: 549.92 g/mol logP est : 7.73–8

  14. Affinity column for purification of the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor

    International Nuclear Information System (INIS)

    Venton, D.L.; Arora, S.K.; Kim, S.O.; Lim, C.T.; Le Breton, G.C.

    1987-01-01

    The TXA 2 /PGH 2 receptor antagonist, 13-azaprostanoic acid (13-APA), was synthesized and used as the immobilized ligand in the affinity column purification of the 13-APA/U46619 binding component in human platelets. Diazo coupling of the ligand to the phenol of this tyr-gly-gly-NH-(CO)-O-Sepharose gave the affinity column material. Isolated platelet membranes were solubilized with detergent, applied directly to the affinity column and the eluate collected as 6 x 70 ml fractions. For each fraction, protein concentration and specific 3 H-13-APA/numberH-U46619 binding were determined. The majority of the applied protein (>98%) eluted in fraction number1. However, the specific 13-APA/U46619 binding per mg of protein was localized in fractions number4 and number5, representing approximately a 500-fold purification of this binding component. These results suggest that the platelet TXA 2 /PGH 2 receptor protein is retarded by this column, and that starting from crude, solubilized platelet membranes, a single pass through the column provides a 500-fold purification of the receptor

  15. Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP)

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Gabriel A., E-mail: gabriel.knudsen@nih.gov [NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC (United States); Hughes, Michael F. [Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Sanders, J. Michael; Hall, Samantha M.; Birnbaum, Linda S. [NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC (United States)

    2016-11-15

    2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) are novel brominated flame retardants used in consumer products. A parallelogram approach was used to predict human dermal absorption and flux for EH-TBB and BEH-TEBP. [{sup 14}C]-EH-TBB or [{sup 14}C]-BEH-TEBP was applied to human or rat skin at 100 nmol/cm{sup 2} using a flow-through system. Intact rats received analogous dermal doses. Treated skin was washed and tape-stripped to remove “unabsorbed” [{sup 14}C]-radioactivity after continuous exposure (24 h). “Absorbed” was quantified using dermally retained [{sup 14}C]-radioactivity; “penetrated” was calculated based on [{sup 14}C]-radioactivity in media (in vitro) or excreta + tissues (in vivo). Human skin absorbed EH-TBB (24 ± 1%) while 0.2 ± 0.1% penetrated skin. Rat skin absorbed more (51 ± 10%) and was more permeable (2 ± 0.5%) to EH-TBB in vitro; maximal EH-TBB flux was 11 ± 7 and 102 ± 24 pmol-eq/cm{sup 2}/h for human and rat skin, respectively. In vivo, 27 ± 5% was absorbed and 13% reached systemic circulation after 24 h (maximum flux was 464 ± 65 pmol-eq/cm{sup 2}/h). BEH-TEBP in vitro penetrance was minimal (< 0.01%) for rat or human skin. BEH-TEBP absorption was 12 ± 11% for human skin and 41 ± 3% for rat skin. In vivo, total absorption was 27 ± 9%; 1.2% reached systemic circulation. In vitro maximal BEH-TEBP flux was 0.3 ± 0.2 and 1 ± 0.3 pmol-eq/cm{sup 2}/h for human and rat skin; in vivo maximum flux for rat skin was 16 ± 7 pmol-eq/cm{sup 2}/h. EH-TBB was metabolized in rat and human skin to tetrabromobenzoic acid. BEH-TEBP-derived [{sup 14}C]-radioactivity in the perfusion media could not be characterized. < 1% of the dose of EH-TBB and BEH-TEHP is estimated to reach the systemic circulation following human dermal exposure under the conditions tested. Chemical compounds studied in this article: 2-Ethylhexyl 2,3,4,5-tetrabromobenzoate (PubChem CID: 71316600; CAS No. 183658

  16. [Purification of human goose-type lysozyme 2 (HLysG2) from human seminal plasma and analysis of its enzymatic properties].

    Science.gov (United States)

    Huang, Peng; Yang, Zhifang; Bao, Jianying; Zhang, Ning; Li, Wenshu

    2017-03-01

    Objective To purify human goose-type lysozyme 2 (HLysG2) from human seminal plasma by chromatography and analyze its enzymatic properties. Methods The distribution of HLysG2 in semen was analyzed by Western blot analysis. Seminal plasma was subjected to the separation of target protein using cation-exchange chromatography, chitin affinity chromatography and size-exclusion chromatography. The purified product was identified by Western blot analysis and mass spectrometry (MS).The purity was analyzed by high performance liquid chromatography (HPLC). Then, the optimum pH, ion concentration and temperature of HLysG2 and its standard activity were determined by the turbidimetric assay. The bactericidal activity of HLysG2 was assessed by the colony-forming assay. Results The existence of HLysG2 in seminal plasma was confirmed by Western blot analysis. A protein of about 21.5 kDa was purified from seminal plasma by the three kinds of chromatography and identified as HLysG2 by Western blot analysis and MS. The final purity of the purified product was above 99.0% and the peak enzymatic activity reached 13 800 U/mg under the condition of pH 6.4, 0.09 mol/L Na + , 30DegreesCelsius. In vitro assay indicated that HLysG2 had a significant killing effect on Micrococcus lysodeikticus, Bacillus subtilis and Staphylococcus aureus, but not on Pseudomonas aeruginosa and Escherichia coli. Conclusion Native HLysG2 can be obtained from seminal plasma by chromatography. It has in vitro bactericidal activity against Gram-positive bacteria, suggesting that it might play a role in innate immunity of the male reproductive system.

  17. Characterization of the promoter of human CRTh2, a prostaglandin D{sub 2} receptor

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, Russell; Madsen, Norman [Department of Medicine, Division of Pulmonary Medicine, Pulmonary Research Group, 574B Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2 (Canada); Cameron, Lisa [Department of Medicine, Division of Pulmonary Medicine, Pulmonary Research Group, 574B Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2 (Canada)

    2007-11-30

    Chemoattractant-receptor homologous molecule expressed on Th2 cells (CRTh2) is a receptor for prostaglandin (PG)D{sub 2}, a lipid mediator involved in allergic inflammation. CRTh2 is expressed by Th2 cells, eosinophils and basophils and PDG{sub 2}-CRTh2 signaling induces calcium mobilization, cell migration and expression of the Th2 cytokines IL-4, IL-5, and IL-13. Despite the role of CRTh2 in allergic inflammation, transcriptional regulation of this gene has not been studied. Here, we demonstrated that a reporter construct of the CRTh2 promoter was induced following T cell stimulation. This activity could be further enhanced by over-expression of GATA-3, but not NFAT2 or STAT6. Electromobility shift assay demonstrated GATA-3 binding to a probe from the CRTh2 promoter. This study provides the first detailed analysis of transcriptional regulation of the human CRTh2 promoter. These findings may help identify strategies to attenuate expression of this gene and influence the maintenance and proliferation of Th2 cells in allergic inflammation.

  18. Regulation of repp86 stability by human Siah2

    International Nuclear Information System (INIS)

    Szczepanowski, Monika; Adam-Klages, Sabine; Kruse, Marie-Luise; Pollmann, Marc; Klapper, Wolfram; Parwaresch, Reza; Heidebrecht, Hans-Juergen

    2007-01-01

    Human repp86 is a nuclear protein that is expressed in a tightly limited period of time during the cell cycle and plays an essential role in its progression. Manipulation of repp86 expression by reduction of endogenous repp86 or overexpression of exogenous repp86 results in cell cycle arrest. We found that repp86 interacts with human Siah2, which is a known mediator for proteasomal degradation. Siah2 failed to interact with repp86 lacking the first 67 N-terminal amino acids. Overexpression of Siah2 reduced endogenous and exogenous repp86 at the protein level without affecting its mRNA, as shown by cotransfection and RT-PCR experiments. Furthermore, MG-132-a specific inhibitor of the proteasome-blocked the degradation of repp86 in Siah2 overexpressing cells. Moreover, transiently transfected Siah2 abrogated the mitotic arrest in repp86 overexpressing cells. Our data show that Siah2 is an important mediator of repp86 protein degradation

  19. Vasohibin 2 promotes human luminal breast cancer angiogenesis in a non-paracrine manner via transcriptional activation of fibroblast growth factor 2.

    Science.gov (United States)

    Tu, Min; Lu, Cheng; Lv, Nan; Wei, Jishu; Lu, Zipeng; Xi, Chunhua; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Li, Qiang; Wu, Junli; Song, Guoxin; Wang, Shui; Gao, Wentao; Miao, Yi

    2016-12-28

    Vasohibin 2 (VASH2) is an angiogenic factor and cancer-related protein that acts via paracrine mechanisms. Here, we investigated the angiogenic function and mechanism of action of VASH2 in 200 human breast cancer tissues by performing immunohistochemical staining, western blot, indirect sandwich enzyme-linked immunosorbent assay (ELISA), and a semi-quantitative sandwich-based antibody array. Breast cancer cells stably overexpressing VASH2 or with knocked-down VASH2 were established and used for in vivo and in vitro models. In human luminal tissue, but not in HER2-positive or basal-like breast cancer tissues, VASH2 was positively correlated with CD31-positive microvascular density, induced angiogenesis in xenograft tumors, and promoted human umbilical vein endothelial cell tube formation in vitro. VASH2 expression was absent in the concentrated conditioned medium collected from knocked-down VASH2 and VASH2-overexpressing luminal breast cancer cells. Further, VASH2 regulated the expression of fibroblast growth factor 2 (FGF2) in human luminal breast cancer cells, and the pro-angiogenic effect induced by VASH2 overexpression was blocked by FGF2 neutralization in vitro. Additionally, dual luciferase reporter assay and Chromatin immunoprecipitation analysis results showed that FGF2 promoter was transcriptionally activated by VASH2 via histone modifications. In conclusion, VASH2 expression is positively correlated with FGF2 expression and promotes angiogenesis in human luminal breast cancer by transcriptional activation of fibroblast growth factor 2 through non-paracrine mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Ex vivo 2D and 3D HSV-2 infection model using human normal vaginal epithelial cells.

    Science.gov (United States)

    Zhu, Yaqi; Yang, Yan; Guo, Juanjuan; Dai, Ying; Ye, Lina; Qiu, Jianbin; Zeng, Zhihong; Wu, Xiaoting; Xing, Yanmei; Long, Xiang; Wu, Xufeng; Ye, Lin; Wang, Shubin; Li, Hui

    2017-02-28

    Herpes simplex virus type 2 (HSV-2) infects human genital mucosa and establishes life-long latent infection. It is unmet need to establish a human cell-based microphysiological system for virus biology and anti-viral drug discovery. One of barriers is lacking of culture system of normal epithelial cells in vitro over decades. In this study, we established human normal vaginal epithelial cell (HNVEC) culture using co-culture system. HNVEC cells were then propagated rapidly and stably in a defined culture condition. HNVEC cells exhibited a normal diploid karyotype and formed the well-defined and polarized spheres in matrigel three-dimension (3D) culture, while malignant cells (HeLa) formed disorganized and nonpolar solid spheres. HNVEC cells had a normal cellular response to DNA damage and had no transforming property using soft agar assays. HNVEC expressed epithelial marker cytokeratin 14 (CK14) and p63, but not cytokeratin 18 (CK18). Next, we reconstructed HNVEC-derived 3D vaginal epithelium using air-liquid interface (ALI) culture. This 3D vaginal epithelium has the basal and apical layers with expression of epithelial markers as its originated human vaginal tissue. Finally, we established an HSV-2 infection model based on the reconstructed 3D vaginal epithelium. After inoculation of HSV-2 (G strain) at apical layer of the reconstructed 3D vaginal epithelium, we observed obvious pathological effects gradually spreading from the apical layer to basal layer with expression of a viral protein. Thus, we established an ex vivo 2D and 3D HSV-2 infection model that can be used for HSV-2 virology and anti-viral drug discovery.

  1. Localization of P2X receptor subtypes 2, 3 and 7 in human urinary bladder.

    Science.gov (United States)

    Svennersten, Karl; Hallén-Grufman, Katarina; de Verdier, Petra J; Wiklund, N Peter; Poljakovic, Mirjana

    2015-08-08

    Voiding dysfunctions are a common problem that has a severe negative impact on the quality of life. Today there is a need for new drug targets for these conditions. The role of ATP receptors in bladder physiology has been studied for some time, primarily in animal models. The aim of this work is to investigate the localization of the ATP receptors P2X2, P2X3 and P2X7 and their colocalization with vimentin and actin in the human urinary bladder. Immunohistochemical analysis was conducted on full-thickness bladder tissues from fundus and trigonum collected from 15 patients undergoing open radical cystectomy due to chronic cystitis, bladder cancer or locally advanced prostate cancer. Colocalization analyses were performed between the three different P2X subtypes and the structural proteins vimentin and actin. Specimens were examined using epifluorescence microscopy and correlation coefficients were calculated for each costaining as well as the mean distance from the laminin positive basal side of the urothelium to the vimentin positive cells located in the suburothelium. P2X2 was expressed in vimentin positive cells located in the suburothelium. Less distinct labelling of P2X2 was also observed in actin positive smooth muscle cells and in the urothelium. P2X3 was expressed in vimentin positive cells surrounding the smooth muscle, and in vimentin positive cells located in the suburothelium. Weaker P2X3 labelling was seen in the urothelium. P2X7 was expressed in the smooth muscle cells and the urothelium. In the suburothelium, cells double positive for P2X2 and vimentin where located closer to the urothelium while cells double positive for P2X3 and vimentin where located further from the urothelium. The results from this study demonstrate that there is a significant difference in the expression of the purinergic P2X2, P2X3 and P2X7 receptors in the different histological layers of the human urinary bladder.

  2. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2 activation

    Directory of Open Access Journals (Sweden)

    Xiaobin Liu

    2016-08-01

    Full Text Available Oxidative stress-induced retinal pigment epithelial (RPE cell damage is an important factor in the pathogenesis of age-related macular degeneration (AMD. Previous studies have shown that RTA 408, a synthetic triterpenoid compound, potently activates Nrf2. This study aimed to investigate the protective effects of RTA 408 in cultured RPE cells during oxidative stress and to determine the effects of RTA 408 on Nrf2 and its downstream target genes. Primary human RPE cells were pretreated with RTA 408 and then incubated in 200 μM H2O2 for 6 h. Cell viability was measured with the WST-8 assay. Apoptosis was quantitatively measured by annexin V/propidium iodide (PI double staining and Hoechst 33342 fluorescent staining. Reduced (GSH and oxidized glutathione (GSSG were measured using colorimetric assays. Nrf2 activation and its downstream effects on phase II enzymes were examined by Western blot. Treatment of RPE cells with nanomolar ranges (10 and 100 nM of RTA 408 markedly attenuated H2O2-induced viability loss and apoptosis. RTA 408 pretreatment significantly protected cells from oxidative stress-induced GSH loss, GSSG formation and decreased ROS production. RTA 408 activated Nrf2 and increased the expression of its downstream genes, such as HO-1, NQO1, SOD2, catalase, Grx1, and Trx1. Consequently, the enzyme activities of NQO1, Grx1, and Trx1 were fully protected by RTA 408 pretreatment under oxidative stress. Moreover, knockdown of Nrf2 by siRNA significantly reduced the cytoprotective effects of RTA 408. In conclusion, our data suggest that RTA 408 protect primary human RPE cells from oxidative stress-induced damage by activating Nrf2 and its downstream genes.

  3. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion.

    Science.gov (United States)

    Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J; Wood, Thomas G; Bao, Xiaoyong

    2016-12-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Identification and transcription profiling of trypsin in Aedes taeniorhynchus (Diptera: Culicidae): developmental regulation, blood feeding, and permethrin exposure.

    Science.gov (United States)

    Zhao, Liming; Chen, Jian; Becnel, James J; Kline, Daniel L; Clark, Gary G; Linthicum, Kenneth J

    2011-05-01

    The cDNA of a trypsin gene from Aedes (Ochlerotatus) taeniorhynchus (Weidemann) was cloned and sequenced. The full-length mRNA sequence (890 bp) for trypsin from Ae. taeniorhynchus (AetTryp1) was obtained, which encodes an open reading frame of 765 bp (i.e., 255 amino acids). To detect whether AetTryp is developmentally regulated, a quantitative real-time polymerase chain reaction was used to examine AetTrypl mRNA expression levels in different developmental stages of Ae. taeniorhynchus. AetTryp1 was expressed at low levels in egg, larval, and pupal stages, but was differentially expressed in adult Ae. taeniorhynchus, with highest levels found in 5-d-old female adults when compared with teneral adults. In addition, AetTryp1 mRNA expression differed between sexes, with expression levels much lower in males. However, in both males and females, there was a significant increase in AetTryp1 transcription levels as age increased and peaked in 5-d-old adults. AetTrypl expressed in 5-d-old female Ae. taeniorhynchus significantly increased after 30 min postblood feeding compared with the control. The AetTryp1 mRNA expression in 5-d-old female Ae. taeniorhynchus was affected by different concentrations of permethrin.

  5. PLAG1 and USF2 Co-regulate Expression of Musashi-2 in Human Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Muluken S. Belew

    2018-04-01

    Full Text Available Summary: MSI2, which is expressed predominantly in hematopoietic stem and progenitor cells (HSPCs, enforces HSPC expansion when overexpressed and is upregulated in myeloid leukemias, indicating its regulated transcription is critical to balanced self-renewal and leukemia restraint. Despite this, little is understood of the factors that enforce appropriate physiological levels of MSI2 in the blood system. Here, we define a promoter region that reports on endogenous expression of MSI2 and identify USF2 and PLAG1 as transcription factors whose promoter binding drives reporter activity. We show that these factors co-regulate, and are required for, efficient transactivation of endogenous MSI2. Coincident overexpression of USF2 and PLAG1 in primitive cord blood cells enhanced MSI2 transcription and yielded cellular phenotypes, including expansion of CD34+ cells in vitro, consistent with that achieved by direct MSI2 overexpression. Global chromatin immunoprecipitation sequencing analyses confirm a preferential co-binding of PLAG1 and USF2 at the promoter of MSI2, as well as regulatory regions corresponding to genes with roles in HSPC homeostasis. PLAG1 and USF2 cooperation is thus an important contributor to stem cell-specific expression of MSI2 and HSPC-specific transcriptional circuitry. : MSI2 is an essential human hematopoietic stem and progenitor cell (HSPC regulator, but knowledge of the mechanisms ensuring its appropriate expression in this context are lacking. Here, Hope and colleagues map the MSI2 promoter functional in hematopoietic cells and identify USF2 and PLAG1 as essential, cooperative enforcers of endogenous MSI2 expression and stemness traits in human HSPCs. Keywords: human hematopoietic stem cells, self-renewal, promoter, transcriptional regulation, transcription factors, Musashi-2, genome-wide DNA binding site mapping, PLAG1, USF2

  6. Prostaglandin E2-Induced COX-2 Expressions via EP2 and EP4 Signaling Pathways in Human LoVo Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hsi-Hsien Hsu

    2017-05-01

    Full Text Available Metastasis is the most dangerous risk faced by patients with hereditary non-polyposis colon cancer (HNPCC. The expression of matrix metalloproteinases (MMPs has been observed in several types of human cancers and regulates the efficacy of many therapies. Here, we show that treatment with various concentrations of prostaglandin E2 (PGE2; 0, 1, 5 or 10 μM promotes the migration ability of the human LoVo colon cancer cell line. As demonstrated by mRNA and protein expression analyses, EP2 and EP4 are the major PGE2 receptors expressed on the LoVo cell membrane. The Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K/Akt cell survival pathway was upregulated by EP2 and EP4 activation. Following the activation of the PI3K/Akt pathway, β-catenin translocated into the nucleus and triggered COX2 transcription via LEF-1 and TCF-4 and its subsequent translation. COX2 expression correlated with the elevation in the migration ability of LoVo cells. The experimental evidence shows a possible mechanism by which PGE2 induces cancer cell migration and further suggests PGE2 to be a potential therapeutic target in colon cancer metastasis. On inhibition of PGE2, in order to determine the downstream pathway, the levels of PI3K/Akt pathway were suppressed and the β-catenin expression was also modulated. Inhibition of EP2 and EP4 shows that PGE2 induces protein expression of COX-2 through EP2 and EP4 receptors in LoVo colon cancer cells.

  7. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Birk, Jesper Bratz; Wojtaszewski, Jørgen

    2006-01-01

    -Thr-172 AMPK phosphorylation (r2 = 0.84, P important actor in exercise-regulated AMPK signalling in human skeletal muscle, probably mediating phosphorylation of ACCß.......5'AMP-activated protein kinase (AMPK) is a key regulator of cellular metabolism and is regulated in muscle during exercise. We have previously established that only three of 12 possible AMPK a/ß/¿-heterotrimers are present in human skeletal muscle. Previous studies describe discrepancies between...... total AMPK activity and regulation of its target acetyl-CoA-carboxylase (ACC)ß. Also, exercise training decreases expression of the regulatory ¿3 AMPK subunit and attenuates a2 AMPK activity during exercise. We hypothesize that these observations reflect a differential regulation of the AMPK...

  8. Synthesis and processing of sphingolipid activator protein-2 (SAP-2) in cultured human fibroblasts

    International Nuclear Information System (INIS)

    Fujibayashi, S.; Wenger, D.A.

    1986-01-01

    Sphingolipid activator proteins (SAP) are relatively small molecular weight proteins that stimulate the enzymatic hydrolysis of sphingolipids in the presence of specific lysosomal hydrolases. SAP-2 has previously been demonstrated to activate the hydrolysis of glucosylceramide, galactosylceramide, and, possibly, sphingomyelin. Using monospecific rabbit antibodies against human spleen SAP-2, the synthesis and processing of SAP-2 were studied in cultured human fibroblasts. When [ 35 S]methionine was presented in the medium to control human cells for 4 h, five major areas of radiolabeling were found. These had apparent molecular weights of 73,000, 68,000, 50,000, 12,000, and 9000. Further studies indicated that the major extracellular product in normal cells given NH4Cl along with the [ 35 S]methionine and in medium from cultures from patients with I cell disease had an apparent molecular weight of 73,000. The Mr = 68,000 and 73,000 species can be converted to a species with an apparent molecular weight of 50,000 by the action of endoglycosidase F. After labeling cells for 1 h followed by a 1-h chase, the Mr = 12,000 and 9000 species appear. Treatment of the immunoprecipitated mixture with endoglycosidase F resulted in conversion of these species to one band with an apparent molecular weight of 7600. These studies indicate that this relatively low molecular weight protein is rapidly synthesized from a relatively large molecular weight highly glycosylated precursor

  9. Expression of ODC Antizyme Inhibitor 2 (AZIN2 in Human Secretory Cells and Tissues.

    Directory of Open Access Journals (Sweden)

    Tiina Rasila

    Full Text Available Ornithine decarboxylase (ODC antizyme inhibitor 2 (AZIN2, originally called ODCp, is a regulator of polyamine synthesis that we originally identified and cloned. High expression of ODCp mRNA was found in brain and testis. We reported that AZIN2 is involved in regulation of cellular vesicle transport and / or secretion, but the ultimate physiological role(s of AZIN2 is still poorly understood. In this study we used a peptide antibody (K3 to human AZIN2 and by immunohistochemistry mapped its expression in various normal tissues. We found high expression in the nervous system, in type 2 pneumocytes in the lung, in megakaryocytes, in gastric parietal cells co-localized with H,K-ATPase beta subunit, in selected enteroendocrine cells, in acinar cells of sweat glands, in podocytes, in macula densa cells and epithelium of collecting ducts in the kidney. The high expression of AZIN2 in various cells with secretory or vesicle transport activity indicates that the polyamine metabolism regulated by AZIN2 is more significantly involved in these events than previously appreciated.

  10. Influence of ER leak on resting cytoplasmic Ca2+ and receptor-mediated Ca2+ signalling in human macrophage.

    Science.gov (United States)

    Layhadi, Janice A; Fountain, Samuel J

    2017-06-03

    Mechanisms controlling endoplasmic reticulum (ER) Ca 2+ homeostasis are important regulators of resting cytoplasmic Ca 2+ concentration ([Ca 2+ ] cyto ) and receptor-mediated Ca 2+ signalling. Here we investigate channels responsible for ER Ca 2+ leak in THP-1 macrophage and human primary macrophage. In the absence of extracellular Ca 2+ we employ ionomycin action at the plasma membrane to stimulate ER Ca 2+ leak. Under these conditions ionomycin elevates [Ca 2+ ] cyto revealing a Ca 2+ leak response which is abolished by thapsigargin. IP 3 receptors (Xestospongin C, 2-APB), ryanodine receptors (dantrolene), and translocon (anisomycin) inhibition facilitated ER Ca 2+ leak in model macrophage, with translocon inhibition also reducing resting [Ca 2+ ] cyto . In primary macrophage, translocon inhibition blocks Ca 2+ leak but does not influence resting [Ca 2+ ] cyto . We identify a role for translocon-mediated ER Ca 2+ leak in receptor-mediated Ca 2+ signalling in both model and primary human macrophage, whereby the Ca 2+ response to ADP (P2Y receptor agonist) is augmented following anisomycin treatment. In conclusion, we demonstrate a role of ER Ca 2+ leak via the translocon in controlling resting cytoplasmic Ca 2+ in model macrophage and receptor-mediated Ca 2+ signalling in model macrophage and primary macrophage. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors

    Science.gov (United States)

    Ren, Jin; Gillespie, Delbert G.

    2011-01-01

    Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2′,3′-cAMP to 2′-AMP and 3′-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A2B receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2′,3′-cAMP concentration-dependently increased levels of 2′-AMP and 3′-AMP in the medium, with a similar absolute increase in 2′-AMP vs. 3′-AMP. In contrast, in human coronary VSMCs, 2′,3′-cAMP increased 2′-AMP levels yet had little effect on 3′-AMP levels. In all cell types, 2′,3′-cAMP increased levels of adenosine, but not 5′-AMP, and 2′,3′-AMP inhibited cell proliferation. Antagonism of A2B receptors (MRS-1754), but not A1 (1,3-dipropyl-8-cyclopentylxanthine), A2A (SCH-58261), or A3 (VUF-5574) receptors, attenuated the antiproliferative effects of 2′,3′-cAMP. In all cell types, 2′-AMP, 3′-AMP, and 5′-AMP increased adenosine levels, and inhibition of ecto-5′-nucleotidase blocked this effect of 5′-AMP but not that of 2′-AMP nor 3′-AMP. Also, 2′-AMP, 3′-AMP, and 5′-AMP, like 2′,3′-cAMP, exerted antiproliferative effects that were abolished by antagonism of A2B receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2′,3′-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2′-AMP and 3′-AMP are involved in this process, whereas, in human coronary VSMCs, 2′,3′-cAMP is mainly converted to 2′-AMP. Because adenosine inhibits VSMC proliferation via A2B receptors, local vascular production of 2′,3′-cAMP may protect conduit arteries from atherosclerosis. PMID:21622827

  12. Expression of matrix metrallproteinase-2 in human tears fluid after LASIK

    Directory of Open Access Journals (Sweden)

    Ai-Wei Chen

    2014-12-01

    Full Text Available AIM: To monitor long-term changes of matrix metalloproteinase-2(MMP-2in human tears fluid after laser in situ keratomileusis(LASIK. METHODS: Thirty-two myopia cases(64 eyesunderwent uneventful LASIK were enrolled in the study. Tear fluid were collected and MMP-2 expression was analyzed by Western-bolt assay preoperatively and postoperatively on 15d, at 1, 3mo, and 1a. RESULTS: LASIK increased the concentration of MMP-2 in human tear fluid. At 15d postoperatively, the magnitude of MMP-2 was 1.4 times that of preoperative, thereafter subsided, but didn't return to preoperative level by 3mo(PP>0.05. CONCLUSION: MMP-2 is significantly expressed in human tear fluid after LASIK, then subsided with time, but didn't return to preoperative level by 3mo and almost recovered up to 1a, indicating wound healing of LASIK would continue up at least 3mo after surgery and almost recovered 1a postoperatively.

  13. Injury to the human body, part 2

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Injuries by exposure to the atomic bomb at Hiroshima and Nagasaki and its effects were studied as follows: 1) Injury to the human body following exposure to the atomic bomb; 2) Body injury in the initial stage-acute stage of atomic bomb injury; 3) Aftereffects and genetic effects. (J.P.N.)

  14. Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2

    International Nuclear Information System (INIS)

    Schmidt, Karyn; Wolfe, Devin M.; Stiller, Barbara; Pearce, David A.

    2009-01-01

    The Saccharomyces cerevisiae gene YPK9 encodes a putative integral membrane protein which is 58% similar and 38% identical in amino acid sequence to the human lysosomal P 5B ATPase ATP13A2. Mutations in ATP13A2 have been found in patients with Kufor-Rakeb syndrome, a form of juvenile Parkinsonism. We report that Ypk9p localizes to the yeast vacuole and that deletion of YPK9 confers sensitivity for growth for cadmium, manganese, nickel or selenium. These results suggest that Ypk9p may play a role in sequestration of divalent heavy metal ions. Further studies on the function of Ypk9p/ATP13A2 may help to define the molecular basis of Kufor-Rakeb syndrome and provide a potential link to environmental factors such as heavy metals contributing to some forms of Parkinsonism.

  15. Cysteinyl leukotriene E4 activates human group 2 innate lymphoid cells and enhances the effect of prostaglandin D2 and epithelial cytokines.

    Science.gov (United States)

    Salimi, Maryam; Stöger, Linda; Liu, Wei; Go, Simei; Pavord, Ian; Klenerman, Paul; Ogg, Graham; Xue, Luzheng

    2017-10-01

    Group 2 innate lymphoid cells (ILC2s) are a potential innate source of type 2 cytokines in the pathogenesis of allergic conditions. Epithelial cytokines (IL-33, IL-25, and thymic stromal lymphopoietin [TSLP]) and mast cell mediators (prostaglandin D 2 [PGD 2 ]) are critical activators of ILC2s. Cysteinyl leukotrienes (cysLTs), including leukotriene (LT) C 4 , LTD 4 , and LTE 4 , are metabolites of arachidonic acid and mediate inflammatory responses. Their role in human ILC2s is still poorly understood. We sought to determine the role of cysLTs and their relationship with other ILC2 stimulators in the activation of human ILC2s. For ex vivo studies, fresh blood from patients with atopic dermatitis and healthy control subjects was analyzed with flow cytometry. For in vitro studies, ILC2s were isolated and cultured. The effects of cysLTs, PGD 2 , IL-33, IL-25, TSLP, and IL-2 alone or in combination on ILC2s were defined by using chemotaxis, apoptosis, ELISA, Luminex, quantitative RT-PCR, and flow cytometric assays. The effect of endogenous cysLTs was assessed by using human mast cell supernatants. Human ILC2s expressed the LT receptor CysLT 1 , levels of which were increased in atopic subjects. CysLTs, particularly LTE 4 , induced migration, reduced apoptosis, and promoted cytokine production in human ILC2s in vitro. LTE 4 enhanced the effect of PGD 2 , IL-25, IL-33, and TSLP, resulting in increased production of type 2 and other proinflammatory cytokines. The effect of LTE 4 was inhibited by montelukast, a CysLT 1 antagonist. Interestingly, addition of IL-2 to LTE 4 and epithelial cytokines significantly amplified ILC2 activation and upregulated expression of the receptors for IL-33 and IL-25. CysLTs, particularly LTE 4 , are important contributors to the triggering of human ILC2s in inflammatory responses, particularly when combined with other ILC2 activators. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. CCQM-K11.2 determination of glucose in human serum and CCQM-K12.2 determination of creatinine in human serum

    Science.gov (United States)

    Wise, Stephen A.; Phinney, Karen W.; Duewer, David L.; Sniegoski, Lorna T.; Welch, Michael J.; Pritchett, Jeanita; Pabello, Guiomar; Avila Calderon, Marco A.; Balderas, Miryan; Qinde, Liu; Kooi, Lee Tong; Rego, Eliane; Garrido, Bruno; Allegri, Gabriella; de La Cruz, Marcia; Barrabin, Juliana; Monteiro, Tânia; Lee, Hwashim; Kim, Byungjoo; Delatour, Vincent; Peignaux, Maryline; Kawaguchi, Migaku; Bei, Xu; Can, Quan; Nammoonnoy, Jintana; Schild, Katrin; Ohlendorf, Rüdiger; Henrion, Andre; Ceyhan Gören, Ahmet; Yılmaz, Hasibe; Bilsel, Mine; Konopelko, L.; Krylov, A.; Lopushanskaya, E.

    2018-01-01

    Glucose and creatinine are two of the most frequently measured substances in human blood/serum for assessing the health status of individuals. Because of their clinical significance, CCQM-K11 glucose in human serum and CCQM-K12 creatinine in human serum were the fourth and fifth key comparisons (KCs) performed by the Organic Analysis Working Group (OAWG). These KCs were conducted in parallel and were completed in 2001. The initial subsequent KCs for glucose, CCQM-K11.1, and creatinine, CCQM-K12.1, were completed in 2005. Measurements for the next KCs for these two measurands, CCQM-K11.2 and CCQM-K12.2, were completed in 2013. While designed as subsequent KCs, systematic discordances between the participants' and the anchor institution's results in both comparisons lead the OAWG to request reference results from two experienced laboratories that had participated in the 2001 comparisons. Based on the totality of the available information, the OAWG converted both CCQM-K11.2 and CCQM-K12.2 to 'Track C' KCs where the key comparison reference value is estimated by consensus. These comparisons highlighted that carrying out comparisons for complex chemical measurements and expecting to be able to treat them under the approaches used for formal CIPM subsequent comparisons is not an appropriate strategy. The approach used here is a compromise to gain the best value from the comparison; it is not an approach that will be used in the future. Instead, the OAWG will focus on Track A and Track C comparisons that are treated as stand-alone entities. Participation in CCQM-K11.2 demonstrates a laboratory's capabilities to measure a polar (pKow > 2), low molecular mass (100 g/mol to 500 g/mol) metabolite in human serum at relatively high concentrations (0.1 mg/g to 10 mg/g). Participation in CCQM-K12.2 demonstrates capabilities to measure similar classes of metabolites at relatively low concentrations (1 μg/g to 30 μg/g). The capabilities required for the analysis of complex

  17. Cloning and characterization of a novel human zinc finger gene, hKid3, from a C2H2-ZNF enriched human embryonic cDNA library

    International Nuclear Information System (INIS)

    Gao Li; Sun Chong; Qiu Hongling; Liu Hui; Shao Huanjie; Wang Jun; Li Wenxin

    2004-01-01

    To investigate the zinc finger genes involved in human embryonic development, we constructed a C 2 H 2 -ZNF enriched human embryonic cDNA library, from which a novel human gene named hKid3 was identified. The hKid3 cDNA encodes a 554 amino acid protein with an amino-terminal KRAB domain and 11 carboxyl-terminal C 2 H 2 zinc finger motifs. Northern blot analysis indicates that two hKid3 transcripts of 6 and 8.5 kb express in human fetal brain and kidney. The 6 kb transcript can also be detected in human adult brain, heart, and skeletal muscle while the 8.5 kb transcript appears to be embryo-specific. GFP-fused hKid3 protein is localized to nuclei and the ZF domain is necessary and sufficient for nuclear localization. To explore the DNA-binding specificity of hKid3, an oligonucleotide library was selected by GST fusion protein of hKid3 ZF domain, and the consensus core sequence 5'-CCAC-3' was evaluated by competitive electrophoretic mobility shift assay. Moreover, The KRAB domain of hKid3 exhibits transcription repressor activity when tested in GAL4 fusion protein assay. These results indicate that hKid3 may function as a transcription repressor with regulated expression pattern during human development of brain and kidney

  18. The influence of rAAV2-mediated SOX2 delivery into neonatal and adult human RPE cells; a comparative study.

    Science.gov (United States)

    Ezati, Razie; Etemadzadeh, Azadeh; Soheili, Zahra-Soheila; Samiei, Shahram; Ranaei Pirmardan, Ehsan; Davari, Malihe; Najafabadi, Hoda Shams

    2018-02-01

    Cell replacement is a promising therapy for degenerative diseases like age-related macular degeneration (AMD). Since the human retina lacks regeneration capacity, much attention has been directed toward persuading for cells that can differentiate into retinal neurons. In this report, we have investigated reprogramming of the human RPE cells and concerned the effect of donor age on the cellular fate as a critical determinant in reprogramming competence. We evaluated the effect of SOX2 over-expression in human neonatal and adult RPE cells in cultures. The coding region of human SOX2 gene was cloned into adeno-associated virus (AAV2) and primary culture of human neonatal/adult RPE cells were infected by recombinant virus. De-differentiation of RPE to neural/retinal progenitor cells was investigated by quantitative real-time PCR and ICC for neural/retinal progenitor cells' markers. Gene expression analysis showed 80-fold and 12-fold over-expression for SOX2 gene in infected neonatal and adult hRPE cells, respectively. The fold of increase for Nestin in neonatal and adult hRPE cells was 3.8-fold and 2.5-fold, respectively. PAX6 expression was increased threefold and 2.5-fold in neonatal/adult treated cultures. Howbeit, we could not detect rhodopsin, and CHX10 expression in neonatal hRPE cultures and expression of rhodopsin in adult hRPE cells. Results showed SOX2 induced human neonatal/adult RPE cells to de-differentiate toward retinal progenitor cells. However, the increased number of PAX6, CHX10, Thy1, and rhodopsin positive cells in adult hRPE treated cultures clearly indicated the considerable generation of neuro-retinal terminally differentiated cells. © 2017 Wiley Periodicals, Inc.

  19. Interleukin-2 production by human leukemia cell lines of pre-B cell origin

    International Nuclear Information System (INIS)

    Holan, V.; Minowada, J.

    1993-01-01

    Cells of 7 tested human leukemia cell lines of pre-B cell origin (as characterized by immunophenotyping and by the expression of cytoplasmic micro chains, but not by surface immunoglobulins) produced after stimulation with bacterial lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) a lymphokine activity which supported the growth of the interleukin-2 (IL-2)-dependent CTLL-2 cell line. Three pieces of evidence indicate that the secreted lymphokine was functionally and antigenically very similar, if not identical, to human IL-2: (1) The lymphokine supported the growth of murine IL-2-dependent CTLL-2 cells, which did not respond to human lymphokines other than IL-2, but it did not stimulate the growth of murine IL-3-dependent FDC-P2 cells, (2) the biological activity of the lymphokine was was inhibited by monoclonal antibody (mAb) anti-human-IL-2, and (3) the proliferation of IL-2-dependent cells in the presence of the active materials was completely inhibited by the inclusion of the anti-mouse-IL-2 receptor (IL-2R) mAb. Since leukemia cells of immature B-cell origin also synthesize IL-2R, the human pre-B cell leukemias could represent another type of hematological malignancy where the autocrine processes of IL-2 production and utilization are involved in the expansion of the disease. (author)

  20. Cellular inhibitor of apoptosis protein 2 (cIAP2) controls human colonic epithelial restitution, migration and Rac1 activation

    DEFF Research Database (Denmark)

    Seidelin, JB; Larsen, Sylvester; Linnemann, D

    2015-01-01

    epithelial cells (IECs) was increased at the wound edge after 24 h (P 2 was induced in vitro in regenerating Caco2 IECs after wound infliction (P ...Identification of pathways involved in wound healing is important for understanding the pathogenesis of various intestinal diseases. Cellular inhibitor of apoptosis protein 2 (cIAP2) regulates proliferation and migration in nonepithelial cells and is expressed in human colonocytes. The aim...... of the study was to investigate the role of cIAP2 for wound healing in the normal human colon. Wound tissue was generated by taking rectosigmoidal biopsies across an experimental ulcer in healthy subjects after 5, 24, and 48 h. In experimental ulcers, the expression of cIAP2 in regenerating intestinal...

  1. Mutations in HYAL2, Encoding Hyaluronidase 2, Cause a Syndrome of Orofacial Clefting and Cor Triatriatum Sinister in Humans and Mice.

    Directory of Open Access Journals (Sweden)

    Martina M A Muggenthaler

    2017-01-01

    Full Text Available Orofacial clefting is amongst the most common of birth defects, with both genetic and environmental components. Although numerous studies have been undertaken to investigate the complexities of the genetic etiology of this heterogeneous condition, this factor remains incompletely understood. Here, we describe mutations in the HYAL2 gene as a cause of syndromic orofacial clefting. HYAL2, encoding hyaluronidase 2, degrades extracellular hyaluronan, a critical component of the developing heart and palatal shelf matrix. Transfection assays demonstrated that the gene mutations destabilize the molecule, dramatically reducing HYAL2 protein levels. Consistent with the clinical presentation in affected individuals, investigations of Hyal2-/- mice revealed craniofacial abnormalities, including submucosal cleft palate. In addition, cor triatriatum sinister and hearing loss, identified in a proportion of Hyal2-/- mice, were also found as incompletely penetrant features in affected humans. Taken together our findings identify a new genetic cause of orofacial clefting in humans and mice, and define the first molecular cause of human cor triatriatum sinister, illustrating the fundamental importance of HYAL2 and hyaluronan turnover for normal human and mouse development.

  2. Assignment of casein kinase 2 alpha sequences to two different human chromosomes

    DEFF Research Database (Denmark)

    Boldyreff, B; Klett, C; Göttert, E

    1992-01-01

    Human casein kinase 2 alpha gene (CK-2-alpha) sequences have been localized within the human genome by in situ hybridization and somatic cell hybrid analysis using a CK-2 alpha cDNA as a probe. By in situ hybridization, the CK-2 alpha cDNA could be assigned to two different loci, one on 11p15.1-ter...

  3. ALDH1A2 (RALDH2 genetic variation in human congenital heart disease

    Directory of Open Access Journals (Sweden)

    Mesquita Sonia MF

    2009-11-01

    ALDH1A2 genetic variation is present in TOF patients, suggesting a possible causal role for this gene in rare cases of human CHD, but does not support the hypothesis that variation at the ALDH1A2 locus is a significant modifier of the risk for CHD in humans.

  4. Binding of α2-macroglobulin-thrombin complexes and methylamine-treated α2-macroglobulin to human blood monocytes

    International Nuclear Information System (INIS)

    Straight, D.L.; Jakoi, L.; McKee, P.A.; Snyderman, R.

    1988-01-01

    The binding of α 2 -macroglobulin (α 2 M) to human peripheral blood monocytes was investigated. Monocytes, the precursors of tissue macrophages, were isolated from fresh blood by centrifugal elutriation or density gradient centrifugation. Binding studies were performed using 125 I-labeled α 2 M. Cells and bound ligand were separated from free ligand by rapid vacuum filtration. Nonlinear least-squares analysis of data obtained in direct binding studies at 0 0 C showed that monocytes bound the α 2 M-thrombin complex with a K/sub d/ 3.0 +- .09 nM and the monocyte had 1545 +- 153 sitescell. Thrombin alone did not compete for the site. Binding was divalent cation dependent. Direct binding studies also demonstrated that monocytes bound methylamine-treated α 2 M in a manner similar to α 2 M-thrombin. Competitive binding studies showed that α 2 M-thrombin and methylamine-treated α 2 M bound to the same sites on the monocyte. In contrast, native α 2 M did not compete with α 2 M-thrombin for the site. Studies done at 37 0 C suggested that after binding, the monocyte internalized and degraded α 2 M-thrombin and excreted the degradation products. Receptor turnover and degradation of α 2 M-thrombin complexes were blocked in monocytes treated with chloroquine, an inhibitor of lysosomal function. The results indicate that human monocytes have a divalent cation dependent, high-affinity binding site for α 2 M-thrombin and methylamine-treated α 2 M which may function to clear α 2 M-proteinase complexes from the circulation

  5. Human Factors, Habitability and Environmental Health and the Human Integration Design Handbook. Volume 2

    Science.gov (United States)

    Houbec, Keith; Tillman, Barry; Connolly, Janis

    2010-01-01

    For decades, Space Life Sciences and NASA as an Agency have considered NASA-STD-3000, Man-Systems Integration Standards, a significant contribution to human spaceflight programs and to human-systems integration in general. The document has been referenced in numerous design standards both within NASA and by organizations throughout the world. With research program and project results being realized, advances in technology and new information in a variety of topic areas now available, the time arrived to update this extensive suite of requirements and design information. During the past several years, a multi-NASA center effort has been underway to write the update to NASA-STD-3000 with standards and design guidance that would be applicable to all future human spaceflight programs. NASA-STD-3001 - Volumes 1 and 2 - and the Human Integration Design Handbook (HIDH) were created. Volume 1, Crew Health, establishes NASA s spaceflight crew health standards for the pre-flight, in-flight, and post-flight phases of human spaceflight. Volume 2, Human Factors, Habitability and Environmental Health, focuses on the requirements of human-system integration and how the human crew interacts with other systems, and how the human and the system function together to accomplish the tasks for mission success. The HIDH is a compendium of human spaceflight history and knowledge, and provides useful background information and research findings. And as the HIDH is a stand-alone companion to the Standards, the maintenance of the document has been streamlined. This unique and flexible approach ensures that the content is current and addresses the fundamental advances of human performance and human capabilities and constraints research. Current work focuses on the development of new sections of Volume 2 and collecting updates to the HIDH. The new sections in development expand the scope of the standard and address mission operations and support operations. This effort is again collaboration

  6. A human development framework for CO2 reductions.

    Directory of Open Access Journals (Sweden)

    Luís Costa

    Full Text Available Although developing countries are called to participate in CO(2 emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI and per capita CO(2 emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO(2 emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU. If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8. In particular, 300 Gt of cumulative CO(2 emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20 % to 30 % of previously calculated CO(2 budgets limiting global warming to 2 °C. These constraints and results are incorporated into a CO(2 reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2 °C target after a particular development threshold is reached. For example, in each time step of five years, countries with an HDI of 0.85 would need to reduce their per capita emissions by approx. 17% and countries with an HDI of 0.9 by 33 %. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100 Gt of CO(2. These values are within the uncertainty range of emissions to limit global temperatures to 2 °C.

