WorldWideScience

Sample records for human teeth pulp

  1. Eugenol Toxicity in Human Dental Pulp Fibroblasts of Primary Teeth.

    Science.gov (United States)

    Escobar-García, Maria; Rodríguez-Contreras, Karen; Ruiz-Rodríguez, Socorro; Pierdant-Pérez, Mauricio; Cerda-Cristerna, Bernardino; Pozos-Guillén, Amaury

    2016-01-01

    The aim of the study was to determine the eugenol concentrations at which toxicity occurs in human dental pulp fibroblasts of primary teeth. Samples of primary dental pulp tissue were taken. Tissue samples were seeded by means of explant technique and used in the 4(th)-5th pass. Single Cell Gel Electrophoresis (Comet), phenazine MeThoSulfate (MTS), LIVE/DEAD Cell Viability/Toxicity and trypan blue assays for evaluation of the cytotoxicity of increasing concentrations of eugenol (0.06 to 810 μM) were performed. The results of toxicity tests showed toxic effects on dental pulp fibroblasts, even at very low concentrations of eugenol (0.06 μM). Very low concentrations of eugenol produce high toxicity in human dental pulp fibroblasts. All of the concentrations of eugenol that we evaluated produced high toxicity in human dental pulp fibroblasts of primary teeth.

  2. Isolation of Mesenchymal Stem Cells from Human Deciduous Teeth Pulp

    Directory of Open Access Journals (Sweden)

    Aileen I. Tsai

    2017-01-01

    Full Text Available This study aimed to identify predictors of success rate of mesenchymal stem cell (MSC isolation from human deciduous teeth pulp. A total of 161 deciduous teeth were extracted at the dental clinic of Chang Gung Memorial Hospital. The MSCs were isolated from dental pulps using a standard protocol. In total, 128 colonies of MSCs were obtained and the success rate was 79.5%. Compared to teeth not yielding MSCs successfully, those successfully yielding MSCs were found to have less severe dental caries (no/mild-to-moderate/severe: 63.3/24.2/12.5% versus 12.5/42.4/42.4%, P<0.001 and less frequent pulpitis (no/yes: 95.3/4.7% versus 51.5/48.5%, P<0.001. In a multivariate regression model, it was confirmed that the absence of dental caries (OR = 4.741, 95% CI = 1.564–14.371, P=0.006 and pulpitis (OR = 9.111, 95% CI = 2.921–28.420, P<0.001 was significant determinants of the successful procurement of MSCs. MSCs derived from pulps with pulpitis expressed longer colony doubling time than pulps without pulpitis. Furthermore, there were higher expressions of proinflammatory cytokines, interleukin- (IL- 6 and monocyte chemoattractant protein- (MCP- 1, P<0.01, and innate immune response [toll-like receptor 1 (TLR1 and TLR8, P<0.05; TLR2, TLR3, and TLR6, P<0.01] in the inflamed than noninflamed pulps. Therefore, a carious deciduous tooth or tooth with pulpitis was relatively unsuitable for MSC processing and isolation.

  3. Isolation of Mesenchymal Stem Cells from Human Deciduous Teeth Pulp

    Science.gov (United States)

    Tsai, Aileen I.; Hong, Hsiang-Hsi; Fu, Jen-Fen; Chang, Chih-Chun; Wang, I-Kuan; Huang, Wen-Hung; Weng, Cheng-Hao; Hsu, Ching-Wei

    2017-01-01

    This study aimed to identify predictors of success rate of mesenchymal stem cell (MSC) isolation from human deciduous teeth pulp. A total of 161 deciduous teeth were extracted at the dental clinic of Chang Gung Memorial Hospital. The MSCs were isolated from dental pulps using a standard protocol. In total, 128 colonies of MSCs were obtained and the success rate was 79.5%. Compared to teeth not yielding MSCs successfully, those successfully yielding MSCs were found to have less severe dental caries (no/mild-to-moderate/severe: 63.3/24.2/12.5% versus 12.5/42.4/42.4%, P pulpitis (no/yes: 95.3/4.7% versus 51.5/48.5%, P pulpitis (OR = 9.111, 95% CI = 2.921–28.420, P pulpitis expressed longer colony doubling time than pulps without pulpitis. Furthermore, there were higher expressions of proinflammatory cytokines, interleukin- (IL-) 6 and monocyte chemoattractant protein- (MCP-) 1, P pulpitis was relatively unsuitable for MSC processing and isolation. PMID:28377925

  4. Comparative Gene Expression Analysis of the Coronal Pulp and Apical Pulp Complex in Human Immature Teeth.

    Science.gov (United States)

    Kim, Soo-Hyun; Kim, Seunghye; Shin, Yooseok; Lee, Hyo-Seol; Jeon, Mijeong; Kim, Seong-Oh; Cho, Sung-Won; Ruparel, Nikita B; Song, Je Seon

    2016-05-01

    This study determined the gene expression profiles of the human coronal pulp (CP) and apical pulp complex (APC) with the aim of explaining differences in their functions. Total RNA was isolated from the CP and APC, and gene expression was analyzed using complementary DNA microarray technology. Gene ontology analysis was used to classify the biological function. Quantitative reverse-transcription polymerase chain reaction and immunohistochemical staining were performed to verify microarray data. In the microarray analyses, expression increases of at least 2-fold were present in 125 genes in the APC and 139 genes in the CP out of a total of 33,297 genes. Gene ontology class processes found more genes related to immune responses, cell growth and maintenance, and cell adhesion in the APC, whereas transport and neurogenesis genes predominated in the CP. Quantitative reverse-transcription polymerase chain reaction and immunohistochemical staining confirmed the microarray results, with DMP1, CALB1, and GABRB1 strongly expressed in the CP, whereas SMOC2, SHH, BARX1, CX3CR1, SPP1, COL XII, and LAMC2 were strongly expressed in the APC. The expression levels of genes related to dentin mineralization, neurogenesis, and neurotransmission are higher in the CP in human immature teeth, whereas those of immune-related and tooth development-related genes are higher in the APC. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Distinctive genetic activity pattern of the human dental pulp between deciduous and permanent teeth.

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    Full Text Available Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition, their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These suggest differences in gene expression and regulation, and in this study we compared gene-expression profiles of the human dental pulp from deciduous and permanent teeth. Pulp tissues from permanent premolars and deciduous molars aged 11-14 years were extirpated and mRNA was isolated for cDNA microarray analysis, and quantitative real-time PCR (qPCR. Other teeth were used for immunohistochemical analysis (IHC. Microarray analysis identified 263 genes with a twofold or greater difference in expression level between the two types of pulp tissue, 43 and 220 of which were more abundant in deciduous and permanent pulp tissues, respectively. qPCR analysis was conducted for eight randomly selected genes, and the findings were consistent with the cDNA microarray results. IHC confirmed that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1 was broadly expressed in deciduous dental pulp tissue, but minimally expressed in permanent dental pulp tissue. Immunohistochemical analysis showed that calbindin 1 (CALB1, leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5, and gamma-aminobutyric acid A receptor beta 1 (GABRB1 were abundantly expressed in permanent predentin/odontoblasts, but only minimally expressed in deciduous dental pulp tissue. These results show that deciduous and permanent pulp tissues have different characteristics and gene expression, suggesting that they may have different functions and responses to therapies focused on pulp or dentin regeneration.

  6. Distinctive Genetic Activity Pattern of the Human Dental Pulp between Deciduous and Permanent Teeth

    Science.gov (United States)

    Kim, Ji-Hee; Jeon, Mijeong; Song, Je-Seon; Lee, Jae-Ho; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; DenBesten, Pamela K.; Kim, Seong-Oh

    2014-01-01

    Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition, their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These suggest differences in gene expression and regulation, and in this study we compared gene-expression profiles of the human dental pulp from deciduous and permanent teeth. Pulp tissues from permanent premolars and deciduous molars aged 11–14 years were extirpated and mRNA was isolated for cDNA microarray analysis, and quantitative real-time PCR (qPCR). Other teeth were used for immunohistochemical analysis (IHC). Microarray analysis identified 263 genes with a twofold or greater difference in expression level between the two types of pulp tissue, 43 and 220 of which were more abundant in deciduous and permanent pulp tissues, respectively. qPCR analysis was conducted for eight randomly selected genes, and the findings were consistent with the cDNA microarray results. IHC confirmed that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was broadly expressed in deciduous dental pulp tissue, but minimally expressed in permanent dental pulp tissue. Immunohistochemical analysis showed that calbindin 1 (CALB1), leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), and gamma-aminobutyric acid A receptor beta 1 (GABRB1) were abundantly expressed in permanent predentin/odontoblasts, but only minimally expressed in deciduous dental pulp tissue. These results show that deciduous and permanent pulp tissues have different characteristics and gene expression, suggesting that they may have different functions and responses to therapies focused on pulp or dentin regeneration. PMID:25047033

  7. Isolation and Characterization of Human Dental Pulp Stem Cells from Cryopreserved Pulp Tissues Obtained from Teeth with Irreversible Pulpitis.

    Science.gov (United States)

    Malekfar, Azin; Valli, Kusum S; Kanafi, Mohammad Mahboob; Bhonde, Ramesh R

    2016-01-01

    Human dental pulp stem cells (DPSCs) are becoming an attractive target for therapeutic purposes because of their neural crest origin and propensity. Although DPSCs can be successfully cryopreserved, there are hardly any reports on cryopreservation of dental pulp tissues obtained from teeth diagnosed with symptomatic irreversible pulpitis during endodontic treatment and isolation and characterization of DPSCs from such cryopreserved pulp. The aim of this study was to cryopreserve the said pulp tissues to propagate and characterize isolated DPSCs. A medium consisting of 90% fetal bovine serum and 10% dimethyl sulfoxide was used for cryopreservation of pulp tissues. DPSCs were isolated from fresh and cryopreserved pulp tissues using an enzymatic method. Cell viability and proliferation were determined using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. DPSC migration and interaction were analyzed with the wound healing assay. Mesenchymal characteristics of DPSCs were verified by flow cytometric analysis of cell surface CD markers. The osteogenic and adipogenic potential of DPSCs was shown by von Kossa and oil red O staining methods, respectively, and the polymerase chain reaction method. We found no significant difference in CD marker expression and osteogenic and adipogenic differentiation potential of DPSCs obtained from fresh and cryopreserved dental pulp tissue. Our study shows that dental pulp can be successfully cryopreserved without losing normal characteristics and differentiation potential of their DPSCs, thus making them suitable for dental banking and future therapeutic purposes. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Efficacy of Various Intracanal Medicaments in Human Primary Teeth with Necrotic Pulp against Candida Biofilms: An in vivo Study

    OpenAIRE

    Paikkatt, Jophie V; Sreedharan, Sheela; Philomina, Beena; Kannan, VP; Santhakumar, Madhu; Kumar, TV Anupam

    2017-01-01

    Background Candida has been associated with cases of secondary and persistent root canal infections. The purpose of this study was to evaluate and compare the effectiveness of commonly used intracanal medicament against Candida biofilms found in root canals of human primary teeth with necrotic pulp. Materials and methods Pulp canals of 45 single-rooted primary maxillary anterior teeth with pulp necrosis in 34 children were included in the study. They were divided into three groups of 15 sampl...

  9. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis.

    Science.gov (United States)

    Sun, Hai-Hua; Chen, Bo; Zhu, Qing-Lin; Kong, Hui; Li, Qi-Hong; Gao, Li-Na; Xiao, Min; Chen, Fa-Ming; Yu, Qing

    2014-11-01

    Recently, human dental pulp stem cells (DPSCs) isolated from inflamed dental pulp tissue have been demonstrated to retain some of their pluripotency and regenerative potential. However, the effects of periodontal inflammation due to periodontitis and its progression on the properties of DPSCs within periodontally compromised teeth remain unknown. In this study, DPSCs were isolated from discarded human teeth that were extracted due to aggressive periodontitis (AgP) and divided into three experimental groups (Groups A, B and C) based on the degree of inflammation-induced bone resorption approaching the apex of the tooth root before tooth extraction. DPSCs derived from impacted or non-functional third molars of matched patients were used as a control. Mesenchymal stem cell (MSC)-like characteristics, including colony-forming ability, proliferation, cell cycle, cell surface antigens, multi-lineage differentiation capability and in vivo tissue regeneration potential, were all evaluated in a patient-matched comparison. It was found that STRO-1- and CD146-positive DPSCs can be isolated from human teeth, even in very severe cases of AgP. Periodontal inflammation and its progression had an obvious impact on the characteristics of DPSCs isolated from periodontally affected teeth. Although all the isolated DPSCs in Groups A, B and C showed decreased colony-forming ability and proliferation rate (P cells did not necessarily show significantly diminished in vitro multi-differentiation potential. Only DPSCs from Group A and the Control group formed dentin-like matrix in vivo when cell-seeded biomaterials were transplanted directly into an ectopic transplantation model. However, when cell-seeded scaffolds were placed in the root fragments of human teeth, all the cells formed significant dentin- and pulp-like tissues. The ability of DPSCs to generate dental tissues decreased when the cells were isolated from periodontally compromised teeth (P stem cells with certain MSC properties

  10. Effects of Stem Cell Factor on Cell Homing During Functional Pulp Regeneration in Human Immature Teeth.

    Science.gov (United States)

    Ruangsawasdi, Nisarat; Zehnder, Matthias; Patcas, Raphael; Ghayor, Chafik; Siegenthaler, Barbara; Gjoksi, Bebeka; Weber, Franz E

    2017-02-01

    Conventional root canal treatment in immature permanent teeth can lead to early tooth loss in children because root formation is discontinued. We investigated whether the stem cell factor (SCF) could facilitate cell homing in the pulpless immature root canal and promote regeneration of a functional pulp. In vitro, human mesenchymal stem cells (hMSCs) were exposed to SCF at various concentrations for assessing cell migration, proliferation, and differentiation toward odonto/osteoblasts by 3D-chemotaxis slides, WST-1 assay, and alkaline phosphatase activity, respectively. Fibrin gels were used to deliver 15 μg/mL SCF for in vivo experiments. The release kinetic of SCF was assessed in vitro. Two corresponding human immature premolars, with or without SCF, were placed at rat calvariae for 6 and 12 weeks. All tooth specimens were either analyzed histologically and the percentage of tissue ingrowth determined or the cells were extracted from the pulp space, and the mRNA level of DMP1, DSPP, Col1, NGF, and VEGF were assessed by quantitative polymerase chain reaction. In the presence of SCF, we saw an increase in hMSCs directional migration, proliferation, and odonto/osteogenic differentiation. SCF also increased the extent of tissue ingrowth at 6 weeks but not at 12 weeks. However, at this time point, the formed tissue appeared more mature in samples with SCF. In terms of gene transcription, DMP1, Col1, and VEGF were the significantly upregulated genes, while DSPP and NGF were not affected. Our results suggest that SCF can accelerate cell homing and the maturation of the pulp-dentin complex in human immature teeth.

  11. Efficacy of Various Intracanal Medicaments in Human Primary Teeth with Necrotic Pulp against Candida Biofilms: An in vivo Study.

    Science.gov (United States)

    Paikkatt, Jophie V; Sreedharan, Sheela; Philomina, Beena; Kannan, V P; Santhakumar, Madhu; Kumar, Tv Anupam

    2017-01-01

    Candida has been associated with cases of secondary and persistent root canal infections. The purpose of this study was to evaluate and compare the effectiveness of commonly used intracanal medicament against Candida biofilms found in root canals of human primary teeth with necrotic pulp. Pulp canals of 45 single-rooted primary maxillary anterior teeth with pulp necrosis in 34 children were included in the study. They were divided into three groups of 15 samples each - group I: Ca(OH)2 (calcium hydroxide); group II: 1% chlorhexidine gel (CHX); and group III: 1% metronidazole gel. Bacterial count was obtained from each tooth at two different stages: (1) after instrumentation, and (2) after placement of the medication. Statistical analysis using the Statistical Package for the Social Sciences version 10.0 software program (Inc., Chicago, IL, USA) with Wilcoxon signed rank test after grouping the samples was performed. Ca(OH)2, 1% CHX gel, and 1% metronidazole gel were ineffective in completely eliminating Candida biofilms from root canal of human primary teeth with necrotic pulp. None of the commonly used intracanal medicaments, i.e., Ca(OH)2, 1% CHX gel, and 1% metronidazole gel, was effective in completely eliminating Candida biofilm from root canal of human primary teeth with necrotic pulp. Ineffectiveness of these medicaments against Candida has opened new door of research regarding the use of suitable intracanal medicaments against single and multispecies biofilms. Paikkatt JV, Sreedharan S, Philomina B, Kannan VP, Santhakumar M, Kumar TVA. Efficacy of Various Intracanal Medicaments in Human Primary Teeth with Necrotic Pulp against Candida Biofilms: An in vivo Study. Int J Clin Pediatr Dent 2017;10(1):45-48.

  12. A Histopathologic Study on Pulp Response to Glass Ionomer Cements in Human Teeth

    Directory of Open Access Journals (Sweden)

    M. Ghavamnasiri

    2005-12-01

    Full Text Available Statement of Problem: Despite the wide range of new dental materials, there is still a need for biomaterials demonstrating high biocompatibility, antimicrobial effects and ideal mechanical properties.Purpose: The aim of this study was to histologically evaluate the pulpal response to a conventional glass ionomer, a resin modified glass ionomer and a calcium hydroxide in human teeth.Materials and Methods: Fifty five deep class V cavities were prepared in premolars of 31 patients and were divided into 3 groups based on application of the following liners:resin modified glass ionomer (Vivaglass Liner, conventional glass ionomer (ChembondSuperior and calcium hydroxide (Dycal. After applying varnish, teeth were filled with amalgam. Each group was further divided into three subgroups according to time intervals of 7, 30 and 60 days. Teeth were then extracted and their crowns were fixed in formalin. Each sample was assessed microscopically for odontoblastic changes,inflammatory cell infiltration, reactionary dentin formation, remaining dentinal thickness and presence of microorganisms. Statistical analysis including Kruskal Wallis and Mann Whitney was carried out for comparison of mean ranks. (P=0.05.Results: In the Vivaglass Liner group, pulpal response was significantly higher on day 7 as compared to days 30 and 60 (P0.05. There was no correlation between pulpal responses with micro-organisms and remaining dentin thickness (P>0.05.Conclusion: According to the results of this study, light-cured glass ionomer as well as the other tested lining materials were determined to be biologically compatible with vital pulps in deep cavities of sound human teeth.

  13. Pulp nerve fibers distribution of human carious teeth: An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2010-12-01

    Full Text Available Background: Human dental pulp is richly innervated by trigeminal afferent axons that subserve nociceptive function. Accordingly, they respond to stimuli that induce injury to the pulp tissue. An injury to the nerve terminals and other tissue components in the pulp stimulate metabolic activation of the neurons in the trigeminal ganglion which result in morphological changes in the peripheral nerve terminals. Purpose: The aim of the study was to observe caries-related changes in the distribution of human pulpal nerve. Methods: Under informed consents, 15 third molars with caries at various stages of decay and 5 intact third molars were extracted because of orthodontic or therapeutic reasons. All samples were observed by micro-computed tomography to confirm the lesion condition 3-dimensionally, before decalcifying with 10% EDTA solution (pH 7.4. The specimens were then processed for immunohistochemistry using anti-protein gene products (PGP 9.5, a specific marker for the nerve fiber. Results: In normal intact teeth, PGP 9.5 immunoreactive nerve fibers were seen concentrated beneath the odontoblast cell layer. Nerve fibers exhibited an increased density along the pulp-dentin border corresponding to the carious lesions. Conclusion: Neural density increases throughout the pulp chamber with the progression of caries. The activity and pathogenicity of the lesion as well as caries depth, might influence the degree of neural sprouting.Latar belakang: Pulpa gigi manusia diinervasi oleh serabut saraf trigeminal yang berespon terhadap stimuli penyebab perlukaan dengan menimbulkan rasa sakit. Perlukaan pada akhiran saraf dan komponen lain dari pulpa akan menstimulasi aktivasi metabolik dari neuron pada ganglion trigeminal sehingga mengakibatkan perubahan morfologi pada akhiran saraf perifer. Tujuan: Penelitian ini bertujuan untuk mengamati perubahan distribusi saraf pada pulpa gigi manusia yang disebabkan oleh proses karies. Metode: Penelitian ini menggunakan

  14. Human dental pulp stem cells derived from cryopreserved dental pulp tissues of vital extracted teeth with disease demonstrate hepatic-like differentiation.

    Science.gov (United States)

    Chen, Y K; Huang, Anderson H C; Chan, Anthony W S; Lin, L M

    2016-06-01

    Reviewing the literature, hepatic differentiation of human dental pulp stem cells (hDPSCs) from cryopreserved dental pulp tissues of vital extracted teeth with disease has not been studied. This study is aimed to evaluate the hypothesis that hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease could possess potential hepatic differentiation. Forty vital extracted teeth with disease recruited for hDPSCs isolation, stem cell characterization and hepatic differentiation were randomly and equally divided into group A (liquid nitrogen-stored dental pulp tissues) and group B (freshly derived dental pulp tissues). Samples of hDPSCs isolated from groups A and B but without hepatic growth factors formed negative controls. A well-differentiated hepatocellular carcinoma cell line was employed as a positive control. All the isolated hDPSCs from groups A and B showed hepatic-like differentiation with morphological change from a spindle-shaped to a polygonal shape and normal karyotype. Differentiated hDPSCs and the positive control expressed hepatic metabolic function genes and liver-specific genes. Glycogen storage of differentiated hDPSCs was noted from day 7 of differentiation-medium culture. Positive immunofluorescence staining of low-density lipoprotein and albumin was observed from day 14 of differentiation-medium culture; urea production in the medium was noted from week 6. No hepatic differentiation was observed for any of the samples of the negative controls. We not only demonstrated the feasibility of hepatic-like differentiation of hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease but also indicated that the differentiated cells possessed normal karyotype and were functionally close to normal hepatic-like cells. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. In vitro Growth and Characterization of Stem Cells from Human Dental Pulp of Deciduous Versus Permanent Teeth

    Directory of Open Access Journals (Sweden)

    M. Shariati

    2010-12-01

    Full Text Available Objective: By date investigations have indicated the presence of stem cells within the pulp tissue of both temporary and permanent human teeth. In the present study, these stem cells were compared in terms of their growth kinetics and culture requirements.Materials and Methods: Stem cells within the pulp of the human third molar (permanent tooth and the deciduous incisor (temporary tooth were isolated, culture-expanded and characterized. Then the proliferation potential of the cells was compared using multiplecell growth indices as PDT (Population doubling time, colonogenic activity and growth curve. Furthermore, the cultures of both cells were optimized for maximal proliferation.Results: Stem cells of either pulp tissue appeared as fibroblastic cells capable of differentiating into osteoblastic, odontoblastic, adipocytic and chondrocytic cell lineages. In contrast to molar stem cells, those from the incisor tooth expressed neurogenic markers of ßIII Tubulin and Tau. Based on in vitro growth data, the cells from third molar tended to have a lower PDT value (20.79, SD=2.8 versus 25.55, SD=2.9 hours, higher colonogenic activity and better growth curve than those from the deciduous incisor (P<0.05. Both cellsexhibited high expansion rate when being plated in a medium with 20% phosphate buffer solution at a density of 100 cells/cm2.Conclusion: Given the high proliferation capacity, the stem cells from the human third molar would be an appropriate candidate for use in experimental, preclinical and even clinical setups.

  16. Clinical, radiographic, and histologic analysis of the effects of acemannan used in direct pulp capping of human primary teeth: short-term outcomes.

    Science.gov (United States)

    Songsiripradubboon, Siriporn; Banlunara, Wijit; Sangvanich, Polkit; Trairatvorakul, Chutima; Thunyakitpisal, Pasutha

    2016-09-01

    Acemannan has been previously reported as a direct pulp-capping agent in animal study. This natural material demonstrated its biocompatibility and enhanced reparative dentin formation. The objective of this study was to investigate the action of acemannan as a direct pulp-capping material in human primary teeth with deep caries. Forty-two deeply carious mandibular primary molars from 37 children, aged 7-11 years old diagnosed with reversible pulpitis were studied. After completely removing the infected dentine, teeth with a pinpoint pulpal exposure were randomly divided into two treatment groups: acemannan or calcium hydroxide. A glass-ionomer cement base was applied to all teeth prior to restoration with stainless steel crowns. Clinical and radiographic evaluation was performed 6 months post-treatment. The teeth due to exfoliate were extracted and histopathologically evaluated for inflammation, dentine bridge formation, and soft tissue organization. At 6 months, the overall clinical and radiographic success rates of direct pulp capping with acemannan and calcium hydroxide at 6 months were 72.73 and 70.0 %, respectively. The histopathological results indicated that the acemannan-treated group had significantly better histopathological responses compared with the calcium hydroxide-treated group (p < 0.05). These data suggest acemannan offers a valuable alternative biomaterial for vital pulp therapy in primary teeth.

  17. Effect of a calcium hydroxide/chlorhexidine paste as intracanal dressing in human primary teeth with necrotic pulp against Porphyromonas gingivalis and Enterococcus faecalis.

    Science.gov (United States)

    Gondim, Juliana O; Avaca-Crusca, Juliana S; Valentini, Sandro R; Zanelli, Cleslei F; Spolidorio, Denise M P; Giro, Elisa M A

    2012-03-01

    Intracanal medication is important for endodontic treatment success as it eliminates microorganisms that persist after biomechanical preparation. Aim.  To evaluate the effect of two intracanal medications against Porphyromonas gingivalis and Enterococcus faecalis in the root canals of human primary teeth with necrotic pulp with and without furcal/periapical lesion, using quantitative real-time polymerase chain reaction (qRT-PCR). Thirty-two teeth with necrotic pulp were used. Twelve teeth did not present lesion, and 20 teeth presented radiographically visible furca/periapical lesion. Microbiological samples were collected after coronal access and biomechanical preparation. The teeth were medicated with calcium hydroxide pastes prepared with either polyethylene glycol or chlorhexidine. After 30days, the medication was removed and a third collection was performed. Microbiological samples were processed using qRT-PCR. Data were analysed by Wilcoxon and Mann-Whitney tests (α=0.05). There was no significant difference in the microbiota present in the primary teeth with and without furcal/periapical lesion. Biomechanical preparation was effective in reducing the number of microorganisms (Pteeth with necrotic pulp with and without furcal/periapical lesion. © 2011 The Authors. International Journal of Paediatric Dentistry © 2011 BSPD, IAPD and Blackwell Publishing Ltd.

  18. Clinical outcomes for teeth treated with electrospun poly(ε-caprolactone) fiber meshes/mineral trioxide aggregate direct pulp capping.

    Science.gov (United States)

    Lee, Li-Wan; Hsiao, Sheng-Huang; Hung, Wei-Chiang; Lin, Yun-Ho; Chen, Po-Yu; Chiang, Chun-Pin

    2015-05-01

    Mineral trioxide aggregate (MTA) is a biocompatible material for direct pulp capping. This study was designed to compare the clinical outcomes of pulp-exposed teeth treated with either poly(ε-caprolactone) fiber mesh (PCL-FM) as a barrier for MTA (so-called PCL-FM/MTA) or MTA direct pulp capping. Sixty human vital teeth were evenly divided into 4 groups (n = 15 in each group). Teeth in groups 1 and 3 had pulp exposure MTA direct pulp capping, and those in groups 3 and 4 were treated with MTA direct pulp capping. Teeth treated with PCL-FM/MTA direct pulp capping needed a significantly shorter mean duration for dentin bridge formation than teeth treated with MTA direct pulp capping. Moreover, teeth with pulp exposure MTA or MTA direct pulp capping treatment. In addition, teeth treated with PCL-FM/MTA direct pulp capping formed an approximately 3-fold thicker dentin bridge than teeth treated with MTA direct pulp capping 8 weeks or 3 months later. Furthermore, none of the teeth treated with PCL-FM/MTA direct pulp capping showed tooth discoloration after treatment for 3 months. PCL-FM/MTA is a better combination material than MTA alone for direct pulp capping of human permanent teeth. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. A review on vital pulp therapy in primary teeth.

    Science.gov (United States)

    Parisay, Iman; Ghoddusi, Jamileh; Forghani, Maryam

    2015-01-01

    Maintaining deciduous teeth in function until their natural exfoliation is absolutely necessary. Vital pulp therapy (VPT) is a way of saving deciduous teeth. The most important factors in success of VPT are the early diagnosis of pulp and periradicular status, preservation of the pulp vitality and proper vascularization of the pulp. Development of new biomaterials with suitable biocompatibility and seal has changed the attitudes towards preserving the reversible pulp in cariously exposed teeth. Before exposure and irreversible involvement of the pulp, indirect pulp capping (IPC) is the treatment of choice, but after the spread of inflammation within the pulp chamber and establishment of irreversible pulpitis, removal of inflamed pulp tissue is recommended. In this review, new concepts in preservation of the healthy pulp tissue in deciduous teeth and induction of the reparative dentin formation with new biomaterials instead of devitalization and the consequent destruction of vital tissues are discussed.

  20. Alkaline phosphatase activity in dental pulp of orthodontically treated teeth.

    Science.gov (United States)

    Perinetti, Giuseppe; Varvara, Giuseppe; Salini, Luisa; Tetè, Stefano

    2005-10-01

    The aim of this study was to examine alkaline phosphatase (ALP) activity in the dental pulp of orthodontically treated teeth. Sixteen healthy subjects (mean age 17.0 +/-1.6 years) who required extraction of 4 first premolars for orthodontic reasons participated. One maxillary first premolar subjected to orthodontic force was the test tooth. The contralateral first premolar, bracketed but not subjected to mechanical stress, was the control tooth. After a week of treatment, the first premolars were extracted and the dental pulp removed from the teeth. ALP activity was determined spectrophotometrically and the results expressed as units/liter per milligram of pulp tissue [U/(L x mg)]. ALP activity was 89 +/- 26 U/(L x mg) in the test teeth and 142 +/- 33 U/(L x mg) in the control teeth. The difference between the groups was statistically significant (P < .01). Orthodontic treatment can lead to significant early-phase reduction in ALP activity in human dental pulp tissue.

  1. Preliminary study on dental pulp stem cell-mediated pulp regeneration in canine immature permanent teeth.

    Science.gov (United States)

    Wang, Yuanyuan; Zhao, Yuming; Jia, Weiqian; Yang, Jie; Ge, Lihong

    2013-02-01

    The health of human teeth depends on the integrity of the hard tissue and the activity of the pulp and periodontal tissues, which are responsible for nutritional supply. Without the nourishing of the pulp tissue, the possibility of tooth fracture can increase. In immature permanent teeth, root development may be influenced as well. This study explored the potential of using autologous dental pulp stem cells (DPSCs) to achieve pulp regeneration in a canine pulpless model. The establishment of the pulpless animal model involved pulp extirpation and root canal preparation of young permanent incisor teeth in beagles. Autologous DPSCs were obtained from extracted first molars and expanded ex vivo to obtain a larger number of cells. The biological characteristics of canine DPSCs (cDPSCs) were analyzed both in vitro and in vivo by using the same method as used in human DPSCs. cDPSCs were transplanted into the pulpless root canal with Gelfoam as the scaffold, and root development was evaluated by radiographic and histologic analyses. cDPSCs with rapid proliferation, multiple differentiation capacity, and development potential were successfully isolated and identified both in vitro and in vivo. After they were transplanted into the pulpless root canal with Gelfoam as the scaffold, DPSCs were capable of generating pulp-like tissues containing blood vessels and dentin-like tissue. Thickening of the root canal wall was also observed. This study demonstrates the feasibility of using stem cell-mediated tissue engineering to realize pulp regeneration in immature teeth. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Tomographic Evaluation of Reparative Dentin Formation after Direct Pulp Capping with Ca(OH)2, MTA, Biodentine, and Dentin Bonding System in Human Teeth.

    Science.gov (United States)

    Nowicka, Alicja; Wilk, Grażyna; Lipski, Mariusz; Kołecki, Janusz; Buczkowska-Radlińska, Jadwiga

    2015-08-01

    New materials can increase the efficiency of pulp capping through the formation of a complete reparative dentin bridge with no toxic effects. The present study involved tomographic evaluations of reparative dentin bridge formation after direct pulp capping with calcium hydroxide, mineral trioxide aggregate (MTA), Biodentine (Septodont, Saint Maur des Fossés, France), and Single Bond Universal (3M ESPE, Seefeld, Germany) in human teeth. Forty-four caries-free, intact, human third molars scheduled for extraction were subjected to mechanical pulp exposure and assigned to 1 of 4 experimental groups depending on the pulp capping agent used: calcium hydroxide, MTA, Biodentine, or Single Bond Universal. After 6 weeks, the teeth were extracted and processed for cone-beam computed tomographic imaging and histologic examination. Tomographic data, including the density and volume of formed reparative dentin bridges, were evaluated using a scoring system. The reparative dentin formed in the calcium hydroxide, MTA, and Biodentine groups was significantly superior to that formed in the Single Bond Universal group in terms of thickness and volume. The dentin bridges in the Biodentine group showed the highest average and maximum volumes. The mean density of dentin bridges was the highest in the MTA group and the lowest in the Single Bond Universal group. The volume of reparative dentin bridges formed after direct pulp capping is dependent on the material used. Biodentine and MTA resulted in the formation of bridges with a significantly higher average volume compared with Single Bond Universal, and cone-beam computed tomographic imaging allowed for the identification of the location of dentin bridges. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Human dental age estimation by calculation of pulp-tooth volume ratios yielded on clinically acquired cone beam computed tomography images of monoradicular teeth.

    Science.gov (United States)

    Star, Hazha; Thevissen, Patrick; Jacobs, Reinhilde; Fieuws, Steffen; Solheim, Tore; Willems, Guy

    2011-01-01

    Secondary dentine is responsible for a decrease in the volume of the dental pulp cavity with aging. The aim of this study is to evaluate a human dental age estimation method based on the ratio between the volume of the pulp and the volume of its corresponding tooth, calculated on clinically taken cone beam computed tomography (CBCT) images from monoradicular teeth. On the 3D images of 111 clinically obtained CBCT images (Scanora(®) 3D dental cone beam unit) of 57 female and 54 male patients ranging in age between 10 and 65 years, the pulp-tooth volume ratio of 64 incisors, 32 canines, and 15 premolars was calculated with Simplant(®) Pro software. A linear regression model was fit with age as dependent variable and ratio as predictor, allowing for interactions of specific gender or tooth type. The obtained pulp-tooth volume ratios were the strongest related to age on incisors. © 2010 American Academy of Forensic Sciences.

  4. Pulp tissue from primary teeth: new source of stem cells

    Directory of Open Access Journals (Sweden)

    Paloma Dias Telles

    2011-06-01

    Full Text Available SHED (stem cells from human exfoliated deciduous teeth represent a population of postnatal stem cells capable of extensive proliferation and multipotential differentiation. Primary teeth may be an ideal source of postnatal stem cells to regenerate tooth structures and bone, and possibly to treat neural tissue injury or degenerative diseases. SHED are highly proliferative cells derived from an accessible tissue source, and therefore hold potential for providing enough cells for clinical applications. In this review, we describe the current knowledge about dental pulp stem cells and discuss tissue engineering approaches that use SHED to replace irreversibly inflamed or necrotic pulps with a healthy and functionally competent tissue that is capable of forming new dentin.

  5. Expression and localization of special AT-rich sequence binding protein 2 in murine molar development and the pulp-dentin complex of human healthy teeth and teeth with pulpitis

    Science.gov (United States)

    He, Lina; Liu, Huimei; Shi, Lei; Pan, Shuang; Yang, Xu; Zhang, Lin; Niu, Yumei

    2017-01-01

    Special AT-rich sequence binding protein 2 (SATB2) is a member of the special family of AT-rich binding transcription factors and has a critical role in osteoblast differentiation and craniofacial patterning. However, the expression and distribution of SATB2 in tooth development is largely unknown. The aim of the present study was to detect the expression and distribution of SATB2 during murine molar development and, in human healthy teeth and teeth with pulpitis using immunohistochemistry. Molars were obtained from Kunming mice at embryonic day (E) 13.5, E14.5, E16.5 and E18.5, and postnatal day (P) 1, P5 and P7. In addition, 20 human teeth (10 healthy and 10 teeth with pulpitis) were obtained from young adult patients (age, 24.90±1.65 years) who were scheduled for routine extraction. Immunohistochemical analyses were performed to detect the expression and distribution of SATB2. The present results revealed that SATB2 exhibits a spatiotemporal expression pattern in murine molar development and was expressed in odontoblasts, predentin, dental pulp cells and the blood vessels in human teeth. These findings suggested that SATB2 may have an important role in odontoblast differentiation and dentin matrix mineralization during tooth development. PMID:29042940

  6. Microbiological and microscopic analysis of the pulp of non-vital traumatized teeth with intact crowns

    Directory of Open Access Journals (Sweden)

    Kely Firmino Bruno

    2009-10-01

    Full Text Available OBJECTIVE: This study evaluated the presence of microorganisms and analyzed microscopically the pulp of 20 traumatized human teeth with intact crowns and clinical diagnosis of pulp necrosis, based on the association of at least three of the clinical criteria: crown discoloration, negative response to thermal and electric pulp vitality tests, positive response to vertical and horizontal percussion, pain on palpation or mobility. MATERIAL AND METHODS: Microbiological collection was performed from the root canals to evaluate the presence of microorganisms. The pulp samples were stained with hematoxylin and eosin (H.E. for histological evaluation of possible morphological alterations. RESULTS: Analysis of results was performed by statistical tests (linear regression test and diagnostic analysis and subjective analysis of the sections stained with H.E. and revealed that only 15% of the sample did not exhibit microbial development. The time elapsed between dental trauma and onset of endodontic intervention ranged from 15 days to 31 months; the percussion test presented high sensitivity (80% for detection of microorganisms in the root canal of traumatized teeth; 3 teeth (15% did not present pulp tissue, being characterized as complete autolysis; analysis of pulp samples was performed on the other 17 cases, among which 3 (15% exhibited partial necrosis without possibility of repair and 14 presented complete necrosis; none of the clinical criteria employed for the diagnosis of pulp necrosis in traumatized teeth was pathognomonic. CONCLUSIONS: The present results allowed the following conclusions: with regard to microbiological findings, 85% of teeth presented microorganisms in the root canal, despite the presence of an intact crown. Concerning the microscopic findings, 100% of traumatized teeth presented pulp necrosis; the pulp vitality tests based on pulp response to heat, cold and vertical percussion were the most reliable to diagnose pulp necrosis in

  7. Pulp and apical tissue response to deep caries in immature teeth: A histologic and histobacteriologic study.

    Science.gov (United States)

    Ricucci, Domenico; Siqueira, José F; Loghin, Simona; Lin, Louis M

    2017-01-01

    Descriptions of the pathologic changes in the pulp and associated apical structures of human immature teeth in response to deep caries are lacking in the literature. This article describes the histologic events associated with the radicular pulp and the apical tissues of human immature teeth following pulp inflammation and necrosis. Twelve immature teeth with destructive caries lesions were obtained from 8 patients. Two intact immature teeth served as controls. Teeth were extracted for reasons not related to this study and immediately processed for histopathologic and histobacteriologic analyses. Serial sections were examined for the pulp conditions and classified as reversible or irreversible pulp inflammation, or pulp necrosis. Other histologic parameters were also evaluated. In the 3 cases with reversible pulp inflammation, tissue in the pulp chamber showed mild to moderate inflammation and tertiary dentin formation related to tubules involved in the caries process. Overall, the radicular pulp tissue, apical papilla and Hertwig's epithelial root sheath (HERS) exhibited characteristics of normality. In the 3 cases with irreversible pulp inflammation, the pulps were exposed and severe inflammation occurred in the pulp chamber, with minor areas of necrosis and infection. Large areas of the canal walls were free from odontoblasts and lined by an atubular mineralized tissue. The apical papilla showed extremely reduced cellularity or lack of cells and HERS was discontinuous or absent. In the 6 cases with pulp necrosis, the coronal and radicular pulp tissue was necrotic and colonized by bacterial biofilms. The apical papilla could not be discerned, except for one case. HERS was absent in the necrotic cases. While immature teeth with reversible pulpitis showed histologic features almost similar to normal teeth in the canal and in the apical region, those with irreversible pulpitis and necrosis exhibited significant alterations not only in the radicular pulp but also in

  8. Pulp Revascularization For Immature Replanted Teeth: A Case Report.

    OpenAIRE

    Nagata, J Y; Rocha-Lima, T F; Gomes, B P; Ferraz, C C; Zaia, A A; Souza-Filho, F J; De Jesus-Soares, A

    2016-01-01

    Immature avulsed teeth are not usually treated with pulp revascularization because of the possibility of complications. However, this therapy has shown success in the treatment of immature teeth with periapical lesions. This report describes the case of an immature replanted tooth that was successfully treated by pulp revascularization. An 8-year-old boy suffered avulsion on his maxillary left lateral incisor. The tooth showed incomplete root development and was replanted after 30 minutes. Af...

  9. A resin embedding method for transparent teeth with ink-infiltrated pulp cavities.

    Science.gov (United States)

    Yamamoto, T; Domon, T; Takahashi, S; Islam, M N; Suzuki, R

    2001-09-01

    This study was designed to evaluate whether resin embedded transparent teeth are as convenient to use as classical transparent teeth. For this purpose demineralized human teeth were divided into coronal and radical portions, and pulp tissue was extracted from the pulp chamber and root canals, into which drawing ink was injected. After dehydration, the specimens were made transparent in methyl salicylate and immersed in polyester resin. The divided portions were recombined at the polymerization. The resin embedded teeth maintained transparency and the black-stained pulp chamber and root canals showed morphological details. The resin embedded specimens could be handled manually and observed freely from any angle. Previously, transparent teeth have been observed in transparent media through a capped glass bottle. In this respect the resin embedding method is superior to the classical method. The new method will be helpful for investigating root canal morphology.

  10. Relationship between pulp-tooth volume ratios and chronological age in different anterior teeth on CBCT.

    Science.gov (United States)

    Biuki, Nima; Razi, Tahmineh; Faramarzi, Masoumeh

    2017-05-01

    The CBCT imaging technique exhibits proper accuracy to determine the internal anatomy of teeth. Therefore, this technique can use to estimate age by measuring the amount of decrease in the volume of the pulpal cavity of teeth. The aim of the present study was to evaluate the correlation between chronological age and pulp-to-tooth volume ratios in anterior teeth with the use of the CBCT technique and to determine a regression model to estimate human age. In this present descriptive-analytical study, 122 subjects (46 males and 76 females), with an age range of 13-70 years, were evaluated. The MIMICS software program was used to determine the pulp-to-tooth volume ratios in 732 anterior teeth. Regression analysis was used to assess the correlation between age and pulp to tooth volume ratios. In all the teeth evaluated, there was an inverse and significant correlation between age and the pulp-to-tooth volume ratios in males and females, with a stronger correlation in males. In addition, such a correlation was stronger in maxillary central incisors and canines. In the model in which the mean of ratios in anterior teeth was used to estimate age the correlation was stronger compared to that in single tooth. In general, the results of the present study showed that it is advisable to use the mean of all the ratios of anterior teeth in forensics to estimate age. Key words:Age estimation , cone-beam CT, forensic dentistry, secondary dentin, pulp cavity.

  11. Knowledge and Practice of Pulp Therapy in Deciduous Teeth ...

    African Journals Online (AJOL)

    and stainless steel crowns were the materials of choice for final restoration of endodontically treated deciduous teeth. All 50 answered in the affirmative when asked if they would like to have additional information about pulp therapy in deciduous teeth. Conclusion: The study concluded that general dentists were regularly ...

  12. Histological observations of pulpal replacement tissue in immature dog teeth after revascularization of infected pulps.

    Science.gov (United States)

    Saoud, Tarek Mohamed A; Zaazou, Ashraf; Nabil, Ahmed; Moussa, Sybel; Aly, Hanaa Mohamed; Okazaki, Katsushi; Rosenberg, Paul A; Lin, Louis M

    2015-06-01

    Many studies have examined the nature of tissue formed in the canals of immature necrotic teeth, following revascularization in animals and humans. While speculations have been made that regeneration of the pulp tissue might take place in the canal, the tissue has been found to be cementum-like, bone-like, and periodontal ligament-like. The purpose of this study was to histologically examine the tissue in the root canals in immature dog teeth that had been artificially infected and then revascularized. Two 4- to 5-month-old mongrel dogs with immature teeth were used in the study. In one dog, four maxillary and four mandibular anterior teeth, and in another dog, four maxillary and five mandibular anterior teeth were used in the experiment. Pulp infection was artificially induced in the immature teeth. Revascularization was performed on all teeth by disinfecting the root canals with sodium hypochlorite irrigation and triple antibiotic intracanal dressing, completed with induction of intracanal bleeding, and sealed with an MTA plug. The access cavity was restored with silver amalgam. The animals were sacrificed 3 months after revascularization procedures. The revascularized teeth and surrounding periodontal tissues were removed and prepared for histological examination. Besides cementum-like, bone-like, and periodontal ligament-like tissues formed in the canals, residual remaining pulp tissue was observed in two revascularized teeth. In four teeth, ingrowth of alveolar bone into the canals was seen; presence of bone in the root canals has the potential for ankylosis. Within the limitation of this study, it can be concluded that residual pulp tissue can remain in the canals after revascularization procedures of immature teeth with artificially induced pulp infection. This can lead to the misinterpretation that true pulpal regeneration has occurred. Ingrowth of apical bone into the root canals undergoing revascularization can interfere with normal tooth eruption if

  13. Pulp bleeding color is an indicator of clinical and histohematologic status of primary teeth.

    Science.gov (United States)

    Aaminabadi, Naser Asl; Parto, Marziyeh; Emamverdizadeh, Parya; Jamali, Zahra; Shirazi, Sajjad

    2017-06-01

    This study was carried out to investigate whether the changes in hematologic characteristic and color of pulpal bleeding is associated with clinical and histologic status of the pulp in primary teeth. A total of 211 primary molars in 103 patients, 3-6 years old, were treated. One hundred eight teeth had pulpectomy, 57 teeth had pulpotomy after pulp exposure during caries excavation, and 46 teeth had pulpotomy after accidental pulp exposure in sound dentin. After pulpal exposure, pulpal blood was collected in capillary tubes for blood color and hematologic assessment. Coronal and radicular pulp tissues were amputated for histologic assessment. Blood color was significantly darker in pulpectomy cases and samples with severe inflammation. The differences were clinically perceptible by the human eye. A significant negative correlation was detected between white blood cell (WBC) count and blood color. The counts of neutrophils and lymphocytes were significantly different between treatment groups. In addition, WBC, eosinophil, monocyte, neutrophil, and basophils counts were significantly different between degrees of inflammation in coronal pulp. Moreover, severe inflammation was higher in pulpectomy group versus pulpotomy groups. Pulp tissue calcification was also significantly higher in the pulpectomy cases. Considering the significant difference in pulpal blood color between the pulpectomy and pulpotomy cases, and between the different levels of pulpal inflammation; blood color can be a valid clinical diagnostic criterion of pulpal status and can be used for the selection of appropriate pulp treatment strategy. This study shows that pulp bleeding color can be used for selection of an appropriate pulp treatment method in primary teeth.

  14. [The importance of pulp therapy in deciduous teeth].

    Science.gov (United States)

    Bolette, A; Truong, S; Guéders, A; Geerts, S

    2016-12-01

    Preserving primary teeth is crucial for maintaining the maxillary growth, aesthetics, mastication, and speech and for preventing from abnormal habits. Given the peculiar anatomy of the primary tooth, caries grow faster and more frequently to the pulp. In pediatric dentistry, new methods and enhanced material have been recently released on the market and broadened the field of treatments. In this paper, we review the pulp diseases affecting children and focus on the current root canal therapies that favour the physiological primary tooth loss.

  15. Carious deciduous teeth are a potential source for dental pulp stem cells.

    Science.gov (United States)

    Werle, Stefanie Bressan; Lindemann, Daniele; Steffens, Daniela; Demarco, Flávio Fernando; de Araujo, Fernando Borba; Pranke, Patrícia; Casagrande, Luciano

    2016-01-01

    The objectives of this study are to isolate, cultivate, and characterize stem cells from the pulp of carious deciduous teeth (SCCD) and compare them to those retrieved from sound deciduous teeth (SHED--stem cells from human exfoliated deciduous teeth). Cells were obtained of dental pulp collected from sound (n = 10) and carious (n = 10) deciduous human teeth. Rate of isolation, proliferation assay (0, 1, 3, 5, and 7 days), STRO-1, mesenchymal (CD29, CD73, and CD90) and hematopoietic surface marker expression (CD14, CD34, CD45, HLA-DR), and differentiation capacity were evaluated. Isolation success rates were 70 and 80 % from the carious and sound groups, respectively. SCCD and SHED presented similar proliferation rate. There were no statistical differences between the groups for the tested surface markers. The cells from sound and carious deciduous teeth were positive for CD29, CD73, and CD90 and negative for CD14, CD34, CD45, and HLA-DR and were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages. SCCD demonstrated a similar pattern of proliferation, immunophenotypical characteristics, and differentiation ability as those obtained from sound deciduous teeth. These SCCD represent a feasible source of stem cells. Decayed deciduous teeth have been usually discarded once the pulp tissue could be damaged and the activity of stem cells compromised. These findings show that stem cells from carious deciduous teeth can be applicable source for cell-based therapies in tissue regeneration.