  7. A human development framework for CO2 reductions.

    Science.gov (United States)

    Costa, Luís; Rybski, Diego; Kropp, Jürgen P

    2011-01-01

    Although developing countries are called to participate in CO(2) emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI) and per capita CO(2) emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO(2) emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU). If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8). In particular, 300 Gt of cumulative CO(2) emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20 % to 30 % of previously calculated CO(2) budgets limiting global warming to 2 °C. These constraints and results are incorporated into a CO(2) reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2 °C target after a particular development threshold is reached. For example, in each time step of five years, countries with an HDI of 0.85 would need to reduce their per capita emissions by approx. 17% and countries with an HDI of 0.9 by 33 %. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100 Gt of CO(2). These values are within the uncertainty range of emissions to limit global temperatures to 2 °C. © 2011 Costa et al.

  8. Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available Melittin is a water-soluble toxic peptide derived from the venom of the bee. Although many studies show the anti-tumor activity of melittin in human cancer including glioma cells, the underlying mechanisms remain elusive. Here the effect of melittin on human hepatocelluar carcinoma HepG2 cell proliferation in vitro and further mechanisms was investigated. We found melittin could inhibit cell proliferation in vitro using Flow cytometry and MTT method. Besides, we discovered that melittin significantly downregulated the expressions of CyclinD1 and CDK4. Results of western Blot and Real-time PCR analysis indicated that melittin was capable to upregulate the expression of PTEN and attenuate histone deacetylase 2 (HDAC2 expression. Further studies demonstrated that knockdown of HDAC2 completely mimicked the effects of melittin on PTEN gene expression. Conversely, it was that the potential utility of melittin on PTEN expression was reversed in cells treated with a recombinant pEGFP-C2-HDAC2 plasmid. In addition, treatment with melittin caused a downregulation of Akt phosphorylation, while overexpression of HDAC2 promoted Akt phosphorylation. These findings suggested that the inhibitory of cell growth by melittin might be led by HDAC2-mediated PTEN upregulation, Akt inactivation, and inhibition of the PI3K/Akt signaling pathways.

  9. Cutting an NKG2D Ligand Short: Cellular Processing of the Peculiar Human NKG2D Ligand ULBP4

    Directory of Open Access Journals (Sweden)

    Tobias Zöller

    2018-03-01

    Full Text Available Stress-induced cell surface expression of MHC class I-related glycoproteins of the MIC and ULBP families allows for immune recognition of dangerous “self cells” by human cytotoxic lymphocytes via the NKG2D receptor. With two MIC molecules (MICA and MICB and six ULBP molecules (ULBP1–6, there are a total of eight human NKG2D ligands (NKG2DL. Since the discovery of the NKG2D–NKG2DL system, the cause for both redundancy and diversity of NKG2DL has been a major and ongoing matter of debate. NKG2DL diversity has been attributed, among others, to the selective pressure by viral immunoevasins, to diverse regulation of expression, to differential tissue expression as well as to variations in receptor interactions. Here, we critically review the current state of knowledge on the poorly studied human NKG2DL ULBP4. Summarizing available facts and previous studies, we picture ULBP4 as a peculiar ULBP family member distinct from other ULBP family members by various aspects. In addition, we provide novel experimental evidence suggesting that cellular processing gives rise to mature ULBP4 glycoproteins different to previous reports. Finally, we report on the proteolytic release of soluble ULBP4 and discuss these results in the light of known mechanisms for generation of soluble NKG2DL.

  10. Regional differences in prostaglandin E2 metabolism in human colorectal cancer liver metastases

    International Nuclear Information System (INIS)

    Young, Alastair L; Chalmers, Claire R; Hawcroft, Gillian; Perry, Sarah L; Treanor, Darren; Toogood, Giles J; Jones, Pamela F; Hull, Mark A

    2013-01-01

    Prostaglandin (PG) E 2 plays a critical role in colorectal cancer (CRC) progression, including epithelial-mesenchymal transition (EMT). Activity of the rate-limiting enzyme for PGE 2 catabolism (15-hydroxyprostaglandin dehydrogenase [15-PGDH]) is dependent on availability of NAD+. We tested the hypothesis that there is intra-tumoral variability in PGE 2 content, as well as in levels and activity of 15-PGDH, in human CRC liver metastases (CRCLM). To understand possible underlying mechanisms, we investigated the relationship between hypoxia, 15-PGDH and PGE 2 in human CRC cells in vitro. Tissue from the periphery and centre of 20 human CRCLM was analysed for PGE 2 levels, 15-PGDH and cyclooxygenase (COX)-2 expression, 15-PGDH activity, and NAD+/NADH levels. EMT of LIM1863 human CRC cells was induced by transforming growth factor (TGF) β. PGE 2 levels were significantly higher in the centre of CRCLM compared with peripheral tissue (P = 0.04). There were increased levels of 15-PGDH protein in the centre of CRCLM associated with reduced 15-PGDH activity and low NAD+/NADH levels. There was no significant heterogeneity in COX-2 protein expression. NAD+ availability controlled 15-PGDH activity in human CRC cells in vitro. Hypoxia induced 15-PGDH expression in human CRC cells and promoted EMT, in a similar manner to PGE 2 . Combined 15-PGDH expression and loss of membranous E-cadherin (EMT biomarker) were present in the centre of human CRCLM in vivo. There is significant intra-tumoral heterogeneity in PGE 2 content, 15-PGDH activity and NAD+ availability in human CRCLM. Tumour micro-environment (including hypoxia)-driven differences in PGE 2 metabolism should be targeted for novel treatment of advanced CRC

  11. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy

    Science.gov (United States)

    Wang, Xiaoxin X.; Levi, Jonathan; Luo, Yuhuan; Myakala, Komuraiah; Herman-Edelstein, Michal; Qiu, Liru; Wang, Dong; Peng, Yingqiong; Grenz, Almut; Lucia, Scott; Dobrinskikh, Evgenia; D'Agati, Vivette D.; Koepsell, Hermann; Kopp, Jeffrey B.; Rosenberg, Avi Z.; Levi, Moshe

    2017-01-01

    There is very limited human renal sodium gradient-dependent glucose transporter protein (SGLT2) mRNA and protein expression data reported in the literature. The first aim of this study was to determine SGLT2 mRNA and protein levels in human and animal models of diabetic nephropathy. We have found that the expression of SGLT2 mRNA and protein is increased in renal biopsies from human subjects with diabetic nephropathy. This is in contrast to db-db mice that had no changes in renal SGLT2 protein expression. Furthermore, the effect of SGLT2 inhibition on renal lipid content and inflammation is not known. The second aim of this study was to determine the potential mechanisms of beneficial effects of SGLT2 inhibition in the progression of diabetic renal disease. We treated db/db mice with a selective SGLT2 inhibitor JNJ 39933673. We found that SGLT2 inhibition caused marked decreases in systolic blood pressure, kidney weight/body weight ratio, urinary albumin, and urinary thiobarbituric acid-reacting substances. SGLT2 inhibition prevented renal lipid accumulation via inhibition of carbohydrate-responsive element-binding protein-β, pyruvate kinase L, SCD-1, and DGAT1, key transcriptional factors and enzymes that mediate fatty acid and triglyceride synthesis. SGLT2 inhibition also prevented inflammation via inhibition of CD68 macrophage accumulation and expression of p65, TLR4, MCP-1, and osteopontin. These effects were associated with reduced mesangial expansion, accumulation of the extracellular matrix proteins fibronectin and type IV collagen, and loss of podocyte markers WT1 and synaptopodin, as determined by immunofluorescence microscopy. In summary, our study showed that SGLT2 inhibition modulates renal lipid metabolism and inflammation and prevents the development of nephropathy in db/db mice. PMID:28196866

  12. The PTEN/NRF2 Axis Promotes Human Carcinogenesis

    DEFF Research Database (Denmark)

    Rojo, Ana I; Rada, Patricia; Mendiola, Marta

    2014-01-01

    and tumorigenic advantage. Tissue microarrays from endometrioid carcinomas showed that 80% of PTEN-negative tumors expressed high levels of NRF2 or its target heme oxygenase-1 (HO-1). INNOVATION: These results uncover a new mechanism of oncogenic activation of NRF2 by loss of its negative regulation by PTEN/GSK-3....../β-TrCP that may be relevant to a large number of tumors, including endometrioid carcinomas. CONCLUSION: Increased activity of NRF2 due to loss of PTEN is instrumental in human carcinogenesis and represents a novel therapeutic target. Antioxid. Redox Signal. 21, 2498-2514....

  13. Maxillary anterior ridge augmentation with recombinant human bone morphogenetic protein 2.

    Science.gov (United States)

    Edmunds, Ryan K; Mealey, Brian L; Mills, Michael P; Thoma, Daniel S; Schoolfield, John; Cochran, David L; Mellonig, Jim

    2014-01-01

    No human studies exist on the use of recombinant human bone morphogenetic protein 2 (rhBMP-2) on an absorbable collagen sponge (ACS) as a sole graft material for lateral ridge augmentation in large ridge defect sites. This series evaluates the treatment outcome of maxillary anterior lateral ridge augmentation with rhBMP-2/ACS. Twenty patients were treated with rhBMP-2/ACS and fixation screws for space maintenance. Cone beam volumetric tomography measurements were used to determine gain in ridge width, and a bone core biopsy was obtained. The mean horizontal ridge gain was 1.2 mm across sites, and every site gained width.

  14. Herpes Simplex Virus Type-2 and Human Immunodeficiency Virus ...

    African Journals Online (AJOL)

    Objectives: To estimate the seroprevalence of Herpes Simplex Type 2 (HSV-2) and its association with Human Immunodeficiency Virus type 1 (HIV-1) infections in rural Kilimanjaro Tanzania. Methods: A cross-sectional survey was conducted in Oria village from March to June 2005 involving all individuals aged 15-44 years ...

  15. Role of H2O2 in the Oxidative Effects of Zinc Exposure in Human Airway Epithelial Cells

    Science.gov (United States)

    Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn(2+)) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn(2+) toxicity is not fully understood. H202 and Zn(2+) hav...

  16. Determination of the human cytochrome P450 monooxygenase catalyzing the enantioselective oxidation of 2,2',3,5',6-pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183).

    Science.gov (United States)

    Nagayoshi, Haruna; Kakimoto, Kensaku; Konishi, Yoshimasa; Kajimura, Keiji; Nakano, Takeshi

    2017-10-17

    2,2',3,5',6-Pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183) possess axial chirality and form the aS and aR enantiomers. The enantiomers of these congeners have been reported to accumulate in the human body enantioselectively via unknown mechanisms. In this study, we determined the cytochrome P450 (CYP) monooxygenase responsible for the enantioselective oxidization of PCB 95 and PCB 183, using a recombinant human CYP monooxygenase. We evaluated 13 CYP monooxygenases, namely CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP4F2, and aromatase (CYP19), and revealed that CYP2A6 preferably oxidizes aS-PCB 95 enantioselectively; however, it did not oxidize PCB 183. The enantiomer composition was elevated from 0.5 (racemate) to 0.54. In addition, following incubation with CYP2A6, the enantiomer fraction (EF) of PCB 95 demonstrated a time-dependent increase.

  17. Direct Reprogramming of Adult Human Somatic Stem Cells Into Functional Neurons Using Sox2, Ascl1, and Neurog2

    Directory of Open Access Journals (Sweden)

    Jessica Alves de Medeiros Araújo

    2018-06-01

    Full Text Available Reprogramming of somatic cells into induced pluripotent stem cells (iPS or directly into cells from a different lineage, including neurons, has revolutionized research in regenerative medicine in recent years. Mesenchymal stem cells are good candidates for lineage reprogramming and autologous transplantation, since they can be easily isolated from accessible sources in adult humans, such as bone marrow and dental tissues. Here, we demonstrate that expression of the transcription factors (TFs SRY (sex determining region Y-box 2 (Sox2, Mammalian achaete-scute homolog 1 (Ascl1, or Neurogenin 2 (Neurog2 is sufficient for reprogramming human umbilical cord mesenchymal stem cells (hUCMSC into induced neurons (iNs. Furthermore, the combination of Sox2/Ascl1 or Sox2/Neurog2 is sufficient to reprogram up to 50% of transfected hUCMSCs into iNs showing electrical properties of mature neurons and establishing synaptic contacts with co-culture primary neurons. Finally, we show evidence supporting the notion that different combinations of TFs (Sox2/Ascl1 and Sox2/Neurog2 may induce multiple and overlapping neuronal phenotypes in lineage-reprogrammed iNs, suggesting that neuronal fate is determined by a combination of signals involving the TFs used for reprogramming but also the internal state of the converted cell. Altogether, the data presented here contribute to the advancement of techniques aiming at obtaining specific neuronal phenotypes from lineage-converted human somatic cells to treat neurological disorders.

  18. PPAR2Pro12Ala Polymorphism and Human Health

    Directory of Open Access Journals (Sweden)

    Weimin He

    2009-01-01

    Full Text Available The nuclear hormone receptor peroxisome proliferator activated receptor gamma (PPAR is an important transcription factor regulating adipocyte differentiation, lipid and glucose homeostasis, and insulin sensitivity. Numerous genetic mutations of PPAR have been identified and these mutations positively or negatively regulate insulin sensitivity. Among these, a relatively common polymorphism of PPAR, Pro12Ala of PPAR2, the isoform expressed only in adipose tissue has been shown to be associated with lower body mass index, enhanced insulin sensitivity, and resistance to the risk of type 2 diabetes in human subjects carrying this mutation. Subsequent studies in different ethnic populations, however, have revealed conflicting results, suggesting a complex interaction between the PPAR2 Pro12Ala polymorphism and environmental factors such as the ratio of dietary unsaturated fatty acids to saturated fatty acids and/or between the PPAR2 Pro12Ala polymorphism and genetic factors such as polymorphic mutations in other genes. In addition, this polymorphic mutation in PPAR2 is associated with other aspects of human diseases, including cancers, polycystic ovary syndrome, Alzheimer disease and aging. This review will highlight findings from recent studies.

  19. Quality control assessment of human immunodeficiency virus type 2 (HIV-2) viral load quantification assays: results from an international collaboration on HIV-2 infection in 2006

    NARCIS (Netherlands)

    Damond, Florence; Benard, Antoine; Ruelle, Jean; Alabi, Abraham; Kupfer, Bernd; Gomes, Perpetua; Rodes, Berta; Albert, Jan; Böni, Jürg; Garson, Jeremy; Ferns, Bridget; Matheron, Sophie; Chene, Geneviève; Brun-Vezinet, Françoise; Goubau, Patrick; Campa, Pauline; Descamps, Diane; Simon, François; Taieb, Audrey; Autran, Brigitte; Cotten, Matt; Jaye, Assan; Peterson, Kevin; Rowland-Jones, Sarah; Rockstroh, Jürgen; Schwarze-Zander, Carolynne; de Wolf, Frank; van Sighem, Ard; Reiss, Peter; van der Loeff, Maarten Schim; Schutten, Martin; Camacho, Ricardo; Mansinho, Kamal; Antunes, Francisco; Luis, Franca; Valadas, Emilia; Toro, Carlos; Soriano, Vicente; Gyllensten, Katarina; Sonnerborg, Anders; Yilmaz, Aylin; Gisslén, Magnus; Calmy, Alexandra; Rickenbach, Martin; Pillay, Deenan; Tosswill, Jennifer; Anderson, Jane; Chadwick, David

    2008-01-01

    Human immunodeficiency virus type 2 (HIV-2) RNA quantification assays used in nine laboratories of the ACHI(E)V(2E) (A Collaboration on HIV-2 Infection) study group were evaluated. In a blinded experimental design, laboratories quantified three series of aliquots of an HIV-2 subtype A strain, each

  20. Activation of nucleotide oligomerization domain 2 (NOD2 by human cytomegalovirus initiates innate immune responses and restricts virus replication.

    Directory of Open Access Journals (Sweden)

    Arun Kapoor

    Full Text Available Nucleotide-binding oligomerization domain 2 (NOD2 is an important innate immune sensor of bacterial pathogens. Its induction results in activation of the classic NF-κB pathway and alternative pathways including type I IFN and autophagy. Although the importance of NOD2 in recognizing RNA viruses has recently been identified, its role in sensing DNA viruses has not been studied. We report that infection with human cytomegalovirus (HCMV results in significant induction of NOD2 expression, beginning as early as 2 hours post infection and increasing steadily 24 hours post infection and afterwards. Infection with human herpesvirus 1 and 2 does not induce NOD2 expression. While the HCMV-encoded glycoprotein B is not required for NOD2 induction, a replication competent virion is necessary. Lentivirus-based NOD2 knockdown in human foreskin fibroblasts (HFFs and U373 glioma cells leads to enhanced HCMV replication along with decreased levels of interferon beta (IFN-β and the pro-inflammatory cytokine, IL8. NOD2 induction in HCMV-infected cells activates downstream NF-κB and interferon pathways supported by reduced nuclear localization of NF-κB and pIRF3 in NOD2 knockdown HFFs. Stable overexpression of NOD2 in HFFs restricts HCMV replication in association with increased levels of IFN-β and IL8. Similarly, transient overexpression of NOD2 in U373 cells or its downstream kinase, RIPK2, results in decreased HCMV replication and enhanced cytokine responses. However, overexpression of a mutant NOD2, 3020insC, associated with severe Crohn's disease, results in enhanced HCMV replication and decreased levels of IFN-β in U373 cells. These results show for the first time that NOD2 plays a significant role in HCMV replication and may provide a model for studies of HCMV recognition by the host cell and HCMV colitis in Crohn's disease.

  1. Nitrous Oxide (N2O) emissions from human waste in 1970-2050

    NARCIS (Netherlands)

    Strokal, M.; Kroeze, C.

    2014-01-01

    Nitrous oxide (N2O) is an important contributor to climate change. Human waste is an important source of N2O emissions in several world regions, and its share in global emissions may increase in the future. In this paper we, therefore, address N2O emission from human waste: collected (from treatment

  2. Human metabolites of brevetoxin PbTx-2: Identification and confirmation of structure

    Science.gov (United States)

    Guo, Fujiang; An, Tianying; Rein, Kathleen S.

    2010-01-01

    Four metabolites were identified upon incubation of brevetoxin (PbTx-2) with human liver microsomes. Chemical transformation of PbTx-2 confirmed the structures of three known metabolites BTX-B5, PbTx-9 and 41, 43-dihydro-BTX-B5 and a previously unknown metabolite, 41, 43-dihydro-PbTx-2. These metabolites were also observed upon incubation of PbTx-2 with nine human recombinant cytochrome P450s (1A1, 1A2, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A5). Cytochrome P450 3A4 produced oxidized metabolites while other CYPs generated the reduced products. PMID:20600229

  3. Stimulated mast cells promote maturation of myocardial microvascular endothelial cell neovessels by modulating the angiopoietin-Tie-2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Division of Cardiology, Shanghai Sixth People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Division of Cardiology, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Yancheng People' s First Hospital, Division of Cardiology, Yancheng, Jiangsu, China, Division of Cardiology, Yancheng People’s First Hospital, Yancheng, Jiangsu (China); Zhu, W.; Tao, J.P.; Zhang, Q.Y.; Wei, M. [Division of Cardiology, Shanghai Sixth People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Division of Cardiology, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China)

    2013-10-22

    Angiopoietin (Ang)-1 and Ang-2 interact in angiogenesis to activate the Tie-2 receptor, which may be involved in new vessel maturation and regression. Mast cells (MCs) are also involved in formation of new blood vessels and angiogenesis. The present study was designed to test whether MCs can mediate angiogenesis in myocardial microvascular endothelial cells (MMVECs). Using a rat MMVEC and MC co-culture system, we observed that Ang-1 protein levels were very low even though its mRNA levels were increased by MCs. Interestingly, MCs were able to enhance migration, proliferation, and capillary-like tube formation, which were associated with suppressed Ang-2 protein expression, but not Tie-2 expression levels. These MCs induced effects that could be reversed by either tryptase inhibitor [N-tosyl-L-lysine chloromethyl ketone (TLCK)] or chymase inhibitor (N-tosyl-L-phenylalanyl chloromethyl ketone), with TLCK showing greater effects. In conclusion, our data indicated that MCs can interrupt neovessel maturation via suppression of the Ang-2/Tie-2 signaling pathway.

  4. Immunohistochemical expression of MMP-14 and MMP-2, and MMP-2 activity during human ovarian follicular development

    NARCIS (Netherlands)

    Vos, M.C.; Wurff, A.A. van der; Last, J.T.; Boed, E.A. de; Smeenk, J.M.J.; Kuppevelt, T.H. van; Massuger, L.F.A.G.

    2014-01-01

    BACKGROUND: The aim of this study was to investigate the presence of MMP-14 and MMP-2 during human ovarian follicular development using immunohistochemistry, and the activity of MMP-2 in follicular fluid using zymography. METHODS: Ovarian tissue collected from the archives of the Department of

  5. Recombinant human interleukin 2 acts as a B cell growth and differentiation promoting factor

    OpenAIRE

    Emmrich, F.; Moll, Heidrun; Simon, Markus M.

    2009-01-01

    Human B cells appropriately activated by a B cell mitogen are rendered susceptible to human Interleukin 2 (IL-2) as demonstrated with recombinant human IL-2 (rec. h IL-2). They show increased proliferation and drastically enhanced immunoglobulin secretion. Susceptibility to IL-2 is accompanied with the expression of the IL-2 receptor (Tac antigen) on B cells. The data suggest that IL-2 is one of the lymphokines directly involved in the activation of B lymphocytes.

  6. Metabolism of bilirubin by human cytochrome P450 2A6

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arthur, Dionne M. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Wikman, Anna S. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Department of Pharmaceutical Biosciences, Uppsala University, SE-75123 Uppsala (Sweden); Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu [School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, POB 1627, 70211 Kuopio (Finland); Ng, Jack C. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Lang, Matti A. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic

  7. Metabolism of bilirubin by human cytochrome P450 2A6

    International Nuclear Information System (INIS)

    Abu-Bakar, A'edah; Arthur, Dionne M.; Wikman, Anna S.; Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu; Ng, Jack C.; Lang, Matti A.

    2012-01-01

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K i of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic CYP2A6

  8. The interaction of beta 2-microglobulin (beta 2m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse beta 2m

    DEFF Research Database (Denmark)

    Pedersen, L O; Stryhn, A; Holter, T L

    1995-01-01

    of class I molecules are involved in peptide binding, whereas most of class I molecules are involved in beta 2m binding. We propose that mouse beta 2m interacts with the minor peptide binding (i.e. the "empty") fraction with a lower affinity than human beta 2m does, whereas mouse and human beta 2m interact......The function of major histocompatibility complex (MHC) class I molecules is to sample peptides derived from intracellular proteins and to present these peptides to CD8+ cytotoxic T lymphocytes. In this paper, biochemical assays addressing MHC class I binding of both peptide and beta 2-microglobulin...... (beta 2m) have been used to examine the assembly of the trimolecular MHC class I/beta 2m/peptide complex. Recombinant human beta 2m and mouse beta 2ma have been generated to compare the binding of the two beta 2m to mouse class I. It is frequently assumed that human beta 2m binds to mouse class I heavy...

  9. Identification of Human H1N2 and Human-Swine Reassortant H1N2 and H1N1 Influenza A Viruses among Pigs in Ontario, Canada (2003 to 2005)†

    OpenAIRE

    Karasin, Alexander I.; Carman, Suzanne; Olsen, Christopher W.

    2006-01-01

    Since 2003, three novel genotypes of H1 influenza viruses have been recovered from Canadian pigs, including a wholly human H1N2 virus and human-swine reassortants. These isolates demonstrate that human-lineage H1N2 viruses are infectious for pigs and that viruses with a human PB1/swine PA/swine PB2 polymerase complex can replicate in pigs.

  10. D2-40/podoplanin expression in the human placenta

    Science.gov (United States)

    Wang, Yuping; Sun, Jingxia; Gu, Yang; Zhao, Shuang; Groome, Lynn J.; Alexander, J. Steven

    2011-01-01

    Placental tissue expresses many lymphatic markers. The current study was undertaken to examine if D2-40/podoplanin, a lymphatic endothelial marker, was expressed in the human placentas, and how it is altered developmentally and pathologically. We studied D2-40/podoplanin and VEGFR-3 expressions in placentas from normotensive pregnancies at different gestational ages and in placentas from women with clinically defined preeclampsia. D2-40 expression in systemic lymphatic vessel endothelium served as a positive control. Protein expression for D2-40, VEGFR-3, and β-actin were determined by Western blot in placentas from normotensive (n=6) and preeclamptic (n=5) pregnancies. Our results show that D2-40/podoplanin was strongly expressed in the placenta, mainly as a network plexus pattern in the villous stroma throughout gestation. CD31 was limited to villous core fetal vessel endothelium and VEGFR-3 was found in both villous core fetal vessel endothelium and trophoblasts. D2-40/podoplanin expression was significantly decreased, and VEGFR-3 significantly increased in preeclamptic placental tissues compared to normotensive placental controls. Placental villous stroma is a reticular-like structure, and the localization of D2-40 to the stroma suggests that a lymphatic-like conductive network may exist in the human placenta. D2-40/podoplanin is an O-linked sialoglycoprotein. Although little is known regarding biological functions of sialylated glycoproteins within the placenta, placental D2-40/podoplanin may support fetal vessel angiogenesis during placenta development and reduced D2-40/podoplanin expression in preeclamptic placenta may contribute to altered interstitial fluid homeostasis and impaired angiogenesis in this pregnancy disorder. PMID:21095001

  11. Establishment of H2Mab-119, an Anti-Human Epidermal Growth Factor Receptor 2 Monoclonal Antibody, Against Pancreatic Cancer.

    Science.gov (United States)

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Chang, Yao-Wen; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kaneko, Mika K; Kato, Yukinari

    2017-12-01

    Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast cancer and is associated with poor clinical outcomes. In addition, HER2 expression has been reported in other cancers, such as gastric, colorectal, lung, and pancreatic cancers. An anti-HER2 humanized antibody, trastuzumab, leads to significant survival benefits in patients with HER2-overexpressing breast cancers and gastric cancers. Herein, we established a novel anti-HER2 monoclonal antibody (mAb), H 2 Mab-119 (IgG 1 , kappa), and characterized its efficacy against pancreatic cancers using flow cytometry, Western blot, and immunohistochemical analyses. H 2 Mab-119 reacted with pancreatic cancer cell lines, such as KLM-1, Capan-2, and MIA PaCa-2, but did not react with PANC-1 in flow cytometry analysis. Western blot analysis also revealed a moderate signal for KLM-1 and a weak signal for MIA PaCa-2, although H 2 Mab-119 reacted strongly with LN229/HER2 cells. Finally, immunohistochemical analyses with H 2 Mab-119 revealed sensitive and specific reactions against breast and colon cancers but did not react with pancreatic cancers, indicating that H 2 Mab-119 is useful for detecting HER2 overexpression in pancreatic cancers using flow cytometry and Western blot analyses.

  12. Human-specific SNP in obesity genes, adrenergic receptor beta2 (ADRB2, Beta3 (ADRB3, and PPAR γ2 (PPARG, during primate evolution.

    Directory of Open Access Journals (Sweden)

    Akiko Takenaka

    Full Text Available UNLABELLED: Adrenergic-receptor beta2 (ADRB2 and beta3 (ADRB3 are obesity genes that play a key role in the regulation of energy balance by increasing lipolysis and thermogenesis. The Glu27 allele in ADRB2 and the Arg64 allele in ADRB3 are associated with abdominal obesity and early onset of non-insulin-dependent diabetes mellitus (NIDDM in many ethnic groups. Peroxisome proliferator-activated receptor γ (PPARG is required for adipocyte differentiation. Pro12Ala mutation decreases PPARG activity and resistance to NIDDM. In humans, energy-expense alleles, Gln27 in ADRB2 and Trp64 in ADRB3, are at higher frequencies than Glu27 and Arg64, respectively, but Ala12 in PPARG is at lower frequency than Pro12. Adaptation of humans for lipolysis, thermogenesis, and reduction of fat accumulation could be considered by examining which alleles in these genes are dominant in non-human primates (NHP. All NHP (P. troglodytes, G. gorilla, P. pygmaeus, H. agilis and macaques had energy-thrifty alleles, Gly16 and Glu27 in ADRB2, and Arg64 in ADRB3, but did not have energy-expense alleles, Arg16, Gln27 and Trp64 alleles. In PPARG gene, all NHP had large adipocyte accumulating type, the Pro12 allele. CONCLUSIONS: These results indicate that a tendency to produce much more heat through the energy-expense alleles developed only in humans, who left tropical rainforests for savanna and developed new features in their heat-regulation systems, such as reduction of body hair and increased evaporation of water, and might have helped the protection of entrails from cold at night, especially in glacial periods.

  13. Increased synthesis of high-molecular-weight cPLA2 mediates early UV-induced PGE2 in human skin.

    Science.gov (United States)

    Gresham, A; Masferrer, J; Chen, X; Leal-Khouri, S; Pentland, A P

    1996-04-01

    Ultraviolet light (UV) B-induced inflammation is characterized by dramatic increases in prostaglandin E2 (PGE2) synthesis due to enhanced arachidonate deacylation from the membrane. Therefore, the effect of UV on sythesis, mass, and distribution of the high-molecular-weight phospholipase A2 (cPLA2) in cultured human keratinocytes and human skin was studied. The 105-kDa cPLA2 was demonstrated to be the critical enzyme in UV-induced PGE2 synthesis and erythema in the first 6 h postirradiation. Immunoprecipitation of 35S-labeled protein showed cPLA2 synthesis increased three- to fourfold 6 h after irradiation. Immunoprecipitated 32P-labeled cPLA2 demonstrated phosphorylation of cPLA2 was concurrently induced, suggesting that UV also activates cPLA2. This increase in cPLA2 synthesis and activation also closely correlated with increased PGE2 synthesis and [3H]arachidonic acid release and was effectively blocked by both an S-oligonucleotide antisense to cPLA2 and methyl arachidonate fluorophosphate, a specific inhibitor of cPLA2. Biopsy and histochemical examination of erythematous sites expressed increased amounts of cPLA2 whereas nonerythematous irradiated sites did not. In contrast, cyclooxygenase-1 and -2 in cultures and skin explants were unaffected 6 h post-UV, and no change in cyclooxygenase activity was observed at this time. These results suggest that increased cPLA2 synthesis occurs only when skin is exposed to UV doses that are sufficient to cause erythema and indicate expression of cPLA2 participates in acute UV inflammation.

  14. 2-Arylbenzo[b]furan derivatives as potent human lipoxygenase inhibitors.

    Science.gov (United States)

    Lang, Li; Dong, Ningning; Wu, Deyan; Yao, Xue; Lu, Weiqiang; Zhang, Chen; Ouyang, Ping; Zhu, Jin; Tang, Yun; Wang, Wei; Li, Jian; Huang, Jin

    2016-01-01

    Human lipoxygenases (LOXs) have been emerging as effective therapeutic targets for inflammatory diseases. In this study, we found that four natural 2-arylbenzo[b]furan derivatives isolated from Artocarpus heterophyllus exhibited potent inhibitory activities against human LOXs, including moracin C (1), artoindonesianin B-1 (2), moracin D (3), moracin M (4). In our in vitro experiments, compound 1 was identified as the most potent LOX inhibitor and the moderate subtype selective inhibitor of 12-LOX. Compounds 1 and 2 act as competitive inhibitors of LOXs. Moreover, 1 significantly inhibits LTB4 production and chemotactic capacity of neutrophils, and is capable of protecting vascular barrier from plasma leakage in vivo. In addition, the preliminary structure-activity relationship analysis was performed based on the above four naturally occurring (1-4) and six additional synthetic 2-arylbenzo[b]furan derivatives. Taken together, these 2-arylbenzo[b]furan derivatives, as LOXs inhibitors, could represent valuable leads for the future development of therapeutic agents for inflammatory diseases.

  15. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland

    Science.gov (United States)

    Slominski, Andrzej T.; Kim, Tae-Kang; Shehabi, Haleem Z.; Tang, Edith; Benson, Heather A. E.; Semak, Igor; Lin, Zongtao; Yates, Charles R.; Wang, Jin; Li, Wei; Tuckey, Robert C.

    2014-01-01

    We investigated the metabolism of vitamin D2 to hydroxyvitamin D2 metabolites ((OH)D2) by human placentas ex-utero, adrenal glands ex-vivo and cultured human epidermal keratinocytes and colonic Caco-2 cells, and identified 20(OH)D2, 17,20(OH)2D2, 1,20(OH)2D2, 25(OH)D2 and 1,25(OH)2D2 as products. Inhibition of product formation by 22R-hydroxycholesterol indicated involvement of CYP11A1 in 20- and 17-hydroxylation of vitamin D2, while use of ketoconazole indicated involvement of CYP27B1 in 1α-hydroxylation of products. Studies with purified human CYP11A1 confirmed the ability of this enzyme to convert vitamin D2 to 20(OH)D2 and 17,20(OH)2D2. In placentas and Caco-2 cells, production of 20(OH)D2 was higher than 25(OH)D2 while in human keratinocytes the production of 20(OH)D2 and 25(OH)D2 were comparable. HaCaT keratinocytes showed high accumulation of 1,20(OH)2D2 relative to 20(OH)D2 indicating substantial CYP27B1 activity. This is the first in vivo evidence for a novel pathway of vitamin D2 metabolism initiated by CYP11A1 and modified by CYP27B1, with the product profile showing tissue- and cell-type specificity. PMID:24382416

  16. Diffusion of [2-14C]diazepam across hairless mouse skin and human skin

    International Nuclear Information System (INIS)

    Koch, R.L.; Palicharla, P.; Groves, M.J.

    1987-01-01

    The objectives of this study were to investigate the absorption of diazepam applied topically to the hairless mouse in vivo and to determine the diffusion of diazepam across isolated hairless mouse skin and human skin. [ 14 C]Diazepam was readily absorbed after topical administration to the intact hairless mouse, a total of 75.8% of the 14 C-label applied being recovered in urine and feces. Diazepam was found to diffuse across human and hairless mouse skin unchanged in experiments with twin-chambered diffusion cells. The variation in diffusion rate or the flux for both human and mouse tissues was greater among specimens than between duplicate or triplicate trials for a single specimen. Fluxes for mouse skin (stratum corneum, epidermis, and dermis) were greater than for human skin (stratum corneum and epidermis): 0.35-0.61 microgram/cm2/h for mouse skin vs 0.24-0.42 microgram/cm2/h for human skin. The permeability coefficients for mouse skin ranged from 1.4-2.4 X 10(-2)cm/h compared with 0.8-1.4 X 10(-2)cm/h for human skin. Although human stratum corneum is almost twice the thickness of that of the hairless mouse, the diffusion coefficients for human skin were 3-12 times greater (0.76-3.31 X 10(-6) cm2/h for human skin vs 0.12-0.27 X 10(-6) cm2/h for hairless mouse) because of a shorter lag time for diffusion across human skin. These differences between the diffusion coefficients and diffusion rates (or permeability coefficients) suggest that the presence of the dermis may present some barrier properties. In vitro the dermis may require complete saturation before the diazepam can be detected in the receiving chamber

  17. Molecular cloning of human protein 4.2: A major component of the erythrocyte membrane

    International Nuclear Information System (INIS)

    Sung, L.A.; Chien, Shu; Lambert, K.; Chang, Longsheng; Bliss, S.A.; Bouhassira, E.E.; Nagel, R.L.; Schwartz, R.S.; Rybicki, A.C.

    1990-01-01

    Protein 4.2 (P4.2) comprises ∼5% of the protein mass of human erythrocyte (RBC) membranes. Anemia occurs in patients with RBCs deficient in P4.2, suggesting a role for this protein in maintaining RBC stability and integrity. The authors now report the molecular cloning and characterization of human RBC P4.2 cDNAs. By immunoscreening a human reticulocyte cDNA library and by using the polymerase chain reaction, two cDNA sequences of 2.4 and 2.5 kilobases (kb) were obtained. These cDNAs differ only by a 90-base-air insert in the longer isoform located three codons downstream from the putative initiation site. The 2.4- and 2.5-kb cDNAs predict proteins of ∼77 and ∼80 kDa, respectively, and the authenticity was confirmed by sequence identity with 46 amino acids of three cyanogen bromide-cleaved peptides of P4.2. Northern blot analysis detected a major 2.4-kb RNA species in reticulocytes. Isolation of two P4.2 cDNAs implies existence of specific regulation of P4.2 expression in human RBCs. Human RBC P4.2 has significant homology with human factor XIII subunit a and guinea pig liver transglutaminase. Sequence alignment of P4.2 with these two transglutaminases, however, revealed that P4.2 lacks the critical cysteine residue required for the enzymatic crosslinking of substrates

  18. Space Flight Human System Standards (SFHSS). Volume 2; Human Factors, Habitability and Environmental Factors" and Human Integration Design Handbook (HIDH)

    Science.gov (United States)

    Davis, Jeffrey R.; Fitts, David J.

    2009-01-01

    This viewgraph presentation reviews the standards for space flight hardware based on human capabilities and limitations. The contents include: 1) Scope; 2) Applicable documents; 3) General; 4) Human Physical Characteristics and Capabilities; 5) Human Performance and Cognition; 6) Natural and Induced Environments; 7) Habitability Functions; 8) Architecture; 9) Hardware and Equipment; 10) Crew Interfaces; 11) Spacesuits; 12) Operatons: Reserved; 13) Ground Maintenance and Assembly: Reserved; 14) Appendix A-Reference Documents; 15) Appendix N-Acronyms and 16) Appendix C-Definition. Volume 2 is supported by the Human Integration Design Handbook (HIDH)s.

  19. 13CO2/12CO2 isotope ratio analysis in human breath using a 2 μm diode laser

    Science.gov (United States)

    Sun, Mingguo; Cao, Zhensong; Liu, Kun; Wang, Guishi; Tan, Tu; Gao, Xiaoming; Chen, Weidong; Yinbo, Huang; Ruizhong, Rao

    2015-04-01

    The bacterium H. pylori is believed to cause peptic ulcer. H. pylori infection in the human stomach can be diagnosed through a CO2 isotope ratio measure in exhaled breath. A laser spectrometer based on a distributed-feedback semiconductor diode laser at 2 μm is developed to measure the changes of 13CO2/12CO2 isotope ratio in exhaled breath sample with the CO2 concentration of ~4%. It is characterized by a simplified optical layout, in which a single detector and associated electronics are used to probe CO2 spectrum. A new type multi-passes cell with 12 cm long base length , 29 m optical path length in total and 280 cm3 volume is used in this work. The temperature and pressure are well controlled at 301.15 K and 6.66 kPa with fluctuation amplitude of 25 mK and 6.7 Pa, respectively. The best 13δ precision of 0.06o was achieved by using wavelet denoising and Kalman filter. The application of denoising and Kalman filter not only improved the signal to noise ratio, but also shorten the system response time.

  20. Expression profile of the N-myc Downstream Regulated Gene 2 (NDRG2 in human cancers with focus on breast cancer

    Directory of Open Access Journals (Sweden)

    Vogel Lotte K

    2011-01-01

    Full Text Available Abstract Background Several studies have shown that NDRG2 mRNA is down-regulated or undetectable in various human cancers and cancer cell-lines. Although the function of NDRG2 is currently unknown, high NDRG2 expression correlates with improved prognosis in high-grade gliomas, gastric cancer and hepatocellular carcinomas. Furthermore, in vitro studies have revealed that over-expression of NDRG2 in cell-lines causes a significant reduction in their growth. The aim of this study was to examine levels of NDRG2 mRNA in several human cancers, with focus on breast cancer, by examining affected and normal tissue. Methods By labelling a human Cancer Profiling Array with a radioactive probe against NDRG2, we evaluated the level of NDRG2 mRNA in 154 paired normal and tumor samples encompassing 19 different human cancers. Furthermore, we used quantitative real-time RT-PCR to quantify the levels of NDRG2 and MYC mRNA in thyroid gland cancer and breast cancer, using a distinct set of normal and tumor samples. Results From the Cancer Profiling Array, we saw that the level of NDRG2 mRNA was reduced by at least 2-fold in almost a third of the tumor samples, compared to the normal counterpart, and we observed a marked decreased level in colon, cervix, thyroid gland and testis. However, a Benjamini-Hochberg correction showed that none of the tissues showed a significant reduction in NDRG2 mRNA expression in tumor tissue compared to normal tissue. Using quantitative RT-PCR, we observed a significant reduction in the level of NDRG2 mRNA in a distinct set of tumor samples from both thyroid gland cancer (p = 0.02 and breast cancer (p = 0.004, compared with normal tissue. MYC mRNA was not significantly altered in breast cancer or in thyroid gland cancer, compared with normal tissue. In thyroid gland, no correlation was found between MYC and NDRG2 mRNA levels, but in breast tissue we found a weakly significant correlation with a positive r-value in both normal and

  1. Expression profile of the N-myc Downstream Regulated Gene 2 (NDRG2) in human cancers with focus on breast cancer

    International Nuclear Information System (INIS)

    Lorentzen, Anders; Lewinsky, Rikke H; Bornholdt, Jette; Vogel, Lotte K; Mitchelmore, Cathy

    2011-01-01

    Several studies have shown that NDRG2 mRNA is down-regulated or undetectable in various human cancers and cancer cell-lines. Although the function of NDRG2 is currently unknown, high NDRG2 expression correlates with improved prognosis in high-grade gliomas, gastric cancer and hepatocellular carcinomas. Furthermore, in vitro studies have revealed that over-expression of NDRG2 in cell-lines causes a significant reduction in their growth. The aim of this study was to examine levels of NDRG2 mRNA in several human cancers, with focus on breast cancer, by examining affected and normal tissue. By labelling a human Cancer Profiling Array with a radioactive probe against NDRG2, we evaluated the level of NDRG2 mRNA in 154 paired normal and tumor samples encompassing 19 different human cancers. Furthermore, we used quantitative real-time RT-PCR to quantify the levels of NDRG2 and MYC mRNA in thyroid gland cancer and breast cancer, using a distinct set of normal and tumor samples. From the Cancer Profiling Array, we saw that the level of NDRG2 mRNA was reduced by at least 2-fold in almost a third of the tumor samples, compared to the normal counterpart, and we observed a marked decreased level in colon, cervix, thyroid gland and testis. However, a Benjamini-Hochberg correction showed that none of the tissues showed a significant reduction in NDRG2 mRNA expression in tumor tissue compared to normal tissue. Using quantitative RT-PCR, we observed a significant reduction in the level of NDRG2 mRNA in a distinct set of tumor samples from both thyroid gland cancer (p = 0.02) and breast cancer (p = 0.004), compared with normal tissue. MYC mRNA was not significantly altered in breast cancer or in thyroid gland cancer, compared with normal tissue. In thyroid gland, no correlation was found between MYC and NDRG2 mRNA levels, but in breast tissue we found a weakly significant correlation with a positive r-value in both normal and tumor tissues, suggesting that MYC and NDRG2 mRNA are

  2. Nucleobindin co-localizes and associates with cyclooxygenase (COX-2 in human neutrophils.

    Directory of Open Access Journals (Sweden)

    Patrick Leclerc

    2008-05-01

    Full Text Available The inducible cyclooxygenase isoform (COX-2 is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc, a ubiquitous Ca(2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE(2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE(2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE(2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE(2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis.

  3. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    "adapter" proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent-human......Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...... hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ...

  4. Nucleoli in human early erythroblasts (K2, K1, K1/2 cells).

    Science.gov (United States)

    Smetana, K; Jirásková, I; Klamová, H

    2005-01-01

    Human early erythroid precursors classified according to the nuclear size were studied to provide information on nucleoli in these cells using simple cytochemical procedures for demonstration of RNA and proteins of silver-stained nucleolar organizers. K2 cells with nuclear diameter larger than 13 microm and K1 cells with nuclear diameter larger than 9 microm corresponding to proerythroblasts and macroblasts (large basophilic erythroblasts) mostly possessed large irregularly shaped nucleoli with multiple fibrillar centres representing "active nucleoli". K1/2 cells with nuclear diameter smaller than 9 microm corresponding to small basophilic erythroblasts were usually characterized by the presence of micronucleoli representing "inactive nucleolar types". On the other hand, a few K1/2 cells contained large nucleoli with multiple fibrillar centres similar to those present in K2 cells and thus appeared as "microproerythroblasts". The nucleolar asynchrony expressed by the presence of large irregularly shaped nucleoli with multiple nucleoli (active nucleoli) and ring-shaped nucleoli (resting nucleoli) in one and the same nucleus of K2 or K1 cells was not exceptional and might reflect a larger resistance of these cells to negative factors influencing the erythropoiesis. The intranucleolar translocation of silver-stained nucleolus organized regions was noted in K2 cells and might indicate the premature aging of these cells without further differentiation. More studies, however, are required in this direction.