  16. ELECTRIC PULP TEST OF TEETH WITH PERIODONTAL DISEASE.

    Directory of Open Access Journals (Sweden)

    Tsonko Uzunov

    2014-10-01

    Full Text Available Purpose: The aim of the research is to investigate the change in pulp vitality of teeth with periodontal disease using electric pulp tester (EPT. Methods: Subjected to observation were 108 patients with chronic periodontitis. Vitality of 805 teeth with periodontal pocket depth greater than 4 mm was studied by EPT. The research was conducted with EPT "Yonovit ". Results: The highest percentage of surveyed teeth (68.4% respond to the norm when they are tested with EPT – values between 3 μA and 10 μA . Teeth that respond to EPT with values ​​below 3 μA and between 35-100 μA are relatively equal - respectively 4.3% and 3.3%. With increased threshold of irritation – 10-35 μA react 23.4% of teeth. Small number of teeth have threshold of irritation over 100 μA - 0.6%. Conclusion: The value of EPT among periodontal damaged teeth depends on many factors - patient's age, extent of periodontal affect, group affiliation of teeth, etc.

  17. Histological Evaluation of Allium sativum Oil as a New Medicament for Pulp Treatment of Permanent Teeth.

    Science.gov (United States)

    Mohammad, Shukry Gamal; Raheel, Syed Ahmed; Baroudi, Kusai

    2015-02-01

    The objective of this study was to evaluate the histo pathology effects of two medicaments Allium sativum oil and formocresol on the remaining pulp tissue of the permanent teething children. A total of 18 premolars were included in this study. Two sound premolars were extracted and subjected to histological examination to show the normal pulp tissue. Pulpo tomy procedure was performed in the rest of the remaining 16 premolars; half of them using Allium sativum oil and the rest of the tested premolars were medicated using formocresol and all were sealed with suitable restoration. Then, premolars extracted at variable intervals (48 hours, 2 weeks, 1 month, 2 months), stained using hemotoxylin and eosin etain (H&E) and prepared for histopathology examination. Histological evaluation seemed far more promising for Allium sativum oil than formocresol. Histological evaluation revealed that teeth treated with Allium sativa oil showed infammatory changes that had been resolved in the end of the study. On the contrary, the severe chronic infammation of pulp tissue accompanied with formocresol eventually produced pulp necrosis with or without fibrosis. In addition, pulp calcification was evidenced in certain cases. Allium sativum oil is a biocompatible material that is compatible with vital human pulp tissue. It offers a good healing potential, leaving the remaining pulp tissue healthy and functioning.

  18. A comparison of human dental pulp response to calcium hydroxide and Biodentine as direct pulp-capping agents.

    Science.gov (United States)

    Jalan, Anushka Lalit; Warhadpande, Manjusha M; Dakshindas, Darshan M

    2017-01-01

    Direct pulp capping involves the placement of a biocompatible agent on pulp tissue that has been inadvertently exposed from traumatic injury or by iatrogenic means. To compare the human pulp response to calcium hydroxide and Biodentine as direct pulp-capping agents. Pulp exposures were performed on the pulpal floor of forty human permanent premolars. The exposure sites were dressed with either Dycal or Biodentine as pulp-capping materials. After 45 days, teeth were extracted and processed for histological examination. The histological data were subjected to Wilcoxon rank-sum test. The dentinal bridges in teeth that were capped with Biodentine were significantly thicker ( P Biodentine can be suggested as the material of choice for direct pulp capping procedure instead of Dycal. However, further long-term follow-up in vivo human studies using Biodentine on cariously exposed pulpal teeth are warranted to derive a definite conclusion.

  19. Relationship between pulp-tooth volume ratios and chronological age in different anterior teeth on CBCT

    OpenAIRE

    Biuki, Nima; Razi, Tahmineh; Faramarzi, Masoumeh

    2017-01-01

    Background The CBCT imaging technique exhibits proper accuracy to determine the internal anatomy of teeth. Therefore, this technique can use to estimate age by measuring the amount of decrease in the volume of the pulpal cavity of teeth. The aim of the present study was to evaluate the correlation between chronological age and pulp-to-tooth volume ratios in anterior teeth with the use of the CBCT technique and to determine a regression model to estimate human age. Material and Methods In this...

  20. Traumatized immature teeth treated with 2 protocols of pulp revascularization.

    Science.gov (United States)

    Nagata, Juliana Yuri; Gomes, Brenda Paula Figueiredo de Almeida; Rocha Lima, Thiago Farias; Murakami, Lia Saori; de Faria, Danielle Elaine; Campos, Gabriel Rocha; de Souza-Filho, Francisco José; Soares, Adriana de Jesus

    2014-05-01

    Pulp revascularization may be considered a promising alternative for traumatized necrotic immature teeth. The aim of this study was to evaluate traumatized immature teeth treated with 2 protocols of pulp revascularization. Twenty-three teeth of young patients (7-17 years old) with necrotic upper incisors caused by dental trauma were divided into 2 groups; one group was treated with triple antibiotic paste (metronidazole, ciprofloxacin, and minocycline) (TAP) (n = 12), and the other was medicated with combination of calcium hydroxide and 2% chlorhexidine gel (CHP) (n = 11). Patients were treated and followed up for a period from 9-19 months in 2 dental institutions for evaluation of clinical and radiographic data. Most of the teeth were affected by lateral luxation (47.8%). Clinical evaluation in group TAP showed significant reduction in spontaneous pain (P = .01), pain on horizontal percussion (P = .007), and pain on palpation (P = .03), whereas group CHP showed significant reduction in pain on vertical percussion (P = .03). Crown discoloration was observed significantly more in teeth of group TAP (83.3%) (P Revascularization outcomes for traumatized patients treated with the tested protocols presented similar clinical and radiographic data. However, TAP caused esthetic problem leading to tooth discoloration, which can be considered a disadvantage when compared with CHP. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Identification of cultivable microorganisms from primary teeth with necrotic pulps.

    Science.gov (United States)

    Ledezma-Rasillo, Gildardo; Flores-Reyes, Hector; Gonzalez-Amaro, Ana M; Garrocho-Rangel, Arturo; Ruiz-Rodriguez, M del Socorro; Pozos-Guillen, Amaury J

    2010-01-01

    The objective of this study was to identify cultivable microorganisms from primary teeth with necrotic pulps. This experimental study included 21 patients of both sexes between 4 and 7 years of age with necrotic pulps in primary teeth. Twenty-one maxillary and mandibular molars containing at least 1 necrotic canal, an abscess or sinus tract, one or more radiolucent areas in the furcation or periapical region, teeth having at least two thirds of root length, and carious lesions directly exposed to the oral environment were included. After antisepsis of the oral cavity, anesthesia of the affected tooth, and isolation and disinfection of the operative field, 3 sterile absorbent paper points were sequentially placed for 30 seconds for the collection of samples. The samples were immediately processed in an anaerobic chamber, and all isolated microorganisms were identified. Anaerobic species (anaerobic facultative and moderate anaerobes) were isolated in all root canals; 68.4% of root canal samples studied showed a polymicrobial nature. Most of the isolate consisted of Bifidobacterium Spp2 and Streptococcus intermedius. Other less frequently encountered species were Actinomyces israelii, Bifidobacterium spp 1, Clostridium spp, and Candida albicans. Results indicate the existence of combinations of bacterial species in root canal infections of the primary dentition with necrotic pulps, anaerobic bacteria predominating.

  2. Dental Pulp Revascularization of Necrotic Permanent Teeth with Immature Apices.

    Science.gov (United States)

    El Ashiry, Eman A; Farsi, Najat M; Abuzeid, Sawsan T; El Ashiry, Mohamed M; Bahammam, Hammam A

    The treatment of immature necrotic teeth with apical periodontitis presents challenges in endodontic and pediatric dentistry. Revascularization is a recent treatment for such cases as an alternative to conventional apexification. The purpose is to examine the effect of a pulpal revascularization procedure on immature necrotic teeth with apical periodontitis. Twenty patients were enrolled for pulp revascularization procedure by root canal disinfection using a triple antibiotic mixture for 1-2 weeks, followed by creating a blood clot, sealing the root canal orifice using white mineral trioxide aggregate and a coronal seal of composite resin. Patients were recalled periodically for up to 24 months. During follow-up, all patients were asymptomatic. Three cases of chronic apical periodontitis showed clinical disappearance of the sinus tract 2 weeks after treatment. Radiography revealed progressive periapical radiolucency resolution within the first 12 months. Within 12-24 months, the treated teeth showed progressive increases in dentinal wall thickness, root length and continued root development. Clinical and radiographic evidence showed successful revascularization treatments of immature necrotic permanent teeth with apical periodontitis. More studies are necessary to understand the underlying mechanisms and to perform histopathology of the pulp space contents after revascularization procedures.

  3. Dentine-pulp tissue engineering in miniature swine teeth by set calcium silicate containing bioactive molecules.

    Science.gov (United States)

    Tziafas, Dimitrios; Kodonas, Konstantinos; Gogos, Christos; Tziafa, Christina; Papadimitriou, Seraphim

    2017-01-01

    The present study aims to investigate whether reparative dentinogenesis could be guided at central pulpal sites or at a distance from the amputated pulp of miniature pig teeth, by using set calcium silicate-based carriers containing human recombinant bioactive molecules. Pulp exposures were performed in 72 permanent teeth of 4 healthy miniature swine. The teeth were capped with pre-manufactured implants of set calcium silicate-based material containing BMP-7, TGFβ1 or WnT-1, for 3 weeks. Conical-shaped intrapulpal implants were exposed in the central pulp core, while disc-shaped extrapulpal implants were placed at a distance from the amputated pulp. Implants without bioactive molecules were used as controls. Thickness and forms of new matrix mineralized deposition were assessed histologically at post-operative periods of 3 weeks by light microscopy. Intrapulpal applications: Calcified structures composed of osteodentine were found in contact with the BMP-7 implants. An inhomogeneous calcified tissue matrix was found around the WnT-1 carriers. A two-zone calcified structure composed of osteodentine and a thicker tubular matrix zone was seen at the TGFβ1 carrier-pulp interface. Extrapulpal applications: The space between WnT-1 implants and pulp periphery had been invaded by soft tissue with traces of calcified foci. Thick calcified structures composed of osteodentine were found surrounding pulp exposure sites in response to application of BMP-7. Spindle-shaped cells associated with atubular calcified matrix or elongated polarized cells associated with tubular dentine-like matrix were found along the cut dentinal walls of the TGFβ1 group. The present experiments indicated that set calcium silicate could be used as carrier for biologically active molecules. TGFβ1 was shown to be an effective bioactive molecule in guiding tertiary dentine formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Dentin rehardening after indirect pulp treatment in primary teeth.

    Science.gov (United States)

    Franzon, R; Gomes, M; Pitoni, C M; Bergmann, C P; Araujo, F B

    2009-01-01

    The purpose of this study was to investigate dentin rehardening in the remaining carious dentin after indirect pulp treatment (IPT) using microhardness analysis after 37 to 71 months. Eighteen teeth submitted to IPT and capped with calcium hydroxide (CH) or gutta-percha (GP) were evaluated (treated group). Ten sound molars and 10 molars with deep acute carious lesions were selected to serve as positive and negative control groups, respectively. In the treated group, restorations and pulp-capping materials were removed. In the positive control group, 3- to 4-mm deep cavities were prepared. In the negative control group, the carious tissue was removed. Microhardness analysis was performed at 10-, 35-, 60-, 85-, and 110-microm depths. Data were analyzed using 1-way analysis of variance (P<.05). Microhardness values for sound, carious, and treated groups at 10-, 35-, 60-, 85-, and 110-microm depths showed a statistically significant difference (Pteeth when compared to carious teeth in all dentin depths investigated, suggesting mineral gain after treatment.

  5. Pulp revascularization for immature replanted teeth: a case report.

    Science.gov (United States)

    Nagata, J Y; Rocha-Lima, T F; Gomes, B P; Ferraz, C C; Zaia, A A; Souza-Filho, F J; De Jesus-Soares, A

    2015-09-01

    Immature avulsed teeth are not usually treated with pulp revascularization because of the possibility of complications. However, this therapy has shown success in the treatment of immature teeth with periapical lesions. This report describes the case of an immature replanted tooth that was successfully treated by pulp revascularization. An 8-year-old boy suffered avulsion on his maxillary left lateral incisor. The tooth showed incomplete root development and was replanted after 30 minutes. After diagnosis, revascularization therapy was performed by irrigating the root canal and applying a calcium hydroxide paste and 2% chlorhexidine gel for 21 days. In the second session, the intracanal dressing was removed and a blood clot was stimulated up to the cervical third of the root canal. Mineral trioxide aggregate was placed as a cervical barrier at the entrance of the root canal and the crown was restored. During the follow-up period, periapical repair, apical closure and calcification in the apical 4 mm of the root canal was observed. An avulsed immature tooth replanted after a brief extra-alveolar period and maintained in a viable storage medium may be treated with revascularization. © 2015 Australian Dental Association.

  6. Indirect pulp capping versus pulpotomy for treating deep carious lesions approaching the pulp in primary teeth: a systematic review.

    Science.gov (United States)

    Smaïl-Faugeron, V; Porot, A; Muller-Bolla, M; Courson, F

    2016-06-01

    To assess dental practice regarding the use of indirect pulp capping or pulpotomy in children with deep carious lesions approaching the pulp in primary teeth and to compare the efficacy of the two pulp treatments. Systematic review. We searched the Cochrane Library, PubMed via MEDLINE, and EMBASE as well as the reference lists of included reports and ClinicalTrials.gov (for ongoing trials). Eligible studies were surveys of dental practice sent to dentists regarding the use of indirect pulp capping and pulpotomy in children with deep carious lesions approaching the pulp in primary teeth and any type of clinical study. Two review authors independently extracted data and assessed risk of bias in duplicate. Of the 481 potentially eligible articles, 11 were included in the review: 8 described surveys of dental practice, 1 a non-randomised study, and 2 ongoing randomised trials. The surveys of dental practice showed an overall increase in the teaching and practice of indirect pulp capping in primary teeth. The non- randomised study found a statistically significant difference in favour of indirect pulp capping for clinical and radiological success at 3 years but with high overall risk of bias. Despite the success rate of indirect pulp capping for treating deep carious lesions approaching the pulp in primary teeth, practitioners still hesitate to practice this technique because of lack of evidence and studies on this topic. Thus, for strong evidence, investigators are encouraged to conduct randomised trials comparing the efficacy of indirect pulp capping and pulpotomy for treating deep carious lesions approaching the pulp in primary teeth.

  7. Pulp treatment for extensive decay in primary teeth.

    Science.gov (United States)

    Smaïl-Faugeron, Violaine; Courson, Frédéric; Durieux, Pierre; Muller-Bolla, Michele; Glenny, Anne-Marie; Fron Chabouis, Helene

    2014-08-06

    In children, dental caries is among the most prevalent chronic diseases worldwide. Pulp interventions are indicated for extensive tooth decay. Depending on the severity of the disease, three pulp treatment techniques are available: direct pulp capping, pulpotomy and pulpectomy. After treatment, the cavity is filled with a medicament.This is an update of a Cochrane review first published in 2003. The previous review found insufficient evidence regarding the relative efficacy of these interventions, combining one pulp treatment technique and one medicament. To assess the effects of different pulp treatment techniques and associated medicaments for the treatment of extensive decay in primary teeth. We searched the Cochrane Oral Health Group's Trials Register (to 25 October 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 9), MEDLINE via OVID (1946 to 25 October 2013), EMBASE via OVID (1980 to 25 October 2013) and the Web of Science (1945 to 25 October 2013). We searched OpenGrey for grey literature and the US National Institutes of Health Trials Register and the World Health Organization (WHO) Clinical Trials Registry Platform for ongoing trials. We placed no restrictions on the language or date of publication when searching the electronic databases. Eligible studies were randomised controlled trials comparing different pulp interventions combining a pulp treatment technique and a medicament in children with extensive decay involving dental pulp in primary teeth. Two review authors independently carried out data extraction and risk of bias assessment in duplicate. We contacted authors of randomised controlled trials for additional information if necessary. The primary outcomes were clinical failure and radiological failure, as defined in trials, at six, 12 and 24 months. We performed data synthesis with pairwise meta-analyses using fixed-effect models. We assessed statistical heterogeneity using by I(2) coefficients

  8. Regenerative potential of dental pulp mesenchymal stem cells harvested from high caries patient's teeth.

    Science.gov (United States)

    Rajendran, Ramesh; Gopal, Sushruth; Masood, Huda; Vivek, Purushottam; Deb, Kaushik

    2013-01-01

    Dental pulp are known to contains stem cells or dentinogenic progenitors that are responsible for dentin repair. Dental pulp Stem cells from Human Exfoliated Deciduous teeth (SHED) represent a population of postnatal stem cells capable of extensive proliferation and multipotential or multilineage differentiations. This potential for tissue regeneration has become the current basis for dental pulp stem cell banking. Here, we have attempted to develop a protocol for harvesting stem cells from patients with High Caries tooth, which are most often electively discarded. We have characterized the stem cells with mesenchymal stem cell markers and have compared their potential to grow in culture, doubling times, and differentiate into different lineages, with normal bone marrow mesenchymal stem cells (MSCs). We observed that the MSCs from dental pulp grew faster, with lower doubling time, and had equal efficiency in differentiating to various lineages, when subjected to standard directed differentiation protocols. This paper establishes that discarded High Carries Tooth can be a good source for regenerative medicine and also could be a potential source for MSCs and dental pulp MSC banking.

  9. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD dogs: Local or systemic?

    Directory of Open Access Journals (Sweden)

    Brolio Marina P

    2008-07-01

    Full Text Available Abstract Background The golden retriever muscular dystrophy (GRMD dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD. We have obtained a rare litter of six GRMD dogs (3 males and 3 females born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important

  10. Comparison of Calcium Hydroxide and Bioactive Glass after Direct Pulp Capping in Primary Teeth

    Directory of Open Access Journals (Sweden)

    R. Haghgoo

    2007-12-01

    Full Text Available Objective: Bioactive glass is often used as a filler material for repair of dental bone defects.In different studies osteogenic potential of this material was proved, but its dentinogenesisproperty is in doubt. The purpose of this study was to evaluate the histological pulp responses of Calcium hydroxide and Bioactive glass placed directly on exposed pulp tissues.Materials and Methods: Twenty teeth to be extracted due to orthodontic reasons were selected. These teeth were divided into two groups and treated with direct pulp capping.Calcium hydroxide was used for 10 teeth and Bioactive glass for 10 teeth. After 60 daysthe teeth were extracted and prepared for histological evaluation. Finally the data was analyzed with exact Fisher test.Results: All teeth treated with Calcium hydroxide showed inflammation. Internal resorption was seen in six teeth, abscess in five teeth and dentinal bridge in two teeth. Inflammationwas seen in three Bioactive glass samples and dentinal bridge in seven teeth, but internal resorption and abscess were not seen.Conclusion: Bioactive glass appears to be superior to Calcium hydroxide as a pulp capping agent in primary teeth.

  11. Knowledge and Practice of Pulp Therapy in Deciduous Teeth ...

    African Journals Online (AJOL)

    responsive to vitality testing), reversible pulpitis (pulp is capable of healing), symptomatic or asymptomatic irreversible pulpitis (vital inflamed pulp is incapable of healing), or necrotic pulp.[3] In the present study, when asked about the first line of treatment for a tooth with pulp exposure, 32/50 (64%) of the dental practitioners ...

  12. Histologic analysis of pulpal revascularization of autotransplanted immature teeth after removal of the original pulp tissue.

    Science.gov (United States)

    Claus, Inne; Laureys, Wim; Cornelissen, Ria; Dermaut, Luc R

    2004-01-01

    The survival rate of replanted and autotransplanted teeth is mainly affected by the reaction of the pulp. Pulpal necrosis can cause periapical inflammation and inflammatory root resorption. The purpose of this study is to learn more about the pulpal changes in autotransplanted immature teeth whose pulp tissue was removed before transplantation. The experimental material consisted of 16 single-rooted teeth with open apices, from a beagle dog (3 months of age). At day 0, 4 teeth were extracted, the pulpal tissues were removed, and the teeth were then transplanted to their contralateral side. The same procedure was carried out on days 9, 16, and 23, each time for 4 single-rooted teeth. Longitudinal paraffin sections were made for histologic investigation. The results showed that, after 7 days, 2 of the 4 teeth had an ingrowth of new tissue over one fourth of their length. After 14 days, all 4 teeth had ingrowth (> or =one fourth of the pulp chamber). At the 21-day observation, more than half of the pulp chambers of all teeth were filled, and, after 30 days, there was total ingrowth in 3 of the 4 teeth. This new tissue consisted of well-organized and well-vascularized connective tissue.

  13. [The role of pulp in the root resorption of primary teeth without permanent tooth germs].

    Science.gov (United States)

    Lin, Bi-chen; Yang, Jie; Zhao, Yu-ming; Ge, Li-hong

    2011-03-01

    To investigate the role of pulp in the root resorption of primary teeth without permanent tooth germs. The animal model without permanent tooth germs was established by surgery in Beagle dog. The root resorption was observed by taking periapical radiographs periodically. The samples of mandibular bone and pulp at different resorption stages were collected. The distribution of odontoclasts and the activating factor was analyzed by histological staining and semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR). The role of pulp in the root resorption of primary teeth was tested by early pulpectomy. In the root resorption of primary molars without permanent teeth germs, a large number of odontoclasts were present on the pulpal surface of the root canal. Semi-quantification RT-PCR showed that the ratios of the expression of receptor activator of NF-κB ligand (RANKL) mRNA and β-actin in the pulp of permanent teeth and primary teeth without permanent teeth germ during different periods of root resorption are 0.1314, 0.1901, 0.2111 and 0.6058 (P > 0.05). The root resorption of primary teeth without permanent teeth germs in test groups was about 5 weeks later than that of control group. The pulp of primary tooth played an important role in the root resorption of primary tooth without permanent tooth germ.

  14. Responses of immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscess to revascularization procedures.

    Science.gov (United States)

    Chen, M Y-H; Chen, K-L; Chen, C-A; Tayebaty, F; Rosenberg, P A; Lin, L M

    2012-03-01

    To report several types of response of immature permanent teeth with infected necrotic pulp tissue and either apical periodontitis or abscess to revascularization procedures. Twenty immature permanent teeth with infected necrotic pulp tissue and either apical periodontitis or abscesses from 20 patients were included. The teeth were isolated with rubber dam, and pulp chambers was accessed through the crowns. The canals were gently irrigated with 5.25% sodium hypochlorite with minimal mechanical debridement. Calcium hydroxide was used as an inter-appointment intracanal medicament and placed into the coronal half of the canal space. After resolution of clinical signs and symptoms, bleeding was induced into the canal space from the periapical tissues using K-files. The coronal canal space was sealed with a mixture of mineral trioxide aggregate (MTA) and saline solution. The access cavity was filled with composite resin. These immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscesses were followed up from 6 to 26 months. Five types of responses of these immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscess to revascularization procedures were observed: type 1, increased thickening of the canal walls and continued root maturation; type 2, no significant continuation of root development with the root apex becoming blunt and closed; type 3, continued root development with the apical foramen remaining open; type 4, severe calcification (obliteration) of the canal space; type 5, a hard tissue barrier formed in the canal between the coronal MTA plug and the root apex. Based on this case series, the outcome of continued root development was not as predictable as increased thickening of the canal walls in human immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscess after revascularization procedures. Continued root development of revascularized immature permanent

  15. Pulse oximetry: a useful test for evaluating pulp vitality in traumatized teeth.

    Science.gov (United States)

    Caldeira, Celso Luiz; Barletta, Fernando Branco; Ilha, Mariana Cezar; Abrão, Carmen Vianna; Gavini, Giulio

    2016-10-01

    Subjective pulp tests are not trustworthy, particularly in traumatized teeth, and may lead to inaccurate diagnosis. The use of an objective test such as pulse oximetry (PO) could be a more reliable method to properly evaluate pulp status in this condition. The aim of this study was to analyze the effectiveness of PO in determining pulp vitality in traumatized teeth based on oxygen saturation measurements (%SpO2 ). Fifty-nine permanent teeth that had undergone lateral luxation, and which were unresponsive to a cold spray test and were free from signs of necrosis, were selected and tested with PO at 7, 30 and 60 days after trauma. Fifty-nine teeth were tested. At 7 days after trauma, 8 teeth had low rates of oxygenation, compared to 10 at 30 and 60 days. Low rates were defined as a saturation reading ≤77%SpO2 . These teeth were assigned to the pulp necrosis (PN) group. The other 49 teeth were either considered to have healthy pulps (HP) (saturation ≥90%SpO2 ) or were assigned to a pulpitis (PP) group (saturation ≥78 to ≤89%SpO2 ). The 10 non-responsive teeth were followed up for 1 year and all exhibited indications for endodontic treatment. The other 49 teeth (HP or PP) began to show positive responses to the cold spray (after 3-9 months of follow up). No significant differences (P < 0.05) were detected between the three periods analyzed, but %SpO2 rates were significantly different (P < 0.01) between the groups (HP vs PP, HP vs PN and PP vs PN). PO can be extremely useful for the assessment of dental pulp status in traumatized teeth, particularly when these teeth do not show signs of PN and do not respond to cold tests. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Property Of Human Dental Pulp Stem Cells And Peripheral Blood Hematopoietic Stem Cells That Differentiated Both Group To Cardiac Cells

    OpenAIRE

    Jabari F; Mohammadnejad J; Yavari K

    2013-01-01

    Dental pulp is the soft live tissue inside a tooth. Dental pulp contains stem cells, known as Dental Pulp Stem Cells. The finest Dental Pulp Stem Cells are found in a baby teeth or milk teeth. The stem cells from the milk teeth are ‘mesenchymal’ type of cells. cells that have the ability to generate a wide variety of cell types like chondrocytes, osteoblasts and adipocytes. To isolate high-quality human dental pulp stem cells from accessible resources is an important goal for stem-cell resear...

  17. [Pulp revascularization of immature teeth with apical periodontitis: a clinical study].

    Science.gov (United States)

    Yang, Yuan; Peng, Chu-fang; Qin, Man

    2013-02-01

    To evaluate the clinical effect of pulp revascularization procedure for immature teeth with apical periodontitis. Nine immature permanent teeth diagnosed with chronic or acute apical periodontitis were recruited. According to a standard pulp revascularization procedure, the canal was disinfected with copious irrigation and a combination of three antibiotics, followed by a blood clot created in the canal. Patients were recalled periodically after the treatment. Clinical and radiographic evidence of healing was evaluated. Eighteen to 24 months after treatment, 6 teeth showed complete resolution of the radiolucency and closure of the apex and thickening of the dentinal walls. One tooth showed healing of periodontal lesion, but the root mature was not observed. Two teeth had recurrent apical periodontitis and no evidence of healing. Apexification was performed later. Pulp revascularization could be an effective treatment for immature permanent teeth with apical periodontitis, and root elongation and narrowing canal space were observed in appropriate cases. If the treatment failed, traditional apexification could be started instead.

  18. Sterilization of Extracted Human Teeth.

    Science.gov (United States)

    Pantera, Eugene A., Jr.; Schuster, George S.

    1990-01-01

    At present, there is no specific recommendation for sterilization of extracted human teeth used in dental technique courses. The purpose of this study was to determine whether autoclaving would be effective in the sterilization of extracted teeth without compromising the characteristics that make their use in clinical simulations desirable. (MLW)

  19. Human Adult Dental Pulp Stem Cells Enhance Poststroke Functional Recovery Through Non‐Neural Replacement Mechanisms

    National Research Council Canada - National Science Library

    Leong, Wai Khay; Henshall, Tanya L; Arthur, Agnes; Kremer, Karlea L; Lewis, Martin D; Helps, Stephen C; Field, John; Hamilton-Bruce, Monica A; Warming, Scott; Manavis, Jim; Vink, Robert; Gronthos, Stan; Koblar, Simon A

    2012-01-01

    Human adult dental pulp stem cells (DPSCs), derived from third molar teeth, are multipotent and have the capacity to differentiate into neurons under inductive conditions both in vitro and following transplantation into the avian embryo...

  20. DIRECT PULP CAPPING IN TREATMENT OF REVERSIBLE PULPITIS IN PRIMARY TEETH- CLINICAL PROTOCOL

    Directory of Open Access Journals (Sweden)

    Nina Milcheva

    2016-10-01

    Full Text Available The pulp of primary teeth is identical morphologically and physiologically to that of permanent teeth and it is capable to answer to pathological stimuli by producing tertiary dentin. When the inflammation of the pulp is in its reversible stage vital methods of treatment are indicated in order to stimulate the healing processes in it and protect its vitality. In Bulgaria the most popular method of treatment of inflammation diseases of the pulp in primary dentition is the mortal amputation. The biological way of treatment is not very common even in cases where there are indications for it. Purpose: The aim of this paper is to present the approbated by us protocol for application of direct pulp capping for treatment of reversible pulpitis in primary teeth. Material and methods: On the base of world experience and our contemporary meta- analysis of the researches published in the last 15 years concerning the problems of diagnostics. We determined clinical and radiographic diagnostic criteria for reversible pulpitis in primary teeth and indications for application of direct pulp capping as a method of treatment. We give clinical steps for application of the method and summarized the clinical and radiographic criteria for success after treatment. Results/conclusion: We gather all the information for applying direct pulp cappingfor treatment of reversible pulpitis in primary dentition. We offer the method of direct pulp capping as a clinical protocol “step by step” and illustrated by scheme which can be useful for students and dentists in their everyday practice.

  1. Association of crown discoloration and pulp status in traumatized primary teeth.

    Science.gov (United States)

    Cardoso, Mariane; de Carvalho Rocha, Maria José

    2010-10-01

    The aim of the present study was to determine the association of tooth discoloration in traumatized primary teeth with clinical and radiographic signs of pulp necrosis, and pulp status at the time of endodontic access. Clinical and radiographic data from dental reports of the 47 patient charts of the Trauma Patient Care Program were used totaling 55 teeth that underwent endodontic treatment following the protocol of the Federal University of Santa Catarina (Brazil). The following data were collected: gender, age of child at time of trauma; crown discoloration; abscess and/or fistula; periapical bone rarefaction and/or pathological root resorption; and pulp status at the time of endodontic access. The Chi-square test and logistic regression were used in the statistical analysis. The associations between crown discoloration and gender, age, tooth, type of trauma, clinical alteration, and radiographic alteration were not statistically significant. There was a significant association between crown discoloration and pulp necrosis at the time of endodontic access (χ(2)  = 7.672; P teeth with crown discoloration had a fivefold greater likelihood of exhibiting pulp necrosis than teeth without crown discoloration (95% CI: 1.5-17.1). Thus, a significant association was found between crown discoloration and pulp necrosis in traumatized primary teeth. © 2010 John Wiley & Sons A/S.

  2. Knowledge and Practice of Pulp Therapy in Deciduous Teeth among General Dental Practitioners in Saudi Arabia

    Science.gov (United States)

    Togoo, RA; Nasim, VS; Zakirulla, M; Yaseen, SM

    2012-01-01

    Background: It has been observed that the general dentists and pedodontists differ in their treatment recommendations for pulp therapy in deciduous teeth. Aim: To determine the knowledge and practice of pulp therapy in deciduous teeth by general dental practitioners (GDP) in two cities of southern Saudi Arabia. Subjects and Methods: Fifty GDP selected at random from government and private dental clinics were questioned about pulp therapy in deciduous teeth in Abha and Najran cities using a 10-item questionnaire. The data were analyzed using IBM SPSS software version 11.0 and descriptive statistics were obtained. Results: All 50 participants responded to the survey. Pulpotomy was suggested as the first line of treatment for pulp-exposed primary tooth by 32 respondents with 44 using Buckley's formocresol and 32 applying it on the pulp for 5 minutes. 43 respondents squeeze dried the cotton pellet before application on the pulp. In pulpectomy procedure 44 respondents preferred zinc oxide eugenol as obturation material with 22 using handheld reamers and 15 using slow-speed lentilospirals for obturation. 12 respondents used obturation techniques which had no scientific relevance. In order of preference Glass ionomer cement (GIC), silver amalgam, and stainless steel crowns were the materials of choice for final restoration of endodontically treated deciduous teeth. All 50 answered in the affirmative when asked if they would like to have additional information about pulp therapy in deciduous teeth. Conclusion: The study concluded that general dentists were regularly performing pulp therapy in decidous teeth and therefore need to be frequently updated about these procedures. PMID:23440030

  3. Age-related Changes in the Alkaline Phosphatase Activity of Healthy and Inflamed Human Dental Pulp.

    Science.gov (United States)

    Aslantas, Eda E; Buzoglu, Hatice Dogan; Karapinar, Senem Pinar; Cehreli, Zafer C; Muftuoglu, Sevda; Atilla, Pergin; Aksoy, Yasemin

    2016-01-01

    Alkaline phosphatase (ALP) plays an important role in inducing mineralization events in the dental pulp. This study investigated and compared the ALP levels in healthy and inflamed pulp in young and old human pulp. Tissue samples were collected from young (60 years) donors. In both age groups, healthy human pulp (n = 18) were collected from extracted wisdom teeth. For reversible and irreversible pulpitis, pulp samples (n = 18 each) were obtained during endodontic treatment. ALP activity was assessed by spectrophotometry and immunhistochemistry. Regardless of age, reversible pulpitis group samples showed a slight elevation in ALP activity compared with normal healthy pulp. In elderly patients, ALP expression with irreversible pulpitis was significantly higher than those with a healthy pulp (P irreversible pulpitis, only the old pulp shows significantly elevated ALP levels. Such an increase may trigger calcification events, which may eventually cause difficulties in endodontic treatment procedures in elderly individuals. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Microscopic evaluation of the human dental pulp after full crown cementation with resin cement

    OpenAIRE

    Santiago, Luiz C.; Pegoraro, Luiz F.; Consolaro, Alberto; Valle, Accácio L. do; Bonfante, Gerson

    2010-01-01

    This study evaluated microscopically the dental pulp reactions in human premolars prepared for metaloceramic crowns cemented with different luting agents and also measured the remaining dentin thickness (RDT) of the prepared teeth. Twenty-five teeth were selected from patients that needed exodontia for orthodontic reasons and were randomly divided in three groups: group 1- five teeth were not prepared to serve as a positive control group; groups - 2, and 3 the teeth were prepared for metaloce...

  5. Human age estimation from lower-canine pulp volume ratio based on Bayes’ theorem with modern Japanese population as prior distribution

    National Research Council Canada - National Science Library

    SASAKI, TOMOHIKO; KONDO, OSAMU

    2014-01-01

    Pulp volume decreases throughout life owing to secondary dentin deposition. Here, we present a Bayesian approach for human age estimation on the basis of the pulp volume ratio from lower-canine teeth...

  6. [Retrospective analysis of pulp revascularization in immature permanent teeth with diffuse pulpitis].

    Science.gov (United States)

    Peng, C F; Zhao, Y M; Yang, Y; Liu, H; Qin, M

    2017-01-09

    Objective: To evaluate the treatment effectiveness of revascularization in immature permanent teeth with diffuse pulpitis and to provide an alternative approach for the treatment of these teeth. Methods: Clinical and radiographic data were collected from 17 immature permanent teeth which were diagnosed as diffuse pulpitis and with their pulp extirpated at Emergency Department of Peking University School and Hospital of Stomatology. All these teeth were treated using pulp revascularization at Department of Pediatric Dentistry. Clinical success rate was then evaluated based on the clinical and radiographic findings. The increase of root length and dentin wall thickness of the revascularized teeth and the contralateral control teeth were measured and compared according to the preoperative and recall periapical radiographs. Results: The average follow-uptime is (25.8±9.9) months (12-46 months). Totally 13 out of the 17 teeth showed normal clinical and radiographic manifestation and achieved the increasein root length and dentin wall thickness. They met criteria for success treatment. The rest 4 out of the 17 teeth also showed root length and dentin wall thickness increaseand apical foramen closure. However, periapical inflammations were observed during 12 to 36 monthfollow-ups. These cases were recognized as failed. In all the17 teeth, the increase of root length and dentin wall thickness was not significantly different between the revascularized teeth and the contralateral control teeth (P>0.05). Conclusions: Pulp revascularization in young permanent teeth with diffuse pulpitis resulted in similar clinical outcomes in root development and root canal wall formation compared with the contralateral control teeth. However, reinfection might occur during long-term follow-up.

  7. Histologic Outcomes of Uninfected Human Immature Teeth Treated with Regenerative Endodontics: 2 Case Reports.

    Science.gov (United States)

    Nosrat, Ali; Kolahdouzan, Alireza; Hosseini, Farzaneh; Mehrizi, Ehsan A; Verma, Prashant; Torabinejad, Mahmoud

    2015-10-01

    A growing body of evidence exists showing the possibility of growing vital tissues in the root canal spaces of teeth with necrotic pulps and open apices. However, there is very limited histologic information regarding characteristics of tissues formed in the root canal space of human teeth after regenerative endodontics. The aim of this study was to examine clinically and histologically the outcomes of human immature teeth treated with regenerative endodontics. Two healthy birooted human maxillary first premolar teeth scheduled for extraction were included. Preoperative radiographs confirmed that these teeth had immature apices. Vitality tests showed the presence of vital pulps in these teeth. After receiving consent forms, the teeth were isolated with a rubber dam, and the pulps were completely removed. After the formation of blood clots in the canals, the teeth were covered with mineral trioxide aggregate. Four months later, the teeth were clinically and radiographically evaluated, extracted, and examined histologically. Both patients remained asymptomatic after treatment. Radiographic examination of the teeth showed signs of root development after treatment. Histologic examination of tissues growing into the root canal space of these teeth shows the presence of connective tissue, bone and cementum formation, and thickening of roots. Based on our findings, it appears that when canals of teeth with open apices are treated with regenerative endodontics, tissues of the periodontium grow into the root canals of these teeth. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Histological response of human pulps capped with calcium hydroxide and a self-etch adhesive containing an antibacterial component

    OpenAIRE

    Ambalavanan Parthasarathy; Kamat, Sharad B.; Mamta Kamat; Krishnamurthy Haridas Kidiyoor

    2016-01-01

    Aim: To compare human pulp tissue response following direct pulp capping with calcium hydroxide and a self-etch adhesive containing antibacterial component. Materials and Methods: Sixty-six erupted sound premolars scheduled to be extracted for orthodontic reasons were selected from 17 human subjects. Pulp exposures were made. Direct pulp capping was then performed using calcium hydroxide and a self-etch adhesive containing antibacterial component in its primer. The teeth were then restor...

  9. SUCCESS RATE OF MEDCEM PORTLAND CEMENT AS A PULP CAPPING AGENT IN PULPOTOMIES OF PRIMARY TEETH

    Directory of Open Access Journals (Sweden)

    Veronika Marie Vilimek

    2018-01-01

    Full Text Available Aim: To evaluate the clinical and radiographic outcomes of Portland cement (PC as a pulp capping agent in primary teeth pulpotomies. Material and methods: The study included 71 primary teeth (9 incisors and 62 molars, from 20 children aged 3-8 years, of both genders. The teeth had deep carious lesions and symptoms of inflammation of the coronal pulp. Treatment was performed under general anaesthesia, and with the technique of vital amputation. MedCem Portland cement was used as pulp capping agent. GIC was placed over the PC. Incisors were finally restored with composite and molars with preformed stainless steel crowns. Clinical and radiographic success and failure were recorded at 6, 12, 18 and 24-month follow-ups. The treatment success was measured using predetermined criteria and the results were statistically evaluated. Result: After 12 months 69 teeth (97.18% were assessed as successfully treated. After 24 months, the treatment of 66 teeth (92.96% were defined as successful. The results showed a satisfactory success rate of pulpotomies using MedCem PC as a pulp agent in the primary dentition during the observation period. Conclusions: Portland cement may serve as an effective and inexpensive material in primary teeth pulpotomies. Further studies and longer follow-up assessments are needed.

  10. Pulp response of anionic lyophilized collagen matrix with or without hydroxyapatite after pulpotomy in dog's teeth

    Directory of Open Access Journals (Sweden)

    Léa Assed Bezerra da Silva

    2006-06-01

    Full Text Available The aim of the present study was to evaluate histologically the pulp response of anionic lyophilized collagen matrix with or without hydroxyapatite as a biomaterial pulp-capping agent in pulpotomy of dogs' teeth. Sixty pre-molar roots from three dogs were used. After pulpotomy, the remaining pulp tissue was capped with one of the following materials: Group I (20 roots: anionic lyophilized collagen matrix; Group II (20 roots: anionic lyophilized collagen matrix associated with hydroxyapatite; Group III (10 roots: calcium hydroxide (p.a. paste in saline; Group IV (10 roots: zinc oxide eugenol cement. After 90 days the animals were killed by anesthetic overdose and the teeth were removed and submitted to histological processing. According to the histopathological results, we concluded that the zinc oxide eugenol cement and anionic lyophilized collagen matrix with or without hydroxyapatite did not present satisfactory pulp response and that calcium hydroxide is the suitable material for pulpotomy.

  11. Dentinogenic responses after direct pulp capping of miniature swine teeth with Biodentine.

    Science.gov (United States)

    Tziafa, Christina; Koliniotou-Koumpia, Eugenia; Papadimitriou, Serafim; Tziafas, Dimitrios

    2014-12-01

    The aim of this study was to evaluate pulpal responses after experimental direct pulp capping of mechanically exposed teeth with a new calcium silicate-based dentin replacement material. Thirty-four anterior and posterior teeth of 3 miniature swine were used. Class V or I cavities were prepared on the buccal or occlusal surfaces, respectively. Pulpal exposures were further performed using a round carbide bur 0.8 mm in diameter. Exposures were treated with white MTA Angelus (Angelus, Londrina, PR, Brazil) or Biodentine (Septodont, Saint Maur des Fosses, France), and the cavities were further restored with Biodentine. The pulpal tissue responses were histologically assessed at postoperative periods of 3 and 8 weeks. Data were statistically analyzed using the Kruskal Wallis and the Mann-Whitney U tests. Inflammatory infiltration or pulp tissue necrosis was not found in any of the specimens. All teeth showed mineralized matrix formation in the form of a complete hard tissue bridge composed of osteodentin or osteodentin followed by a discontinuous or continuous reparative dentin zone. A significantly higher thickness of the hard tissue bridge was found in the group of teeth treated with Biodentine at both 3 and 8 weeks. A number of teeth, which were under root development at the onset of the experimental procedures, exhibited ectopic pulp calcification. The application of both calcium silicate-based materials in direct contact with the mechanically exposed pulp of healthy miniature swine teeth led to pulp repair with complete hard tissue bridge formation. The thickness of hard tissue bridges was significantly higher after pulp capping with Biodentine. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Timing of pulp extirpation for replanted avulsed teeth.

    LENUS (Irish Health Repository)

    Stewart, Chris

    2009-01-01

    A search was performed (April 2004) across four databases, namely Ovid Medline, Cochrane Library, PubMed and Web of Science, relevant to the proposed PICO ( Patient or problem, Intervention, Comparison, Outcome) question: (P) for a replanted avulsed permanent tooth, (I) is early pulp extirpation within 10-14 days of replantation, (C) compared with delayed pulp extirpation, (O) associated an increased likelihood of successful periodontal healing after tooth replantation. Only articles published in the English language were considered.

  13. Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine

    Science.gov (United States)

    Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi

    2012-01-01

    Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine. PMID:23251621

  14. Clinical and Radiographic Evaluation of Allium sativum Oil as a New Medicament for Vital Pulp Treatment of Primary Teeth.

    Science.gov (United States)

    Mohammad, Shukry Gamal; Raheel, Syed Ahmed; Baroudi, Kusai

    2014-01-01

    The objective of this study was to compare between the clinical and radiographic effects of Allium sativum oil and those of formocresol in vital pulpotomy in primary teeth. A total of 20 children age ranged from 4 to 8 years were included in the study. In every one of those children, the primary molars indicated for pulpotomy. Pulpotomy procedure was performed, and the radicular pulp tissue of one molar capped with A. sativum oil in a cotton pellet, whereas the other molar capped with formocresol, the teeth evaluated clinically and radiographically before and after 6 months, using standard clinical and radiographical criteria. Statistically, these results revealed no significant difference between the radiographic findings of vital pulpotomy in primary molars with the two medicaments was found. A. sativum oil offers a good healing potential, leaving the remaining pulp tissue healthy and functioning. Vital pulpotomy with allium sativa oil was given raise 90% success rate while that with formocresol was 85%. A. sativum oil is a biocompatible material that is compatible with vital human pulp tissue. It offers a good healing potential, leaving the remaining pulp tissue healthy and functioning.

  15. Assessment of structural changes of human teeth by low-field nuclear magnetic resonance (NMR)

    Science.gov (United States)

    Ni, Qingwen; Chen, Shuo

    2010-01-01

    A technique of low-field pulsed proton nuclear magnetic resonance (NMR) spin relaxation is described for assessment of age-related structural changes (dentin and pulp) of human teeth in vitro. The technique involves spin-spin relaxation measurement and inversion spin-spin spectral analysis methods. The spin-spin relaxation decay curve is converted into a T2 distribution spectrum by a sum of single exponential decays. The NMR spectra from the extracted dentin-portion-only and dental pulp-cells-only were compared with the whole extracted teeth spectra, for the dentin and pulp peak assignments. While dentin and pulp are highly significant parameters in determining tooth quality, variations in these parameters with age can be used as an effective tool for estimating tooth quality. Here we propose an NMR calibration method—the ratio of the amount of dentin to the amount of pulp obtained from NMR T2 distribution spectra can be used for measuring the age-related structural changes in teeth while eliminating any variations in size of teeth. Eight teeth (third molars) extracted from humans, aged among 17-67 years old, were tested in this study. It is found that the intensity ratio of dentin to pulp sensitively changes from 0.48 to 3.2 approaching a linear growth with age. This indicates that age-related structural changes in human teeth can be detected using the low-field NMR technique.

  16. Pulp Revascularization on Permanent Teeth with Open Apices in a Middle-aged Patient.

    Science.gov (United States)

    Wang, Yu; Zhu, Xiaofei; Zhang, Chengfei

    2015-09-01

    Pulp revascularization is a promising procedure for the treatment of adolescents' immature permanent teeth with necrotic pulp and/or apical periodontitis. However, the ability to successfully perform pulp revascularization in a middle-aged patient remains unclear. A 39-year-old woman was referred for treatment of teeth #20 and #29 with necrotic pulp, extensive periapical radiolucencies, and incomplete apices. Pulp revascularization procedures were attempted, including root canal debridement, triple antibiotic paste medication, and platelet-rich plasma transplantation to act as a scaffold. Periapical radiographic and cone-beam computed tomographic examinations were used to review the changes in the apical lesions and root apex configuration. The patient remained asymptomatic throughout the 30-month follow-up. Periapical radiographic examination revealed no change in the apical lesions of either tooth at 8 months. The periapical radiolucency disappeared on tooth #20 and significantly decreased on tooth #29 by the 30-month follow-up, findings that were also confirmed by cone-beam computed tomographic imaging. No evidence of root lengthening or thickening was observed. Successful revascularization was achieved in a middle-aged patient's teeth. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Biodentine used as a pulp-capping agent in primary pig teeth.

    Science.gov (United States)

    Shayegan, Amir; Jurysta, Cédric; Atash, Ramin; Petein, Michel; Abbeele, Astrid Vanden

    2012-01-01

    The purpose of this study was to assess and compare, in primary pig teeth, the pulp response after a pulpotomy using either Biodentine (a new tricalcium-silicate cement), white mineral trioxide aggregate (WMTA), or formocresol (FC) and repeat the same after direct pulp capping using either Biodentine, WMTA, or calcium hydroxide. A total of 180 primary teeth from 9 healthy 4-month-old female pigs were divided into 3 experimental periods (7, 28, and 90 days) for each material used for the pulpotomy and direct pulp capping treatments. Seven, 28, and 90 days later, the animals were euthanized and the specimens were prepared for histological examination and evaluation. The data collected from the histological examinations were statistically analyzed using Kruskal-Wallis and Dunn multiple comparison tests. In pulpotomy groups, there was a significant difference between Biodentine and WMTA vs FC in terms of inflammatory cell response and hard tissue formation. In direct pulp capping groups, there was only a significant difference between Biodentine and calcium hydroxide in terms of hard tissue formation in a 7-day period. Biodentine and white mineral trioxide aggregate are both suitable, biocompatible materials for pulp capping in primary teeth of pigs.

  18. Root maturation and dentin–pulp response to enamel matrix derivative in pulpotomized permanent teeth

    Directory of Open Access Journals (Sweden)

    Sherif S Darwish

    2014-01-01

    Full Text Available The success of pulpotomy of young permanent teeth depends on the proper selection of dressing materials. This study aimed to evaluate the histological and histomorphometric response of dentin–pulp complex to the enamel matrix derivative (Emdogain® gel compared to that of calcium hydroxide when used as a pulp dressing in immature young permanent dogs’ teeth. Dentin-like tissues bridging the full width of the coronal pulp at the interface between the injured and healthy pulp tissues were seen after 1 month in both groups. With time, the dentin bridge increased in thickness for calcium hydroxide but disintegrated and fully disappeared for Emdogain-treated group. Progressive inflammation and total pulp degeneration were only evident with Emdogain-treated group. The root apices of Emdogain-treated teeth became matured and closed by cementum that attached to new alveolar bone by a well-oriented periodontal ligament. In young permanent dentition, Emdogain could be a good candidate for periodontium but not dentino–pulpal complex regeneration.