  5. Human genome program report. Part 2, 1996 research abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  6. Prostaglandin E2 and thromboxane B2 release from human monocytes treated with bacterial lipopolysaccharide

    International Nuclear Information System (INIS)

    Nichols, F.C.; Garrison, S.W.; Davis, H.W.

    1988-01-01

    We investigated the capacity of counterflow-isolated human monocytes to independently synthesize thromboxane B2 (TxB2) and prostaglandin E2 (PGE2) when stimulated with bacterial lipopolysaccharide (LPS). Independent metabolism was confirmed by establishing different specific activities (dpm/ng) of TxB2 and PGE2 released from LPS-treated cells. For metabolites released during the initial 2-hr treatment period, the specific activity of PGE2 was approximately threefold higher than that of TxB2 regardless of labeling with [3H]arachidonic acid (AA) or [14C]AA. Cells that were pulse-labeled for 2 hr with [3H]AA demonstrated a decreasing PGE2 specific activity over 24 hr, whereas the TxB2 specific activity remained unchanged. In contrast, cells continuously exposed to [14C]AA demonstrated an increasing TxB2 specific activity that approached the level of PGE2 by 24 hr. These results suggest the presence of at least 2 cyclooxygenase metabolic compartments in counterflow-isolated monocytes. Although freshly isolated monocytes have been reported to contain variable numbers of adherent platelets, additional experiments demonstrated that counterflow-isolated platelets are not capable of releasing elevated levels of TxB2 or PGE2 when treated with LPS. It is proposed from these findings that at least two subsets of monocytes exist in peripheral blood that can be distinguished on the basis of independent conversion of AA to TxB2 and PGE2

  7. Membrane-bound 2,3-diphosphoglycerate phosphatase of human erythrocytes.

    Science.gov (United States)

    Schröter, W; Neuvians, M

    1970-12-01

    Gradual osmotic hemolysis of human erythrocytes reduces the cell content of whole protein, hemoglobin, 2,3-diphosphoglycerate and triosephosphate isomerase extensively, but not that of membrane protein and 2,3-diphosphoglycerate phosphatase. After the refilling of the ghosts with 2,3-diphosphoglycerate and reconstitution of the membrane, the 2,3-diphosphoglycerate phosphatase activity equals that of intact red cells. The membrane-bound 2,3-diphosphoglycerate phosphatase can be activated by sodium hyposulfite. The enzyme system of ghosts seems to differ from that of intact red cells with regard to the optima of pH and temperature. It remains to be elucidated if the membrane binding of the 2,3-diphosphoglycerate phosphatase is related to the transfer of inorganic phosphate across the red cell membrane.

  8. Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining

    Directory of Open Access Journals (Sweden)

    Samer Haidar

    2017-01-01

    Full Text Available Protein kinase CK2, initially designated as casein kinase 2, is an ubiquitously expressed serine/threonine kinase. This enzyme, implicated in many cellular processes, is highly expressed and active in many tumor cells. A large number of compounds has been developed as inhibitors comprising different backbones. Beside others, structures with an indeno[1,2-b]indole scaffold turned out to be potent new leads. With the aim of developing new inhibitors of human protein kinase CK2, we report here on the generation of common feature pharmacophore model to further explain the binding requirements for human CK2 inhibitors. Nine common chemical features of indeno[1,2-b]indole-type CK2 inhibitors were determined using MOE software (Chemical Computing Group, Montreal, Canada. This pharmacophore model was used for database mining with the aim to identify novel scaffolds for developing new potent and selective CK2 inhibitors. Using this strategy several structures were selected by searching inside the ZINC compound database. One of the selected compounds was bikaverin (6,11-dihydroxy-3,8-dimethoxy-1-methylbenzo[b]xanthene-7,10,12-trione, a natural compound which is produced by several kinds of fungi. This compound was tested on human recombinant CK2 and turned out to be an active inhibitor with an IC50 value of 1.24 µM.

  9. Genetic and evolutionary analyses of the human bone morphogenetic protein receptor 2 (BMPR2 in the pathophysiology of obesity.

    Directory of Open Access Journals (Sweden)

    Dorit Schleinitz

    2011-02-01

    Full Text Available Human bone morphogenetic protein receptor 2 (BMPR2 is essential for BMP signalling and may be involved in the regulation of adipogenesis. The BMPR2 locus has been suggested as target of recent selection in human populations. We hypothesized that BMPR2 might have a role in the pathophysiology of obesity.Evolutionary analyses (dN/dS, Fst, iHS were conducted in vertebrates and human populations. BMPR2 mRNA expression was measured in 190 paired samples of visceral and subcutaneous adipose tissue. The gene was sequenced in 48 DNA samples. Nine representative single nucleotide polymorphisms (SNPs were genotyped for subsequent association studies on quantitative traits related to obesity in 1830 German Caucasians. An independent cohort of 925 Sorbs was used for replication. Finally, relation of genotypes to mRNA in fat was examined.The evolutionary analyses indicated signatures of selection on the BMPR2 locus. BMPR2 mRNA expression was significantly increased both in visceral and subcutaneous adipose tissue of 37 overweight (BMI>25 and 30 kg/m² compared with 44 lean subjects (BMI< 25 kg/m² (P<0.001. In a case-control study including lean and obese subjects, two intronic SNPs (rs6717924, rs13426118 were associated with obesity (adjusted P<0.05. Combined analyses including the initial cohort and the Sorbs confirmed a consistent effect for rs6717924 (combined P = 0.01 on obesity. Moreover, rs6717924 was associated with higher BMPR2 mRNA expression in visceral adipose tissue.Combined BMPR2 genotype-phenotype-mRNA expression data as well as evolutionary aspects suggest a role of BMPR2 in the pathophysiology of obesity.

  10. A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6

    DEFF Research Database (Denmark)

    Lüttichau, Hans R; Clark-Lewis, Ian; Jensen, Peter Østrup

    2003-01-01

    The chemokine-like, secreted protein product of the U83 gene from human herpesvirus 6, here named vCCL4, was chemically synthesized to be characterized in a complete library of the 18 known human chemokine receptors expressed individually in stably transfected cell lines. vCCL4 was found to cause...... being equally or more efficacious in causing cell migration than CCL2 and CCL7 and considerably more efficacious than CCL8 and CCL13. It is concluded that human herpesvirus 6 encodes a highly selective and efficacious CCR2 agonist, which will attract CCR2 expressing cells, for example macrophages...

  11. Relaxation times T1, T2, and T2* of apples, pears, citrus fruits, and potatoes with a comparison to human tissues

    International Nuclear Information System (INIS)

    Werz, Karin; Braun, Hans; Vitha, Dominik; Bruno, Graziano; Martirosian, Petros; Steidle, Guenter; Schick, Fritz

    2011-01-01

    The aim of the project was a systematic assessment of relaxation times of different fruits and vegetables and a comparison to values of human tissues. Results provide an improved basis for selection of plant phantoms for development of new MR techniques and sequences. Vessels filled with agar gel are mostly used for this purpose, preparation of which is effortful and time-consuming. In the presented study apples, (malus, 8 species), pears, (pyrus, 2 species), citrus fruits (citrus, 5 species) and uncooked potatoes (solanum tuberosum, 8 species) from the supermarket were examined which are easily available nearly all-the-year. T1, T2 and T2 * relaxation times of these nature products were measured on a 1.5 Tesla MR system with adapted examination protocols and mono-exponential fitting, and compared to literature data of human parenchyma tissues, fatty tissue and body fluid (cerebrospinal fluid). Resulting values were as follows: apples: T1: 1486 - 1874 ms, T2: 163 - 281 ms, T2 * : 2,3 - 3,2 ms; pears: T1: 1631 - 1969 ms, T2: 119 - 133 ms, T2 * : 10,1 - 10,6 ms, citrus fruits (pulp) T1: 2055 - 2632 ms, T2: 497 - 998 ms, T2 * : 151 - 182 ms; citrus fruits (skin) T1: 561 - 1669 ms, T2: 93 - 119 ms; potatoes: T1: 1011 - 1459 ms, T2: 166 - 210 ms, T2 * : 20 - 30 ms. All T1-values of the examined objects (except for potatoes and skins of citrus fruits) were longer than T1 values of human tissues. Also T2 values (except for pears and skins of citrus fruits) of the fruits and the potatoes tended to be longer. T2 * values of apples, pears and potatoes were shorter than in healthy human tissue. Results show relaxation values of many fruits to be not exactly fitting to human tissue, but with suitable selection of the fruits and optionally with an adaption of measurement parameters one can achieve suitable contrast and signal characteristics for some purposes. (orig.)

  12. Expression of the α2-macroglobulin receptor on human neoplastic fibroblastoid cells

    International Nuclear Information System (INIS)

    Grofova, M.; Matoska, J.; Bies, J.; Bizik, J.; Vaheri, A.

    1995-01-01

    The α 2 -macroglobulin membrane-associated receptor ( α 2 MR) has been previously detected on hepatocytes, fibroblast, macrophages, syncytiotrophoblasts and recently on human malignant blood cells of myelomonocytic leukemia. In cells growing in vitro from human germ cell tumors α 2 MR mRNA was detected by Northern blotting. Endocytosis of α 2 MR from culture medium was detected in these cells by indirect immunofluorescence. In cell extracts α 2 MR and its degradation products were detected by immunoblotting. The cells expressing α 2 MR and internalizing α 2 MR were identified as fibroblast both by their morphology and expression of vimentin intermediate filaments. The role and function of α 2 MR receptor in the analyzed neoplastic cells of teratomatous origin is discussed. (author)

  13. UV-dependent production of 25-hydroxyvitamin D2 in the recombinant yeast cells expressing human CYP2R1

    International Nuclear Information System (INIS)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi; Kamakura, Masaki; Ohta, Miho; Sakaki, Toshiyuki

    2013-01-01

    Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D 3 or vitamin D 2 was added to the cell suspension of CYP2R1-expressing yeast cells in a buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D 2 was produced without additional vitamin D 2 . Endogenous ergosterol was likely converted into vitamin D 2 by UV irradiation and thermal isomerization, and then the resulting vitamin D 2 was converted to 25-hydroxyvitamin D 2 by CYP2R1. This novel method for producing 25-hydroxyvitamin D 2 without a substrate could be useful for practical purposes

  14. Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.

    Science.gov (United States)

    Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V

    2012-06-01

    The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.

  15. NOTCH2 signaling confers immature morphology and aggressiveness in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Hayashi, Yoshihiro; Osanai, Makoto; Lee, Gang-Hong

    2015-10-01

    The NOTCH family of membranous receptors plays key roles during development and carcinogenesis. Since NOTCH2, yet not NOTCH1 has been shown essential for murine hepatogenesis, NOTCH2 rather than NOTCH1 may be more relevant to human hepatocarcinogenesis; however, no previous studies have supported this hypothesis. We therefore assessed the role of NOTCH2 in human hepatocellular carcinoma (HCC) by immunohistochemistry and cell culture. Immunohistochemically, 19% of primary HCCs showed nuclear staining for NOTCH2, indicating activated NOTCH2 signaling. NOTCH2-positive HCCs were on average in more advanced clinical stages, and exhibited more immature cellular morphology, i.e. higher nuclear-cytoplasmic ratios and nuclear densities. Such features were not evident in NOTCH1‑positive HCCs. In human HCC cell lines, abundant NOTCH2 expression was associated with anaplasia, represented by loss of E-cadherin. When NOTCH2 signaling was stably downregulated in HLF cells, an anaplastic HCC cell line, the cells were attenuated in potential for in vitro invasiveness and migration, as well as in vivo tumorigenicity accompanied by histological maturation. Generally, inverse results were obtained for a differentiated HCC cell line, Huh7, manipulated to overexpress activated NOTCH2. These findings suggested that the NOTCH2 signaling may confer aggressive behavior and immature morphology in human HCC cells.

  16. Human Postmeiotic Segregation 2 Exhibits Biased Repair at Tetranucleotide Microsatellite Sequences

    OpenAIRE

    Shah, Sandeep N.; Eckert, Kristin A.

    2009-01-01

    The mismatch repair (MMR) system plays a major role in removing DNA polymerization errors, and loss of this pathway results in hereditary cancers characterized by microsatellite instability. We investigated microsatellite stability during DNA replication within human postmeiotic segregation 2 (hPMS2)–deficient and proficient human lymphoblastoid cell lines. Using a shuttle vector assay, we measured mutation rates at reporter cassettes containing defined mononucleotide, dinucleotide, and tetra...

  17. Xylosylation of proteins by expression of human xylosyltransferase 2 in plants.

    Science.gov (United States)

    Matsuo, Kouki; Atsumi, Go

    2018-04-12

    Through the years, the post-translational modification of plant-made recombinant proteins has been a considerable problem. Protein glycosylation is arguably the most important post-translational modification; thus, for the humanization of protein glycosylation in plants, the introduction, repression, and knockout of many glycosylation-related genes has been carried out. In addition, plants lack mammalian-type protein O-glycosylation pathways; thus, for the synthesis of mammalian O-glycans in plants, the construction of these pathways is necessary. In this study, we successfully xylosylated the recombinant human proteoglycan core protein, serglycin, by transient expression of human xylosyltransferase 2 in Nicotiana benthamiana plants. When human serglycin was co-expressed with human xylosyltransferase 2 in plants, multiple serine residues of eight xylosylation candidates were xylosylated. From the results of carbohydrate assays for total soluble proteins, some endogenous plant proteins also appeared to be xylosylated, likely through the actions of xylosyltransferase 2. The xylosylation of core proteins is the initial step of the glycosaminoglycan part of the synthesis of proteoglycans. In the future, these novel findings may lead to whole mammalian proteoglycan synthesis in plants. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Tilapia and human CLIC2 structures are highly conserved.

    Science.gov (United States)

    Zeng, Jiao; Li, Zhengjun; Lui, Eei Yin; Lam, Siew Hong; Swaminathan, Kunchithapadam

    2018-01-08

    Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zong-Sian, E-mail: gary810426@hotmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Che Fu, E-mail: s9823002@m98.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Fu, Brian, E-mail: brianfu9@gmail.com [Northwood High School, Irvine, CA (United States); Chou, Ruey-Hwang, E-mail: rhchou@mail.cmu.edu.tw [Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taiwan (China); Yu, Chin, E-mail: cyu.nthu@gmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2016-09-02

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs. - Highlights: • The interfacial residues on hFGF1-FGFR2 D2 and hFGF1-Suramin contact surface were mapped by {sup 1}H-{sup 15}N HSQC experiments. • hFGF1-FGFR2 D2 and hFGF1-Suramin complex models were generated from NMR restraints by using HADDOCK program. • We analyzed hFGF1-Suramin complex models and found the interaction between hFGF1-Suramin is hydrophobic. • The bioactivity of the hFGF1-FGFR2 D2 and hFGF1-Suramin complex was studied by using WST1 assay.

  20. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity

    International Nuclear Information System (INIS)

    Wu, Zong-Sian; Liu, Che Fu; Fu, Brian; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs. - Highlights: • The interfacial residues on hFGF1-FGFR2 D2 and hFGF1-Suramin contact surface were mapped by "1H-"1"5N HSQC experiments. • hFGF1-FGFR2 D2 and hFGF1-Suramin complex models were generated from NMR restraints by using HADDOCK program. • We analyzed hFGF1-Suramin complex models and found the interaction between hFGF1-Suramin is hydrophobic. • The bioactivity of the hFGF1-FGFR2 D2 and hFGF1-Suramin complex was studied by using WST1 assay.

  1. Haploinsufficiency of TAB2 causes congenital heart defects in humans

    DEFF Research Database (Denmark)

    Thienpont, Bernard; Zhang, Litu; Postma, Alex V

    2010-01-01

    . To definitively confirm the role of this candidate gene in CHDs, we performed mutation analysis of TAB2 in 402 patients with a CHD, which revealed two evolutionarily conserved missense mutations. Finally, a balanced translocation was identified, cosegregating with familial CHD. Mapping of the breakpoints...... demonstrated that this translocation disrupts TAB2. Taken together, these data clearly demonstrate a role for TAB2 in human cardiac development....

  2. Cloning and characterization of a functional human ¿-aminobutyric acid (GABA) transporter, human GAT-2

    DEFF Research Database (Denmark)

    Christiansen, Bolette; Meinild, Anne-Kristine; Jensen, Anders A.

    2007-01-01

    Plasma membrane gamma-aminobutyric acid (GABA) transporters act to terminate GABA neurotransmission in the mammalian brain. Intriguingly four distinct GABA transporters have been cloned from rat and mouse, whereas only three functional homologs of these transporters have been cloned from human....... The aim of this study therefore was to search for this fourth missing human transporter. Using a bioinformatics approach, we successfully identified and cloned the full-length cDNA of a so far uncharacterized human GABA transporter (GAT). The predicted protein displays high sequence similarity to rat GAT......-2 and mouse GAT3, and in accordance with the nomenclature for rat GABA transporters, we therefore refer to the transporter as human GAT-2. We used electrophysiological and cell-based methods to demonstrate that this protein is a functional transporter of GABA. The transport was saturable...

  3. Localization and regulation of mouse pantothenate kinase 2 [The PanK2 Genes of Mouse and Human Specify Proteins with Distinct Subcellular Locations

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Roberta [St. Jude Children' s Research Hospital, Memphis, TN (United States); Zhang, Yong-Mei [St. Jude Children' s Research Hospital, Memphis, TN (United States); Lykidis, Athanasios [DOE Joint Genome Inst., Walnut Creek, CA (United States); Rock, Charles O. [St. Jude Children' s Research Hospital, Memphis, TN (United States); Jackowski, Suzanne [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2007-09-07

    Coenzyme A (CoA) biosynthesis is initiated by pantothenatekinase (PanK) and CoA levels are controlled through differentialexpression and feedback regulation of PanK isoforms. PanK2 is amitochondrial protein in humans, but comparative genomics revealed thatacquisition of a mitochondrial targeting signal was limited to primates.Human and mouse PanK2 possessed similar biochemical properties, withinhibition by acetylCoA and activation by palmitoylcarnitine. Mouse PanK2localized in the cytosol, and the expression of PanK2 was higher in humanbrain compared to mouse brain. Differences in expression and subcellularlocalization should be considered in developing a mouse model for humanPanK2 deficiency.

  4. Detergent-induced stabilization and improved 3D map of the human heteromeric amino acid transporter 4F2hc-LAT2.

    Science.gov (United States)

    Meury, Marcel; Costa, Meritxell; Harder, Daniel; Stauffer, Mirko; Jeckelmann, Jean-Marc; Brühlmann, Béla; Rosell, Albert; Ilgü, Hüseyin; Kovar, Karin; Palacín, Manuel; Fotiadis, Dimitrios

    2014-01-01

    Human heteromeric amino acid transporters (HATs) are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.

  5. Detergent-induced stabilization and improved 3D map of the human heteromeric amino acid transporter 4F2hc-LAT2.

    Directory of Open Access Journals (Sweden)

    Marcel Meury

    Full Text Available Human heteromeric amino acid transporters (HATs are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.

  6. Changes in mast cell number and stem cell factor expression in human skin after radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Westbury, Charlotte B.; Freeman, Alex; Rashid, Mohammed; Pearson, Ann; Yarnold, John R.; Short, Susan C.

    2014-01-01

    Background and purpose: Mast cells are involved in the pathogenesis of radiation fibrosis and may be a therapeutic target. The mechanism of increased mast cell number in relation to acute and late tissue responses in human skin was investigated. Materials and methods: Punch biopsies of skin 1 and 15–18 months after breast radiotherapy and a contralateral control biopsy were collected. Mast cells were quantified by immunohistochemistry using the markers c-Kit and tryptase. Stem cell factor (SCF) and collagen-1 expression was analysed by qRT-PCR. Clinical photographic scores were performed at post-surgical baseline and 18 months and 5 years post-radiotherapy. Primary human dermal microvascular endothelial cell (HDMEC) cultures were exposed to 2 Gy ionising radiation and p53 and SCF expression was analysed by Western blotting and ELISA. Results: Dermal mast cell numbers were increased at 1 (p = 0.047) and 18 months (p = 0.040) using c-Kit, and at 18 months (p = 0.024) using tryptase immunostaining. Collagen-1 mRNA in skin was increased at 1 month (p = 0.047) and 18 months (p = 0.032) and SCF mRNA increased at 1 month (p = 0.003). None of 16 cases scored had a change in photographic appearance at 5 years, compared to baseline. SCF expression was not increased in HDMECs irradiated in vitro. Conclusions: Increased mast cell number was associated with up-regulated collagen-1 expression in human skin at early and late time points. This increase could be secondary to elevated SCF expression at 1 month after radiotherapy. Although mast cells accumulate around blood vessels, no endothelial cell secretion of SCF was seen after in vitro irradiation. Modification of mast cell number and collagen-1 expression may be observed in skin at 1 and 18 months after radiotherapy in breast cancer patients with no change in photographic breast appearance at 5 years

  7. cDNA cloning and characterization of the human THRAP2 gene which maps to chromosome 12q24, and its mouse ortholog Thrap2.

    Science.gov (United States)

    Musante, Luciana; Bartsch, Oliver; Ropers, Hans-Hilger; Kalscheuer, Vera M

    2004-05-12

    Characterization of a balanced t(2;12)(q37;q24) translocation in a patient with suspicion of Noonan syndrome revealed that the chromosome 12 breakpoint lies in the vicinity of a novel human gene, thyroid hormone receptor-associated protein 2 (THRAP2). We therefore characterized this gene and its mouse counterpart in more detail. Human and mouse THRAP2/Thrap2 span a genomic region of about 310 and >170 kilobases (kb), and both contain 31 exons. Corresponding transcripts are approximately 9.5 kb long. Their open reading frames code for proteins of 2210 and 2203 amino acids, which are 93% identical. By northern blot analysis, human and mouse THRAP2/Thrap2 genes showed ubiquitous expression. Transcripts were most abundant in human skeletal muscle and in mouse heart. THRAP2 protein is 56% identical to human TRAP240, which belongs to the thyroid hormone receptor associated protein (TRAP) complex and is evolutionary conserved up to yeast. This complex is involved in transcriptional regulation and is believed to serve as adapting interface between regulatory proteins bound to specific DNA sequences and RNA polymerase II.

  8. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells

    International Nuclear Information System (INIS)

    Escaffit, Fabrice; Pare, Frederic; Gauthier, Remy; Rivard, Nathalie; Boudreau, Francois; Beaulieu, Jean-Francois

    2006-01-01

    The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells

  9. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    International Nuclear Information System (INIS)

    Liu Hua; Luan Fang; Ju Ying; Shen Hongyu; Gao Lifen; Wang Xiaoyan; Liu Suxia; Zhang Lining; Sun Wensheng; Ma Chunhong

    2007-01-01

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation

  10. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Fang, Luan [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Ying, Ju [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Hongyu, Shen [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lifen, Gao [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Xiaoyan, Wang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Suxia, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lining, Zhang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Wensheng, Sun [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Chunhong, Ma [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Key Laboratory for Experimental Teratology, Ministry of Education (China)]. E-mail: machunhong@sdu.edu.cn

    2007-04-06

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation.

  11. Mapping a2 Adrenoceptors of the Human Brain with 11C-Yohimbine

    DEFF Research Database (Denmark)

    Nahimi, Adjmal; Jakobsen, Steen; Munk, Ole

    2015-01-01

    A previous study from this laboratory suggested that 11C-yohimbine, a selective α2-adrenoceptor antagonist, is an appropriate ligand for PET of α2 adrenoceptors that passes readily from blood to brain tissue in pigs but not in rodents. To test usefulness in humans, we determined blood–brain...... values of VT ranged from 0.82 mL cm−3 in the right frontal cortex to 0.46 mL cm−3 in the corpus callosum, with intermediate VT values in subcortical structures. Binding potentials averaged 0.6–0.8 in the cortex and 0.2–0.5 in subcortical regions. Conclusion: The maps of 11C-yohimbine binding to α2...... adrenoceptors in human brain had the highest values in cortical areas and hippocampus, with moderate values in subcortical structures, as found also in vitro. The results confirm the usefulness of the tracer 11C-yohimbine for mapping α2 adrenoceptors in human brain in vivo....

  12. Inositol phosphates influence the membrane bound Ca2+/Mg2+ stimulated ATPase from human erythrocyte membranes

    International Nuclear Information System (INIS)

    Kester, M.; Ekholm, J.; Kumar, R.; Hanahan, D.J.

    1986-01-01

    The modulation by exogenous inositol phosphates of the membrane Ca 2+ /Mg 2+ ATPase from saponin/EGTA lysed human erythrocytes was determined in a buffer (pH 7.6) containing histidine, 80 mM, MgCl 2 , 3.3 mM, NaCl, 74 mM, KCl, 30 mM, Na 2 ATP, 2.3 mM, ouabain, 0.83 mM, with variable amounts of CaCl 2 and EGTA. The ATPase assay was linear with time at 44 0 C. The inositol phosphates were commercially obtained and were also prepared from 32 P labeled rabbit platelet inositol phospholipids. Inositol triphosphate (IP 3 ) elevated the Ca 2+ /Mg 2+ ATPase activity over basal levels in a dose, time, and calcium dependent manner and were increased up to 85% of control values. Activities for the Na + /K + -ATPase and a Mg 2+ ATPase were not effected by IP 3 . Ca 2+ /Mg 2+ APTase activity with IP 2 or IP 3 could be synergistically elevated with calmodulin addition. The activation of the ATPase with IP 3 was calcium dependent in a range from .001 to .02 mM. The apparent Km and Vmax values were determined for IP 3 stimulated Ca 2+ /Mg 2+ ATPase

  13. Correlation of HIF-2α, ABCG2 and OCT-4 with chemotherapy resistance in human gastric cancer

    Directory of Open Access Journals (Sweden)

    Hong-mei ZHANG

    2015-11-01

    Full Text Available Objective To investigate the correlation of HIF-2α, ABCG2 and OCT-4 with chemotherapy resistant gastric cancer in humans. Methods Fifty-two patients who were confirmed to have advanced gastric cancer with the aid of electronic endoscopy and pathology in the Department of Gastroenterology, Affiliated Hospital of Weifang Medical College, were enrolled in the study. According to the effect of FOL-FOX4 chemotherapy that these patients had experienced, they were divided into three groups: CR+PR (complete remission+partial remission group, SD (stable disease group and PD (progressive disease group. The expression levels of HIF-2α, ABCG2, and OCT-4 mRNA and protein were assessed in different groups by using RT-PCR and immunocytochemistry. Results Two patients achieved CR , 19 achieved PR , 25 showed SD, and 6 showed PD. In other words, CR+PR were seen in 21 patients (40.4%, SD in 25(48.1%, PD in 6(11.5%. In CR+PR group, the expression levels of HIF-2α, ABCG2 and OCT4 mRNA and protein were low, but the above mentioned expressions were significantly increased in SD group and PD group. The expression levels of HIF-2α, ABCG2 and Oct-4 mRNA and protein were highest in the PD group, lower in the SD group, and lowest in the CR + PR groups (all P<0.05. Conclusions The expression of the markers HIF-2α, ABCG2 and OCT4 in human tumor tissues is related to the effect of chemotherapy for gastric cancer. A high expression of tumor markers is perhaps the main reason for low efficacy of chemotherapy due to drug resistance. DOI: 10.11855/j.issn.0577-7402.2015.10.09

  14. Expression, refolding and crystallization of murine MHC class I H-2Db in complex with human β2-microglobulin

    International Nuclear Information System (INIS)

    Sandalova, Tatyana; Michaëlsson, Jakob; Harris, Robert A.; Ljunggren, Hans-Gustaf; Kärre, Klas; Schneider, Gunter; Achour, Adnane

    2005-01-01

    Mouse MHC class I H-2Db in complex with human β2m and the LCMV-derived peptide gp33 has been produced and crystallized. Resolution of the structure of this complex combined with the structural comparison with the previously solved crystal structure of H-2Db/mβ2m/gp33 should lead to a better understanding of how the β2m subunit affects the overall conformation of MHC complexes as well as the stability of the presented peptides. β 2 -Microglobulin (β 2 m) is non-covalently linked to the major histocompatibility (MHC) class I heavy chain and interacts with CD8 and Ly49 receptors. Murine MHC class I can bind human β 2 m (hβ 2 m) and such hybrid molecules are often used in structural and functional studies. The replacement of mouse β 2 m (mβ 2 m) by hβ 2 m has important functional consequences for MHC class I complex stability and specificity, but the structural basis for this is unknown. To investigate the impact of species-specific β 2 m subunits on MHC class I conformation, murine MHC class I H-2D b in complex with hβ 2 m and the peptide gp33 derived from lymphocytic choriomeningitis virus (LCMV) has been expressed, refolded in vitro and crystallized. Crystals containing two complexes per asymmetric unit and belonging to the space group P2 1 , with unit-cell parameters a = 68.1, b = 65.2, c = 101.9 Å, β = 102.4°, were obtained

  15. Csk-Induced Phosphorylation of Src at Tyrosine 530 is Essential for H2O2-Mediated Suppression of ERK1/2 in Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Jeon, Bo Kyung; Kwon, Kihwan; Kang, Jihee Lee; Choi, Youn-Hee

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) are key signal transducers involved in various cellular events such as growth, proliferation, and differentiation. Previous studies have reported that H2O2 leads to phosphorylation of extracellular signal-regulated kinase (ERK), one of the MAPKs in endothelial cells. The current study shows that H2O2 suppressed ERK1/2 activation and phosphorylation at specific concentrations and times in human umbilical vein endothelial cells but not in immortalized mouse aortic endothelial cells or human astrocytoma cell line CRT-MG. Phosphorylation of other MAPK family members (i.e., p38 and JNK) was not suppressed by H2O2. The decrease in ERK1/2 phosphorylation induced by H2O2 was inversely correlated with the level of phosphorylation of Src tyrosine 530. Using siRNA, it was found that H2O2-induced suppression of ERK1/2 was dependent on Csk. Physiological laminar flow abrogated, but oscillatory flow did not affect, the H2O2-induced suppression of ERK1/2 phosphorylation. In conclusion, H2O2-induced Csk translocation to the plasma membrane leads to phosphorylation of Src at the tyrosine 530 residue resulting in a reduction of ERK1/2 phosphorylation. Physiological laminar flow abrogates this effect of H2O2 by inducing phosphorylation of Src tyrosine 419. These findings broaden our understanding of signal transduction mechanisms in the endothelial cells against oxidative stress. PMID:26234813

  16. Roles of CDX2 and EOMES in human induced trophoblast progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 (United States); Wang, Kai [Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 (United States); Gong, Yun Guo; Khoo, Sok Kean [Genomic Microarray Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503 (United States); Leach, Richard, E-mail: Richard.Leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group, Grand Rapids, MI 49503 (United States)

    2013-02-08

    Highlights: ► CDX2 and EOMES play critical roles in human induced trophoblast progenitors (iTP). ► iTP cells directly transformed from fibroblasts. ► Differentiation of iTP cells into extravillous trophoblasts and syncytiotrophoblasts. -- Abstract: Abnormal trophoblast lineage proliferation and differentiation in early pregnancy have been associated with the pathogenesis of placenta diseases of pregnancy. However, there is still a gap in understanding the molecular mechanisms of early placental development due to the limited primary trophoblast cultures and fidelity of immortalized trophoblast lines. Trophoblasts stem (TS) cells, an in vitro model of trophectoderm that can differentiate into syncytiotrophoblasts and extravillous trophoblasts, can be an attractive tool for early pregnancy research. TS cells are well established in mouse but not in humans due to insufficient knowledge of which trophoblast lineage-specific transcription factors are involved in human trophectoderm (TE) proliferation and differentiation. Here, we applied induced pluripotent stem cell technique to investigate the human trophoblast lineage-specific transcription factors. We established human induced trophoblast progenitor (iTP) cells by direct reprogramming the fibroblasts with a pool of mouse trophoblast lineage-specific transcription factors consisting of CDX2, EOMES, and ELF5. The human iTP cells exhibit epithelial morphology and can be maintained in vitro for more than 2 months. Gene expression profile of these cells was tightly clustered with human trophectoderm but not with human neuron progenitor cells, mesenchymal stem cells, or endoderm cells. These cells are capable of differentiating into cells with an invasive capacity, suggesting extravillous trophoblasts. They also form multi-nucleated cells which secrete human chorionic gonadotropin and estradiol, consistent with a syncytiotrophoblast phenotype. Our results provide the evidence that transcription factors CDX2 and

  17. Kinase activation through dimerization by human SH2-B.

    Science.gov (United States)

    Nishi, Masahiro; Werner, Eric D; Oh, Byung-Chul; Frantz, J Daniel; Dhe-Paganon, Sirano; Hansen, Lone; Lee, Jongsoon; Shoelson, Steven E

    2005-04-01

    The isoforms of SH2-B, APS, and Lnk form a family of signaling proteins that have been described as activators, mediators, or inhibitors of cytokine and growth factor signaling. We now show that the three alternatively spliced isoforms of human SH2-B readily homodimerize in yeast two-hybrid and cellular transfections assays, and this is mediated specifically by a unique domain in its amino terminus. Consistent with previous reports, we further show that the SH2 domains of SH2-B and APS bind JAK2 at Tyr813. These findings suggested a model in which two molecules of SH2-B or APS homodimerize with their SH2 domains bound to two JAK2 molecules, creating heterotetrameric JAK2-(SH2-B)2-JAK2 or JAK2-(APS)2-JAK2 complexes. We further show that APS and SH2-B isoforms heterodimerize. At lower levels of SH2-B or APS expression, dimerization approximates two JAK2 molecules to induce transactivation. At higher relative concentrations of SH2-B or APS, kinase activation is blocked. SH2-B or APS homodimerization and SH2-B/APS heterodimerization thus provide direct mechanisms for activating and inhibiting JAK2 and other kinases from the inside of the cell and for potentiating or attenuating cytokine and growth factor receptor signaling when ligands are present.

  18. The interleukin 2 gene is expressed in the syncytiotrophoblast of the human placenta

    International Nuclear Information System (INIS)

    Boehm, K.D.; Kelley, M.F.; Ilan, J.; Ilan, J.

    1989-01-01

    The lymphokine interleukin 2 is an important immune system regulatory glycopolypeptide. It is produced by antigen- or mitogen-stimulated T lymphocytes and is required for the proliferation or clonal expansion of activated T lymphocytes. In this report, it is demonstrated by RNA transfer blot hybridization that the poly(A) + RNA population of the human placenta contains a 0.85-kilobase RNA transcript that specifically hybridizes to a human interleukin 2 cDNA probe. By using hybridization histochemistry in situ, it is further shown that interleukin 2 RNA transcripts are localized, primarily, to the syncytial (syncytiotrophoblast) layer of the human placenta. Possible roles for syncytiotrophoblast-produced interleukin 2 are suggested and discussed

  19. Application of cultured human mast cells (CHMC) for the design and structure-activity relationship of IgE-mediated mast cell activation inhibitors.

    Science.gov (United States)

    Argade, Ankush; Bhamidipati, Somasekhar; Li, Hui; Carroll, David; Clough, Jeffrey; Keim, Holger; Sylvain, Catherine; Rossi, Alexander B; Coquilla, Christina; Issakani, Sarkiz D; Masuda, Esteban S; Payan, Donald G; Singh, Rajinder

    2015-01-01

    Here we report the optimization of small molecule inhibitors of human mast cell degranulation via anti-IgE-mediated tryptase release following cross-linking and activation of IgE-loaded FcεR1 receptors. The compounds are selective upstream inhibitors of FcεR1-dependent human mast cell degranulation and proved to be devoid of activity in downstream ionomycin mediated degranulation. Structure-activity relationship (SAR) leading to compound 26 is outlined. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Cloning and expression of a cDNA encoding human sterol carrier protein 2

    International Nuclear Information System (INIS)

    Yamamoto, Ritsu; Kallen, C.B.; Babalola, G.O.; Rennert, H.; Strauss, J.F. III; Billheimer, J.T.

    1991-01-01

    The authors report the cloning and expression of a cDNA encoding human sterol carrier protein 2 (SCP 2 ). The 1.3-kilobase (kb) cDNA contains an open reading frame which encompasses a 143-amino acid sequence which is 89% identical to the rat SCP 2 amino acid sequence. The deduced amino acid sequence of the polypeptide reveals a 20-residue amino-terminal leader sequence in front of the mature polypeptide, which contains a carboxyl-terminal tripeptide (Ala-Lys-Leu) related to the peroxisome targeting sequence. The expressed cDNA in COS-7 cells yields a 15.3-kDa polypeptide and increased amounts of a 13.2-kDa polypeptide, both reacting with a specific rabbit antiserum to rat liver SCP 2 . The cDNA insert hybridizes with 3.2- and 1.8-kb mRNA species in human liver poly(A) + RNA. In human fibroblasts and placenta the 1.8-kb mRNA was most abundant. Southern blot analysis suggests either that there are multiple copies of the SCP 2 gene in the human genome or that the SCP 2 gene is very large. Coexpression of the SCP 2 cDNA with expression vectors for cholesterol side-chain cleavage enzyme and adrenodoxin resulted in a 2.5-fold enhancement of progestin synthesis over that obtained with expression of the steroidogenic enzyme system alone. These findings are concordant with the notion that SCP 2 plays a role in regulating steroidogenesis, among other possible functions

  1. Contrast media effect on interleukin-2 levels in human plasma in vitro

    International Nuclear Information System (INIS)

    Napolov, Yu.K.; Borsukova, N.M.; Shimanovskij, N.L.

    1992-01-01

    As shown in the study of bilignost, iodamide and triombrast action on interleukin-2 (IL-2) level in human plasma in vitro, these contrast media (2.5x10 -2 -2.5x10 -4 M) elevate IL-2 content in blood plasma of sensitive to contrast media subjects in dose-dependent manner

  2. Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice.

    Science.gov (United States)

    Xie, Yufeng; Wu, Jie; Xu, Aizhang; Ahmeqd, Shahid; Sami, Amer; Chibbar, Rajni; Freywald, Andrew; Zheng, Changyu; Xiang, Jim

    2018-03-07

    DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-T EXO capable of stimulating HER2-specific CD8 + T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdV HuRt expressing HuRt fusion protein composed of NH 2 -HER2 1-407 (Hu) and COOH-neu 408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-T EXO using polyclonal CD4 + T-cells uptaking exosomes released by AdV HuRt -transfected dendritic cells. We found that the HuRt-T EXO vaccine stimulates enhanced CD4 + T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-T EXO vaccine. By using PE-H-2K d /HER2 23-71 tetramer, we determined that HuRt-T EXO stimulates stronger HER2-specific CD8 + T-cell responses eradicating 90% of HER2-specific target cells, while HER2-T EXO -induced CD8 + T-cell responses only eliminating 53% targets. Furthermore, HuRt-T EXO , but not HER2-T EXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1 HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10 A2/HER2 melanoma. HuRt-T EXO -stimulated HER2-specific CD8 + T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-T EXO, circumventing HER2 tolerance, may provide a new

  3. Sp1 and CREB regulate basal transcription of the human SNF2L gene

    International Nuclear Information System (INIS)

    Xia Yu; Jiang Baichun; Zou Yongxin; Gao Guimin; Shang Linshan; Chen Bingxi; Liu Qiji; Gong Yaoqin

    2008-01-01

    Imitation Switch (ISWI) is a member of the SWI2/SNF2 superfamily of ATP-dependent chromatin remodelers, which are involved in multiple nuclear functions, including transcriptional regulation, replication, and chromatin assembly. Mammalian genomes encode two ISWI orthologs, SNF2H and SNF2L. In order to clarify the molecular mechanisms governing the expression of human SNF2L gene, we functionally examined the transcriptional regulation of human SNF2L promoter. Reporter gene assays demonstrated that the minimal SNF2L promoter was located between positions -152 to -86 relative to the transcription start site. In this region we have identified a cAMP-response element (CRE) located at -99 to -92 and a Sp1-binding site at -145 to -135 that play a critical role in regulating basal activity of human SNF2L gene, which were proven by deletion and mutation of specific binding sites, EMSA, and down-regulating Sp1 and CREB via RNAi. This study provides the first insight into the mechanisms that control basal expression of human SNF2L gene

  4. Niacin and biosynthesis of PGD2 by platelet COX-1 in mice and humans

    Science.gov (United States)

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela; Alamuddin, Naji; Ibrahim, Salam; Crichton, Irene; Prempeh, Maxwell; Lawson, John A.; Wilensky, Robert L.; Rasmussen, Lars Melholt; Puré, Ellen; FitzGerald, Garret A.

    2012-01-01

    The clinical use of niacin to treat dyslipidemic conditions is limited by noxious side effects, most commonly facial flushing. In mice, niacin-induced flushing results from COX-1–dependent formation of PGD2 and PGE2 followed by COX-2–dependent production of PGE2. Consistent with this, niacin-induced flushing in humans is attenuated when niacin is combined with an antagonist of the PGD2 receptor DP1. NSAID-mediated suppression of COX-2–derived PGI2 has negative cardiovascular consequences, yet little is known about the cardiovascular biology of PGD2. Here, we show that PGD2 biosynthesis is augmented during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis. Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1–derived PGD2 biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD2 was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD2, like PGI2, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular relevance as a constraint on platelets during niacin therapy. PMID:22406532

  5. Biological 2-Input Decoder Circuit in Human Cells

    Science.gov (United States)

    2015-01-01

    Decoders are combinational circuits that convert information from n inputs to a maximum of 2n outputs. This operation is of major importance in computing systems yet it is vastly underexplored in synthetic biology. Here, we present a synthetic gene network architecture that operates as a biological decoder in human cells, converting 2 inputs to 4 outputs. As a proof-of-principle, we use small molecules to emulate the two inputs and fluorescent reporters as the corresponding four outputs. The experiments are performed using transient transfections in human kidney embryonic cells and the characterization by fluorescence microscopy and flow cytometry. We show a clear separation between the ON and OFF mean fluorescent intensity states. Additionally, we adopt the integrated mean fluorescence intensity for the characterization of the circuit and show that this metric is more robust to transfection conditions when compared to the mean fluorescent intensity. To conclude, we present the first implementation of a genetic decoder. This combinational system can be valuable toward engineering higher-order circuits as well as accommodate a multiplexed interface with endogenous cellular functions. PMID:24694115

  6. Biological 2-input decoder circuit in human cells.

    Science.gov (United States)

    Guinn, Michael; Bleris, Leonidas

    2014-08-15

    Decoders are combinational circuits that convert information from n inputs to a maximum of 2(n) outputs. This operation is of major importance in computing systems yet it is vastly underexplored in synthetic biology. Here, we present a synthetic gene network architecture that operates as a biological decoder in human cells, converting 2 inputs to 4 outputs. As a proof-of-principle, we use small molecules to emulate the two inputs and fluorescent reporters as the corresponding four outputs. The experiments are performed using transient transfections in human kidney embryonic cells and the characterization by fluorescence microscopy and flow cytometry. We show a clear separation between the ON and OFF mean fluorescent intensity states. Additionally, we adopt the integrated mean fluorescence intensity for the characterization of the circuit and show that this metric is more robust to transfection conditions when compared to the mean fluorescent intensity. To conclude, we present the first implementation of a genetic decoder. This combinational system can be valuable toward engineering higher-order circuits as well as accommodate a multiplexed interface with endogenous cellular functions.

  7. Identification and characterization of a putative human platelet thromboxane A2/prostaglandin H2 receptor

    International Nuclear Information System (INIS)

    Saussy, D.L. Jr.

    1986-01-01

    The thromboxane A 2 (TXA 2 ) analog, 9,11-dimethylmethano-11,12-methano-16-(3-iodo-4-hydroxyphenyl)-13,14-dihydro-13-aza-15αβ-omega-tetranor TXA 2 (I-PTA-OH) was characterized as a competitive antagonist of TXA 2 mimetic-induced platelet aggregation, with a K/sub d/ of 190 nM in platelet rich plasma. This antagonism was specific for the putative thromboxane A 2 /prostaglandin H 2 (TXA 2 /PGH 2 ) receptor, since I-PTA-OH had no inhibitory effects on platelet aggregation stimulated by agonists which act independently of TXA 2 /PGH 2 , and did not inhibit platelet TXA 2 synthesis. [ 125 I]-PTA-OH binding to a particulate fraction from human platelets was saturable, displaceable, and linear with protein concentration. Scatchard analysis of equilibrium binding revealed a single class of high affinity binding sites, with a K/sub d/ of 30 +/- 4 nM and a B/sub max/ of 1.8 +/- 0.3 pmol/mg protein. Kinetic analysis yielded a k 1 of 1.35 x 10 6 M -1 x min -1 and a k√ 1 of 0.032 min -1 , K/sub d/ = k√ 1 /k 1 = 24 nM. The subcellular localization of the putative TXA 2 /PGH 2 receptor was determined using [ 125 I]-PTA-OH binding as a marker for the receptor. [ 125 I]-PTA-OH binding as a marker for the receptor. [ 125 I]-PTA-OH binding, was coenriched with markers for plasma membranes and dense tubular system; but not with markers for cytoplasmic constituents, mitochondria, or granules

  8. Expression of biologically active human interferon alpha 2 in aloe vera

    Science.gov (United States)

    We have developed a system for transgenic expression of proteins in Aloe Vera. Using this approach we have generated plants expressing the human gene interferon alpha 2, IFNa2. IFNa2 is a small secreted cytokine that plays a vital role in regulating the body’s immune response to viral infections a...

  9. Effects of Age, Season, Gender and Urban-Rural Status on Time-Activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2)

    OpenAIRE

    Matz, Carlyn J.; Stieb, David M.; Davis, Karelyn; Egyed, Marika; Rose, Andreas; Chou, Benedito; Brion, Orly

    2014-01-01

    Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2) was a national survey conducted in 2010–2011 to collect time-...

  10. UV-dependent production of 25-hydroxyvitamin D{sub 2} in the recombinant yeast cells expressing human CYP2R1

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi; Kamakura, Masaki [Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan); Ohta, Miho [Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, 4-4-1 Nanko-naka, Suminoe-ku, Osaka 559-0033 (Japan); Sakaki, Toshiyuki, E-mail: tsakaki@pu-toyama.ac.jp [Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan)

    2013-05-03

    Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D{sub 3} or vitamin D{sub 2} was added to the cell suspension of CYP2R1-expressing yeast cells in a buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D{sub 2} was produced without additional vitamin D{sub 2}. Endogenous ergosterol was likely converted into vitamin D{sub 2} by UV irradiation and thermal isomerization, and then the resulting vitamin D{sub 2} was converted to 25-hydroxyvitamin D{sub 2} by CYP2R1. This novel method for producing 25-hydroxyvitamin D{sub 2} without a substrate could be useful for practical purposes.

  11. A biallelic RFLP of the human. alpha. 2-C4 adrenergic receptor gene (ADRA2RL2) localized on the short arm of chromosome 4 and encoding the putative. alpha. 2B receptor is identified with Bsu 36 L using a 1. 5 kb probe (p ADRA2RL2)

    Energy Technology Data Exchange (ETDEWEB)

    Hoeche, M.R.; Berrettini, W.H. (Clinical Neurogenetics Branch, Bethesda, MD (USA)); Regan, J.W. (Duke Univ. Medical Center, Durham, NC (USA))

    1989-12-11

    A 1.5 kb Eco RI cDNA fragment representing the human alpha2-C4 adrenergic receptor (AR) gene encoding the putative alpha2B-AR, containing approximately 1270 bp of the coding and 240 bp of the 3{prime}flanking region, inserted into pSP65, was used as a probe (p ADRA2RL2). This clone was obtained by screening a human kidney lambda GT10 cDNA library with the 0.95 kb Pst I restriction fragment derived from the coding block of the gene for the human platelet alpha2-AR. Hybridization of human genomic DNA digested with Bsu 36 I identifies a two allele polymorphism with bands at 12 kb and 5.8 kb. 20 unrelated North American caucasian subjects were evaluated with frequencies of: A allele, 0.45; B allele, 0.55, heterozygosity (obs), 0.5. This alpha2-AR gene has been mapped in a separation effort in 59 CEPH reference pedigrees to the tip of the short arm of chromosome 4 just proximal to GB (4p 16.3) reported to be linked to the Huntingston's disease gene. Codominant inheritance was observed in seven families with two and three generations, respectively. The number of meioses scored was 95.

  12. Ubiquitin Ligase RNF138 Promotes Episodic Ataxia Type 2-Associated Aberrant Degradation of Human Cav2.1 (P/Q-Type) Calcium Channels.

    Science.gov (United States)

    Fu, Ssu-Ju; Jeng, Chung-Jiuan; Ma, Chia-Hao; Peng, Yi-Jheng; Lee, Chi-Ming; Fang, Ya-Ching; Lee, Yi-Ching; Tang, Sung-Chun; Hu, Meng-Chun; Tang, Chih-Yung

    2017-03-01

    Voltage-gated Ca V 2.1 channels comprise a pore-forming α 1A subunit with auxiliary α 2 δ and β subunits. Ca V 2.1 channels play an essential role in regulating synaptic signaling. Mutations in the human gene encoding the Ca V 2.1 subunit are associated with the cerebellar disease episodic ataxia type 2 (EA2). Several EA2-causing mutants exhibit impaired protein stability and exert dominant-negative suppression of Ca V 2.1 wild-type (WT) protein expression via aberrant proteasomal degradation. Here, we set out to delineate the protein degradation mechanism of human Ca V 2.1 subunit by identifying RNF138, an E3 ubiquitin ligase, as a novel Ca V 2.1-binding partner. In neurons, RNF138 and Ca V 2.1 coexist in the same protein complex and display notable subcellular colocalization at presynaptic and postsynaptic regions. Overexpression of RNF138 promotes polyubiquitination and accelerates protein turnover of Ca V 2.1. Disrupting endogenous RNF138 function with a mutant (RNF138-H36E) or shRNA infection significantly upregulates the Ca V 2.1 protein level and enhances Ca V 2.1 protein stability. Disrupting endogenous RNF138 function also effectively rescues the defective protein expression of EA2 mutants, as well as fully reversing EA2 mutant-induced excessive proteasomal degradation of Ca V 2.1 WT subunits. RNF138-H36E coexpression only partially restores the dominant-negative effect of EA2 mutants on Ca V 2.1 WT functional expression, which can be attributed to defective membrane trafficking of Ca V 2.1 WT in the presence of EA2 mutants. We propose that RNF138 plays a critical role in the homeostatic regulation of Ca V 2.1 protein level and functional expression and that RNF138 serves as the primary E3 ubiquitin ligase promoting EA2-associated aberrant degradation of human Ca V 2.1 subunits. SIGNIFICANCE STATEMENT Loss-of-function mutations in the human Ca V 2.1 subunit are linked to episodic ataxia type 2 (EA2), a dominantly inherited disease characterized by

  13. Inhibition of phospholipase A2 from human plasma by sodium bisulfite

    International Nuclear Information System (INIS)

    Wiggins, C.W.; Franson, R.C.

    1987-01-01

    The anti-oxidant sodium bisulfite has been shown to inhibit acid active(lysosomal), non-Ca ++ -dependent phospholipase A 2 (PLA 2 ), and to interact reversibly with unsaturated fatty acids, altering their chromatographic mobility. The authors examined the effect of bisulfite on neutral active, Ca ++ -dependent PLA 2 from human plasma. Using [1- 14 C]oleate-labelled autoclaved E. coli as substrate, PLA 2 activity was inhibited in a dose-dependent manner by bisulfite. Maximal inhibition occurred at 100μM bisulfite. Preincubation of plasma for 0-30 minutes with bisulfite resulted in a time-dependent increase in PLA 2 inhibition. Preincubation of substrate with bisulfite had no such effect. When the plasma PLA 2 was purified 25-fold by SP-Sephadex chromatography it was no longer inhibited by bisulfite. The SP-Sephadex wash through fraction, which contained greater than 95% of the applied protein but not PLA 2 activity, did not inhibit the purified enzyme. When incubated with bisulfite however, the SP-wash through fraction produced dose-dependent inhibition of the purified enzyme. These results indicate that sodium bisulfite inhibits human plasma PLA 2 , in vitro, indirectly by interaction with a factor(s) present in plasma and suggests that anti-oxidants may similarly influence expression of extracellular PLA 2 in vivo

  14. Anti-hepatocarcinoma effects of resveratrol nanoethosomes against human HepG2 cells

    Science.gov (United States)

    Meng, Xiang-Ping; Zhang, Zhen; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2017-02-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Resveratrol (Res) has been widely investigated with its strong anti-tumor activity. However, its low oral bioavailability restricts its wide application. In this study, we prepared resveratrol nanoethosomes (ResN) via ethanol injection method. The in vitro anti-hepatocarcinoma effects of ResN relative to efficacy of bulk Res were evaluated on proliferation and apoptosis of human HepG2 cells. ResN were spherical vesicles and its particle diameter, zeta potential were (115.8 +/- 1.3) nm and (-12.8 +/- 1.9) mV, respectively. ResN exhibited significant inhibitory effects against human HepG2 cells by MTT assay, and the IC50 value was 49.2 μg/ml (105.4 μg/ml of Res bulk solution). By flow cytometry assay, there was an increase in G2/M phase cells treated with ResN. The results demonstrated ResN could effectively block the G2/M phase of HepG2 cells, which can also enhance the inhibitory effect of Res against HepG2 cells.

  15. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics.

    Directory of Open Access Journals (Sweden)

    Michael D Stubenvoll

    2016-09-01

    Full Text Available Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin, increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics.

  16. Similar substrate specificity of cynomolgus monkey cytochrome P450 2C19 to reported human P450 2C counterpart enzymes by evaluation of 89 drug clearances.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-12-01

    Cynomolgus monkeys are used widely in preclinical studies as non-human primate species. The amino acid sequence of cynomolgus monkey cytochrome P450 (P450 or CYP) 2C19 is reportedly highly correlated to that of human CYP2C19 (92%) and CYP2C9 (93%). In the present study, 89 commercially available compounds were screened to find potential substrates for cynomolgus monkey CYP2C19. Of 89 drugs, 34 were metabolically depleted by cynomolgus monkey CYP2C19 with relatively high rates. Among them, 30 compounds have been reported as substrates or inhibitors of, either or both, human CYP2C19 and CYP2C9. Several compounds, including loratadine, showed high selectivity to cynomolgus monkey CYP2C19, and all of these have been reported as human CYP2C19 and/or CYP2C9 substrates. In addition, cynomolgus monkey CYP2C19 formed the same loratadine metabolite as human CYP2C19, descarboethoxyloratadine. These results suggest that cynomolgus monkey CYP2C19 is generally similar to human CYP2C19 and CYP2C9 in its substrate recognition functionality. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Tissue localization of human trefoil factors 1, 2, and 3

    DEFF Research Database (Denmark)

    Madsen, Jens; Nielsen, Ole; Tornøe, Ida

    2007-01-01

    Trefoil factors (TTFs) are small, compact proteins coexpressed with mucins in the gastrointestinal tract. Three trefoil factors are known in mammals: TFF1, TFF2, and TFF3. They are implicated to play diverse roles in maintenance and repair of the gastrointestinal channel. We compared the expression...... pattern of the three trefoil factors analyzing mRNA from a panel of 20 human tissues by conventional reverse transcriptase (RT) PCR and, in addition, by real-time PCR. These findings were supported by immunohistochemical analysis of paraffin-embedded human tissues using rabbit polyclonal antibodies raised...... against these factors. TFF1 showed highest expression in the stomach and colon, whereas TFF2 and TFF3 showed highest expression in stomach and colon, respectively. All three TFFs were found in the ducts of pancreas. Whereas TFF2 was found to be restricted to these two tissues, the structurally more...

  18. Enhanced engraftment of human cells in RAG2/gammac double-knockout mice after treatment with CL2MDP liposomes

    NARCIS (Netherlands)

    Rozemuller, Henk; Knaän-Shanzer, Shosh; Hagenbeek, Anton; van Bloois, Louis; Storm, Gert; Martens, Anton C. M.

    2004-01-01

    OBJECTIVE: The ability of human cells to repopulate the bone marrow of nonobese diabetic immunodeficient mice (NOD/SCID) is commonly used as a standard assay to quantify the primitive human hematopoietic stem cell population. We studied the applicability of the immunodeficient RAG2(-/-)gammac(-/-)

  19. Effect of Tryptophan on the corrosion behavior of low alloy steel in sulfamic acid

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah

    2016-11-01

    Full Text Available Sulfamic acid is widely used in various industrial acid cleaning applications. In the present work, the inhibition effect of Tryptophan (Tryp on the corrosion of low alloy steel in sulfamic acid solutions at four different temperatures was studied. The investigations involved electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM as well as gravimetric measurements. The inhibition efficiency and the apparent activation energy have been calculated in the presence and in the absence of Tryp. It is most probable that the inhibition property of Tryp was due to the electrostatic adsorption of the protonated form of Tryp on the steel surface. Adsorption of the inhibitor molecule, onto the steel surface followed the Temkin adsorption isotherm. The thermodynamic parameters of adsorption were determined and discussed. All of the obtained data from the three techniques were in close agreement, which confirmed that EFM technique can be used efficiently for monitoring the corrosion inhibition under the studied conditions.

  20. Prostaglandin E2 Prevents Hyperosmolar-Induced Human Mast Cell Activation through Prostanoid Receptors EP2 and EP4

    Science.gov (United States)

    Torres-Atencio, Ivonne; Ainsua-Enrich, Erola; de Mora, Fernando; Picado, César; Martín, Margarita

    2014-01-01

    Background Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1–4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition. PMID:25329458

  1. Automated human skull landmarking with 2D Gabor wavelets

    Science.gov (United States)

    de Jong, Markus A.; Gül, Atilla; de Gijt, Jan Pieter; Koudstaal, Maarten J.; Kayser, Manfred; Wolvius, Eppo B.; Böhringer, Stefan

    2018-05-01

    Landmarking of CT scans is an important step in the alignment of skulls that is key in surgery planning, pre-/post-surgery comparisons, and morphometric studies. We present a novel method for automatically locating anatomical landmarks on the surface of cone beam CT-based image models of human skulls using 2D Gabor wavelets and ensemble learning. The algorithm is validated via human inter- and intra-rater comparisons on a set of 39 scans and a skull superimposition experiment with an established surgery planning software (Maxilim). Automatic landmarking results in an accuracy of 1–2 mm for a subset of landmarks around the nose area as compared to a gold standard derived from human raters. These landmarks are located in eye sockets and lower jaw, which is competitive with or surpasses inter-rater variability. The well-performing landmark subsets allow for the automation of skull superimposition in clinical applications. Our approach delivers accurate results, has modest training requirements (training set size of 30–40 items) and is generic, so that landmark sets can be easily expanded or modified to accommodate shifting landmark interests, which are important requirements for the landmarking of larger cohorts.

  2. Generation and characterization of a human nanobody against VEGFR-2.

    Science.gov (United States)

    Ma, Lin; Gu, Kai; Zhang, Cheng-Hai; Chen, Xue-Tao; Jiang, Yi; Melcher, Karsten; Zhang, Juan; Wang, Min; Xu, H Eric

    2016-06-01

    Nanobody is an antibody fragment consisting of a single monomeric variable antibody domain, which can be used for a variety of biotechnological and therapeutic purposes. The aim of this work was to isolate and characterize a human signal domain antibody against VEGFR-2 domain3 (VEGFR D3) from a phage display library. To produce antigen-specific recombinant nanobodies with high affinity to VEGFR2 D3, a liquid phase panning strategy was used for all rounds of panning. For nanobody expression and purification, four VEGFR2 D3-blocking clones were subcloned into a pETduet-biotin-MBP expression vector. The recombinant proteins carried an MBP tag to facilitate purification by affinity chromatography. Recombinant NTV(1-4) was obtained after an additional gel filtration chromatography step. The interactions between VEGFR2 D3 and NTV(1-4) were assessed with luminescence-based AlphaScreen assay and SPR assay. Anti-angiogenesis effects were examined in human umbilical vein endothelial cells (HUVECs). In the AlphaScreen assay, NTV1 (100 and 200 nmol/L) elicited the highest binding signal with VEGFR2 D3; NTV2 showed moderate interactions with VEGFR2 D3; NTV3 and NTV4 exhibited little or no interaction with VEGFR2 D3. In the SPR assay, NTV1 displayed a high affinity for VEGFR2 D3 with an equilibrium dissociation constant (KD) of 49±1.8 nmol/L. NTV1 (1-1000 nmol/L) dose-dependently inhibited the proliferation of HUVECs and the endothelial tube formation by the HUVECs. The nanobody NTV1 is a potential therapeutic candidate for blocking VEGFR2. This study provides a novel and promising strategy for development of VEGFR2-targeted nanobody-based cancer therapeutics.

  3. Mechanisms of human immunodeficiency virus type 2 RNA packaging

    DEFF Research Database (Denmark)

    Ni, Na; Nikolaitchik, Olga A; Dilley, Kari A

    2011-01-01

    do not support the cis-packaging hypothesis but instead indicate that trans packaging is the major mechanism of HIV-2 RNA packaging. To further characterize the mechanisms of HIV-2 RNA packaging, we visualized HIV-2 RNA in individual particles by using fluorescent protein-tagged RNA-binding proteins......Human immunodeficiency virus type 2 (HIV-2) has been reported to have a distinct RNA packaging mechanism, referred to as cis packaging, in which Gag proteins package the RNA from which they were translated. We examined the progeny generated from dually infected cell lines that contain two HIV-2...... proviruses, one with a wild-type gag/gag-pol and the other with a mutant gag that cannot express functional Gag/Gag-Pol. Viral titers and RNA analyses revealed that mutant viral RNAs can be packaged at efficiencies comparable to that of viral RNA from which wild-type Gag/Gag-Pol is translated. These results...

  4. Expression of integrin α3β1 and cyclooxygenase-2 (COX2) are positively correlated in human breast cancer

    International Nuclear Information System (INIS)

    Aggarwal, Anshu; Al-Rohil, Rami N; Batra, Anupam; Feustel, Paul J; Jones, David M; DiPersio, C Michael

    2014-01-01

    Expression of integrin α3β1 is associated with tumor progression, metastasis, and poor prognosis in several cancers, including breast cancer. Moreover, preclinical studies have revealed important pro-tumorigenic and pro-metastatic functions for this integrin, including tumor growth, survival, invasion, and paracrine induction of angiogenesis. Our previously published work in a preclinical breast cancer model showed that integrin α3β1 promotes expression of cyclooxygenase-2 (COX2/PTGS2), a known driver of breast cancer progression. However, the clinical significance of this regulation was unknown. The objective of the current study was to assess the clinical relevance of the relationship between integrin α3β1 and COX2 by testing for their correlated expression among various forms of human breast cancer. Immunohistochemistry was performed to assess co-expression of α3 and COX2 in specimens of human invasive ductal carcinoma (IDC), either on a commercial tissue microarray (n = 59 samples) or obtained from Albany Medical Center archives (n = 68 samples). Immunostaining intensity for the integrin α3 subunit or COX2 was scored, and Spearman’s rank correlation coefficient analysis was performed to assess their co-expression across and within different tumor subtypes or clinicopathologic criteria. Although expression of integrin α3 or COX2 varied among clinical IDC samples, a statistically significant, positive correlation was detected between α3 and COX2 in both tissue microarrays (r s = 0.49, p < 0.001, n = 59) and archived samples (r s = 0.59, p < 0.0001, n = 68). In both sample sets, this correlation was independent of hormone receptor status, histological grade, or disease stage. COX2 and α3 are correlated in IDC independently of hormone receptor status or other clinicopathologic features, supporting the hypothesis that integrin α3β1 is a determinant of COX2 expression in human breast cancer. These results support the clinical relevance of α3β1

  5. Grainyhead-like 2 (GRHL2) distribution reveals novel pathophysiological differences between human idiopathic pulmonary fibrosis and mouse models of pulmonary fibrosis

    Science.gov (United States)

    Mahavadi, Poornima; Sasikumar, Satish; Cushing, Leah; Hyland, Tessa; Rosser, Ann E.; Riccardi, Daniela; Lu, Jining; Kalin, Tanya V.; Kalinichenko, Vladimir V.; Guenther, Andreas; Ramirez, Maria I.; Pardo, Annie; Selman, Moisés; Warburton, David

    2013-01-01

    Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity. PMID:24375798

  6. Editor's Highlight: Complete Attenuation of Mouse Lung Cell Proliferation and Tumorigenicity in CYP2F2 Knockout and CYP2F1 Humanized Mice Exposed to Inhaled Styrene for up to 2 Years Supports a Lack of Human Relevance.

    Science.gov (United States)

    Cruzan, George; Bus, James S; Banton, Marcy I; Sarang, Satinder S; Waites, Robbie; Layko, Debra B; Raymond, James; Dodd, Darol; Andersen, Melvin E

    2017-10-01

    Styrene is a mouse-specific lung carcinogen, and short-term mode of action studies have demonstrated that cytotoxicity and/or cell proliferation, and genomic changes are dependent on CYP2F2 metabolism. The current study examined histopathology, cell proliferation, and genomic changes in CD-1, C57BL/6 (WT), CYP2F2(-/-) (KO), and CYP2F2(-/-) (CYP2F1, 2B6, 2A13-transgene) (TG; humanized) mice following exposure for up to 104 weeks to 0- or 120-ppm styrene vapor. Five mice per treatment group were sacrificed at 1, 26, 52, and 78 weeks. Additional 50 mice per treatment group were followed until death or 104 weeks of exposure. Cytotoxicity was present in the terminal bronchioles of some CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Hyperplasia in the terminal bronchioles was present in CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Increased cell proliferation, measured by KI-67 staining, occurred in CD-1 and WT mice exposed to styrene for 1 week, but not after 26, 52, or 78 weeks, nor in KO or TG mice. Styrene increased the incidence of bronchioloalveolar adenomas and carcinomas in CD-1 mice. No increase in lung tumors was found in WT despite clear evidence of lung toxicity, or, KO or TG mice. The absence of preneoplastic lesions and tumorigenicity in KO and TG mice indicates that mouse-specific CYP2F2 metabolism is responsible for both the short-term and chronic toxicity and tumorigenicity of styrene, and activation of styrene by CYP2F2 is a rodent MOA that is neither quantitatively or qualitatively relevant to humans. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer.

    Science.gov (United States)

    Venneri, Mary Anna; De Palma, Michele; Ponzoni, Maurilio; Pucci, Ferdinando; Scielzo, Cristina; Zonari, Erika; Mazzieri, Roberta; Doglioni, Claudio; Naldini, Luigi

    2007-06-15

    Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), have been implicated in tumor progression. We recently described a lineage of mouse monocytes characterized by expression of the Tie2 angiopoietin receptor and required for the vascularization and growth of several tumor models. Here, we report that TIE2 expression in human blood identifies a subset of monocytes distinct from classical inflammatory monocytes and comprised within the less abundant "resident" population. These TIE2-expressing monocytes (TEMs) accounted for 2% to 7% of blood mononuclear cells in healthy donors and were distinct from rare circulating endothelial cells and progenitors. In human cancer patients, TEMs were observed in the blood and, intriguingly, within the tumors, where they represented the main monocyte population distinct from TAMs. Conversely, TEMs were hardly detected in nonneoplastic tissues. In vitro, TEMs migrated toward angiopoietin-2, a TIE2 ligand released by activated endothelial cells and angiogenic vessels, suggesting a homing mechanism for TEMs to tumors. Purified human TEMs, but not TEM-depleted monocytes, markedly promoted angiogenesis in xenotransplanted human tumors, suggesting a potentially critical role of TEMs in human cancer progression. Human TEMs may provide a novel, biologically relevant marker of angiogenesis and represent a previously unrecognized target of cancer therapy.

  8. Human Sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts

    International Nuclear Information System (INIS)

    Peterson, Sarah M; Concino, Michael F; Liaw, Lucy; Martini, Paolo GV; Iskenderian, Andrea; Cook, Lynette; Romashko, Alla; Tobin, Kristen; Jones, Michael; Norton, Angela; Gómez-Yafal, Alicia; Heartlein, Michael W

    2010-01-01

    Extracellular human sulfatases modulate growth factor signaling by alteration of the heparin/heparan sulfate proteoglycan (HSPG) 6-O-sulfation state. HSPGs bind to numerous growth factor ligands including fibroblast growth factors (FGF), epidermal growth factors (EGF), and vascular endothelial growth factors (VEGF), and are critically important in the context of cancer cell growth, invasion, and metastasis. We hypothesized that sulfatase activity in the tumor microenvironment would regulate tumor growth in vivo. We established a model of stable expression of sulfatases in the human breast cancer cell line MDA-MB-231 and purified recombinant human Sulfatase 2 (rhSulf2) for exogenous administration. In vitro studies were performed to measure effects on breast cancer cell invasion and proliferation, and groups were statistically compared using Student's t-test. The effects of hSulf2 on tumor progression were tested using in vivo xenografts with two methods. First, MDA-MB-231 cells stably expressing hSulf1, hSulf2, or both hSulf1/hSulf2 were grown as xenografts and the resulting tumor growth and vascularization was compared to controls. Secondly, wild type MDA-MB-231 xenografts were treated by short-term intratumoral injection with rhSulf2 or vehicle during tumor growth. Ultrasound analysis was also used to complement caliper measurement to monitor tumor growth. In vivo studies were statistically analyzed using Student's t test. In vitro, stable expression of hSulf2 or administration of rhSulf2 in breast cancer cells decreased cell proliferation and invasion, corresponding to an inhibition of ERK activation. Stable expression of the sulfatases in xenografts significantly suppressed tumor growth, with complete regression of tumors expressing both hSulf1 and hSulf2 and significantly smaller tumor volumes in groups expressing hSulf1 or hSulf2 compared to control xenografts. Despite significant suppression of tumor volume, sulfatases did not affect vascular

  9. Modulation of the Endocannabinoids N-Arachidonoylethanolamine (AEA and 2-Arachidonoylglycerol (2-AG on Executive Functions in Humans.

    Directory of Open Access Journals (Sweden)

    Ana B Fagundo

    Full Text Available Animal studies point to an implication of the endocannabinoid system on executive functions. In humans, several studies have suggested an association between acute or chronic use of exogenous cannabinoids (Δ9-tetrahydrocannabinol and executive impairments. However, to date, no published reports establish the relationship between endocannabinoids, as biomarkers of the cannabinoid neurotransmission system, and executive functioning in humans. The aim of the present study was to explore the association between circulating levels of plasma endocannabinoids N-arachidonoylethanolamine (AEA and 2-Arachidonoylglycerol (2-AG and executive functions (decision making, response inhibition and cognitive flexibility in healthy subjects. One hundred and fifty seven subjects were included and assessed with the Wisconsin Card Sorting Test; Stroop Color and Word Test; and Iowa Gambling Task. All participants were female, aged between 18 and 60 years and spoke Spanish as their first language. Results showed a negative correlation between 2-AG and cognitive flexibility performance (r = -.37; p<.05. A positive correlation was found between AEA concentrations and both cognitive flexibility (r = .59; p<.05 and decision making performance (r = .23; P<.05. There was no significant correlation between either 2-AG (r = -.17 or AEA (r = -.08 concentrations and inhibition response. These results show, in humans, a relevant modulation of the endocannabinoid system on prefrontal-dependent cognitive functioning. The present study might have significant implications for the underlying executive alterations described in some psychiatric disorders currently associated with endocannabinoids deregulation (namely drug abuse/dependence, depression, obesity and eating disorders. Understanding the neurobiology of their dysexecutive profile might certainly contribute to the development of new treatments and pharmacological approaches.

  10. How different are the Kebara 2 ribs to modern humans?

    Science.gov (United States)

    Chapman, Tara; Beyer, Benoît; Sholukha, Victor; Semal, Patrick; Feipel, Veronique; Louryan, Stéphane; Van Sint Jan, Serge

    2017-12-30

    This study analyses rib geometric parameters of individual ribs of 14 modern human subjects (7 males and 7 females) in comparison to the reconstructed ribs of the Kebara 2 skeleton which was taken from the reconstruction of a Neandertal thorax by Sawyer & Maley (2005). Three-dimensional (3D) models were segmented from CT scans and each rib vertex cloud was placed into a local coordinate system defined from the rib principal axes. Rib clouds were then analysed using best fitting ellipses of the external contours of the cross-section areas. The centroid of each ellipse was then used to measure the centroidal pathway between each slice (rib midline). Curvature of the ribs was measured from the mid-line of the ribs as the sum of angles between successive centroids in adjacent cross sections. Distinct common patterns were noted in all rib geometric parameters for modern humans. The Kebara 2 reconstructed ribs also followed the same patterns. This study demonstrated that there are differences between the sexes in rib geometrical parameters, with females showing smaller rib width, chord length and arc length, but greater curvature (rib torsion, rib axial curvature, rib anterior-posterior bending) than males. The Kebara 2 reconstructed ribs were within the modern human range for the majority of geometrical parameters.

  11. Deciphering of ADP-induced, phosphotyrosine-dependent signaling networks in human platelets by Src-homology 2 region (SH2)-profiling.

    Science.gov (United States)

    Schweigel, Hardy; Geiger, Jörg; Beck, Florian; Buhs, Sophia; Gerull, Helwe; Walter, Ulrich; Sickmann, Albert; Nollau, Peter

    2013-03-01

    Tyrosine phosphorylation plays a central role in signal transduction controlling many important biological processes. In platelets, the activity of several signaling proteins is controlled by tyrosine phosphorylation ensuring proper platelet activation and aggregation essential for regulation of the delicate balance between bleeding and hemostasis. Here, we applied Src-homology 2 region (SH2)-profiling for deciphering of the phosphotyrosine state of human platelets activated by adenosine diphosphate (ADP). Applying a panel of 31 SH2-domains, rapid and complex regulation of the phosphotyrosine state of platelets was observed after ADP stimulation. Specific inhibition of platelet P2Y receptors by synthetic drugs revealed a major role for the P2Y1 receptor in tyrosine phosphorylation. Concomitant activation of protein kinase A (PKA) abolished ADP-induced tyrosine phosphorylation in a time and concentration-dependent manner. Given the fact that PKA activity is negatively regulated by the P2Y12 receptor, our data provide evidence for a novel link of synergistic control of the state of tyrosine phosphorylation by both P2Y receptors. By SH2 domain pull down and MS/MS analysis, we identified distinct tyrosine phosphorylation sites in cell adhesion molecules, intracellular adapter proteins and phosphatases suggesting a major, functional role of tyrosine phosphorylation of theses candidate proteins in ADP-dependent signaling in human platelets. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A murine model of type 2 autoimmune hepatitis: Xenoimmunization with human antigens.

    Science.gov (United States)

    Lapierre, Pascal; Djilali-Saiah, Idriss; Vitozzi, Susana; Alvarez, Fernando

    2004-04-01

    Autoimmune hepatitis (AIH) is characterized by an immune-mediated injury of the hepatic parenchyma of unknown pathogenesis. Type 2 AIH is identified by the presence of anti-liver-kidney microsomes type 1 (anti-LKM1) and anti-liver cytosol type 1 (anti-LC1) autoantibodies. The current study shows that a murine model of AIH can be generated by DNA immunization against type 2 AIH self-antigens (P450 2D6 and formiminotransferase-cyclodeaminase). A pCMV plasmid containing the N-terminal region of mouse CTLA-4 and the antigenic region of human CYP2D6 (672-1,377 bp) and human formiminotransferase cyclodeaminase (FTCD; 1,232-1,668 bp) was used for DNA immunization of C57BL/6 female mice. Immunized mice showed elevated levels of alanine aminotransferase (ALT), with peaks at 4 and 7 months postinjection. Periportal, portal, and intralobular liver inflammatory infiltrates were observed at histology. Mainly CD4+ lymphocytes, but also CD8+ and B lymphocytes, were found in the liver. Cytotoxic-specific T cells were found in both the liver and spleen of these animals. Mice developed anti-LKM1 and anti-LC1 antibodies of immunoglobulin G2 (IgG2) subclass, against specific mouse autoantigens. The ALT levels correlated with both the presence of anti-LKM1/anti-LC1 antibodies and the presence of liver necroinflammation. In conclusion, in mice, DNA immunization against human autoantigens breaks tolerance and induces an autoimmune liver disease. Molecular mimicry between foreign and self-antigens explains the liver injury. This model of AIH resembles human type 2 AIH and will be helpful for the study of its pathogenesis.

  13. DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM

    Directory of Open Access Journals (Sweden)

    K. Srinivasan

    2010-11-01

    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  14. Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies

    Directory of Open Access Journals (Sweden)

    David A. Bulger

    2017-01-01

    Full Text Available Human exome sequencing has dramatically increased the rate of identification of disease-associated polymorphisms. However, examining the functional consequences of those variants has created an analytic bottleneck. Insulin-like signaling in Caenorhabditis elegans has long provided a model to assess consequences of human insulin signaling mutations, but this has not been evaluated in the context of current genetic tools. We have exploited strains derived from the Million Mutation Project (MMP and gene editing to explore further the evolutionary relationships and conservation between the human and C. elegans insulin receptors. Of 40 MMP alleles analyzed in the C. elegans insulin-like receptor gene DAF-2, 35 exhibited insulin-like signaling indistinguishable from wild-type animals, indicating tolerated mutations. Five MMP alleles proved to be novel dauer-enhancing mutations, including one new allele in the previously uncharacterized C-terminus of DAF-2. CRISPR-Cas9 genome editing was used to confirm the phenotypic consequence of six of these DAF-2 mutations and to replicate an allelic series of known human disease mutations in a highly conserved tyrosine kinase active site residue, demonstrating the utility of C. elegans for directly modeling human disease. Our results illustrate the challenges associated with prediction of the phenotypic consequences of amino acid substitutions, the value of assaying mutant isoform function in vivo, and how recently developed tools and resources afford the opportunity to expand our understanding even of highly conserved regulatory modules such as insulin signaling. This approach may prove generally useful for modeling phenotypic consequences of candidate human pathogenic mutations in conserved signaling and developmental pathways.

  15. Use of 14CO2 ratios in metabolic assessment of human spermatozoa

    International Nuclear Information System (INIS)

    Holleran, A.L.; Mendez, C.M.; Kelleher, J.K.; Naz, R.K.

    1987-01-01

    Comparison of 14 CO 2 production for [1- 14 C], [2- 14 C] and [3- 14 C] pyruvate indicates the metabolic fate of pyruvate. Assuming that all pyruvate oxidized enters the TCA cycle via pyruvate dehydrogenase, the ratio of steady state 14 CO 2 production, [2- 14 C] pyruvate: [3- 14 C] pyruvate, determines the probability that specific citrate carbons will complete a turn of the TCA cycle. Comparing this probability and the 14 CO 2 production from [1- 14 C] pyruvate estimates the flux pyruvate to products derived from acetate that do not enter the TCA cycle. Data was collected for human sperm metabolizing glutamine and pyruvate over a four-hour period. The ratio of 14 CO 2 production, [2- 14 C] pyruvate: [3- 14 C] pyruvate even when correction was made for the fact that not all carbon derived from [2- 14 C] pyruvate that enters the TCA cycle is converted to CO 2 . 14 CO 2 production from [U- 14 C] glutamine was linear for glutamine concentration below 0.5 mM. In conclusion, CO 2 ratios methods are applicable in metabolic analysis of small samples of human sperm where metabolite measurements are impractical

  16. Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia

    Directory of Open Access Journals (Sweden)

    Philip W. Brownjohn

    2018-04-01

    Full Text Available Summary: The derivation of microglia from human stem cells provides systems for understanding microglial biology and enables functional studies of disease-causing mutations. We describe a robust method for the derivation of human microglia from stem cells, which are phenotypically and functionally comparable with primary microglia. We used stem cell-derived microglia to study the consequences of missense mutations in the microglial-expressed protein triggering receptor expressed on myeloid cells 2 (TREM2, which are causal for frontotemporal dementia-like syndrome and Nasu-Hakola disease. We find that mutant TREM2 accumulates in its immature form, does not undergo typical proteolysis, and is not trafficked to the plasma membrane. However, in the absence of plasma membrane TREM2, microglia differentiate normally, respond to stimulation with lipopolysaccharide, and are phagocytically competent. These data indicate that dementia-associated TREM2 mutations have subtle effects on microglia biology, consistent with the adult onset of disease in individuals with these mutations. : Brownjohn and colleagues report methods to generate microglia from induced pluripotent human stem cells, which they demonstrate are highly similar to cultured primary human microglia. Microglia differentiated from patient-derived stem cells carrying neurological disease-causing mutations in the TREM2 receptor differentiate normally and respond appropriately to pathogenic stimuli, despite the absence of functional TREM2 receptor on the plasma membrane. Keywords: dementia, microglia, TREM2, Nasu-Hakola disease, frontotemporal dementia, iPSC-microglia, neuroinflammation

  17. Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells

    International Nuclear Information System (INIS)

    Lam, Le Thanh; Boehm, Sabrina V.; Roberts, Roland G.; Morris, Glenn E.

    2011-01-01

    Highlights: → A novel epsilon isoform of nesprin-2 has been discovered. → This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. → It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. → Like other nesprins, it is located at the nuclear envelope. → We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2 teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.

  18. Characterization of the stimulation of human platelets by stable analogues of PGH2/TXA2

    International Nuclear Information System (INIS)

    Morinelli, T.A.

    1987-01-01

    The specific effects of the TXA 2 /PGH 2 analogues, U46619 (9,11-dideoxy,9α-11α-methanoepoxy-PGF/sub 2α/), and 9,11 aza-PGH 2 , on human platelet shape change, myosin light chain phosphorylation, serotonin release, fibrinogen receptor exposure and platelet aggregation were measured and compared with binding of 3 H-U46619 to platelets. Shape change and myosin light chain phosphorylation were found to saturable and dose dependent. These two effects were competitively inhibited by specific antagonists of TXA 2 /PGH 2 receptors (BM13177 and I-PTA-OH) indicating that they are receptor mediated. Binding of 3 H-U46619 showed two components. Occupancy of high affinity binding sites correlated with platelet shape change and myosin and light chain phosphorylation. A second component with an apparent K/sub d/ of 1.46 +/- 0.47 μM, may represent a second, low-affinity site. Therefore, the platelet release reaction as not directly correlated with occupancy of high affinity receptors but could be related to the second binding component of U46619. Fibrinogen receptor exposure and platelet aggregation caused by U46619 appeared to be events mediated by the release of ADP from platelet dense granules

  19. Crystal structure of human lysyl oxidase-like 2 (hLOXL2) in a precursor state.

    Science.gov (United States)

    Zhang, Xi; Wang, Qifan; Wu, Jianping; Wang, Jiawei; Shi, Yigong; Liu, Minhao

    2018-04-10

    Lysyl oxidases (LOXs), a type of copper- and lysyl tyrosylquinone (LTQ) -dependent amine oxidase, catalyze the oxidative deamination of lysine residues of extracellular matrix (ECM) proteins such as elastins and collagens and generate aldehyde groups. The oxidative deamination of lysine represents the foundational step for the cross-linking of elastin and collagen and thus is crucial for ECM modeling. Despite their physiological significance, the structure of this important family of enzymes remains elusive. Here we report the crystal structure of human lysyl oxidase-like 2 (hLOXL2) at 2.4-Å resolution. Unexpectedly, the copper-binding site of hLOXL2 is occupied by zinc, which blocks LTQ generation and the enzymatic activity of hLOXL2 in our in vitro assay. Biochemical analysis confirms that copper loading robustly activates hLOXL2 and supports LTQ formation. Furthermore, the LTQ precursor residues in the structure are distanced by 16.6 Å, corroborating the notion that the present structure may represent a precursor state and that pronounced conformational rearrangements would be required for protein activation. The structure presented here establishes an important foundation for understanding the structure-function relationship of LOX proteins and will facilitate LOX-targeting drug discovery. Copyright © 2018 the Author(s). Published by PNAS.

  20. Architecture of the human mTORC2 core complex.

    Science.gov (United States)

    Stuttfeld, Edward; Aylett, Christopher Hs; Imseng, Stefan; Boehringer, Daniel; Scaiola, Alain; Sauer, Evelyn; Hall, Michael N; Maier, Timm; Ban, Nenad

    2018-02-09

    The mammalian target of rapamycin (mTOR) is a key protein kinase controlling cellular metabolism and growth. It is part of the two structurally and functionally distinct multiprotein complexes mTORC1 and mTORC2. Dysregulation of mTOR occurs in diabetes, cancer and neurological disease. We report the architecture of human mTORC2 at intermediate resolution, revealing a conserved binding site for accessory proteins on mTOR and explaining the structural basis for the rapamycin insensitivity of the complex. © 2018, Stuttfeld et al.

  1. 45 CFR 1160.2 - Federal Council on the Arts and the Humanities

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Federal Council on the Arts and the Humanities... FOUNDATION ON THE ARTS AND THE HUMANITIES FEDERAL COUNCIL ON THE ARTS AND THE HUMANITIES INDEMNITIES UNDER THE ARTS AND ARTIFACTS INDEMNITY ACT § 1160.2 Federal Council on the Arts and the Humanities For the...

  2. Cycloxygenase-2 is expressed in vasculature of normal and ischemic adult human kidney and is colocalized with vascular prostaglandin E2 EP4 receptors

    DEFF Research Database (Denmark)

    Therland, Karina L; Stubbe, Jane; Thiesson, Helle C

    2004-01-01

    The study was performed to elucidate the distribution and cellular localization of cyclooxygenase (COX)-2 in human kidney and to address localization of downstream targets for COX-derived prostanoids. Cortex and outer and inner medulla tissue were obtained from control kidneys (cancer specimens),...... feature encountered in human kidneys at all ages, whereas COX-2 was seen in macula densa only in fetal kidney. Vascular COX-2 activity in human kidney and extrarenal tissues may support blood flow and affect vascular wall-blood interaction....

  3. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells

    DEFF Research Database (Denmark)

    Langlois, Thierry; da Costa Reis Monte Mor, Barbara; Lenglet, Gaëlle

    2014-01-01

    . Here, we show that TET2 expression is low in human embryonic stem (ES) cell lines and increases during hematopoietic differentiation. ShRNA-mediated TET2 knockdown had no effect on the pluripotency of various ES cells. However, it skewed their differentiation into neuroectoderm at the expense...... profile, including abnormal expression of neuronal genes. Intriguingly, when TET2 was knockdown in hematopoietic cells, it increased hematopoietic development. In conclusion, our work suggests that TET2 is involved in different stages of human embryonic development, including induction of the mesoderm...... and hematopoietic differentiation. Stem Cells 2014....

  4. Predictive value of plasma β2-microglobulin on human body function and senescence.

    Science.gov (United States)

    Dong, X-M; Cai, R; Yang, F; Zhang, Y-Y; Wang, X-G; Fu, S-L; Zhang, J-R

    2016-06-01

    To explore the correlation between plasma β2-microglobulin (β2-MG) as senescence factor with age, heart, liver and kidney function as well as the predictive value of β2-MG in human metabolism function and senescence. 387 cases of healthy people of different ages were selected and the automatic biochemical analyzer was used to test β2-MG in plasma based on immunoturbidimetry and also all biochemical indexes. The correlation between β2-MG and age, gender and all biochemical indexes was analyzed. β2-MG was positively correlated to age, r = 0.373; and the difference was of statistical significance (p human body function and anti-senescence and have significant basic research and clinical guidance values.

  5. Simple, accurate equations for human blood O2 dissociation computations.

    Science.gov (United States)

    Severinghaus, J W

    1979-03-01

    Hill's equation can be slightly modified to fit the standard human blood O2 dissociation curve to within plus or minus 0.0055 fractional saturation (S) from O less than S less than 1. Other modifications of Hill's equation may be used to compute Po2 (Torr) from S (Eq. 2), and the temperature coefficient of Po2 (Eq. 3). Variations of the Bohr coefficient with Po2 are given by Eq. 4. S = (((Po2(3) + 150 Po2)(-1) x 23,400) + 1)(-1) (1) In Po2 = 0.385 In (S-1 - 1)(-1) + 3.32 - (72 S)(-1) - 0.17(S6) (2) DELTA In Po2/delta T = 0.058 ((0.243 X Po2/100)(3.88) + 1)(-1) + 0.013 (3) delta In Po2/delta pH = (Po2/26.6)(0.184) - 2.2 (4) Procedures are described to determine Po2 and S of blood iteratively after extraction or addition of a defined amount of O2 and to compute P50 of blood from a single sample after measuring Po2, pH, and S.