  19. Knowledge and Practice of Pulp Therapy in Deciduous Teeth ...

    African Journals Online (AJOL)

    complaint, past dental history and treatment taken, clinical examination, and use ... Department of Preventive Dental Sciences, Division of Pedodontics, King Khalid University College of Dentistry, Abha,. Saudi Arabia ... at random from government and private dental clinics were questioned about pulp therapy in deciduous ...

  20. [Experimental study on pulp revitalization of Beagle dog's immature permanent teeth after pulpectomy].

    Science.gov (United States)

    Yang, Jian-zhen; Ouyang, Yong; Liao, Zhi-qing

    2011-08-01

    To observe the process of pulp revitalization of immature permanent teeth after pulpectomy. Thirty-two single-rooted teeth with open apices from 4 Beagle dogs aged 4 months were included in the study. The pulpal tissues of 8 front teeth with single root of each dog were removed, and a blood clot was produced to the level of the cementoenamel junction followed by a double seal of mineral trioxide aggregate and composite resin. At day 7, 14, 21 and 28, respectively after operation, the dog was sacrificed, and then longitudinal paraffin sections were made for histologic investigation. After 7 days, about one thirth of the pulp chamber had an ingrowth of new tissue. After 14, 21, 28 days, there were more and more new tissue in the chamber. This new tissue consisted of well-organized and well-vascularized connective tissue. Hard tissue was too observed in the root canal. In some cases, the newly generated hard tissue even deposited against the canal dentinal walls. The pulp of immature permanent teeth can revitalize after removal of the original pulp tissue under suitable conditions.

  1. Clinical and Histological Evaluation of Direct Pulp Capping on Human Pulp Tissue Using a Dentin Adhesive System

    Directory of Open Access Journals (Sweden)

    Alicja Nowicka

    2016-01-01

    Full Text Available Objective. This study presents a clinical and histological evaluation of human pulp tissue responses after direct capping using a new dentin adhesive system. Methods. Twenty-eight caries-free third molar teeth scheduled for extraction were evaluated. The pulps of 22 teeth were mechanically exposed and randomly assigned to 1 of 2 groups: Single Bond Universal or calcium hydroxide. Another group of 6 teeth acted as the intact control group. The periapical response was assayed, and a clinical examination was performed. The teeth were extracted after 6 weeks, and a histological analysis was performed. The pulp status was assessed, and the thickness of the dentin bridge was measured and categorized using a histological scoring system. Results. The clinical phase was asymptomatic for Single Bond Universal patients. Patients in the calcium hydroxide group reported mild symptoms of pain, although the histological examination revealed that dentin bridges with or without limited pulpitis had begun forming in each tooth. The universal adhesive system exhibited nonsignificantly increased histological signs of pulpitis (P>0.05 and a significantly weaker thin mineralized tissue layer (P<0.001 compared with the calcium hydroxide group. Conclusion. The results suggest that Single Bond Universal is inappropriate for human pulp capping; however, further long-term studies are needed to determine the biocompatibility of this agent.

  2. Dental trauma. Combination injuries 2. The risk of pulp necrosis in permanent teeth with subluxation injuries and concomitant crown fractures

    DEFF Research Database (Denmark)

    Lauridsen, Eva Fejerskov; Hermann, Nuno Vibe; Gerds, Thomas Alexander

    2012-01-01

    The reported risk of pulp necrosis (PN) is generally low in teeth with subluxation injuries. A concomitant crown fracture may increase the risk of PN in such teeth. Aim:  To analyse the influence of a concomitant trauma-related infraction, enamel-, enamel–dentin- or enamel–dentin–pulp fracture...... on the risk of PN in permanent teeth with subluxation injury. Material and Methods:  The study included 404 permanent incisors with subluxation injury from 289 patients (188 male, 101 female). Of these teeth, 137 had also suffered a concomitant crown fracture. All the teeth were examined and treated according...... age, crown fracture type, mobility and response to an electric pulp test (EPT) at the initial examination. Results:  Teeth with immature root development: The risk of PN was increased in teeth with a concomitant enamel fracture (log-rank test: P = 0.002), enamel–dentin fracture (log-rank test: P

  3. Histopathological evaluation of the dental pulps in crown-fractured teeth.

    Science.gov (United States)

    Ozçelik, B; Kuraner, T; Kendir, B; Aşan, E

    2000-05-01

    Trauma is a common cause of pulpal damage. In traumatic injuries, the first priority is to protect the vitality of pulps. But the time between the trauma and treatment must be short to preserve vital, noninflamed pulps. The aim of this study was to investigate the histopathological changes in pulpal tissues at different time periods after crown fractures. Twenty-three teeth with enamel and dentin fractures, with and without pulp exposure were evaluated. The reasons for seeking dental treatment were aesthetic consideration, pain, or discomfort. The extirpated pulps were histologically prepared for microscopical evaluation. There was myelin degeneration surrounding the axons and edema in the early posttraumatic stages (17 h). In the later stages (4 to 20 days), the tissues showed varying degrees of inflammation, and neuronal degeneration such as intramyelin edema, aberrant myelin synthesis, and axonal swelling.

  4. Pulp revascularization of immature teeth with apical periodontitis: a clinical study.

    Science.gov (United States)

    Ding, Rui Yu; Cheung, Gary Shun-pan; Chen, Jie; Yin, Xing Zhe; Wang, Qian Qian; Zhang, Cheng Fei

    2009-05-01

    The purpose of this study was to examine the effect of a pulpal revascularization procedure for immature necrotic teeth with apical periodontitis. Twelve patients, each with an immature permanent tooth with chronic or acute apical periodontitis, were recruited. A triantibiotic mix (ciprofloxacin, metronidazole, and minocycline) was used to disinfect the pulp for 1 week. Then a blood clot was created in the canal, over which grey mineral trioxide aggregate was placed. Patients were recalled periodically. Six patients dropped from the study (as a result of pain or failure to induce bleeding after canal disinfection) and instead received a standard apexification procedure. Another 3 patients did not attend any recall appointments. The remaining teeth (n = 3) were found to exhibit complete root development, with a positive response to pulp testing. Revascularization could be effective for managing immature permanent teeth with apical periodontitis with appropriate case selection.

  5. [Pulp revascularization of immature anterior teeth with apical periodontitis].

    Science.gov (United States)

    Zuong, Xiao-Yi; Yang, Yi-Ping; Chen, Wen-Xia; Zhang, Ying-Juan; Wen, Chun-Mei

    2010-12-01

    To compare the therapeutic efficacy both apexification and revascularization in the immature anterior teeth of animal model with apical periodontitis, and observe the histological situation of revascularization in the root canal. Six immature anterior teeth of one animal model (dog) aged approximately 4.5 months was selected. Afterwards, periapical periodontitis pattern were established, the samples were randomly divided into the experimental group (revascularization, 3 teeth) and the control group (apexification, 3 teeth). To compare the development of root and the healing of periapical inflammation, the involved teeth were respectively radiographed 1, 4, 8 weeks after surgery. The animals were sacrificed after 8 weeks, and the closure of apical foramen and the content of root canal were observed by hematine-eosine (HE) staining. The postoperative radiography after 1 week and 4 weeks, the apical foramen size and the periapical radiolucency of the samples was shown no perceptual change. After 8 weeks, the experimental group periapical radiolucency area was obviously more narrowing, and had a apical closure tendency whereas the thickness of the root canal walls had imperceptible changed. While the control group periapical radiolucency change varied. The granulation tissue could be seen within the lumen of the experimental group, which contained a large number of irregular calcification, the calcification was obvious in the apical and adjacent the root canal wall. A small quantity of hard tissue was deposited in the apical of the control group. Revascularization may increase the recovery of immature anterior teeth with chronic periapical inflammation, the vital regenerative tissue within root canal is the granulation tissue contained calcification.

  6. Clinical evaluation of mineral trioxide aggregate and biodentine as direct pulp capping agents in carious teeth.

    Science.gov (United States)

    Hegde, Swaroop; Sowmya, B; Mathew, Sylvia; Bhandi, Shilpa H; Nagaraja, Shruthi; Dinesh, K

    2017-01-01

    Root canal treatment has been a routine treatment option for carious exposure of the dental pulp. In the context of minimally invasive dentistry, direct pulp capping (DPC) procedure with a reliable biomaterial may be considered as an alternative provided the pulp status is favorable. Mineral trioxide aggregate (MTA), a bioactive cement with excellent sealing ability and biocompatibility is capable of regenerating relatively damaged pulp and formation of dentin bridge when used as DPC agent. Biodentine is comparatively a new biomaterial claimed to possess properties similar to MTA and is currently explored for vital pulp therapy procedures. The aim of the present study was to evaluate the clinical response of pulp-dentin complex after DPC with MTA and biodentine in carious teeth. Twenty-four permanent molars with carious exposure having no signs and symptoms of irreversible pulpitis were selected and assigned to one of the two groups, Group I - MTA and Group II - biodentine. Patients were recalled at 3 weeks, 3 months, and 6 months for clinical and radiographic evaluation. Fisher's exact test was used along with Chi-square test for statistical analysis. Over a period of 6 months, MTA and biodentine showed 91.7% and 83.3% success rate, respectively, based on the subjective symptoms, pulp sensibility tests, and radiographic appearance. MTA and biodentine may be used as DPC agents when the pulpal diagnosis is not more than reversible pulpitis.

  7. Human Pulp Response to Direct Pulp Capping and Miniature Pulpotomy with MTA after Application of Topical Dexamethasone: A Randomized Clinical Trial.

    Science.gov (United States)

    Mousavi, Seyed Amir; Ghoddusi, Jamileh; Mohtasham, Nooshin; Shahnaseri, Shirin; Paymanpour, Payam; Kinoshita, Jun-Ichiro

    2016-01-01

    The aim of this randomized clinical trial was to compare the histologic pulp tissue response to one-step direct pulp capping (DPC) and miniature pulpotomy (MP) with mineral trioxide aggregate (MTA) after application of dexamethasone in healthy human premolars. Forty intact premolars from 10 orthodontic patients, were randomly chosen for DPC (n=20) or MP (n=20). In 10 teeth from each group, after exposure of the buccal pulp horn, topical dexamethasone was applied over the pulp. In all teeth the exposed/miniaturely resected pulp tissue was covered with MTA and cavities were restored with glass ionomer. Teeth vitality was evaluated during the next 7, 21, 42, and 60 days. Signs and/or symptoms of irreversible pulpitis or pulp necrosis were considered as failure. According to the orthodontic schedule, after 60 days the teeth were extracted and submitted for histological examination. The Kruskal-Wallis and Fisher's exact tests were used for statistical analysis of the data (P=0.05). Although dexamethasone specimens showed less inflammation, calcified bridge, pulpal blood vasculature, collagen fibers and granulation tissue formation were not significantly different between the groups (P>0.05). Topical dexamethasone did not hindered pulp healing but reduced the amount of underlying pulpal tissue inflammation after DPC and MP in healthy human premolars.

  8. Teaching and practical guidelines in pulp therapy in primary teeth in Colombia - South America.

    Science.gov (United States)

    Hincapié, Sandra; Fuks, Anna; Mora, Ingrid; Bautista, Gloria; Socarras, Fernanda

    2015-03-01

    To describe the teaching practical guidelines in pulp therapy for primary teeth in Colombian dental schools, based on Primosch et al. survey (1997). A 27-question survey was sent to 31 dental schools. A total of 68 surveys were obtained for analysis of the results, in which pediatric dentists answered 48 surveys, 11 surveys by general practitioners, and 9 were answered but were not identified in any of these groups. Indirect pulp treatment (IPT) is taught by pediatric dentists (83%) and general practitioners (90%). Calcium hydroxide and glass ionomer were the preferred materials in this treatment. Pulpotomy is the most commonly procedure used. There was no different percentage in the use of medicaments: cresatin, glutaraldehyde, calcium hydroxide, formocresol. Pulpectomy is taught by general practitioners (73%) and pediatric dentists (96%). The preferred filler material, used by general practitioners (73%) and pediatric dentists (94%), was zinc oxide and eugenol. There is a discrepancy in the choice of treatment and medications for pulp therapy primary teeth between general practitioners and pediatric dentists. The recommendations given in American Academy of Pediatric Dentistry (AAPD) guidelines 2012 for pulp therapy in primary and young permanent teeth are being followed in the majority instances. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. In vitro tomographic image of human pulp-dentin complex: optical coherence tomography and histology.

    Science.gov (United States)

    Braz, Ana K S; Kyotoku, Bernardo B C; Gomes, Anderson S L

    2009-09-01

    Optical coherence tomography (OCT), a noninvasive imaging method, was used in this work to image the pulp-dentin complex. Pulp and dentin are integrally connected in the sense that physiologic and pathologic reactions in one of the tissues will also affect the other. An OCT system with 6-mum spatial resolution at 800 nm was used to image the pulp-dentin complex of in vitro samples. Five intact human maxillary premolars scheduled for surgical extraction were used in this in vitro study. The occlusal surfaces of teeth were polished with wet 600-, 1,000-, and 1,200-grit aluminum oxide abrasive paper perpendicular to the long axis of teeth, producing a plane on that surface. The images of pulp-dentin complex were taken by scanning the occlusal surface in a mesiodistal direction. The laser penetrated into the teeth structure and a tomographic image of pulp-dentin complex, parallel to the long axis of teeth, was obtained. Histological and OCT images were analyzed and compared. The results showed the capability of the OCT technique to generate images of the boundaries of pulp and its relation to the dentin. It could be clearly seen that the OCT image provided the insight into dentinal substrate about 0.65-mm deep (corrected for the dentin refractive index). OCT can be used in the future to prevent iatrogenic exposures of the pulp, complementing other existing methods, and will permit a more predictive prognosis of treatments.

  10. Regenerative potential following revascularization of immature permanent teeth with necrotic pulps.

    Science.gov (United States)

    Tawfik, H; Abu-Seida, A M; Hashem, A A; Nagy, M M

    2013-10-01

    To assess the regenerative potential of immature teeth with necrotic pulps following revascularization procedure in dogs. Necrotic pulps and periapical pathosis were created by infecting 108 immature teeth, with 216 root canals in nine mongrel dogs. Teeth were divided into three equal groups according to the evaluation period. Each group was further subdivided into six subgroups according to the treatment protocol including MTA apical plug, revascularization protocol, revascularization enhanced with injectable scaffold, MTA over empty canal. All root canals were disinfected with a triple antibiotic paste prior to revascularization with the exception of control subgroups. After disinfection, the root length, thickness and apical diameter were measured from radiographs. Histological evaluation was used to assess the inflammatory reaction, soft and hard tissue formation. In the absence of revascularization, the length and thickness of the root canals did not change over time. The injectable scaffold and growth factor was no more effective than a revascularization procedure to promote tooth development following root canal revascularization. The tissues formed in the root canals resembled periodontal tissues. The revascularization procedure allowed the continued development of roots in teeth with necrotic pulps. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Decellularized Human Dental Pulp as a Scaffold for Regenerative Endodontics.

    Science.gov (United States)

    Song, J S; Takimoto, K; Jeon, M; Vadakekalam, J; Ruparel, N B; Diogenes, A

    2017-06-01

    Teeth undergo postnatal organogenesis relatively late in life and only complete full maturation a few years after the crown first erupts in the oral cavity. At this stage, development can be arrested if the tooth organ is damaged by either trauma or caries. Regenerative endodontic procedures (REPs) are a treatment alternative to conventional root canal treatment for immature teeth. These procedures rely on the transfer of apically positioned stem cells, including stem cells of the apical papilla (SCAP), into the root canal system. Although clinical success has been reported for these procedures, the predictability of expected outcomes and the organization of the newly formed tissues are affected by the lack of an available suitable scaffold that mimics the complexity of the dental pulp extracellular matrix (ECM). In this study, we evaluated 3 methods of decellularization of human dental pulp to be used as a potential autograft scaffold. Tooth slices of human healthy extracted third molars were decellularized by 3 different methods. One of the methods generated the maximum observed decellularization with minimal impact on the ECM composition and organization. Furthermore, recellularization of the scaffold supported the proliferation of SCAP throughout the scaffold with differentiation into odontoblast-like cells near the dentinal walls. Thus, this study reports that human dental pulp from healthy extracted teeth can be successfully decellularized, and the resulting scaffold supports the proliferation and differentiation of SCAP. The future application of this form of an autograft in REPs can fulfill a yet unmet need for a suitable scaffold, potentially improving clinical outcomes and ultimately promoting the survival and function of teeth with otherwise poor prognosis.

  12. Effects of VEGF and FGF2 on the revascularization of severed human dental pulps.

    Science.gov (United States)

    Mullane, E M; Dong, Z; Sedgley, C M; Hu, J C-C; Botero, T M; Holland, G R; Nör, J E

    2008-12-01

    The long-term outcome of replanted avulsed permanent teeth is frequently compromised by lack of revascularization, resulting in pulp necrosis. The purpose of this study was to evaluate the effects of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF-2) on the revascularization of severed human dental pulps. Tooth slices were prepared from non-carious human molars and treated with 0-50 ng/mL rhVEGF(165) or rhFGF-2 for 7 days in vitro. Both angiogenic factors enhanced pulp microvessel density compared with untreated controls (p dental pulps and suggest that topical application of an angiogenic factor prior to replantation might be beneficial for the treatment of avulsed teeth.

  13. Inferring chronological age from DNA methylation patterns of human teeth.

    Science.gov (United States)

    Giuliani, Cristina; Cilli, Elisabetta; Bacalini, Maria Giulia; Pirazzini, Chiara; Sazzini, Marco; Gruppioni, Giorgio; Franceschi, Claudio; Garagnani, Paolo; Luiselli, Donata

    2016-04-01

    Current methods to determine chronological age from modern and ancient remains rely on both morphological and molecular approaches. However, low accuracy and the lack of standardized protocols make the development of alternative methods for the estimation of individual's age even more urgent for several research fields, such as biological anthropology, biodemography, forensics, evolutionary genetics, and ancient DNA studies. Therefore, the aim of this study is to identify genomic regions whose DNA methylation level correlates with age in modern teeth. We used MALDI-TOF mass spectrometry to analyze DNA methylation levels of specific CpGs located in the ELOVL2, FHL2, and PENK genes. We considered methylation data from cementum, dentin and pulp of 21 modern teeth (from 17 to 77 years old) to construct a mathematical model able to exploit DNA methylation values to predict age of the individuals. The median difference between the real age and that estimated using DNA methylation values is 1.20 years (SD = 1.9) if DNA is recovered from both cementum and pulp of the same modern teeth, 2.25 years (SD = 2.5) if DNA is recovered from dental pulp, 2.45 years (SD = 3.3) if DNA is extracted from cementum and 7.07 years (SD = 7.0) when DNA is recovered from dentin only. We propose for the first time the evaluation of DNA methylation at ELOVL2, FHL2, and PENK genes as a powerful tool to predict age in modern teeth for anthropological applications. Future studies are needed to apply this method also to historical and relatively ancient human teeth. © 2015 Wiley Periodicals, Inc.

  14. Measurement of pulp blood flow rates in maxillary anterior teeth using ultrasound Doppler flowmetry.

    Science.gov (United States)

    Cho, Y-W; Park, S-H

    2015-12-01

    To measure pulp blood flow rates of clinically normal maxillary anterior teeth of healthy adults using ultrasound Doppler flowmetry (UDF). A total of 359 anterior teeth from 63 patients (mean age, 29.8 years; range, 22-52 years; 26 females and 36 males) were included. The data were collected according to tooth type (three groups: central incisors, lateral incisors and canines). An MM-D-K (Minimax, Moscow, Russia) ultrasound Doppler imaging instrument was used to measure pulp blood flow. Differences between the tooth types were analysed with one-way anova and a Bonferroni correction at the 95% confidence level. The mean average linear velocities during the systolic period (Vams) of the central incisors, lateral incisors and canines were 0.58, 0.58 and 0.52 cm s(-1) , respectively. There were no significant differences in the mean Vams between the tooth types (P > 0.05). Within the limitations of this study, the pulp blood velocities of clinically normal, maxillary anterior teeth of healthy adults were between 0.5 and 0.6 cm s(-1) . There were no significant differences in mean blood flow rates between maxillary central incisors, lateral incisors and canines. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Histologic Evaluation of Human Pulp Response to Total Etch and Self Etch Adhesive Systems

    OpenAIRE

    Malekipour, Mohammad Reza; Razavi, Sayed Mohammad; Khazaei, Saber; Kazemi, Shantia; Behnamanesh, Maryam; Shirani, Farzaneh

    2013-01-01

    Background To investigate pulp response to the application of two types adhesive systems (total-etch and self-etch) in human premolar teeth. Materials and Methods Cavities limited to enamel walls in all margins with 2.5 mm depth were prepared on buccal surfaces of thirty three human premolars. The cavities were treated with the following adhesive. Single Bond (SB) and Prompt L-Pop (PLP). The teeth were extracted after 30 days and prepared due to histological technique. Results Pulp responses ...

  16. Comparative gene expression profile analysis between native human odontoblasts and pulp tissue.

    Science.gov (United States)

    Pääkkönen, V; Vuoristo, J T; Salo, T; Tjäderhane, L

    2008-02-01

    To undertake a large-scale analysis of the expression profiles of native human pulp tissue and odontoblasts, and search for genes expressed only in odontoblasts. Microarray was performed to pooled pulp and odontoblasts of native human third molars and to pooled +/- TGF-beta1 cultured pulps and odontoblasts (137 teeth). The repeatability of microarray analysis was estimated by comparing the experimental pulp samples with expression profiles of two pulp samples downloaded from the GEO database. The genes expressed only in the experimental pulp samples or in odontoblasts were divided into categories, and the expression of selected odontoblast-specific genes of extracellular matrix (ECM) organization and biogenesis category was confirmed with RT-PCR and Western blot. A 85.3% repeatability was observed between pulp microarrays, demonstrating the high reliability of the technique. Overall 1595 probe sets were positive only in pulp and 904 only in odontoblasts. Sixteen expressed sequence tags (ESTs), which represent transcribed sequences encoding possibly unknown genes, were detected only in odontoblasts; two consistently expressed in all odontoblast samples. Matrilin 4 (MATN4) was the only ECM biogenesis and organization related gene detected in odontoblasts but not in pulp by microarray and RT-PCR. MATN4 protein expression only in odontoblasts was confirmed by Western blot. Pulp tissue and odontoblast gene expression profiling provides basic data for further, more detailed protein analysis. In addition, MATN4 and the two ESTs could serve as an odontoblast differentiation marker, e.g. in odontoblast stem cell research.

  17. Putative Stem Cells in Human Dental Pulp with Irreversible Pulpitis-An Exploratory Study

    Science.gov (United States)

    Wang, Z.; Pan, J.; Wright, JT; Bencharit, S.; Zhang, S.; Everett, ET; Teixeira, FB; Preisser, JS

    2010-01-01

    Introduction Although human dental pulp stem cells isolated from healthy teeth have been extensively characterized, it is unknown whether stem cells also exist in clinically compromised teeth with irreversible pulpitis. Here we explored whether cells retrieved from clinically compromised dental pulp have stem cell-like properties. Methods Pulp cells were isolated from healthy teeth (control group) and from teeth with clinically diagnosed irreversible pulpitis (diseased group). Cell proliferation, stem cell marker STRO-1 expression and cell odonto-osteo-genic differentiation competence were compared. Results Cells from the diseased group demonstrated decreased colony formation capacity and a slightly decreased cell proliferation rate but had similar STRO-1 expression, and exhibited a similar percentage of positive ex vivo osteogenic induction and dentin sialophosphoprotein expression from STRO-1-enriched pulp cells. Conclusion Our study provides preliminary evidence that clinically compromised dental pulp may contain putative cells with certain stem cell properties. Further characterization of these cells will provide insight regarding whether they could serve as a source of endogenous multipotent cells in tissue regeneration based dental pulp therapy. PMID:20416426

  18. The Effect of Glass Ionomer and Adhesive Cements on Substance P Expression in Human Dental Pulp

    OpenAIRE

    Caviedes Bucheli, Javier; Ariza García, Germán; Camelo, Patricia; Mejía, Mónica; Ojeda, Karyn; Azuero Holguin, María Mercedes; Abad Coronel, Dunia; Munoz, Hugo-Roberto

    2013-01-01

    Objectives: The purpose of this study was to quantify the effect of glass ionomer and adhesive cements on SP expression in healthy human dental pulp. Study Design: Forty pulp samples were obtained from healthy premolars where extraction was indicated for orthodontic reasons. In thirty of these premolars a Class V cavity preparation was performed and teeth were equally divided in three groups: Experimental Group I: Glass Ionomer cement was placed in the cavity. Experimental Group II: Adhesive ...

  19. Pulpal status of human primary teeth with physiological root resorption.

    Science.gov (United States)

    Monteiro, Joana; Day, Peter; Duggal, Monty; Morgan, Claire; Rodd, Helen

    2009-01-01

    The overall aim of this study was to determine whether any changes occur in the pulpal structure of human primary teeth in association with physiological root resorption. The experimental material comprised 64 sound primary molars, obtained from children requiring routine dental extractions under general anaesthesia. Pulp sections were processed for indirect immunofluorescence using combinations of: (i) protein gene product 9.5 (a general neuronal marker); (ii) leucocyte common antigen CD45 (a general immune cell marker); and (iii) Ulex europaeus I lectin (a marker of vascular endothelium). Image analysis was then used to determine the percentage area of staining for each label within both the pulp horn and mid-coronal region. Following measurement of the greatest degree of root resorption in each sample, teeth were subdivided into three groups: those with physiological resorption involving less than one-third, one-third to two-thirds, and more than two-thirds of their root length. Wide variation was evident between different tooth samples with some resorbed teeth showing marked changes in pulpal histology. Decreased innervation density, increased immune cell accumulation, and increased vascularity were evident in some teeth with advanced root resorption. Analysis of pooled data, however, did not reveal any significant differences in mean percentage area of staining for any of these variables according to the three root resorption subgroups (P > 0.05, analysis of variance on transformed data). This investigation has revealed some changes in pulpal status of human primary teeth with physiological root resorption. These were not, however, as profound as one may have anticipated. It is therefore speculated that teeth could retain the potential for sensation, healing, and repair until advanced stages of root resorption.

  20. Dental trauma. Combination injuries 3. The risk of pulp necrosis in permanent teeth with extrusion or lateral luxation and concomitant crown fractures without pulp exposure

    DEFF Research Database (Denmark)

    Lauridsen, Eva Fejerskov; Hermann, Nuno Vibe; Gerds, Thomas Alexander

    2012-01-01

    Aim: To analyze the influence of a crown fracture without pulp exposure on the risk of pulp necrosis (PN) in teeth with extrusion or lateral luxation. Material and methods: The study included 82 permanent incisors with extrusion from 78 patients (57 male, 21 female) and 179 permanent incisors...... with lateral luxation from 149 patients (87 male, 62 female). A total of 25 teeth with extrusion and 33 teeth with lateral luxation had suffered a concomitant crown fracture (infraction, enamel fracture or enamel-dentin-fracture). All the teeth were examined and treated according to a standardized protocol....... Statistics: The risk of PN was analyzed separately for teeth with immature and mature root development by the Kaplan–Meier method, the log-rank test and Cox regression (lateral luxation only). The level of significance was set at 5%. Risk factors included in the analysis were gender, age, crown fracture...

  1. Pulp tissue response to Portland cement associated with different radio pacifying agents on pulpotomy of human primary molars.

    Science.gov (United States)

    Marques, N; Lourenço Neto, N; Fernandes, A P; Rodini, C; Hungaro Duarte, M; Rios, D; Machado, M A; Oliveira, T

    2015-12-01

    The objective of this research was to evaluate the response of Portland cement associated with different radio pacifying agents on pulp treatment of human primary teeth by clinical and radiographic exams and microscopic analysis. Thirty mandibular primary molars were randomly divided into the following groups: Group I - Portland cement; Group II - Portland cement with iodoform (Portland cement + CHI3 ); Group III - Portland cement with zirconium oxide (Portland cement + ZrO2 ); and treated by pulpotomy technique (removal of a portion of the pulp aiming to maintain the vitally of the remaining radicular pulp tissue using a therapeutic dressing). Clinical and radiographic evaluations were recorded at 6, 12 and 24 months follow-up. The teeth at the regular exfoliation period were extracted and processed for histological analysis. Data were tested using statistical analysis with a significance level of 5%. The microscopic findings were descriptively analysed. All treated teeth were clinically and radiographically successful at follow-up appointments. The microscopic analysis revealed positive response to pulp repair with hard tissue barrier formation and pulp calcification in the remaining roots of all available teeth. The findings of this study suggest that primary teeth pulp tissue exhibited satisfactory biological response to Portland cement associated with radio pacifying agents. However, further studies with long-term follow-up are needed to determine the safe clinical indication of this alternative material for pulp therapy of primary teeth. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  2. Pulpectomy in hyperemic pulp and accelerated root resorption in primary teeth: A review with associated case report

    Directory of Open Access Journals (Sweden)

    Tarun Walia

    2014-01-01

    Full Text Available Persistent hemorrhage after complete amputation of coronal pulp is a common clinical finding during pulpotomy procedure in primary teeth. These teeth are best managed with pulpectomy, but they have hyperemic pulp with some remaining vital tissue. Good chemico-biomechanical preparation of primary canals cannot guarantee complete removal of this vital tissue from inaccessible areas. Use of Ca(OH 2 containing root filling pastes in vital pulp tissue can cause accelerated resorption of primary roots. The possible mechanism behind such extensive root resorption is discussed with review of literature. A case report of a child with 30 months follow-up is presented and discussed.

  3. Pulpectomy in hyperemic pulp and accelerated root resorption in primary teeth: a review with associated case report.

    Science.gov (United States)

    Walia, Tarun

    2014-01-01

    Persistent hemorrhage after complete amputation of coronal pulp is a common clinical finding during pulpotomy procedure in primary teeth. These teeth are best managed with pulpectomy, but they have hyperemic pulp with some remaining vital tissue. Good chemico-biomechanical preparation of primary canals cannot guarantee complete removal of this vital tissue from inaccessible areas. Use of Ca(OH) ₂ containing root filling pastes in vital pulp tissue can cause accelerated resorption of primary roots. The possible mechanism behind such extensive root resorption is discussed with review of literature. A case report of a child with 30 months follow-up is presented and discussed.

  4. Effect of mineral trioxide aggregate as a direct pulp capping agent in cariously exposed permanent teeth

    Directory of Open Access Journals (Sweden)

    Parul Bansal

    2014-01-01

    Full Text Available Aims and Objectives: To evaluate the effectiveness of mineral trioxide aggregate (MTA when used as a pulp capping agent in permanent teeth with carious exposure (≤1mm after root formation is completed. Materials and Methods: Clinical follow-up was performed on 32 mandibular molars with deep occlusal caries, in patients in the age group range of 18 to 42 years. Carious pulpal exposures were treated by direct pulp capping with MTA, followed by a base of light cure glass ionomer cement and restored with amalgam. Clinical and radiographic examinations were carried out periodically at 1, 3, 6, 9, 12, 18 and 24 months. Results: After 24 months clinical and radiographic follow-up, it was found that 25 (out of 32 patients had successful outcome. However, two patients failed to return for evaluation after permanent restoration, and five patients exhibited clinical failure. Conclusions: Mineral trioxide aggregate was found to be an effective material when used for direct pulp capping in permanent teeth. However, further investigations with a larger sample size are needed to support these findings.

  5. Influence of Apical Diameter on the Outcome of Regenerative Endodontic Treatment in Teeth with Pulp Necrosis: A Review.

    Science.gov (United States)

    Fang, Yanjun; Wang, Xinhuan; Zhu, Jingjing; Su, Chaonan; Yang, Ying; Meng, Liuyan

    2017-12-19

    The aim of this review was to evaluate whether the apical diameter of teeth with necrotic pulp affects the outcomes of regenerative endodontic treatment and to determine the minimal apical size needed to obtain proper pulp revascularization. A literature search was performed from January 1, 2001, to November 25, 2016. Studies that satisfied the inclusion criteria were subjected to data extraction and analysis. In total, 14 studies with 85 patients were included. There were 10 case reports, 3 case series, and 1 prospective cohort study. The apical diameters of the teeth were divided into 3 groups: a narrow-sized group (group N), 1.0 mm (n = 60). In group N, 1 tooth failed, 2 teeth completely healed, and 7 teeth incompletely healed. In group M, 2 teeth were excluded, and 1 tooth failed. In group W, 3 teeth were excluded, and 4 teeth failed. The clinical success rates were 90%, 95.65%, and 92.98% in groups N, M, and W, respectively. Within the limitations, the teeth with apical diameters teeth with apical diameters of 0.5-1.0 mm attained the highest clinical success rate, which may be related to other potential factors, including patient age, pulp necrosis etiology, preoperative apical radiolucency, procedure details, follow-up period, and sample size. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Response of human dental pulp capped with biodentine and mineral trioxide aggregate.

    Science.gov (United States)

    Nowicka, Alicja; Lipski, Mariusz; Parafiniuk, Mirosław; Sporniak-Tutak, Katarzyna; Lichota, Damian; Kosierkiewicz, Anita; Kaczmarek, Wojciech; Buczkowska-Radlińska, Jadwiga

    2013-06-01

    Biodentine is a new bioactive cement that is similar to the widely used mineral trioxide aggregate (MTA). It has dentin-like mechanical properties, which may be considered a suitable material for clinical indications of dentin-pulp complex regeneration such as direct pulp capping. The purpose of the present study was to compare the response of the pulp-dentin complex in human teeth after direct capping with this new tricalcium silicate-based cement with that of MTA. Pulps in 28 caries-free maxillary and mandibular permanent intact human molars scheduled for extraction for orthodontic reasons were mechanically exposed and assigned to 1 of 2 experimental groups, Biodentine or MTA, and 1 control group. Assay of periapical response and clinical examination were performed. After 6 weeks, the teeth were extracted, stained with hematoxylin-eosin, and categorized by using a histologic scoring system. The majority of specimens showed complete dentinal bridge formation and an absence of inflammatory pulp response. Layers of well-arranged odontoblast and odontoblast-like cells were found to form tubular dentin under the osteodentin. Statistical analysis showed no significant differences between the Biodentine and MTA experimental groups during the observation period. Within the limitations of this study, Biodentine had a similar efficacy in the clinical setting and may be considered an interesting alternative to MTA in pulp-capping treatment during vital pulp therapy. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. In vitro assessment of pulp chamber temperature of different teeth submitted to dental bleaching associated with LED/laser and halogen lamp appliances.

    Science.gov (United States)

    Torres, Carlos Rocha Gomes; Caneppele, Taciana Marco Ferraz; Arcas, Felipe Carlos Dias; Borges, Alessandra Buhler

    2008-01-01

    This study sought to assess the pulp chamber temperature in different groups of human teeth that had been bleached using hydrogen peroxide gel activated with halogen lamps or hybrid LED/laser appliances. Four groups of ten teeth (maxillary central incisors, mandibular incisors, mandibular canines, and maxillary canines) were used. A digital thermometer with a K-type thermocouple was placed inside pulp chambers that had been filled with thermal paste. A 35% hydrogen peroxide-based red bleaching gel was applied to all teeth and photocured for a total of three minutes and 20 seconds (five activations of 40 seconds each), using light from an LED/laser device and a halogen lamp. The temperatures were gauged every 40 seconds and the data were analyzed by three-way ANOVA, followed by Tukey's test. Regardless of the light source, statistically significant differences were observed between the groups of teeth. The mean temperature values (+/- SD) were highest for maxillary central incisors and lowest for mandibular canines. The halogen lamp appliance produced more pulp chamber heating than the LED/laser appliance. The increase in irradiation time led to a significant increase in temperature.

  8. Quantitative scintigraphic analysis of pulp revascularization in autotransplanted teeth in dogs.

    Science.gov (United States)

    Ferreira, Manuel Marques; Botelho, Maria Filomena; Abrantes, Margarida; Oliveiros, Barbara; Carrilho, Eunice Virgínia

    2010-11-01

    The purpose of this study was to evaluate the pulpal changes associated with autogenous single-rooted immature tooth transplantation in dogs, using either one, or two-stage surgical techniques. Teeth from 3 beagle dogs, 5 months old, were extracted and transplanted to mechanically prepared recipient sockets. Group (A), where the teeth were transplanted using a one-stage method to recipient beds prepared immediately before transplantation. Group (B), where the teeth were transplanted using a two-stage method in which the recipient beds were prepared and left to heal for 7 days before transplantation. Clinical examinations were done every week during 9 weeks. After 9 weeks, the animals were injected with ⁹⁹(m)Technetium hydroxylmethylene diphosphonate (⁹⁹(m)Tc-HMDP) and 3h after injection, a whole body scintigraphic acquisition was performed. After scintigraphic acquisition the animals were euthanized and the teeth extracted and its radioactivity counted in a well counter calibrated to ⁹⁹(m)Tc. With the data obtained, the percentage of activity injected was calculated for each tooth. The data for each group of teeth were evaluated and analyzed using the Mann-Whitney test (p=0.05). All the transplanted teeth in both groups survived. No statistically significant difference was found in the absorption of the ⁹⁹(m)Tc-HMDP, between the treatment groups (p=0.464) and between them and the control group (Group A vs. control p=0.713 and Group B vs. control p=0.157). This study demonstrated that there was no difference between the two surgical techniques in terms of the pulp revascularization in transplanted teeth. Published by Elsevier Ltd.

  9. Outcomes of vital pulp therapy in permanent teeth with different medicaments based on review of the literature

    Directory of Open Access Journals (Sweden)

    Najmeh Akhlaghi

    2015-01-01

    Full Text Available Vital pulp therapy (VPT is a biologic and conservative treatment modality to preserve the vitality and function of the coronal or remaining radicular pulp tissue in vital permanent teeth. A search was conducted via the Cochrane database, PubMed, MEDLINE, and Ovid for any articles with the criteria for "pulp-capping," or "pulp-capping materials" and "VPT outcomes" from 1978 to mid 2014. All articles were evaluated and the valid papers were selected. The outcomes of various VPT techniques, including indirect pulp treatment, direct pulp treatment, partial pulpotomy, and complete pulpotomy in vital permanent teeth were extracted. Although various studies have different research approach, most studies noted a favorable treatment outcome. Mineral trioxide aggregate (MTA appears to be more effective than calcium hydroxide (Ca(OH 2 for maintaining long-term pulp vitality after indirect and direct pulp-capping. However, it seems that the success rate for partial pulpotomy and pulpotomy with Ca(OH 2 is similar to MTA.

  10. Outcomes of vital pulp therapy in permanent teeth with different medicaments based on review of the literature

    Science.gov (United States)

    Akhlaghi, Najmeh; Khademi, Abbasali

    2015-01-01

    Vital pulp therapy (VPT) is a biologic and conservative treatment modality to preserve the vitality and function of the coronal or remaining radicular pulp tissue in vital permanent teeth. A search was conducted via the Cochrane database, PubMed, MEDLINE, and Ovid for any articles with the criteria for “pulp-capping,” or “pulp-capping materials” and “VPT outcomes” from 1978 to mid 2014. All articles were evaluated and the valid papers were selected. The outcomes of various VPT techniques, including indirect pulp treatment, direct pulp treatment, partial pulpotomy, and complete pulpotomy in vital permanent teeth were extracted. Although various studies have different research approach, most studies noted a favorable treatment outcome. Mineral trioxide aggregate (MTA) appears to be more effective than calcium hydroxide (Ca(OH)2) for maintaining long-term pulp vitality after indirect and direct pulp-capping. However, it seems that the success rate for partial pulpotomy and pulpotomy with Ca(OH)2 is similar to MTA. PMID:26604953

  11. Photoacoustic microscopy of human teeth

    Science.gov (United States)

    Rao, Bin; Cai, Xin; Favazza, Christopher; Yao, Junjie; Li, Li; Duong, Steven; Liaw, Lih-Huei; Holtzman, Jennifer; Wilder-Smith, Petra; Wang, Lihong V.

    2011-03-01

    Photoacoustic microscopy (PAM) utilizes short laser pulses to deposit energy into light absorbers and sensitively detects the ultrasonic waves the absorbers generate in response. PAM directly renders a three-dimensional spatial distribution of sub-surface optical absorbers. Unlike other optical imaging technologies, PAM features label-free optical absorption contrast and excellent imaging depths. Standard dental imaging instruments are limited to X-ray and CCD cameras. Subsurface optical dental imaging is difficult due to the highly-scattering enamel and dentin tissue. Thus, very few imaging methods can detect dental decay or diagnose dental pulp, which is the innermost part of the tooth, containing the nerves, blood vessels, and other cells. Here, we conducted a feasibility study on imaging dental decay and dental pulp with PAM. Our results showed that PAM is sensitive to the color change associated with dental decay. Although the relative PA signal distribution may be affected by surface contours and subsurface reflections from deeper dental tissue, monitoring changes in the PA signals (at the same site) over time is necessary to identify the progress of dental decay. Our results also showed that deep-imaging, near-infrared (NIR) PAM can sensitively image blood in the dental pulp of an in vitro tooth. In conclusion, PAM is a promising tool for imaging both dental decay and dental pulp.

  12. Revascularization: a treatment for permanent teeth with necrotic pulp and incomplete root development.

    Science.gov (United States)

    Wigler, Ronald; Kaufman, Arieh Y; Lin, Shaul; Steinbock, Nelly; Hazan-Molina, Hagai; Torneck, Calvin D

    2013-03-01

    Endodontic treatment of immature permanent teeth with necrotic pulp, with or without apical pathosis, poses several clinical challenges. There is a risk of inducing a dentin wall fracture or extending gutta-percha into the periapical tissue during compaction of the root canal filling. Although the use of calcium hydroxide apexification techniques or the placement of mineral trioxide aggregate as an apical stop has the potential to minimize apical extrusion of filling material, they do little in adding strength to the dentin walls. It is a well-established fact that in reimplanted avulsed immature teeth, revascularization of the pulp followed by continued root development can occur under ideal circumstances. At one time it was believed that revascularization was not possible in immature permanent teeth that were infected. An in-depth search of the literature was undertaken to review articles concerned with regenerative procedures and revascularization and to glean recommendations regarding the indications, preferred medications, and methods of treatment currently practiced. Disinfection of the root canal and stimulation of residual stem cells can induce formation of new hard tissue on the existing dentin wall and continued root development. Although the outcome of revascularization procedures remains somewhat unpredictable and the clinical management of these teeth is challenging, when successful, they are an improvement to treatment protocols that leave the roots short and the walls of the root canal thin and prone to fracture. They also leave the door open to other methods of treatment in addition to extraction, when they fail to achieve the desired result. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Schwann Cell Phenotype Changes in Aging Human Dental Pulp.

    Science.gov (United States)

    Couve, E; Lovera, M; Suzuki, K; Schmachtenberg, O

    2017-10-01

    Schwann cells are glial cells that support axonal development, maintenance, defense, and regeneration in the peripheral nervous system. There is limited knowledge regarding the organization, plasticity, and aging of Schwann cells within the dental pulp in adult permanent teeth. The present study sought to relate changes in the pattern of Schwann cell phenotypes between young and old adult teeth with neuronal, immune, and vascular components of the dental pulp. Schwann cells are shown to form a prominent glial network at the dentin-pulp interface, consisting of nonmyelinating and myelinating phenotypes, forming a multicellular neuroimmune interface in association with nerve fibers and dendritic cells. Schwann cell phenotypes are recognized by the expression of S100, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), Sox10, GAP43, and p75NTR markers. In young adult teeth, a dense population of nonmyelinating Schwann cells projects processes in close association with sensory nerve terminals through the odontoblast layer, reaching the adjacent predentin/dentin domain. While GAP43 and p75NTR are highly expressed in nonmyelinating Schwann cells from young adult teeth, the presence of these markers declines significantly in old adult teeth. Myelinated axons, identified by MBP expression, are mainly present at the Raschkow plexus and within nerve bundles in the dental pulp, but their density is significantly reduced in old adult versus young adult teeth. These data reveal age-related changes within the glial network of the dental pulp, in association with a reduction of coronal dental pulp innervation in old adult versus young adult teeth. The prominence of Schwann cells as a cellular component at the dentin-pulp interface supports the notion that their association with sensory nerve terminals and immune system components forms part of an integrated multicellular barrier for defense against pathogens and dentin repair.

  14. Histopathological evaluation of pulp after pulpotomy of primary teeth with sodium hypochlorite and formocresol

    Directory of Open Access Journals (Sweden)

    Haghgoo R

    2010-06-01

    Full Text Available "nBackground and Aims: Formocresol is one of the most common pulpotomy medicaments for primary teeth. Because of its systemic and local side effects, it may be essential to use another material instead of formocresol. The aim of this study was to evaluate the histopothalogy of pulp after pulpotomy teeth with sodium hypochlorite and formocresol. "nMaterials and Methods: In this randomized clinical trial, 22 canine teeth that must be extracted because of orthodontic treatment were selected. The teeth were randomly divided into 2 groups (n=11 and pulpotomized with formocresol or sodium hypochlorite. These teeth were extracted after 2 months and pulpal response was evaluated according to the degree of inflammation and extent of pulpal involvement. Dentinal bridge formation was also evaluated. The data were analyzed by Mann-Whitney test. "nResults: In formocresol group, mild inflammation was seen in 4 and moderate inflammation in 3 and severe inflammation in 4 cases. In sodium hypochlorite group mild inflammation was seen in 6 cases and moderate inflammation in 4 cases and severe inflammation in 1 case. Mann-Whitney test revealed that this difference was not statistically significant (P>0.05. In formocresol group, necrosis was seen in 5 cases, but abscess and internal resorption were not seen in any cases. In sodium hypochlorite group, internal resorption was seen in 3 cases; but necrosis and abscess were not seen in any cases.  Mann-Whitney test showed that the difference between two groups was significant in terms of necrosis (P=0.02. In sodium hypochlorite group, dentinal bridge was formed in 3 cases; however, no dentinal bridge formation was seen in formocresol group. Mann-Whitney test showed that this difference was not significant statistically (P>0.05. "nConclusion: Based on the results of this study, sodium hypochlorite can be used as a pulpotomy agent in primary teeth.

  15. Revascularization in Immature Permanent Teeth with Necrotic Pulp and Apical Pathology: Case Series

    Directory of Open Access Journals (Sweden)

    López Carmen

    2017-01-01

    Full Text Available Introduction. To present and discuss the results of five clinical cases treated using the revascularization protocol, showing clinical and radiographic monitoring. Necrotic immature teeth with periapical pathology present a challenge to dentists because the techniques used in apexification leave the tooth susceptible to fracture, since the root does not continue to grow in length and the canal walls are thin. Revascularization has emerged as an alternative to resolve these deficiencies, enabling apical closure, continued development of the roots, and thickening of the dentinal walls. Case Series. Five clinically and radiographically diagnosed necrotic immature permanent teeth were treated using revascularization treatment. The therapeutic protocol involved accessing the pulp chamber; irrigating copiously with NaOCl; applying a triple antibiotic paste as intracanal dressing; then provisionally sealing it. After 3 weeks, the canal was cleaned and the apex irritated with a size 15 K-file to induce blood that would serve as a scaffold for pulp revascularization. MTA was used to seal the chamber before final obturation (composite or metallic crown. Conclusion. The discussion of the results leads to debate about different restorative materials and other published protocols.

  16. Revascularization in Immature Permanent Teeth with Necrotic Pulp and Apical Pathology: Case Series.

    Science.gov (United States)

    Carmen, López; Asunción, Mendoza; Beatriz, Solano; Rosa, Yáñez-Vico

    2017-01-01

    To present and discuss the results of five clinical cases treated using the revascularization protocol, showing clinical and radiographic monitoring. Necrotic immature teeth with periapical pathology present a challenge to dentists because the techniques used in apexification leave the tooth susceptible to fracture, since the root does not continue to grow in length and the canal walls are thin. Revascularization has emerged as an alternative to resolve these deficiencies, enabling apical closure, continued development of the roots, and thickening of the dentinal walls. Five clinically and radiographically diagnosed necrotic immature permanent teeth were treated using revascularization treatment. The therapeutic protocol involved accessing the pulp chamber; irrigating copiously with NaOCl; applying a triple antibiotic paste as intracanal dressing; then provisionally sealing it. After 3 weeks, the canal was cleaned and the apex irritated with a size 15 K-file to induce blood that would serve as a scaffold for pulp revascularization. MTA was used to seal the chamber before final obturation (composite or metallic crown). The discussion of the results leads to debate about different restorative materials and other published protocols.

  17. Responses of the pulp, periradicular and soft tissues following trauma to the permanent teeth.

    Science.gov (United States)

    Yu, C Y; Abbott, P V

    2016-03-01

    Trauma to the permanent teeth involves not only the teeth but also the pulp, the periodontal ligament, alveolar bone, gingiva and other associated structures. There are many variations in the types of injuries with varying severity and often a tooth may sustain more than one injury at the same time. In more severe trauma cases, there are many different cellular systems of mineralized hard and unmineralized soft tissues involved, each with varying potential for healing. Furthermore, the responses of the different tissues may be interrelated and dependent on each other. Hence, healing subsequent to dental trauma has long been known to be very complex. Because of this complexity, tissue responses and the consequences following dental trauma have been confusing and puzzling for many clinicians. In this review, the tissue responses are described under the tissue compartments typically involved following dental trauma: the pulp, periradicular and associated soft tissues. The factors involved in the mechanisms of trauma are analysed for their effects on the tissue responses. A thorough understanding of the possible tissue responses is imperative for clinicians to overcome the confusion and manage dental trauma adequately and conservatively in order to minimize the consequences following trauma. © 2016 Australian Dental Association.

  18. Treatment Outcomes of Mineral Trioxide Aggregate Pulpotomy in Vital Permanent Teeth with Carious Pulp Exposure: The Retrospective Study.

    Science.gov (United States)

    Linsuwanont, Pairoj; Wimonsutthikul, Kongthum; Pothimoke, Uht; Santiwong, Busayarat

    2017-02-01

    This study aimed to illustrate the treatment outcomes of mineral trioxide aggregate (MTA) pulpotomy in vital permanent teeth with carious pulp exposure. MTA pulpotomy was performed in 66 vital permanent teeth with carious pulp exposure including teeth with signs and symptoms of irreversible pulpitis and the presence of periapical radiolucency. Patients were assessed for clinical and radiographic outcomes by 2 examiners. The relationship between treatment outcomes and factors was analyzed by means of univariate analysis and binary logistic regression. Fifty patients (a total of 55 teeth) attended the follow-up examination. The age of the patients ranged from 7-68 years old (mean = 29 years old). For the follow-up period as far as 62 months, 48 teeth showed successful outcomes (success rate = 87.3%). Teeth with clinical signs of irreversible pulpitis and the presence of periapical radiolucency could be treated successfully by MTA pulpotomy with success rates of 84% and 76%, respectively.Three of 7 failed cases required pulpectomy after MTA pulpotomy to relieve painful pulpitis. Four other failed cases were asymptomatic, and failure was detected from radiographic examination. The relationship between treatment outcomes and treatment factors could not be detected statistically. Teeth with carious pulp exposure can be treated successfully by MTA pulpotomy. Clinical signs of irreversible pulpitis and the presence of periapical radiolucency should not be considered as a contraindication for pulpotomy. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Pulp revascularization of immature permanent teeth: a review of the literature and a proposal of a new clinical protocol.

    Science.gov (United States)

    Namour, Mélanie; Theys, Stephanie

    2014-01-01

    Tissue engineering is a growing field. In the near future, it will probably be possible to generate a complete vital tooth from a single stem cell. Pulp revascularization is dependent on the ability of residual pulp and apical and periodontal stem cells to differentiate. These cells have the ability to generate a highly vascularized and a conjunctive rich living tissue. This one is able to colonize the available pulp space. Revascularization is a new treatment method for immature necrotic permanent teeth. Up to now, apexification procedures were applied for these teeth, using calcium dihydroxide or MTA to produce an artificial apical barrier. However, the pulp revascularization allows the stimulation of the apical development and the root maturation of immature teeth. Two pulp revascularization techniques are used in the literature, one using calcium dihydroxide and the second using a triple antibiotic paste. Based on these two different pulp revascularization protocols, which obtain the desired therapeutic success, the literature will be reviewed and analyzed according to the relevance of their choice of materials. Based on the literature, we propose a new relevant protocol and a new mixture of antibiotics.

  20. Pulp Revascularization of Immature Permanent Teeth: A Review of the Literature and a Proposal of a New Clinical Protocol

    Directory of Open Access Journals (Sweden)

    Mélanie Namour

    2014-01-01

    Full Text Available Tissue engineering is a growing field. In the near future, it will probably be possible to generate a complete vital tooth from a single stem cell. Pulp revascularization is dependent on the ability of residual pulp and apical and periodontal stem cells to differentiate. These cells have the ability to generate a highly vascularized and a conjunctive rich living tissue. This one is able to colonize the available pulp space. Revascularization is a new treatment method for immature necrotic permanent teeth. Up to now, apexification procedures were applied for these teeth, using calcium dihydroxide or MTA to produce an artificial apical barrier. However, the pulp revascularization allows the stimulation of the apical development and the root maturation of immature teeth. Two pulp revascularization techniques are used in the literature, one using calcium dihydroxide and the second using a triple antibiotic paste. Based on these two different pulp revascularization protocols, which obtain the desired therapeutic success, the literature will be reviewed and analyzed according to the relevance of their choice of materials. Based on the literature, we propose a new relevant protocol and a new mixture of antibiotics.

  1. Pulp Revascularization of Immature Permanent Teeth: A Review of the Literature and a Proposal of a New Clinical Protocol

    Science.gov (United States)

    Namour, Mélanie

    2014-01-01

    Tissue engineering is a growing field. In the near future, it will probably be possible to generate a complete vital tooth from a single stem cell. Pulp revascularization is dependent on the ability of residual pulp and apical and periodontal stem cells to differentiate. These cells have the ability to generate a highly vascularized and a conjunctive rich living tissue. This one is able to colonize the available pulp space. Revascularization is a new treatment method for immature necrotic permanent teeth. Up to now, apexification procedures were applied for these teeth, using calcium dihydroxide or MTA to produce an artificial apical barrier. However, the pulp revascularization allows the stimulation of the apical development and the root maturation of immature teeth. Two pulp revascularization techniques are used in the literature, one using calcium dihydroxide and the second using a triple antibiotic paste. Based on these two different pulp revascularization protocols, which obtain the desired therapeutic success, the literature will be reviewed and analyzed according to the relevance of their choice of materials. Based on the literature, we propose a new relevant protocol and a new mixture of antibiotics. PMID:25383384

  2. Superoxide dismutase activity in healthy and inflamed pulp tissues of permanent teeth in children.

    Science.gov (United States)

    Tulunoglu, O; Alacam, A; Bastug, M; Yavuzer, S

    1998-01-01

    The free radicals play an important role in the tissue damage. Oxygen-derived free radicals are controlled by various cellular defense mechanisms consisting of enzymatic such as superoxide dismutase, catalase, glutathion peroxidase and nonenzymatic scavenger components. Superoxide dismutase (SOD) is responsible for the dismutation of the superoxide radicals into hydrogen peroxide and molecular oxygen. In this study, pulp samples extirpated from the teeth of the 27 children between 10-15 ages which diagnosed to be healthy, reversible pulpitis or symptomatic irreversible pulpitis were evaluated for the activity of superoxide dismutase enzyme. There were statistically significant differences between healthy and reversible pulpitis, and between reversible and symptomatic irreversible pulpitis groups. The SOD activity of the reversible pulpitis group were significantly lower than the irreversible pulpitis and healthy pulp groups. The evaluation of the data revealed that the quantity of SOD as a vitality protector enzyme is low at the beginning of the inflammation as a consequence of rapidly depletion and/or destruction of this enzyme, but as the inflammation proceeds the pulp tissue showed adaptation to this situation.

  3. The effectiveness of pulp revascularization in root formation of necrotic immature permanent teeth: A systematic review.

    Science.gov (United States)

    Antunes, Leonardo S; Salles, Alessandro G; Gomes, Cinthya C; Andrade, Thamara B; Delmindo, Manoela P; Antunes, Lívia A A

    2016-01-01

    The objective of the present study was to carry out a systematic review to analyse the effectiveness of pulp revascularization in the root formation of necrotic immature permanent teeth, as well as the level of scientific evidence regarding this theme. The methodology was based on searching electronic databases such as Web of Science, Pubmed, BVS (Medline, Scielo, Lilacs and BBO), Scopus and Cochrane, including manual searches for the references listed in the studies found. The terms used for the literature search were pulp revascularization and endodontics. Initially, 277 articles were identified from the electronic databases; 17 studies remained after analysis and exclusion of duplicates; exclusion criteria also eliminated six articles; 11 remained for evaluation. Although the results found in the present systematic review are relevant, the scientific evidence should be interpreted with caution as the articles report different methods and evaluation parameters. Despite the capacity of the pulp revascularization technique to stimulate the development of the apical closure and thickening of radicular dentin, several aspects still remain unknown, like the key factors of this repair, the type of tissue formed and the long-term prognosis.

  4. Dentine sialoprotein and collagen I expression after experimental pulp capping in humans using emdogain gel.

    Science.gov (United States)

    Fransson, H; Petersson, K; Davies, J R

    2011-03-01

    To characterize the hard tissue formed in human teeth experimentally pulp capped either with calcium hydroxide or with Emdogain Gel (Biora AB, Malmö, Sweden) - a derivative of enamel matrix (EMD), using two markers for dentine; dentine sialoprotein (DSP) and type 1 collagen (Col I). Affinity-purified rabbit anti-Col I and anti-DSP polyclonal antibodies were used to stain histological sections from nine pairs of contra-lateral premolars that had been experimentally pulp amputated and randomly capped with EMDgel or calcium hydroxide. Twelve weeks after the teeth had been pulp capped, they were extracted, fixed, demineralized and serially sectioned prior to immunohistochemical staining. In the calcium hydroxide treated teeth DSP was seen in the new hard tissue which formed a bridge. DSP was also seen in the newly formed hard tissue in the EMDgel-treated teeth. Proliferated pulp tissue partly filled the space initially occupied by EMDgel and DSP-stained hard tissue was observed alongside exposed dentine surfaces as well as in isolated masses within the proliferated pulp tissue, although the new hard tissue did not cover the pulp exposure. DSP staining was also seen in the cells lining the hard tissue in both groups. Col I staining was seen in the newly formed hard tissue in both groups. The new hard tissue formed after pulp capping with EMDgel or calcium hydroxide contained DSP and Col I, considered to be markers for dentine. Thus, the newly formed hard tissue can be characterized as dentine rather than unspecific hard tissue. © 2010 International Endodontic Journal.

  5. Characteristics of the number of odontoblasts in human dental pulp post-mortem.

    Science.gov (United States)

    Vavpotic, Marko; Turk, Tomaz; Martincic, Draga Stiblar; Balazic, Joze

    2009-12-15

    Estimation of the time since death is important in forensic medicine, and so far not much is known in employing dental pulp for such purposes. The tooth organ is the hardest organ in the human body, with a loose connective tissue of dental pulp situated within a rigid encasement of mineralized surrounding tissues. Human material was obtained from 31 corpses of people who died in car and train accidents and had healthy oral statuses. Samples were divided into two groups at different environmental temperatures. During the autopsy, the jaws were resected to keep teeth in situ, and every day one tooth was extracted. After decalcification, serial thin sections stained with hematoxylin and eosin were cut. Odontoblasts in the dental pulp were counted and data analysed. Statistical analysis showed that the number of odontoblasts drops during the time after death, and no odontoblasts remain in the pulp after 5 days.

  6. Prevalence of microorganisms in root canals of human deciduous teeth with necrotic pulp and chronic periapical lesions Prevalência de microrganismos em canais radiculares de dentes decíduos de humanos com necrose pulpar e lesão periapical crônica

    Directory of Open Access Journals (Sweden)

    Luciana Cunha Pazelli

    2003-12-01

    Full Text Available The objective of this study was to evaluate bacterial prevalence in 31 root canals of human deciduous teeth with necrotic pulp and periapical lesions using bacterial culture. After crown access, the material was collected using absorbent paper points for microbiological evaluation and determination of colony forming units (CFU. Anaerobic microorganisms were found in 96.7% of the samples, black-pigmented bacilli in 35.5%, aerobic microorganisms in 93.5%, streptococci in 96.7%, and S. mutans in 48.4%. We concluded that in human deciduous teeth root canals with necrotic pulp and periapical lesions the infection is polymicrobial, with a large number of microorganisms and a predominance of streptococci and anaerobic microorganisms.O objetivo deste estudo foi avaliar, por meio de cultura bacteriológica, a prevalência de microorganismos em 31 canais radiculares de dentes decíduos humanos com necrose pulpar e lesão periapical. O material, colhido dos canais radiculares após a realização da cirurgia de acesso, foi submetido ao processamento microbiológico para a determinação das unidades formadoras de colônia de microorganismos. Os resultados mostram que os microorganismos anaeróbios foram quantificados em 96,7% dos casos, os bacilos pigmentados de negro (BPB em 35,5%, os aeróbios em 93,5%, os estreptococos em 96,7% e os S. mutans em 48,4%. Assim, pôde-se concluir que a infecção em canais radiculares de dentes decíduos humanos portadores de necrose pulpar e lesão periapical é polimicrobiana, com grande quantidade de microorganismos e maior prevalência de estreptococos e microorganismos anaeróbios.

  7. Nemotic human dental pulp fibroblasts promote human dental pulp stem cells migration.

    Science.gov (United States)

    Zhai, Shafei; Wang, Yafei; Jiang, Wenkai; Jia, Qian; Li, Jie; Wang, Wei; Wang, Haijing; Ding, Yonglin; Wang, Ping; Liu, Jun; Ni, Longxing

    2013-06-10

    Dental pulp inflammation has long been perceived as a negative factor leading to pulp disruption. Previous studies have suggested that the inflammatory reaction might be a prerequisite for the burst of progenitors implicated in pulp repair. To investigate the migration of human dental pulp stem cells (hDPSCs) in response to human dental pulp fibroblasts (HDPFs) nemosis, an in vitro model of nemosis-induced inflammation in three-dimensional culture was used in this study. We observed HDPF spheroid formation and that cell-cell adhesion between HDPFs leads to necrosis. Cell death detection and cell counting kit-8 assays showed reduced live cell numbers and increased levels of cell membrane leakage in HDPF spheroids. HDPFs spheroids expressed cyclooxygenase-2 and released an increasing amount of prostaglandin E2 and interleukin-8, indicating inflammation in response to nemosis. The Transwell assays showed that the conditioned medium from HDPFs spheroids significantly induced hDPSCs migration more than the medium from the monolayer. Taken together, these results indicate that HDPFs spheroids induce nemosis and contribute to the migration of hDPSCs. This model might provide a potential research tool for studying interactions between fibroblasts and stem cells, and studies concerning nemosis-targeted stem cells might help treat pulp inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Expression of toll like receptor 4 in normal human odontoblasts and dental pulp tissue.

    Science.gov (United States)

    Jiang, Hong-Wei; Zhang, Wei; Ren, Bang-Peng; Zeng, Jin-Feng; Ling, Jun-Qi

    2006-08-01

    The aim of the study was to determine the expression of TLR4 in odontoblasts and the dental pulp. Odontoblasts and pulp tissues were collected from freshly extracted human wisdom teeth. Reverse transcription-polymerase chain reaction and Western blotting were performed to detect TLR4 mRNA and protein expression, respectively. Immunohistochemical staining was used to determine the distribution of TLR4 in odontoblasts and the pulp. Scanning electron microscopy (SEM) was applied to observe the morphology of odontoblasts. It was demonstrated that TLR4 mRNA and protein expressions were both present in cells of odontoblast layer and pulp tissues and that TLR4 expression was distributed in odontoblasts and some pulpal vascular endothelial cells. SEM revealed the integrity of the odontoblast cell-layer and the well-preserved morphology of individual odontoblast cells. These findings suggest that TLR4 expressed in odontoblasts may play an important role in the dental immune defense.

  9. Age and timing of pulp extirpation as major factors associated with inflammatory root resorption in replanted permanent teeth.

    Science.gov (United States)

    Bastos, Juliana Vilela; Ilma de Souza Côrtes, Maria; Andrade Goulart, Eugenio Marcos; Colosimo, Enrico Antonio; Gomez, Ricardo Santiago; Dutra, Walderez Ornelas

    2014-03-01

    External root resorption (ERR) is a serious complication after replantation, and its progressive inflammatory and replacement forms are significant causes of tooth loss. This retrospective study aimed to evaluate the factors related to the occurrence of inflammatory ERR (IERR) and replacement ERR (RERR) shortly after permanent tooth replantation in patients treated at the Dental Trauma Clinic at the School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil. Case records and radiographs of 165 patients were evaluated for the presence, type, and extension of ERR and its association with age and factors related to the management and acute treatment of the avulsed tooth by using the logistic regression model. The patient's age at the moment of trauma had a marked effect on the ERR prevalence and extension. The patients older than 16 years at the moment of trauma had less chance of developing IERR and RERR (77% and 87%, respectively) before the pulp extirpation, regardless of the extension of the resorption. The patients older than 11 years of age at the moment of trauma showed the lowest indices of IERR (P = .02). Each day that elapsed between the replantation and the pulp extirpation increased the risk of developing IERR and RERR by 1.2% and 1.1%, respectively, and also raised the risk of severe IERR by 0.5% per day. The risk of mature teeth developing severe IERR before the onset of endodontic therapy was directly affected by the timing of the pulpectomy and was inversely proportional to age. Systemic antibiotic therapy use had no effect on the occurrence and severity of IERR in mature teeth. The occurrence of RERR before the onset of endodontic treatment stimulates further investigations of the early human host response to trauma and subsequent infection. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Influence of pulp condition on the accuracy of an electronic foramen locator in posterior teeth: an in vivo study

    Directory of Open Access Journals (Sweden)

    Daniel Renner

    2012-04-01

    Full Text Available The aim of this study was to assess, in vivo, the accuracy of the NovApex® electronic foramen locator in determining working length (WL in vital and necrotic posterior teeth. The NovApex®was used in 144 canals: 35 teeth with vital pulps (68 canals and 42 teeth with necrotic pulps (76 canals. WL was measured with the NovApex® locator and confirmed using the radiographic method. Differences between electronic and radiographic measurements ranging between 0.0 and 0.4 millimeters were classified as acceptable; differences equal to or greater than 0.5 millimeter were considered unacceptable. Pearson's chi-square test was used to assess the influence of pulp condition on the accuracy of NovApex®(a = 0.05. Regardless of pulp condition, differences between electronic and radiographic WL measurements were acceptable in 73.61% of the canals. No statistically significant differences in accuracy were observed when comparing vital and necrotic canals (p > 0.05. There were 38 unacceptable measurements. In none of these cases was the file tip located beyond the radiographic apex; in 32, it was located short of the NovApex® measurement. Pulp condition had no significant effect on the accuracy of NovApex®.

  11. An evaluation of the periapical status of teeth with necrotic pulps using periapical radiography and cone-beam computed tomography.

    Science.gov (United States)

    Abella, F; Patel, S; Durán-Sindreu, F; Mercadé, M; Bueno, R; Roig, M

    2014-04-01

    To evaluate the presence or absence of periapical (PA) radiolucencies on individual roots of teeth with necrotic pulps, as assessed with digital PA radiographs and cone-beam computed tomography (CBCT). Digital PA radiographs and CBCT scans were taken from 161 endodontically untreated teeth (from 155 patients) diagnosed with non-vital pulps (pulp necrosis with normal PA tissue, symptomatic apical periodontitis, asymptomatic apical periodontitis, acute apical abscess and chronic apical abscess). Images were assessed by two calibrated endodontists to analyse the radiographic PA status of the teeth. A consensus was reached in the event of any disagreement. The data were analysed using a McNemar's test, and significance was set at P ≤ 0.05. Three hundred and forty paired images of roots were assessed with both digital PA radiographs and CBCT images. Fifteen additional roots were identified with CBCT. PA radiolucencies were present in 132 (38.8%) roots when assessed with PA radiographs, and in 196 (57.6%) roots when assessed with CBCT. This difference was statistically significant (P abscess, CBCT images revealed a statistically larger number of PA radiolucencies than did PA radiographs (P chronic apical abscess (P = 1). Unlike PA radiographs, CBCT revealed a higher prevalence of PA radiolucencies when endodontically untreated teeth with non-vital pulps were examined. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. The Effect of Mineral Trioxide Aggregate Mixed with Chlorhexidine as Direct Pulp Capping Agent in Dogs Teeth: A Histologic Study.

    Science.gov (United States)

    Manochehrifar, Hamed; Parirokh, Masoud; Kakooei, Sina; Oloomi, Mohammad Mehdi; Asgary, Saeed; Eghbal, Mohammad Jafar; Mashhadi Abbas, Fatemeh

    2016-01-01

    The aim of the present investigation was to compare the efficacy of mineral trioxide aggregate (MTA) and 0.2% chlorhexidine (CHX) mixture to pure MTA, as a pulp capping material. The pulp of 24 lateral incisors and canines from four dogs were exposed and capped either with MTA or MTA+0.2% CHX. After 2 months the animals were sacrificed and the teeth were prepared for histological evaluation in terms of calcified bridge formation, the degree of inflammation and presence of necrosis. The Fisher's exact test was used for data analysis. The results showed that formation of complete calcified bridge in MTA specimens was significantly more than MTA+CHX (PMTA and MTA+CHX groups (P>0.05). Mixing MTA with CHX as pulp capping agent had a significant negative impact on formation of calcified bridge on directly capped dog's teeth.

  13. Characterization of deciduous teeth stem cells isolated from crown dental pulp

    Directory of Open Access Journals (Sweden)

    Debeljak-Martačić Jasmina

    2014-01-01

    Full Text Available Background/Aim. The last decade has been profoundly marked by persistent attempts to use ex vivo expanded and manipulated mesenchymal stem cells (MSCs, as a tool in different types of regenerative therapy. In the present study we described immunophenotype and the proliferative and differentiation potential of cells isolated from pulp remnants of exfoliated deciduous teeth in the final phase of root resorption. Methods. The initial adherent cell population from five donors was obtained by the outgrowth method. Colony forming unit-fibroblast (CFU-F assay was performed in passage one. Cell expansion was performed until passage three and all tests were done until passage eight. Cells were labeled for early mesenchymal stem cells markers and analysis have been done using flow cytometry. The proliferative potential was assessed by cell counting in defined time points and population doubling time was calculated. Commercial media were used to induce osteoblastic, chondrogenic and adipogenic differentiation. Cytology and histology methods were used for analysis of differentiated cell morphology and extracellular matrix characteristics. Results. According to immunophenotype analyses all undifferentiated cells were positive for the mesenchymal stem cell markers: CD29 and CD73. Some cells expressed CD146 and CD106. The hematopoietic cell marker, CD34, was not detected. In passage one, incidence of CFU-F was 4.7 ± 0.5/100. Population doubling time did not change significantly during cell subcultivation and was in average 25 h. After induction of differentiation, the multicolony derived cell population had a tri-lineage differentiation potential, since mineralized matrix, cartilage-like tissue and adipocytes were successfully formed after three weeks of incubation. Conclusion. Altogether, these data suggest that remnants of deciduous teeth dental pulp contained cell populations with mesenchymal stem cell-like features, with a high proliferation and

  14. Comparative analysis of sclerotic dentinal changes in attrited and carious teeth around pulp chamber for age determination.

    Science.gov (United States)

    Chatterjee, S

    2011-05-01

    The aim of this study was to estimate age by comparing sclerotic dentin thickness around coronal pulp chamber in carious and attrited teeth. Inclusion criteria for teeth selection was eruption age around six to seven years (incisors and first molars). 100 teeth (50 carious + 50 attrited) were ground up to their pulp chamber, observed and photographed under an Olympus stereomicroscope. Image J 1.38 NIH software was employed to analyze dentinal thickness. Regression formula was employed for evaluating age and compared with clinical age obtained at time of extraction. No matching values were found between calculated age and actual clinical age. Sclerotic dentin thickness values cannot be used as an indicator for the purpose of age estimation. Copyright © 2011 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Students' perceptions of pre-clinical endodontic training with artificial teeth compared to extracted human teeth.

    Science.gov (United States)

    Al-Sudani, D I; Basudan, S O

    2017-11-01

    Artificial teeth have several advantages in pre-clinical endodontics training. This study aimed to compare artificial resin teeth with extracted human teeth, from a student's perspective, during a pre-clinical undergraduate endodontic course for three consecutive academic years (2011-2014). At the end of the course, students completed a questionnaire that included questions about their perceptions of the difficulty of artificial teeth vs. natural teeth and ranked the perceived advantages of artificial teeth. Participants expressed that all procedures, except obturation, were more difficult to perform on artificial teeth than on natural teeth, a result that was due to the hardness of the resin. They ranked the fairness and availability as the best advantages. Artificial teeth have multiple advantages but cannot replace natural teeth. The physical characteristics through the manufacturing material of artificial teeth should be enhanced to increase wider use and acceptance. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Expression of proliferating cell nuclear antigen in pulp cells of extracted immature teeth preserved in two different storage media.

    Science.gov (United States)

    Tekin, Uğur; Filippi, Andreas; Pohl, Yango; Kirschner, Horst

    2008-02-01

    A specially composed medium for storing avulsed teeth has been developed. In experimental and clinical studies it could be shown that PDL cells could be kept viable during storage in the medium for up to 53 h. In the present study the medium was tested on pulp cells. A total of 40 immature unerupted third molars with open apices were removed surgically and the teeth were stored in a special cell culture medium (SCCM) or in Hank's balanced salt solution (HBSS) at room temperature for 6, 12, 18 or 24 h. Five teeth were assigned to each group. A total of seven consecutive pulp cross-sections per tooth were examined, resulting in a total of 280 specimens. Viable cells were marked using proliferating cell nuclear antigen (PCNA). The pulp was divided in three regions: apical region (0-0.5 mm), middle region (>0.5-1.5 mm) and coronal region (>1.5 mm). The labelling index (LI) was calculated for the whole cut (regions 1, 2 and 3) and for each region separately. The statistical evaluation was made using the One-way anova and Mann-Whitney Test. Pulp cells of all teeth expressed PCNA. About 110 of 140 specimens in the SCCM and 101 of 140 specimens in the HBSS group showed PCNA-positive cells. The highest LI was observed within the apical region and decreased with increased distance from the medium. No marked cells were observed at a distance of more than 1.5 mm. The LI for both media showed a significant increase with storage intervals (P < 0.05). The pulp cells of teeth stored in SCCM showed a LI nearly twice as high compared to pulp cells of teeth stored in HBSS for the apical and middle region (time interval 6, 18 and 24 h: P < 0.05). The LI for the apical region was found to be 8.43% for the SCCM and 4.50% for the HBSS after 24 h. For the middle region the LI was found to be 2.02% for the SCCM and 0.81% for the HBSS after 24 h. Within the parameters of this study, it appears that the SCCM is able to maintain pulp cell viability better than HBSS. The use of special cell

  17. Pulp Revascularization of Immature Dog Teeth with Apical Periodontitis Using Triantibiotic Paste and Platelet-rich Plasma: A Radiographic Study.

    Science.gov (United States)

    Rodríguez-Benítez, Soledad; Stambolsky, Carlos; Gutiérrez-Pérez, José L; Torres-Lagares, Daniel; Segura-Egea, Juan José

    2015-08-01

    This study evaluates radiographically the efficacy of 4 revascularization protocols in necrotic-infected immature dog teeth with apical periodontitis (AP). Forty double-rooted immature premolar teeth from 4 female beagle dogs aged 5 months were used. Four teeth were left untouched as negative controls; the other 36 teeth were infected to develop pulp necrosis and AP following different treatment protocols. Four teeth were left untreated and assigned to the positive control group, and the last 28 teeth were randomly assigned into 4 experimental groups of 8 teeth: A1, sodium hypochlorite (NaOCl) + a blood clot; A2, NaOCl + platelet-rich plasma (PRP); B1, NaOCl + modified triantibiotic paste (mTAP) + a blood clot; and B2, NaOCl + mTAP + PRP. Teeth were monitored radiographically for 6 months regarding healing of periapical radiolucencies, thickening of the dentinal walls, and apical closure of roots. Significant differences (P teeth showing improvement of periapical radiolucencies (62.5%), continued radiographic thickening of radicular walls (53.1%), radiographic apical closure (43.8%), and deposition of hard tissue on radicular dentin walls (53.1%). Group B2 showed maximal improvement in the 3 variables assessed (P revascularization procedure. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. A quantitative and diametral analysis of human dentinal tubules at pulp chamber ceiling and floor under scanning electron microscopy.

    Science.gov (United States)

    Kontakiotis, Evangelos G; Tsatsoulis, Ioannis N; Filippatos, Christos G; Agrafioti, Anastasia

    2015-04-01

    The purposes of this study are (i) to evaluate and compare the dentinal tubule density, tubule diameter and percentage area of dentin occupied by tubules at the pulp chamber ceiling and floor; and (ii) to evaluate the effects of age on the number and dimensions of tubule openings. Twelve intact, human mandibular third molars were recruited. Six teeth belonged to patients up to 30 years of age and six teeth belonged to patients over 50 years. Scanning electron microscopic evaluations were made at two different locations: the pulp chamber ceiling and floor. The pulp chamber ceiling presented higher tubule density (P ceiling presents higher tubule density and greater area of exposed tubules. In younger people, the pulp chamber floor presents considerably high tubule diameter. The number and dimensions of dentinal tubule openings significantly decrease with age. © 2014 Australian Society of Endodontology.

  19. Thermal effects of continuous wave CO sub 2 laser exposure on human teeth: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Miserendino, L.J.; Neiburger, E.J.; Walia, H.; Luebke, N.; Brantley, W.

    1989-07-01

    The thermal effects of continuous wave carbon dioxide laser irradiation on human teeth were investigated. Internal temperature changes were monitored by means of electrical thermistors implanted within the pulp chambers of 20 extracted, unerupted human molar teeth. One-hundred test exposures at various powers and durations were obtained. Linear regression/correlation analysis of the data suggests a direct relationship between the independent variable, exposure energy (joules), and the dependent variable, internal temperature, under the conditions of this study.

  20. Activation of the NLRP3/caspase-1 inflammasome in human dental pulp tissue and human dental pulp fibroblasts.

    Science.gov (United States)

    Jiang, Wenkai; Lv, Haipeng; Wang, Haijing; Wang, Diya; Sun, Shukai; Jia, Qian; Wang, Peina; Song, Bing; Ni, Longxing

    2015-08-01

    The NLRP3/caspase-1 inflammasome pathway plays an important role in cellular immune defence against bacterial infection; however, its function in human dental pulp tissue and human dental pulp fibroblasts remains poorly understood. We demonstrate that NLRP3 protein expression occurs to a greater extent in pulp tissue with irreversible pulpitis than in normal pulp tissue and in tissue with reversible pulpitis. Caspase-1 is present in its active (cleaved) form only in pulp tissue with irreversible pulpitis. NLRP3 and caspase-1 are expressed in the odontoblast layers in normal human dental pulp tissue, whereas in inflamed pulp tissue, the odontoblast layers are disrupted and dental pulp cells are positive for NLRP3 and caspase-1. Additionally, we investigate the role of the NLRP3/caspase-1 inflammasome pathway in human dental pulp fibroblasts and show that ATP activates the P2X7 receptor on the cell membrane triggering K(+) efflux and inducing the gradual recruitment of the membrane pore pannexin-1. Extracellular lipopolysaccharide is able to penetrate the cytosol and activate NLRP3. Furthermore, the low intracellular K(+) concentration in the cytosol triggers reactive oxygen species generation, which also induces the NLRP3 inflammasome. Thus, the NLRP3/caspase-1 pathway has a biological role in the innate immune response mounted by human dental pulp fibroblasts.

  1. Evaluation of clinical and radiological outcomes of mineral trioxide aggregate and calcium hydroxide as indirect pulp capping agents in the treatment of deep carious lesion of permanent teeth

    Directory of Open Access Journals (Sweden)

    Rafeza Sultana

    2016-09-01

    Full Text Available The maintenance of pulp vitality and conduction of reparative dentin can be possible by indirect pulp capping with mineral trioxide aggregate (MTA and calcium hydroxide as pulp capping agents. The objective of the study is to assess the clinical and radiological outcomes of MTA and calcium hydroxide as indirect pulp capping agents in deep carious lesions of permanent teeth. The present study included 50 permanent teeth having deep carious lesions with reversible pulp status were selected and then randomly divided into two groups of 25 teeth in a group. Standard indirect pulp capping procedures were followed. Patients were recalled at 3, 6 and 12 months interval to assess postoperative pain, the vitality of the pulp and formation of reparative dentin. In all observation periods, MTA showed more capable of reducing pain and maintain pulp vitality which was statistically significant than that of calcium hydroxide. At 12 months observation period, 24 teeth (96% of MTA and 19 teeth (76% of calcium hydroxide showed reparative dentin formation. It can be concluded that MTA is more effective than that of calcium hydroxide. 

  2. Human dental pulp stem cells: Applications in future regenerative medicine

    Science.gov (United States)

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-01-01

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. PMID:26131314

  3. Human dental pulp stem cells: Applications in future regenerative medicine.

    Science.gov (United States)

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-06-26

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine.

  4. Pulp necrosis following luxated injury to teeth in a patient with uncontrolled type II diabetes mellitus: a case report

    Directory of Open Access Journals (Sweden)

    Haneol Shin,

    2012-02-01

    Full Text Available Patients with diabetes mellitus show delayed wound healing and increased susceptibility to infection. Therefore, the effects of diabetes on pulpal and periodontal healing should be taken into consideration when treating diabetic dental traumatized patients. This case presents the treatment for dental traumatized 20 yr old female with uncontrolled type II diabetes. The traumatized upper central incisors had showed pulpal healing in early days. However, 7 mon after the trauma, the teeth had been diagnosed with pulp necrosis with apical abscess. Eventually, non surgical root canal treatment on the teeth had been performed.

  5. Dental trauma. Combination injuries 1. The risk of pulp necrosis in permanent teeth with concussion injuries and concomitant crown fractures

    DEFF Research Database (Denmark)

    Lauridsen, Eva Fejerskov; Hermann, Nuno Vibe; Gerds, Thomas Alexander

    2012-01-01

    by the Kaplan–Meier method and Cox regression. Risk factors included in the analysis: gender, age, stage of root development, type of crown fracture, and response to electric pulp test (EPT) at the initial examination. The level of significance was set at 5%. Results:  The risk of PN was low in teeth...... with immature root development [1.1%, 95% confidence intervals (CI): 0–3.4]. The following factors significantly increased the risk of PN in teeth with mature root development: crown fracture without pulp exposure [hazard ratio 4.1 (95% CI: 1.4–11.9), P = 0.01] and no response to EPT at the initial examination...... [hazard ratio 30.7 (95% CI: 7.7–121), P tooth had both a crown fracture and gave no response to EPT, the risk further increased...

  6. Dental pulp therapy for primary teeth in children undergoing cancer therapy.

    Science.gov (United States)

    Halperson, Elinor; Moss, Dinna; Tickotsky, Nili; Weintraub, Michael; Moskovitz, Moti

    2014-12-01

    Childhood cancer treatment negatively affects the immune system, increasing the risk for bacteremia and septicemia. As the oral cavity is a major entry portal for pathogens into the bloodstream dental care in such children tends to be radical, favouring tooth extraction over less drastic treatments such as pulpotomy, the amputation of infected dental pulp. The present study aimed to compare pulpotomy treatment success rate in children with cancer receiving immunosuppressive therapy with that of healthy children, and investigate if unsuccessful pulpotomy treatment in oncologic patients may lead to systemic complications. Twenty-six medical records of children from a paediatric oncology referral centre who had dental pulpotomy treatment (in 41 teeth) while receiving active cancer care during the years 2006-2012 were compared with records of 41 randomly selected healthy children who had undergone pulpotomy treatment (41 teeth) in the same institute during these years. Clinical and radiographic data were collected during treatments and at the end of the follow-up period (six months post dental treatment). No statisticaly significant difference was found between pulpotomy success rate amongst the two groups. Treatments success rates in the study and control groups were 82.9% (± 5.9) and 90.2% (± 4.7), respectively. No patient in the study group suffered from sepsis from a dental origin during follow-up period. Pulpotomy in paediatric cancer patients did not increase the risk for bacteremia or systemic complications from oral origin. We therefore recommend the re-evaluation of the current protocol for treating paediatric oncology patients. © 2014 Wiley Periodicals, Inc.

  7. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp.

    Science.gov (United States)

    Isobe, Y; Koyama, N; Nakao, K; Osawa, K; Ikeno, M; Yamanaka, S; Okubo, Y; Fujimura, K; Bessho, K

    2016-01-01

    Populations of pluripotent stem cells were isolated from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous teeth and their multipotentiality properties compared. Osteogenic, chondrogenic, adipogenic, and neurogenic differentiation potentials were examined. Bone marrow mesenchymal stem cells (BMMSCs) and synovial fluid-derived cells (SFCs) showed the highest levels of osteogenesis as expressed by alkaline phosphatase (ALP) activity (0.54±0.094 U/mg protein and 0.57±0.039 U/mg protein, respectively; P=0.60) and by osteocalcin (BGLAP; determined by real-time RT-PCR). SFCs showed the highest levels of chondrogenesis as expressed by ALP activity (1.75±0.097 U/mg protein) and of COL2A1 and COL10A1 by real-time PCR. In terms of adipogenesis, lipid vesicles were observed in the BMMSCs and SFCs. Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) exhibited neurogenesis potential, as shown by increases in expression of class III β-tubulin (TUBB3) and microtubule-associated protein 2 (MAP2) on RT-PCR. Variability was found in the differentiation potential corresponding to the tendency of the original tissue to differentiate. It is suggested that the cell type should be selected depending on the regenerative treatment regimen. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. The effect of glass ionomer and adhesive cements on substance P expression in human dental pulp.

    Science.gov (United States)

    Caviedes-Bucheli, Javier; Ariza-Garcia, German; Camelo, Patricia; Mejia, Monica; Ojeda, Karyn; Azuero-Holguin, Maria-Mercedes; Abad-Coronel, Dunia; Munoz, Hugo-Roberto

    2013-11-01

    The purpose of this study was to quantify the effect of glass ionomer and adhesive cements on SP expression in healthy human dental pulp. Forty pulp samples were obtained from healthy premolars where extraction was indicated for orthodontic reasons. In thirty of these premolars a Class V cavity preparation was performed and teeth were equally divided in three groups: Experimental Group I: Glass Ionomer cement was placed in the cavity. Experimental Group II: Adhesive Cement was placed in the cavity. Positive control group: Class V cavities only. The remaining ten healthy premolars where extracted without treatment and served as a negative control group. All pulp samples were processed and SP was measured by radioimmunoassay. Greater SP expression was found in the adhesive cement group, followed by the glass ionomer and the positive control groups. The lower SP values were for the negative control group. ANOVA showed statistically significant differences between groups (padhesive cements provoke a greater SP expression when compared with glass ionomer.

  9. Stem Cells from Human Exfoliated Deciduous Teeth – Isolation, Long Term Cultivation and Phenotypical Analysis

    Directory of Open Access Journals (Sweden)

    Jakub Suchánek

    2010-01-01

    Full Text Available Aims: Our aims were to isolate stem cells from human exfoliated deciduous teeth (SHED, to cultivate them in vitro and to investigate their basic biological properties, phenotype and to compare our findings with dental pulp stem cells (DPSC isolated from permanent teeth. Methods: Dental pulp was gently evacuated from exfoliated teeth. After enzymatic dissociation of dental pulp, SHED were cultivated in modified cultivation media for mesenchymal adult progenitor cells containing 2 % FCS and supplemented with growth factors and insulin, transferrin, sodium (ITS supplement. Cell viability and other biological properties were examined using a Vi-Cell analyzer and a Z2-Counter. DNA analyses and phenotyping were performed with flow cytometry. Results: We were able to cultivate SHED over 45 population doublings. Our results showed that SHED cultivated under same conditions as DPSC had longer average population doubling time (41.3 hrs for SHED vs. 24.5 hrs for DPSC. Phenotypic comparison of cultivated SHED to that of cultivated DPSC showed differential expression CD29, CD44, CD71, CD117, CD166. During long-term cultivation, SHED did not showed any signs of degeneration or spontaneous differentiation. Conclusions: We isolated stem cells from exfoliated teeth. In comparison to DPSC, SHED proliferation rate was about 50% slower, and SHED showed slightly different phenotype. These cells may be extremely useful for stem cell tissue banking, further stem cell research and future therapeutic applications.

  10. Evaluation of the Effect of Demineralized Bone Matrix as a Scaffold on Pulp Revascularization of Immature Cat Teeth

    Directory of Open Access Journals (Sweden)

    Mehdi Dastorani

    Full Text Available Introduction: The treatment of pulpal necrosis in an immature tooth with an open apex presents a unique challenge to the dentist. Revascularization is a new treatment procedure for the management of these cases. This study examined the ability of demineralized bone matrix as a scaffold to aid pulp revascularizaion of immature cat teeth.Materials & Methods: Sixteen immature teeth from 4 cats after preparation of access cavity and cleaning of canals, were placed into two groups; control group containing blood in canal and experimental group containing blood + demineralized bone matrix. Teeth were treated with revascularization technique and cats were followed up for four months. Then periapical radiographs were taken and analyzed for presence of apical radiolucencies, apical closure and thickening of root canal walls. The data were statistically analyzed using Fisher's exact test. 0.05 was established as a level of significance.Results: The two groups showed no statistical difference regarding presence of apical radiolucencies, apical closure and thickening of root canal walls. In control group, none of the teeth showed any apical radiolucencies and 75% of teeth showed apical closure and thickening of root canal walls. In experiments group, none of the teeth showed any apical radiolucencies, 90.9% of teeth showed apical closure and 81.8% showed thickening of root canal walls.Conclusion: Based on the results of this study, the demineralized bone matrixes do not have adverse effect on revascularization procedure and can be used as a scaffold in this technique.

  11. Teeth.

    Science.gov (United States)

    Billings, Ronald J; Berkowitz, Robert J; Watson, Gene

    2004-04-01

    Common environmental chemicals, drugs, or physical agents can adversely affect human teeth during their embryonic development and after their eruption into the oral cavity. One of the more common elemental toxicants is lead. Teeth are known to accumulate lead during their development. Both animal and human studies have shown that teeth with high lead levels are generally more susceptible to dental caries. Similarly, although inorganic fluorides have long been recognized for their potential to prevent dental caries, exposure to excessive amounts of fluoride when enamel is forming often leads to a type of enamel hypoplasia referred to as dental fluorosis or mottled enamel. Teratogenic agents, such as tetracyclines, a class of antibiotic drugs commonly administered to infants and children, will often result in the discoloration of tooth enamel when prescribed during tooth development. It has recently been suggested that childhood exposure to passive smoking increases the risk for dental caries. Environmental tobacco smoke has previously been linked to periodontal disease in adults. However, this is the first report of an association between passive tobacco smoke and increased susceptibility to dental caries. Last, an often-overlooked source of damage to teeth among all age groups after their eruption into the oral cavity is physical trauma from a variety of sources, especially sports-related injuries. Epidemiologic data suggest that up to one third of all dental injuries are sports related.

  12. Responses of dental pulp cells to a less invasive bleaching technique applied to adhesive-restored teeth.

    Science.gov (United States)

    Soares, Diana Gabriela; Sacono, Nancy Tomoko; Ribeiro, Ana Paula Dias; Basso, Fernanda Gonçalves; Scheffel, Débora Sales; Hebling, Josimeri; Costa, Carlos Alberto de Souza

    2015-04-01

    To assess the cytotoxicity of 35% hydrogen peroxide (HP) bleaching gel applied for 15 min to sound or restored teeth with two-step self-etching adhesive systems and composite resin. Sound and restored enamel/dentin disks were stored in water for 24 h or 6 months + thermocycling. The disks were adapted to artificial pulp chambers and placed in compartments containing culture medium. Immediately after bleaching, the culture medium in contact with dentin was applied for 1 h to previously cultured odontoblast-like MDPC-23 cells. Thereafter, cell viability (MTT assay) and morphology (SEM) were assessed. Data were analyzed by two-way ANOVA and Tukey's test (a = 5%). In comparison to the negative control group (no treatment), no significant cell viability reduction occurred in those groups in which sound teeth were bleached. However, a significant decrease in cell viability was observed in the adhesive-restored bleached groups compared to negative control. No significant difference among bleached groups was observed with respect to the presence of restoration and storage time. The application of 35% HP bleaching gel to sound teeth for 15 min does not cause toxic effects in pulp cells. When this bleaching protocol was performed in adhesive-restored teeth, a significant toxic effect occurred.

  13. The Human Odontoblast Cell Layer and Dental Pulp Proteomes and N-Terminomes.

    Science.gov (United States)

    Abbey, S R; Eckhard, U; Solis, N; Marino, G; Matthew, I; Overall, C M

    2017-10-01

    The proteome and N-terminome of the human odontoblast cell layer were identified for the first time by shotgun proteomic and terminal amine isotopic labeling of substrates (TAILS) N-terminomic analyses, respectively, and compared with that of human dental pulp stroma from 26 third molar teeth. After reverse-phase liquid chromatography-tandem mass spectrometry, >170,000 spectra from the shotgun and TAILS analyses were matched by 4 search engines to 4,888 and 12,063 peptides in the odontoblast cell layer and pulp stroma, respectively. Within these peptide groups, 1,543 and 5,841 protein N-termini, as well as 895 and 2,423 unique proteins, were identified with a false discovery rate of ≤1%. Thus, the human dental pulp proteome was expanded by 974 proteins not previously identified among the 4,123 proteins in our 2015 dental pulp study. Further, 222 proteins of the odontoblast cell layer were not found in the pulp stroma, suggesting many of these proteins are synthesized only by odontoblasts. When comparing the proteomes of older and younger donors, differences were more apparent in the odontoblast cell layer than in the dental pulp stroma. In the odontoblast cell layer proteome, we found proteomic evidence for dentin sialophosphoprotein, which is cleaved into dentin sialoprotein and dentin phosphoprotein. By exploring the proteome of the odontoblast cell layer and expanding the known dental pulp proteome, we found distinct proteome differences compared with each other and with dentin. Moreover, between 61% and 66% of proteins also occurred as proteoforms commencing with a neo-N-terminus not annotated in UniProt. Hence, TAILS increased proteome coverage and revealed considerable proteolytic processing, by identifying stable proteoforms in these dynamic dental tissues. All mass spectrometry raw data have been deposited to ProteomeXchange with the identifier , with the accompanying metadata at Mendeley Data ( https://data.mendeley.com/datasets/b57zfh6wmy/1 ).

  14. Successful isolation, in vitro expansion and characterization of stem cells from Human Dental Pulp

    Directory of Open Access Journals (Sweden)

    Preethy SP

    2010-01-01

    Full Text Available BACKGROUND: Recent studies have shown that mesenchymal stem cells isolated from post natal human dental pulp, (Dental pulp stem cells-DPSCs which is from permanent teeth and SHED (stem cells from human exfoliated deciduous teeth,the Periodontal ligament stem cells (PDLSC and Stem cells from root Apical papilla(SCAPhave the potential to differentiate into cells of a variety of tissues including heart, muscle, cartilage, bone, nerve, salivary glands, teeth etc(1,2,3,4.This multipotential ability of DPSCs is being researched for clinical application for treating a variety of diseases like myocardial infarction, muscular dystrophy, neuro-degenerative disorders, cartilage replacement, tooth regeneration and for repair of bone defects to mention a few. Moreover, the isolation of stem cells from teeth is minimally invasive, readily accessible and the non immunogenic characteristic of dental stem cells has paved the way for efforts to store the exfoliated deciduous teeth or milk teeth which is usually discarded, for use in the future. In this study we have isolated and expanded in vitro, the cells obtained from human dental pulp. MATERIALS AND METHODS: After obtaining written informed consent, 24 teeth that were extracted for therapeutic or cosmetic reasons from 16 patients were used in this study. The specimens were transported from the clinic to NCRM lab taking 6 to 48 Hrs. For removal of the pulp tissue, the teeth were split obliquely at the Cementoenamel junction and the pulp tissue was isolated using brooches. The extracted pulp tissues were subjected to digestion using Collagenase type-I and type II at 37˚C for 15- 30 minutes. The digested cells were filtered with 70µm filter and centrifuged at 1800 rpm for 10 minutes. The pellet was then suspended in Dulbecco’s modified Eagle’s medium (DMEM/Ham’s F12 supplemented with 15% fetal bovine serum , 100 U/ml penicillin, 100 µg/ml streptomycin,2 m M L -glutamine, and 2 m M nonessential amino

  15. Histologic examination of teeth with necrotic pulps and periapical lesions treated with 2 scaffolds: an animal investigation.