  6. Molecular cloning of the large subunit of the high-Ca2+-requiring form of human Ca2+-activated neutral protease

    International Nuclear Information System (INIS)

    Imajoh, Shinobu; Aoki, Kazumasa; Ohno, Shigeo; Emori, Yasufumi; Kawasaki, Hiroshi; Sugihara, Hidemitsu; Suzuki, Koichi

    1988-01-01

    A nearly full-length cDNA clone for the large subunit of high-Ca 2+ -requiring Ca 2+ -activated neutral protease (mCANP) from human tissues has been isolated. The deduced protein, determined for the first time as an mCANP, has essentially the same structural features as those revealed previously for the large subunits of the low-Ca 2+ -requiring form (μCANP). Namely, the protein, comprising 700 amino acid residues, is characterized by four domains, containing a cysteine protease like domain and a Ca 2+ -binding domain. The overall amino acid sequence similarities of the mCANP large subunit with those of human μCANP and chicken CANP are 62% and 66%, respectively. These values are slightly lower than that observed between μCANP and chicken CANP (70%). Local sequence similarities vary with the domain, 73-78% in the cysteine protease like domain and 48-65% in the Ca 2+ -binding domain. These results suggest that CANPs with different Ca 2+ sensitivities share a common evolutionary origin and that their regulatory mechanisms are similar except for the Ca 2+ concentrations required for activation

  7. SO4= uptake and catalase role in preconditioning after H2O2-induced oxidative stress in human erythrocytes.

    Science.gov (United States)

    Morabito, Rossana; Remigante, Alessia; Di Pietro, Maria Letizia; Giannetto, Antonino; La Spada, Giuseppina; Marino, Angela

    2017-02-01

    Preconditioning (PC) is an adaptive response to a mild and transient oxidative stress, shown for the first time in myocardial cells and not described in erythrocytes so far. The possible adaptation of human erythrocytes to hydrogen peroxide (H 2 O 2 )-induced oxidative stress has been here verified by monitoring one of band 3 protein functions, i.e., Cl - /HCO 3 - exchange, through rate constant for SO 4 = uptake measurement. With this aim, erythrocytes were exposed to a mild and transient oxidative stress (30 min to either 10 or 100 μM H 2 O 2 ), followed by a stronger oxidant condition (300- or, alternatively, 600-μM H 2 O 2 treatment). SO 4 = uptake was measured by a turbidimetric method, and the possible role of catalase (CAT, significantly contributing to the anti-oxidant system in erythrocytes) in PC response has been verified by measuring the rate of H 2 O 2 degradation. The preventive exposure of erythrocytes to 10 μM H 2 O 2 , and then to 300 μM H 2 O 2 , significantly ameliorated the rate constant for SO 4 = uptake with respect to 300 μM H 2 O 2 alone, showing thus an adaptive response to oxidative stress. Our results show that (i) SO 4 = uptake measurement is a suitable model to monitor the effects of a mild and transient oxidative stress in human erythrocytes, (ii) band 3 protein anion exchange capability is retained after 10 μM H 2 O 2 treatment, (iii) PC response induced by the 10 μM H 2 O 2 pretreatment is clearly detected, and (iv) PC response, elicited by low-concentrated H 2 O 2 , is mediated by CAT enzyme and does not involve band 3 protein tyrosine phosphorylation pathways. Erythrocyte adaptation to a short-term oxidative stress may serve as a basis for future studies about the impact of more prolonged oxidative events, often associated to aging, drug consumption, chronic alcoholism, hyperglycemia, or neurodegenerative diseases.

  8. Partial purification and identification of the thrombozane A2/prostaglandin H2 receptor protein in human platelets

    International Nuclear Information System (INIS)

    Lim, C.T.; Kattelman, E.J.; Arora, S.K.; Venton, D.L.; Le Breton, G.C.

    1986-01-01

    The thromboxane A 2 /prostaglandin H 2 (TXA 2 /PGH 2 ) receptor antagonist [ 3 H]-13-azaprostanoic acid (13-APA) was used to identify and purify the platelet TXA 2 /PGH 2 receptor protein. Optimal solubilization of the 13-APA binding protein was achieved by extraction with 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate (CHAPS) detergent. Preliminary purification of the crude solubilized membrane fraction was performed by gel filtration chromatography using a Sepharose 4B column. Further purification was accomplished by high performance liquid chromatography (HPLC) using a Synchropak GPC-500 column. The HPLC protein profile revealed two protein peaks, only one of which was enriched in [ 3 H]-13-APA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of this peak revealed two bands with molecular weights of 65,000 and 60,000 daltons. In binding studies using the 60,000 dalton-enriched subfraction, unlabelled 13-APA, the TXA 2 /PGH 2 mimetic U46619 and the TXA 2 /PGH 2 antagonist SQ 29,548 all competed for [ 3 H]-13-APA binding whereas TXB 2 did not compete for binding. Heat denaturation of this subfraction resulted in a complete loss of binding activity. These findings indicate that a protein of approximately 60,000 daltons represents the human platelet TXA 2 /PGH 2 receptor

  9. TREM2 expression in the human brain: a marker of monocyte recruitment?

    Science.gov (United States)

    Fahrenhold, Marie; Rakic, Sonja; Classey, John; Brayne, Carol; Ince, Paul G; Nicoll, James A R; Boche, Delphine

    2017-10-07

    Mutation in the triggering receptor expressed on myeloid cells (TREM) 2 gene has been identified as a risk factor for several neurodegenerative diseases including Alzheimer's disease (AD). Experimental studies using animal models of AD have highlighted a number of functions associated with TREM2 and its expression by microglial cells. It has therefore been assumed that this is also the case in humans. However, there is very limited information concerning the cellular expression of TREM2 in the human brain. As part of investigations of microglia using post-mortem resources provided by the Medical Research Council Cognitive Function and Ageing Studies (MRC-CFAS), we immunostained the cerebral cortex of 299 participants for TREM2 using the Sigma antibody HPA010917 and compared with the macrophage/microglial markers Iba1 and CD68. As expected, Iba1 and CD68 labeled microglia and perivascular macrophages. However, in most cases (284/299), the TREM2 antibody labelled monocytes within vascular lumens, but not microglia or perivascular macrophages. In contrast, in 5 out of 6 cases with acute infarcts, TREM2 immunoreaction identified cells within the brain parenchyma interpreted as recruited monocytes. Six cases with old infarcts contained phagocytic foamy macrophages which were CD68-positive but TREM2 negative. Our observations, using the HPA010917 anti-TREM2 antibody, suggest that TREM2 is not expressed by microglia but instead seems to be a marker of recruited monocytes in the human brain. This finding has implications with regards to the role of TREM2 as a risk factor, emphasizing the importance of systemic immune responses in the development and progression of Alzheimer's disease. © 2017 International Society of Neuropathology.

  10. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    Science.gov (United States)

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  11. Inhibiting the Ca2+ Influx Induced by Human CSF

    Directory of Open Access Journals (Sweden)

    Anna Drews

    2017-12-01

    Full Text Available One potential therapeutic strategy for Alzheimer’s disease (AD is to use antibodies that bind to small soluble protein aggregates to reduce their toxic effects. However, these therapies are rarely tested in human CSF before clinical trials because of the lack of sensitive methods that enable the measurement of aggregate-induced toxicity at low concentrations. We have developed highly sensitive single vesicle and single-cell-based assays that detect the Ca2+ influx caused by the CSF of individuals affected with AD and healthy controls, and we have found comparable effects for both types of samples. We also show that an extracellular chaperone clusterin; a nanobody specific to the amyloid-β peptide (Aβ; and bapineuzumab, a humanized monoclonal antibody raised against Aβ, could all reduce the Ca2+ influx caused by synthetic Aβ oligomers but are less effective in CSF. These assays could be used to characterize potential therapeutic agents in CSF before clinical trials.

  12. Closely related glycosylation patterns of recombinant human IL-2 expressed in a CHO cell line and natural IL-2

    International Nuclear Information System (INIS)

    Vita, N.; Magazin, M.; Marchese, E.; Lupker, J.; Ferrara, P.

    1990-01-01

    We report here the study of the glycosylation pattern of human recombinant (r) IL2 expressed in a Chinese hamster ovary (CHO) cell line. The human rIL2 secreted by this high-producing recombinant CHO cell line was metabolically radiolabelled with [35S]-methionine, or with [3H]-glucosamine and [3H]-galactose, purified to homogeneity, and then characterized. The electrophoretic analysis of the [35S]-methionine-labelled proteins present in the culture medium of the CHO cell line showed that the rIL2 represents approximately 12% of the total secreted proteins. Furthermore, pulse-chase experiments showed that the glycosylated rIL2 is synthesized and secreted within 30 min. The point of attachment and the structure of the carbohydrate moiety of the rIL2 was determined by: amino-terminal sequencing and fingerprint analysis of the 3H-labelled rIL2, mass spectroscopy of the amino-terminal tryptic octapeptide, and carbohydrate analysis after enzymatic (Vibrio cholerae neuraminidase and Aspergillus oryzae beta-galactosidase) or sulfuric acid hydrolysis. The results indicate that the recombinant protein possesses a sugar moiety O-linked to the threonine residue at position 3 of the polypeptide chain, and that sialic acid, galactose and N-acetyl galactosamine are components of this carbohydrate moiety. Taken together these results suggest that the recombinant molecule is identical to natural IL2

  13. Genetic variants of the human H+/dipeptide transporter PEPT2

    DEFF Research Database (Denmark)

    Pinsonneault, Julia; Nielsen, Carsten Uhd; Sadée, Wolfgang

    2004-01-01

    . We have conducted a haplotype analysis of 27 single nucleotide polymorphisms located in or near exons of the human gene encoding hPEPT2 (SLC15A2), using genotyping data from 247 genomic DNA samples from the Coriell collection. Our analysis reveals that hPEPT2 has a >6-kilobase sequence block......PEPT2 is a high-affinity H+/dipeptide transporter expressed in kidney, brain, lung, and mammary gland. The physiological role of PEPT2 in kidney is to reabsorb small peptides generated by luminal peptidases. PEPT2 is also a transporter for peptide-like drugs such as penicillins and cephalosporins...... with at least 10 abundant polymorphisms in almost complete linkage disequilibrium. As a result, only two main hPEPT2 variants exist (hPEPT2*1 and *2) with several phased amino acid substitutions, present in substantial frequencies in all ethnic groups tested. When expressed in Chinese hamster ovary cells, h...

  14. The role of the molecular chaperone heat shock protein A2 (HSPA2 in regulating human sperm-egg recognition

    Directory of Open Access Journals (Sweden)

    Brett Nixon

    2015-01-01

    Full Text Available One of the most common lesions present in the spermatozoa of human infertility patients is an idiopathic failure of sperm-egg recognition. Although this unique cellular interaction can now be readily by-passed by assisted reproductive strategies such as intracytoplasmic sperm injection (ICSI, recent large-scale epidemiological studies have encouraged the cautious use of this technology and highlighted the need for further research into the mechanisms responsible for defective sperm-egg recognition. Previous work in this field has established that the sperm domains responsible for oocyte interaction are formed during spermatogenesis prior to being dynamically modified during epididymal maturation and capacitation in female reproductive tract. While the factors responsible for the regulation of these sequential maturational events are undoubtedly complex, emerging research has identified the molecular chaperone, heat shock protein A2 (HSPA2, as a key regulator of these events in human spermatozoa. HSPA2 is a testis-enriched member of the 70 kDa heat shock protein family that promotes the folding, transport, and assembly of protein complexes and has been positively correlated with in vitro fertilization (IVF success. Furthermore, reduced expression of HSPA2 from the human sperm proteome leads to an impaired capacity for cumulus matrix dispersal, sperm-egg recognition and fertilization following both IVF and ICSI. In this review, we consider the evidence supporting the role of HSPA2 in sperm function and explore the potential mechanisms by which it is depleted in the spermatozoa of infertile patients. Such information offers novel insights into the molecular mechanisms governing sperm function.

  15. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells.

    Science.gov (United States)

    Santini, R; Pietrobono, S; Pandolfi, S; Montagnani, V; D'Amico, M; Penachioni, J Y; Vinci, M C; Borgognoni, L; Stecca, B

    2014-09-18

    Melanoma is one of the most aggressive types of human cancer, characterized by enhanced heterogeneity and resistance to conventional therapy at advanced stages. We and others have previously shown that HEDGEHOG-GLI (HH-GLI) signaling is required for melanoma growth and for survival and expansion of melanoma-initiating cells (MICs). Recent reports indicate that HH-GLI signaling regulates a set of genes typically expressed in embryonic stem cells, including SOX2 (sex-determining region Y (SRY)-Box2). Here we address the function of SOX2 in human melanomas and MICs and its interaction with HH-GLI signaling. We find that SOX2 is highly expressed in melanoma stem cells. Knockdown of SOX2 sharply decreases self-renewal in melanoma spheres and in putative melanoma stem cells with high aldehyde dehydrogenase activity (ALDH(high)). Conversely, ectopic expression of SOX2 in melanoma cells enhances their self-renewal in vitro. SOX2 silencing also inhibits cell growth and induces apoptosis in melanoma cells. In addition, depletion of SOX2 progressively abrogates tumor growth and leads to a significant decrease in tumor-initiating capability of ALDH(high) MICs upon xenotransplantation, suggesting that SOX2 is required for tumor initiation and for continuous tumor growth. We show that SOX2 is regulated by HH signaling and that the transcription factors GLI1 and GLI2, the downstream effectors of HH-GLI signaling, bind to the proximal promoter region of SOX2 in primary melanoma cells. In functional studies, we find that SOX2 function is required for HH-induced melanoma cell growth and MIC self-renewal in vitro. Thus SOX2 is a critical factor for self-renewal and tumorigenicity of MICs and an important mediator of HH-GLI signaling in melanoma. These findings could provide the basis for novel therapeutic strategies based on the inhibition of SOX2 for the treatment of a subset of human melanomas.

  16. Human GRIN2B variants in neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Chun Hu

    2016-10-01

    Full Text Available The development of whole exome/genome sequencing technologies has given rise to an unprecedented volume of data linking patient genomic variability to brain disorder phenotypes. A surprising number of variants have been found in the N-methyl-d-aspartate receptor (NMDAR gene family, with the GRIN2B gene encoding the GluN2B subunit being implicated in many cases of neurodevelopmental disorders, which are psychiatric conditions originating in childhood and include language, motor, and learning disorders, autism spectrum disorder (ASD, attention deficit hyperactivity disorder (ADHD, developmental delay, epilepsy, and schizophrenia. The GRIN2B gene plays a crucial role in normal neuronal development and is important for learning and memory. Mutations in human GRIN2B were distributed throughout the entire gene in a number of patients with various neuropsychiatric and developmental disorders. Studies that provide functional analysis of variants are still lacking, however current analysis of de novo variants that segregate with disease cases such as intellectual disability, developmental delay, ASD or epileptic encephalopathies reveal altered NMDAR function. Here, we summarize the current reports of disease-associated variants in GRIN2B from patients with multiple neurodevelopmental disorders, and discuss implications, highlighting the importance of functional analysis and precision medicine therapies.

  17. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    International Nuclear Information System (INIS)

    Chien, Peter Tzu-Yu; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE 2 release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO-1

  18. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Peter Tzu-Yu [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Lin, Chih-Chung; Hsiao, Li-Der [Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan (China); Yang, Chuen-Mao, E-mail: chuenmao@mail.cgu.edu.tw [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan (China)

    2015-12-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE{sub 2} release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO

  19. Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies.

    Science.gov (United States)

    Bulger, David A; Fukushige, Tetsunari; Yun, Sijung; Semple, Robert K; Hanover, John A; Krause, Michael W

    2017-01-05

    Human exome sequencing has dramatically increased the rate of identification of disease-associated polymorphisms. However, examining the functional consequences of those variants has created an analytic bottleneck. Insulin-like signaling in Caenorhabditis elegans has long provided a model to assess consequences of human insulin signaling mutations, but this has not been evaluated in the context of current genetic tools. We have exploited strains derived from the Million Mutation Project (MMP) and gene editing to explore further the evolutionary relationships and conservation between the human and C. elegans insulin receptors. Of 40 MMP alleles analyzed in the C. elegans insulin-like receptor gene DAF-2, 35 exhibited insulin-like signaling indistinguishable from wild-type animals, indicating tolerated mutations. Five MMP alleles proved to be novel dauer-enhancing mutations, including one new allele in the previously uncharacterized C-terminus of DAF-2 CRISPR-Cas9 genome editing was used to confirm the phenotypic consequence of six of these DAF-2 mutations and to replicate an allelic series of known human disease mutations in a highly conserved tyrosine kinase active site residue, demonstrating the utility of C. elegans for directly modeling human disease. Our results illustrate the challenges associated with prediction of the phenotypic consequences of amino acid substitutions, the value of assaying mutant isoform function in vivo, and how recently developed tools and resources afford the opportunity to expand our understanding even of highly conserved regulatory modules such as insulin signaling. This approach may prove generally useful for modeling phenotypic consequences of candidate human pathogenic mutations in conserved signaling and developmental pathways. Copyright © 2017 Bulger et al.

  20. Discovery of novel transcripts of the human tissue kallikrein (KLK1) and kallikrein-related peptidase 2 (KLK2) in human cancer cells, exploiting Next-Generation Sequencing technology.

    Science.gov (United States)

    Adamopoulos, Panagiotis G; Kontos, Christos K; Scorilas, Andreas

    2018-03-31

    Tissue kallikrein, kallikrein-related peptidases (KLKs), and plasma kallikrein form the largest group of serine proteases in the human genome, sharing many structural and functional properties. Several KLK transcripts have been found aberrantly expressed in numerous human malignancies, confirming their prognostic or/and diagnostic values. However, the process of alternative splicing can now be studied in-depth due to the development of Next-Generation Sequencing (NGS). In the present study, we used NGS to discover novel transcripts of the KLK1 and KLK2 genes, after nested touchdown PCR. Bioinformatics analysis and PCR experiments revealed a total of eleven novel KLK transcripts (two KLK1 and nine KLK2 transcripts). In addition, the expression profiles of each novel transcript were investigated with nested PCR experiments using variant-specific primers. Since KLKs are implicated in human malignancies, qualifying as potential biomarkers, the quantification of the presented novel transcripts in human samples may have clinical applications in different types of cancer. Copyright © 2018. Published by Elsevier Inc.

  1. Proteasome LMP2/β1i subunit as biomarker for human uterine leiomyosarcoma

    Directory of Open Access Journals (Sweden)

    Takuma Hayashi

    2014-02-01

    Full Text Available Uterine leiomyosarcoma (Ut-LMS develops more frequently in the myometrium of the uterine body than in the uterine cervix. Although the development of gynecological tumors is often correlated with the secretion of female hormones that of Ut-LMS does not, and its risk factor(s remain unknown. Importantly, a diagnostic biomarker that can distinguish malignant tumor Ut-LMS from benign tumor leiomyoma (LMA, has yet to be established. Therefore, the risk factor(s associated with Ut-LMS need to be examined in order to establish a diagnosis and clinical treatment method. Mice with a homozygous deficiency for the proteasome b-ring subunit, low-molecular mass polypeptide (LMP2/b1i spontaneously develop Ut-LMS, with a disease prevalence of ~40% by 14 months of age. In recent studies, we showed that LMP2/b1i expression was absent in human Ut-LMS, but present in other human uterine mesenchymal tumors including uterine LMA. Moreover, LMP2/b1i is also known to negatively regulate human Ut-LMS tumorigenesis. Additional experiments furthermore revealed the differential expression of cyclin E and calponin h1 in human uterine mesenchymal tumors. Therefore, LMP2/b1i is a potential diagnostic biomarker when combined with the candidate molecules, cyclin E and calponin h1 for human Ut-LMS, and may be a targeted molecule for a new therapeutic approach.---------------------------------------------Cite this article as: Hayashi T, Horiuchi A Aburatani H, Ishiko O, Yaegashi N, Kanai Y, Zharhary D, Tonegawa S, Konishi I. Proteasome LMP2/ß1i subunit as biomarker for human uterine leiomyosarcoma. Int J Cancer Ther Oncol 2014; 2(1:02018.DOI: http://dx.doi.org/10.14319/ijcto.0201.8

  2. Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi, Maria Lauda [Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); The Southern California Research Center for Alcoholic and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); Ryoo, Minjung; Skay, Anna [Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); Tomasi, Ivan; Giordano, Pasquale [Department of Colorectal Surgery, Whipps Cross University Hospital, London E11 1NR (United Kingdom); Mato, José M. [CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia (Spain); Lu, Shelly C., E-mail: shellylu@usc.edu [Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); The Southern California Research Center for Alcoholic and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States)

    2013-07-15

    Methionine adenosyltransferase (MAT) is an essential enzyme that is responsible for the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and precursor of polyamines. MAT1A is expressed in normal liver and MAT2A is expressed in all extrahepatic tissues. MAT2A expression is increased in human colon cancer and in colon cancer cells treated with mitogens, whereas silencing MAT2A resulted in apoptosis. The aim of the current work was to examine the mechanism responsible for MAT2A-dependent growth and apoptosis. We found that in RKO (human adenocarcinoma cell line) cells, MAT2A siRNA treatment lowered cellular SAMe and putrescine levels by 70–75%, increased apoptosis and inhibited growth. Putrescine supplementation blunted significantly MAT2A siRNA-induced apoptosis and growth suppression. Putrescine treatment (100 pmol/L) raised MAT2A mRNA level to 4.3-fold of control, increased the expression of c-Jun and c-Fos and binding to an AP-1 site in the human MAT2A promoter and the promoter activity. In human colon cancer specimens, the expression levels of MAT2A, ornithine decarboxylase (ODC), c-Jun and c-Fos are all elevated as compared to adjacent non-tumorous tissues. Overexpression of ODC in RKO cells also raised MAT2A mRNA level and MAT2A promoter activity. ODC and MAT2A are also overexpressed in liver cancer and consistently, similar MAT2A-ODC-putrescine interactions and effects on growth and apoptosis were observed in HepG2 cells. In conclusion, there is a crosstalk between polyamines and MAT2A. Increased MAT2A expression provides more SAMe for polyamines biosynthesis; increased polyamine (putrescine in this case) can activate MAT2A at the transcriptional level. This along with increased ODC expression in cancer all feed forward to further enhance the proliferative capacity of the cancer cell. -- Highlights: • MAT2A knockdown depletes putrescine and leads to apoptosis. • Putrescine attenuates MAT2A knockdown-induced apoptosis and growth

  3. Non-ionic iodinated contrast media related immediate reactions: A mechanism study of 27 patients.

    Science.gov (United States)

    Zhai, Liqin; Guo, Xiangjie; Zhang, Haoyue; Jin, Qianqian; Zeng, Qiang; Tang, Xiaoxian; Gao, Cairong

    2017-01-01

    The underlying mechanism of non-ionic iodinated contrast media-related immediate reactions was evaluated in this study. Patients presenting at least grade II immediate reactions after non-ionic iodinated contrast media injection were enrolled. Basophil activation was evaluated by flow cytometry. The plasma concentration of human terminal complement complex SC5b-9, as well as concentrations of serum chymase, tryptase, human mast cell carboxypeptidase A3, human prostaglandin D2, and total IgE were measured by enzyme-linked immunosorbent assay. The basophil activation percentage was significantly higher in the study group than in the control group (17.94±21.06% vs 3.45±1.49%). The plasma concentration of human terminal complement complex SC5b-9 and concentrations of serum chymase, human mast cell carboxypeptidase A3, prostaglandin D2, tryptase, and total IgE were also significantly increased (236.99±318.21 vs 49.70±30.41ng/mL, 0.41±0.49 vs 0.09±0.06ng/mL, 1.17±0.67 vs 0.30±0.17ng/mL, 203.52±137.27 vs 102.28±48.72pg/mL, 3.81±0.22 vs 2.70±0.16ng/mL, 102.00±51.84 vs 19.97±2.75ng/mL, respectively). Both mast cells and basophils were activated in non-ionic iodinated contrast media to mediate immediate hypersensitivity, and mast cells may be involved. Different mechanisms, including IgE-dependent, complement-dependent, and direct membrane effects, contributed to mast cell and basophil activation. Individual patients may use a single or combined mechanism involving single or combined mast cells and basophils. Immediate reactions following non-ionic iodinated contrast media injection may be a mechanically heterogenous disease. Copyright © 2016. Published by Elsevier B.V.

  4. 2-Chloro-1,3-propanediol (2-MCPD) and its fatty acid esters: cytotoxicity, metabolism, and transport by human intestinal Caco-2 cells.

    Science.gov (United States)

    Buhrke, Thorsten; Frenzel, Falko; Kuhlmann, Jan; Lampen, Alfonso

    2015-12-01

    The food contaminants 3-chloro-1,2-propanediol (3-MCPD) and 3-MCPD fatty acid esters have attracted considerable attention in the past few years due to their toxic properties and their occurrence in numerous foods. Recently, significant amounts of the isomeric compounds 2-chloro-1,3-propanediol (2-MCPD) fatty acid esters have been detected in refined oils. Beside the interrogation which toxic effects might be related to the core compound 2-MCPD, the key question from the risk assessment perspective is again-as it was discussed for 3-MCPD fatty acid esters before-to which degree these esters are hydrolyzed in the gut, thereby releasing free 2-MCPD. Here, we show that free 2-MCPD but not 2-MCPD fatty acid esters were able to cross a monolayer of differentiated Caco-2 cells as an in vitro model for the human intestinal barrier. Instead, the esters were hydrolyzed by the cells, thereby releasing free 2-MCPD which was neither absorbed nor metabolized by the cells. Cytotoxicity assays revealed that free 2-MCPD as well as free 3-MCPD was not toxic to Caco-2 cells up to a level of 1 mM, whereas cellular viability was slightly decreased in the presence of a few 2-MCPD and 3-MCPD fatty acid esters at concentrations above 10 µM. The observed cytotoxic effects correlated well with the induction of caspase activity and might be attributed to the induction of apoptosis by free fatty acids which were released from the esters in the presence of Caco-2 cells.

  5. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K., E-mail: peter.leung@ubc.ca

    2014-01-10

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation.

  6. Molecular and functional characterization of the promoter of ETS2, the human c-ets-2 gene

    International Nuclear Information System (INIS)

    Mavrothalassitis, G.J.; Watson, D.K.; Papas, T.S.

    1990-01-01

    The 5' end of the human c-ets-2 gene, ETS2, was cloned and characterized. The major transcription initiation start sites were identified, and the pertinent sequences surrounding the ETS2 promoter were determined. The promoter region of ETS2 does not possess typical TATA and CAAT elements. However, this promoter contains several repeat regions, as well as two consensus AP2 binding sites and three putative Sp1 sites. There is also a palindromic region similar to the serum response element of the c-fos gene, located 1,400 base pairs (bp) upstream from the first major transcription initiation site. A G+C-rich sequence (GC element) with dyad symmetry can be seen in the ETS2 promoter, immediately following an unusually long polypurine-polypyrimidine tract. A series of deletion fragments from the putative promoter region were ligated in front of the bacterial chloramphenicol acetyltransferase gene and tested for activity following transfection into HeLa cells. The 5' boundary of the region needed for maximum promoter activity was found to be 159 bp upstream of the major initiation site. The promoter of ETS2 (within the polypyrimidine tract) serves to illustrate an alternative structure that may be present in genes with TATA-less promoters

  7. Relaxation times T1, T2, and T2{sup *} of apples, pears, citrus fruits, and potatoes with a comparison to human tissues; T1-, T2- und T2{sup *}-Relaxationswerte von Aepfeln, Birnen, Zitrusfruechten und Kartoffeln im Vergleich zu menschlichen Geweben

    Energy Technology Data Exchange (ETDEWEB)

    Werz, Karin; Braun, Hans; Vitha, Dominik; Bruno, Graziano; Martirosian, Petros; Steidle, Guenter; Schick, Fritz [Tuebingen Univ. (Germany). Sektion fuer Experimentelle Radiologie

    2011-07-01

    The aim of the project was a systematic assessment of relaxation times of different fruits and vegetables and a comparison to values of human tissues. Results provide an improved basis for selection of plant phantoms for development of new MR techniques and sequences. Vessels filled with agar gel are mostly used for this purpose, preparation of which is effortful and time-consuming. In the presented study apples, (malus, 8 species), pears, (pyrus, 2 species), citrus fruits (citrus, 5 species) and uncooked potatoes (solanum tuberosum, 8 species) from the supermarket were examined which are easily available nearly all-the-year. T1, T2 and T2{sup *} relaxation times of these nature products were measured on a 1.5 Tesla MR system with adapted examination protocols and mono-exponential fitting, and compared to literature data of human parenchyma tissues, fatty tissue and body fluid (cerebrospinal fluid). Resulting values were as follows: apples: T1: 1486 - 1874 ms, T2: 163 - 281 ms, T2{sup *}: 2,3 - 3,2 ms; pears: T1: 1631 - 1969 ms, T2: 119 - 133 ms, T2{sup *}: 10,1 - 10,6 ms, citrus fruits (pulp) T1: 2055 - 2632 ms, T2: 497 - 998 ms, T2{sup *}: 151 - 182 ms; citrus fruits (skin) T1: 561 - 1669 ms, T2: 93 - 119 ms; potatoes: T1: 1011 - 1459 ms, T2: 166 - 210 ms, T2{sup *}: 20 - 30 ms. All T1-values of the examined objects (except for potatoes and skins of citrus fruits) were longer than T1 values of human tissues. Also T2 values (except for pears and skins of citrus fruits) of the fruits and the potatoes tended to be longer. T2{sup *} values of apples, pears and potatoes were shorter than in healthy human tissue. Results show relaxation values of many fruits to be not exactly fitting to human tissue, but with suitable selection of the fruits and optionally with an adaption of measurement parameters one can achieve suitable contrast and signal characteristics for some purposes. (orig.)

  8. The G-protein coupled chemoattractant receptor FPR2 promotes malignant phenotype of human colon cancer cells

    Science.gov (United States)

    Xiang, Yi; Yao, Xiaohong; Chen, Keqiang; Wang, Xiafei; Zhou, Jiamin; Gong, Wanghua; Yoshimura, Teizo; Huang, Jiaqiang; Wang, Rongquan; Wu, Yuzhang; Shi, Guochao; Bian, Xiuwu; Wang, Jiming

    2016-01-01

    The G-protein coupled chemoattractant receptor formylpeptide receptor-2 (FPR2 in human, Fpr2 in mice) is expressed by mouse colon epithelial cells and plays a critical role in mediating mucosal homeostasis and inflammatory responses. However, the biological role of FPR2 in human colon is unclear. Our investigation revealed that a considerable number of human colon cancer cell lines expressed FPR2 and its ligands promoted cell migration and proliferation. Human colon cancer cell lines expressing high levels of FPR2 also formed more rapidly growing tumors in immunocompromised mice as compared with cell lines expressing lower levels of FPR2. Knocking down of FPR2 from colon cancer cell lines highly expressing FPR2 reduced their tumorigenicity. Clinically, FPR2 is more highly expressed in progressive colon cancer, associated with poorer patient prognosis. These results suggest that FPR2 can be high-jacked by colon cancer cells for their growth advantage, thus becoming a potential target for therapeutic development. PMID:27904774

  9. Synthesis, in vitro binding, and tissue distribution of radioiodinated 2-[125I]N-(N-benzylpiperidin-4-yl)-2-iodo benzamide, 2-[125I]BP: a potential σ receptor marker for human prostate tumors

    International Nuclear Information System (INIS)

    John, Christy S.; Gulden, Mary E.; Li, Jinghua; Bowen, Wayne D.; McAfee, John G.; Thakur, Mathew L.

    1998-01-01

    The preclinical evaluation of a σ receptor-specific radiopharmaceutical that binds to human prostate tumor cells with a high affinity is described. We have synthesized and radioiodinated 2-[ 125 I]-N-(N-benzylpiperidin-4-yl)-2-iodobenzamide (2-[ 125 I]BP) that possesses high affinity for both σ-1 and σ-2 receptor subtypes that are expressed on a variety of tumor cells. 2-IBP was synthesized, purified and characterized by routine spectroscopic and analytical methods. Radioiodination was accomplished using an oxidative iododestannylation reaction in the presence of chloramine T in high yields (76%-93%) with a very high-specific activity (1700-1900 Ci/mmol). The in vitro competition binding studies of 2-[ 125 I]BP with various σ receptor ligands in LnCAP human prostate tumor cells showed a dose-dependent saturable binding. The inhibition constants (K i , nM) for binding of 2-[ 125 I]BP to human prostate tumor cells for 4-IBP, haloperidol and 2-IBP were 4.09, 6.34 and 1.6 nM, respectively. The clearance of 2-[ 125 I]BP, in Sprague-Dawley rats, was rapid from the blood pool, other normal tissues and the total body. Tissue distribution studies in nude mice bearing human prostate tumor (DU-145) also showed a fast clearance from normal organs. The tumor had the highest percentage of injected dose per gram (%ID/g) of all tissues at 4 h as well as 24 h (2.0 ± 0.05 and 0.147 ± 0.038 ID/g, respectively) postinjection. The in vivo receptor binding specificity was demonstrated using haloperidol (a known high-affinity σ receptor ligand). A significant decrease (>50%, p = 0.001) was observed in tumor concentration when haloperidol was used as a blocking agent. The high affinity of 2-[ 125 I]BP for σ receptor-binding sites, its fast in vivo clearance from normal organs and its high uptake and retention in tumor implies that 2-[ 123 I]BP or 2-[ 131 I]BP may be a promising tracer for noninvasive imaging of human prostate tumors

  10. Expression, purification, crystallization and structure of human adipocyte lipid-binding protein (aP2)

    International Nuclear Information System (INIS)

    Marr, Eric; Tardie, Mark; Carty, Maynard; Brown Phillips, Tracy; Wang, Ing-Kae; Soeller, Walt; Qiu, Xiayang; Karam, George

    2006-01-01

    The crystal structure of human adipocyte lipid-binding protein (aP2) with a bound palmitate is reported at 1.5 Å resolution. Human adipocyte lipid-binding protein (aP2) belongs to a family of intracellular lipid-binding proteins involved in the transport and storage of lipids. Here, the crystal structure of human aP2 with a bound palmitate is described at 1.5 Å resolution. Unlike the known crystal structure of murine aP2 in complex with palmitate, this structure shows that the fatty acid is in a folded conformation and that the loop containing Phe57 acts as a lid to regulate ligand binding by excluding solvent exposure to the central binding cavity

  11. Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2.

    Science.gov (United States)

    Kim, Hyung-Sik; Shin, Tae-Hoon; Lee, Byung-Chul; Yu, Kyung-Rok; Seo, Yoojin; Lee, Seunghee; Seo, Min-Soo; Hong, In-Sun; Choi, Soon Won; Seo, Kwang-Won; Núñez, Gabriel; Park, Jong-Hwan; Kang, Kyung-Sun

    2013-12-01

    Decreased levels or function of nucleotide-binding oligomerization domain 2 (NOD2) are associated with Crohn's disease. NOD2 regulates intestinal inflammation, and also is expressed by human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs), to regulate their differentiation. We investigated whether NOD2 is required for the anti-inflammatory activities of MSCs in mice with colitis. Colitis was induced in mice by administration of dextran sulfate sodium or trinitrobenzene sulfonic acid. Mice then were given intraperitoneal injections of NOD2-activated hUCB-MSCs; colon tissues and mesenteric lymph nodes were collected for histologic analyses. A bromodeoxyuridine assay was used to determine the ability of hUCB-MSCs to inhibit proliferation of human mononuclear cells in culture. Administration of hUCB-MSCs reduced the severity of colitis in mice. The anti-inflammatory effects of hUCB-MSCs were greatly increased by activation of NOD2 by its ligand, muramyl dipeptide (MDP). Administration of NOD2-activated hUCB-MSCs increased anti-inflammatory responses in colons of mice, such as production of interleukin (IL)-10 and infiltration by T regulatory cells, and reduced production of inflammatory cytokines. Proliferation of mononuclear cells was inhibited significantly by co-culture with hUCB-MSCs that had been stimulated with MDP. MDP induced prolonged production of prostaglandin (PG)E2 in hUCB-MSCs via the NOD2-RIP2 pathway, which suppressed proliferation of mononuclear cells derived from hUCB. PGE2 produced by hUCB-MSCs in response to MDP increased production of IL-10 and T regulatory cells. In mice, production of PGE2 by MSCs and subsequent production of IL-10 were required to reduce the severity of colitis. Activation of NOD2 is required for the ability of hUCB-MSCs to reduce the severity of colitis in mice. NOD2 signaling increases the ability of these cells to suppress mononuclear cell proliferation by inducing production of PGE2. Copyright © 2013 AGA

  12. Direct Conversion of Human Umbilical Cord Blood into Induced Neural Stem Cells with SOX2 and HMGA2.

    Science.gov (United States)

    Kim, Jae-Jun; Shin, Ji-Hee; Yu, Kyung-Rok; Lee, Byung-Chul; Kang, Insung; Lee, Jin Young; Kim, Da-Hyun; Seo, Yoojin; Kim, Hyung-Sik; Choi, Soon Won; Kang, Kyung-Sun

    2017-11-30

    Recent advances have shown the direct reprogramming of mouse and human fibroblasts into induced neural stem cells (iNSCs) without passing through an intermediate pluripotent state. Thus, direct reprogramming strategy possibly provides a safe and homogeneous cellular platform. However, the applications of iNSCs for regenerative medicine are limited by the restricted availability of cell sources. Human umbilical cord blood (hUCB) cells hold great potential in that immunotyped hUCB units can be immediately obtained from public banks. Moreover, hUCB samples do not require invasive procedures during collection or an extensive culture period prior to reprogramming. We recently reported that somatic cells can be directly converted into iNSCs with high efficiency and a short turnaround time. Here, we describe the detailed method for the generation of iNSCs derived from hUCB (hUCB iNSCs) using the lineage-specific transcription factors SOX2 and HMGA2. The protocol for deriving iNSC-like colonies takes 1∼2 weeks and establishment of homogenous hUCB iNSCs takes additional 2 weeks. Established hUCB iNSCs are clonally expandable and multipotent producing neurons and glia. Our study provides an accessible method for generating hUCB iNSCs, contributing development of in vitro neuropathological model systems.

  13. Detection of Nuclear Protein Profile Changes by Human Metapneumovirus M2-2 Protein Using Quantitative Differential Proteomics

    Directory of Open Access Journals (Sweden)

    Yuping Ren

    2017-12-01

    Full Text Available Human metapneumovirus (hMPV is a leading cause of lower respiratory infection in pediatric populations globally. This study examined proteomic profile changes in A549 cells infected with hMPV and two attenuated mutants with deleted PDZ domain-binding motif(s in the M2-2 protein. These motifs are involved in the interruption of antiviral signaling, namely the interaction between the TNF receptor associated factor (TRAF and mitochondrial antiviral-signaling (MAVS proteins. The aim of this study was to provide insight into the overall and novel impact of M2-2 motifs on cellular responses via an unbiased comparison. Tandem mass tagging, stable isotope labeling, and high-resolution mass spectrometry were used for quantitative proteomic analysis. Using quantitative proteomics and Venn analysis, 1248 common proteins were detected in all infected samples of both technical sets. Hierarchical clustering of the differentiated proteome displayed distinct proteomic signatures that were controlled by the motif(s. Bioinformatics and experimental analysis confirmed the differentiated proteomes, revealed novel cellular biological events, and implicated key pathways controlled by hMPV M2-2 PDZ domain-binding motif(s. This provides further insight for evaluating M2-2 mutants as potent vaccine candidates.

  14. Proteomic and metabolomic analysis of H2O2-induced premature senescent human mesenchymal stem cells.

    Science.gov (United States)

    Kim, Ji-Soo; Kim, Eui-Jin; Kim, Hyun-Jung; Yang, Ji-Young; Hwang, Geum-Sook; Kim, Chan-Wha

    2011-06-01

    Stress induced premature senescence (SIPS) occurs after exposure to many different sublethal stresses including H(2)O(2), hyperoxia, or tert-butylhydroperoxide. Human mesenchymal stem cells (hMSCs) exhibit limited proliferative potential in vitro, the so-called Hayflick limit. According to the free-radical theory, reactive oxygen species (ROS) might be the candidates responsible for senescence and age-related diseases. H(2)O(2) may be responsible for the production of high levels of ROS, in which the redox balance is disturbed and the cells shift into a state of oxidative stress, which subsequently leads to premature senescence with shortening telomeres. H(2)O(2) has been the most commonly used inducer of SIPS, which shares features of replicative senescence (RS) including a similar morphology, senescence-associated β-galactosidase activity, cell cycle regulation, etc. Therefore, in this study, the senescence of hMSC during SIPS was confirmed using a range of different analytical methods. In addition, we determined five differentially expressed spots in the 2-DE map, which were identified as Annexin A2 (ANXA2), myosin light chain 2 (MLC2), peroxisomal enoyl-CoA hydratase 1 (ECH1), prosomal protein P30-33K (PSMA1) and mutant β-actin by ESI-Q-TOF MS/MS. Also, proton ((1)H) nuclear magnetic resonance spectroscopy (NMR) was used to elucidate the difference between metabolites in the control and hMSCs treated with H(2)O(2). Among these metabolites, choline and leucine were identified by (1)H-NMR as up-regulated metabolites and glycine and proline were identified as down-regulated metabolites. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. In Situ Detection of Regulatory T Cells in Human Genital Herpes Simplex Virus Type 2 (HSV-2) Reactivation and Their Influence on Spontaneous HSV-2 Reactivation.

    Science.gov (United States)

    Milman, Neta; Zhu, Jia; Johnston, Christine; Cheng, Anqi; Magaret, Amalia; Koelle, David M; Huang, Meei-Li; Jin, Lei; Klock, Alexis; Layton, Erik D; Corey, Lawrence

    2016-07-01

    Herpes simplex virus type 2 (HSV-2) reactivation is accompanied by a sustained influx of CD4(+) and CD8(+) T cells that persist in genital tissue for extended periods. While CD4(+) T cells have long been recognized as being present in herpetic ulcerations, their role in subclinical reactivation and persistence is less well known, especially the role of CD4(+) regulatory T cells (Tregs). We characterized the Treg (CD4(+)Foxp3(+)) population during human HSV-2 reactivation in situ in sequential genital skin biopsy specimens obtained from HSV-2-seropositive subjects at the time of lesion onset up to 8 weeks after healing. High numbers of Tregs infiltrated to the site of viral reactivation and persisted in proximity to conventional CD4(+) T cells (Tconvs) and CD8(+) T cells. Treg density peaked during the lesion stage of the reactivation. The number of Tregs from all time points (lesion, healed, 2 weeks after healing, 4 weeks after healing, and 8 weeks after healing) was significantly higher than in control biopsy specimens from unaffected skin. There was a direct correlation between HSV-2 titer and Treg density. The association of a high Treg to Tconv ratio with high viral shedding suggests that the balance between regulatory and effector T cells influences human HSV-2 disease. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Efanov, A; Zanesi, N; Coppola, V; Nuovo, G; Bolon, B; Wernicle-Jameson, D; Lagana, A; Hansjuerg, A; Pichiorri, F; Croce, C M

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the V H promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL

  17. Combinatorial Strategies and Hypothesis-Based Drug Design in Drug Discovery Targeted to the Protease and Channel Activities of Botulinum Toxin A

    Science.gov (United States)

    2000-02-01

    assuming the channels are evenly distributed. Patch recordings nously stimulated capacitative Ca2l entry, especially in made from various sites on the...Sun, W., Montal, M., 1996. A single tryp- limitations, especially in the absence of protein structure. tophan on M2 of glutamate receptor channels...Dingledine, R., Heinemann, S.F., 1991. Identification of Fellowship from the Ministerio de Educacion y Ciencia, a site in glutamate receptor subunits

  18. Aerosolization of a Human Norovirus Surrogate, Bacteriophage MS2, during Simulated Vomiting.

    Directory of Open Access Journals (Sweden)

    Grace Tung-Thompson

    Full Text Available Human noroviruses (NoV are the leading cause of acute gastroenteritis worldwide. Epidemiological studies of outbreaks have suggested that vomiting facilitates transmission of human NoV, but there have been no laboratory-based studies characterizing the degree of NoV release during a vomiting event. The purpose of this work was to demonstrate that virus aerosolization occurs in a simulated vomiting event, and to estimate the amount of virus that is released in those aerosols. A simulated vomiting device was constructed at one-quarter scale of the human body following similitude principles. Simulated vomitus matrices at low (6.24 mPa*s and high (177.5 mPa*s viscosities were inoculated with low (108 PFU/mL and high (1010 PFU/mL concentrations of bacteriophage MS2 and placed in the artificial "stomach" of the device, which was then subjected to scaled physiologically relevant pressures associated with vomiting. Bio aerosols were captured using an SKC Biosampler. In low viscosity artificial vomitus, there were notable differences between recovered aerosolized MS2 as a function of pressure (i.e., greater aerosolization with increased pressure, although this was not always statistically significant. This relationship disappeared when using high viscosity simulated vomitus. The amount of MS2 aerosolized as a percent of total virus "vomited" ranged from 7.2 x 10-5 to 2.67 x 10-2 (which corresponded to a range of 36 to 13,350 PFU total. To our knowledge, this is the first study to document and measure aerosolization of a NoV surrogate in a similitude-based physical model. This has implications for better understanding the transmission dynamics of human NoV and for risk modeling purposes, both of which can help in designing effective infection control measures.

  19. Cloning and expression of a human kidney cDNA for an α2-adrenergic receptor subtype

    International Nuclear Information System (INIS)

    Regan, J.W.; Kobilka, T.S.; Yang-Feng, T.L.; Caron, M.G.; Lefkowitz, R.J.; Kobilka, B.K.