    Science.gov (United States)

    Torabinejad, Mahmoud; Milan, Marites; Shabahang, Shahrokh; Wright, Kenneth R; Faras, Hadi

    2015-06-01

    Traditional pulp regeneration procedures that use a blood clot as a scaffold have produced histologic evidence of bone, cementum, and connective tissue growth within the root. Platelet-rich plasma (PRP) is a bioactive scaffold containing growth factors that enhance wound healing. The aim of this study was to histologically compare the tissues generated when PRP or a blood clot is placed into teeth with preexisting necrotic pulps and periapical lesions. Twenty-four canine teeth from 6 immature ferrets were used. Two ferrets served as positive controls. Sixteen experimental canine teeth from 4 ferrets were infected, debrided, treated with a triple antibiotic paste, and randomly distributed to the following groups: group 1 (blood clot/Gelfoam), group 2 (PRP), and group 3 (no scaffold). At 3 months, the ferrets were sacrificed, and the tissues were evaluated histologically. Data were analyzed by using the Fisher exact test (P < .05). In 3 of 6 teeth in the PRP group, 2 of 6 teeth in the blood clot group, and 1 of 4 teeth in the no scaffold group, an ingrowth of hard tissues was observed in the apical third of the roots. When using PRP or a blood clot as a scaffold, we found significantly more apical narrowing and hard tissue deposition in comparison to not using a scaffold (P < .05). The use of PRP or blood clots as scaffolds results in the ingrowth of bone-like, cementum-like, and connective tissue in the apical third of the roots at inconsistent rates. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Comparative Analysis of Proliferation and Differentiation Potentials of Stem Cells from Inflamed Pulp of Deciduous Teeth and Stem Cells from Exfoliated Deciduous Teeth

    Directory of Open Access Journals (Sweden)

    Shi Yu

    2014-01-01

    Full Text Available Stem cells isolated from exfoliated deciduous teeth (SHEDs are highly capable of proliferation and differentiation, and they represent good cell sources for mesenchymal stem cell- (MSC- mediated dental tissue regeneration, but the supply of SHEDs is limited. A previous study found that stem cells could be isolated from inflamed tissues, but it is unknown whether primary dental pulp diagnosed with irreversible pulpitis might contain stem cells with appropriate tissue regeneration capacity. In this study, we aimed to isolate stem cells from both inflamed pulps of deciduous teeth (SCIDs and SHEDs from Chinese children and to compare their proliferation and differentiation potentials. Our results showed that SCIDs were positive for cell surface markers, including CD105, CD90, and CD146, and they had high proliferation ability and osteogenic, adipogenic, and chondrogenic differentiation potentials. There was no significant difference in proliferation and differentiation potentials between SCIDs and SHEDs. The mRNA of inflammatory factors, including IL-1β, IL-6, and TNF-α, was expressed at similar levels in SCIDs and SHEDs, but SCIDs secreted more TNF-α protein. In conclusion, our in vitro results showed that SCIDs have proliferation and differentiation potentials similar to those of SHEDs. Thus, SCIDs represent a new potentially applicable source for MSC mediated tissue regeneration.

  17. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    Science.gov (United States)

    Hu, Lei; Gao, Zhenhua; Zhu, Zhao; Zhang, Chunmei; Wang, Jinsong

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases. PMID:29387727

  18. Aspartate aminotransferase activity in human healthy and inflamed dental pulps.

    Science.gov (United States)

    Spoto, G; Fioroni, M; Rubini, C; Tripodi, D; Perinetti, G; Piattelli, A

    2001-06-01

    Aspartate aminotransferase (AST) seems to be an important mediator of inflammatory processes. Its role in the progression and detection of inflammatory periodontal disease has been increasingly recognized in recent years. In the present study AST activity was analyzed in normal healthy human dental pulps, in reversible pulpitis, and in irreversible pulpitis. Enzymatic AST activity showed that the control values for the healthy pulps were 4.8 +/- 0.7 units/mg of pulp tissue. In reversible pulpitis specimens the AST activity increased to 7.98 +/- 2.1 units/mg of pulp tissue. In irreversible pulpitis specimens the values decreased to 2.28 +/- 1.7 units/mg of pulp tissue. Differences between the groups (control versus reversible pulpitis and reversible pulpitis versus irreversible pulpitis) were statistically significant (p = 0.0015). These results could point to a role of AST in the early events that lead to development of pulpal inflammation.

  19. Proteomic Analysis of Human Tooth Pulp: Proteomics of Human Tooth

    Czech Academy of Sciences Publication Activity Database

    Eckhardt, Adam; Jágr, Michal; Pataridis, Statis; Mikšík, Ivan

    2014-01-01

    Roč. 40, č. 12 (2014), s. 1961-1966 ISSN 0099-2399 R&D Projects: GA ČR(CZ) GA13-17224S; GA ČR(CZ) GAP206/12/0453; GA MZd(CZ) NT14324 Institutional support: RVO:67985823 Keywords : dentin * human pulp * tandem mass spectrometry * tooth proteome * 2-dimensional gel electrophoresis Subject RIV: FF - HEENT, Dentistry Impact factor: 3.375, year: 2014

  20. Effect of conditioned medium from preameloblasts on regenerative cellular differentiation of the immature teeth with necrotic pulp and apical periodontitis.

    Science.gov (United States)

    Yoo, Yeon-Jee; Lee, WooCheol; Cho, Young-Ah; Park, Joo-Cheol; Shon, Won-Jun; Baek, Seung-Ho

    2014-09-01

    The purpose of this study was to investigate the effect of conditioned medium (CM) from murine preameloblasts on the cellular differentiation of mesenchymal stem cells (MSCs) in immature teeth with necrotic pulp and apical periodontitis. Pulp necrosis and apical periodontitis were induced in 30 immature permanent double-rooted premolars of 3 beagles and were randomly assigned to the following treatment groups: group CM (n = 10), revascularization treatment was performed using CM from preameloblasts of C57BL/6 mice apical bud cells; group CR (n = 10), conventional revascularization treatment was performed; positive control group (n = 5), left infected; and negative control group (n = 5), untreated. The dogs were followed up for 12 weeks and assessed for treatment outcomes with radiographic and histologic analyses. The effect of the CM on sequential Runx2 and osterix messenger RNA gene expression during the differentiation of MG63 osteoblastlike cells was analyzed with real-time polymerase chain reaction. The overall treatment outcomes were not significantly different between the 2 treatment groups. However, the teeth in the CM group showed significantly more mature apices and a higher degree of hard tissue formation with projections intercalating into the pre-existing root dentin (P teeth, regenerated pulplike tissue was more frequently observed (P revascularization treatment. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Clinical e radiographic sucess of indirect pulp capping with partial excavation of demineralization dentin in primary posterior teeth

    Directory of Open Access Journals (Sweden)

    Roberta Francisca Martins de Castro

    2009-10-01

    Full Text Available Objective: To assess the outcome of the indirect pulp capping technique after incomplete excavation of the demineralized dentin in primary molars of patients treated in the period from 2004 to 2006.Methods: Sample consisted of 81 teeth of 36 patients aged from 1-to-8 year-old. Clinical and radiographic inclusion criteria, as well as criteria of the success of the evaluated treatments were established.Results: There were four (4.9% failures and 77 (95.1% successful treatments. Treatment failure occurred in three girls and in one boy, and no statistically significant difference (p=0.341 was found. Twenty three teeth were treated with resin-modified glass-ionomer cement and 58 with composite resin, of which 22 and 55, respectively, showed successful results. There was no statistically significant difference between restorative materials used (p=0.877. As regards the studied age group, patients aged from 1 to 4 years showed a significantly lower success rate when compared with 5-8 year-old children (p = 0.0428. Conclusion: The results suggest that the indirect pulp capping technique after incomplete excavation of demineralized dentin is a reliable technique to be adopted in deep lesions of primary teeth.

  2. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells

    Science.gov (United States)

    Sonoda, Soichiro; Yamaza, Haruyoshi; Ma, Lan; Tanaka, Yosuke; Tomoda, Erika; Aijima, Reona; Nonaka, Kazuaki; Kukita, Toshio; Shi, Songtao; Nishimura, Fusanori; Yamaza, Takayoshi

    2016-01-01

    Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment. PMID:26775677

  3. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells.

    Science.gov (United States)

    Sonoda, Soichiro; Yamaza, Haruyoshi; Ma, Lan; Tanaka, Yosuke; Tomoda, Erika; Aijima, Reona; Nonaka, Kazuaki; Kukita, Toshio; Shi, Songtao; Nishimura, Fusanori; Yamaza, Takayoshi

    2016-01-18

    Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment.

  4. Caries induced cytokine network in the odontoblast layer of human teeth

    Directory of Open Access Journals (Sweden)

    Horst Jeremy A

    2011-01-01

    Full Text Available Abstract Background Immunologic responses of the tooth to caries begin with odontoblasts recognizing carious bacteria. Inflammatory propagation eventually leads to tooth pulp necrosis and danger to health. The present study aims to determine cytokine gene expression profiles generated within human teeth in response to dental caries in vivo and to build a mechanistic model of these responses and the downstream signaling network. Results We demonstrate profound differential up-regulation of inflammatory genes in the odontoblast layer (ODL in human teeth with caries in vivo, while the pulp remains largely unchanged. Interleukins, chemokines, and all tested receptors thereof were differentially up-regulated in ODL of carious teeth, well over one hundred-fold for 35 of 84 genes. By interrogating reconstructed protein interaction networks corresponding to the differentially up-regulated genes, we develop the hypothesis that pro-inflammatory cytokines highly expressed in ODL of carious teeth, IL-1β, IL-1α, and TNF-α, carry the converged inflammatory signal. We show that IL1β amplifies antimicrobial peptide production in odontoblasts in vitro 100-fold more than lipopolysaccharide, in a manner matching subsequent in vivo measurements. Conclusions Our data suggest that ODL amplifies bacterial signals dramatically by self-feedback cytokine-chemokine signal-receptor cycling, and signal convergence through IL1R1 and possibly others, to increase defensive capacity including antimicrobial peptide production to protect the tooth and contain the battle against carious bacteria within the dentin.

  5. Sterilisation of extracted human teeth for educational use

    Directory of Open Access Journals (Sweden)

    Kumar M

    2005-01-01

    Full Text Available Sixty intact, non-carious and unrestored teeth extracted due to periodontal disease were used to determine the most effective method of sterilisation. The teeth were divided into six groups, each containing 10 teeth. Group 1 teeth were immersed in 10% formalin for seven days, group 2 teeth were immersed in 3% hydrogen peroxide for seven days, group 3 teeth were immersed in 2.6% sodium hypochlorite for seven days, group 4 teeth were boiled in water at 100°C for 20 minutes, group 5 teeth were autoclaved at 121°C at 15 lbs psi for 30 minutes, and group 6 teeth were immersed in normal saline for seven days. After the treatment, the teeth were individually inoculated into trypticase soy broth and incubated for 48 hours. A questionnaire survey was also conducted to determine the awareness of dental students regarding infection due to extracted human teeth and the common disinfection/sterilisation methods used. Autoclaving at 121°C, 15 lbs psi for 30 minutes and immersion in 10% formalin for seven days were effective in disinfecting/sterilising extracted human teeth. Chemicals such as 2.6% sodium hypochlorite, 3% hydrogen peroxide and boiling in water were not effective. The results indicate that autoclaving for 30 minutes or immersion in 10% formalin for seven days could be effectively used for disinfection/sterilisation of extracted human teeth.

  6. Distribution of the amelogenin protein in developing, injured and carious human teeth

    Directory of Open Access Journals (Sweden)

    Thimios eMitsiadis

    2014-12-01

    Full Text Available Amelogenin is the major enamel matrix protein with key roles in amelogenesis. Although for many decades amelogenin was considered to be exclusively expressed by ameloblasts, more recent studies have shown that amelogenin is also expressed in other dental and no-dental cells. However, amelogenin expression in human tissues remains unclear. Here, we show that amelogenin protein is not only expressed during human embryonic development but also in pathological conditions such as carious lesions and injuries after dental cavity preparation. In developing embryonic teeth, amelogenin stage-specific expression is found in all dental epithelia cell populations but with different instensities. In the different layers of enamel matrix, waves of positive versus negative immunostaining for amelogenin are detected suggesting that the secretion of amelogenin protein is orchestreted by a biological clock. Amelogenin is also expressed transiently in differentiating odontoblasts during predentin formation, but was absent in mature functional odontoblasts. In intact adult teeth, amelogenin was not present in dental pulp, odontoblasts, and dentin. However, in injured and carious adult human teeth amelogenin is strongly re-expressed in newly differentiated odontoblasts and is distributed in the dentinal tubuli under the lesion site. In an in vitro culture system, amelogenin is expressed preferentially in human dental pulp cells that start differentiating into odontoblast-like cells and form mineralization nodules. These data suggest that amelogenin plays important roles not only during cytodifferentiation, but also during tooth repair processes in humans.

  7. Comparison of pulp response to mineral trioxide aggregate and a bioceramic paste in partial pulpotomy of sound human premolars: a randomized controlled trial.

    Science.gov (United States)

    Azimi, S; Fazlyab, M; Sadri, D; Saghiri, M A; Khosravanifard, B; Asgary, S

    2014-09-01

    This randomized clinical trial evaluated clinical sign/symptoms as well as histological pulp reactions in terms of inflammation and mineralized bridge formation after partial pulpotomy of sound human premolars and placement of a bioceramic paste (iRoot BP) or tooth-colored ProRoot MTA as pulp-covering biomaterials. Twenty-four human sound premolars were randomly allocated into two experimental groups (n = 12) treated either with iRoot BP or MTA subsequent to partial pulpotomy. Six weeks after treatment, clinical sign/symptoms and radiographic changes were evaluated. The teeth were then extracted and examined histologically for inflammatory status of the pulp, formation of hard tissue bridge and appearance of the bridge. In terms of pulp inflammation and dentinal bridge formation, the Mann-Whitney U, and for clinical signs, the chi-square test was used (α = 0.05). In terms of pulp inflammation, formation of hard tissue bridge and its appearance, the differences between the two experimental groups were not significant. However, clinical sensitivity to cold was significantly less for teeth treated with MTA (P < 0.05). All cases had formed a hard tissue bridge, and none of the specimens in either group had pulpal necrosis. When treating teeth with healthy pulps, the response to partial pulpotomy treatment with both MTA and iRoot BP was favourable. However, pulps covered with iRoot BP were more sensitive to cold stimuli. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. The use of human dental pulp stem cells for in vivo bone tissue engineering: A systematic review.

    Science.gov (United States)

    Leyendecker Junior, Alessander; Gomes Pinheiro, Carla Cristina; Lazzaretti Fernandes, Tiago; Franco Bueno, Daniela

    2018-01-01

    Dental pulp represents a promising and easily accessible source of mesenchymal stem cells for clinical applications. Many studies have investigated the use of human dental pulp stem cells and stem cells isolated from the dental pulp of human exfoliated deciduous teeth for bone tissue engineering in vivo. However, the type of scaffold used to support the proliferation and differentiation of dental stem cells, the animal model, the type of bone defect created, and the methods for evaluation of results were extremely heterogeneous among these studies conducted. With this issue in mind, the main objective of this study is to present and summarize, through a systematic review of the literature, in vivo studies in which the efficacy of human dental pulp stem cells and stem cells from human exfoliated deciduous teeth (SHED) for bone regeneration was evaluated. The article search was conducted in PubMed/MEDLINE and Web of Science databases. Original research articles assessing potential of human dental pulp stem cells and SHED for in vivo bone tissue engineering, published from 1984 to November 2017, were selected and evaluated in this review according to the following eligibility criteria: published in English, assessing dental stem cells of human origin and evaluating in vivo bone tissue formation in animal models or in humans. From the initial 1576 potentially relevant articles identified, 128 were excluded due to the fact that they were duplicates and 1392 were considered ineligible as they did not meet the inclusion criteria. As a result, 56 articles remained and were fully analyzed in this systematic review. The results obtained in this systematic review open new avenues to perform bone tissue engineering for patients with bone defects and emphasize the importance of using human dental pulp stem cells and SHED to repair actual bone defects in an appropriate animal model.

  9. [Clinical study of the effect of preventing dentine hypersensitiveness by using Fluor Protector and Green Or on the prepared vital pulp abutment teeth].

    Science.gov (United States)

    Qin, Jia-nan; Lu, Yu-miao; Zhou, Xiao-yan

    2005-04-01

    To study and evaluate the effect preventing dentine hypersensitiveness by using Fluor Protector or Green Or on the prepared vital pulp abutment teeth of PFM bridges. 118 cases, 246 prepared vital pulp abutment teeth, were randomly divided into three groups: Experimental Group A--treated with the Fluor Protector and temporary crown; Experimental Group B--treated with the Green Or and temporary crown, and Control Group--only using temporary crown. The results of desensitization in 3 groups were evaluated. F test was used for analysis (DSPV6.01). Significant differences were found between experimental Group A, B and the control group after 1 week (when cementing the PFM bridges); and also after 1 month (P0.05). The effect of preventing dental hypersensitiveness by using Fluor Protector or Green Or on the prepared vital pulp abutment teeth of PFM bridges is ideal. It is easy to use and worth being widely applied.

  10. Allogeneic stem cells derived from human exfoliated deciduous teeth (SHED for the management of periapical lesions in permanent teeth: Two case reports of a novel biologic alternative treatment

    Directory of Open Access Journals (Sweden)

    Madu Ghana Shyam Prasad

    2017-06-01

    Full Text Available Stem cells are the pluripotent cells that have the capacity to differentiate into other specialized cells. Recently, many experiments have been conducted to study the potentiality of stem cells in the tissue regeneration. We report two cases treated utilizing stem cells from human exfoliated deciduous teeth (SHED in the management of periapical lesions in permanent teeth. Two normal human deciduous teeth from children, 7‒8 years of age, were collected to isolate stem cells. Two patients, one with periapical pathology alone and the other with periapical lesion along with an open apex in young permanent teeth, were selected for the study. After initial debridement of the root canals, homing of SHED was carried out and the access cavity was sealed using glass-ionomer cement. Clinical examination after 7 days, 30 days, 90 days, 180 days and 365 days revealed no symptoms. Closure of open apex and periapical tissue healing were observed radiographically at one-month review and maintained until 365-day review. Positive response to electric pulp testing was recorded for the treated teeth from the 3- to 12-month follow-ups. The treated cases demonstrated complete resolution of periapical radiolucency in a span of 30 days, which was faster than the conventional methods. SHED could be considred effective in treating the periapical lesions and open apex in permanent teeth.

  11. Hypoxia enhances the angiogenic potential of human dental pulp cells.

    Science.gov (United States)

    Aranha, Andreza M F; Zhang, Zhaocheng; Neiva, Kathleen G; Costa, Carlos A S; Hebling, Josimeri; Nör, Jacques E

    2010-10-01

    Trauma can result in the severing of the dental pulp vessels, leading to hypoxia and ultimately to pulp necrosis. Improved understanding of mechanisms underlying the response of dental pulp cells to hypoxic conditions might lead to better therapeutic alternatives for patients with dental trauma. The purpose of this study was to evaluate the effect of hypoxia on the angiogenic response mediated by human dental pulp stem cells (DPSCs) and human dental pulp fibroblasts (HDPFs). DPSCs and HDPFs were exposed to experimental hypoxic conditions. Hypoxia-inducible transcription factor-1alpha (HIF-1alpha) was evaluated by Western blot and immunocytochemistry, whereas vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) expression was evaluated by enzyme-linked immunosorbent assay. YC-1, an inhibitor of HIF-1alpha, was used to evaluate the functional effect of this transcriptional factor on hypoxia-induced VEGF expression. Conditioned medium from hypoxic and normoxic pulp cells was used to stimulate human dermal microvascular endothelial cells (HDMECs). HDMEC proliferation was measured by WST-1 assay, and angiogenic potential was evaluated by a capillary sprouting assay in 3-dimensional collagen matrices. Hypoxia enhanced HIF-1alpha and VEGF expression in DPSCs and HDPFs. In contrast, hypoxia did not induce bFGF expression in pulp cells. YC-1 partially inhibited hypoxia-induced HIF-1alpha and VEGF in these cells. The growth factor milieu of hypoxic HDPFs (but not hypoxic DPSCs) induced endothelial cell proliferation and sprouting as compared with medium from normoxic cells. Collectively, these data demonstrate that hypoxia induces complex and cell type-specific pro-angiogenic responses and suggest that VEGF (but not bFGF) participates in the revascularization of hypoxic dental pulps. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Genome-wide transcriptomic alterations induced by ethanol treatment in human dental pulp stem cells (DPSCs

    Directory of Open Access Journals (Sweden)

    Omar Khalid

    2014-12-01

    Full Text Available Human dental pulp stem cells (DPSCs isolated from adult dental pulp are multipotent mesenchymal stem cells that can be directed to differentiate into osteogenic/odontogenic cells and also trans-differentiate into neuronal cells. The utility of DPSC has been explored in odontogenic differentiation for tooth regeneration. Alcohol abuse appears to lead to periodontal disease, tooth decay and mouth sores that are potentially precancerous. Persons who abuse alcohol are at high risk of having seriously deteriorated teeth, gums and compromised oral health in general. It is currently unknown if alcohol exposure has any impact on adult stem cell maintenance, stem cell fate determination and plasticity, and stem cell niche environment. Here we provide detailed experimental methods, analysis and information associated with our data deposited into Gene Expression Omnibus (GEO under GSE57255. Our data provide transcriptomic changes that are occurring by EtOH treatment of DPSCs at 24-hour and 48-hour time point.

  13. Genome-wide transcriptomic alterations induced by ethanol treatment in human dental pulp stem cells (DPSCs).

    Science.gov (United States)

    Khalid, Omar; Kim, Jeffrey J; Duan, Lewei; Hoang, Michael; Elashoff, David; Kim, Yong

    2014-12-01

    Human dental pulp stem cells (DPSCs) isolated from adult dental pulp are multipotent mesenchymal stem cells that can be directed to differentiate into osteogenic/odontogenic cells and also trans-differentiate into neuronal cells. The utility of DPSC has been explored in odontogenic differentiation for tooth regeneration. Alcohol abuse appears to lead to periodontal disease, tooth decay and mouth sores that are potentially precancerous. Persons who abuse alcohol are at high risk of having seriously deteriorated teeth, gums and compromised oral health in general. It is currently unknown if alcohol exposure has any impact on adult stem cell maintenance, stem cell fate determination and plasticity, and stem cell niche environment. Here we provide detailed experimental methods, analysis and information associated with our data deposited into Gene Expression Omnibus (GEO) under GSE57255. Our data provide transcriptomic changes that are occurring by EtOH treatment of DPSCs at 24-hour and 48-hour time point.

  14. Comparison of the Antibacterial Effect of Sodium Hypochlorite and Aloe Vera Solutions as Root Canal Irrigants in Human Extracted Teeth Contaminated with Enterococcus Faecalis

    OpenAIRE

    Sahebi S.; Khosravifar N.; SedighShamsi M.; Motamedifar M.

    2014-01-01

    Statement of Problem: The main purpose of a root canal treatment is to eliminate the bacteria and their products from the pulp space. Sodium hypochlorite has excellent antibacterial properties but also some negative features. Purpose: The aim of the present study is to compare the antimicrobial effect of Aloe Vera solution with sodium hypochlorite on E.faecalis in the root canals of human extracted teeth. Materials and Method: Sixty human extracted single rooted teeth were selected for...

  15. Irreversible but not reversible pulpitis is associated with up-regulation of tumour necrosis factor-alpha gene expression in human pulp.

    Science.gov (United States)

    Kokkas, A B; Goulas, A; Varsamidis, K; Mirtsou, V; Tziafas, D

    2007-03-01

    To analyse the gene expression of tumour necrosis factor-alpha (TNF-alpha) in human dental pulps, under normal and inflammatory conditions and to examine the association between any observed alterations in the expression of this cytokine with the severity of the clinical symptoms. Eighteen pulpal samples were obtained from single-rooted human teeth. Six of the teeth were normal (group A), six had been diagnosed with reversible pulpitis (group B), and the remaining six were from teeth diagnosed with irreversible pulpitis (group C). TNF-alpha gene expression was semi-quantitatively analysed in each sample with RT-PCR, and the results from each group of teeth were compared with the Kruskal-Wallis and Mann-Whitney tests. Tumour necrosis factor-alpha was detected in all three groups of dental pulp. Statistical analysis provided evidence of a significant increase of TNF-alpha gene expression associated with irreversible inflammation compared with healthy controls (P = 0.002). No such difference was detected in reversibly inflamed pulp in comparison to healthy teeth (P = 0.699). Tumour necrosis factor-alpha gene expression in inflamed human dental pulp tissue is positively associated with the severity of clinical symptoms.

  16. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures.

    Science.gov (United States)

    Matsui, Mikiko; Kobayashi, Tomoko; Tsutsui, Takeo W

    2018-01-08

    CD146 and STRO-1 are endothelial biomarkers that are co-expressed on the cellular membranes of blood vessels within human dental pulp tissue. This study characterized the percentage of dentin-like structures produced by CD146-positive (CD146+) human dental pulp stem cells (DPSCs), compared with their CD146-negative (CD146-) counterparts. DPSC populations were enriched using magnetic-activated cell sorting (MACS), yielding CD146+ and CD146- cells, as well as mixtures composed of 25% CD146+ cells and 75% CD146- cells (CD146+/-). Cell growth assays indicated that CD146+ cells exhibit an approximate 3-4 h difference in doubling time, compared with CD146- cells. Cell cycle distributions were determined by flow cytometry analysis. The low percentage of CD146+ cells' DNA content in G0/G1 phase were compared with CD146- and non-separated cells. In contrast to CD146- and non-separated cells, prompt mineralization was observed in CD146+ cells. Subsequently, qRT-PCR revealed high mRNA expression of CD146 and Alkaline phosphatase in mineralization-induced CD146+ cells. CD146+ cells were also observed high adipogenic ability by Oil red O staining. Histological examinations revealed an increased area of dentin/pulp-like structures in transplanted CD146+ cells, compared with CD146- and CD146+/- cells. Immunohistochemical studies detected dentin matrix protein-1 (DMP1) and dentin sialophosphoprotein (DSPP), as well as human mitochondria, in transplanted DPSCs. Co-expression of CD146 and GFP indicated that CD146 was expressed in transplanted CD146+ cells. CD146+ cells may promote mineralization and generate dentin/pulp-like structures, suggesting a role in self-renewal of stem cells and dental pulp regenerative therapy.

  17. Clinical and radiographic evaluation of indirect pulp treatment with MTA and calcium hydroxide in primary teeth (in-vivo study

    Directory of Open Access Journals (Sweden)

    Vimi George

    2015-01-01

    Full Text Available Objectives: Clinical and radiographic effects of mineral trioxide aggregate (white MTA and calcium hydroxide (Dycal in indirect pulp treatment (IPT of primary teeth over a period of 6 months. Materials and Methods: A clinical trial with sample size of 40 primary molars between the age group of 5-9 years, of which, 20 teeth were considered, each for MTA and Dycal. Measurements on the digitized radiographs were performed at baseline, third and sixth month, increase in dentin was then measured using Corel Draw software. Result: Independent t-test had indicated that at the end of 3 months and 6 months, a statistically significant increase in dentin thickness with both MTA and Dycal (P-value ≤ 0.001 was found. Within the MTA group, the thickness of dentin formed was 0.089 mm ± 0.031 mm at first 3 months and 0.055 ± 0.022 mm at the second 3 months, (P ≤ 0.001 evaluated using paired t-test. In the Dycal group, increment in dentin deposited was 0.068 mm at the first 3 months and second 3 months, it was 0.030 mm (P-value ≤ 0.001. Conclusion: Clinically and radiographically, MTA is superior to Dycal as a good IPT medicament in primary teeth.

  18. Comparison of mesenchymal-like stem/progenitor cells derived from supernumerary teeth with stem cells from human exfoliated deciduous teeth.

    Science.gov (United States)

    Lee, Sunray; An, Soyoun; Kang, Tae Hoon; Kim, Kyung Hye; Chang, Nicole Hyesoo; Kang, Seongman; Kwak, Chang Kon; Park, Hyun-Sook

    2011-11-01

    Dental tissue has been the focus of attention as an easily accessible postnatal tissue source of high-quality stem cells. Since the first report on the dental pulp stem cells (DPSCs) from permanent third molar teeth, stem cells from human exfoliated deciduous teeth (SHED) were identified as a population distinct from DPSCs. In this study, we compared DPSCs from supernumerary teeth and SHED in three age- and sex-matched patients. Dental samples were obtained from the three patients, who were 6 years old and male, with the parental consent of the three donors, and then isolated cells from dental pulp for comparative analysis between supernumerary DPSCs and SHED. Colony-forming unit fibroblast levels and the proliferation rate of supernumerary DPSCs were slightly lower than that of SHED. The expression of cell surface antigens in supernumerary DPSCs and SHED were almost identical. Cells were mainly expressing endogenous mesodermal and ectodermal lineage markers. Differentiation capacity to osteogenic, adipogenic and chondrogenic lineage was similar in the SHED and supernumerary DPSCs. Migration assay revealed that both supernumerary DPSCs and SHED rapidly migrated toward wounded areas. Supernumerary DPSCs were altered in cell growth after storage for 2 years. Specially, the population doubling time of supernumerary DPSCs increased while that of SHED remained nearly unchanged. Both supernumerary teeth and deciduous teeth share many characteristics, such as highly proliferative clonogenic cells with a similar immunophenotype to that of mesenchymal stem cells, although they are inferior to SHED for long-term banking. Our findings suggest that supernumerary teeth are also easily accessible and noninvasive sources of postnatal stem cells with multipotency and regenerative capacity.

  19. Expression of Nav1.9 channels in human dental pulp and trigeminal ganglion.

    Science.gov (United States)

    Wells, Jason E; Bingham, Val; Rowland, Kevin C; Hatton, John

    2007-10-01

    There is a higher incidence of local anesthetic failure in endodontic patients experiencing pulpal hyperalgesia. Up-regulation of Nav1.9, a voltage-gated sodium channel isoform, might play a key role in local anesthetic failure because Nav1.9 channels increase neuronal excitability and have low sensitivity to blockade by local anesthetics. Immunocytochemistry was used to examine Nav1.9 channel expression in axons of symptomatic (painful) versus asymptomatic human dental pulp and to determine Nav1.9 expression levels in neuronal somata of the human trigeminal ganglion. Nav1.9 channel immunoreactivity on pulpal axons was significantly increased in painful teeth. Nav1.9 channels were expressed in membranes and cytoplasm of human trigeminal ganglion neurons, with the highest expression in small neuronal somata. Nav1.9 expression in the trigeminal ganglion coupled with increased expression in symptomatic pulp might contribute to hypersensitivity of inflamed pulps and local anesthetic failure. Furthermore, the present study suggests that Nav1.9 channels are potential targets for novel anesthetics.

  20. Age-Dependent Changes in Pb Concentration in Human Teeth.

    Science.gov (United States)

    Fischer, Agnieszka; Wiechuła, Danuta

    2016-09-01

    The result of exposure to Pb is its accumulation in mineralized tissues. In human body, they constitute a reservoir of approx. 90 % of the Pb reserve. The conducted research aimed at determining the accumulation of Pb in calcified tissues of permanent teeth. The concentration of Pb in 390 samples of teeth taken from a selected group of Polish people was determined using the AAS method. Average concentration of Pb in teeth amounted to 14.3 ± 8.18 μg/g, range of changes: 2.21-54.8 μgPb/g. Accumulation of Pb in human body was determined based on changes in Pb concentration in teeth of subjects aged 13-84 years. It was found that in calcified tissues of teeth, the increase in concentration of Pb that occurs with age is a statistically significant process (p = 0.02, the ANOVA Kruskal-Wallis test). It was determined that the annual increase in concentration of Pb in tissues of teeth is approx. 0.1 μg/g. Moreover, a different course of changes in Pb concentration in tissues of teeth in people born in different years was observed. The level of Pb concentration in teeth of the oldest subjects (>60 years) decreased for those born in the 1930s compared to those in the 1950s. Teeth from younger persons (teeth can occur.

  1. Mitochondria Regulate the Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth.

    Science.gov (United States)

    Kato, Hiroki; Thi Mai Pham, Thanh; Yamaza, Haruyoshi; Masuda, Keiji; Hirofuji, Yuta; Han, Xu; Sato, Hiroshi; Taguchi, Tomoaki; Nonaka, Kazuaki

    2017-08-19

    Stem cells from human exfoliated deciduous teeth (SHED) are isolated from the dental pulp tissue of primary teeth and can differentiate into neuronal cells. Although SHED are a desirable type of stem cells for transplantation therapy and for the study of neurological diseases, a large part of the neuronal differentiation machinery of SHED remains unclear. Recent studies have suggested that mitochondrial activity is involved in the differentiation of stem cells. In the present work, we investigated the neuronal differentiation machinery of SHED by focusing on mitochondrial activity. During neuronal differentiation of SHED, we observed increased mitochondrial membrane potential, increased mitochondrial DNA, and elongated mitochondria. Furthermore, to examine the demand for mitochondrial activity in neuronal differentiation, we then differentiated SHED into neuronal cells in the presence of rotenone, an inhibitor of mitochondrial respiratory chain complex I, and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a mitochondrial uncoupler, and found that neuronal differentiation was inhibited by treatment with rotenone and CCCP. These results indicated that increased mitochondrial activity was crucial for the neuronal differentiation of SHED.Key words: mitochondria, differentiation, stem cells, dental pulp, exfoliated deciduous teeth.

  2. Pulp therapy in primary teeth--profile of teaching in Brazilian dental schools.

    Science.gov (United States)

    Bergoli, Anieli Dossa; Primosch, Robert Eliot; de Araujo, Fernando Borba; Ardenghi, Thiago Machado; Casagrande, Luciano

    2010-01-01

    This study investigates the profile of teaching primary tooth pulp therapy practiced by Brazilian dental schools. A multiple-choice questionnaire was sent by e-mail to 191 dental schools in Brazil, addressed to the pediatric dentistry Chairperson. The two-part survey consisting of multiple-choice questions regarding specific materials and techniques on pulp therapies, moreover, hypothetical clinical scenarios were presented so that the respondents could guide the treatment approach. The questionnaires were returned by 46.5% of the dental schools. Ninety-five percent of surveyed schools teach IPT for the treatment of deep carious lesions in dentin and indicate the calcium hydroxide as capping material (59.3%). The direct pulp capping is taught by 68.7% of schools and calcium hydroxide (97%) was the capping material most indicated. Pulpotomy is taught in 98.7% of schools and formocresol (1:5 dilution) was the medicament of choice (50%). All schools taught pulpectomy and Iodoform paste was the filling material preferred (55%). The results showed a lack of consensus in certain modalities and techniques for primary tooth pulp therapy taught by Brazilian dental schools.

  3. Stepwise excavation may enhance pulp preservation in permanent teeth affected by dental caries

    DEFF Research Database (Denmark)

    Bjørndal, Lars

    2011-01-01

    ARTICLE TITLE AND BIBLIOGRAPHIC INFORMATION: Ways of enhancing pulp preservation by stepwise excavation-a systematic review. Hayashi M, Fujitani M, Yamaki C, Momoi Y. J Dent 2011;39(2):95-107. Epub 2010 Dec 3. REVIEWER: Lars Bjørndal, DDS, PhD, Dr Odont PURPOSE/QUESTION: To determine the clinical...

  4. Targeted sampling of cementum for recovery of nuclear DNA from human teeth and the impact of common decontamination measures

    OpenAIRE

    Higgins, Denice; Kaidonis, John; Townsend, Grant; Hughes, Toby; Austin, Jeremy J.

    2013-01-01

    Background Teeth are a valuable source of DNA for identification of fragmented and degraded human remains. While the value of dental pulp as a source of DNA is well established, the quantity and presentation of DNA in the hard dental tissues has not been extensively studied. Without this knowledge common decontamination, sampling and DNA extraction techniques may be suboptimal. Targeted sampling of specific dental tissues could maximise DNA profiling success, while minimising the need for lab...

  5. Pulp revascularization of replanted immature dog teeth after treatment with minocycline and doxycycline assessed by laser Doppler flowmetry, radiography, and histology.

    Science.gov (United States)

    Ritter, Alessandra Luisa de Souza; Ritter, André Vicente; Murrah, Valerie; Sigurdsson, Asgeir; Trope, Martin

    2004-04-01

    This study investigated the effect of topical antibiotic treatment on pulp revascularization in replanted teeth. Thirty-four immature teeth were selected from three young dogs. Baseline radiographs and laser Doppler flowmetry (LDF) readings were obtained. Specimens were randomly divided into four groups: Thirty-eight teeth were extracted, kept dry for 5 min, and either (Group 1) covered with minocycline mixture (G1, n = 11), (Group 2) soaked in doxycycline (G2, n = 11), or (Group 3) soaked in saline (G3-negative control, n = 6), and replanted. Teeth in Group 4 were not extracted (positive control, n = 6). Postoperative radiographs and LDF readings were obtained for 2 months after replantation. After sacrifice, the jaws were collected and processed for light microscopy. Pre- and postreplantation LDF readings and radiographs, and histologic findings were analyzed to assess revascularization. Pulp revascularization occurred in 91% (G1), 73% (G2), and 33% (G3) of the specimens. In conclusion, minocycline facilitates pulp revascularization in replanted immature teeth after replantation. Copyright Blackwell Munksgaard, 2004.

  6. Pluripotency of Stem Cells from Human Exfoliated Deciduous Teeth for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Vinicius Rosa

    2016-01-01

    Full Text Available Stem cells from human exfoliated deciduous teeth (SHED are highly proliferative pluripotent cells that can be retrieved from primary teeth. Although SHED are isolated from the dental pulp, their differentiation potential is not limited to odontoblasts only. In fact, SHED can differentiate into several cell types including neurons, osteoblasts, adipocytes, and endothelial cells. The high plasticity makes SHED an interesting stem cell model for research in several biomedical areas. This review will discuss key findings about the characterization and differentiation of SHED into odontoblasts, neurons, and hormone secreting cells (e.g., hepatocytes and islet-like cell aggregates. The outcomes of the studies presented here support the multipotency of SHED and their potential to be used for tissue engineering-based therapies.

  7. Oral bacterial extracts facilitate early osteogenic/dentinogenic differentiation in human dental pulp-derived cells.

    Science.gov (United States)

    Abe, Shu; Imaizumi, Mari; Mikami, Yoshikazu; Wada, Yoshiyuki; Tsuchiya, Shuhei; Irie, Seiko; Suzuki, Shinnosuke; Satomura, Kazuhito; Ishihara, Kazuyuki; Honda, Masaki J

    2010-01-01

    Bacterial metabolites demineralize dental hard tissues, and soluble factors lead to tertiary dentinogenesis in the area of the dentin-pulp complex. However, it is unclear whether the oral bacteria are directly involved in the differentiation of dental pulp cells. In this study, we evaluated the effect of oral bacterial extracts on cellular differentiation in human dental pulp-derived cells (hDPC). The hDPC were obtained from third molar teeth, and the cells were subcultured. The sonicated extracts were obtained from Porphyromonas gingivalis (gram-negative) and Streptococcus mutans (gram-positive). The effect of bacterial extracts on cellular growth and differentiation in hDPC were tested. Alkaline phosphatase activity and bone sialoprotein (BSP) gene expression were increased in hDPC exposed to low concentrations of both sonicated extracts, whereas the activity was decreased upon exposure to high concentrations of sonicated extracts from P. gingivalis. This is the first evidence that oral bacteria have a positive effect on cellular differentiation in hPDC. Copyright 2010 Mosby, Inc. All rights reserved.

  8. Evaluation of threshold response and appropriate electrode placement site for electric pulp testing in fluorosed anterior teeth: An in vivo study.

    Science.gov (United States)

    Vemisetty, Harikumar; Vanapatla, Amulya; Ravichandra, Polavarapu Venkata; Reddy, Surakanti Jayaprada; Punna, Rajani; Chandragiri, Srujana

    2016-01-01

    Accurate diagnosis is key to success. Diagnosing the pulpal status in varied clinical situations poses a challenge to the clinician. Electric pulp test (EPT) is one of the valuable attempts in evaluating the sensibility of pulp tissue. The aim of this study was to find out and compare the threshold levels and optimal electrode placement site for EPT in fluorosed and nonfluorosed anterior teeth. Eighty volunteers recruited for this study were divided into two groups based on the incidence of dental fluorosis. Electric pulp testing was done on either of the central incisors in fluorosed and nonfluorosed group. Four sites on each crown were tested 4 times with digitest electric pulp tester, and the mean of the threshold responses was recorded. The data were analyzed with SPSS, version 11. Means of variables from each location were compared using one-way ANOVA and Tukey's post-hoc test while the critical level of significance was set at P sites with incisal edge showing the least mean threshold levels for both the groups (P > 0.05). Within the limitations of this study, it can be concluded that fluorosed teeth respond to higher threshold levels than the non-fluorosed teeth, and incisal edge was the optimal electrode placement site.

  9. Comparative analysis of human and bovine teeth: radiographic density

    Directory of Open Access Journals (Sweden)

    Jefferson Luis Oshiro Tanaka

    2008-12-01

    Full Text Available Since bovine teeth have been used as substitutes for human teeth in in vitro dental studies, the aim of this study was to compare the radiographic density of bovine teeth with that of human teeth to evaluate their usability for radiographic studies. Thirty bovine and twenty human teeth were cut transversally in 1 millimeter-thick slices. The slices were X-rayed using a digital radiographic system and an intraoral X-ray machine at 65 kVp and 7 mA. The exposure time (0.08 s and the target-sensor distance (40 cm were standardized for all the radiographs. The radiographic densities of the enamel, coronal dentin and radicular dentin of each slice were obtained separately using the "histogram" tool of Adobe Photoshop 7.0 software. The mean radiographic densities of the enamel, coronal dentin and radicular dentin were calculated by the arithmetic mean of the slices of each tooth. One-way ANOVA demonstrated statistically significant differences for the densities of bovine and human enamel (p 0.05. Based on the results, the authors concluded that: a the radiographic density of bovine enamel is significantly higher than that of human enamel; b the radiodensity of bovine coronal dentin is statistically lower than the radiodensity of human coronal dentin; bovine radicular dentin is also less radiodense than human radicular dentin, although this difference was not statistically significant; c bovine teeth should be used with care in radiographic in vitro studies.

  10. Human Pulp Responses to Partial Pulpotomy Treatment with TheraCal as Compared with Biodentine and ProRoot MTA: A Clinical Trial.

    Science.gov (United States)

    Bakhtiar, Hengameh; Nekoofar, Mohammad Hossein; Aminishakib, Pouyan; Abedi, Fatemeh; Naghi Moosavi, Fereshteh; Esnaashari, Ehsan; Azizi, Arash; Esmailian, Samar; Ellini, Mohammad Reza; Mesgarzadeh, Vahid; Sezavar, Mehdi; About, Imad

    2017-11-01

    Questions exist regarding the efficacy of resin-containing materials such as TheraCal directly applied on the pulp. This study sought to investigate the clinical efficacy of TheraCal as compared with Biodentine and ProRoot mineral trioxide aggregate (MTA) for partial pulpotomy. In this clinical trial, partial pulpotomy was performed for 27 sound human maxillary and mandibular third molars scheduled for extraction. The teeth were randomly divided into 3 groups (n = 9) and underwent partial pulpotomy with TheraCal, Biodentine, and ProRoot MTA. The teeth were then restored with glass ionomer cement. Clinical and electric pulp tests were performed after 1 and 8 weeks. The teeth were radiographed and extracted at 8 weeks. Histologic sections were prepared and analyzed for pulp inflammation and dentinal bridge formation. Data were analyzed by using one-way analysis of variance. Clinical examination showed no sensitivity to heat, cold, or palpation in ProRoot MTA and Biodentine groups. Two patients in TheraCal group (20%) reported significant pain at 1 week. Periapical radiographs showed no periapical pathology, and electric pulp test revealed a normal pulp response with no hypersensitivity. Inflammation was absent with all materials at 8 weeks. Normal pulp organization was seen in 33.33% of the teeth in ProRoot MTA, 11.11% in TheraCal, and 66.67% in Biodentine group (P = .06). Biodentine group showed complete dentinal bridge formation in all teeth, whereas this rate was 11% and 56% in TheraCal and ProRoot MTA groups, respectively (P = .001). Overall, Biodentine and MTA performed better than TheraCal when used as partial pulpotomy agent and presented the best clinical outcomes. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Immunohistochemical localization of four and a half LIM domains 2 in the odontoblasts of mature human teeth.

    Science.gov (United States)

    Wang, Xiaoying; Wang, Qiang; Wang, Li; Yang, Pishan

    2011-04-01

    Four and a half LIM domains 2 (FHL2) participates in cell differentiation and cancer development of various tissues, possessing dual functions either as an activator or as a repressor depending on the protein partners involved. Recent studies show that FHL2 plays an important role in osteoblast differentiation and bone formation. The present study was to investigate the expression and localization of FHL2 in human pulp-dentin complex by immunohistochemistry. Our results showed that in sound mature human teeth, FHL2 was expressed in odontoblasts and some endothelial cells of blood vessels. Moreover, in carious teeth FHL2 immunoreactivity was detected in odontoblasts, odontoblast-like cells and endothelial cells of blood vessels. FHL2 was mainly distributed in cytosol of the odontoblast cell bodies and partly located in nuclei of odontoblasts, but not in the odontoblast processes. Our data suggest a role of FHL2 in odontoblast differentiation and dentin formation both in normal and in carious teeth.

  12. Revascularization in Immature Permanent Teeth with Necrotic Pulp and Apical Pathology: Case Series

    OpenAIRE

    López Carmen; Mendoza Asunción; Solano Beatriz; Yáñez-Vico Rosa

    2017-01-01

    Introduction. To present and discuss the results of five clinical cases treated using the revascularization protocol, showing clinical and radiographic monitoring. Necrotic immature teeth with periapical pathology present a challenge to dentists because the techniques used in apexification leave the tooth susceptible to fracture, since the root does not continue to grow in length and the canal walls are thin. Revascularization has emerged as an alternative to resolve these deficiencies, enabl...

  13. Purified Human Dental Pulp Stem Cells Promote Osteogenic Regeneration.

    Science.gov (United States)

    Yasui, T; Mabuchi, Y; Toriumi, H; Ebine, T; Niibe, K; Houlihan, D D; Morikawa, S; Onizawa, K; Kawana, H; Akazawa, C; Suzuki, N; Nakagawa, T; Okano, H; Matsuzaki, Y

    2016-02-01

    Human dental pulp stem/progenitor cells (hDPSCs) are attractive candidates for regenerative therapy because they can be easily expanded to generate colony-forming unit-fibroblasts (CFU-Fs) on plastic and the large cell numbers required for transplantation. However, isolation based on adherence to plastic inevitably changes the surface marker expression and biological properties of the cells. Consequently, little is currently known about the original phenotypes of tissue precursor cells that give rise to plastic-adherent CFU-Fs. To better understand the in vivo functions and translational therapeutic potential of hDPSCs and other stem cells, selective cell markers must be identified in the progenitor cells. Here, we identified a dental pulp tissue-specific cell population based on the expression profiles of 2 cell-surface markers LNGFR (CD271) and THY-1 (CD90). Prospectively isolated, dental pulp-derived LNGFR(Low+)THY-1(High+) cells represent a highly enriched population of clonogenic cells--notably, the isolated cells exhibited long-term proliferation and multilineage differentiation potential in vitro. The cells also expressed known mesenchymal cell markers and promoted new bone formation to heal critical-size calvarial defects in vivo. These findings suggest that LNGFR(Low+)THY-1(High+) dental pulp-derived cells provide an excellent source of material for bone regenerative strategies. © International & American Associations for Dental Research 2015.

  14. Pulp revascularization using platelet rich plasma autologous or in conjunction with a collagen matrix as a therapeutic possibility for teeth with an open apex necrotic pulp and / or periapical pathology.

    OpenAIRE

    Camargo Guevara, Paula Alejandra; Sossa Rojas, Henry

    2014-01-01

    Objective: Describe the use of the Autologous Platelet-Rich Plasma or in combination with a collagen matrix as a potential revascularization therapy in teeth with open apices, necrotic pulp and/or periapical lesion. Methods: A thematic literature searchwas conducted from 2007 to 2013 using electronic means,  databases and journals with high impact on endodontic. Results: Regenerative endodontic is a biological based procedure  designed to replace structures that have been damaged, diseased or...

  15. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp.

    Science.gov (United States)

    Kuang, Rong; Zhang, Zhanpeng; Jin, Xiaobing; Hu, Jiang; Shi, Songtao; Ni, Longxing; Ma, Peter X

    2016-03-01

    Dental pulp infection and necrosis are widespread diseases. Conventional endodontic treatments result in a devitalized and weakened tooth. In this work, we synthesized novel star-shaped polymer to self-assemble into unique nanofibrous spongy microspheres (NF-SMS), which were used to carry human dental pulp stem cells (hDPSCs) into the pulp cavity to regenerate living dental pulp tissues. It was found that NF-SMS significantly enhanced hDPSCs attachment, proliferation, odontogenic differentiation and angiogenesis, as compared to control cell carriers. Additionally, NF-SMS promoted vascular endothelial growth factor (VEGF) expression of hDPSCs in a 3D hypoxic culture. Hypoxia-primed hDPSCs/NF-SMS complexes were injected into the cleaned pulp cavities of rabbit molars for subcutaneous implantation in mice. After 4 weeks, the hypoxia group significantly enhanced angiogenesis inside the pulp chamber and promoted the formation of ondontoblast-like cells lining along the dentin-pulp interface, as compared to the control groups (hDPSCs alone group, NF-SMS alone group, and hDPSCs/NF-SMS group pre-cultured under normoxic conditions). Furthermore, in an in situ dental pulp repair model in rats, hypoxia-primed hDPSCs/NF-SMS were injected to fully fill the pulp cavity and regenerate pulp-like tissues with a rich vasculature and a histological structure similar to the native pulp. Vascularization is key to the regeneration of many vital tissues. However, it is challenging to create a suitable microenvironment for stem cells to regenerate vascularized tissue structure. This manuscript reports a novel star-shaped block copolymer that self-assembles into unique nanofibrous spongy microspheres, which as an injectable scaffold recapitulate the cell-cell and cell-matrix interactions in development. Using a clinically-relevant surgical procedure and a hypoxic treatment, the nanofibrous spongy microspheres were used to deliver stem cells and successfully regenerate dental pulp with a

  16. Postoperative pain after one-visit root-canal treatment on teeth with vital pulps : comparison of three different obturation techniques

    OpenAIRE

    Alonso Ezpeleta, Luis Oscar; Gascó García, Carmen; Castellanos Cosano, Lizett; Martín González, Jenifer; López Frias, Javier; Segura-Egea, Juan J.

    2012-01-01

    Objectives. To investigate and compare postoperative pain after one-visit root canal treatment (RCT) on teeth with vital pulps using three different obturation techniques. Study Design. Two hundred and four patients (105 men and 99 women) aged 12 to 77 years were randomly assigned into three treatments groups: cold lateral compaction of gutta-percha (LC), Thermafil technique (TT), and Backfill - Thermafil obturation technique (BT). Postoperative pain was recorded on a visual analogue scale (V...

  17. In vitro penetration of bleaching agents into the pulp chamber

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Valera, M C; Mancini, M N G

    2004-01-01

    To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures.......To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures....

  18. Histologic characterization of regenerated tissues after pulp revascularization of immature dog teeth with apical periodontitis using tri-antibiotic paste and platelet-rich plasma.

    Science.gov (United States)

    Stambolsky, Carlos; Rodríguez-Benítez, Soledad; Gutiérrez-Pérez, José Luis; Torres-Lagares, Daniel; Martín-González, Jenifer; Segura-Egea, Juan José

    2016-11-01

    This study evaluates histologically the efficacy of 4 revascularization protocols in necrotic-infected immature dog teeth with apical periodontitis (AP). Forty double-rooted immature premolar teeth from 4 female Beagle dogs aged 5 months were used. Four teeth were left untouched as negative controls; the other 36 teeth were infected to develop pulp necrosis and AP. Four teeth were left untreated and assigned to the positive control group. The last 28 teeth were randomly assigned into four experimental groups of 8 teeth, each one treated with a different treatment protocol: A1, sodium hypochlorite (SH)+blood clot (BC); A2, SH+platelet-rich plasma (PRP); B1, SH+modified tri-antibiotic paste (mTAP)+BC; B2, SH+mTAP+PRP. The animals were sacrificed, histologic sections were prepared and three parameters were assessed: (1) presence or absence of new hard tissue on the internal root dentinal walls, (2) presence or absence of continued apical closure, and (3) presence or absence of vital tissue within the canal space. Significant differences (pteeth showing histological apical closure (34.5%) and vital tissue within the canal space (68.8%). Group B2 showed the maximal improvement in the three variables assessed (prevascularization procedure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Exosomes from Human Dental Pulp Stem Cells Suppress Carrageenan-Induced Acute Inflammation in Mice.

    Science.gov (United States)

    Pivoraitė, Ugnė; Jarmalavičiūtė, Akvilė; Tunaitis, Virginijus; Ramanauskaitė, Giedrė; Vaitkuvienė, Aida; Kašėta, Vytautas; Biziulevičienė, Genė; Venalis, Algirdas; Pivoriūnas, Augustas

    2015-10-01

    The primary goal of this study was to examine the effects of human dental pulp stem cell-derived exosomes on the carrageenan-induced acute inflammation in mice. Exosomes were purified by differential ultracentrifugation from the supernatants of stem cells derived from the dental pulp of human exfoliated deciduous teeth (SHEDs) cultivated in serum-free medium. At 1 h post-carrageenan injection, exosomes derived from supernatants of 2 × 10(6) SHEDs were administered by intraplantar injection to BALB/c mice; 30 mg/kg of prednisolone and phosphate-buffered saline (PBS) were used as positive and negative controls, respectively. Edema was measured at 6, 24, and 48 h after carrageenan injection. For the in vivo imaging experiments, AngioSPARK750, Cat B 750 FAST, and MMPSense 750 FAST were administered into the mouse tail vein 2 h post-carrageenan injection. Fluorescence images were acquired at 6, 24, and 48 h after edema induction by IVIS Spectrum in vivo imaging system. Exosomes significantly reduced the carrageenan-induced edema at all the time points studied (by 39.5, 41.6, and 25.6% at 6, 24, and 48 h after injection, respectively), to similar levels seen with the positive control (prednisolone). In vivo imaging experiments revealed that, both exosomes and prednisolone suppress activities of cathepsin B and matrix metalloproteinases (MMPs) at the site of carrageenan-induced acute inflammation, showing more prominent effects of prednisolone at the early stages, while exosomes exerted their suppressive effects gradually and at later time points. Our study demonstrates for the first time that exosomes derived from human dental pulp stem cells suppress carrageenan-induced acute inflammation in mice.

  20. Histopathologic study on irradiated human developing teeth

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yasunori (Iwate Medical Coll., Morioka (Japan). School of Dentistry)

    1982-12-01

    The patient was a 7-year-old boy who had been suffering from Ewing's sarcoma originating in the mandible. Irradiation with 8000 rad of Linac was performed on the mandible prior to mandibulectomy. The results of the histopathologic examination of the teeth including resected material were as follows: 1. Although the tumor tissue was not found in the resected material, complete resoption of the medullar trabecular bone with fibrosis was noted in the area between the first molar region and the mandibular ramus. 2. The first and the second premolar teeth were in the early stage of root formation, and conglomerates of dysplastic dentin were formed in the proliferative zones. This dysplastic dentin was surrounded by loose fibrous connective tissues. 3. The dysplastic dentin showed low mineralization, embedded irregular arranged-fibrous tissue matrix and scattered various-sized lacunae containing a few tiny and pyknotic cells. 4. Irregularly arranged odontoblasts with a pyknotic appearance were found along the tubular dentin, but diffuse fibrosis occurred in the pulpal tissues. 5. The first molar tooth had completed its root formation. Various amounts of osteodentin were formed at the secondary dentin layer. Inner-resorption of dentin and fibrosis of the pulpal tissue were also found. These changes concerning the first molar tooth were also due to the effects of irradiation. 6. The second molar tooth was resorbed by tumor infiltration, and dysplastic dentin was on the resorbed surface of the dentin.

  1. Human serum promotes osteogenic differentiation of human dental pulp stem cells in vitro and in vivo

    National Research Council Canada - National Science Library

    Pisciotta, Alessandra; Riccio, Massimo; Carnevale, Gianluca; Beretti, Francesca; Gibellini, Lara; Maraldi, Tullia; Cavallini, Gian Maria; Ferrari, Adriano; Bruzzesi, Giacomo; De Pol, Anto

    2012-01-01

    Human dental pulp is a promising alternative source of stem cells for cell-based tissue engineering in regenerative medicine, for the easily recruitment with low invasivity for the patient and for the...

  2. Low-level laser therapy as an alternative for pulpotomy in human primary teeth.

    Science.gov (United States)

    Marques, Nádia Carolina Teixeira; Neto, Natalino Lourenço; Rodini, Camila de Oliveira; Fernandes, Ana Paula; Sakai, Vivien Thiemy; Machado, Maria Aparecida Andrade Moreira; Oliveira, Thais Marchini

    2015-09-01

    This study aimed to evaluate the effects of low-level laser therapy (LLLT) on pulpal response of primary teeth. Twenty mandibular primary molars were randomly divided into the following groups: group I Buckley's formocresol (diluted at 1:5), group II calcium hydroxide, group III LLLT + zinc oxide/eugenol, and group IV LLLT + calcium hydroxide. LLLT parameters were set at 660-nm wavelength, 10-mW power output, and 2.5 J/cm(2) energy density for 10 s in continuous mode (InGaAlP laser, Twin Laser®, MMOptics, Sao Carlos, Sao Paulo, Brazil). The teeth were extracted at the regular exfoliation period. The dentin-pulp complex was graded by an established histopathological score system. Statistical analysis was performed by Kruskal-Wallis and chi-square test. The histopathological assessment revealed statistically significant differences among groups (P < 0.05). The lowest degree of pulpal inflammation was present in LLLT + calcium hydroxide (P = 0.0296). Calcium hydroxide showed the highest rate of hard tissue barrier (P = 0.0033), odontoblastic layer (P = 0.0033), and dense collagen fibers (P = 0.0095). On the other hand, formocresol showed the highest incidence of internal resorption (P = 0.0142). Based on this study, low-level laser therapy preceding the use of calcium hydroxide exhibited satisfactory results on pulp tissue healing. However, further clinical studies on human teeth with long-term follow-up are needed to test the low-level laser therapy efficacy.

  3. Human teeth with periapical pathosis after overinstrumentation and overfilling of the root canals: a scanning electron microscopic study.

    Science.gov (United States)

    Gutiérrez, J H; Brizuela, C; Villota, E

    1999-01-01

    The aim of this study was to determine whether overinstrumentation followed by immediate overfilling could be a potential risk in the treatment of infected root canals. Thirty-five human teeth with infected root canals were overinstrumented and overfilled approximately 45 min after their extraction. The experimental teeth were enlarged up to size 40 and the overinstrumentation and overfilling were checked with the aid of a magnifying glass. The specimens were fixed in glutaraldehyde plus sodium cacodylate solution and prepared for scanning electron microscope examination. Bacteria were detected on the flute of the files and mostly at the root apices around the main foramen, remaining firmly attached to resorptive lacunae despite the fact that the apices had undergone great changes, including fracture or zipping. A control group consisting of 10 human teeth root canals containing vital pulps were also overinstrumented and overfilled. No bacteria were detected on the flutes of the files, at the apices or on the extruded master cone overfilling these samples. The high percentage of bacteria adhering to the resorptive lacunae or in the flutes of files used in overinstrumented human teeth with infected root canals carry a potential risk for postoperative pain, clinical discomfort and flare-ups. The hazards observed in these circumstances do not support the one-visit treatment of teeth having acute or chronic periapical abscesses.

  4. On The Evolution of Human Jaws and Teeth: A Review

    Directory of Open Access Journals (Sweden)

    Serhat Yalcin

    2011-06-01

    Full Text Available The jaws and teeth of Homo sapiens have evolved, from the last common ancestor of chimpanzee and men to their current form. Many factors such as the foods eaten and the processing of foods by fire and tools have effected this evolution course. The evolution of the masticatory complex is related to other anatomical features such as brain size and bipedal posture, and leads to important proceedings like the formation of speech and language. In this review, the evolution of human jaws and teeth and its impact on the general course of human evolution is discussed.

  5. Comparison of post-obturation pain experience following one-visit and two-visit root canal treatment on teeth with vital pulps: a randomized controlled trial.

    Science.gov (United States)

    Wang, C; Xu, P; Ren, L; Dong, G; Ye, L

    2010-08-01

    To compare the incidence and intensity of post-obturation pain after one- or two-visit root canal treatment (RCT) on anterior teeth with vital pulps and a single root and canal in a randomized controlled trial. One hundred patients requiring RCT on permanent anterior teeth with vital pulps preoperatively were included. The patients were assigned randomly into two groups of 50 patients each. After local anaesthesia, isolation, access and pulp extirpation, the canals of all teeth were prepared using engine-driven rotary ProTaper nickel-titanium instruments in a crown-down technique and irrigated with 2.5% NaOCl. The teeth in group 1 (n = 50) were filled with AH Plus sealer and gutta-percha using a lateral compaction technique at the first visit, whilst those in group 2 (n = 50) were medicated with a calcium hydroxide paste, a sterile dry cotton pellet and Caviton and scheduled for a second visit 7 days later. A modified verbal descriptor scale was used to measure preoperative pain and post-obturation pain at 6, 24, 48 h and 1 week after operation. Chi-square tests and independent-sample T-tests were used to compare the incidence and intensity of post-obturation pain of two groups at each interval. Eleven patients were excluded from the study as they failed to follow the scheduled revisit or their selected teeth had more than one root canal. Data were obtained from the remaining 89 patients. Forty-three patients were undergoing one-visit treatment (group 1) and 46 undergoing two-visit treatment (group 2). Most patients in both groups reported no pain or only slight pain within each post-obturation interval, only one in group 1 and one in group 2 had flare-ups and slight swelling. There was no statistically significant difference in the incidence and intensity of post-obturation pain experienced by two groups. The incidence and intensity of post-obturation pain experience following one- or two-visit RCT on teeth with vital pulps and a single canal were not

  6. Recovery of DNA from human teeth by cryogenic grinding.

    Science.gov (United States)

    Sweet, D; Hildebrand, D

    1998-11-01

    DNA has been previously recovered from human teeth for RFLP and PCR-based forensic analysis. In some cases, the maximum amount of undisturbed tooth structure is required for ulterior forensic analysis. But, in most cases, following comprehensive documentation, it is possible to section the tooth longitudinally or horizontally, or crush it to access the DNA-rich core. This technical report describes an alternative method to recover DNA from whole extracted human molar teeth. A 6700 freezer mill was used to pulverize 20 teeth under frozen preparation in liquid nitrogen and sterile conditions. The mean yield of DNA was 30.9 micrograms (18.4 micrograms DNA per gm tooth powder). The resulting fine powder was subjected to organic extraction and subsequently quantified using slot blot hybridization. Aliquots were successfully amplified at three short tandem repeat polymorphic loci. The technique is simple and relatively rapid. Isolation of the samples during pulverization minimizes the risk of contamination.

  7. [Clinical applications of stem cells from human exfoliated deciduous teeth in stem cell therapy].

    Science.gov (United States)

    Xiaoxia, Li; Jiaozi, Fangteng; Shi, Yu; Yuming, Zhao; Lihong, Ge

    2017-10-01

    Stem cells from human exfoliated deciduous teeth (SHED) are one category of dental stem cells. They belong to ectodermal mesenchymal stem cells. As an ideal stem cell source, SHED possess great potential in stem cell therapy. This review demonstrates the biological characteristics and advantages of SHED in stem cell therapy and discusses its multiple functions in tissue regeneration and repair, including multiple differentiation potentiality, cell secretion of cytokines, and immunomodulatory ability. Furthermore, this article introduces the main findings regarding the potential clinical applications of SHED to a variety of diseases. This article demonstrates research progress in dentin-pulp regeneration, maxillofacial bone regeneration, and treatment of nervous system and immune system diseases with SHED for stem cell transplantation.

  8. Histological assessment of pulpal responses to resin modified glass ionomer cements in human teeth

    Directory of Open Access Journals (Sweden)

    Ali Eskandarizadeh

    2015-01-01

    Full Text Available Background: The biocompatibility of resin-modified glass ionomers (RMGIs as a lining material is still under question. The present study evaluated the response of the pulp-dentin complex following application of resin-modified glass-ionomer cement, calcium hydroxide and conventional glass-ionomer in deep cavities prepared in human teeth. Materials and Methods: In this controlled clinical trial, 30 deep class V buccal cavities (3 mm × 2 mm × 2 mm were prepared in human premolars treatment planned to be extracted for orthodontic reasons and divided into 3 groups. Groups were lined by a RMGI (Vivaglass, conventional glass Ionomer (Ionocid and calcium hydroxide respectively. The cavities were subsequently filled with amalgam. Each group was then divided into two sub-groups according to time intervals 5 and 30 days. The patients were referred to Kerman Dental School and in accordance with orthodontic treatment plan; premolars were extracted and then prepared for histological assessment. The sections were stained with hematoxylin and eosin and periodic acid Schiff techniques. All of the samples were examined using a number of criteria including odontoblastic changes, inflammatory cells response, reactionary dentin formation and presence of microorganisms. The data were analyzed by Kruskal-Wallis and Mann-Whitney tests. P 0.05. Conclusion: Ionocid and Vivaglass resin-modified glass ionomers can be used as lining materials in human teeth.

  9. N-Acetyl-l-cysteine enhances ex-vivo amplification of deciduous teeth dental pulp stem cells.

    Science.gov (United States)

    Debeljak Martacic, Jasmina; Borozan, Suncica; Radovanovic, Anita; Popadic, Dusan; Mojsilovic, Slavko; Vucic, Vesna; Todorovic, Vera; Kovacevic Filipovic, Milica

    2016-10-01

    Obtaining high number of stem cells is of interest for cell based therapies. N-Acetyl-l-cysteine (NAC) acts as a source of sulfhydryl groups and an anti-oxidative agent. The aim of this study was to test different NAC concentration on proliferation and differentiation of deciduous teeth dental pulp stem cells (DTSCs) in vitro as well as to define the possible underlining mechanism of its effect. Number of viable, apoptotic and senescent DTSCs was determined after addition of NAC (0.1mM, 1.0mM, 2.0mM). Also, cell cycle analysis, HIF1-α expression, LDH isoenzymes, superoxide-dismutase (SOD) and catalase (CAT) activity, sulfhydryl groups content, the level of lipids' and proteins' oxidative damage and differentiation capacity of NAC treated DTSCs was determined. DTSCs expressed HIF-1α in all conditions. The lowest NAC dose (0.1mM) increased the number of DTSCs by one fifth comparing to the control, most likely stimulating entry of cells into S phase of cell cycle and enhancing the activity of LDH5 isoenzyme. The highest NAC dose (2mM) inhibited DTSCs proliferation. Also, DTSCs had the lowest level of oxidative damage with 0.1mM NAC. All tested NAC concentrations enhanced DTSCs osteo-chondrogenesis. The lowest NAC dose exerted significant positive effect on DTSCs proliferation as well as antioxidative protection creating beneficial environment for stem cells in vitro cultivation especially when their clinical use is important for stimulation of osteo-chondrogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Pulp Revascularization of Immature Permanent Teeth: A Review of the Literature and a Proposal of a New Clinical Protocol

    OpenAIRE

    Mélanie Namour; Stephanie Theys

    2014-01-01

    Tissue engineering is a growing field. In the near future, it will probably be possible to generate a complete vital tooth from a single stem cell. Pulp revascularization is dependent on the ability of residual pulp and apical and periodontal stem cells to differentiate. These cells have the ability to generate a highly vascularized and a conjunctive rich living tissue. This one is able to colonize the available pulp space. Revascularization is a new treatment method for immature necrotic per...

  11. Interleukin 1-beta analysis in chronically inflamed and healthy human dental pulp

    Directory of Open Access Journals (Sweden)

    Šubarić Ljiljana

    2017-01-01

    Full Text Available Background/Aim. Proinflammatory cytokines can act like endogenous pyrogen interleukin 1 (IL-1, interleukin 6 (IL-6 and tumour necrosis factor alpha (TNF α which regulate the synthesis of secondary mediators and other proinflammatory cytokines through macrophages and mesenchymal cells. They stimulate acute-phase proteins and attract inflammatory cells. The aim of this study was to determine interleukin 1-β (IL-1 β concentrations in chronically inflamed and healthy dental pulps. Methods. A total of 41 pulps (19 from patients with pulpitis chronic causa and 22 from patients with pulpatis chronic aperta, divided into two groups, were obtained from teeth with chronic pulp inflammation. The control group consisted of 12 teeth with healthy pulp. After extirpation, pulp samples were immediately placed in sterile Eppendorf tubes and frozen. After that, homogenisation was performed by a Teflon® pestle in ice-cold phosphate buffer solution at pH 7.4 whose volume was adjusted according to the weight of tissue. The supernatant was then frozen at -70°C until the performance of appropriate biochemical analyses. Cytokine IL-1 β value was determined by a commercial enzyme- linked immunosorbent assay (ELISA test. We applied the high sensitivity system technique, which may register low levels of cytokines, ranging from 0.125 to 8.0 pg/mL for IL-1 β. Results. By comparing the mean value of IL-1β, in the pulps we can see a statistically significant difference (p < 0.01 among them. The highest value of IL-1 β was in the subjects with pulpitis chronica clausa and it was 6.21 ± 2.70 pg/mL. Conclusion. Proinflammatory cytokine IL-1 β is present in detectable quantities in the pulp tissue of all vital pulps. Its highest concentrations were found in the sample group with pulpitis chronica clausa.

  12. Absence of lymphatic vessels in human dental pulp: a morphological study.

    Science.gov (United States)

    Gerli, Renato; Secciani, Ilaria; Sozio, Francesca; Rossi, Antonella; Weber, Elisabetta; Lorenzini, Guido

    2010-04-01

    Few and controversial data are available in the literature regarding the presence of lymphatic vessels in the human dental pulp. The present study was designed to examine morphologically the existence of a lymph drainage system in human dental pulp. Human dental pulp and skin sections were immunohistochemically stained with specific antibodies for lymphatic endothelium (D2-40, LYVE-1, VEGFR-3 [vascular endothelial growth factor receptor-3], and Prox-1), with the pan-endothelial markers CD31 and von Willebrand factor (vWF), and with the blood-specific marker CD34. Several blood vessels were identified in human pulps and skin. Lymphatic vessels were found in all human skin samples but in none of the pulps examined. Western blotting performed on human dermis and on pulps treated with collagenase (to remove odontoblasts) confirmed these results. Transmission electron microscopy indicated that vessels which, by light microscopy, appeared to be initial lymphatic vessels had no anchoring filaments or discontinuous basement membrane, both of which are typical ultrastructural characteristics of lymphatic vessels. These results suggest that under normal conditions human dental pulp does not contain true lymphatic vessels. The various theories about dental pulp interstitial fluid circulation should be revised accordingly.

  13. Immunolocalization of RANK and RANKL along the root surface and in the periodontal membrane of human primary and permanent teeth

    DEFF Research Database (Denmark)

    Bille, Marie-Louise Bastholm; Thomsen, Bjarke; Andersen, Thomas Levin

    2012-01-01

    in odontoblasts and in cells along denticles in one primary tooth. RANK was located in mononuclear cells in the pulp and in multinucleated odontoclasts along resorbed root surfaces and along resorbed dentin surfaces in the pulp in primary teeth and one permanent tooth. Conclusions. This study demonstrated RANK...

  14. Success of Maxillary Alveolar Defect Repair in Rats Using Osteoblast-Differentiated Human Deciduous Dental Pulp Stem Cells.

    Science.gov (United States)

    Jahanbin, Arezoo; Rashed, Roozbeh; Alamdari, Daryoush Hamidi; Koohestanian, Niloufar; Ezzati, Atefeh; Kazemian, Mojgan; Saghafi, Shadi; Raisolsadat, Mohammad Ali

    2016-04-01

    The use of cell-based therapies represents one of the most advanced methods for enhancing the regenerative response in craniofacial abnormalities. The main aim of this study was to evaluate the regenerative potential of human dental pulp stem cells, isolated from deciduous teeth, for reconstructing maxillary alveolar defects in Wistar rats. Human deciduous dental pulp stem cells were isolated and stimulated to differentiate into osteoblasts in culture media. Maxillary alveolar defects were created in 60 Wistar rats by a surgical procedure. Then, on the basis of the type of graft used to repair the bone defect, the rats were divided into 6 equal groups: groups 1 and 2, transplantation of iliac bone graft; groups 3 and 4, transplantation of stem cells derived from deciduous dental pulp in addition to collagen matrix; groups 5 and 6, transplantation of just collagen matrix. Then, fetal bone formation, granulation tissue, fibrous tissue, and inflammatory tissue were evaluated by hematoxylin-eosin staining at 1 month (groups 1, 3, and 5) and 2 months (groups 2, 4, and 6) after surgery, and data were analyzed and compared using the Fisher exact test. Maximum fetal bone formation occurred in group 2, in which iliac bone graft was inserted into the defect area for 2 months; there also were significant differences among the groups for bone formation (P = .009). In the 1-month groups, there were no significant differences between the control and stem cell-plus-scaffold groups. There were significant differences between the 2-month groups for fetal bone formation only between the control and scaffold groups (P = .026). The study showed that human dental pulp stem cells are an additional cell resource for repairing maxillary alveolar defects in rats and constitute a promising model for reconstruction of human maxillary alveolar defects in patients with cleft lip and palate. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc

  15. Microstructure of mineralized tissues in human primary teeth.

    Science.gov (United States)

    Ruschel, H C; Ligocki, G D; Flaminghi, D L; Fossati, A C M

    2011-01-01

    The aim of this study was to analyze the structural characteristics of the mineralized dental tissues--enamel, dentin and cementum--in primary teeth and to correlate the histological aspects observed in function of the dental type--single-rooted or multi-rooted. Eighteen human primary noncarious teeth were sectioned in facial-lingual (single-rooted) and mesio-distal direction (multi-rooted). One to three samples from each tooth were obtained. The samples were prepared by the ground technique and analyzed under light microscopy at different magnifications. A quantitative and descriptive analysis of the morphology of the mineralized tissues was performed. Spindles, tufts and lamellae were consistently observed mainly in the occlusal surface of the primary molars. The scalloped pattern of the dentinoenamel junction was not always present. The same was seen for zones of interglobular dentin. Dead tracts in dentin and tertiary dentin were observed mainly in single-rooted teeth below areas of dental attrition. Areas of cellular and acellular cementum were observed in the two dental types. Primary teeth have some structural peculiarities and these should be investigated concerning the clinical repercussion.

  16. Comparison of the Amount of Temperature Rise in the Pulp Chamber of Teeth Treated With QTH, Second and Third Generation LED Light Curing Units: An In Vitro Study.

    Science.gov (United States)

    Mahant, Rajesh Harivadanbhai; Chokshi, Shraddha; Vaidya, Rupal; Patel, Pruthvi; Vora, Asima; Mahant, Priyanka

    2016-01-01

    Introduction: This in vitro study was designed to measure and compare the amount of temperature rise in the pulp chamber of the teeth exposed to different light curing units (LCU), which are being used for curing composite restorations. Methods: The study was performed in two settings; first, an in vitro and second was mimicking an in vivo situation. In the first setup of the study, three groups were formed according to the respective three light curing sources. i.e. quartz-tungsten-halogen (QTH) unit and two light-emitting diode (LED) units (second and third generations). In the in vitro setting, direct thermal emission from three light sources at 3 mm and 6 mm distances, was measured with a k-type thermocouple, and connected to a digital thermometer. For a simulation of an in vivo situation, 30 premolar teeth were used. Class I Occlusal cavity of all the teeth were prepared and they were restored with incremental curing of composite, after bonding agent application. While curing the bonding agent and composite in layers, the intrapulpal temperature rise was simultaneously measured with a k-type thermocouple. Results: The first setting of the study showed that the heat produced by irradiation with LCU was significantly less at 6 mm distance when compared to 3 mm distance. The second setting of the study showed that the rise of intrapulpal temperature was significantly less with third generation LED light cure units than with second generation LED and QTH light cure units. Conclusion: As the distance from the light source increases, less irradiation heat is produced. Third generation LED lights cause the least temperature change in the pulp chamber of single rooted teeth.

  17. SUCCESS RATE OF ONE SESSION AND TWO SESSION TECHNIQUES FOR TREATMENT OF ASYMPTOMATIC PULPITIS OF PRIMARY TEETH WITH INDIRECT PULP CAPPING.

    Directory of Open Access Journals (Sweden)

    Rossitza Kabaktchieva

    2013-01-01

    Full Text Available Objective: Objective: To compare the success rate between the one session and two session indirect pulp capping of asymptomatic pulpitis for 1 year after the treatment was performed in children with different caries risk. Material and Methods: The children and the teeth were selected according to certain criteria for inclusion in the study. According to that, 72 children with low, moderate and high caries risk were included and 131 teeth with asymptomatic pulpitis were treated. The clinical protocols for indirect pulp capping (IPC in one session and two sessions were defined. The review appointments were performed 6 and 12 months after the treatment using certain clinical and radiographic criteria which defined success or post-treatment complications. The results are statistically analysed using One Sided Exact Two-Proportion Test with 95% Significance level (5% risk of type I error. Results: The statistical test showed that between the compared success rates of the one session and two sessions IPC, on the 6th and 12th month, there wasn’t a significant difference (p>0.05. This was valid for every one of the examined groups of patients (p>0. 05. This proves that there is no difference in the success rates of treatment of pulpitis in primary teeth using one or two sessions. Conclusions: The results about the success of treatment of asymptomatic pulpitis in primary teeth during one or two sessions have confirmed the results showed in other current studies. Our study has confirmed (clinically and radiographically the success of both techniques and we have concluded that in children with high caries risk, more appropriate technique is the one performed in two sessions. Treatment in one session is recommended in children with low or moderate caries risk.

  18. TLR4 activation by lipopolysaccharide and Streptococcus mutans induces differential regulation of proliferation and migration in human dental pulp stem cells.

    Science.gov (United States)

    Liu, Ying; Gao, Yan; Zhan, Xueling; Cui, Li; Xu, Shuaimei; Ma, Dandan; Yue, Jing; Wu, Buling; Gao, Jie

    2014-09-01

    Dental pulp stem cells (DPSCs) are suspected to be an important part of the innate immune response of dental pulp, which is triggered by microorganisms that progressively invade the human tooth during the formation of caries. This study was performed to elucidate the expression of toll-like receptor 4 (TLR4) in dental pulp of deep caries and to determine whether TLR4 modulates the proliferation and migration of DPSCs. Pulp tissue samples were collected from freshly extracted human wisdom tooth. Immunohistochemistry and immunofluorescence were performed to determine the distribution of TLR4 in healthy dental pulp and dental pulp in deep caries. DPSCs were cultured and purified by collecting multiple colonies. The proliferation and migration of DPSCs were examined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide, scratch test, and transwell migration assay after stimulation with lipopolysaccharide and extracts from Streptococcus mutans. TLR4 messenger RNA (mRNA) and cytokine mRNA were evaluated with real-time polymerase chain reaction; TLR4 protein was examined with Western blot and immunocytochemistry. TLR4 is expressed in the odontoblast layer and areas that colocalize with blood vessels to different levels in healthy teeth and teeth affected by caries. TLR4 mRNA, TLR4 protein, and mRNA of cytokine levels can be elevated with stimulations of LPS and extracts from S. mutans. Lipopolysaccharide and extracts from S. mutans treatment inhibited the proliferation of DPSCs but promoted migration; however, these changes were abolished when TLR4 was blocked by anti-TLR4 antibody. These results suggest that TLR4 will be activated and regulate the proliferation and migration of DPSCs in deep caries. TLR4 may play an important role in the immune response by DPSCs. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Cyclic GMP phosphodiesterase activity role in normal and inflamed human dental pulp.

    Science.gov (United States)

    Spoto, G; Ferrante, M; D'Intino, M; Rega, L; Dolci, M; Trentini, P; Ciavarelli, L

    2004-01-01

    Cyclic GMP phosphodiesterase (cGMP PDE) plays an important role in pulp tissues. High levels of cGMP PDE are found in dental pulp cells. In the present study cGMP PDE activity was analyzed in normal healthy human dental pulps, in reversible pulpitis and in irreversible pulpitis. Enzymatic cGMP PDE control values for normal healthy pulps were 4.74+/-0.32 nmol/mg of proteins. In reversible pulpitis the cGMP PDE activity increased almost 3 times. In irreversible pulpitis specimens the values increased 4.5 times compared with the normal healthy pulps activity. The differences between the groups (control vs. reversible pulpitis and vs. irreversible pulpitis) were statistically significant. These results point to a role of cGMP PDE in the initial pulp response after injury.

  20. Cyclic Amp phosphodiesterase activity in normal and inflamed human dental pulp.

    Science.gov (United States)

    Spoto, G; Menna, V; Serra, E; Santoleri, F; Perfetti, G; Ciavarelli, L; Trentini, P

    2004-01-01

    Cyclic AMP phosphodiesterase (cAMP PDE) seems to be important in pulp tissues. High levels of cAMP PDE have been demonstrated to be in dental pulp cells. In the present study cAMP PDE activity was analyzed in normal healthy human dental pulps, in reversible pulpitis and in irreversible pulpitis. Enzymatic cAMP PDE control values for normal healthy pulps were 12.14 +/- 3.74 nmols/mg of proteins. In reversible pulpitis the cAMP PDE activity increased almost 2.5 times. In irreversible pulpitis specimens the values increased 4.5 times compared with normal healthy pulps activity. The differences between the groups (control vs. reversible pulpitis and vs. irreversible pulpitis) were statistically significant. These results could point to a role of cAMP PDE in the initial pulp response after injury.

  1. In vivo temperature rise in anesthetized human pulp during exposure to a polywave LED light curing unit.

    Science.gov (United States)

    Runnacles, Patrício; Arrais, Cesar Augusto Galvão; Pochapski, Marcia Thais; Dos Santos, Fábio André; Coelho, Ulisses; Gomes, João Carlos; De Goes, Mário Fernando; Gomes, Osnara Maria Mongruel; Rueggeberg, Frederick Allen

    2015-05-01

    This in vivo study evaluated pulp temperature (PT) rise in human premolars during exposure to a light curing unit (LCU) using selected exposure modes (EMs). After local Ethics Committee approval, intact first upper premolars, requiring extraction for orthodontic reasons, from 8 volunteers, received infiltrative and intraligamental anesthesia. The teeth (n=15) were isolated using rubber dam and a minute pulp exposure was attained. A sterile probe from a wireless, NIST-traceable, temperature acquisition system was inserted directly into the coronal pulp chamber, and real time PT (°C) was continuously monitored while the buccal surface was exposed to polywave light from a LED LCU (Bluephase 20i, Ivoclar Vivadent) using selected EMs allowing a 7-min span between each exposure: 10-s either in low (10-s/L) or high (10-s/H); 5-s-turbo (5-s/T); and 60-s-high (60-s/H) intensities. Peak PT values and PT increases from baseline (ΔT) after exposure were subjected to one-way, repeated measures ANOVAs, and Bonferroni's post hoc tests (α=0.05). Linear regression analysis was performed to establish the relationship between applied radiant exposure and ΔT. All EMs produced higher peak PT than the baseline temperature (p<0.001). The 60-s/H mode generated the highest peak PT and ΔT (p<0.001), with some teeth exhibiting ΔT higher than 5.5°C. A significant, positive relationship between applied radiant exposure and ΔT (r(2)=0.916; p<0.001) was noted. Exposing intact, in vivo anesthetized human upper premolars to a polywave LED LCU increases PT, and depending on EM and the tooth, PT increase can be higher than the critical ΔT, thought to be associated with pulpal necrosis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Ability of healthy and inflamed human dental pulp to reduce hydrogen peroxide.

    Science.gov (United States)

    Esposito, Paola; Varvara, Giuseppe; Murmura, Giovanna; Terlizzi, Antonio; Caputi, Sergio

    2003-10-01

    This study examined the defensive ability of human dental pulp against H2O2 in healthy and reversible and irreversible pulpitis tissues through determination of catalase activity by spectrophotometric methods. Thirty-five systemically healthy patients were donors of the pulp tissue, and pulp conditions were assessed using clinical and X-ray evaluations. Catalase activity was 1.61 +/- 0.23 U mg(-1) protein in the healthy tissues, 2.99 +/- 0.45 U mg(-1) protein in the reversible pulpitis tissues, and 2.44 +/- 467 mU mg(-1) protein in the irreversible pulpitis tissues. All differences between the groups were statistically significant. These results point to a role for catalase during dental pulp inflammation in humans, and therefore demonstrate an inherent biological defense system against reactive oxidants in human dental pulp.

  3. Delayed Treatment of Traumatized Primary Teeth with Distinct Pulp Response: Follow-Up until Permanent Successors Eruption

    Directory of Open Access Journals (Sweden)

    Gabriela Cristina de Oliveira

    2017-01-01

    Full Text Available Complicated crown fracture and crown-root fracture with pulp involvement expose dental pulp to the oral environment. The pulp outcome is often unpredictable because the patient and injury which are related to variables can influence the treatment of choice and the prognosis of the case. This report presents the case of a 4-year-old boy with complicated crown fracture with pulp polyp in the primary right maxillary central incisor (51 and crown-root fracture with pulp involvement in the primary left maxillary central incisor (61, which was treated only 3 months after the tooth injuries. The treatment of choice was extraction of tooth (61 due to a periapical lesion with disruption of the dental follicle of the permanent successor and pulpotomy (MTA of the tooth (51, because the pulp presented signs of vitality. At the follow-up visits, no clinical, symptomalogical, and radiographic changes were observed until the primary tooth’s exfoliation. However, at 3-year follow-up, the permanent successors showed hypocalcification and the position of the permanent right maxillary central incisors (11 was altered. Besides the conservative and adequate delayed treatment, the sequelae on the permanent successors could not be avoided.

  4. Effect of maintaining apical patency on endodontic pain in posterior teeth with pulp necrosis and apical periodontitis: a randomized controlled trial.

    Science.gov (United States)

    Arora, M; Sangwan, P; Tewari, S; Duhan, J

    2016-04-01

    To evaluate the association between apical patency and post-operative pain in posterior teeth with pulp necrosis and apical periodontitis. Sixty-eight patients requiring primary root canal treatment in mandibular first molars with necrotic pulps and apical periodontitis were included. The patients were randomly allocated to one of two groups: patency (n = 34) and nonpatency (n = 34). After administering local anaesthesia, root canal preparation was completed using ProTaper rotary instruments. A size 10 K-file was used as a patency file and carried 1 mm beyond the working length (WL) between each instrument change in the patency group, while it was carried up to WL in the nonpatency group. Patients were asked to record their pain experience on a pain chart daily for 7 days. Three patients (two in the patency group, one in the nonpatency group) did not return with completed pain charts on the subsequent visit, resulting in a total of 65 patients for the final analysis (patency, n = 32; nonpatency, n = 33). Data was analysed using Chi Square test, t-test, Mann-Whitney test and Wilcoxon Signed Ranks test. Overall, 43% of the patients experienced post-operative pain. The patency group had less incidence of pain (34%) as compared to the nonpatency group (52%), but the difference was not significant (P = 0.163). Maintenance of apical patency during chemomechanical preparation had no significant influence on post-operative pain in posterior teeth with necrotic pulps and apical periodontitis. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Effects of TGF-beta 1 on interleukin profile of human dental pulp and odontoblasts.

    Science.gov (United States)

    Pääkkönen, Virve; Vuoristo, Jussi; Salo, Tuula; Tjäderhane, Leo

    2007-10-01

    Transforming growth factor-beta 1 (TGF-beta1) is the most extensively studied growth factor in dentin-pulp complex, with pleiotropic effects on pulp response and healing. Our main objective was to analyze the expression profile of pulp tissue and odontoblasts, and the effects of TGF-beta1 on these profiles in cultured human pulp and odontoblasts with a specific interest in the anti- and pro-inflammatory cytokines. For that purpose, pulps and odontoblasts were cultured for different time periods, and microarray was performed to both cultured and native samples. Of cytokines, various interleukins (IL) were confirmed by RT-PCR, and in +/- TGF-beta1 treated pulps also by antibody array. Pro-inflammatory IL-7, -12alpha and -16 mRNAs were detected in native pulp. The expression levels of pro-inflammatory IL-1alpha, -1beta, -6 and -8 were clearly induced after TGF-beta1 treatment, while no anti-inflammatory cytokines were induced. Of all pulpal interleukins analyzed IL-6 and -8 were present at the highest levels in conditioned pulp tissue media. In native odontoblasts pro-inflammatory IL-6 and -7 mRNAs were detected, and in cultured odontoblasts pro-inflammatory IL-8 mRNA showed over 20-fold transient induction after TGF-beta1 treatment. Our results demonstrate that TGF-beta1 is a potent regulator of pro-inflammatory responses and defensive reactions in dentin-pulp complex.

  6. Outcomes of Direct Pulp Capping by Using Either ProRoot Mineral Trioxide Aggregate or Biodentine in Permanent Teeth with Carious Pulp Exposure in 6- to 18-Year-Old Patients: A Randomized Controlled Trial.

    Science.gov (United States)

    Parinyaprom, Nuttaporn; Nirunsittirat, Areerat; Chuveera, Patchanee; Na Lampang, Sakarat; Srisuwan, Tanida; Sastraruji, Thanapat; Bua-On, Puangporn; Simprasert, Sophon; Khoipanich, Issaraporn; Sutharaphan, Thitida; Theppimarn, Suthida; Ue-Srichai, Narumol; Tangtrakooljaroen, Waritorn; Chompu-Inwai, Papimon

    2018-03-01

    This study aimed to compare the success rates of direct pulp capping (DPC) by using either ProRoot Mineral Trioxide Aggregate (MTA) or Biodentine in the cariously exposed permanent teeth of 6- to 18-year-old patients. Gray discoloration was also evaluated. Fifty-nine cariously exposed permanent teeth, including teeth with diagnosis of normal pulp, reversible pulpitis, or irreversible pulpitis, early periapical involvement, and exposure size of up to 2.5 mm, were included. Each patient with only 1 cariously exposed tooth was randomly allocated to DPC with either ProRoot MTA (n = 30) or Biodentine (n = 29). Patients were recalled every 6 months. Clinical and radiographic examinations were used to determine success. Fifty-five patients (mean age, 10 ± 2 years), 27 treated with ProRoot MTA and 28 with Biodentine, were included in the analysis. At mean follow-up of 18.9 ± 12.9 months, the success rate was 92.6% with ProRoot MTA and 96.4% with Biodentine (P > .05; difference, 4%; 95% confidence interval [CI], -8% to 16%). Biodentine was non-inferior to ProRoot MTA. Failures were distributed equally in all categories of pulpal diagnosis and occurred in teeth with no periapical involvement and small exposures (0.5 mm). The survival probabilities of DPC with ProRoot MTA and Biodentine were 0.92 (95% CI, 0.73-0.98) and 0.96 (95% CI, 0.80-0.99). No significant difference was observed between them (P > .05). Gray discoloration was observed only with ProRoot MTA (55%). Biodentine was non-inferior to ProRoot MTA when used as a DPC material for cariously exposed permanent teeth of 6- to 18-year-old patients. However, Biodentine did not cause any gray discoloration in this study. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. [Expression of human β-defensin and its relationship with inflammatory factor in human dental pulp tissue].

    Science.gov (United States)

    Yue, Zhai; Huang, Jian-Ying; Hyun, Park; Ji, Fang; Fei, Zhao-Liang; Tao, Jiang

    2017-08-01

    To investigate the expression of human β-defensin(HBD) in human dental pulp tissue and to explore the regulation of HBD in pulp inflammation and the relationship among HBD family members. The gene expression of HBD in human dental pulp tissue was assessed in NCBI GEO profiles and was verified by RT-PCR. Human dental pulp cells were stimulated with TNF-α, IL-1α, IL-1β and IL-6 in different combinations and the expression of HBD2 was analyzed by qPCR. Human dental pulp cells were pretreated with HBD110 and then stimulated with LPS and the expression of TNF-α,IL-1α and HBD2 were analyzed by qPCR. GraphPad Prism 5.01 was used to analyze the results of the experimental and the control groups. 27 HBDs were found to express in human dental pulp tissue in NCBI GEO Profiles. The joint overexpression of TNF-α, IL-1α, IL-1β and IL-6 increased the expression of HBD2; HBD110 increased the expression of HBD2 by increasing the expression of TNF-α and IL-1α. Many other HBDs have positive expression in human dental pulp issue besides of HBD1, HBD2, HBD3, HBD4 and the inflammation factors and other HBDs can regulate the expression of HBD2 in dental pulp.

  8. Gambaran densitas kamar pulpa gigi sulung menggunakan cone beam CT-3D (Description of pulp chamber density in deciduous teeth using cone beam CT-3D

    Directory of Open Access Journals (Sweden)

    Herdiyati Y

    2013-06-01

    Full Text Available Background: Dental caries is the most common chronic diseases. Detection of caries is needed, especially on the deciduous teeth. An examination such as radiological examination is essential. The radiographic figures distinguish radiolucent of the crown. Digital radiography cone beam computed tomography (CBCT is able to show a more detailed picture. Purpose: This study was aimed to get value of the density of pulp chamber of caries and non caries deciduous teeth using CBCT radiographs. Methods: The study was conducted by using simple descriptive. The samples were all the data CBCT of pediatric patients aged 7-10 years who visited the Dental Hospital of the Faculty of Dentistry, University of Padjadjaran. The samples were teeth with single and double root. Results: The results showed that the value of the normal pulp density is 422.56 Hu, while the condition of caries decreased becomes -77.89 Hu. Conclusion: The tooth with caries showed a lower density than the non caries/tooth.Latar belakang: Karies gigi merupakan penyakit kronis yang sering terjadi. Deteksi terhadap karies sangat diperlukan terutama pada gigi decidius. Pemeriksaan penunjang berupa pemeriksaan radiologis sangat diperlukan. Secara umum gambaran radiografi dapat membedakan karies berupa gambaran radiolusent pada mahkota. Radiografi digital cone beam computed tomografi (CBCT, merupakan jenis radiografi yang mampu memperlihatkan gambaran yang lebih detail. Tujuan: Penelitian ini bertujuan mendapatkan nilai densitas kamar pulpa gigi sulung yang karies dan non karies menggunakan radiografi CBCT. Metode: Penelitian dilakukan dengan metode simple deskriptif. Sampel penelitian adalah semua data CBCT dari pasien anak berusia 7 - 10 tahun yang berkunjung ke RSGM Fakultas Kedokteran Gigi Universitas Padjadjaran. Gigi yang dianalisa meliputi gigi berakar tunggal dan berakar ganda. Hasil: Hasil penelitian menunjukkan bahwa nilai densitas pulpa normal adalah 422,56 Hu, sedangkan pada kondisi

  9. Influence of different types of pulp treatment during isolation in the obtention of human dental pulp stem cells

    OpenAIRE

    Viña Almunia, José; Borrás Blasco, Consuelo; Gambini Ricapa, Juan; El Alami, Marya; Peñarrocha Diago, Miguel; Viña Ribes, José

    2016-01-01

    Background Different methods have been used in order to isolate dental pulp stem cells. The aim of this study was to study the effect of different types of pulp treatment during isolation, under 3% O2 conditions, in the time needed and the efficacy for obtaining dental pulp stem cells. Material and Methods One hundred and twenty dental pulps were used to isolate dental pulp stem cells treating the pulp tissue during isolation using 9 different methods, using digestive, disgregation, or mechan...

  10. Human Dental Pulp Stem Cells Improve Left Ventricular Function, Induce Angiogenesis, and Reduce Infarct Size in Rats with Acute Myocardial Infarction

    National Research Council Canada - National Science Library

    Gandia, Carolina; Armiñan, Ana; García‐Verdugo, Jose Manuel; Lledó, Elisa; Ruiz, Amparo; Miñana, M Dolores; Sanchez‐Torrijos, Jorge; Payá, Rafael; Mirabet, Vicente; Carbonell‐Uberos, Francisco; Llop, Mauro; Montero, Jose Anastasio; Sepúlveda, Pilar

    2008-01-01

    Human dental pulp contains precursor cells termed dental pulp stem cells (DPSC) that show self‐renewal and multilineage differentiation and also secrete multiple proangiogenic and antiapoptotic factors...

  11. Dental Pulp Cells Isolated from Teeth with Superficial Caries Retain an Inflammatory Phenotype and Display an Enhanced Matrix Mineralization Potential

    Directory of Open Access Journals (Sweden)

    Reem El-Gendy

    2017-04-01

    Full Text Available We have isolated dental pulp cells (DPCs from three healthy (hDPCs and three carious (cDPCs donors and shown that compared to hDPCs cells isolated from superficial carious lesions show higher clonogenic potential; show an equivalent proportion of cells with putative stem cell surface markers; show enhanced matrix mineralization capability; have enhanced angiogenic marker expression and retain the inflammatory phenotype in vitro characteristic of superficial caries lesions in vivo. Our findings suggest that cDPCs may be used for further investigation of the cross talk between inflammatory, angiogenic and mineralization pathways in repair of carious pulp. In addition cells derived from carious pulps (almost always discarded may have potential for future applications in mineralized tissue repair and regeneration.

  12. Postoperative pain after one-visit root-canal treatment on teeth with vital pulps: Comparison of three different obturation technique

    Science.gov (United States)

    Alonso-Ezpeleta, Luis O.; Gasco-Garcia, Carmen; Castellanos-Cosano, Lizett; Martín-González, Jenifer; López-Frías, Francsico J.

    2012-01-01

    Objectives. To investigate and compare postoperative pain after one-visit root canal treatment (RCT) on teeth with vital pulps using three different obturation techniques. Study Design. Two hundred and four patients (105 men and 99 women) aged 12 to 77 years were randomly assigned into three treatments groups: cold lateral compaction of gutta-percha (LC), Thermafil technique (TT), and Backfill - Thermafil obturation technique (BT). Postoperative pain was recorded on a visual analogue scale (VAS) of 0 - 10 after 2 and 6 hours, and 1, 2, 3, 4, 5, 6 and 7 days. Data were statistically analyzed using multivariate logistic regression analysis. Results. In the total sample, 87% of patients experienced discomfort or pain in some moment between RCT and the seventh day. The discomfort experienced was weak, light, moderate and intense in 6%, 44%, 20% and 6% of the cases, respectively. Mean pain levels were 0.4 ± 0.4, 0.4 ± 0.3, and 1.4 ± 0.7 in LC, BT, and TT groups, respectively. Patients of TT group experienced a significantly higher mean pain level compared to other two groups (p RCT. Conclusions. Postoperative pain was significantly associated with the obturation technique used during root canal treatment. Patients whose teeth were filled with Thermafil obturators (TT technique) showed significantly higher levels of discomfort than patients whose teeth were filled using any of the other two techniques. Key words:Postoperative pain, root-canal obturation, root-canal treatment, Thermafil. PMID:22322522

  13. Postoperative pain after one-visit root-canal treatment on teeth with vital pulps: comparison of three different obturation techniques.