    1988-01-01

    An α 2 -adrenergic receptor subtype has been cloned from a human kidney cDNA library using the gene for the human platelet α 2 -adrenergic receptor as a probe. The deduced amino acid sequence resembles the human platelet α 2 -adrenergic receptor and is consistent with the structure of other members of he family of guanine nucleotide-binding protein-coupled receptors. The cDNA was expressed in a mammalian cell line (COS-7), and the α 2 -adrenergic ligand [ 3 H]rauwolscine was bound. Competition curve analysis with a variety of adrenergic ligands suggests that this cDNA clone represents the α 2 B-adrenergic receptor. The gene for this receptor is on human chromosome 4, whereas the gene for the human platelet α 2 -adrenergic receptor (α 2 A) lies on chromosome 10. This ability to express the receptor in mammalian cells, free of other adrenergic receptor subtypes, should help in developing more selective α-adrenergic ligands

  20. Stat3 induces oncogenic Skp2 expression in human cervical carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hanhui [Shanghai Medical College of Fudan University, Shanghai 200032 (China); Zhao, Wenrong [Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011 (China); Yang, Dan, E-mail: yangdandr@gmail.com [Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 200040 (China)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Upregulation of Skp2 by IL-6 or Stat3 activation. Black-Right-Pointing-Pointer Stat3 activates Skp2 expression through bound to its promoter region. Black-Right-Pointing-Pointer Stat3 activates Skp2 expression through recruitment of P300. Black-Right-Pointing-Pointer Stat3 activation decreases the P27 stability. -- Abstract: Dysregulated Skp2 function promotes cell proliferation, which is consistent with observations of Skp2 over-expression in many types of human cancers, including cervical carcinoma (CC). However, the molecular mechanisms underlying elevated Skp2 expression have not been fully explored. Interleukin-6 (IL-6) induced Stat3 activation is viewed as crucial for multiple tumor growth and metastasis. Here, we demonstrate that Skp2 is a direct transcriptional target of Stat3 in the human cervical carcinoma cells. Our data show that IL-6 administration or transfection of a constitutively activated Stat3 in HeLa cells activates Skp2 mRNA transcription. Using luciferase reporter and ChIP assays, we show that Stat3 binds to the promoter region of Skp2 and promotes its activity through recruiting P300. As a result of the increase of Skp2 expression, endogenous p27 protein levels are markedly decreased. Thus, our results suggest a previously unknown Stat3-Skp2 molecular network controlling cervical carcinoma development.

  1. ZNF322, a novel human C2H2 Krueppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways

    International Nuclear Information System (INIS)

    Li Yongqing; Wang Yuequn; Zhang Caibo; Yuan Wuzhou; Wang Jun; Zhu Chuanbing; Chen Lei; Huang Wen; Zeng Weiqi; Wu Xiushan; Liu Mingyao

    2004-01-01

    Cardiac differentiation involves a cascade of coordinated gene expression that regulates cell proliferation and matrix protein formation in a defined temporal-spatial manner. The C 2 H 2 zinc finger-containing transcription factors have been implicated as critical regulators of multiple cardiac-expressed genes and are important for human heart development and diseases. Here we have identified and characterized a novel zinc-finger gene named ZNF322 using degenerated primers from a human embryo heart cDNA library. The gene contains four exons and spans 23.2 kb in chromosome 6p22.1 region, and transcribes a 2.7 kb mRNA that encodes a protein with 402 amino acid residues. The predicted protein contains 9 tandem C 2 H 2 -type zinc-finger motifs. Northern blot analysis shows that ZNF322 is expressed in every human tissue examined at adult stage and during embryonic developmental stages from 80 days to 24 weeks. When overexpressed in COS-7 cells, ZNF322-EGFP fusion protein is detected in the nucleus and cytoplasm. Reporter gene assays show that ZNF322 is a transcriptional activator. Furthermore, overexpression of ZNF322 in COS-7 cells activates the transcriptional activity of SRE and AP-1. Together, these results suggest that ZNF322 is a member of the zinc-finger transcription factor family and may act as a positive regulator in gene transcription mediated by the MAPK signaling pathways

  2. Direct and indirect effects of retinoic acid on human Th2 cytokine and chemokine expression by human T lymphocytes

    Directory of Open Access Journals (Sweden)

    Deep-Dixit Vishwa

    2006-11-01

    Full Text Available Abstract Background Vitamin A (VA deficiency induces a type 1 cytokine response and exogenously provided retinoids can induce a type 2 cytokine response both in vitro and in vivo. The precise mechanism(s involved in this phenotypic switch are inconsistent and have been poorly characterized in humans. In an effort to determine if retinoids are capable of inducing Th2 cytokine responses in human T cell cultures, we stimulated human PBMCs with immobilized anti-CD3 mAb in the presence or absence of all-trans retinoic acid (ATRA or 9-cis-RA. Results Stimulation of human PBMCs and purified T cells with ATRA and 9-cis-RA increased mRNA and protein levels of IL-4, IL-5, and IL-13 and decreased levels of IFN-γ, IL-2, IL-12p70 and TNF-α upon activation with anti-CD3 and/or anti-CD28 mAbs. These effects were dose-dependent and evident as early as 12 hr post stimulation. Real time RT-PCR analysis revealed a dampened expression of the Th1-associated gene, T-bet, and a time-dependent increase in the mRNA for the Th2-associated genes, GATA-3, c-MAF and STAT6, upon treatment with ATRA. Besides Th1 and Th2 cytokines, a number of additional proinflammatory and regulatory cytokines including several chemokines were also differentially regulated by ATRA treatment. Conclusion These data provide strong evidence for multiple inductive roles for retinoids in the development of human type-2 cytokine responses.

  3. Human epidermal growth factor receptor 2 (HER2) immunoreactivity

    DEFF Research Database (Denmark)

    Rasmussen, Anne-Sofie Schrohl; Pedersen, Hans Christian; Jensen, Sussie Steen

    2011-01-01

    The availability of specific antibody-based test systems is essential to testing of HER2 protein expression. Here, we mapped epitopes recognized by three pharmacodiagnostic HER2 antibodies and investigated their specificity towards peptides and fusion proteins homologous to the intracellular doma...... domains of HER1, HER2, HER3 and HER4. The investigated antibodies were PATHWAY(®) HER2 (clone 4B5; Ventana Medical Systems Inc., Tucson, AZ, USA), HercepTest™ (Dako Denmark A/S, Glostrup, Denmark), and Oracle(®) HER2 (clone CB11; Leica Microsystems GmbH, Wetzlar, Germany)....

  4. 2-photon laser scanning microscopy on native human cartilage

    Science.gov (United States)

    Martini, Joerg; Toensing, Katja; Dickob, Michael; Anselmetti, Dario

    2005-08-01

    Native hyaline cartilage from a human knee joint was directly investigated with laser scanning microscopy via 2-photon autofluorescence excitation with no additional staining or labelling protocols in a nondestructive and sterile manner. Using a femtosecond, near-infrared (NIR) Ti:Sa laser for 2-photon excitation and a dedicated NIR long distance objective, autofluorescence imaging and measurements of the extracellular matrix (ECM) tissue with incorporated chondrocytes were possible with a penetration depth of up to 460 μm inside the sample. Via spectral autofluorescence separation these experiments allowed the discrimination of chondrocytes from the ECM and therefore an estimate of chondrocytic cell density within the cartilage tissue to approximately 0.2-2•107cm3. Furthermore, a comparison of the relative autofluorescence signals between nonarthritic and arthritic cartilage tissue exhibited distinct differences in tissue morphology. As these morphological findings are in keeping with the macroscopic diagnosis, our measurement has the potential of being used in future diagnostic applications.

  5. Reduced responses of submucous neurons from irritable bowel syndrome patients to a cocktail containing histamine, serotonin, TNFα and tryptase (IBS-cocktail

    Directory of Open Access Journals (Sweden)

    Daniela eOstertag

    2015-12-01

    Full Text Available Background & Aims:Malfunctions of enteric neurons are believed to play an important role in the pathophysiology of irritable bowel syndrome (IBS. Our aim was to investigate whether neuronal activity in biopsies from IBS patients is altered in comparison to healthy controls (HC.Methods:Activity of human submucous neurons in response to electrical nerve stimulation and local application of nicotine or a mixture of histamine, serotonin, tryptase and TNF-α (IBS-cocktail was recorded in biopsies from 17 HC and 35 IBS patients with the calcium-sensitive-dye Fluo-4 AM. The concentrations of the mediators resembeled those found in biopsy supernatants or blood. Neuronal activity in guinea-pig submucous neurons was studied with the voltage-sensitive-dye di-8-ANEPPS. Results:Activity in submucous ganglia in response to nicotine or electrical nerve stimulation was not different between HC and IBS patients (P=0.097 or P=0.448. However, the neuronal response after application of the IBS-cocktail was significantly decreased (P=0.039 independent of whether diarrhea (n=12, constipation (n=5 or bloating (n=5 was the predominant symptom. In agreement with this we found that responses of submucous ganglia conditioned by overnight incubation with IBS mucosal biopsy supernatant to spritz application of this supernatant was significantly reduced (P=0.019 when compared to incubation with HC supernatant.Conclusion:We demonstrated for the first time reduced neuronal responses in mucosal IBS biopsies to an IBS mediator cocktail. While excitability to classical stimuli of enteric neurons was comparable to HC, the activation by the IBS-cocktail was decreased. This was very likely due to desensitization to mediators constantly released by mucosal and immune cells in the gut wall of IBS patients.

  6. Adenosine A2b receptor promotes progression of human oral cancer

    International Nuclear Information System (INIS)

    Kasama, Hiroki; Sakamoto, Yosuke; Kasamatsu, Atsushi; Okamoto, Atsushi; Koyama, Tomoyoshi; Minakawa, Yasuyuki; Ogawara, Katsunori; Yokoe, Hidetaka; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2015-01-01

    Adenosine A2b receptor (ADORA2B) encodes an adenosine receptor that is a member of the G protein-coupled receptor superfamily. This integral membrane protein stimulates adenylate cyclase activity in the presence of adenosine. Little is known about the relevance of ADORA2B to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of ADORA2B in OSCC. The ADORA2B expression levels in nine OSCC-derived cells were analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunoblotting analyses. Using an ADORA2B knockdown model, we assessed cellular proliferation and expression of hypoxia-inducible factor1α (HIF-1α). We examined the adenosine receptor expression profile under both normoxic and hypoxic conditions in the OSCC-derived cells. In addition to in vitro data, the clinical correlation between the ADORA2B expression levels in primary OSCCs (n = 100 patients) and the clinicopathological status by immunohistochemistry (IHC) also was evaluated. ADORA2B mRNA and protein were up-regulated significantly (p < 0.05) in seven OSCC-derived cells compared with human normal oral keratinocytes. Suppression of ADORA2B expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells. HIF-1α also was down-regulated in ADORA2B knockdown OSCC cells. During hypoxia, ADORA2B expression was induced significantly (p < 0.05) in the mRNA and protein after 24 hours of incubation in OSCC-derived cells. IHC showed that ADORA2B expression in primary OSCCs was significantly (p < 0.05) greater than in the normal oral counterparts and that ADORA2B-positive OSCCs were correlated closely (p < 0.05) with tumoral size. Our results suggested that ADORA2B controls cellular proliferation via HIF-1α activation, indicating that ADORA2B may be a key regulator of tumoral progression in OSCCs. The online version of this article (doi:10.1186/s12885-015-1577-2) contains

  7. Stereoselective chemoenzymatic synthesis of the four stereoisomers of l-2-(2-carboxycyclobutyl)glycine and pharmacological characterization at human excitatory amino acid transporter subtypes 1, 2, and 3

    DEFF Research Database (Denmark)

    Faure, Sophie; Jensen, Anders A.; Maurat, Vincent

    2006-01-01

    The four stereoisomers of l-2-(2-carboxycyclobutyl)glycine, l-CBG-I, l-CBG-II, l-CBG-III, and l-CBG-IV, were synthesized in good yield and high enantiomeric excess, from the corresponding cis and trans-2-oxalylcyclobutanecarboxylic acids 5 and 6 using the enzymes aspartate aminotransferase (AAT......) and branched chain aminotransferase (BCAT) from Escherichia coli. The four stereoisomeric compounds were evaluated as potential ligands for the human excitatory amino acid transporters, subtypes 1, 2, and 3 (EAAT1, EAAT2, and EAAT3) in the FLIPR membrane potential assay. While the one trans-stereoisomer, l...

  8. Elevated circulating lipasin/betatrophin in human type 2 diabetes and obesity.

    Science.gov (United States)

    Fu, Zhiyao; Berhane, Feven; Fite, Alemu; Seyoum, Berhane; Abou-Samra, Abdul B; Zhang, Ren

    2014-05-23

    Lipasin (also known as C19ORF80, RIFL, ANGPTL8 and betatrophin) is a newly discovered circulating factor that regulates lipid metabolism and promotes pancreatic β-cell proliferation. Whether circulating levels of lipasin in humans are altered in a) type 2 diabetes; b) obesity and c) the postprandial state, however, is unknown. The current study aimed to compare serum lipasin levels in those who were a) non-diabetic (N=15) or diabetic (BMI- and age-matched; N=14); b) lean or obese (N=53 totally) and c) fasting and 2 hours following a defined meal (N=12). Serum lipasin levels were determined by the enzyme-linked immunosorbent assay. Lipasin levels [mean±SEM] were increased by more than two fold (Plipasin levels were positively correlated with BMI (rho=0.49, Plipasin/betatrophin is nutritionally-regulated hepatokine that is increased in human type 2 diabetes and obesity.

  9. The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity.

    Directory of Open Access Journals (Sweden)

    Ann R Hunt

    2010-07-01

    Full Text Available Venezuelan equine encephalitis virus (VEEV is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion and E2 (binds receptor and elicits virus neutralizing antibodies. Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs. Six E2 epitopes (E2(c,d,e,f,g,h bound VEEV-neutralizing antibody and mapped to amino acids (aa 182-207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE.We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants.Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115-119. Using a 9 A resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope.The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both prophylactically and therapeutically. Administration

  10. Toxicity of nanotitanium dioxide (TiO2-NP) on human monocytes and their mitochondria.

    Science.gov (United States)

    Ghanbary, Fatemeh; Seydi, Enaytollah; Naserzadeh, Parvaneh; Salimi, Ahmad

    2018-03-01

    The effect of nanotitanium dioxide (TiO 2 -NP) in human monocytes is still unknown. Therefore, an understanding of probable cytotoxicity of TiO 2 -NP on human monocytes and underlining the mechanisms involved is of significant interest. The aim of this study was to assess the cytotoxicity of TiO 2 -NP on human monocytes. Using biochemical and flow cytometry assessments, we demonstrated that addition of TiO 2 -NP at 10 μg/ml concentration to monocytes induced cytotoxicity following 12 h. The TiO 2 -NP-induced cytotoxicity on monocytes was associated with intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) collapse, lysosomal membrane injury, lipid peroxidation, and depletion of glutathione. According to our results, TiO 2 -NP triggers oxidative stress and organelles damages in monocytes which are important cells in defense against foreign agents. Finally, our findings suggest that use of antioxidants and mitochondrial/lysosomal protective agents could be of benefit for the people in the exposure with TiO 2 -NP.

  11. The interaction of 2,3-diphosphoglycerate with various human hemoglobins

    Science.gov (United States)

    Bunn, H. Franklin; Briehl, Robin W.

    1970-01-01

    Oxygen equilibria were measured on a number of human hemoglobins, which had been “stripped” of organic phosphates and isolated by column chromatography. In the presence of 2 × 10-4 M 2,3-diphosphoglycerate (2,3-DPG), the P50 of hemoglobins A, A2, S, and C increased about twofold, signifying a substantial and equal decrease in oxygen affinity. Furthermore, hemoglobins Chesapeake and MMilwaukee-1 which have intrinsically high and low oxygen affinities, respectively, also showed a twofold increase in P50 in the presence of 2 × 10-4 M 2,3-DPG. In comparison to these, hemoglobins AIC and F were less reactive with 2,3-DPG while hemoglobin FI showed virtually no reactivity. The N-terminal amino of each β-chain of hemoglobin AIC is linked to a hexose. In hemoglobin FI the N-terminal amino of each γ-chain is acetylated. These results suggest that the N-terminal amino groups of the non-α-chains are involved in the binding of 2,3-DPG to hemoglobin. PMID:5422014

  12. Cytotoxicity of S-conjugates of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl) vinyl ether (Compound A) in a human proximal tubular cell line

    International Nuclear Information System (INIS)

    Altuntas, T. Gul; Zager, Richard A.; Kharasch, Evan D.

    2003-01-01

    Fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE) is a fluorinated alkene formed by degradation of the volatile anesthetic sevoflurane in anesthesia machines. FDVE is nephrotoxic in rats but not humans. Rat FDVE nephrotoxicity is attributed to FDVE glutathione conjugation and bioactivation of subsequent FDVE-cysteine S-conjugates, in part by renal β-lyase. Although FDVE conjugation and metabolism occur in both rats and humans, the mechanism for selective toxicity in rats and lack of effect in humans is incompletely elucidated. This investigation measured FDVE S-conjugate cytotoxicity in cultured human proximal tubular HK-2 cells, and compared this with known cytotoxic S-conjugates. HK-2 cells were incubated with FDVE and its GSH, cysteine S-mercapturic acid, cysteine S-sulfoxide, and mercapturic acid sulfoxide conjugates (0.1-2.7 mM) for 24 h. Cytotoxicity was determined by lactate dehydrogenase (LDH) release, total LDH, and the ability of viable cells to reduce a tetrazolium-based compound (MTT). FDVE was cytotoxic only at concentrations ≥0.9 mM. No increase in LDH release was observed with either FDVE-GSH conjugate. The FDVE-cysteine conjugates S-(1,1-difluoro-2-fluoromethoxy-2-(trifluoromethyl) ethyl)-L-cysteine (DFEC) and (Z)-S-(1-fluoro-2-fluoromethoxy-2-(trifluoromethyl) vinyl)-L-cysteine ((Z)-FFVC) caused significant differences in LDH release and MTT reduction only at 2.7 mM; (Z)-FFVC was slightly more cytotoxic. Both S-(1,1-difluoro-2-fluoromethoxy-2-(trifluoromethyl) ethyl)-L-cysteine sulfoxide (DFEC-SO) and (Z)-N-acetyl-S-(1-fluoro-2-fluoromethoxy-2-(trifluoromethyl) vinyl)-L-cysteine sulfoxide ((Z)-N-Ac-FFVC-SO) caused slightly greater changes in LDH release or total LDH than the corresponding equimolar DFEC and (Z)-N-acetyl-S-(1-fluoro-2-fluoromethoxy-2-(trifluoromethyl) vinyl)-L-cysteine ((Z)-N-Ac-FFVC) conjugates. In contrast to FDVE S-conjugates, S-(1,2-dichlorovinyl)-L-cysteine was markedly cytotoxic, at concentrations as low as 0

  13. Cellular and synaptic localization of EAAT2a in human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Marcello eMelone

    2011-01-01

    Full Text Available We used light and electron microscopic immunocytochemical techniques to analyze the distribution, cellular and synaptic localization of EAAT2, the main glutamate transporter, in normal human neocortex. EAAT2a immunoreactivity was in all layers and consisted of small neuropilar puncta and rare cells. In white matter EAAT2a+ cells were numerous. Electron microscopic studies showed that in gray matter ∼77% of immunoreactive elements were astrocytic processes, ∼14% axon terminals, ∼2.8% dendrites, whereas ∼5% were unidentifiable. In white matter, ∼81% were astrocytic processes, ∼17% were myelinated axons and ∼2.0% were unidentified. EAAT2a immunoreactivity was never in microglial cells and oligodendrocytes. Pre-embedding electron microscopy showed that ∼67% of EAAT2a expressed at (or in the vicinity of asymmetric synapses was in astrocytes, ∼17% in axon terminals, while ∼13% was both in astrocytes and in axons. Post-embeddeding electron microscopy studies showed that in astrocytic processes contacting asymmetric synapses and in axon terminals, gold particle density was ∼25.1 and ∼2.8 particles/µm2, respectively, and was concentrated in a membrane region extending for ∼300 nm from the active zone edge. Besides representing the first detailed description of EAAT2a in human cerebral cortex, these findings may contribute to understanding its role in the pathophysiology of neuropsychiatric diseases.

  14. Coamplification in tumors of KRAS2, type 2 inositol 1,4,5 triphosphate receptor gene, and a novel human gene, KRAG

    Energy Technology Data Exchange (ETDEWEB)

    Heighway, J.; Betticher, D.C.; Altermatt, H.J. [Univ. Hospital of Berne (Switzerland)] [and others

    1996-07-01

    Analysis of a region of DNA, coamplified in tumors with KRAS2, resulted in the identification of the human homologue of the mouse KRAG gene. The gene was widely expressed in range of cell lines, tumors, and normal tissue and demonstrated a high degree of alternate splicing. A human KRAG cDNA sequence, with a structure similar to that encoded by the amplified gene in mouse Y1 adrenal carcinoma cells, was isolated by RT-PCR. The predicted amino acid similarity between the two sequences was 91%, and hydrophobicity plots suggested a structure closely resembling that of transmembrane 4 superfamily members. Identification of a PCR-based restriction fragment length polymorphism allele-specific splicing differences in tumors. Northern analysis of mRNA derived from a range of tissues suggested high level expression in muscle and confirmed alternate splicing. To facilitate the analysis of exon junctions, a YAC clone encoding the genomic sequence was identified. This allowed the localization of KRAG to human chromosome 12p11.2. Isolation of one end of this nonchimeric clone demonstrated a perfect match with a 247-bp sequence within the 3{prime} untranslated region of the type 2 1,4,5-inositol triphosphate receptor gene. Multiplex PCR confirmed the inclusion of both genes. Multiplex PCR confirmed the inclusion of both genes in the KRAS2 amplicon in human malignancy, suggesting that either may contribute to the malignant phenotypes. 35 refs., 6 figs., 1 tab.

  15. HIV-1 incorporates and proteolytically processes human NDR1 and NDR2 serine-threonine kinases

    International Nuclear Information System (INIS)

    Devroe, Eric; Silver, Pamela A.; Engelman, Alan

    2005-01-01

    Mammalian genomes encode two related serine-threonine kinases, nuclear Dbf2 related (NDR)1 and NDR2, which are homologous to the Saccharomyces cerevisiae Dbf2 kinase. Recently, a yeast genetic screen implicated the Dbf2 kinase in Ty1 retrotransposition. Since several virion-incorporated kinases regulate the infectivity of human immunodeficiency virus type 1 (HIV-1), we speculated that the human NDR1 and NDR2 kinases might play a role in the HIV-1 life cycle. Here we show that the NDR1 and NDR2 kinases were incorporated into HIV-1 particles. Furthermore, NDR1 and NDR2 were cleaved by the HIV-1 protease (PR), both within virions and within producer cells. Truncation at the PR cleavage site altered NDR2 subcellular localization and inhibited NDR1 and NDR2 enzymatic activity. These studies identify two new virion-associated host cell enzymes and suggest a novel mechanism by which HIV-1 alters the intracellular environment of human cells

  16. The action of cobra venom phospholipase A2 isoenzymes towards intact human erythrocytes

    NARCIS (Netherlands)

    Roelofsen, B.; Sibenius Trip, M.; Verheij, H.M.; Zevenbergen, J.L.

    1980-01-01

    1. 1. Cobra venom phospholipase A2 from three different sources has been fractionated into different isoenzymes by DEAE ion-exchange chromatography. 2. 2. Treatment of intact human erythrocytes with the various isoenzymes revealed significant differences in the degree of phosphatidylcholine

  17. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  18. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  19. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans.

    Science.gov (United States)

    Subramaniam, Selvakumar; Ozdener, Mehmet Hakan; Abdoul-Azize, Souleymane; Saito, Katsuyoshi; Malik, Bilal; Maquart, Guillaume; Hashimoto, Toshihiro; Marambaud, Philippe; Aribi, Mourad; Tordoff, Michael G; Besnard, Philippe; Khan, Naim Akhtar

    2016-10-01

    Obesity is a major public health problem. An in-depth knowledge of the molecular mechanisms of oro-sensory detection of dietary lipids may help fight it. Humans and rodents can detect fatty acids via lipido-receptors, such as CD36 and GPR120. We studied the implication of the MAPK pathways, in particular, ERK1/2, in the gustatory detection of fatty acids. Linoleic acid, a dietary fatty acid, induced via CD36 the phosphorylation of MEK1/2-ERK1/2-ETS-like transcription factor-1 cascade, which requires Fyn-Src kinase and lipid rafts in human taste bud cells (TBCs). ERK1/2 cascade was activated by Ca 2+ signaling via opening of the calcium-homeostasis modulator-1 (CALHM1) channel. Furthermore, fatty acid-evoked Ca 2+ signaling and ERK1/2 phosphorylation were decreased in both human TBCs after small interfering RNA knockdown of CALHM1 channel and in TBCs from Calhm1 -/- mice. Targeted knockdown of ERK1/2 by small interfering RNA or PD0325901 (MEK1/2 inhibitor) in the tongue and genetic ablation of Erk1 or Calhm1 genes impaired preference for dietary fat in mice. Lingual inhibition of ERK1/2 in healthy volunteers also decreased orogustatory sensitivity for linoleic acid. Our data demonstrate that ERK1/2-MAPK cascade is regulated by the opening of CALHM1 Ca 2+ channel in TBCs to modulate orogustatory detection of dietary lipids in mice and humans.-Subramaniam, S., Ozdener, M. H., Abdoul-Azize, S., Saito, K., Malik, B., Maquart, G., Hashimoto, T., Marambaud, P., Aribi, M., Tordoff, M. G., Besnard, P., Khan, N. A. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. © FASEB.

  20. Effect of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective beta3-adrenoceptor agonist, on bladder function.

    Science.gov (United States)

    Takasu, Toshiyuki; Ukai, Masashi; Sato, Shuichi; Matsui, Tetsuo; Nagase, Itsuro; Maruyama, Tatsuya; Sasamata, Masao; Miyata, Keiji; Uchida, Hisashi; Yamaguchi, Osamu

    2007-05-01

    We evaluated the pharmacological characteristics of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]-ethyl} acetanilide (YM178). YM178 increased cyclic AMP accumulation in Chinese hamster ovary (CHO) cells expressing human beta3-adrenoceptor (AR). The half-maximal effective concentration (EC50) value was 22.4 nM. EC50 values of YM178 for human beta1- and beta2-ARs were 10,000 nM or more, respectively. The ratio of intrinsic activities of YM178 versus maximal response induced by isoproterenol (nonselective beta-AR agonist) was 0.8 for human beta3-ARs, 0.1 for human beta1-ARs, and 0.1 for human beta2-ARs. The relaxant effects of YM178 were evaluated in rats and humans bladder strips precontracted with carbachol (CCh) and compared with those of isoproterenol and 4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one hydrochloride (CGP-12177A) (beta3-AR agonist). EC50 values of YM178 and isoproterenol in rat bladder strips precontracted with 10(-6) M CCh were 5.1 and 1.4 microM, respectively, whereas those in human bladder strips precontracted with 10(-7) M CCh were 0.78 and 0.28 microM, respectively. In in vivo study, YM178 at a dose of 3 mg/kg i.v. decreased the frequency of rhythmic bladder contraction induced by intravesical filling with saline without suppressing its amplitude in anesthetized rats. These findings suggest the suitability of YM178 as a therapeutic drug for the treatment of symptoms of overactive bladder such as urinary frequency, urgency, and urge incontinence.

  1. Kinetic Studies of Iron Deposition Catalyzed by Recombinant Human Liver Heavy, and Light Ferritins and Azotobacter Vinelandii Bacterioferritin Using O2 and H2O2 as Oxidants

    Science.gov (United States)

    Bunker, Jared; Lowry, Thomas; Davis, Garrett; Zhang, Bo; Brosnahan, David; Lindsay, Stuart; Costen, Robert; Choi, Sang; Arosio, Paolo; Watt, Gerald D.

    2005-01-01

    The discrepancy between predicted and measured H2O2 formation during iron deposition with recombinant heavy human liver ferritin (rHF) was attributed to reaction with the iron protein complex [Biochemistry 40 (2001) 10832-10838]. This proposal was examined by stopped-flow kinetic studies and analysis for H2O2 production using (1) rHF, and Azotobacter vinelandii bacterial ferritin (AvBF), each containing 24 identical subunits with ferroxidase centers; (2) site-altered rHF mutants with functional and dysfunctional ferroxidase centers; and (3) rccombinant human liver light ferritin (rLF), containing 110 ferroxidase center. For rHF, nearly identical pseudo-first-order rate constants of 0.18 per second at pH 7.5 were measured for Fe(2+) oxidation by both O2 and H2O2, but for rLF, the rate with O2 was 200-fold slower than that for H2O2 (k-0.22 per second). A Fe(2+)/O2 stoichiometry near 2.4 was measured for rHF and its site altered forms, suggesting formation of H2O2. Direct measurements revealed no H2O2 free in solution 0.5-10 min after all Fe(2+) was oxidized at pH 6.5 or 7.5. These results are consistent with initial H2O2 formation, which rapidly reacts in a secondary reaction with unidentified solution components. Using measured rate constants for rHF, simulations showed that steady-state H2O2 concentrations peaked at 14 pM at approx. 600 ms and decreased to zero at 10-30 s. rLF did not produce measurable H2O2 but apparently conducted the secondary reaction with H2O2. Fe(2+)/O2 values of 4.0 were measured for AvBF. Stopped-flow measurements with AvBF showed that both H2O2 and O2 react at the same rate (k=0.34 per second), that is faster than the reactions with rHF. Simulations suggest that AvBF reduces O2 directly to H2O without intermediate H2O2 formation.

  2. Ultra high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K.

    Science.gov (United States)

    Robitaille, P M; Abduljalil, A M; Kangarlu, A

    2000-01-01

    To acquire ultra high resolution MRI images of the human brain at 8 Tesla within a clinically acceptable time frame. Gradient echo images were acquired from the human head of normal subjects using a transverse electromagnetic resonator operating in quadrature and tuned to 340 MHz. In each study, a group of six images was obtained containing a total of 208 MB of unprocessed information. Typical acquisition parameters were as follows: matrix = 2,000 x 2,000, field of view = 20 cm, slice thickness = 2 mm, number of excitations (NEX) = 1, flip angle = 45 degrees, TR = 750 ms, TE = 17 ms, receiver bandwidth = 69.4 kHz. This resulted in a total scan time of 23 minutes, an in-plane resolution of 100 microm, and a pixel volume of 0.02 mm3. The ultra high resolution images acquired in this study represent more than a 50-fold increase in in-plane resolution relative to conventional 256 x 256 images obtained with a 20 cm field of view and a 5 mm slice thickness. Nonetheless, the ultra high resolution images could be acquired both with adequate image quality and signal to noise. They revealed numerous small venous structures throughout the image plane and provided reasonable delineation between gray and white matter. The elevated signal-to-noise ratio observed in ultra high field magnetic resonance imaging can be utilized to acquire images with a level of resolution approaching the histological level under in vivo conditions. However, brain motion is likely to degrade the useful resolution. This situation may be remedied in part with cardiac gating. Nonetheless, these images represent a significant advance in our ability to examine small anatomical features with noninvasive imaging methods.

  3. Regulation of PGE(2) and PGI(2) release from human umbilical vein endothelial cells by actin cytoskeleton

    Science.gov (United States)

    Sawyer, S. J.; Norvell, S. M.; Ponik, S. M.; Pavalko, F. M.

    2001-01-01

    Disruption of microfilaments in human umbilical vein endothelial cells (HUVEC) with cytochalasin D (cytD) or latrunculin A (latA) resulted in a 3.3- to 5.7-fold increase in total synthesis of prostaglandin E(2) (PGE(2)) and a 3.4- to 6.5-fold increase in prostacyclin (PGI(2)) compared with control cells. Disruption of the microtubule network with nocodazole or colchicine increased synthesis of PGE(2) 1.7- to 1.9-fold and PGI(2) 1.9- to 2.0-fold compared with control cells. Interestingly, however, increased release of PGE(2) and PGI(2) from HUVEC into the media occurred only when microfilaments were disrupted. CytD treatment resulted in 6.7-fold more PGE(2) and 3.8-fold more PGI(2) released from HUVEC compared with control cells; latA treatment resulted in 17.7-fold more PGE(2) and 11.2-fold more PGI(2) released compared with control cells. Both increased synthesis and release of prostaglandins in response to all drug treatments were completely inhibited by NS-398, a specific inhibitor of cyclooxygenase-2 (COX-2). Disruption of either microfilaments using cytD or latA or of microtubules using nocodazole or colchicine resulted in a significant increase in COX-2 protein levels, suggesting that the increased synthesis of prostaglandins in response to drug treatments may result from increased activity of COX-2. These results, together with studies demonstrating a vasoprotective role for prostaglandins, suggest that the cytoskeleton plays an important role in maintenance of endothelial barrier function by regulating prostaglandin synthesis and release from HUVEC.

  4. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2.

    Science.gov (United States)

    Tripathi, Amit; Lammers, Karen M; Goldblum, Simeon; Shea-Donohue, Terez; Netzel-Arnett, Sarah; Buzza, Marguerite S; Antalis, Toni M; Vogel, Stefanie N; Zhao, Aiping; Yang, Shiqi; Arrietta, Marie-Claire; Meddings, Jon B; Fasano, Alessio

    2009-09-29

    Increased intestinal permeability (IP) has emerged recently as a common underlying mechanism in the pathogenesis of allergic, inflammatory, and autoimmune diseases. The characterization of zonulin, the only physiological mediator known to regulate IP reversibly, has remained elusive. Through proteomic analysis of human sera, we have now identified human zonulin as the precursor for haptoglobin-2 (pre-HP2). Although mature HP is known to scavenge free hemoglobin (Hb) to inhibit its oxidative activity, no function has ever been ascribed to its uncleaved precursor form. We found that the single-chain zonulin contains an EGF-like motif that leads to transactivation of EGF receptor (EGFR) via proteinase-activated receptor 2 (PAR(2)) activation. Activation of these 2 receptors was coupled to increased IP. The siRNA-induced silencing of PAR(2) or the use of PAR(2)(-/-) mice prevented loss of barrier integrity. Proteolytic cleavage of zonulin into its alpha(2)- and beta-subunits neutralized its ability to both activate EGFR and increase IP. Quantitative gene expression revealed that zonulin is overexpressed in the intestinal mucosa of subjects with celiac disease. To our knowledge, this is the initial example of a molecule that exerts a biological activity in its precursor form that is distinct from the function of its mature form. Our results therefore characterize zonulin as a previously undescribed ligand that engages a key signalosome involved in the pathogenesis of human immune-mediated diseases that can be targeted for therapeutic interventions.

  5. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    International Nuclear Information System (INIS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-01-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans

  6. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, M. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)]. E-mail: Michael.Hofmann@insel.ch; Gazdhar, A. [Division of Pulmonary Medicine, University Hospital Bern (Switzerland); Weitzel, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland); Schmid, R. [Division of Thoracic Surgery, University Hospital Bern (Switzerland); Krause, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)

    2006-12-20

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and human000.

  7. Fully-human Monoclonal Antibodies Against Human EphrinB2 and EphB4 | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Cancer and Inflammation Program is seeking statements of capability or interest from parties interested in licensing fully-human monoclonal antibodies against human EphrinB2 and EphB4.

  8. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies

    Directory of Open Access Journals (Sweden)

    Georges N. Kanaan

    2018-04-01

    Full Text Available Glutaredoxin 2 (GRX2, a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Keywords: Human heart, Mitochondria, Oxidative stress, Redox, Cardiac metabolism, Cardiac hypertrophy

  9. Cyclooxygenase-2 expression in the normal human eye and its expression pattern in selected eye tumours

    DEFF Research Database (Denmark)

    Wang, Jinmei; Wu, Yazhen; Heegaard, Steffen

    2011-01-01

    Purpose: Cyclooxygenase-2 (COX-2) is an enzyme involved in neoplastic processes. The purpose of the present study is to investigate COX-2 expression in the normal human eye and the expression pattern in selected eye tumours involving COX-2 expressing cells. Methods: Immunohistochemical staining...... using antibodies against COX-2 was performed on paraffin sections of normal human eyes and selected eye tumours arising from cells expressing COX-2. Results: Cyclooxygenase-2 expression was found in various structures of the normal eye. Abundant expression was seen in the cornea, iris, ciliary body...... and retina. The COX-2 expression was less in tumours deriving from the ciliary epithelium and also in retinoblastoma. Conclusion: Cyclooxygenase-2 is constitutively expressed in normal human eyes. The expression of COX-2 is much lower in selected eye tumours involving COX-2 expressing cells....

  10. Translocation of SiO2-NPs across in vitro human bronchial epithelial monolayer

    International Nuclear Information System (INIS)

    George, I; Vranic, S; Boland, S; Borot, M C; Marano, F; Baeza-Squiban, A

    2013-01-01

    Safe development and application of nanotechnologies in many fields require better knowledge about their potential adverse effects on human health. Evidence of abilities of nanoparticles (NPs) to cross epithelial barriers and reach secondary organs via the bloodstream led us to investigate the translocation of SiO 2 NPs of 50 nm (50 nm-SiO 2 -NPs) across human bronchial epithelial cells that are primary targets after exposure to inhaled NPs. We quantified the translocation of fluorescently labelled SiO 2 NPs at non-cytotoxic concentrations (5 and 10 μg/cm 2 ) across Calu-3 epithelial monolayer. After 14 days in culture Calu-3 cells seeded onto 3 μm-polycarbonate Transwell membranes formed an efficient bronchial barrier assessed by measurement of the transepithelial electric resistance and quantification of the permeability of the monolayer. After 24 hours of exposure, we observed a significant translocation of NPs that was more important when the initial NP concentration decreased. Confocal microscopy observations revealed NP uptake by cells and an important NP retention inside the porous membrane. In conclusion, 50 nm-SiO 2 -NPs can cross the human bronchial epithelial barrier without affecting the integrity of the epithelial cell monolayer.

  11. Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor.

    Directory of Open Access Journals (Sweden)

    Barbara Costa

    Full Text Available Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM, p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2 oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.

  12. Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis.

    Science.gov (United States)

    van 't Erve, Thomas J; Kadiiska, Maria B; London, Stephanie J; Mason, Ronald P

    2017-08-01

    The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necessitates re-evaluation. To prioritize these re-evaluations, published literature was comprehensively analyzed in a meta-analysis to quantitatively classify the levels of systemic oxidative damage across human disease and in response to environmental exposures. In this meta-analysis, the F 2 -isoprostane, 8-iso-PGF 2α , was specifically chosen as the representative marker of oxidative damage. To combine published values across measurement methods and specimens, the standardized mean differences (Hedges' g) in 8-iso-PGF 2α levels between affected and control populations were calculated. The meta-analysis resulted in a classification of oxidative damage levels as measured by 8-iso-PGF 2α across 50 human health outcomes and exposures from 242 distinct publications. Relatively small increases in 8-iso-PGF 2α levels (ganalysis of published data. This analysis provides knowledge on the true involvement of oxidative damage across human health outcomes as well as utilizes past research to prioritize those conditions requiring further scrutiny on the mechanisms of biomarker generation. Copyright © 2017. Published by Elsevier B.V.

  13. Antimicrobial actions of the human epididymis 2 (HE2 protein isoforms, HE2alpha, HE2beta1 and HE2beta2

    Directory of Open Access Journals (Sweden)

    French Frank S

    2004-08-01

    Full Text Available Abstract Background The HE2 gene encodes a group of isoforms with similarities to the antimicrobial beta-defensins. We demonstrated earlier that the antimicrobial activity of HE2 proteins and peptides is salt resistant and structure dependent and involves permeabilization of bacterial membranes. In this study, we further characterize the antimicrobial properties of HE2 peptides in terms of the structural changes induced in E. coli and the inhibition of macromolecular synthesis. Methods E. coli treated with 50 micro g/ml of HE2alpha, HE2beta1 or HE2beta2 peptides for 30 and 60 min were visualized using transmission and scanning electron microscopy to investigate the impact of these peptides on bacterial internal and external structure. The effects of HE2alpha, HE2beta1 and HE2beta2 on E. coli macromolecular synthesis was assayed by incubating the bacteria with 2, 10 and 25 micro g/ml of the individual peptides for 0–60 min and measuring the incorporation of the radioactive precursors [methyl-3H]thymidine, [5-3H]uridine and L-[4,5-3H(N]leucine into DNA, RNA and protein. Statistical analyses using Student's t-test were performed using Sigma Plot software. Values shown are Mean ± S.D. Results E. coli treated with HE2alpha, HE2beta1 and HE2beta2 peptides as visualized by transmission electron microscopy showed extensive damage characterized by membrane blebbing, thickening of the membrane, highly granulated cytoplasm and appearance of vacuoles in contrast to the smooth and continuous membrane structure of the untreated bacteria. Similarly, bacteria observed by scanning electron microscopy after treating with HE2alpha, HE2beta1 or HE2beta2 peptides exhibited membrane blebbing and wrinkling, leakage of cellular contents, especially at the dividing septa, and external accumulation of fibrous materials. In addition, HE2alpha, HE2beta1 and HE2beta2 peptides inhibited E. coli DNA, RNA and protein synthesis. Conclusions The morphological changes observed

  14. Exclusive neuronal expression of SUCLA2 in the human brain

    DEFF Research Database (Denmark)

    Dobolyi, Arpád; Ostergaard, Elsebet; Bagó, Attila G

    2015-01-01

    associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here, we show that immunoreactivity of A-SUCL-β in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling...... was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming β subunit (G......-SUCL-β) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL-β immunoreactivity that was, however, not upregulated in samples obtained from diabetic versus non...

  15. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Rasmussen, Søren Gøgsig Faarup; Choi, Hee-Jung; Rosenbaum, Daniel M

    2007-01-01

    Structural analysis of G-protein-coupled receptors (GPCRs) for hormones and neurotransmitters has been hindered by their low natural abundance, inherent structural flexibility, and instability in detergent solutions. Here we report a structure of the human beta2 adrenoceptor (beta2AR), which was ...

  16. A human osteosarcoma cell line expressing herpes simplex type-1 thymidine kinase: studies with radiolabeled (E)-5-(2-iodovinyl)-2'-fluoro-2'-deoxyuridine

    International Nuclear Information System (INIS)

    Morin, Kevin W.; Duan Weili; Knaus, Edward E.; McEwan, Alexander J.B.; Wiebe, Leonard I.

    2005-01-01

    Introduction: (E)-5-(2-Iodovinyl)-2'-fluoro-2'-deoxyuridine (IVFRU) is a pyrimidine nucleoside analogue that accumulates selectively in murine cells expressing herpes simplex type-1 thymidine kinase (HSV-1 TK). The uptake of [ 125 I]IVFRU in human 143B osteosarcoma cells transduced with a retroviral vector bearing the HSV-1 TK gene (143B-LTK cells) is now reported. Methods: HSV-1 TK gene expression in 143B-LTK cells was confirmed by Western blotting and reverse transcriptase (RT)-PCR. Cell and subcellular uptake of [ 125 I]IVFRU was determined in cell culture, and whole body biodistribution after intravenous injection of [ 125 I]IVFRU was determined using nude mice bearing implanted 143B or 143B-LTK tumors. Results: Although IVFRU was less toxic to the human cell line expressing HSV-1 TK (143B-LTK) than ganciclovir, both IVFRU and ganciclovir were not toxic to the cell line not expressing HSV-1 TK (143B). When cells were exposed to [ 125 I]IVFRU in vitro, only the 143B-LTK cells accumulated radioactivity. The acid-soluble fraction from 143B-LTK cell lysates contained 8-fold greater activity than the acid-insoluble fraction after an 8-h exposure to [ 125 I]IVFRU. Biodistribution of [ 125 I]IVFRU in nude mice bearing subcutaneous 143B and 143B-LTK tumors revealed widespread distribution of the nucleoside in vivo but with specific localization in 143B-LTK tumors. Conclusion: The underlying biochemical process of metabolic entrapment of IVFRU in human osteosarcoma cells expressing HSV-1 TK is responsible for selective localization in these cells. The differences in subcellular distribution into the nucleic acid fraction, and in cytotoxicity, reflect the importance of cell type and lineage as determinants of the performance of gene imaging radiopharmaceuticals

  17. Radiosensitization of pancreatic cancer cells by 2',2'-difluoro-2'-deoxycytidine

    International Nuclear Information System (INIS)

    Lawrence, Theodore S.; Chang, Emily Y.; Hahn, Tina M.; Hertel, Larry W.; Shewach, Donna S.

    1996-01-01

    Purpose: We have reported that the deoxycytidine analog 2',2'-difluoro-2'-deoxycytidine (dFdCyd) is a potent radiosensitizer of HT29 human colon cancer cells probably through its effects on intracellular deoxyribonucleotide (dNTP) pools. Because dFdCyd has activity against pancreatic cancer in clinical trials, we wished to determine if dFdCyd would radiosensitize human pancreatic cancer cells. Methods and Materials: We assessed the effect of dFdCyd on radiation sensitivity of two human pancreatic cancer cell lines, Panc-1 and BxPC-3. To begin to investigate the mechanism of sensitization, we determined the effect of dFdCyd on dNTP pools and cell cycle distribution. Results: We found that dFdCyd produced radiation enhancement ratios of 1.7-1.8 under noncytotoxic conditions in both cell lines. Sensitization was not associated with intracellular levels of 2',2'-difluoro-2'-deoxycytidine triphosphate, the cytotoxic metabolite of dFdCyd, but occurred when dATP pools were depleted below the level of approximately 1 μM. Although both cell lines showed substantial cell cycle redistribution after drug treatment, the flow cytogram of the BxPC-3 cells would not, by itself, be anticipated to result in increased radiation sensitivity. Conclusions: These findings demonstrate that dFdCyd is a potent radiation sensitizer of human pancreatic cancer cells and support the development of a clinical protocol using combined dFdCyd and radiation therapy in the treatment of pancreatic cancer

  18. Nrf2 Activation Protects against Solar-Simulated Ultraviolet Radiation in Mice and Humans.

    Science.gov (United States)

    Knatko, Elena V; Ibbotson, Sally H; Zhang, Ying; Higgins, Maureen; Fahey, Jed W; Talalay, Paul; Dawe, Robert S; Ferguson, James; Huang, Jeffrey T-J; Clarke, Rosemary; Zheng, Suqing; Saito, Akira; Kalra, Sukirti; Benedict, Andrea L; Honda, Tadashi; Proby, Charlotte M; Dinkova-Kostova, Albena T

    2015-06-01

    The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative, and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity, and burden of solar-simulated UV radiation-mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated are lower than those that arise in their wild-type counterparts. Pharmacologic Nrf2 activation by topical biweekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacologic Nrf2 activation lowers the expression of the pro-inflammatory factors IL6 and IL1β, and COX2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane reduced the degree of solar-simulated UV radiation-induced skin erythema, a quantifiable surrogate endpoint for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. ©2015 American Association for Cancer Research.