    Science.gov (United States)

    Alonso-Ezpeleta, Luis-O; Gasco-Garcia, Carmen; Castellanos-Cosano, Lizett; Martín-González, Jenifer; López-Frías, Francsico-J; Segura-Egea, Juan-J

    2012-07-01

    To investigate and compare postoperative pain after one-visit root canal treatment (RCT) on teeth with vital pulps using three different obturation techniques. Two hundred and four patients (105 men and 99 women) aged 12 to 77 years were randomly assigned into three treatments groups: cold lateral compaction of gutta-percha (LC), Thermafil technique (TT), and Backfill - Thermafil obturation technique (BT). Postoperative pain was recorded on a visual analogue scale (VAS) of 0 - 10 after 2 and 6 hours, and 1, 2, 3, 4, 5, 6 and 7 days. Data were statistically analyzed using multivariate logistic regression analysis. In the total sample, 87% of patients experienced discomfort or pain in some moment between RCT and the seventh day. The discomfort experienced was weak, light, moderate and intense in 6%, 44%, 20% and 6% of the cases, respectively. Mean pain levels were 0.4 ± 0.4, 0.4 ± 0.3, and 1.4 ± 0.7 in LC, BT, and TT groups, respectively. Patients of TT group experienced a significantly higher mean pain level compared to other two groups (p RCT. Postoperative pain was significantly associated with the obturation technique used during root canal treatment. Patients whose teeth were filled with Thermafil obturators (TT technique) showed significantly higher levels of discomfort than patients whose teeth were filled using any of the other two techniques.

  14. Clinical and radiographic outcomes of direct pulp capping therapy in primary molar teeth following haemostasis with various antiseptics: a randomised controlled trial.

    Science.gov (United States)

    Tüzüner, T; Alacam, A; Altunbas, D A; Gokdogan, F G; Gundogdu, E

    2012-12-01

    This was to evaluate the clinical and radiographic outcomes of direct pulp capping (DPC) therapy in primary molar teeth following haemostasis with various antiseptics for 12 months. A total of 70 vital primary molar teeth with deep dentin caries were randomly allocated to different antiseptic groups. After observing the pinpoint exposure, 0.9% saline solution (SS, control), 0.5% sodium hypochlorite (SH), 2% chlorhexidine digluconate (CHX), or 0.1% octenidine dihydrochloride (OCT) was applied with sterile cotton pellets for 3 min before calcium hydroxide (CH) DPC therapy. Statistical evaluation: The intergroup radiographic success criteria were analysed using a Kruskal-Wallis test in each follow-up period at a confidence interval of 95%. After 12 months, all groups showed a clinical success rate of 100% (no clinical failures were observed at the time of pulpectomy or extraction), and the overall radiographic success rates were OCT (100%) > SH (94.74%) > CHX (93.3%) > SS (84.21%), respectively (p > 0.05). OCT did not exhibit any failures. The undesirable radiographic failure types (pulpectomy or extraction) were mostly observed in the SS group. Compared with SS, the success of conventional CH usage in DPC therapy of primary molar teeth could be enhanced by providing acceptable disinfection features with antiseptic solutions. OCT seems to have relative beneficial effects compared to SH and CHX.

  15. Stem Cells from Cryopreserved Human Dental Pulp Tissues Sequentially Differentiate into Definitive Endoderm and Hepatocyte-Like Cells in vitro

    Science.gov (United States)

    Han, Young-Jin; Kang, Young-Hoon; Shivakumar, Sarath Belame; Bharti, Dinesh; Son, Young-Bum; Choi, Yong-Ho; Park, Won-Uk; Byun, June-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-01-01

    We previously described a novel tissue cryopreservation protocol to enable the safe preservation of various autologous stem cell sources. The present study characterized the stem cells derived from long-term cryopreserved dental pulp tissues (hDPSCs-cryo) and analyzed their differentiation into definitive endoderm (DE) and hepatocyte-like cells (HLCs) in vitro. Human dental pulp tissues from extracted wisdom teeth were cryopreserved as per a slow freezing tissue cryopreservation protocol for at least a year. Characteristics of hDPSCs-cryo were compared to those of stem cells from fresh dental pulps (hDPSCs-fresh). hDPSCs-cryo were differentiated into DE cells in vitro with Activin A as per the Wnt3a protocol for 6 days. These cells were further differentiated into HLCs in the presence of growth factors until day 30. hDPSCs-fresh and hDPSCs-cryo displayed similar cell growth morphology, cell proliferation rates, and mesenchymal stem cell character. During differentiation into DE and HLCs in vitro, the cells flattened and became polygonal in shape, and finally adopted a hepatocyte-like shape. The differentiated DE cells at day 6 and HLCs at day 30 displayed significantly increased DE- and hepatocyte-specific markers at the mRNA and protein level, respectively. In addition, the differentiated HLCs showed detoxification and glycogen storage capacities, indicating they could share multiple functions with real hepatocytes. These data conclusively show that hPDSCs-cryo derived from long-term cryopreserved dental pulp tissues can be successfully differentiated into DE and functional hepatocytes in vitro. Thus, preservation of dental tissues could provide a valuable source of autologous stem cells for tissue engineering. PMID:29200956

  16. Stem Cells from Cryopreserved Human Dental Pulp Tissues Sequentially Differentiate into Definitive Endoderm and Hepatocyte-Like Cells in vitro.

    Science.gov (United States)

    Han, Young-Jin; Kang, Young-Hoon; Shivakumar, Sarath Belame; Bharti, Dinesh; Son, Young-Bum; Choi, Yong-Ho; Park, Won-Uk; Byun, June-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-01-01

    We previously described a novel tissue cryopreservation protocol to enable the safe preservation of various autologous stem cell sources. The present study characterized the stem cells derived from long-term cryopreserved dental pulp tissues (hDPSCs-cryo) and analyzed their differentiation into definitive endoderm (DE) and hepatocyte-like cells (HLCs) in vitro. Human dental pulp tissues from extracted wisdom teeth were cryopreserved as per a slow freezing tissue cryopreservation protocol for at least a year. Characteristics of hDPSCs-cryo were compared to those of stem cells from fresh dental pulps (hDPSCs-fresh). hDPSCs-cryo were differentiated into DE cells in vitro with Activin A as per the Wnt3a protocol for 6 days. These cells were further differentiated into HLCs in the presence of growth factors until day 30. hDPSCs-fresh and hDPSCs-cryo displayed similar cell growth morphology, cell proliferation rates, and mesenchymal stem cell character. During differentiation into DE and HLCs in vitro, the cells flattened and became polygonal in shape, and finally adopted a hepatocyte-like shape. The differentiated DE cells at day 6 and HLCs at day 30 displayed significantly increased DE- and hepatocyte-specific markers at the mRNA and protein level, respectively. In addition, the differentiated HLCs showed detoxification and glycogen storage capacities, indicating they could share multiple functions with real hepatocytes. These data conclusively show that hPDSCs-cryo derived from long-term cryopreserved dental pulp tissues can be successfully differentiated into DE and functional hepatocytes in vitro. Thus, preservation of dental tissues could provide a valuable source of autologous stem cells for tissue engineering.

  17. In situ analysis of human teeth by external PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Rautray, Tapash R., E-mail: tapash77@hotmail.co [Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, 2-188-1 Samduk-dong, Jung-gu, Daegu (Korea, Republic of); ARASMIN, G. Udayagiri, Kandhamal, Orissa 762100 (India); Das, Saubhagyalaxmi [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Rautray, Alekh C. [ARASMIN, G. Udayagiri, Kandhamal, Orissa 762100 (India)

    2010-07-15

    The elemental profiles of the enamel, cementum and caries of human teeth were analysed by the external proton induced X-ray emission studies. Ten elements namely P, Ca, V, Mn, Fe, Cu, Zn, As, Sr and Pb were estimated in the present study. P and Ca were found to be the major elements whereas all other elements were found in trace level. It was observed that the respective concentrations of elements namely P, Ca, Fe, Zn and Pb in enamel are more than those in cementum. Concentration of P ranged between 6.37% and 25% whereas Ca ranged between 12.94% and 43.36%.

  18. Distribution of class ii major histocompatibility complex antigenexpressing cells in human dental pulp with carious lesions

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2012-09-01

    Full Text Available Background: Dental caries is a bacterial infection which causes destruction of the hard tissues of the tooth. Exposure of the dentin to the oral environment as a result of caries inevitably results in a cellular response in the pulp. The major histocompatibility complex (MHC is a group of genes that code for cell-surface histocompatibility antigens. Cells expressing class II MHC molecules participate in the initial recognition and the processing of antigenic substances to serve as antigen-presenting cells. Purpose: The aim of the study was to elucidate the alteration in the distribution of class II MHC antigen-expressing cells in human dental pulp as carious lesions progressed toward the pulp. Methods: Fifteen third molars with caries at the occlusal site at various stages of decay and 5 intact third molars were extracted and used in this study. Before decalcifying with 10% EDTA solution (pH 7.4, all the samples were observed by micro-computed tomography to confirm the lesion condition three-dimensionally. The specimens were then processed for cryosection and immunohistochemistry using an anti-MHC class II monoclonal antibody. Results: Class II MHC antigen-expressing cells were found both in normal and carious specimens. In normal tooth, the class II MHC-immunopositive cells were observed mainly at the periphery of the pulp tissue. In teeth with caries, class II MHC-immunopositive cells were located predominantly subjacent to the carious lesions. As the caries progressed, the number of class II MHC antigen-expressing cells was increased. Conclusion: The depth of carious lesions affects the distribution of class II MHC antigen-expressing cells in the dental pulp.Latar belakang: Karies merupakan penyakit infeksi bakteri yang mengakibatkan destruksi jaringan keras gigi. Dentin yang terbuka akibat karies akan menginduksi respon imun seluler pada pulpa. Kompleks histokompatibilitas utama (MHC merupakan sekumpulan gen yang mengkode histokompatibilitas

  19. Characterization, diagnosis and ablation of human teeth using blue laser at 457 nm

    Science.gov (United States)

    El-Sherif, Ashraf F.; Gomaa, Walid; El-Sharkawy, Yasser H.

    2014-02-01

    The light interaction with tissue is governed by the specific wavelength of the laser used and the optical properties of target tissue. Absorption, scattering and fluorescence together can probably be used as the basis of quantitative diagnostic methods for teeth caries. The absorption coefficient of human teeth was determined from detached wet teeth (incisors and premolars). Laser absorption of these teeth was measured using compact blue laser source at wavelength of 457 nm and a high resolution spectrometer equipped with an integrating sphere. The average absorption coefficient of abnormal caries tissue of human teeth is observed to be higher than the normal ones. Detection and diagnosis of caries tissues were monitored by high resolution translational scanning of human teeth. We have a powerful tool to diagnosis a caries region of human teeth using blue laser at 457 nm. Ablations of caries region are investigated using higher power of blue laser at 457 nm.

  20. In vitro demineralisation of the cervical region of human teeth.

    Science.gov (United States)

    He, Li-Hong; Xu, Yingzhi; Purton, David G

    2011-05-01

    The aim of this study was to investigate a possible role for demineralisation of the cervical region of human teeth in the development of non-carious cervical lesions (NCCLs). Freshly extracted human premolars were demineralised and prepared for nanoindentation and scanning electron microscope (SEM) observation. After 1 day or 2 days demineralisation in a solution of pH 4.5, specimens were embedded, cut and polished to 1 μm diamond paste. Nanoindentation was done at the cementum-enamel junction (CEJ) region with an interval of 30 μm, to develop mechanical properties maps. After the indentation, SEM with back-scatter detector was employed to observe the degree of demineralisation at the CEJ. After 1 day and 2 days demineralisation, the mechanical properties of enamel and dentine at the CEJ decreased by ∼50% and ∼90%, respectively. SEM images illustrate that artificial demineralisation generated typical demineralised zones in enamel near the CEJ. Moreover, 2 days demineralisation penetrated the sound enamel at the CEJ, and the dentine beneath was undermined. One day and 2 days demineralisation reduced the mechanical properties of teeth at the CEJ significantly. Demineralised enamel and dentine with low mechanical properties are prone to wear and abrasion. The findings of the investigation indicate that acid typical of that produced by dental plaque may compromise the mechanical properties of enamel and dentine at the CEJ to the extent that they would be susceptible to tooth brush abrasion, producing NCCLs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Inflammatory response of human dental pulp to at-home and in-office tooth bleaching

    Directory of Open Access Journals (Sweden)

    Maysa Magalhães Vaz

    Full Text Available ABSTRACT Tooth bleaching is a technique of choice to obtain a harmonious smile, but bleaching agents may damage the dental pulp. Objective: This study evaluated the inflammatory responses of human dental pulp after the use of two bleaching techniques. Material and Methods: Pulp samples were collected from human third molars extracted for orthodontic reasons and divided into three groups: control - no tooth bleaching (CG (n=7; at-home bleaching with 15% carbamide peroxide (AH (n = 10, and in-office bleaching with 38% hydrogen peroxide (IO (n=12. Pulps were removed and stained with hematoxylin-eosin for microscopic analysis of inflammation intensity, collagen degradation, and pulp tissue organization. Immunohistochemistry was used to detect mast cells (tryptase+, blood vessels (CD31+, and macrophages (CD68+. Chi-square, Kruskal-Wallis, and Mann Whitney tests were used for statistical analysis. The level of significance was set at p0.05. No mast cells were found in the pulp samples analyzed. Conclusion: In-office bleaching with 38% hydrogen peroxide resulted in more intense inflammation, higher macrophages migration, and greater pulp damage then at-home bleaching with 15% carbamide peroxide, however, these bleaching techniques did not induce migration of mast cells and increased the number of blood vessels.

  2. Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve.

    Science.gov (United States)

    Ullah, Imran; Park, Ju-Mi; Kang, Young-Hoon; Byun, June-Ho; Kim, Dae-Geon; Kim, Joo-Heon; Kang, Dong-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-09-01

    Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 106 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.

  3. Microbial evaluation of traumatized teeth treated with triple antibiotic paste or calcium hydroxide with 2% chlorhexidine gel in pulp revascularization.

    Science.gov (United States)

    Nagata, Juliana Y; Soares, Adriana J; Souza-Filho, Francisco J; Zaia, Alexandre A; Ferraz, Caio C R; Almeida, José F A; Gomes, Brenda P F A

    2014-06-01

    Revascularization outcome depends on microbial elimination because apical repair will not happen in the presence of infected tissues. This study evaluated the microbial composition of traumatized immature teeth and assessed their reduction during different stages of the revascularization procedures performed with 2 intracanal medicaments. Fifteen patients (7-17 years old) with immature teeth were submitted to the revascularization procedures; they were divided into 2 groups according to the intracanal medicament used: TAP group (n = 7), medicated with a triple antibiotic paste, and CHP group (n = 8), dressed with calcium hydroxide + 2% chlorhexidine gel. Samples were taken before any treatment (S1), after irrigation with 6% NaOCl (S2), after irrigation with 2% chlorhexidine (S3), after intracanal dressing (S4), and after 17% EDTA irrigation (S5). Cultivable bacteria recovered from the 5 stages were counted and identified by means of polymerase chain reaction assay (16S rRNA). Both groups had colony-forming unit counts significantly reduced after S2 (P teeth is similar to that of primarily infected permanent teeth. The greatest bacterial reduction was promoted by the irrigation solutions. The revascularization protocols that used the tested intracanal medicaments were efficient in reducing viable bacteria in necrotic immature teeth. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study.

    Science.gov (United States)

    Nakashima, Misako; Iohara, Koichiro; Murakami, Masashi; Nakamura, Hiroshi; Sato, Yayoi; Ariji, Yoshiko; Matsushita, Kenji

    2017-03-09

    Experiments have previously demonstrated the therapeutic potential of mobilized dental pulp stem cells (MDPSCs) for complete pulp regeneration. The aim of the present pilot clinical study is to assess the safety, potential efficacy, and feasibility of autologous transplantation of MDPSCs in pulpectomized teeth. Five patients with irreversible pulpitis were enrolled and monitored for up to 24 weeks following MDPSC transplantation. The MDPSCs were isolated from discarded teeth and expanded based on good manufacturing practice (GMP). The quality of the MDPSCs at passages 9 or 10 was ascertained by karyotype analyses. The MDPSCs were transplanted with granulocyte colony-stimulating factor (G-CSF) in atelocollagen into pulpectomized teeth. The clinical and laboratory evaluations demonstrated no adverse events or toxicity. The electric pulp test (EPT) of the pulp at 4 weeks demonstrated a robust positive response. The signal intensity of magnetic resonance imaging (MRI) of the regenerated tissue in the root canal after 24 weeks was similar to that of normal dental pulp in the untreated control. Finally, cone beam computed tomography demonstrated functional dentin formation in three of the five patients. Human MDPSCs are safe and efficacious for complete pulp regeneration in humans in this pilot clinical study.

  5. Genome-wide transcriptomic alterations induced by ethanol treatment in human dental pulp stem cells (DPSCs)

    OpenAIRE

    Omar Khalid; Kim, Jeffrey J.; Lewei Duan; Michael Hoang; David Elashoff; Yong Kim

    2014-01-01

    Human dental pulp stem cells (DPSCs) isolated from adult dental pulp are multipotent mesenchymal stem cells that can be directed to differentiate into osteogenic/odontogenic cells and also trans-differentiate into neuronal cells. The utility of DPSC has been explored in odontogenic differentiation for tooth regeneration. Alcohol abuse appears to lead to periodontal disease, tooth decay and mouth sores that are potentially precancerous. Persons who abuse alcohol are at high risk of having seri...

  6. Human Dental Pulp Stem Cells – Isolation and Long Term Cultivation

    Directory of Open Access Journals (Sweden)

    Jakub Suchánek

    2007-01-01

    Full Text Available Human adult mesenchymal stem cells (MSCs are rare elements living in various organs (e.g. bone marrow, skeletal muscle, with capability to differentiate in various cell types (e.g. chondrocytes, adipocytes and osteoblasts. In the year 2000, Gronthos and co-workers isolated stem cells from the human dental pulp (DPSCs. Later on, stem cells from exfoliated tooth were also obtained. The aims of our study were to establish protocol of DPSCs isolation and to cultivate DPSCs either from adult or exfoliated tooth, and to compare these cells with mesenchymal progenitor cell (MPCs cultures. MPCs were isolated from the human bone marrow of proximal femur. DPSCs were isolated from deciduous and permanent teeth. Both cell types were cultivated under the same conditions in the media with 2 % of FCS supplemented with PDGF and EGF growth factors. We have cultivated undifferentiated DPSCs for long time, over 60 population doublings in cultivation media designed for bone marrow MPCs. After reaching Hayflick’s limit, they still have normal karyotype. Initial doubling time of our cultures was from 12 to 50 hours for first 40 population doublings, after reaching 50 population doublings, doubling time had increased to 60–90 hours. Regression analysis of uncumulated population doublings proved tight dependence of population doublings on passage number and slow decrease of proliferation potential. In comparison with bone marrow MPCs, DPSCs share similar biological characteristics and stem cell properties. The results of our experiments proved that the DPSCs and MPCs are highly proliferative, clonogenic cells that can be expanded beyond Hayflick’s limit and remain cytogenetically stable. Moreover we have probably isolated two different populations of DPSCs. These DPSCs lines differed one from another in morphology. Because of their high proliferative and differentiation potential, DPSCs can become more attractive, easily accessible source of adult stem cells for

  7. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats.

    Science.gov (United States)

    Fujii, Hiromi; Matsubara, Kohki; Sakai, Kiyoshi; Ito, Mikako; Ohno, Kinji; Ueda, Minoru; Yamamoto, Akihito

    2015-07-10

    Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the loss of nigrostriatal dopaminergic (DAergic) neurons and the depletion of striatal dopamine. Here we show that DAergic-neuron-like cells could be efficiently induced from stem cells derived from human exfoliated deciduous teeth (SHEDs), and that these induced cells had therapeutic benefits in a 6-OHDA-induced Parkinsonian rat model. In our protocol, EGF and bFGF signaling activated the SHED's expression of proneural genes, Ngn2 and Mash1, and subsequent treatment with brain-derived neurotrophic factor (BDNF) promoted their maturation into DAergic neuron-like SHEDs (dSHEDs). A hypoxic DAergic differentiation protocol improved cell viability and enhanced the expression of multiple neurotrophic factors, including BDNF, GDNF, NT-3, and HGF. Engrafted dSHEDs survived in the striatum of Parkinsonian rats, improved the DA level more efficiently than engrafted undifferentiated SHEDs, and promoted the recovery from neurological deficits. Our findings further suggested that paracrine effects of dSHEDs contributed to neuroprotection against 6-OHDA-induced neurodegeneration and to nigrostriatal tract restoration. In addition, we found that the conditioned medium derived from dSHEDs protected primary neurons against 6-OHDA toxicity and accelerated neurite outgrowth in vitro. Thus, our data suggest that stem cells derived from dental pulp may have therapeutic benefits for PD. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Combined effects of mineral trioxide aggregate and human placental extract on rat pulp tissue and growth, differentiation and angiogenesis in human dental pulp cells.

    Science.gov (United States)

    Chang, Seok-Woo; Kim, Ji-Youn; Kim, Mi-Joo; Kim, Ga-Hyun; Yi, Jin-Kyu; Lee, Deok-Won; Kum, Kee-Yeon; Kim, Eun-Cheol

    2016-01-01

    The aim of this study was to evaluate the combined effects of mineral trioxide aggregate (MTA) and human placental extract (HPE) on cell growth, differentiation and in vitro angiogenesis of human dental pulp cells (HDPCs) and to identify underlying signal transduction mechanisms. In vivo dental pulp responses in rats for a pulp-capping agent were examined. MTS assay. ALP activity test, alizarin red S staining and RT-PCR for marker genes were carried out to evaluate cell growth and differentiation. HUVEC migration, mRNA expression and capillary tube formation were measured to evaluate angiogenesis. Signal transduction was analysed using Western blotting and confocal microscopy. The pulps of rat maxillary first molars were exposed and capped with either MTA or MTA plus HPE. Histologic observation and scoring were performed. Compared to treatment of HDPCs with either HPE or MTA alone, the combination of HPE and MTA increased cell growth, ALP activity, mineralized nodules and expression of marker mRNAs. Combination HPE and MTA increased migration, capillary tube formation and angiogenic gene expression compared with MTA alone. Activation of Akt, mammalian target of rapamycin (mTOR), p38, JNK and ERK MAPK, Akt, and NF-κB were significantly increased by combining HPE and MTA compared with MTA alone. Pulp capping with MTA plus HPE in rats showed superior dentin bridge formation, odontoblastic layers and dentinal tubules and lower inflammatory cell response, compared to the MTA alone group. This study demonstrates for the first time that the use of MTA with HPE promotes cell growth, differentiation and angiogenesis in HDPCs, which were associated with mTOR, MAPK and NF-κB pathways. Direct pulp capping with HPE plus MTA showed superior results when compared with MTA alone. Thus, the combination of MTA and HPE may be useful for regenerative endodontics.

  9. Infrared LED irradiation photobiomodulation of oxidative stress in human dental pulp cells.

    Science.gov (United States)

    Montoro, L A; Turrioni, A P S; Basso, F G; de Souza Costa, C A; Hebling, J

    2014-08-01

    To investigate the effect of infrared light-emitting diode (LED) irradiation on the oxidative stress induced in human dental pulp cells (HDPCs) by lipopolysaccharide (LPS). Human dental pulp cells (HDPCs) were harvested from sound primary teeth that were near exfoliation. Cells were seeded (10(5)  cells cm(-2) ) using α-MEM supplemented with 10% FBS and after 24 h, were placed in contact with LPS (10 μg mL(-1) of culture medium). Immediately afterwards, HDPCs were subjected to a single irradiation with an infrared LED (855 nm) delivering different doses of energy (0, 2, 4, 8, 15 or 30 J cm(-2) ). For each dose, there was a control group without LPS application. Twenty-four hours after irradiation, groups were tested for nitric oxide (NO) quantification, cell viability (MTT assay) and qualitative assessment of reactive oxygen species (ROS). Data were submitted to Kruskal-Wallis and Mann-Whitney tests (α = 0.05). Lipopolysaccharide (LPS)-induced stress resulted in significant increase in NO production by HDPC without causing damage to cell respiratory metabolism. Irrespective of energy dose delivered, NO production was significantly reduced when LPS-stressed cells were irradiated with infrared LED (2 J cm(-2) , P = 0.003; 95% CI = 5.84-27.71; 4 J cm(-2) , P = 0.001; 95% CI = 7.52-26.39; 8 J cm(-2) , P = 0.0195; 95% CI = -2.86-16.01; 15 J cm(-2) , P = 0.0001; 95% CI = 12.10-30.96; 30 J cm(-2) , P = 0.007; 95% CI = 5.84-24.71). The highest decrease in NO production was observed when 15 J cm(-2) was delivered to cells. Infrared LED irradiation resulted in a decrease in ROS production, whilst HDPC metabolism was not significantly affected. Biomodulation of oxidative stress of HPDC can be achieved by irradiation with a single dose of infrared LED. Within the range investigated, 15 J cm(-2) resulted in the least production of NO. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  10. [Effect of the self-etching adhesives system on human pulp fibroblast].

    Science.gov (United States)

    Zhang, Ming; Feng, Yan; Huang, Xiao-jing; Lei, Li-shan; Zheng, Bi-qiong; Lu, You-guang

    2008-02-01

    To compare and evaluate the biocompatibility of three kinds of dentin bonding agents Xeno III (XO), Adper Prompt (AP), Single bond2 (SB) through cell culture in vitro. Three kinds of dentin bonding agents (XO, AP, SB) were applied on the surface of the dental slices which were 5.0 mm in diameter and 0.5 mm in depth. By immersing the slices into the DMEM culture medium, the maceration extracts were obtained. Normal dental pulps of teenagers were collected and human pulp fibroblast was cultured using tissue explant method. The fifth generation pulp cells were exposed to culture medium containing different concentrations of maceration extracts (100.0%, 50.0%, 25.0%, 12.5%) for 24, 72, 120 h. At last, MTT method was used to evaluate the cytotoxicity of the dentin bonding agents on human pulp fibroblast. The results showed that all three kinds of dentin bonding systems had cytotoxicity to human pulp fibroblast in different degree in vitro. The cytotoxicity of XO and AP was less than SB. The difference was statistically significant (Padhesives system has more irritation to pulp than self-etching adhesives system.

  11. [Three dimensional bioprinting technology of human dental pulp cells mixtures].

    Science.gov (United States)

    Xue, Shi-hua; Lv, Pei-jun; Wang, Yong; Zhao, Yu; Zhang, Ting

    2013-02-18

    To explore the three dimensional(3D)bioprinting technology, using human dental pulp cells (hDPCs) mixture as bioink and to lay initial foundations for the application of the 3D bioprinting technology in tooth regeneration. Imageware 11.0 computer software was used to aid the design of the 3D biological printing blueprint. Sodium alginate-gelatin hydrosol was prepared and mixed with in vitro isolated hDPCs. The mixture contained 20 g/L sodium alginate and 80 g/L gelatin with cell density of 1×10(6)/mL. The bioprinting of hDPCs mixture was carried out according to certain parameters; the 3D constructs obtained by printing were examined; the viability of hDPCs after printing by staining the constructs with calcein-AM and propidium iodide dye and scanning of laser scanning confocal microscope was evaluated. The in vitro constructs obtained by the bioprinting were cultured, and the proliferation of hDPCs in the constructs detected. By using Imageware 11.0 software, the 3D constructs with the grid structure composed of the accumulation of staggered cylindrical microfilament layers were obtained. According to certain parameters, the hDPCs-sodium alginate-gelatin blends were printed by the 3D bioprinting technology. The self-defined shape and dimension of 3D constructs with the cell survival rate of 87%± 2% were constructed. The hDPCs could proliferate in 3D constructs after printing. In this study, the 3D bioprinting of hDPCs mixtures was realized, thus laying initial foundations for the application of the 3D bioprinting technology in tooth regeneration.

  12. High-resolution ZTE imaging of human teeth.

    Science.gov (United States)

    Weiger, Markus; Pruessmann, Klaas P; Bracher, Anna-Katinka; Köhler, Sascha; Lehmann, Volker; Wolfram, Uwe; Hennel, Franciszek; Rasche, Volker

    2012-10-01

    MRI with zero echo time (ZTE) is achieved by 3D radial centre-out encoding and hard-pulse RF excitation while the projection gradient is already on. Targeting short-T(2) samples, the efficient, robust and silent ZTE approach was implemented for high-bandwidth high-resolution imaging requiring particularly rapid transmit-receive switching and algebraic image reconstruction. The ZTE technique was applied to image extracted human teeth at 11.7T field strength, yielding detailed depictions with very good delineation of the mineralised dentine and enamel layers. ZTE results are compared with UTE (ultra-short echo time) MRI and micro-computed tomography (μCT), revealing significant differences in SNR and CNR yields. Compared to μCT, ZTE MRI appears to be less susceptible to artefacts caused by dental fillings and to offer superior sensitivity for the detection of early demineralisation and caries lesions. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Comparative histopathological analysis of human pulps after class I cavity preparation with a high-speed air-turbine handpiece or Er:YAG laser

    Science.gov (United States)

    Kina, J. F.; Benitez, P. C.; Lizarelli, R. F. Z.; Bagnato, V. S.; Martinez, T. C.; Oliveira, C. F.; Hebling, J.; Costa, C. A. S.

    2008-12-01

    The purpose of this study was to comparatively evaluate the response of human pulps after cavity preparation with different devices. Deep class I cavities were prepared in sound mandibular premolars using either a high-speed air-turbine handpiece (Group 1) or an Er:YAG laser (Group 2). Following total acid etching and the application of an adhesive system, all cavities were restored with composite resin. Fifteen days after the clinical procedure, the teeth were extracted and processed for analysis under optical microscopy. In Group 1 in which the average for the remaining dentin thickness (RDT) between the cavity floor and the coronal pulp was 909.5 μm, a discrete inflammatory response occurred in only one specimen with an RDT of 214 μm. However, tissue disorganization occurred in most specimens. In Group 2 (average RDT = 935.2 μm), the discrete inflammatory pulp response was observed in only one specimen (average RDT = 413 μm). It may be concluded that the high-speed air-turbine handpiece caused greater structural alterations in the pulp, although without inducing inflammatory processes.

  14. Inflammatory response of human dental pulp to at-home and in-office tooth bleaching.

    Science.gov (United States)

    Vaz, Maysa Magalhães; Lopes, Lawrence Gonzaga; Cardoso, Paula Carvalho; Souza, João Batista de; Batista, Aline Carvalho; Costa, Nádia Lago; Torres, Érica Miranda; Estrela, Carlos

    2016-01-01

    This study evaluated the inflammatory responses of human dental pulp after the use of two bleaching techniques. Pulp samples were collected from human third molars extracted for orthodontic reasons and divided into three groups: control - no tooth bleaching (CG) (n=7); at-home bleaching with 15% carbamide peroxide (AH) (n = 10), and in-office bleaching with 38% hydrogen peroxide (IO) (n=12). Pulps were removed and stained with hematoxylin-eosin for microscopic analysis of inflammation intensity, collagen degradation, and pulp tissue organization. Immunohistochemistry was used to detect mast cells (tryptase+), blood vessels (CD31+), and macrophages (CD68+). Chi-square, Kruskal-Wallis, and Mann Whitney tests were used for statistical analysis. The level of significance was set at p0.05). No mast cells were found in the pulp samples analyzed. In-office bleaching with 38% hydrogen peroxide resulted in more intense inflammation, higher macrophages migration, and greater pulp damage then at-home bleaching with 15% carbamide peroxide, however, these bleaching techniques did not induce migration of mast cells and increased the number of blood vessels.

  15. Correlation between Fibrillin-1 Degradation and mRNA Downregulation and Myofibroblast Differentiation in Cultured Human Dental Pulp Tissue

    Science.gov (United States)

    Yoshiba, Nagako; Yoshiba, Kunihiko; Ohkura, Naoto; Takei, Erika; Edanami, Naoki; Oda, Youhei; Hosoya, Akihiro; Nakamura, Hiroaki; Okiji, Takashi

    2015-01-01

    Myofibroblasts and extracellular matrix are important components in wound healing. Alpha-smooth muscle actin (α-SMA) is a marker of myofibroblasts. Fibrillin-1 is a major constituent of microfibrils and an extracellular-regulator of TGF-β1, an important cytokine in the transdifferentiation of resident fibroblasts into myofibroblasts. To study the correlation between changes in fibrillin-1 expression and myofibroblast differentiation, we examined alterations in fibrillin-1 and α-SMA expression in organotypic cultures of dental pulp in vitro. Extracted healthy human teeth were cut to 1-mm-thick slices and cultured for 7 days. In intact dental pulp, fibrillin-1 was broadly distributed, and α-SMA was observed in pericytes and vascular smooth muscle cells. After 7 days of culture, immunostaining for fibrillin-1 became faint concomitant with a downregulation in its mRNA levels. Furthermore, fibroblasts, odontoblasts and Schwann cells were immunoreactive for α-SMA with a significant increase in α-SMA mRNA expression. Double immunofluorescence staining was positive for pSmad2/3, central mediators of TGF-β signaling, and α-SMA. The administration of inhibitors for extracellular matrix proteases recovered fibrillin-1 immunostaining; moreover, fibroblasts lost their immunoreactivity for α-SMA along with a downregulation in α-SMA mRNA. These findings suggest that the expression of α-SMA is TGF-β1 dependent, and fibrillin-1 degradation and downregulation might be implicated in the differentiation of myofibroblasts in dental pulp wound healing. PMID:25805839

  16. Investigation of functional activity human dental pulp stem cells at acute and chronic pulpitis.

    Science.gov (United States)

    Ustiashvili, M; Kordzaia, D; Mamaladze, M; Jangavadze, M; Sanodze, L

    2014-09-01

    It is already recognized that together with the other connective tissues organ-specific progenic stem cells are also found in postnatal dental pulp. This group of undifferentiated cells is only 1% of total cell population of the pulp. The aim of the study was the identification of stem cells in human dental pulp, detection of their localization and assessment of functional activity during inflammation process and/or at norm. The obtained results showed that at acute pulpitis the pulp stroma is hypocellular in comparison with the norm but cells proliferative activity is low. CD 133 and NCAM (CD 56) positive stem cells were found in perivascularl space of the pulp stroma and in Hohle layer. At process prolongation and transition to the chronic phase pulp stroma is hypercellular, the cells with large, rounded or oval-shaped nuclei with clear chromatin appear together with fibroblasts. They are distributed as about entire thickness of the stroma as especially Hohle layer. In such cells higher proliferative activity (Ki67 expression) was observed. The cells in the mentioned proliferation phase are intensively marked by CD133, the rate of which is high in Hohle layer and along it. A large number of NCAM (CD 56) positive cells appear in pulp stroma. During pulpitis an involvement of stem cells into the process of reparative dentinogenesis should be conducted stepwise. In acute cases of the disease, stem cell perivascularl mobilization and proliferation and its migration to Hohle layer occur in response to irritation /stimulation. Chronification of the process leads not only to the migration of stem cells to the periphery of the pulp but also s their В«maturationВ» (increase of NCAM expression in the stem cells), which causes an increase the number of dentin producing active odontoblasts and initiation of reparative dentinogenesis.

  17. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Soo-Kyung Jun

    2017-01-01

    Full Text Available The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs. The product (Bioactive® [BA] was compared with a conventional calcium hydroxide-incorporated (Dycal [DC] and a light-curable (Theracal® [TC] counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP activity and alizarin red staining (ARS. Cations and hydroxide ions in the extracts were measured. An hDPSC viability of less than 70% was observed with 50% diluted extract in all groups and with 25% diluted extract in the DC. Culturing with 12.5% diluted BA extract statistically lowered ALP activity and biomineralization compared to DC (p0.05. Ca (~110 ppm and hydroxide ions (pH 11 were only detected in DC and TC. Ionic supplement-added BA, which contained similar ion concentrations as TC, showed similar ARS mineralization compared to TC. In conclusion, the BA was similar to, yet more cytotoxic to hDPSCs than, its DC and TC. The BA was considered to stimulate biomineralization similar to DC and TC only when it released a similar amount of Ca and hydroxide ions.

  18. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Jun, Soo-Kyung; Lee, Jung-Hwan; Lee, Hae-Hyoung

    2017-01-01

    The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs). The product (Bioactive® [BA]) was compared with a conventional calcium hydroxide-incorporated (Dycal [DC]) and a light-curable (Theracal® [TC]) counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP) activity and alizarin red staining (ARS). Cations and hydroxide ions in the extracts were measured. An hDPSC viability of less than 70% was observed with 50% diluted extract in all groups and with 25% diluted extract in the DC. Culturing with 12.5% diluted BA extract statistically lowered ALP activity and biomineralization compared to DC (p 0.05). Ca (~110 ppm) and hydroxide ions (pH 11) were only detected in DC and TC. Ionic supplement-added BA, which contained similar ion concentrations as TC, showed similar ARS mineralization compared to TC. In conclusion, the BA was similar to, yet more cytotoxic to hDPSCs than, its DC and TC. The BA was considered to stimulate biomineralization similar to DC and TC only when it released a similar amount of Ca and hydroxide ions.

  19. Influence of different types of pulp treatment during isolation in the obtention of human dental pulp stem cells.

    Science.gov (United States)

    Viña-Almunia, J; Borras, C; Gambini, J; El Alamy, M; Peñarrocha, M; Viña, J

    2016-05-01

    Different methods have been used in order to isolate dental pulp stem cells. The aim of this study was to study the effect of different types of pulp treatment during isolation, under 3% O2 conditions, in the time needed and the efficacy for obtaining dental pulp stem cells. One hundred and twenty dental pulps were used to isolate dental pulp stem cells treating the pulp tissue during isolation using 9 different methods, using digestive, disgregation, or mechanical agents, or combining them. The cells were positive for CD133, Oct4, Nestin, Stro-1, CD34 markers, and negative for the hematopoietic cell marker CD-45, thus confirming the presence of mesenchymal stem cells. The efficacy of dental pulp stem cells obtention and the minimum time needed to obtain such cells comparing the 9 different methods was analyzed. Dental pulp stem cells were obtained from 97 of the 120 pulps used in the study, i.e. 80.8% of the cases. They were obtained with all the methods used except with mechanical fragmentation of the pulp, where no enzymatic digestion was performed. The minimum time needed to isolate dental pulp stem cells was 8 hours, digesting with 2mg/ml EDTA for 10 minutes, 4mg/ml of type I collagenase, 4mg/ml of type II dispase for 40 minutes, 13ng/ml of thermolysine for 40 minutes and sonicating the culture for one minute. Dental pulp stem cells were obtained in 97 cases from a series of 120 pulps. The time for obtaining dental pulp stem cells was reduced maximally, without compromising the obtention of the cells, by combining digestive, disgregation, and mechanical agents.

  20. Hard tissue regeneration capacity of apical pulp derived cells (APDCs) from human tooth with immature apex.

    Science.gov (United States)

    Abe, Shigehiro; Yamaguchi, Satoshi; Watanabe, Akihiko; Hamada, Keiichi; Amagasa, Teruo

    2008-06-20

    Recent studies indicate that dental pulp is a new source of adult stem cells. The human tooth with an immature apex is a developing organ, and the apical pulp of this tooth may contain a variety of progenitor/stem cells, which participate in root formation. We investigated the hard tissue regeneration potential of apical pulp derived cells (APDCs) from human tooth with an immature apex. APDCs cultured with a mineralization-promoting medium showed alkaline phosphatase activity in porous hydroxyapatite (HA) scaffolds. The composites of APDCs and HA were implanted subcutaneously in immunocompromised rats and harvested at 12 weeks after implantation. In histological analysis, the APDCs/HA composites exhibited bone- and dentine-like mineralized tissues in the pore areas of HA. This study suggests that the human tooth with an immature apex is an effective source of cells for hard tissue regeneration.

  1. Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury.

    Science.gov (United States)

    Feitosa, Matheus Levi Tajra; Sarmento, Carlos Alberto Palmeira; Bocabello, Renato Zonzini; Beltrão-Braga, Patrícia Cristina Baleeiro; Pignatari, Graciela Conceição; Giglio, Robson Fortes; Miglino, Maria Angelica; Orlandin, Jéssica Rodrigues; Ambrósio, Carlos Eduardo

    2017-07-01

    To investigate the therapeutic potential of human immature dental pulp stem cells in the treatment of chronic spinal cord injury in dogs. Three dogs of different breeds with chronic SCI were presented as animal clinical cases. Human immature dental pulp stem cells were injected at three points into the spinal cord, and the animals were evaluated by limb function and magnetic resonance imaging (MRI) pre and post-operative. There was significant improvement from the limb function evaluated by Olby Scale, though it was not supported by the imaging data provided by MRI and clinical sign and evaluation. Human dental pulp stem cell therapy presents promising clinical results in dogs with chronic spinal cord injuries, if used in association with physical therapy.

  2. Evaluation of imaging reformation for root and pulp canal shapes of permanent teeth using a cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jong Hyun; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan [Kyung Hee Univ., Seoul (Korea, Republic of)

    2007-09-15

    To estimate the shape of root and pulp canal using a dental cone beam computed tomography (CBCT) and to evaluate the accuracy of imaging reformation. CBCT images were obtained with incisors, premolars, and molars as the destination by using PSR 9000N {sup TM} Dental CT system (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) and i-CAT (Imaging Sciences International, Inc, USA) cone beam CT unit that have different kind of detector and field of view, and compared these with the shape and the size of actual root and root canal. When the measuring value of cone beam computed tomography concerning to each root's bucco-lingual diameter and mesio-distal diameter was compared with the value of the actual root, it reveals an error range -0.49 {approx} +0.63 mm at PSR900N and -0.97 {approx} +1.14 mm at i-CAT (P>0.05). It was possible to identify and measure PSR 9000N {sup T}M Dental CT system to the limit 0.48{+-}0.06 mm (P>0.05) and i-CAT CBCT to the limit 0.86{+-}0.09 mm (P<0.05) on estimating the size and the shape of root canal. Two kinds of CBCT images revealed the useful reproducibility to estimate the shape of root, but there was the difference to estimate the shape of root according to apparatus. The reproducibility of root shape in the image of three-dimensions at PSR 900N is low such as 0.65 mm in a case of minute root canal. CBCT images revealed higher accuracy of the imaging reformation for root and pulp and clinically CBCT is a useful diagnostic tool for the assessment of root and canal. However, these are different qualities of imaging reformation according to CBCT apparatus and limitation of reproducibility for minute root canals.

  3. Effects of air-polishing devices with different abrasives on bovine primary and second teeth and deciduous human teeth.

    Science.gov (United States)

    Khalefa, Mohammad; Finke, Christian; Jost-Brinkmann, Paul-Georg

    2013-09-01

    The present study investigates the effect of air polishing using different combinations of devices and abrasive powders on bovine secondary and primary dentition and on human deciduous teeth. Lower incisors of freshly slaughtered calves and cows were partially embedded in polyurethane and polished flat. Human deciduous incisors and second molars were subjected to the same procedure. These various tooth types (bovine secondary, bovine primary, human deciduous) were then randomly assigned to 22 groups containing 10 teeth each. The specimens in each group were treated by a specific combination of an air-polishing device (n=2; PROPHYflex 3®, Air-Flow® Handy 2+) and an abrasive (n=3; Air-Flow® Pulver Classic, ClinPro™ Prophy Powder, PROPHYpearls®) applied from a distance of 5±0.5 mm at maximum setting for 60 s. Additional groups of specimens were polished with CCS® 40 or Cleanic® pastes applied with a rotating brush at low speed. A Perthometer PCV profilometer was used to analyze the degrees of surface roughness and enamel reduction in each group. PROPHYpearls® created significantly (pteeth than on bovine primary or human deciduous teeth, with no significant difference between the latter two. The degrees of surface roughness induced by air polishing surpassed the effect of CCS® 40 paste but resembled the effect of Cleanic® paste. Both Air-Flow® Handy 2+ and PROPHYflex 3® are appropriate devices to remove plaque and discoloration from the surface of deciduous teeth. PROPHYpearls® powder is excessively aggressive.

  4. E- and N-Cadherin Distribution in Developing and Functional Human Teeth under Normal and Pathological Conditions

    Science.gov (United States)

    Heymann, Robert; About, Imad; Lendahl, Urban; Franquin, Jean-Claude; Öbrink, Björn; Mitsiadis, Thimios A.

    2002-01-01

    Cadherins are calcium-dependent cell adhesion molecules involved in the regulation of various biological processes such as cell recognition, intercellular communication, cell fate, cell polarity, boundary formation, and morphogenesis. Although previous studies have shown E-cadherin expression during rodent or human odontogenesis, there is no equivalent study available on N-cadherin expression in dental tissues. Here we examined and compared the expression patterns of E- and N-cadherins in both embryonic and adult (healthy, injured, carious) human teeth. Both proteins were expressed in the developing teeth during the cap and bell stages. E-cadherin expression in dental epithelium followed an apical-coronal gradient that was opposite to that observed for N-cadherin. E-cadherin was distributed in proliferating cells of the inner and outer enamel epithelia but not in differentiated cells such as ameloblasts, whereas N-cadherin expression was up-regulated in differentiated epithelial cells. By contrast to E-cadherin, N-cadherin was also expressed in mesenchymal cells that differentiate into odontoblasts and produce the hard tissue matrix of dentin. Although N-cadherin was not detected in permanent intact teeth, it was re-expressed during dentin repair processes in odontoblasts surrounding carious or traumatic sites. Similarly, N-cadherin re-expression was seen in vitro, in cultured primary pulp cells that differentiate into odontoblast-like cells. Taken together these results suggest that E- and N-cadherins may play a role during human tooth development and, moreover, indicate that N-cadherin is important for odontoblast function in normal development and under pathological conditions. PMID:12057916

  5. Comparison of the antibacterial effect of sodium hypochlorite and aloe vera solutions as root canal irrigants in human extracted teeth contaminated with enterococcus faecalis.

    Science.gov (United States)

    Sahebi, S; Khosravifar, N; Sedighshamsi, M; Motamedifar, M

    2014-03-01

    The main purpose of a root canal treatment is to eliminate the bacteria and their products from the pulp space. Sodium hypochlorite has excellent antibacterial properties, but also some negative features. The aim of the present study is to compare the antimicrobial effect of Aloe Vera solution with sodium hypochlorite on E.faecalis in the root canals of human extracted teeth. Sixty human extracted single rooted teeth were selected for this in vitro study. The teeth recruited in this study had no cracks, internal resorption, external resorption and calcification. Enterococcus faecalis was injected in the root canals of all teeth. The teeth were then divided into three groups randomly. Each group consisted of 20 teeth that were all rinsed with one of the following solutions: sodium hypochlorite 2.5%, Aloe vera and normal saline. Subsequent to rinsing, root canals of all teeth were sampled. The samples were cultured and growth of the bacteria was assessed after 48 hours. The number of colonies of the bacteria was then counted. The difference between the inhibitory effect of Aloe vera and normal saline on E.faecalis was not significant according to independent t-test (p= 0.966). The inhibitory effect of sodium hypochlorite on E.faecalis was much greater than that of Aloe vera and normal saline (pAloe vera solution is not recommended as a root canal irrigator, but future studies are suggested to investigate the antibacterial effect of Aloe vera with longer duration of exposure and as an intra canal medicament.

  6. Immunomic Screening of Cell Surface Molecules on Undifferentiated Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Hwang, Hyo-In; Lee, Tae-Hyung; Kang, Kyung-Jung; Ryu, Chun-Jeih; Jang, Young-Joo

    2015-08-15

    Human adult dental pulp tissue is a source of adult stem cells that have a potential to differentiate into various tissues, although the primary cell suspensions cultured from pulp tissue are mixtures of both stem cell and nonstem cell populations with heterogeneous phenotypes and various differentiation efficiencies. Therefore, cell surface protein markers on dental pulp stem cells are critical for detection and purification of stem cell populations. Yet, little is known about the cell surface molecules that are specifically associated with the undifferentiated and progenitor state of human adult dental pulp stem cells (hDPSCs). Presently, cell surface proteins expressed on hDPSCs were assessed by screening surface molecules specifically expressed on dentinogenic progenitors. Using a decoy immunization strategy, a set of monoclonal antibodies (MAbs) was generated against undifferentiated pulp progenitor cells. Forty-five hybridomas produced MAbs that interacted weakly, if at all, to differentiated pulp cells. Of these, 19 MAbs (18 IgG, 1 IgM) recognized surface molecules on undifferentiated hDPSCs. By multicolor flow cytometric analysis, 40%-60% of newly identified MAb-positive cells were demonstrated to be positive for the CD44 and CD90 mesenchymal markers. When MAb-positive cells were sorted from the heterogeneous pulp cell suspension, mineralization efficiency was increased three to five times compared with MAb-negative cells. The results suggest that the decoy immunization is an efficient method for isolation of MAbs against dentinogenic progenitors. These MAbs will be helpful for identification and enrichment of hDPSCs for efficient dentin regeneration.

  7. Heavy metals in human primary teeth: some factors influencing the metal concentrations.

    Science.gov (United States)

    Tvinnereim, H M; Eide, R; Riise, T

    2000-06-08

    Human primary teeth have been used as indicators of heavy metal exposure for several decades, but the knowledge about the influence of factors such as tooth type and the presence of caries and roots on metal concentrations is limited. Samples of tooth powder from more than 1200 Norwegian primary teeth without fillings have been analyzed for lead, zinc and cadmium content, and 554 of them for mercury. The material represents all groups of tooth types (incisors, canines and molars), carious and non-carious teeth, and teeth with and without roots. Here we investigate how tooth group and the presence of caries and roots are related to metal concentrations in the teeth. We find that carious teeth have higher metal concentrations than non-carious teeth; the difference was statistically significant for lead, mercury and zinc. Teeth with roots have higher lead and zinc concentrations than teeth without roots. We find differences in metal concentrations between the tooth groups for lead, mercury and zinc. Significant, positive correlations are found between lead and the three other metals and between mercury and zinc. We conclude that metal concentrations in primary teeth are affected by the presence of caries and roots and by tooth group.