  19. Loss of Function of GALNT2 Lowers High-Density Lipoproteins in Humans, Nonhuman Primates, and Rodents

    DEFF Research Database (Denmark)

    Khetarpal, Sumeet A; Schjoldager, Katrine T; Christoffersen, Christina

    2016-01-01

    Human genetics studies have implicated GALNT2, encoding GalNAc-T2, as a regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, but the mechanisms relating GALNT2 to HDL-C remain unclear. We investigated the impact of homozygous GALNT2 deficiency on HDL-C in humans and mammalian mod...

  20. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

    DEFF Research Database (Denmark)

    Forslund, Kristoffer; Hildebrand, Falk ; Nielsen, Trine N.

    2015-01-01

    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported1,2. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs...... on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified......, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa3,4. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures...

  1. Human skeletal muscle perilipin 2 and 3 expression varies with insulin sensitivity

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Prats Gavalda, Clara; Ploug, Thorkil

    2013-01-01

    Background: Impaired insulin sensitivity may partly arise from a dysregulated lipid metabolism in human skeletal muscle. This study investigates the expression levels of perilipin 2, 3, and 5, and four key lipases in human skeletal muscle from the subjects that exhibit a range from normal to very...

  2. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors.

    Science.gov (United States)

    Cheong, Jit Kong; Gunaratnam, Lakshman; Zang, Zhi Jiang; Yang, Christopher M; Sun, Xiaoming; Nasr, Susan L; Sim, Khe Guan; Peh, Bee Keow; Rashid, Suhaimi Bin Abdul; Bonventre, Joseph V; Salto-Tellez, Manuel; Hsu, Stephen I

    2009-01-20

    Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2). Oncogenic potential of TRIP-Br2 was demonstrated by (1) inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2) comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs). Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA) knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer.

  3. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration

    Science.gov (United States)

    Dias, Sergio; Hattori, Koichi; Zhu, Zhenping; Heissig, Beate; Choy, Margaret; Lane, William; Wu, Yan; Chadburn, Amy; Hyjek, Elizabeth; Gill, Muhammad; Hicklin, Daniel J.; Witte, Larry; Moore, M.A.S.; Rafii, Shahin

    2000-01-01

    Emerging data suggest that VEGF receptors are expressed by endothelial cells as well as hematopoietic stem cells. Therefore, we hypothesized that functional VEGF receptors may also be expressed in malignant counterparts of hematopoietic stem cells such as leukemias. We demonstrate that certain leukemias not only produce VEGF but also express functional VEGFR-2 in vivo and in vitro, resulting in the generation of an autocrine loop that may support leukemic cell survival and proliferation. Approximately 50% of freshly isolated leukemias expressed mRNA and protein for VEGFR-2. VEGF165 induced phosphorylation of VEGFR-2 and increased proliferation of leukemic cells, demonstrating these receptors were functional. VEGF165 also induced the expression of MMP-9 by leukemic cells and promoted their migration through reconstituted basement membrane. The neutralizing mAb IMC-1C11, specific to human VEGFR-2, inhibited leukemic cell survival in vitro and blocked VEGF165-mediated proliferation of leukemic cells and VEGF-induced leukemic cell migration. Xenotransplantation of primary leukemias and leukemic cell lines into immunocompromised nonobese diabetic mice resulted in significant elevation of human, but not murine, VEGF in plasma and death of inoculated mice within 3 weeks. Injection of IMC-1C11 inhibited proliferation of xenotransplanted human leukemias and significantly increased the survival of inoculated mice. Interruption of signaling by VEGFRs, particularly VEGFR-2, may provide a novel strategy for inhibiting leukemic cell proliferation. PMID:10953026

  4. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2

    DEFF Research Database (Denmark)

    Jackson, Scott M; Manolaridis, Ioannis; Kowal, Julia

    2018-01-01

    requires high-resolution structural insight. Here, we present cryo-EM structures of human ABCG2 bound to synthetic derivatives of the fumitremorgin C-related inhibitor Ko143 or the multidrug resistance modulator tariquidar. Both compounds are bound to the central, inward-facing cavity of ABCG2, blocking...

  5. The effect of TGF-beta2 on MMP-2 production and activity in highly metastatic human bladder carcinoma cell line 5637.

    Science.gov (United States)

    Dehnavi, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram; Ataei, Zahra; Aryan, Hajar

    2009-06-01

    Transforming growth factor-beta (TGF-beta) superfamily regulates matrix metalloproteinases (MMP), which intrinsically regulate various cell behaviors leading to metastasis. We investigated the effect of TGF-beta(2) on MMP-2 regulation in human bladder carcinoma cell line 5637. Zymography, ELISA, and real-time polymerase chain reaction revealed that TGF-beta(2) stimulated MMP-2 production, but the transcription of its gene remained unchanged. Wortmannin could not inhibit MMP-2 secretion and activity and conversely the amount of the protein and its enzymatic activity were increased. These data suggest that TGF-beta(2) increased MMP-2 at the posttranscriptional level and this upregulation was independent of phosphatidylinositol 3-kinase signaling pathway.

  6. The enhancement of radiosensitivity by celecoxib, selective cyclooxygenase-2 inhibitor, on human cancer cells expressing differential levels of cyclooxygenase-2

    International Nuclear Information System (INIS)

    Pyo, Hong Ryull; Shin, You Keun; Kim, Hyun Seok; Seong, Jin Sil; Suh, Chang Ok; Kim, Gwi Eon

    2003-01-01

    To investigate the modulation of radiosensitivity by celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, on cancer cells over- and under-expressing COX-2. A clonogenic radiation survival analysis was performed on A549 human lung and MCF-7 human breast cancer cell lines incubated in both 1 and 10% fetal bovine serum (FBS) containing media. The apoptosis in both cell lines was measured after treatment with radiation and/or celecoxib. Celecoxib enhanced the radiation sensitivity of the A549 cells in the medium containing the 10% FBS, with radiation enhancement ratios of 1.58 and 1.81 respectively, at surviving fractions of 0.1, with 30 μ M and 50 μ M celecoxib. This enhanced radiosensitivity disappeared in the medium containing the 1% FBS. Celecoxib did not change the radiation sensitivity of the MCF-7 cells in either media. The induction of apoptosis by celecoxib and radiation was not synergistic in either cell line. Celecoxib, a selective COX-2 inhibitor, preferentially enhanced the effect of radiation on COX-2 over-expressing cancer cells compared to the cells with a low expression, and this effect disappeared on incubation of the cells during drug treatment in the medium with suboptimal serum concentration. Apoptosis did not appear to be the underlying mechanism of this radiation enhancement effect due to celecoxib on the A549 cells. These findings suggest radiosensitization by a selective COX-2 inhibitor is COX-2 dependent

  7. The Structure of the Human Centrin 2-Xeroderma Pigmentosum Group C Protein Complex

    Energy Technology Data Exchange (ETDEWEB)

    Thompson,J.; Ryan, Z.; Salisbury, J.; Kumar, R.

    2006-01-01

    Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered {alpha}-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an {alpha}-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin.

  8. The Structure of the Human Centrin 2-Xeroderma Pigmentosum Group C Protein Complex

    International Nuclear Information System (INIS)

    Thompson, J.; Ryan, Z.; Salisbury, J.; Kumar, R.

    2006-01-01

    Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered α-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an α-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin

  9. Esterification of xanthophylls by human intestinal Caco-2 cells.

    Science.gov (United States)

    Sugawara, Tatsuya; Yamashita, Kyoko; Asai, Akira; Nagao, Akihiko; Shiraishi, Tomotaka; Imai, Ichiro; Hirata, Takashi

    2009-03-15

    We recently found that peridinin, which is uniquely present in dinoflagellates, reduced cell viability by inducing apoptosis in human colon cancer cells. Peridinin is also found in edible clams and oysters because the major food sources of those shellfish are phytoplanktons such as dinoflagellates. Little is known, however, about the fate of dietary peridinin and its biological activities in mammals. The aim of the present study was to investigate the enzymatic esterification of xanthophylls, especially peridinin which is uniquely present in dinoflagellates, using differentiated cultures of Caco-2 human intestinal cells. We found that peridinin is converted to peridininol and its fatty acid esters in differentiated Caco-2 cells treated with 5mumol/L peridinin solubilized with mixed micelles. The cell homogenate was also able to deacetylate peridinin and to esterify peridininol. Other xanthophylls, such as fucoxanthin, astaxanthin and zeaxanthin, were also esterified, but at relatively lower rates than peridinin. In this study, we found the enzymatic esterification of xanthophylls in mammalian intestinal cells for the first time. Our results suggest that the esterification of xanthophylls in intestinal cells is dependent on their polarity.

  10. Merkel cells and Meissner's corpuscles in human digital skin display Piezo2 immunoreactivity.

    Science.gov (United States)

    García-Mesa, Y; García-Piqueras, J; García, B; Feito, J; Cabo, R; Cobo, J; Vega, J A; García-Suárez, O

    2017-12-01

    The transformation of mechanical energy into electrical signals is the first step in mechanotransduction in the peripheral sensory nervous system and relies on the presence of mechanically gated ion channels within specialized sensory organs called mechanoreceptors. Piezo2 is a vertebrate stretch-gated ion channel necessary for mechanosensitive channels in mammalian cells. Functionally, it is related to light touch, which has been detected in murine cutaneous Merkel cell-neurite complexes, Meissner-like corpuscles and lanceolate nerve endings. To the best of our knowledge, the occurrence of Piezo2 in human cutaneous mechanoreceptors has never been investigated. Here, we used simple and double immunohistochemistry to investigate the occurrence of Piezo2 in human digital glabrous skin. Piezo2 immunoreactivity was detected in approximately 80% of morphologically and immunohistochemically characterized (cytokeratin 20 + , chromogranin A + and synaptophisin + ) Merkel cells. Most of them were in close contact with Piezo2 - nerve fibre profiles. Moreover, the axon, but not the lamellar cells, of Meissner's corpuscles was also Piezo2 + , but other mechanoreceptors, i.e. Pacinian or Ruffini's corpuscles, were devoid of immunoreactivity. Piezo2 was also observed in non-nervous tissue, especially the basal keratinocytes, endothelial cells and sweat glands. The present results demonstrate the occurrence of Piezo2 in cutaneous sensory nerve formations that functionally work as slowly adapting (Merkel cells) and rapidly adapting (Meissner's corpuscles) low-threshold mechanoreceptors and are related to fine and discriminative touch but not to vibration or hard touch. These data offer additional insight into the molecular basis of mechanosensing in humans. © 2017 Anatomical Society.

  11. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells.

    Science.gov (United States)

    Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan

    2014-05-29

    Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells. Acanthamoeba plasminogen activator and PAR2 agonists stimulated IL-8 mRNA expression and protein production, which is significantly diminished by PAR2 antagonist

  12. A New Synthetic Compound, 2-OH, Enhances Interleukin-2 and Interferon-γ Gene Expression in Human Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Woan-Fang Tzeng

    2009-07-01

    Full Text Available A new synthetic compound, 6-hydroxy-2-tosylisoquinolin-1(2H-one (2-OH, was selected for immunopharmacological activity tests. The effects of 2-OH on human peripheral blood mononuclear cell (PBMC proliferation were determined by tritiated thymidine uptake. Compared to phytohemagglutinin (PHA; 5 μg/mL stimulation, 2-OH significantly enhanced PBMC proliferation in a dose-dependent manner. The 50% enhancement activity (EC50 for 2-OH was 4.4±0.1 μM. In addition, effects of 2-OH on interleukin-2 (IL-2 and interferon-γ (IFN-γ production in PBMC were determined by enzyme immunoassay. Results demonstrated that 2-OH stimulated IL-2 and IFN-γ production in PBMC. Data from reverse transcription-polymerase chain reaction (RT-PCR and real-time PCR indicated that IL-2 and IFN-γ mRNA expression in PBMC could be induced by 2-OH. Therefore, 2-OH enhanced IL-2 and IFN-γ production in PBMC by modulation their gene expression. We suggest that 2-OH may be an immunomodulatory agent.

  13. Methodologic problems in the radioimmunoassay of prostaglandin E2 and Fsub(2α) in human urine

    International Nuclear Information System (INIS)

    Ciabattoni, G.; Pugliese, F.; Cinotti, G.A.; Patrono, C.

    1979-01-01

    Validation of RIA measurement of urinary prostaglandins cannot rely upon classical criteria of specificity, such as dilution studies, since different antisera meeting such requirement may recognize a variable proportion of different compounds accompanying PGE 2 through extraction purification procedures. Validation should therefore be sought by comparison with an independent method of analysis (GC/MS) and/or characterization of the TLC behaviour of PG-LI. Storage of urine before extraction may variably affect PG concentration, as a function of temperature and time. In order to avoid variable losses, urine should be frozen immediately after voiding and kept at -20 0 C until extraction. Urinary PG excretion rate is highly variable during human menstrual cycle, with no apparent pattern. A higher degree of reproducibility was found when 2-h specimens were collected under standard conditions of hydration and immediately frozen. 2-h collections may represent a convenient method to investigate physiological and pharmacological factors controlling urinary PG excretion in healthy subjects. (Auth.)

  14. Identification and apoptotic potential of T-2 toxin metabolites in human cells

    NARCIS (Netherlands)

    Weidner, M.; Welsch, T.; Hübner, F.; Schwerdt, G.; Gekle, M.; Humpf, H.U.

    2012-01-01

    The mycotoxin T-2 toxin, produced by various Fusarium species, is a widespread contaminant of grain and grain products. Knowledge about its toxicity and metabolism in the human body is crucial for any risk assessment as T-2 toxin can be detected in processed and unprocessed food samples. Cell

  15. The Nitric Oxide Prodrug JS-K Induces Ca(2+)-Mediated Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells.

    Science.gov (United States)

    Liu, Ling; Wang, Dongmei; Wang, Jiangang; Wang, Shuying

    2016-04-01

    Hepatocellular carcinoma is one of the most common and deadly forms of human malignancies. JS-K, O(2)-(2, 4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1, 2-diolate, has the ability to induce apoptosis of tumor cell lines. In the present study, JS-K inhibited the proliferation of HepG2 cells in a time- and concentration-dependent manner and significantly induced apoptosis. JS-K enhanced the ratio of Bax-to-Bcl-2, released of cytochrome c (Cyt c) from mitochondria and the activated caspase-9/3. JS-K caused an increasing cytosolic Ca(2+) and the loss of mitochondrial membrane potential. Carboxy-PTIO (a NO scavenger) and BAPTA-AM (an intracellular Ca(2+) chelator) significantly blocked an increasing cytosolic Ca(2+) in JS-K-induced HepG2 cells apoptosis, especially Carboxy-PTIO. Meanwhile, Carboxy-PTIO and BAPTA-AM treatment both attenuate JS-K-induced apoptosis through upregulation of Bcl-2, downregulation of Bax, reduction of Cyt c release from mitochondria to cytoplasm and inactivation of caspase-9/3. In summary, JS-K induced HepG2 cells apoptosis via Ca(2+)/caspase-3-mediated mitochondrial pathway. © 2015 Wiley Periodicals, Inc.

  16. Nanosecond UV lasers stimulate transient Ca2+ elevations in human hNT astrocytes.

    Science.gov (United States)

    Raos, B J; Graham, E S; Unsworth, C P

    2017-06-01

    Astrocytes respond to various stimuli resulting in intracellular Ca 2+ signals that can propagate through organized functional networks. Recent literature calls for the development of techniques that can stimulate astrocytes in a fast and highly localized manner to emulate more closely the characteristics of astrocytic Ca 2+ signals in vivo. In this article we demonstrate, for the first time, how nanosecond UV lasers are capable of reproducibly stimulating Ca 2+ transients in human hNT astrocytes. We report that laser pulses with a beam energy of 4-29 µJ generate transient increases in cytosolic Ca 2+ . These Ca 2+ transients then propagate to adjacent astrocytes as intercellular Ca 2+ waves. We propose that nanosecond laser stimulation provides a valuable tool for enabling the study of Ca 2+ dynamics in human astrocytes at both a single cell and network level. Compared to previously developed techniques nanosecond laser stimulation has the advantage of not requiring loading of photo-caged or -sensitising agents, is non-contact, enables stimulation with a high spatiotemporal resolution and is comparatively cost effective.

  17. Engineering Data Compendium. Human Perception and Performance. Volume 2

    Science.gov (United States)

    1988-01-01

    Solanch Consultant J.W. Whitlow Rutgers University Section 10.0 Effects of Environmental Stressors Colin Corbridge Institute of Sound Vibration...surrounding discs. Human Factors, 14, 139-148. 2. Drury , C, & Clement. M. (1978). The effect of area, density, and number of background charac- ters...nontargets are often difficult to distinguish. Key References * 1. Drury , C., & Clement, M. (1978). The effect of area, density, and number of

  18. Proteolytically modified human beta 2-microglobulin augments the specific cytotoxic activity in murine mixed lymphocyte culture

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Claësson, M H

    1987-01-01

    the endogenous production of interleukin 2 in the MLC culture; monoclonal antibody which reacts with both the native beta 2-m and M-beta 2-m molecule blocks the augmentation of cytotoxic T lymphocyte production induced by M-beta 2-m; murine as well as human MLC responder cells can proteolytically modify native......A proteolytically modified form of beta 2-microglobulin (beta 2-m) present in the serum of patients suffering from autoimmune, immunodeficient diseases and cancer has been reported in the literature. In the present study we show that human beta 2-m as well as the proteolytically modified human form...... (M-beta 2-m) bind to murine lymphocytes expressing H-2 class I antigens; M-beta 2-m, when added at day 0 and 1 of culture in nanomolar concentrations to a one-way murine allogeneic mixed lymphocyte culture (MLC) augments the generation of specific cytotoxic T lymphocytes; M-beta 2-m increases...

  19. Phosphorylation and cellular function of the human Rpa2 N-terminus in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ghospurkar, Padmaja L; Wilson, Timothy M; Liu, Shengqin; Herauf, Anna; Steffes, Jenna; Mueller, Erica N; Oakley, Gregory G; Haring, Stuart J

    2015-02-01

    Maintenance of genome integrity is critical for proper cell growth. This occurs through accurate DNA replication and repair of DNA lesions. A key factor involved in both DNA replication and the DNA damage response is the heterotrimeric single-stranded DNA (ssDNA) binding complex Replication Protein A (RPA). Although the RPA complex appears to be structurally conserved throughout eukaryotes, the primary amino acid sequence of each subunit can vary considerably. Examination of sequence differences along with the functional interchangeability of orthologous RPA subunits or regions could provide insight into important regions and their functions. This might also allow for study in simpler systems. We determined that substitution of yeast Replication Factor A (RFA) with human RPA does not support yeast cell viability. Exchange of a single yeast RFA subunit with the corresponding human RPA subunit does not function due to lack of inter-species subunit interactions. Substitution of yeast Rfa2 with domains/regions of human Rpa2 important for Rpa2 function (i.e., the N-terminus and the loop 3-4 region) supports viability in yeast cells, and hybrid proteins containing human Rpa2 N-terminal phospho-mutations result in similar DNA damage phenotypes to analogous yeast Rfa2 N-terminal phospho-mutants. Finally, the human Rpa2 N-terminus (NT) fused to yeast Rfa2 is phosphorylated in a manner similar to human Rpa2 in human cells, indicating that conserved kinases recognize the human domain in yeast. The implication is that budding yeast represents a potential model system for studying not only human Rpa2 N-terminal phosphorylation, but also phosphorylation of Rpa2 N-termini from other eukaryotic organisms. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells.

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    Full Text Available Expression of autonomous bioluminescence from human cells was previously reported to be impossible, suggesting that all bioluminescent-based mammalian reporter systems must therefore require application of a potentially influential chemical substrate. While this was disproven when the bacterial luciferase (lux cassette was demonstrated to function in a human cell, its expression required multiple genetic constructs, was functional in only a single cell type, and generated a significantly reduced signal compared to substrate-requiring systems. Here we investigate the use of a humanized, viral 2A-linked lux genetic architecture for the efficient introduction of an autobioluminescent phenotype across a variety of human cell lines.The lux cassette was codon optimized and assembled into a synthetic human expression operon using viral 2A elements as linker regions. Human kidney, breast cancer, and colorectal cancer cell lines were both transiently and stably transfected with the humanized operon and the resulting autobioluminescent phenotype was evaluated using common imaging instrumentation. Autobioluminescent cells were screened for cytotoxic effects resulting from lux expression and their utility as bioreporters was evaluated through the demonstration of repeated monitoring of single populations over a prolonged period using both a modified E-SCREEN assay for estrogen detection and a classical cytotoxic compound detection assay for the antibiotic Zeocin. Furthermore, the use of self-directed bioluminescent initiation in response to target detection was assessed to determine its amenability towards deployment as fully autonomous sensors. In all cases, bioluminescent measurements were supported with traditional genetic and transcriptomic evaluations.Our results demonstrate that the viral 2A-linked, humanized lux genetic architecture successfully produced autobioluminescent phenotypes in all cell lines tested without the induction of cytotoxicity

  1. Crystallization and preliminary X-ray analysis of the V domain of human nectin-2

    International Nuclear Information System (INIS)

    Qian, Xiaomin; Qi, Jianxun; Chu, Fuliang; Liu, Jun; Li, Qing; Yan, Jinghua

    2009-01-01

    Crystals of the V domain of human nectin-2 diffracted to 1.85 Å resolution and were monoclinic, belonging to space group P2 1 , with unit-cell parameters a = 52.3, b = 43.9, c = 56.1 Å, β = 118.2°. Nectin-2 belongs to a family of immunoglobulin-like cell adhesion molecules that are characterized by the presence of three immunoglobulin-like domains (V, C2 and C2) in the extracellular region. The V domain plays important roles in cell adhesion, NK cell activation and the entry of some herpesvirus. In this study, the V domain of human nectin-2 was expressed in Escherichia coli in the form of inclusion bodies, which were subsequently denatured and refolded. The soluble protein was crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to 1.85 Å resolution and belonged to space group P2 1 , with unit-cell parameters a = 52.3, b = 43.9, c = 56.1 Å, β = 118.2°

  2. Extracts from Calendula officinalis offer in vitro protection against H2 O2 induced oxidative stress cell killing of human skin cells.

    Science.gov (United States)

    Alnuqaydan, Abdullah M; Lenehan, Claire E; Hughes, Rachel R; Sanderson, Barbara J

    2015-01-01

    The in vitro safety and antioxidant potential of Calendula officinalis flower head extracts was investigated. The effect of different concentrations (0.125, 0.5, 1.0, 2.0 and 5.0% (v/v)) of Calendula extracts on human skin cells HaCaT in vitro was explored. Doses of 1.0% (v/v) (0.88 mg dry weight/mL) or less showed no toxicity. Cells were also exposed to the Calendula extracts for either 4, 24 or 48 h before being exposed to an oxidative insult (hydrogen peroxide H2 O2 ) for 1 h. Using the MTT cytotoxicity assay, it was observed that two independent extracts of C. officinalis gave time-dependent and concentration-dependent H2 O2 protection against induced oxidative stress in vitro using human skin cells. Pre-incubation with the Calendula extracts for 24 and 48 h increased survival relative to the population without extract by 20% and 40% respectively following oxidative challenge. The antioxidant potential of the Calendula extracts was confirmed using a complimentary chemical technique, the DPPH(●) assay. Calendula extracts exhibited free radical scavenging abilities. This study demonstrates that Calendula flower extracts contain bioactive and free radical scavenging compounds that significantly protect against oxidative stress in a human skin cell culture model. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Percutaneous penetration of 2-phenoxyethanol through rat and human skin.

    Science.gov (United States)

    Roper, C S; Howes, D; Blain, P G; Williams, F M

    1997-01-01

    2-Phenoxyethanol applied in methanol was absorbed (64 +/- 4.4% at 24 hr) through unoccluded rat skin in vitro in the static diffusion cell with ethanol/water as receptor fluid. By comparison (43 +/- 3.7% in 24 hr) was absorbed in the flow-through diffusion system with tissue culture medium as receptor fluid. 2-Phenoxyethanol applied in methanol was absorbed (59.3 +/- 7.0% at 6 hr) through unoccluded human skin in vitro in the flow-through diffusion cell with tissue culture medium. With both unoccluded cells, 2-phenoxyethanol was lost by evaporation but occlusion of the static cell reduced evaporation and increased total absorption to 98.8 +/- 7.0%. Skin, post mitochondrial fraction, metabolized phenoxyethanol to phenoxyacetic acid at 5% of the rate for liver. Metabolism was inhibited by 1 mM pyrazole, suggesting involvement of alcohol dehydrogenase. However, first-pass metabolism of phenoxyethanol to phenoxyacetic acid was not detected during percutaneous penetration through viable rat skin in the flow-through system. First-pass metabolism in the skin does not therefore have an influence on systemic availability of dermally absorbed phenoxyethanol. These measures of phenoxyethanol absorption through rat and human skin in vitro agree well with those obtained previously in vivo.

  4. In vitro biotransformation of tris(2-butoxyethyl) phosphate (TBOEP) in human liver and serum

    Energy Technology Data Exchange (ETDEWEB)

    Van den Eede, Nele, E-mail: nele.vandeneede@uantwerpen.be [Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium); Erratico, Claudio [Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium); Exarchou, Vassiliki [Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium); Maho, Walid; Neels, Hugo [Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium); Covaci, Adrian, E-mail: adrian.covaci@uantwerpen.be [Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium)

    2015-04-15

    Tris(2-butoxyethyl) phosphate (TBOEP) is a plasticizer present in indoor dust, reaching levels of several micrograms per gram. Such levels could lead to significant daily exposure of adults and children. Currently, no toxicokinetic data are available to estimate TBOEP clearance in humans after uptake and therefore, one objective of this study was to investigate intrinsic clearance of TBOEP by human liver microsome (HLM) and serum enzymes. Another objective was to generate information to identify and prioritize several metabolites of TBOEP for investigation of human exposure by biomonitoring. 1D and 2D-NMR methodologies were successfully applied on a mixture of the metabolites to confirm the structure of 3-HO-TBOEP (bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate) and to tentatively assign structures to 1-HO-TBOEP and 2-HO-TBOEP. HO-TBOEP isomers and bis(2-butoxyethyl) phosphate (BBOEP), bis(2-butoxyethyl) hydroxyethyl phosphate (BBOEHEP) were further monitored by liquid chromatography–tandem mass spectrometry. Rates of formation of BBOEHEP and HO-TBOEP metabolites by liver enzymes were best described by the Michaelis–Menten model. Apparent K{sub m} values for BBOEHEP, 3-HO-TBOEP, and sum of 1- and 2-HO-TBOEP isomer formation were 152, 197 and 148 μM, respectively. Apparent V{sub max} values for the formation of BBOEHEP, 3-HO-TBOEP, and the sum of 1- and 2-HO-TBOEP isomers were 2560, 643, and 254 pmol/min/mg protein, respectively. No detectable formation of BBOEP occurred with liver or serum enzymes. Our findings indicate that intrinsic clearance of TBOEP is mainly catalyzed by oxidative enzymes in the liver and that its major in vitro metabolite is BBOEHEP. These findings can be applied in human biomonitoring studies and risk assessment. - Highlights: • First steps in the elucidation of TBOEP toxicokinetics • Quantification of TBOEP metabolites in human serum and liver microsomes • No detectable formation of BBOEP occurred with liver or serum

  5. Updated indicators of Swedish national human toxicity and ecotoxicity footprints using USEtox 2.01

    Energy Technology Data Exchange (ETDEWEB)

    Nordborg, Maria, E-mail: maria.nordborg@chalmers.se [Division of Physical Resource Theory, Department of Energy and Environment, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Arvidsson, Rickard [Division of Environmental Systems Analysis, Department of Energy and Environment, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Finnveden, Göran [KTH Royal Institute of Technology, Division of Environmental Strategies Research, SE-100 44 Stockholm (Sweden); Cederberg, Christel [Division of Physical Resource Theory, Department of Energy and Environment, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Sörme, Louise [Statistics Sweden, Regions and Environment Department, SE-104 51 Stockholm (Sweden); Palm, Viveka [KTH Royal Institute of Technology, Division of Environmental Strategies Research, SE-100 44 Stockholm (Sweden); Statistics Sweden, Regions and Environment Department, SE-104 51 Stockholm (Sweden); Stamyr, Kristin [KTH Royal Institute of Technology, Division of Environmental Strategies Research, SE-100 44 Stockholm (Sweden); Molander, Sverker [Division of Environmental Systems Analysis, Department of Energy and Environment, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden)

    2017-01-15

    In a recent paper, Sörme et al. (Environ. Impact Assess. Rev., 56, 2016), took a first step towards an indicator of a national chemical footprint, and applied it to Sweden. Using USEtox 1.01, they calculated national impact potentials for human toxicity and ecotoxicity. The results showed that zinc dominated impacts, both for human toxicity and ecotoxicity. We calculated updated indicators of the Swedish national human toxicity and ecotoxicity footprint using USEtox 2.01. We also compared impact potentials based on USEtox with the mass of chemical emissions. The two model versions produced relatively consistent results. Zinc is still a major contributor to the human toxicity and ecotoxicity impact potentials when characterized with USEtox 2.01. The mass-based indicator pinpoints somewhat different substances than the impact-based indicators. - Highlights: • USEtox 1.01 and 2.01 are relatively consistent in identifying the substances with largest impact potentials. • Metals were identified as a priority group of substances for both human toxicity and ecotoxicity. • Zinc is a major contributor to the human toxicity impact potential, in both model versions. • Zinc’s dominance concerning human toxicity sharply contrasts results from other studies: this is somewhat of a paradox. • Using the mass of chemical emissions as a simplified indicator pinpoints somewhat different substances.

  6. Updated indicators of Swedish national human toxicity and ecotoxicity footprints using USEtox 2.01

    International Nuclear Information System (INIS)

    Nordborg, Maria; Arvidsson, Rickard; Finnveden, Göran; Cederberg, Christel; Sörme, Louise; Palm, Viveka; Stamyr, Kristin; Molander, Sverker

    2017-01-01

    In a recent paper, Sörme et al. (Environ. Impact Assess. Rev., 56, 2016), took a first step towards an indicator of a national chemical footprint, and applied it to Sweden. Using USEtox 1.01, they calculated national impact potentials for human toxicity and ecotoxicity. The results showed that zinc dominated impacts, both for human toxicity and ecotoxicity. We calculated updated indicators of the Swedish national human toxicity and ecotoxicity footprint using USEtox 2.01. We also compared impact potentials based on USEtox with the mass of chemical emissions. The two model versions produced relatively consistent results. Zinc is still a major contributor to the human toxicity and ecotoxicity impact potentials when characterized with USEtox 2.01. The mass-based indicator pinpoints somewhat different substances than the impact-based indicators. - Highlights: • USEtox 1.01 and 2.01 are relatively consistent in identifying the substances with largest impact potentials. • Metals were identified as a priority group of substances for both human toxicity and ecotoxicity. • Zinc is a major contributor to the human toxicity impact potential, in both model versions. • Zinc’s dominance concerning human toxicity sharply contrasts results from other studies: this is somewhat of a paradox. • Using the mass of chemical emissions as a simplified indicator pinpoints somewhat different substances.

  7. BCL2-BH4 antagonist BDA-366 suppresses human myeloma growth.

    Science.gov (United States)

    Deng, Jiusheng; Park, Dongkyoo; Wang, Mengchang; Nooka, Ajay; Deng, Qiaoya; Matulis, Shannon; Kaufman, Jonathan; Lonial, Sagar; Boise, Lawrence H; Galipeau, Jacques; Deng, Xingming

    2016-05-10

    Multiple myeloma (MM) is a heterogeneous plasma cell malignancy and remains incurable. B-cell lymphoma-2 (BCL2) protein correlates with the survival and the drug resistance of myeloma cells. BH3 mimetics have been developed to disrupt the binding between BCL2 and its pro-apoptotic BCL2 family partners for the treatment of MM, but with limited therapeutic efficacy. We recently identified a small molecule BDA-366 as a BCL2 BH4 domain antagonist, converting it from an anti-apoptotic into a pro-apoptotic molecule. In this study, we demonstrated that BDA-366 induces robust apoptosis in MM cell lines and primary MM cells by inducing BCL2 conformational change. Delivery of BDA-366 substantially suppressed the growth of human MM xenografts in NOD-scid/IL2Rγnull mice, without significant cytotoxic effects on normal hematopoietic cells or body weight. Thus, BDA-366 functions as a novel BH4-based BCL2 inhibitor and offers an entirely new tool for MM therapy.

  8. MUC1-C activates EZH2 expression and function in human cancer cells.

    Science.gov (United States)

    Rajabi, Hasan; Hiraki, Masayuki; Tagde, Ashujit; Alam, Maroof; Bouillez, Audrey; Christensen, Camilla L; Samur, Mehmet; Wong, Kwok-Kin; Kufe, Donald

    2017-08-07

    The EZH2 histone methyltransferase is a member of the polycomb repressive complex 2 (PRC2) that is highly expressed in diverse human cancers and is associated with a poor prognosis. MUC1-C is an oncoprotein that is similarly overexpressed in carcinomas and has been linked to epigenetic regulation. A role for MUC1-C in regulating EZH2 and histone methylation is not known. Here, we demonstrate that targeting MUC1-C in diverse human carcinoma cells downregulates EZH2 and other PRC2 components. MUC1-C activates (i) the EZH2 promoter through induction of the pRB→E2F pathway, and (ii) an NF-κB p65 driven enhancer in exon 1. We also show that MUC1-C binds directly to the EZH2 CXC region adjacent to the catalytic SET domain and associates with EZH2 on the CDH1 and BRCA1 promoters. In concert with these results, targeting MUC1-C downregulates EZH2 function as evidenced by (i) global and promoter-specific decreases in H3K27 trimethylation (H3K27me3), and (ii) activation of tumor suppressor genes, including BRCA1. These findings highlight a previously unreported role for MUC1-C in activating EZH2 expression and function in cancer cells.

  9. Structure of the gene for human β2-adrenergic receptor: expression and promoter characterization

    International Nuclear Information System (INIS)

    Emorine, L.J.; Marullo, S.; Delavier-Klutchko, C.; Kaveri, S.V.; Durieu-Trautmann, O.; Strosberg, A.D.

    1987-01-01

    The genomic gene coding for the human β 2 -adrenergic receptor (β 2 AR) from A431 epidermoid cells has been isolated. Transfection of the gene into eukaryotic cells restores a fully active receptor/GTP-binding protein/adenylate cyclase complex with β 2 AR properties. Southern blot analyses with β 2 AR-specific probes show that a single β 2 AR gene is common to various human tissues and that its flanking sequences are highly conserved among humans and between man and rabbit, mouse, and hamster. Functional significance of these regions is supported by the presence of a promoter region (including mRNA cap sites, two TATA boxes, a CAAT box, and three G + C-rich regions that resemble binding sites for transcription factor Sp1) 200-300 base pairs 5' to the translation initiation codon. In the 3' flanking region, sequences homologous to glucocorticoid-response elements might be responsible for the increased expression of the β 2 AR gene observed after treatment of the transfected cells with hydrocortisone. In addition, 5' to the promoter region, an open reading frame encodes a 251-residue polypeptide that displays striking homologies with protein kinases and other nucleotide-binding proteins

  10. Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase.

    Science.gov (United States)

    Pettersson, Par L; Johansson, Ann-Sofie; Mannervik, Bengt

    2002-08-16

    A major goal in protein engineering is the tailor-making of enzymes for specified chemical reactions. Successful attempts have frequently been based on directed molecular evolution involving libraries of random mutants in which variants with desired properties were identified. For the engineering of enzymes with novel functions, it would be of great value if the necessary changes of the active site could be predicted and implemented. Such attempts based on the comparison of similar structures with different substrate selectivities have previously met with limited success. However, the present work shows that the knowledge-based redesign restricted to substrate-binding residues in human glutathione transferase A2-2 can introduce high steroid double-bond isomerase activity into the enzyme originally characterized by glutathione peroxidase activity. Both the catalytic center activity (k(cat)) and catalytic efficiency (k(cat)/K(m)) match the values of the naturally evolved glutathione transferase A3-3, the most active steroid isomerase known in human tissues. The substrate selectivity of the mutated glutathione transferase was changed 7000-fold by five point mutations. This example demonstrates the functional plasticity of the glutathione transferase scaffold as well as the potential of rational active-site directed mutagenesis as a complement to DNA shuffling and other stochastic methods for the redesign of proteins with novel functions.

  11. Tributyltin induces a G2/M cell cycle arrest in human amniotic cells via PP2A inhibition-mediated inactivation of the ERK1/2 cascades.

    Science.gov (United States)

    Zhang, Yali; Guo, Zonglou; Xu, Lihong

    2014-03-01

    The molecular mechanisms underlying the cell cycle alterations induced by tributyltin (TBT), a highly toxic environmental contaminant, remain elusive. In this study, cell cycle progression and some key regulators in G2/M phase were investigated in human amniotic cells treated with TBT. Furthermore, protein phosphatase (PP) 2A and the ERK cascades were examined. The results showed that TBT caused a G2/M cell cycle arrest that was accompanied by a decrease in the total cdc25C protein level and an increase in the p-cdc2 level in the nucleus. TBT caused a decrease in PP2A activity and inhibited the ERK cascade by inactivating Raf-1, resulting in the dephosphorylation of MEK1/2, ERK1/2, and c-Myc. Taken together, TBT leads to a G2/M cell cycle arrest in FL cells, an increase in p-cdc2 and a decrease in the levels of total cdc25C protein, which may be caused by the PP2A inhibition-mediated inactivation of the ERK1/2 cascades. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A humanized anti-M2 scFv shows protective in vitro activity against influenza

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M [Los Alamos National Laboratory; Velappan, Nileena [Los Alamos National Laboratory; Schmidt, Jurgen G [Los Alamos National Laboratory

    2008-01-01

    M2 is one of the most conserved influenza proteins, and has been widely prospected as a potential universal vaccine target, with protection predominantly mediated by antibodies. In this paper we describe the creation of a humanized single chain Fv from 14C2, a potent monoclonal antibody against M2. We show that the humanized scFv demonstrates similar activity to the parental mAb: it is able to recognize M2 in its native context on cell surfaces and is able to show protective in vitro activity against influenza, and so represents a potential lead antibody candidate for universal prophylactic or therapeutic intervention in influenza.

  13. Structural modeling and in silico analysis of human superoxide dismutase 2.

    Directory of Open Access Journals (Sweden)

    Mariana Dias Castela de Carvalho

    Full Text Available Aging in the world population has increased every year. Superoxide dismutase 2 (Mn-SOD or SOD2 protects against oxidative stress, a main factor influencing cellular longevity. Polymorphisms in SOD2 have been associated with the development of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, as well as psychiatric disorders, such as schizophrenia, depression and bipolar disorder. In this study, all of the described natural variants (S10I, A16V, E66V, G76R, I82T and R156W of SOD2 were subjected to in silico analysis using eight different algorithms: SNPeffect, PolyPhen-2, PhD-SNP, PMUT, SIFT, SNAP, SNPs&GO and nsSNPAnalyzer. This analysis revealed disparate results for a few of the algorithms. The results showed that, from at least one algorithm, each amino acid substitution appears to harmfully affect the protein. Structural theoretical models were created for variants through comparative modelling performed using the MHOLline server (which includes MODELLER and PROCHECK and ab initio modelling, using the I-Tasser server. The predicted models were evaluated using TM-align, and the results show that the models were constructed with high accuracy. The RMSD values of the modelled mutants indicated likely pathogenicity for all missense mutations. Structural phylogenetic analysis using ConSurf revealed that human SOD2 is highly conserved. As a result, a human-curated database was generated that enables biologists and clinicians to explore SOD2 nsSNPs, including predictions of their effects and visualisation of the alignment of both the wild-type and mutant structures. The database is freely available at http://bioinfogroup.com/database and will be regularly updated.

  14. Large scale genotype comparison of human papillomavirus E2-host interaction networks provides new insights for e2 molecular functions.

    Science.gov (United States)

    Muller, Mandy; Jacob, Yves; Jones, Louis; Weiss, Amélie; Brino, Laurent; Chantier, Thibault; Lotteau, Vincent; Favre, Michel; Demeret, Caroline

    2012-01-01

    Human Papillomaviruses (HPV) cause widespread infections in humans, resulting in latent infections or diseases ranging from benign hyperplasia to cancers. HPV-induced pathologies result from complex interplays between viral proteins and the host proteome. Given the major public health concern due to HPV-associated cancers, most studies have focused on the early proteins expressed by HPV genotypes with high oncogenic potential (designated high-risk HPV or HR-HPV). To advance the global understanding of HPV pathogenesis, we mapped the virus/host interaction networks of the E2 regulatory protein from 12 genotypes representative of the range of HPV pathogenicity. Large-scale identification of E2-interaction partners was performed by yeast two-hybrid screenings of a HaCaT cDNA library. Based on a high-confidence scoring scheme, a subset of these partners was then validated for pair-wise interaction in mammalian cells with the whole range of the 12 E2 proteins, allowing a comparative interaction analysis. Hierarchical clustering of E2-host interaction profiles mostly recapitulated HPV phylogeny and provides clues to the involvement of E2 in HPV infection. A set of cellular proteins could thus be identified discriminating, among the mucosal HPV, E2 proteins of HR-HPV 16 or 18 from the non-oncogenic genital HPV. The study of the interaction networks revealed a preferential hijacking of highly connected cellular proteins and the targeting of several functional families. These include transcription regulation, regulation of apoptosis, RNA processing, ubiquitination and intracellular trafficking. The present work provides an overview of E2 biological functions across multiple HPV genotypes.

  15. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV☆

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D.; Wondrak, Georg T.

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  16. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV.

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D; Wondrak, Georg T

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  17. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV

    Directory of Open Access Journals (Sweden)

    Shasha Tao

    2013-01-01

    Full Text Available Exposure to solar ultraviolet (UV radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2, a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I, dihydrotanshinone (DHT, tanshinone IIA (T-II-A and cryptotanshinone (CT] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1 with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA. The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities was significantly attenuated in DHT

  18. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors

    Directory of Open Access Journals (Sweden)

    Peh Bee

    2009-01-01

    Full Text Available Abstract Background Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2. Methods Oncogenic potential of TRIP-Br2 was demonstrated by (1 inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2 comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs. Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Results Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. Conclusion This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer.

  19. A human gut phage catalog correlates the gut phageome with type 2 diabetes.

    Science.gov (United States)

    Ma, Yingfei; You, Xiaoyan; Mai, Guoqin; Tokuyasu, Taku; Liu, Chenli

    2018-02-01

    Substantial efforts have been made to link the gut bacterial community to many complex human diseases. Nevertheless, the gut phages are often neglected. In this study, we used multiple bioinformatic methods to catalog gut phages from whole-community metagenomic sequencing data of fecal samples collected from both type II diabetes (T2D) patients (n = 71) and normal Chinese adults (n = 74). The definition of phage operational taxonomic units (pOTUs) and identification of large phage scaffolds (n = 2567, ≥ 10 k) revealed a comprehensive human gut phageome with a substantial number of novel sequences encoding genes that were unrelated to those in known phages. Interestingly, we observed a significant increase in the number of gut phages in the T2D group and, in particular, identified 7 pOTUs specific to T2D. This finding was further validated in an independent dataset of 116 T2D and 109 control samples. Co-occurrence/exclusion analysis of the bacterial genera and pOTUs identified a complex core interaction between bacteria and phages in the human gut ecosystem, suggesting that the significant alterations of the gut phageome cannot be explained simply by co-variation with the altered bacterial hosts. Alterations in the gut bacterial community have been linked to the chronic disease T2D, but the role of gut phages therein is not well understood. This is the first study to identify a T2D-specific gut phageome, indicating the existence of other mechanisms that might govern the gut phageome in T2D patients. These findings suggest the importance of the phageome in T2D risk, which warrants further investigation.

  20. Effects of Mitochondrial Uncoupling Protein 2 Inhibition by Genipin in Human Cumulus Cells

    Directory of Open Access Journals (Sweden)

    Hongshan Ge

    2015-01-01

    Full Text Available UCP2 plays a physiological role by regulating mitochondrial biogenesis, maintaining energy balance, ROS elimination, and regulating cellular autophagy in numerous tissues. But the exact roles of UCP2 in cumulus cells are still not clear. Genipin, a special UCP2 inhibitor, was added into the cultural medium to explore the roles of UCP2 in human cumulus cells. There were no significant differences in ATP and mitochondrial membrane potential levels in cumulus cells from UCP2 inhibiting groups as compared with the control. The levels of ROS and Mn-SOD were markedly elevated after UCP2 inhibited Genipin. However, the ratio of reduced GSH to GSSG significantly declined after treatment with Genipin. UCP2 inhibition by Genipin also resulted in obvious increase in the active caspase-3, which accompanied the decline of caspase-3 mRNA. The level of progesterone in culture medium declined obviously after Genipin treatment. But there was no significant difference in estradiol concentrations. This study indicated that UCP2 is expressed in human cumulus cells and plays important roles on mediate ROS production, apoptotic process, and steroidogenesis, suggesting UCP2 may be involved in regulation of follicle development and oocyte maturation and quality.

  1. Functional characterisation of an engineered multidomain human P450 2E1 by molecular Lego.

    Science.gov (United States)

    Fairhead, Michael; Giannini, Silva; Gillam, Elizabeth M J; Gilardi, Gianfranco

    2005-12-01

    The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (KM=1.84+/-0.09 mM and kcat of 2.98+/-0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (KM=0.65+/-0.08 mM and kcat of 0.95+/-0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.

  2. Chimeric DNA Vaccines against ErbB2{sup +} Carcinomas: From Mice to Humans

    Energy Technology Data Exchange (ETDEWEB)

    Quaglino, Elena; Riccardo, Federica; Macagno, Marco; Bandini, Silvio; Cojoca, Rodica; Ercole, Elisabetta [Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin (Italy); Amici, Augusto [Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy); Cavallo, Federica, E-mail: federica.cavallo@unito.it [2 Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy)

    2011-08-10

    DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2{sup +} carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.

  3. Syntheses and biological activities of novel 2-methoxyestradiol analogs, 2-fluoroethoxyestradiol and 2-fluoropropanoxyestradiol, and a radiosynthesis of 2-[18F]fluoroethoxyestradiol for positron emission tomography

    International Nuclear Information System (INIS)

    Mun Jiyoung; Wang Yuefang; Voll, Ronald J.; Escuin-Borras, Daniel; Giannakakou, Paraskevi; Goodman, Mark M.

    2008-01-01

    Introduction: 2-Methoxyestradiol (2ME2) is an endogenous metabolite of the human hormone, estrogen, which has been shown to possess anti-tumor activity. 2-Fluoroethoxyestradiol (2FEE2) and 2-fluoropropanoxyestradiol (2FPE2), novel analogs of 2-methoxyestradiol, were designed and synthesized to be utilized as F-18 radiotracers for positron emission tomography (PET), with which the bio-distribution and intratumoral accumulations of 2ME2 could be measured in vivo for potential translation to human use. Methods: 2FEE2 and 2FPE2 were synthesized from 3,17β-estradiol in five steps respectively. Drug-induced microtubule depolymerization, antiproliferative activity against human cancer cell lines and HIF-1α down-regulation by 2FEE2 and 2FPE2 were investigated to examine whether these molecules possess similar anti-tumor activities as 2-methoxyestradiol. 2-[ 18 F]Fluoroethoxyestradiol was synthesized for PET. Results: Novel 2ME2 analogs, 2FEE2 and 2FPE2, were synthesized in 29% and 22% overall yield, respectively. 2FEE2 and 2FPE2 showed microtubule depolymerization and cytotoxicities against the human ovarian carcinoma cell line, 1A9, and the human glioma cell line, LN229. HIF-1α was down-regulated by 2FEE2 and 2FPE2 under hypoxic conditions. 2FEE2 was chosen as an F-18 radiotracer candidate, since it showed stronger antiproliferative activity than 2ME2 and 2FPE2. 2-[ 18 F]Fluoroethoxyestradiol (2[ 18 F]FEE2) was prepared in 8.3% decay-corrected yield in 90 min, based on a production of H[ 18 F]F with more than 98% radiochemical purity. Conclusions: 2FEE2 and 2FPE2 showed similar activity as 2ME2. 2[ 18 F]FEE2 was synthesized to be utilized as a PET radiotracer to measure the biological efficacy of 2ME2 and its analogs in vivo

  4. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Alejandro Guzmán-Silva

    Full Text Available Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF. As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a a single Ca2+ spike which could be followed by b Ca2+ oscillations, c a sustained Ca2+ plateau or d a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ, Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF.

  5. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.

    Science.gov (United States)

    Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong

    2017-07-01

    Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize

  6. The effects of a cyclooxygenase-2 (COX-2 expression and inhibition on human uveal melanoma cell proliferation and macrophage nitric oxide production

    Directory of Open Access Journals (Sweden)

    Marshall Jean-Claude

    2007-01-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2 expression has previously been identified in uveal melanoma although the biological role of COX-2 in this intraocular malignancy has not been elucidated. This study aimed to investigate the effect of a COX-2 inhibitor on the proliferation rate of human uveal melanoma cells, as well as its effect on the cytotoxic response of macrophages. Methods Human uveal melanoma cell lines were transfected to constitutively express COX-2 and the proliferative rate of these cells using two different methods, with and without the addition of Amfenac, was measured. Nitric oxide production by macrophages was measured after exposure to melanoma-conditioned medium from both groups of cells as well as with and without Amfenac, the active metabolite of Nepafenac. Results Cells transfected to express COX-2 had a higher proliferation rate than those that did not. The addition of Amfenac significantly decreased the proliferation rate of all cell lines. Nitric oxide production by macrophages was inhibited by the addition of melanoma conditioned medium, the addition of Amfenac partially overcame this inhibition. Conclusion Amfenac affected both COX-2 transfected and non-transfected uveal melanoma cells in terms of their proliferation rates as well as their suppressive effects on macrophage cytotoxic activity.

  7. Creation of miniature pig model of human Waardenburg syndrome type 2A by ENU mutagenesis.

    Science.gov (United States)

    Hai, Tang; Guo, Weiwei; Yao, Jing; Cao, Chunwei; Luo, Ailing; Qi, Meng; Wang, Xianlong; Wang, Xiao; Huang, Jiaojiao; Zhang, Ying; Zhang, Hongyong; Wang, Dayu; Shang, Haitao; Hong, Qianlong; Zhang, Rui; Jia, Qitao; Zheng, Qiantao; Qin, Guosong; Li, Yongshun; Zhang, Tao; Jin, Weiwu; Chen, Zheng-Yi; Wang, Hongmei; Zhou, Qi; Meng, Anming; Wei, Hong; Yang, Shiming; Zhao, Jianguo

    2017-11-01

    Human Waardenburg syndrome 2A (WS2A) is a dominant hearing loss (HL) syndrome caused by mutations in the microphthalmia-associated transcription factor (MITF) gene. In mouse models with MITF mutations, WS2A is transmitted in a recessive pattern, which limits the study of hearing loss (HL) pathology. In the current study, we performed ENU (ethylnitrosourea) mutagenesis that resulted in substituting a conserved lysine with a serine (p. L247S) in the DNA-binding domain of the MITF gene to generate a novel miniature pig model of WS2A. The heterozygous mutant pig (MITF +/L247S ) exhibits a dominant form of profound HL and hypopigmentation in skin, hair, and iris, accompanied by degeneration of stria vascularis (SV), fused hair cells, and the absence of endocochlear potential, which indicate the pathology of human WS2A. Besides hypopigmentation and bilateral HL, the homozygous mutant pig (MITF L247S/L247S ) and CRISPR/Cas9-mediated MITF bi-allelic knockout pigs both exhibited anophthalmia. Three WS2 patients carrying MITF mutations adjacent to the corresponding region were also identified. The pig models resemble the clinical symptom and molecular pathology of human WS2A patients perfectly, which will provide new clues for better understanding the etiology and development of novel treatment strategies for human HL.

  8. Identification of intracellular phospholipases A2 in the human eye: involvement in phagocytosis of photoreceptor outer segments

    DEFF Research Database (Denmark)

    Kolko, Miriam; Wang, Jinmei; Zhan, Chen

    2007-01-01

    PURPOSE: To identify intracellular phospholipases A(2) (PLA(2)) in the human retina and to explore the role of these enzymes in human retinal pigment epithelium (RPE) phagocytosis of photoreceptor outer segments (POS). METHODS: PCR amplification and Western blot analysis were used to identify m......)-VIA activity was found to be specifically increased 12 hours after ARPE-19 cells were fed with POS. Finally, RPE phagocytosis was inhibited by the iPLA(2)-VIA inhibitor bromoenol lactone. CONCLUSIONS: Various intracellular PLA(2) subtypes are present in the human retina. iPLA(2)-VIA may play...

  9. Striatal dopamine release and genetic variation of the serotonin 2C receptor in humans.

    Science.gov (United States)

    Mickey, Brian J; Sanford, Benjamin J; Love, Tiffany M; Shen, Pei-Hong; Hodgkinson, Colin A; Stohler, Christian S; Goldman, David; Zubieta, Jon-Kar

    2012-07-04

    Mesoaccumbal and nigrostriatal projections are sensitive to stress, and heightened stress sensitivity is thought to confer risk for neuropsychiatric disorders. Serotonin 2C (5-HT(2C)) receptors mediate the inhibitory effects of serotonin on dopaminergic circuitry in experimental animals, and preclinical findings have implicated 5-HT(2C) receptors in motivated behaviors and psychotropic drug mechanisms. In humans, a common missense single-nucleotide change (rs6318, Cys23Ser) in the 5-HT(2C) receptor gene (HTR2C) has been associated with altered activity in vitro and with clinical mood disorders. We hypothesized that dopaminergic circuitry would be more sensitive to stress in humans carrying the Ser23 variant. To test this hypothesis, we studied 54 healthy humans using positron emission tomography and the displaceable D(2)/D(3) receptor radiotracer [(11)C]raclopride. Binding potential (BP(ND)) was quantified before and after a standardized stress challenge consisting of 20 min of moderate deep muscular pain, and reduction in BP(ND) served as an index of dopamine release. The Cys23Ser variant was genotyped on a custom array, and ancestry informative markers were used to control for population stratification. We found greater dopamine release in the nucleus accumbens, caudate nucleus, and putamen among Ser23 carriers, after controlling for sex, age, and ancestry. Genotype accounted for 12% of the variance in dopamine release in the nucleus accumbens. There was no association of Cys23Ser with baseline BP(ND). These findings indicate that a putatively functional HTR2C variant (Ser23) is associated with greater striatal dopamine release during pain in healthy humans. Mesoaccumbal stress sensitivity may mediate the effects of HTR2C variation on risk of neuropsychiatric disorders.

  10. Structure of the thioredoxin-fold domain of human phosducin-like protein 2

    International Nuclear Information System (INIS)

    Lou, Xiaochu; Bao, Rui; Zhou, Cong-Zhao; Chen, Yuxing

    2009-01-01

    The X-ray crystal structure of the Trx-fold domain of hPDCL2 was solved at 2.70 Å resolution and resembled the Trx-fold domain of rat phosducin. Human phosducin-like protein 2 (hPDCL2) has been identified as belonging to subgroup II of the phosducin (Pdc) family. The members of this family share an N-terminal helix domain and a C-terminal thioredoxin-fold (Trx-fold) domain. The X-ray crystal structure of the Trx-fold domain of hPDCL2 was solved at 2.70 Å resolution and resembled the Trx-fold domain of rat phosducin. Comparative structural analysis revealed the structural basis of their putative functional divergence

  11. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    Science.gov (United States)

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  12. Crystallization and preliminary X-ray diffraction analysis of human endoplasmic reticulum aminopeptidase 2

    International Nuclear Information System (INIS)

    Ascher, David B.; Polekhina, Galina; Parker, Michael W.

    2012-01-01

    The luminal domain of human endoplasmic reticulum aminopeptidase 2 has been expressed, purified and crystallized. The crystals belonged to the orthorhombic space group P2 1 2 1 2 and diffracted anisotropically to 3.3 Å resolution in the best direction on an in-house source. Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a critical enzyme involved in the final processing of MHC class I antigens. Peptide trimming by ERAP2 and the other members of the oxytocinase subfamily is essential to customize longer precursor peptides in order to fit them to the correct length required for presentation on major histocompatibility complex class I molecules. While recent structures of ERAP1 have provided an understanding of the ‘molecular-ruler’ mechanism of substrate selection, little is known about the complementary activities of its homologue ERAP2 despite their sharing 49% sequence identity. In order to gain insights into the structure–function relationship of the oxytocinase subfamily, and in particular ERAP2, the luminal region of human ERAP2 has been crystallized in the presence of the inhibitor bestatin. The crystals belonged to an orthorhombic space group and diffracted anisotropically to 3.3 Å resolution in the best direction on an in-house X-ray source. A molecular-replacement solution suggested that the enzyme has adopted the closed state as has been observed in other inhibitor-bound aminopeptidase structures

  13. Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

  14. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK

    International Nuclear Information System (INIS)

    Li, Wei; Man, Xiao-Yong; Li, Chun-Ming; Chen, Jia-Qi; Zhou, Jiong; Cai, Sui-Qing; Lu, Zhong-Fa; Zheng, Min

    2012-01-01

    Vascular endothelial growth factor (VEGF) is one of the strongest regulators of physiological and pathological angiogenesis. VEGF receptor 2 (VEGFR-2), the primary receptor for VEGF, is thought to mediate major functional effects of VEGF. Previously, we have localized both VEGF and VEGFR-2 in human hair follicles. In this study, we further defined the expression and roles of VEGFR-2 on human hair follicle dermal papilla (DP) cells. The expression of VEGFR-2 on DP cells was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis separately, and localization of VEGFR-2 was defined by immunofluorescence. The effect of VEGF on DP cells was analyzed by MTT assays and specific inhibitors. Finally, the role of VEGF involved in the signaling pathways was investigated by Western blot. RT-PCR and Western blot analysis demonstrated the expression of VEGFR-2 on DP cells. Immunostaining for VEGFR-2 showed strong signal on cultured human DP cells in vitro. Exogenous VEGF 165 stimulated proliferation of DP cells in a dose-dependent manner. Furthermore, this stimulation was blocked by a VEGFR-2 neutralizing antibody (MAB3571) and an ERK inhibitor (PD98059). VEGF 165 -induced phosphorylation of ERK1/2 was abolished by MAB3571 and PD98059, while the phosphorylation of p38, JNK and AKT were not changed by VEGF 165 . Taken together, VEGFR-2 is expressed on primary human hair follicle DP cells and VEGF induces proliferation of DP cells through VEGFR-2/ERK pathway, but not p38, JNK or AKT signaling. -- Highlights: ► We examine the expression of VEGFR-2 on cultured human dermal papilla (DP) cells. ► VEGF 165 stimulated proliferation of human DP cells in a dose-dependent manner. ► This stimulation was through VEGFR-2-mediated activation of ERK.

  15. Protection of Human Podocytes from Shiga Toxin 2-Induced Phosphorylation of Mitogen-Activated Protein Kinases and Apoptosis by Human Serum Amyloid P Component

    Science.gov (United States)

    Dettmar, Anne K.; Binder, Elisabeth; Greiner, Friederike R.; Liebau, Max C.; Kurschat, Christine E.; Jungraithmayr, Therese C.; Saleem, Moin A.; Schmitt, Claus-Peter; Feifel, Elisabeth; Orth-Höller, Dorothea; Kemper, Markus J.; Pepys, Mark; Würzner, Reinhard

    2014-01-01

    Hemolytic uremic syndrome (HUS) is mainly induced by Shiga toxin 2 (Stx2)-producing Escherichia coli. Proteinuria can occur in the early phase of the disease, and its persistence determines the renal prognosis. Stx2 may injure podocytes and induce proteinuria. Human serum amyloid P component (SAP), a member of the pentraxin family, has been shown to protect against Stx2-induced lethality in mice in vivo, presumably by specific binding to the toxin. We therefore tested the hypothesis that SAP can protect against Stx2-induced injury of human podocytes. To elucidate the mechanisms underlying podocyte injury in HUS-associated proteinuria, we assessed Stx2-induced activation of mitogen-activated protein kinases (MAPKs) and apoptosis in immortalized human podocytes and evaluated the impact of SAP on Stx2-induced damage. Human podocytes express Stx2-binding globotriaosylceramide 3. Stx2 applied to cultured podocytes was internalized and then activated p38α MAPK and c-Jun N-terminal kinase (JNK), important signaling steps in cell differentiation and apoptosis. Stx2 also activated caspase 3, resulting in an increased level of apoptosis. Coincubation of podocytes with SAP and Stx2 mitigated the effects of Stx2 and induced upregulation of antiapoptotic Bcl2. These data suggest that podocytes are a target of Stx2 and that SAP protects podocytes against Stx2-induced injury. SAP may therefore be a useful therapeutic option. PMID:24566618

  16. Egyptian Journal of Medical Human Genetics - Vol 13, No 2 (2012)

    African Journals Online (AJOL)

    Egyptian Journal of Medical Human Genetics - Vol 13, No 2 (2012) ... as independent indicators for B-CLL: Correlation to response to treatment and disease ... Profile of disorders of sexual differentiation in the Northeast region of Cairo, Egypt ...

  17. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.

    Science.gov (United States)

    Forslund, Kristoffer; Hildebrand, Falk; Nielsen, Trine; Falony, Gwen; Le Chatelier, Emmanuelle; Sunagawa, Shinichi; Prifti, Edi; Vieira-Silva, Sara; Gudmundsdottir, Valborg; Pedersen, Helle K; Arumugam, Manimozhiyan; Kristiansen, Karsten; Voigt, Anita Yvonne; Vestergaard, Henrik; Hercog, Rajna; Costea, Paul Igor; Kultima, Jens Roat; Li, Junhua; Jørgensen, Torben; Levenez, Florence; Dore, Joël; Nielsen, H Bjørn; Brunak, Søren; Raes, Jeroen; Hansen, Torben; Wang, Jun; Ehrlich, S Dusko; Bork, Peer; Pedersen, Oluf

    2015-12-10

    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.

  18. Human phenylalanine hydroxylase is activated by H2O2: a novel mechanism for increasing the L-tyrosine supply for melanogenesis in melanocytes

    International Nuclear Information System (INIS)

    Schallreuter, Karin U.; Wazir, Umar; Kothari, Sonal; Gibbons, Nicholas C.J.; Moore, Jeremy; Wood, John M.

    2004-01-01

    Epidermal phenylalanine hydroxylase (PAH) produces L-tyrosine from the essential amino acid L-phenylalanine supporting melanogenesis in human melanocytes. Those PAH activities increase linearly in the different skin phototypes I-VI (Fitzpatrick classification) and also increase up to 24 h after UVB light with only one minimal erythemal dose. Since UVB generates also H 2 O 2 , we here asked the question whether this reactive oxygen species could influence the activity of pure recombinant human PAH. Under saturating conditions with the substrate L-phenylalanine (1 x 10 -3 M), the V max for enzyme activity increased 4-fold by H 2 O 2 (>2.0 x 10 -3 M). Lineweaver-Burk analysis identified a mixed activation mechanism involving both the regulatory and catalytic domains of PAH. Hyperchem molecular modelling and Deep View analysis support oxidation of the single Trp 120 residue to 5-OH-Trp 120 by H 2 O 2 causing a conformational change in the regulatory domain. PAH was still activated by H 2 O 2 in the presence of the electron donor/cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin despite slow oxidation of this cofactor. In vivo FT-Raman spectroscopy confirmed decreased epidermal phenylalanine in association with increased tyrosine after UVB exposure. Hence, generation of H 2 O 2 by UVB can activate epidermal PAH leading to an increased L-tyrosine pool for melanogenesis

  19. Synergistic role of Sprouty2 inactivation and c-Met up-regulation in mouse and human hepatocarcinogenesis.

    Science.gov (United States)

    Lee, Susie A; Ladu, Sara; Evert, Matthias; Dombrowski, Frank; De Murtas, Valentina; Chen, Xin; Calvisi, Diego F

    2010-08-01

    Sprouty2 (Spry2), a negative feedback regulator of the Ras/mitogen-activated protein kinase (MAPK) pathway, is frequently down-regulated in human hepatocellular carcinoma (HCC). We tested the hypothesis that loss of Spry2 cooperates with unconstrained activation of the c-Met protooncogene to induce hepatocarcinogenesis via in vitro and in vivo approaches. We found coordinated down-regulation of Spry2 protein expression and activation of c-Met as well as its downstream effectors extracellular signal-regulated kinase (ERK) and v-akt murine thymoma viral oncogene homolog (AKT) in a subset of human HCC samples with poor outcome. Mechanistic studies revealed that Spry2 function is disrupted in human HCC via multiple mechanisms at both transcriptional and post-transcriptional level, including promoter hypermethylation, loss of heterozygosity, and proteosomal degradation by neural precursor cell expressed, developmentally down-regulated 4 (NEDD4). In HCC cell lines, Spry2 overexpression inhibits c-Met-induced cell proliferation as well as ERK and AKT activation, whereas loss of Spry2 potentiates c-Met signaling. Most importantly, we show that blocking Spry2 activity via a dominant negative form of Spry2 cooperates with c-Met to promote hepatocarcinogenesis in the mouse liver by sustaining proliferation and angiogenesis. The tumors exhibited high levels of activated ERK and AKT, recapitulating the subgroup of human HCC with a clinically aggressive phenotype. The occurrence of frequent genetic, epigenetic, and biochemical events leading to Spry2 inactivation provides solid evidence that Spry2 functions as a tumor suppressor gene in liver cancer. Coordinated deregulation of Spry2 and c-Met signaling may be a pivotal oncogenic mechanism responsible for unrestrained activation of ERK and AKT pathways in human hepatocarcinogenesis.

  20. Regulation of laminin beta2 chain gene expression in human cancer cell lines

    DEFF Research Database (Denmark)

    Durkin, M E; Nielsen, F C; Loechel, F

    2001-01-01

    of the human laminin beta2 chain gene generates two isoforms of the 5' untranslated region of the beta2 chain mRNA. The translational efficiencies of the two laminin beta2 chain leaders did not differ significantly, when assayed by polysome profile analysis of endogenous clone A cell beta2 chain m......RNA, transient transfection of chimeric beta2 chain leader/luciferase expression plasmids in clone A cells, and translation of in vitro synthesized RNAs in rabbit reticulocyte lysates....

  1. Recombinant human bone morphogenetic protein 2 in augmentation procedures: case reports.

    Science.gov (United States)

    Luiz, Jaques; Padovan, Luis Eduardo Marques; Claudino, Marcela

    2014-01-01

    To successfully rehabilitate edentulous patients using endosseous implants, there must be enough available bone. Several techniques have been proposed for augmentation of sites with insufficient bone volume. Although autogenous bone has long been considered the gold standard for such procedures, the limited availability of graft material and a high morbidity rate are potential disadvantages of this type of graft. An alternative is to use recombinant human bone morphogenetic protein 2 (rhBMP-2), which is able to support bone regeneration in the oral environment. These cases demonstrate the applicability of rhBMP-2 in maxillary sinus elevation and augmentation procedures in the maxilla to enable dental implant placement. The use of rhBMP-2 in alveolar augmentation procedures had several clinical benefits for these patients.

  2. Large scale genotype comparison of human papillomavirus E2-host interaction networks provides new insights for e2 molecular functions.

    Directory of Open Access Journals (Sweden)

    Mandy Muller

    Full Text Available Human Papillomaviruses (HPV cause widespread infections in humans, resulting in latent infections or diseases ranging from benign hyperplasia to cancers. HPV-induced pathologies result from complex interplays between viral proteins and the host proteome. Given the major public health concern due to HPV-associated cancers, most studies have focused on the early proteins expressed by HPV genotypes with high oncogenic potential (designated high-risk HPV or HR-HPV. To advance the global understanding of HPV pathogenesis, we mapped the virus/host interaction networks of the E2 regulatory protein from 12 genotypes representative of the range of HPV pathogenicity. Large-scale identification of E2-interaction partners was performed by yeast two-hybrid screenings of a HaCaT cDNA library. Based on a high-confidence scoring scheme, a subset of these partners was then validated for pair-wise interaction in mammalian cells with the whole range of the 12 E2 proteins, allowing a comparative interaction analysis. Hierarchical clustering of E2-host interaction profiles mostly recapitulated HPV phylogeny and provides clues to the involvement of E2 in HPV infection. A set of cellular proteins could thus be identified discriminating, among the mucosal HPV, E2 proteins of HR-HPV 16 or 18 from the non-oncogenic genital HPV. The study of the interaction networks revealed a preferential hijacking of highly connected cellular proteins and the targeting of several functional families. These include transcription regulation, regulation of apoptosis, RNA processing, ubiquitination and intracellular trafficking. The present work provides an overview of E2 biological functions across multiple HPV genotypes.

  3. Alu Sb2 subfamily is present in all higher primates but was most succesfully amplified in humans

    Energy Technology Data Exchange (ETDEWEB)

    Richer, C.; Zietkiewicz, E.; Labuda, D. [Universite de Montreal, Que (Canada)

    1994-09-01

    Alu repeats can be classified into subfamilies which amplified in primate genomes at different evolutionary time periods. A young Alu subfamily, Sb2, with a characteristic 7-nucleotide duplication at position 256, has been described in seven human loci. An Sb2 insertion found near the HD gene was unique to two HD families, indicating that Sb2 was still retropositionally active. Here, we have shown that the Sb2 insertion in the CHOL locus was similarly rare, being absent in 120 individuals of Caucasian, Oriental and Black origin. In contrast, Sb2 inserts in five other loci were found fixed (non-polymorphic), based on measurements in the same population sample, but absent from orthologous positions in higher apes. This suggest that Sb2 repeats spread relatively early in the human lineage following divergence from other primates and that these elements may be human-specific. By quantitative PCR, we investigated the presence of Sb2 sequences in different primate DNA, using one PCR primer anchored at the 5{prime} Alu-end and the other complementary to the duplicated Sb2-specific segment. With an Sb2-containing plasmid as a standard, we estimated the number of Sb2 repeats at 1500-1800 copies per human haploid equivalent; corresponding numbers in chimpanzee and gorilla were almost two orders of magnitude lower, while the signal observed in orangutan and gibbon DNAs was consistent with the presence of a single copy. The analysis of 22 human, 11 chimpanzee and 10 gorilla sequences indicates that the Alu Sb2 dispersed independently in these three primate lineages; gorilla consensus differs from the human Sb2 sequence by one position, while all chimpanzee repeats have their linker expanded by up to eight A-residues. Should they be thus considered as separate subfamilies? It is possible that sequence modifications with respect to the human consensus are responsible for poor retroposition of Sb2 in apes.

  4. Masturbation to Orgasm Stimulates the Release of the Endocannabinoid 2-Arachidonoylglycerol in Humans.

    Science.gov (United States)

    Fuss, Johannes; Bindila, Laura; Wiedemann, Klaus; Auer, Matthias K; Briken, Peer; Biedermann, Sarah V

    2017-11-01

    Endocannabinoids are critical for rewarding behaviors such as eating, physical exercise, and social interaction. The role of endocannabinoids in mammalian sexual behavior has been suggested because of the influence of cannabinoid receptor agonists and antagonists on rodent sexual activity. However, the involvement of endocannabinoids in human sexual behavior has not been studied. To investigate plasma endocannabinoid levels before and after masturbation in healthy male and female volunteers. Plasma levels of the endocannabinoids 2-arachidonoylglycerol (2-AG), anandamide, the endocannabinoid-like lipids oleoyl ethanolamide and palmitoyl ethanolamide, arachidonic acid, and cortisol before and after masturbation to orgasm. In study 1, endocannabinoid and cortisol levels were measured before and after masturbation to orgasm. In study 2, masturbation to orgasm was compared with a control condition using a single-blinded, randomized, 2-session crossover design. In study 1, masturbation to orgasm significantly increased plasma levels of the endocannabinoid 2-AG, whereas anandamide, oleoyl ethanolamide, palmitoyl ethanolamide, arachidonic acid, and cortisol levels were not altered. In study 2, only masturbation to orgasm, not the control condition, led to a significant increase in 2-AG levels. Interestingly, we also found a significant increase of oleoyl ethanolamide after masturbation to orgasm in study 2. Endocannabinoids might play an important role in the sexual response cycle, leading to possible implications for the understanding and treatment of sexual dysfunctions. We found an increase of 2-AG through masturbation to orgasm in 2 studies including a single-blinded randomized design. The exact role of endocannabinoid release as part of the sexual response cycle and the biological significance of the finding should be studied further. Cannabis and other drug use and the attainment of orgasm were self-reported in the present study. Our data indicate that the

  5. Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant

    Science.gov (United States)

    Yin, Jie; Mobarec, Juan Carlos; Kolb, Peter; Rosenbaum, Daniel M.

    2015-03-01

    The orexin (also known as hypocretin) G protein-coupled receptors (GPCRs) respond to orexin neuropeptides in the central nervous system to regulate sleep and other behavioural functions in humans. Defects in orexin signalling are responsible for the human diseases of narcolepsy and cataplexy; inhibition of orexin receptors is an effective therapy for insomnia. The human OX2 receptor (OX2R) belongs to the β branch of the rhodopsin family of GPCRs, and can bind to diverse compounds including the native agonist peptides orexin-A and orexin-B and the potent therapeutic inhibitor suvorexant. Here, using lipid-mediated crystallization and protein engineering with a novel fusion chimaera, we solved the structure of the human OX2R bound to suvorexant at 2.5 Å resolution. The structure reveals how suvorexant adopts a π-stacked horseshoe-like conformation and binds to the receptor deep in the orthosteric pocket, stabilizing a network of extracellular salt bridges and blocking transmembrane helix motions necessary for activation. Computational docking suggests how other classes of synthetic antagonists may interact with the receptor at a similar position in an analogous π-stacked fashion. Elucidation of the molecular architecture of the human OX2R expands our understanding of peptidergic GPCR ligand recognition and will aid further efforts to modulate orexin signalling for therapeutic ends.

  6. [Effect of losartan on human platelet activation by thromboxane A2].

    Science.gov (United States)

    Guerra, J I; Montón, M; Rodríguez-Feo, J A; Farré, J; Jiménez, A M; Núñez, A; Gómez, J; Rico, L; Marcos, P; Castilla, C; Sánchez De Miguel, L; Casado, S; López-Farré, A

    2000-04-01

    Previous studies have demonstrated that losartan, an AT-1 receptor antagonist of angiotensin II (Ang II) could block the receptor of thromboxane A2 (TXA2) in the vascular wall. The aim of the present study was to assess the effect of losartan on human platelet activation. Platelets were obtained from 15 healthy men between the age 26 and 40. Platelet activation was measured by changes in the light transmission of platelet-rich plasma stimulated by a synthetic TXA2 analogue, U46619 (5 x 10(-6) mol/l). The U46619-stimulated platelet aggregation was significantly inhibited by losartan in a dose-response manner. Only a high dose of EXP 3174 (5 10-5 mol/l), the in vivo active metabolite of losartan, was able to attenuate U46619-induced platelet activation. Captopril, an angiotensin I-converting inhibitor failed to modify U46619-induced platelet aggregation. Despite the platelets expressing AT-1 type receptors, of Ang II exogenous Ang II did not modify platelet aggregation induced by U46619. The binding of U46619 to platelets was competitively inhibited by losartan in dose-dependent manner. However, only a high dose of EXP 3174 reduced the binding of U46619. Captopril failed to modify the binding of U46619 to platelets. Losartan decreased platelet aggregation by a TXA2-dependent mechanism. EXP 3174 showed a lesser potency than losartan to reduce TXA2-platelet activation. Captopril and exogenous angiotensin II had no effect on human platelet activation. These results suggest that losartan reduced TXA2-dependent platelet activation independently of the blockade of AT-1 receptors.

  7. Function and regulation of AUTS2, a gene implicated in autism and human evolution.

    Directory of Open Access Journals (Sweden)

    Nir Oksenberg

    Full Text Available Nucleotide changes in the AUTS2 locus, some of which affect only noncoding regions, are associated with autism and other neurological disorders, including attention deficit hyperactivity disorder, epilepsy, dyslexia, motor delay, language delay, visual impairment, microcephaly, and alcohol consumption. In addition, AUTS2 contains the most significantly accelerated genomic region differentiating humans from Neanderthals, which is primarily composed of noncoding variants. However, the function and regulation of this gene remain largely unknown. To characterize auts2 function, we knocked it down in zebrafish, leading to a smaller head size, neuronal reduction, and decreased mobility. To characterize AUTS2 regulatory elements, we tested sequences for enhancer activity in zebrafish and mice. We identified 23 functional zebrafish enhancers, 10 of which were active in the brain. Our mouse enhancer assays characterized three mouse brain enhancers that overlap an ASD-associated deletion and four mouse enhancers that reside in regions implicated in human evolution, two of which are active in the brain. Combined, our results show that AUTS2 is important for neurodevelopment and expose candidate enhancer sequences in which nucleotide variation could lead to neurological disease and human-specific traits.

  8. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    Directory of Open Access Journals (Sweden)

    Adeline M Hajjar

    Full Text Available Although lipopolysaccharide (LPS stimulation through the Toll-like receptor (TLR-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  9. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    Science.gov (United States)

    Hajjar, Adeline M; Ernst, Robert K; Fortuno, Edgardo S; Brasfield, Alicia S; Yam, Cathy S; Newlon, Lindsay A; Kollmann, Tobias R; Miller, Samuel I; Wilson, Christopher B

    2012-01-01

    Although lipopolysaccharide (LPS) stimulation through the Toll-like receptor (TLR)-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  10. Nrf2 protects human bladder urothelial cells from arsenite and monomethylarsonous acid toxicity

    International Nuclear Information System (INIS)

    Wang Xiaojun; Sun Zheng; Chen Weimin; Eblin, Kylee E.; Gandolfi, Jay A.; Zhang, Donna D.

    2007-01-01

    Arsenic is widely spread in our living environment and imposes a big challenge on human health worldwide. Arsenic damages biological systems through multiple mechanisms including the generation of reactive oxygen species. The transcription factor Nrf2 regulates the cellular antioxidant response that protects cells from various insults. In this study, the protective role of Nrf2 in arsenic toxicity was investigated in a human bladder urothelial cell line, UROtsa. Using a UROtsa cell line stably infected with Nrf2-siRNA, we clearly demonstrate that compromised Nrf2 expression sensitized the cells to As(III)- and MMA(III)-induced toxicity. On the other hand, the activation of the Nrf2 pathway by tert-butylhydroquinone (tBHQ) and sulforaphane (SF), the known Nrf2-inducers, rendered UROtsa cells more resistant to As(III) and MMA(III). Furthermore, the wild-type mouse embryo fibroblast (WT-MEF) cells were protected from As(III)- and MMA(III)-induced toxicity following Nrf2 activation by tBHQ or SF, whereas neither tBHQ nor SF conferred protection in the Nrf2 -/- MEF cells, demonstrating that tBHQ- or SF-mediated protection against As(III)- and MMA(III)-induced toxicity depends on Nrf2 activation. These results, obtained by both loss of function and gain of function analyses, clearly demonstrate the protective role of Nrf2 in arsenic-induced toxicity. The current work lays the groundwork for using Nrf2 activators for therapeutic and dietary interventions against adverse effects of arsenic

  11. Derivation of NEM2 affected human embryonic stem cell line Genea079

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea079 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying compound heterozygous mutations in the NEB gene, exon 55 deletion & c.15110dupA, indicative of Nemaline Myopathy Type 2 (NEM2. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XY and STR analysis demonstrated a male Allele pattern. The hESC line had pluripotent cell morphology, 86% of cells expressed Nanog, 95% Oct4, 54% Tra1-60 and 98% SSEA4 and gave a PluriTest Pluripotency score of 30.25, Novelty of 1.21. The cell line was negative for Mycoplasma and visible contamination.

  12. Radioimmunoimaging using F(ab')2 fragment of monoclonal antibodies against human alpha-fetoprotein

    International Nuclear Information System (INIS)

    Sakahara, Harumi; Endo, Keigo; Nakashima, Tetsuo; Koizumi, Mitsuru; Ohta, Hitoya; Torizuka, Kanji; Okada, Kenichiro; Yoshida, Osamu; Nishi, Shinzo.

    1985-01-01

    Using monoclonal antibodies against human α-fetoprotein (AFP), radioiodinated F(ab') 2 fragments were compared with whole IgG as a radiotracer for radioimmunoimaging of cancer. F(ab') 2 fragments were obtained by pepsin digestion of whole IgG (IgGl). IgG and F(ab') 2 were labeled with 125 I or 131 I by the chloramine-T method with almost full retention of antibody activity. F(ab') 2 fragments were cleared more rapidly from the circulation in normal mice with a half life of 6.3 hours than whole IgG with a half life of 5.5 days. Radioactivity of F(ab') 2 in various organs also decreased faster than IgG. In nude mice transplanted with AFP-producing human testicular tumor, F(ab') 2 fragments demonstrated superior scintigrams to whole IgG at 2 days after the injection, because of the fast disappearance of background radioactivity. Although absolute accumulation of 131 I labeled F(ab') 2 in the tumor was less than that of 131 I labeled IgG, tumor to other organ ratios were much higher with F(ab') 2 than those of IgG. The tumor to blood ratio of 131 I labeled F(ab') 2 was 1.04 at day 2, whereas tumor to blood ratio of 131 I labeled IgG was 0.55 at day 2 and 0.92 at day 4, respectively. These results indicated that for the radiolabeling of monoclonal antibodies, F(ab') 2 fragments would be superior to whole IgG in the radioimmunoimaging of cancer. (author)

  13. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes.

    Science.gov (United States)

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung

    2013-09-05

    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Osteogenesis differentiation of human periodontal ligament cells by CO2 laser-treatment stimulating macrophages via BMP2 signalling pathway

    International Nuclear Information System (INIS)

    Hsieh, Wen-Hui; Chen, Yi-Jyun; Hung, Chi-Jr; Huang, Tsui-Hsien; Kao, Chia-Tze; Shie, Ming-You

    2014-01-01

    Immune reactions play an important role in determining the biostimulation of bone formation, either in new bone formation or inflammatory fibrous tissue encapsulation. Macrophage cell, the important effector cells in the immune reaction, which are indispensable for osteogenesis and their heterogeneity and plasticity, render macrophages a primer target for immune system modulation. However, there are very few studies about the effects of macrophage cells on laser treatment-regulated osteogenesis. In this study, we used CO 2 laser as a model biostimulation to investigate the role of macrophage cells on the CO 2 laser stimulated osteogenesis. Bone morphogenetic protein 2 (BMP2) was also significantly up regulated by the CO 2 laser stimulation, indicating that macrophage may participate in the CO 2 laser stimulated osteogenesis. Interestingly, when laser treatment macrophage-conditioned medium were applied to human periodontal ligament cells (hPDLs), the osteogenesis differentiation of hPDLs was significantly enhanced, indicating the important role of macrophages in CO 2 laser-induced osteogenesis. These findings provided valuable insights into the mechanism of CO 2 laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment. (paper)

  15. Genotypes for the cytochrome P450 enzymes CYP2D6 and CYP2C19 in human longevitY

    DEFF Research Database (Denmark)

    Bathum, L; Andersen-Ranberg, K; Boldsen, J

    1998-01-01

    (PCR). The CYP2D6*5 alleles were identified with a long PCR method. For CYP2C19 we identified the alleles CYP2C19*1, CYP2C19*2 and CYP2C19*3 with an oligonucleotide ligation assay. RESULTS: The four alleles for CYP2D6 did not occur in Hardy-Weinberg proportions. The frequency of poor metabolism...... was slightly higher (10.2%) than expected [7.7%; odds ratio (OR) = 1.36 (0.75-2.40)]. The genotypes for CYP2C19 occur in Hardy-Weinberg proportions. The frequency of poor metabolism (3.8%) was not significantly different from a young control group [3.1%; OR = 1.21 (0.26-5.75)]. CONCLUSION: CYP2D6 could play...... a role in human longevity due to the lack of Hardy-Weinberg proportions. If CYP2D6 only plays a role in longevity by protecting the poor metabolizers from cancer, we should expect a rise in the frequency in these genotypes in Denmark from 7.7% among young adults to 10-11% among very old people. We found...

  16. Enhanced expression of two discrete isoforms of matrix metalloproteinase-2 in experimental and human diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    Full Text Available We recently reported on the enhanced expression of two isoforms of matrix metalloproteinase-2 (MMP-2 in human renal transplantation delayed graft function. These consist of the conventional secreted, full length MMP-2 isoform (FL-MMP-2 and a novel intracellular N-Terminal Truncated isoform (NTT-MMP-2 generated by oxidative stress-mediated activation of an alternate promoter in the MMP-2 first intron. Here we evaluated the effect of hyperglycemia and diabetes mellitus on the in vitro and in vivo expression of the two MMP-2 isoforms.We quantified the abundance of the FL-MMP-2 and NTT-MMP-2 transcripts by qPCR in HK2 cells cultured in high glucose or 4-hydroxy-2-hexenal (HHE and tested the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC. The streptozotocin (STZ murine model of Type I diabetes mellitus and renal biopsies of human diabetic nephropathy were used in this study.Both isoforms of MMP-2 in HK2 cells were upregulated by culture in high glucose or with HHE. PDTC treatment did not suppress high glucose-mediated FL-MMP-2 expression but potently inhibited NTT-MMP-2 expression. With STZ-treated mice, renal cortical expression of both isoforms was increased (FL-MMP-2, 1.8-fold; NTT-MMP-2, greater than 7-fold. Isoform-specific immunohistochemical staining revealed low, but detectable levels of the FL-MMP-2 isoform in controls, while NTT-MMP-2 was not detected. While there was a modest increase in tubular epithelial cell staining for FL-MMP-2 in STZ-treated mice, NTT-MMP-2 was intensely expressed in a basolateral pattern. FL-MMP-2 and NTT-MMP-2 isoform expression as quantified by qPCR were both significantly elevated in renal biopsies of human diabetic nephropathy (12-fold and 3-fold, respectively.The expression of both isoforms of MMP-2 was enhanced in an experimental model of diabetic nephropathy and in human diabetic nephropathy. Selective MMP-2 isoform inhibition could offer a novel approach for the treatment of diabetic renal

  17. Messenger RNA for membrane-type 2 matrix metalloproteinase, MT2-MMP, is expressed in human placenta of first trimester.

    Science.gov (United States)

    Bjørn, S F; Hastrup, N; Larsen, J F; Lund, L R; Pyke, C

    2000-01-01

    An intimately regulated cell surface activation of matrix metalloproteinases (MMPs) is believed to be of critical importance for the control of trophoblast invasion. A histological investigation of the expression and localization of three different MMPs, the membrane-type matrix metalloproteinases 1 and 2 (MT1-MMP, MT2-MMP) and matrix metalloproteinase 2 (MMP-2/gelatinase A) was performed by in situ hybridization on consecutive sections from human placentae of first trimester pregnancies. Cytokeratin immunostaining identified trophoblast cells. Both normal and tubal implantation sites were studied. We observed a high degree of coexpression of MT2-MMP, MT1-MMP and MMP-2 mRNAs in single extravillous cytotrophoblasts that had invaded the endometrium and tubal wall. Furthermore, mRNAs for all three genes were also seen in cytotrophoblasts of cell islands. In contrast to this coexpression pattern, MT2-MMP expression was absent from cell columns and decidual cells, in which signals for MT1-MMP and MMP-2 mRNAs were seen. The present data on the cellular expression of MT2-MMP mRNA in placenta extend our knowledge of the proteolytic events that take place during early pregnancy. The data suggest that MT2-MMP, capable of activating MMP-2 in vitro, is involved in the invasion of extravillous cytotrophoblast, possibly related to the physiological activation of MMP-2. Copyright 2000 Harcourt Publishers Ltd.

  18. Rosemary Extracts Upregulate Nrf2, Sestrin2, and MRP2 Protein Level in Human Hepatoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Xiao-pei Tong

    2017-01-01

    Full Text Available In the past few decades, the incidence of liver cancer has been rapidly rising across the world. Rosemary is known to possess antioxidant activity and is used as natural antioxidant food preservative. It is proposed to have anticancer activity in treating different tumor models. In this study, we try to explore the impact of rosemary extracts on upregulating the level of Nrf2 and Nrf2-regulatory proteins, Sestrin2 and MRP2 in HepG2 cells, and to speculate its potential mechanism. The anticancer activity of rosemary extract, including its polyphenolic diterpenes carnosic acid and carnosol, was evaluated to understand the potential effect on HepG2 cells. Rosemary extract, carnosic acid, and carnosol induced the expression of Sestrin2 and MRP2 associate with enhancement of Nrf2 protein level in HepG2 cells, in which carnosic acid showed most obvious effect. Although the activation pathway of Nrf2/ARE was not exactly assessed, it can be assumed that the enhancement of expression of Sestrin2 and MRP2 may result from upregulation of Nrf