  8. Human enamel veneer restoration: an alternative technique to restore anterior primary teeth.

    Science.gov (United States)

    Oliveira, Luciana Butini; Tamay, Tereza Keiko; Oliveira, Marta Dutra Machado; Rodrigues, Célia Martins Delgado; Wanderley, Marcia Turolla

    2006-01-01

    Restoration of severely decayed primary teeth is a clinical challenge in Pediatric Dentistry. Among the restorative treatment options, the use of prefabricated crowns and resin composite restorations, either by means of direct or indirect techniques is mentioned in the literature. The purpose of this article is to describe the rehabilitation of primary anterior teeth in a 5-year-old patient. Dental treatment consisted on an anterior space maintainer prosthesis made with natural primary teeth, plus human dental enamel veneer (facet) restorations. The advantages of this technique are better esthetics and the natural enamel has physiologic wear and offers superficial smoothness and cervical adaptation compatible with those of the surrounding teeth.

  9. Effect of Biodentine™ on the proliferation, migration and adhesion of human dental pulp stem cells.

    Science.gov (United States)

    Luo, Zhirong; Li, Dongmei; Kohli, Meetu R; Yu, Qing; Kim, Syngcuk; He, Wen-Xi

    2014-04-01

    To investigate the proliferative, migratory and adhesion effect of Biodentine™, a new tricalcium silicate cement formulation, on the human dental pulp stem cells (hDPSCs). The cell cultures of hDPSCs obtained from impacted third molars were treated with Biodentine™ extract at four different concentrations: Biodentine™ 0.02mg/ml (BD 0.02), Biodentine™ 0.2mg/ml (BD 0.2), Biodentine™ 2mg/ml (BD 2) and Biodentine™ 20mg/ml (BD 20). Human dental pulp stem cells proliferation was evaluated by MTT (3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) viability analysis at different times. Migration was investigated by microphotographs of wound healing and transwell migration assays. Adhesion assay was performed as well in presence of BD 0.2, BD 2 and blank control, while qRT-PCR (quantitative real-time reverse-transcriptase polymerase chain) was used for further analysis of the mRNA expression of chemokine and adhesion molecules in hDPSCs. Biodentine™ significantly increased proliferation of stem cells at BD 0.2 and BD 2 concentrations while decreased significantly at higher concentration of BD 20. BD 0.2 concentration had a statistically significant increased migration and adhesion abilities. In addition, qRT-PCR results showed that BD 0.2 could have effect on the mRNA expression of chemokines and adhesion molecules in human dental pulp stem cells. The data imply that Biodentine™ is a bioactive and biocompatible material capable of enhancing hDPSCs proliferation, migration and adhesion abilities. Biodentine™ when placed in direct contact with the pulp during pulp exposure can positively influence healing by enhancing the proliferation, migration and adhesion of human dental pulp stem cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. [Emdogain regulates the expression of bone sialoprotein gene in human dental pulp cells].

    Science.gov (United States)

    Chen, Zhen; Wang, Shuang; Wang, Ying-hui; Gao, Ping

    2013-09-01

    To analyze the effects of emdogain(EMD) on the expression of the bone sialoprotein(BSP) gene in human dental pulp cells and to elucidate the molecular mechanism of BSP gene regulated by EMD. Human dental pulp was harvested from premolars freshly extracted for orthodontic purpose and cultured. Cells were divided into different concentrations (25, 50, 100 and 250 mg/L) of EMD and control groups (Dulbecco's modified Eagle's medium). Total RNA of cells was extracted. Human BSP mRNA levels was detected with the real-time PCR. Regulations of EMD on human BSP protein levels were detected with Western blotting. In the real-time PCR, at the same time point, there were significant differences on BSP mRNA levels between 25, 50, 100 and 250 mg/L EMD groups (7 d:1.79 ± 0.03, 2.03 ± 0.10, 2.67 ± 0.08, 2.94 ± 0.07) and control group (7 d:1.06 ± 0.11) (P < 0.001); at the different time point (1, 3, 5 and 7 d), the same dose(250 mg/L) of EMD stimulated human dental pulp cells, BSP mRNA (2.30 ± 0.06, 2.65 ± 0.05, 2.76 ± 0.05, 2.94 ± 0.07) was increased (P < 0.05). Treatment of human dental pulp cells with EMD (250 mg/L) increased the protein levels. EMD increases BSP mRNA and protein levels in human dental pulp cells.

  11. Differential inducibility of human and porcine dental pulp-derived cells into odontoblasts.

    Science.gov (United States)

    Tonomura, Akiko; Sumita, Yoshinori; Ando, Yusuke; Iejima, Daisuke; Kagami, Hideaki; Honda, Masaki J; Ueda, Minoru

    2007-01-01

    A robust method for generating odontoblasts from cultured dental pulp cells has not been established. In this study, efficient methods for deriving odontoblasts from cultured human and porcine dental pulp-derived cells were investigated with special attention to species differences. Cultured human cells showed relatively low alkaline phosphatase (ALP) activity in the presence of dexamethasone (Dex) and beta-glycerophosphate (beta-Gly). In contrast, the addition of 1,25-dihydroxyvitaminD(3) (VitD3) significantly increased the ALP activity. In porcine cells, beta-Gly alone or a combination of Dex and beta-Gly significantly increased ALP activity; however, addition of VitD3 reduced this activity. RT-PCR and Western blotting analysis revealed that the combination of three induction reagents on human cells significantly upregulates the expression of osteocalcin mRNA, and dentin sialoprotein. We propose that the combination of Dex, beta-Gly, and VitD3 is critical for differentiation of human dental pulp-derived cells into odontoblasts. In addition, the inducibility of dental pulp-derived cells presented remarkable species differences.

  12. The performance of human dental pulp stem cells on different three-dimensional scaffold materials.

    NARCIS (Netherlands)

    Zhang, W.; Walboomers, X.F.; Kuppevelt, A.H.M.S.M. van; Daamen, W.F.; Bian, Z.; Jansen, J.A.

    2006-01-01

    The aim of this study was to investigate the in vitro and in vivo behavior of human dental pulp stem cells (DPSCs) isolated from impacted third molars, when seeded onto different 3-dimensional (3-D) scaffold materials: i.e. a spongeous collagen, a porous ceramic, and a fibrous titanium mesh.

  13. The Role of ORAI1 in the Odontogenic Differentiation of Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Sohn, S; Park, Y; Srikanth, S; Arai, A; Song, M; Yu, B; Shin, K-H; Kang, M K; Wang, C; Gwack, Y; Park, N-H; Kim, R H

    2015-11-01

    Pulp capping, or placing dental materials directly onto the vital pulp tissues of affected teeth, is a dental procedure that aims to regenerate reparative dentin. Several pulp capping materials are clinically being used, and calcium ion (Ca(2+)) released from these materials is known to mediate reparative dentin formation. ORAI1 is an essential pore subunit of store-operated Ca(2+) entry (SOCE), which is a major Ca(2+) influx pathway in most nonexcitable cells. Here, we evaluated the role of ORAI1 in mediating the odontogenic differentiation and mineralization of dental pulp stem cells (DPSCs). During the odontogenic differentiation of DPSCs, the expression of ORAI1 increased in a time-dependent manner. DPSCs knocked down with ORAI1 shRNA (DPSC/ORAI1sh) or overexpressed with dominant negative mutant ORAI1(E106Q) (DPSC/E106Q) exhibited the inhibition of Ca(2+) influx and suppression of odontogenic differentiation and mineralization as demonstrated by alkaline phosphatase (ALP) activity/staining as well as alizarin red S staining when compared with DPSCs of their respective control groups (DPSC/CTLsh and DPSC/CTL). The gene expression for odontogenic differentiation markers such as osteocalcin, bone sialoprotein, and dentin matrix protein 1 (DMP1) was also suppressed. When DPSC/CTL or DPSC/E106Q cells were subcutaneously transplanted into nude mice, DPSC/CTL cells induced mineralized tissue formation with significant increases in ALP and DMP1 staining in vivo, whereas DPSC/E106Q cells did not. Collectively, our data showed that ORAI1 plays critical roles in the odontogenic differentiation and mineralization of DPSCs by regulating Ca(2+) influx and that ORAI1 may be a therapeutic target to enhance reparative dentin formation. © International & American Associations for Dental Research 2015.

  14. Failure of root development of human permanent teeth following irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yasunori; Kuroda, Masafumi; Amari, Eiichi; Yanagisawa, Toru

    1987-01-01

    Complete absence of root formation of the upper incisors, canine and first premolar was reported in a 27-year-old female who had received radiation therapy for a retinal glioma of the right eye at age of 3 years 1 month. Ground and decalcified sections showed no remarkable changes in enamel and dentin of the crowns, but the pulp floor was closed by irregular dentin deposit despite the absence of root formation. The outer surface of the irregular dentin was covered by acellular cementum, and the periodontal membrane was undeveloped. A slight degree of fibrosis was seen in the pulp, but the coronal part of the dentin was lined by odontoblasts. The theory that tooth eruption is caused by the growth of the root is not substantiated by the observation in this case.

  15. Comparative Study of Pulp Vitality in Primary and Young Permanent Molars in Human Children with Pulse Oximeter and Electric Pulp Tester.

    Science.gov (United States)

    Shahi, Prinka; Sood, P B; Sharma, Arun; Madan, Manish; Shahi, Nishat; Gandhi, Geetanjali

    2015-01-01

    The purpose of this study was to compare the pulp testing methods (pulse oximetry and electric pulp test) in primary and young permanent teeth of children. The study included a total of 155 children aged 4 to 15 years. Twenty children formed control group I. Study group included all healthy, 85 primary 2nd molars in group II and 85 permanent 1st molars in group III. Fifty children needing endodontics treatment formed test group IV. The readings were recorded as true positive (TP), false positive (FP), true negative (TN), false negative (FN). Based on this, the sensitivity, specificity, positive predictive value and negative predictive value were calculated for each method. The results were statistically analyzed using Chi-square test. On comparing pulse oximetry with electric pulp test 'p-value' was found to be 0.487 and 1.00 for groups 1 and 2 respectively and was statistically not significant. Whereas 'p-value' for groups 3 and 4 was Tester. Int J Clin Pediatr Dent 2015;8(2):94-98.

  16. [Vital pulp therapy of damaged dental pulp].

    Science.gov (United States)

    Xuedong, Zhou; Dingming, Huang; Jianguo, Liu; Zhengwei, Huang; Xin, Wei; Deqin, Yang; Jin, Zhao; Liming, Chen; Lin, Zhu; Yanhong, Li; Jiyao, Li

    2017-08-01

    The development of an expert consensus on vital pulp therapy can provide practical guidance for the improvement of pulp damage care in China. Dental pulp disease is a major type of illness that adversely affects human oral health. Pulp capping and pulpotomy are currently the main methods for vital pulp therapy. Along with the development of minimal invasion cosmetic dentistry, using different treatment technologies and materials reasonably, preserving healthy tooth tissue, and extending tooth save time have become urgent problems that call for immediate solution in dental clinics. This paper summarizes the experiences and knowledge of endodontic experts. We develop a clinical path of vital pulp therapy for clinical work by utilizing the nature, approach, and degree of pulp damage as references, defense and self-repairing ability of pulp as guidance, and modern technologies of diagnosis and treatment as means.

  17. Effect of an Experimental Direct Pulp-capping Material on the Properties and Osteogenic Differentiation of Human Dental Pulp Stem Cells

    Science.gov (United States)

    Yu, Fan; Dong, Yan; Yang, Yan-Wei; Lin, Ping-Ting; Yu, Hao-Han; Sun, Xiang; Sun, Xue-Fei; Zhou, Huan; Huang, Li; Chen, Ji-Hua

    2016-10-01

    Effective pulp-capping materials must have antibacterial properties and induce dentin bridge formation; however, many current materials do not satisfy clinical requirements. Accordingly, the effects of an experiment pulp-capping material (Exp) composed of an antibacterial resin monomer (MAE-DB) and Portland cement (PC) on the viability, adhesion, migration, and differentiation of human dental pulp stem cells (hDPSCs) were examined. Based on a Cell Counting Kit-8 assay, hDPSCs exposed to Exp extracts showed limited viability at 24 and 48 h, but displayed comparable viability to the control at 72 h. hDPSC treatment with Exp extracts enhanced cellular adhesion and migration according to in vitro scratch wound healing and Transwell migration assays. Exp significantly upregulated the expression of osteogenesis-related genes. The hDPSCs cultured with Exp exhibited higher ALP activity and calcium deposition in vitro compared with the control group. The novel material showed comparable cytocompatibility to control cells and promoted the adhesion, migration, and osteogenic differentiation of hDPSCs, indicating excellent biocompatibility. This new direct pulp-capping material containing MAE-DB and PC shows promise as a potential alternative to conventional materials for direct pulp capping.

  18. Fluorescence properties of human teeth and dental calculus for clinical applications.

    Science.gov (United States)

    Lee, Yong-Keun

    2015-04-01

    Fluorescent emission of human teeth and dental calculus is important for the esthetic rehabilitation of teeth, diagnosis of dental caries, and detection of dental calculus. The purposes of this review were to summarize the fluorescence and phosphorescence of human teeth by ambient ultraviolet (UV) light, to investigate the clinically relevant fluorescence measurement methods in dentistry, and to review the fluorescence of teeth and dental calculus by specific wavelength light. Dentine was three times more phosphorescent than enamel. When exposed to light sources containing UV components, the fluorescence of human teeth gives them the quality of vitality, and fluorescent emission with a peak of 440 nm is observed. Esthetic restorative materials should have fluorescence properties similar to those of natural teeth. Based on the fluorescence of teeth and restorative materials as determined with a spectrophotometer, a fluorescence parameter was defined. As to the fluorescence spectra by a specific wavelength, varied wavelengths were investigated for clinical applications, and several methods for the diagnosis of dental caries and the detection of dental calculus were developed. Since fluorescent properties of dental hard tissues have been used and would be expanded in diverse fields of clinical practice, these properties should be investigated further, embracing newly developed optical techniques.

  19. In vitro fermentation of juçara pulp (Euterpe edulis) by human colonic microbiota.

    Science.gov (United States)

    Guergoletto, Karla Bigetti; Costabile, Adele; Flores, Gema; Garcia, Sandra; Gibson, Glenn R

    2016-04-01

    This study was carried out to investigate the potential fermentation properties of juçara pulp, using pH-controlled anaerobic batch cultures reflective of the distal region of the human large intestine. Effects upon major groups of the microbiota were monitored over 24h incubations by fluorescence in situ hybridisation (FISH). Short-chain fatty acids (SCFA) were measured by HPLC. Phenolic compounds, during an in vitro simulated digestion and fermentation, were also analysed. Juçara pulp can modulate the intestinal microbiota in vitro, promoting changes in the relevant microbial populations and shifts in the production of SCFA. Fermentation of juçara pulp resulted in a significant increase in numbers of bifidobacteria after a 24h fermentation compared to a negative control. After in vitro digestion, 46% of total phenolic content still remained. This is the first study reporting the potential prebiotic effect of juçara pulp; however, human studies are necessary to prove its efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Telomere Attrition Occurs during Ex Vivo Expansion of Human Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Jaroslav Mokry

    2010-01-01

    Full Text Available We provide a detailed characteristic of stem cells isolated and expanded from the human dental pulp. Dental pulp stem cells express mesenchymal cell markers STRO-1, vimentin, CD29, CD44, CD73, CD90, CD166, and stem cell markers Sox2, nestin, and nucleostemin. They are multipotent as shown by their osteogenic and chondrogenic potential. We measured relative telomere length in 11 dental pulp stem cell lines at different passages by quantitative real-time PCR. Despite their large proliferative capacity, stable viability, phenotype, and genotype over prolonged cultivation, human dental pulp stem cells suffer from progressive telomere shortening over time they replicate in vitro. Relative telomere length (T/S was inversely correlated with cumulative doubling time. Our findings indicate that excessive ex vivo expansion of adult stem cells should be reduced at minimum to avoid detrimental effects on telomere maintenance and measurement of telomere length should become a standard when certificating the status and replicative age of stem cells prior therapeutic applications.

  1. Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system.

    Science.gov (United States)

    Li, Xiangwei; Ma, Chi; Xie, Xiaohua; Sun, Hongchen; Liu, Xiaohua

    2016-04-15

    While pulp regeneration using tissue engineering strategy has been explored for over a decade, successful regeneration of pulp tissues in a full-length human root with a one-end seal that truly simulates clinical endodontic treatment has not been achieved. To address this challenge, we designed and synthesized a unique hierarchical growth factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the nanofibers of an injectable poly(l-lactic acid) (PLLA) microsphere. This hierarchical microsphere system not only protects the VEGF from denaturation and degradation, but also provides excellent control of its sustained release. In addition, the nanofibrous PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation. Our in vivo study showed the successful regeneration of pulp-like tissues that fulfilled the entire apical and middle thirds and reached the coronal third of the full-length root canal. In addition, a large number of blood vessels were regenerated throughout the canal. For the first time, our work demonstrates the success of pulp tissue regeneration in a full-length root canal, making it a significant step toward regenerative endodontics. The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully regenerated living pulp tissues in a full-length root canal, making it a significant step toward regenerative endodontics. This study will make positive scientific

  2. Investigation of modified platelet-rich plasma (mPRP) in promoting the proliferation and differentiation of dental pulp stem cells from deciduous teeth

    OpenAIRE

    Wen, J.; Li, H T; Li, S H; LI, X.; Duan, J. M.

    2016-01-01

    Stem cells from human exfoliated deciduous teeth (SHEDs) have great potential to treat various dental-related diseases in regenerative medicine. They are usually maintained with 10% fetal bovine serum (FBS) in vitro. Modified platelet-rich plasma (mPRP) would be a safe alternative to 10% FBS during SHEDs culture. Therefore, our study aimed to compare the proliferation and differentiation of SHEDs cultured in mPRP and FBS medium to explore an optimal concentration of mPRP for SHEDs maintenance...

  3. Prevalence and Analysis of Factors Related to Occurrence of Pulp ...

    African Journals Online (AJOL)

    Uche

    between pulp stone and pristine posterior teeth, chronic periodontitis and posterior teeth with abrasion, as well as the effect of age and gender on pulp stone occurrence. Method: Three hundred subjects, aged 18-60 years participated in the cross sectional study. Pristine teeth, teeth with chronic periodontitis and those with ...

  4. Evaluation of the Biodistribution of Human Dental Pulp Stem Cells Transplanted into Mice.

    Science.gov (United States)

    Kim, Sunil; Lee, Sukjoon; Jung, Han-Sung; Kim, Sun-Young; Shin, Su-Jung; Kang, Mo K; Kim, Euiseong

    2018-01-19

    Several studies have attempted to use human dental pulp stem cells (hDPSCs) for pulp-dentin complex regeneration in vitro. However, the safety of such applications should be first evaluated in vivo before their use in clinical trials. The purpose of this study was to investigate the in vivo fate of intrapulpally transplanted hDPSCs. hDPSCs were isolated and cultured from impacted third molars. In vivo experiments were performed using 7-week-old male BALB/c nude mice. Under deep anesthesia, 1 × 10 5 hDPSCs were transplanted in mice via the tail vein for intravenous injection or into the pulp chamber for intrapulpal transplantation. A total of 56 mice, 28 per group, were used. Mice were sacrificed at different time points, and the numbers of hDPSCs in the organs were analyzed quantitatively. In addition, qualitative analysis was performed to detect intrapulpally transplanted hDPSCs. Intravenously injected hDPSCs were mostly distributed to the lungs and rarely detected in other organs at all observed time points. The hDPSCs transplanted into the pulp chamber rarely migrated to other organs over time. These data indicate a differential distribution of transplanted hDPSCs between the intravenous and intrapulpal route and show the safety of pulpal transplantation of hDPSCs. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. [Expression of Na(+)/Ca(2+) exchanger channel protein in human odontoblasts and nervous tissue of dental pulp].

    Science.gov (United States)

    Zang, Chengcheng; Zhao, Zhiying; Chen, Zhen; Que, Kehua

    2015-10-01

    To investigate the expression of Na(+)/Ca(2+) exchanger 1 (NCX1) channel protein in human odontoblasts (OD) and nervous tissue of dental pulp. Twenty intact and healthy third molars extracted for orthodontic purpose were collected. The OD layer and nervous tissue were determined by dentin sialophosphoproteins (DSPP) antibody staining and modified Bielschowsky silver staining respectivelly. The immunohistochemical method was used to detect the expressions of NCX1 protein in human dental pulp tissue. The difference of expression of NCX1 in human OD at different part of dental pulp was statistically analyzed using Image Pro Plus and SPSS software. NCX1 channel protein was mainly expressed on the cell body of OD, and nervous tissue of dental pulp. The expression level of NCX1 on the OD of crown pulp was higher (A = 0.146 ± 0.021) than that on the upper part of root pulp (A = 0.120 ± 0.034), but the expression difference was not significant (P > 0.05). NCX1 channel protein was expressed on human OD and nervous tissue in dental pulp.

  6. Effect of chlorine dioxide and sodium hypochlorite on the dissolution of human pulp tissue - An in vitro study.

    Science.gov (United States)

    Singh, Sandeep; Sinha, Ramen; Kar, S K; Ather, Amber; Limaye, S N

    2012-10-01

    Organic tissue dissolution is an important property of an irrigant which aids in the success of root canal treatment. Recent studies have advocated the use of Chlorine dioxide as an endodontic irrigant. The aim of this study is to compare the dissolution efficacy of chlorine dioxide and sodium hypochlorite on human pulp tissue. In this study, 2% Sodium hypochlorite, 5% Chlorine dioxide and isotonic saline solution (control) were used. Thirty human pulp tissue specimens were exposed to three test solutions (n = 10) for 30 min following which the loss of weight was compared from the original weight by using a digital analytical balance. Sodium hypochlorite was more efficient in dissolving human pulp tissue when compared to Chlorine dioxide. Isotonic saline solution failed to dissolve any of the specimens. 5% Chlorine dioxide is capable of dissolving human pulp tissue but sodium hypochlorite was more effective.

  7. Effect of Jagged-1 and Dll-1 on osteogenic differentiation by stem cells from human exfoliated deciduous teeth.

    Science.gov (United States)

    Sukarawan, Waleerat; Peetiakarawach, Karnnapas; Pavasant, Prasit; Osathanon, Thanaphum

    2016-05-01

    The aim of the present study was to determine the influence of Notch ligands, Jagged-1 and Dll-1, on osteogenic differentiation by stem cells from human exfoliated deciduous teeth. Notch ligands were immobilized on tissue culture surface using an indirect affinity immobilization technique. Cells from the remaining of dental pulp tissues from human deciduous teeth were isolated and characterized using flow cytometry and differentiation assay. Alkaline phosphatase (ALP) enzymatic activity, osteogenic marker gene expression, and mineralization were determined using ALP assay, real-time polymerase chain reaction, and alizarin red staining, respectively. The isolated cells exhibited CD44, CD90, and CD105 expression but lack of CD45 expression. Further, these cells were able to differentiate toward osteogenic lineage. The upregulation of HES-1 and HEY-1 was observed in those cells on Dll-1 and Jagged-1 coated surface. The significant increase of ALP activity and mineralization was noted in those cells seeded on Jagged-1 surface and these results were attenuated when cells were pretreated with gamma secretase inhibitor. The significant upregulation of ALP and collagen type I gene expression was also observed in those cells seeded on Jagged-1 surface. The inconsistent Dll-1 induced osteogenic differentiation was found and high Dll-1 immobilized dose (50 nM) slightly enhanced alkaline phosphatase enzymatic activity. However, the statistical significant difference was not obtained as compared to the hFc control. The surface immobilization of Notch ligands, Jagged-1 and Dll-1, likely to enhance osteogenic differentiation of SHEDs. However, Jagged-1 had more ability in enhancing osteogenic differentiation than Dll-1 in our model. Copyright © 2016. Published by Elsevier Ltd.

  8. Expression of Ecto-ATPase NTPDase2 in Human Dental Pulp

    Science.gov (United States)

    Yu, L.; Wang, Q.; Pelletier, J.; Fausther, M.; Sévigny, J.; Malmström, H.S.; Dirksen, R.T.; Ren, Y.-F.

    2012-01-01

    Dental pulpal nerve fibers express ionotropic adenosine triphosphate (ATP) receptors, suggesting that ATP signaling participates in the process of dental nociception. In this study, we investigated if the principal enzymes responsible for extracellular ATP hydrolysis, namely, nucleoside triphosphate diphosphohydrolases (NTPDases), are present in human dental pulp. Immunohistochemical and immunofluorescence experiments showed that NTPDase2 was predominantly expressed in pulpal nerve bundles, Raschkow’s nerve plexus, and in the odontoblast layer. NTPDase2 was expressed in pulpal Schwann cells, with processes accompanying the nerve fibers and projecting into the odontoblast layer. Odontoblasts expressed the gap junction protein, connexin43, which can form transmembrane hemichannels for ATP release. NTPDase2 was localized close to connexin43 within the odontoblast layer. These findings provide evidence for the existence of an apparatus for ATP release and degradation in human dental pulp, consistent with the involvement of ATP signaling in the process of dentin sensitivity and dental pain. PMID:22173326

  9. The Effects of Platelet-Derived Growth Factor-BB on Human Dental Pulp Stem Cells Mediated Dentin-Pulp Complex Regeneration.

    Science.gov (United States)

    Zhang, Maolin; Jiang, Fei; Zhang, Xiaochen; Wang, Shaoyi; Jin, Yuqin; Zhang, Wenjie; Jiang, Xinquan

    2017-12-01

    Dentin-pulp complex regeneration is a promising alternative treatment for the irreversible pulpitis caused by tooth trauma or dental caries. This process mainly relies on the recruitment of endogenous or the transplanted dental pulp stem cells (DPSCs) to guide dentin-pulp tissue formation. Platelet-derived growth factor (PDGF), a well-known potent mitogenic, angiogenic, and chemoattractive agent, has been widely used in tissue regeneration. However, the mechanisms underlying the therapeutic effects of PDGF on dentin-pulp complex regeneration are still unclear. In this study, we tested the effect of PDGF-BB on dentin-pulp tissue regeneration by establishing PDGF-BB gene-modified human dental pulp stem cells (hDPSCs) using a lentivirus. Our results showed that PDGF-BB can significantly enhance hDPSC proliferation and odontoblastic differentiation. Furthermore, PDGF-BB and vascular endothelial growth factor (VEGF) secreted by hDPSCs enhanced angiogenesis. The chemoattractive effect of PDGF-BB on hDPSCs was also confirmed using a Transwell chemotactic migration model. We further determined that PDGF-BB facilitates hDPSCs migration via the activation of the phosphatidylinositol 3 kinase (PI3K)/Akt signaling pathway. In vivo, CM-DiI-labeled hDPSCs were injected subcutaneously into mice, and our results showed that more labeled cells were recruited to the sites implanted with calcium phosphate cement scaffolds containing PDGF-BB gene-modified hDPSCs. Finally, the tissue-engineered complexes were implanted subcutaneously in mice for 12 weeks, the Lenti-PDGF group generated more dentin-like mineralized tissue which showed positive staining for the DSPP protein, similar to tooth dentin tissue, and was surrounded by highly vascularized dental pulp-like connective tissue. Taken together, our data demonstrated that the PDGF-BB possesses a powerful function in prompting stem cell-based dentin-pulp tissue regeneration. Stem Cells Translational Medicine 2017;6:2126-2134. © 2017

  10. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential

    Science.gov (United States)

    Alongi, Dominick J; Yamaza, Takayoshi; Song, Yingjie; Fouad, Ashraf F; Romberg, Elaine E; Shi, Songtao; Tuan, Rocky S; Huang, George T-J

    2011-01-01

    Background Potent stem/progenitor cells have been isolated from normal human dental pulps termed dental pulp stem cells (DPSCs). However, it is unknown whether these cells exist in inflamed pulps (IPs). Aims To determine whether DPSCs can be identified and isolated from IPs; and if they can be successfully cultured, whether they retain tissue regeneration potential in vivo. Materials & methods DPSCs from freshly collected normal pulps (NPs) and IPs were characterized in vitro and their tissue regeneration potential tested using an in vivo study model. Results The immunohistochemical analysis showed that IPs expressed higher levels of mesenchymal stem cell markers STRO-1, CD90, CD105 and CD146 compared with NPs (p < 0.05). Flow cytometry analysis showed that DPSCs from both NPs and IPs expressed moderate to high levels of CD146, stage-specific embryonic antigen-4, CD73 and CD166. Total population doubling of DPSCs-IPs (44.6 ± 2.9) was lower than that of DPSCs-NPs (58.9 ± 2.5) (p < 0.05), and DPSCs-IPs appeared to have a decreased osteo/dentinogenic potential compared with DPSCs-NPs based on the mineral deposition in cultures. Nonetheless, DPSCs-IPs formed pulp/dentin complexes similar to DPSCs-NPs when transplanted into immunocompromised mice. Conclusion DPSCs-IPs can be isolated and their mesenchymal stem cell marker profiles are similar to those from NPs. Although some stem cell properties of DPSCs-IPs were altered, cells from some samples remained potent in tissue regeneration in vivo. PMID:20465527

  11. Expression of factors involved in dental pulp physiopathological processes by nemotic human pulpal fibroblasts.

    Science.gov (United States)

    Le Clerc, J; Tricot-Doleux, S; Pellen-Mussi, P; Pérard, M; Jeanne, S; Pérez, F

    2017-03-10

    To investigate in human dental pulp fibroblasts (HDPF) the expression of factors involved in dental pulp physiopathological processes and in an experimental model of cell activation called nemosis, and to compare the behaviour of pulp cell activation with sound lung fibroblast MRC5, employed as a reference model for nemosis. Nemotic response was induced in three-dimensional cultures of HDPF and lung fibroblasts. The expressions of molecules involved in physiological (alkaline phosphatase, type I collagen) and in inflammatory processes (IL-6, CXCL8, CCL20, COX-2) were studied using real-time PCR. Concentrations of IL-6 and CXCL8 were analysed during 4 days with ELISA. Nonparametric tests were used to determine statistical differences between groups. A significant decrease (P MRC5 and HDPF nemotic responses. Although the amounts of mRNA differed between these cell types, there was an increase in CCL20, CXCL8 and COX-2 expression (P MRC5 spheroids displayed significant amounts of IL-6 concentrations and mRNA expression. Notably, increased concentrations of CXCL8 were recorded in all three-dimensional cultures compared with monolayers as a function of time (P < 0.05). Although the nemotic responses observed were not identical in the pulpal and lung fibroblasts, similarities occurred in the expression of chemokines and cyclooxygenase-2. Nemotic reactions and inflammatory processes in pulp diseases share similarities in terms of the expression of factors. Thus, this in vitro model could constitute a powerful tool to study intercellular relations within the dental pulp and to develop new local treatments to counteract the inflammatory reaction that occurs during pulpitis. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Mineralized polycaprolactone nanofibrous matrix for odontogenesis of human dental pulp cells.

    Science.gov (United States)

    Kim, Jong-Jin; Bae, Won-Jung; Kim, Joung-Mok; Kim, Jung-Ju; Lee, Eun-Jung; Kim, Hae-Won; Kim, Eun-Cheol

    2014-03-01

    The aim of the present study was to fabricate mineralized polycaprolactone nanofibrous scaffold and investigate its ability to elicit odontogenic differentiation of human dental pulp cells, compared to the pure polycaprolactone scaffold. Polycaprolactone nanofibrous scaffold was produced by electrospinning, and the surface was mineralized with apatite. Cellular behaviors on the mineralized polycaprolactone scaffold were assessed in terms of cell adhesion, growth, and odontoblastic differentiation. To evaluate the signal transduction of human dental pulp cells, mRNA expression was analyzed and Western blotting was performed. Mineralized polycaprolactone showed improved cell proliferation, mineralized nodule formation, and expression of odontoblastic marker genes including alkaline phosphatase, osteopontin, osteocalcin, dentin sialophosphoprotein (DSPP), and dentin matrix protein-1, as compared with pure polycaprolactone. Although the cell adhesion on the mineralized polycaprolactone was similar to that of the polycaprolactone, the expression level of proteins including collagen type I and the key adhesion receptor (integrin components α1, α2, and β1) was upregulated in mineralized polycaprolactone compared to polycaprolactone. Especially, cells seeded onto mineralized polycaprolactone scaffolds showed significantly increased levels of phosphorylated focal adhesion kinase, a marker of integrin activation, and downstream pathways, such as phosphor (p)-Akt, p-extracellular signal regulated kinase, p-c Jun N-terminal kinase, nuclear factor-kappa B, c-fos, and c-jun, compared with pure polycaprolactone. The mineralized polycaprolactone scaffold is attractive for dentin tissue engineering by promoting growth and odontogenic differentiation of human dental pulp cells through the integrin-mediated signaling pathway.

  13. Comparison of microtensile bond strength to enamel and dentin of human, bovine, and porcine teeth

    OpenAIRE

    Reis, AF; Giannini, M; Kavaguchi, A; Soares, CJ; Line, SRP

    2004-01-01

    Purpose: To determine the bond strengths promoted by an adhesive system to human, bovine, and porcine enamel and dentin, and compare their etched micromorphology by scanning electron microscopy. Materials and Methods: Thirty sound freshly extracted teeth were used in this study: ten human third molars, ten bovine incisors, and ten porcine molars. The crowns of human (H), bovine (B), and porcine (P) teeth were ground with 600-grit SiC paper to expose either enamel (E) or mid-depth dentin (D) s...

  14. Association of physical properties and maintenance of sterility of primary teeth in human tooth bank

    Directory of Open Access Journals (Sweden)

    Nitika Bajaj

    2014-01-01

    Full Text Available Background: This study was carried out to evaluate the sterility and structural integrity of stored primary teeth in artificial saliva over a storage period of 12 weeks (3 months in human tooth bank (HTB. Materials and Methods: A total of 80 freshly extracted teeth were taken and were categorized into four groups of 20 each. The samples were stored at 4°C for 12 weeks (3 months in the refrigerator. During their storage time of 3 months, they were repetitively evaluated for their sterility, enamel hardness, calcium and phosphate solubility and color stability at regular intervals of 3 weeks. Observations and Results: That teeth stored in artificial saliva maintained their sterility throughout the storage time of 12 weeks, but changes in their physical and chemical properties occurred with an increase in storage time. Conclusion: Storage time not more than 9 weeks is recommended for deciduous teeth to be stored in artificial saliva in a HTB.

  15. Use of Verbal Descriptors, Thermal Scores and Electrical Pulp Testing Scores as Predictors of Tooth Pain Before and After Application of Benzocaine Gels into Cavities of Teeth with Pulpitis

    Science.gov (United States)

    Gangarosa, Louis P.; Ciarlone, Alfred E.; Neaverth, Elmer J.; Johnston, Carey A.; Snowden, J. Douglas; Thompson, William O.

    1989-01-01

    A double-blind pilot study was conducted on 27 consenting human volunteers who had irreversible pulpitis associated with persistent toothache pain from open carious lesions. Formulations tested contained either 0, 10%, or 20% benzocaine and were identified only by a numbered code. Before the experiment started, a small amount of a known 5% benzocaine gel was placed for 1 minute on the tongue of each patient to assure a sensation of numbness within the oral cavity. Then the test tooth was washed with a gentle stream of warm water and dried with gauze. A randomly selected test medication was placed into the open cavity and around the gingival margins for 5 minutes. Pre- and posttreatment tests were conducted at the following timed intervals: 0, 5, 15, 30, 45, 60, 75 and 90 minutes. The tests included degree of pain (rated: 0 = none, 1 = mild, 2 = moderate, 3 = severe); electrical pulp testing (EPT) by a modified, voltage-ramping instrument; and ice water testing (0.5 mL directed quickly onto sound enamel of the tooth and rated: 0 to 4, with 4 being intolerable). After testing, or when pain returned to baseline, endodontic procedures were performed. There was a significant increase (p pulpitis and control teeth, 3) there were no correlations between direction of EPT scores and pain relief, 4) cold water testing was a good predictor of whether or not a tooth had pulpitis, and 5) changes in cold water testing scores after treatment could not be correlated to relief of pain according to verbal descriptors. The effectiveness of benzocaine in relieving toothache pain verifies previous studies; however, a difference between 10% and 20% benzocaine could not be demonstrated probably because of two factors: 1) the present experiment had a small sample size, and 2) there was no direct measurement of duration of local anesthesia. PMID:2490060

  16. Human serum promotes osteogenic differentiation of human dental pulp stem cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Alessandra Pisciotta

    Full Text Available Human dental pulp is a promising alternative source of stem cells for cell-based tissue engineering in regenerative medicine, for the easily recruitment with low invasivity for the patient and for the self-renewal and differentiation potential of cells. So far, in vitro culture of mesenchymal stem cells is usually based on supplementing culture and differentiation media with foetal calf serum (FCS. FCS is known to contain a great quantity of growth factors, and thus to promote cell attachment on plastic surface as well as expansion and differentiation. Nevertheless, FCS as an animal origin supplement may represent a potential means for disease transmission besides leading to a xenogenic immune response. Therefore, a significant interest is focused on investigating alternative supplements, in order to obtain a sufficient cell number for clinical application, avoiding the inconvenients of FCS use. In our study we have demonstrated that human serum (HS is a suitable alternative to FCS, indeed its addition to culture medium induces a high hDPSCs proliferation rate and improves the in vitro osteogenic differentiation. Furthermore, hDPSCs-collagen constructs, pre-differentiated with HS-medium in vitro for 10 days, when implanted in immunocompromised rats, are able to restore critical size parietal bone defects. Therefore these data indicate that HS is a valid substitute for FCS to culture and differentiate in vitro hDPSCs in order to obtain a successful bone regeneration in vivo.

  17. Catechins inhibit vascular endothelial growth factor production and cyclooxygenase-2 expression in human dental pulp cells.

    Science.gov (United States)

    Nakanishi, T; Mukai, K; Hosokawa, Y; Takegawa, D; Matsuo, T

    2015-03-01

    To investigate the effect of catechins on vascular endothelial growth factor (VEGF) production and cyclooxygenase-2 (COX-2) expression in human dental pulp cells (HDPC) stimulated with bacteria-derived factors or pro-inflammatory cytokines. Morphologically fibroblastic cells established from explant cultures of healthy human dental pulp tissues were used as HDPC. HDPC pre-treated with catechins, epigallocatechin-3-gallate (EGCG) or epicatechin gallate (ECG), were exposed to lipopolysaccharide (LPS), peptidoglycan (PG), interlukin-1β (IL-1β) or tumour necrosis factor-α (TNF-α). VEGF production was examined by enzyme-linked immunosorbent assay, and COX-2 expression was assessed by immunoblot. EGCG and ECG significantly reduced LPS- or PG-mediated VEGF production in the HDPC in a dose-dependent manner. EGCG also prevented IL-1β-mediated VEGF production. Although TNF-α did not enhance VEGF production in the dental pulp cells, treatment of 20 μg mL(-1) of EGCG decreased the level of VEGF. In addition, the catechins attenuated COX-2 expression induced by LPS and IL-1β. The up-regulated VEGF and COX-2 expressions in the HDPC stimulated with these bacteria-derived factors or IL-1β were diminished by the treatment of EGCG and ECG. These findings suggest that the catechins may be beneficial as an anti-inflammatory tool of the treatment for pulpal inflammation. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. Biocompatibility of Accelerated Mineral Trioxide Aggregate on Stem Cells Derived from Human Dental Pulp.

    Science.gov (United States)

    Kulan, Pinar; Karabiyik, Ozge; Kose, Gamze T; Kargul, Betul

    2016-02-01

    The aim of this study was to evaluate the effects of several additives on the setting time and cytotoxicity of accelerated-set mineral trioxide aggregate (MTA) on stem cells of human dental pulp. ProRoot white MTA (WMTA) (Dentsply Tulsa Dental, Johnson City, TN) was mixed with various additives including distilled water, 2.5% disodium hydrogen phosphate (Na2HPO4) (Merck, Darmstadt, Germany), K-Y Jelly (Johnson & Johnson, Markham, ON, Canada), and 5% and 10% calcium chloride (CaCl2) (Merck). The setting times were evaluated using a Vicat apparatus (Alsa Lab, Istanbul, Turkey). Human dental pulp stem cells were isolated and seeded into 48-well plates at 2 × 10(3) cells per well and incubated with MTA samples for 24 hours, 3 days, and 7 days. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. MTA mixed with 10% CaCl2 showed the lowest setting time (P cell viability at all time points (P cell viability of MTA mixed with distilled water, 5% CaCl2, 10% CaCl2, and Na2HPO4 increased significantly through time (P dental pulp stem cells in terms of cell viability. Further in vitro and in vivo investigations are required to prove the clinical applications of MTA mixed with various additives. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Analysis of gene expression during odontogenic differentiation of cultured human dental pulp cells

    Directory of Open Access Journals (Sweden)

    Min-Seock Seo

    2012-08-01

    Full Text Available Objectives We analyzed gene-expression profiles after 14 day odontogenic induction of human dental pulp cells (DPCs using a DNA microarray and sought candidate genes possibly associated with mineralization. Materials and Methods Induced human dental pulp cells were obtained by culturing DPCs in odontogenic induction medium (OM for 14 day. Cells exposed to normal culture medium were used as controls. Total RNA was extracted from cells and analyzed by microarray analysis and the key results were confirmed selectively by reverse-transcriptase polymerase chain reaction (RT-PCR. We also performed a gene set enrichment analysis (GSEA of the microarray data. Results Six hundred and five genes among the 47,320 probes on the BeadChip differed by a factor of more than two-fold in the induced cells. Of these, 217 genes were upregulated, and 388 were down-regulated. GSEA revealed that in the induced cells, genes implicated in Apoptosis and Signaling by wingless MMTV integration (Wnt were significantly upregulated. Conclusions Genes implicated in Apoptosis and Signaling by Wnt are highly connected to the differentiation of dental pulp cells into odontoblast.

  20. Karakterisasi stem cell pulpa gigi sulung dengan modifikasi enzim tripsin (The characterization of stem cells from human exfoliated deciduous teeth using trypsin enzym

    Directory of Open Access Journals (Sweden)

    Tri Wijayanti Puspitasari

    2014-06-01

    Full Text Available Background: Now a days, treatment in dentistry, using tissue regeneration that based on the stem cells from human exfoliated deciduous teeth (SHED, grows rapidly. For several reason, the isolated and cultured SHED is difficult to be applied in Indonesia, therefore the modification is needed. This difficulties were caused by the pulp anatomy, the heterogeneous populations in the pulp chamber and the limitations of tools and materials at the laboratory. Purpose: This research was aimed to examine that the modifications of isolation and culture technique of SHEDs for characterization by using the marker of CD105. Methods: The research was experimental laboratory with the cross sectional design. The samples were the human exfoliated deciduous teeth from the children patients of Pediatric Dentistry Department of Universitas Airlangga Dental Hospital which matched the criteria. Dental pulps were isolated and cultured by using the modifications of Trypsin enzymes. Results: The healthy SHEDs could be produced from the modifications of isolation and culture and positively shown the expression of marker CD105 which were indicated by the fluorencent microscope. Conclusion: SHED which isolated and cultured by using the modified techniques, positively characterized by using marker CD105.Latar Belakang: Pengobatan kedokteran gigi berkembang dengan pesat terutama di bidang regenerasi jaringan berbasis Stem Cells from Human Exfoliated Deciduous Teeth (SHED. Di Indonesia, isolasi dan kultur SHED sulit sehingga perlu dilakukan modifikasi. Kendala ini muncul karena jaringan pulpa yang kecil, heterogen dan keterbatasan alat dan bahan di laboratorium. Tujuan: Penelitian ini bertujuan untuk meneliti modifikasi pada cara isolasi dan kultur SHED untuk karakterisasi menggunakan maker CD105. Metode: Jenis penelitian ini adalah eksperimental laboratoris dengan rancangan cross sectional. Sampel penelitian adalah gigi sulung dari pasien anak di Klinik Kedokteran Gigi Anak

  1. Immunolocalization of the small proteoglycan decorin in human teeth.

    Science.gov (United States)

    Yoshiba, N; Yoshiba, K; Iwaku, M; Ozawa, H

    1996-04-01

    The immunolocalization of decorin was studied by confocal laser scanning microscopy and transmission electron microscopy. In the apical area of developing teeth, labelling for decorin was found in the dental papilla cells, prodontoblasts and also in the Hertwig's epithelial cells. Mantle dentine and the initial predentine were negative. In circumpulpal dentine, intense reactivity extended along the calcification front and dentinal tubules. Fluorescence was also evident in odontoblast cell bodies and their processes in predentine. None was perceived, however, in the predentinal matrix. Faint staining was observed on the calcified dentinal matrix. Immunoelectron microscopy revealed staining for decorin in collagen fibrils lining the predentine-dentine junction, and where arrays of labelled filaments were noted orthogonal to the collagen fibrils. Staining extending from the calcification front was observed in the matrix adjacent to the dentinal tubule. The decorin observed at the calcification front might regulate the mineralization of dentinal matrix.

  2. The Effects of Platelet‐Derived Growth Factor‐BB on Human Dental Pulp Stem Cells Mediated Dentin‐Pulp Complex Regeneration

    Science.gov (United States)

    Zhang, Maolin; Jiang, Fei; Zhang, Xiaochen; Wang, Shaoyi; Jin, Yuqin

    2017-01-01

    Abstract Dentin‐pulp complex regeneration is a promising alternative treatment for the irreversible pulpitis caused by tooth trauma or dental caries. This process mainly relies on the recruitment of endogenous or the transplanted dental pulp stem cells (DPSCs) to guide dentin‐pulp tissue formation. Platelet‐derived growth factor (PDGF), a well‐known potent mitogenic, angiogenic, and chemoattractive agent, has been widely used in tissue regeneration. However, the mechanisms underlying the therapeutic effects of PDGF on dentin‐pulp complex regeneration are still unclear. In this study, we tested the effect of PDGF‐BB on dentin‐pulp tissue regeneration by establishing PDGF‐BB gene‐modified human dental pulp stem cells (hDPSCs) using a lentivirus. Our results showed that PDGF‐BB can significantly enhance hDPSC proliferation and odontoblastic differentiation. Furthermore, PDGF‐BB and vascular endothelial growth factor (VEGF) secreted by hDPSCs enhanced angiogenesis. The chemoattractive effect of PDGF‐BB on hDPSCs was also confirmed using a Transwell chemotactic migration model. We further determined that PDGF‐BB facilitates hDPSCs migration via the activation of the phosphatidylinositol 3 kinase (PI3K)/Akt signaling pathway. In vivo, CM‐DiI‐labeled hDPSCs were injected subcutaneously into mice, and our results showed that more labeled cells were recruited to the sites implanted with calcium phosphate cement scaffolds containing PDGF‐BB gene‐modified hDPSCs. Finally, the tissue‐engineered complexes were implanted subcutaneously in mice for 12 weeks, the Lenti‐PDGF group generated more dentin‐like mineralized tissue which showed positive staining for the DSPP protein, similar to tooth dentin tissue, and was surrounded by highly vascularized dental pulp‐like connective tissue. Taken together, our data demonstrated that the PDGF‐BB possesses a powerful function in prompting stem cell‐based dentin‐pulp tissue regeneration. Stem

  3. Efficacy of Sex Determination from Human Dental Pulp Tissue and its Reliability as a Tool in Forensic Dentistry

    Science.gov (United States)

    Khanna, Kaveri Surya

    2015-01-01

    Background: Sex determination is one of the primary steps in forensics. Barr body can be used as a histological method for identification of sex as it is found to be specific to female somatic cells and rare in male cells. To demarcate human dental pulp as an important identification tool of sex in forensic odontology (FO) and to evaluate the time period till which sex can be determined from pulp tissue using three stains H and E, Feulgen, and acridine - orange under fluorescence so as. Materials and Methods: 90 pulp samples (45 males and 45 females) were subjected to Barr body analysis for determination of sex using light and fluorescent microscopy. Results: Barr body was found to be positive for female samples and negative or rare in the male sample (<3%). Conclusion: Barr body from human dental pulp tissue can be used as a successful determinant of sex identification in FO. PMID:26668474

  4. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis.

    Science.gov (United States)

    Jarmalavičiūtė, Akvilė; Tunaitis, Virginijus; Pivoraitė, Ugnė; Venalis, Algirdas; Pivoriūnas, Augustas

    2015-07-01

    Stem cells derived from the dental pulp of human exfoliated deciduous teeth (SHEDs) have unique neurogenic properties that could be potentially exploited for therapeutic use. The importance of paracrine SHED signaling for neuro-regeneration has been recognized, but the exact mechanisms behind these effects are presently unknown. In the present study, we investigated the neuro-protective potential of exosomes and micro-vesicles derived from SHEDs on human dopaminergic neurons during oxidative stress-induced by 6-hydroxy-dopamine (6-OHDA). ReNcell VM human neural stem cells were differentiated into dopaminergic neurons and treated with 100 μmol/L of 6-OHDA alone or in combination with exosomes or micro-vesicles purified by ultracentrifugation from SHEDs cultivated in serum-free medium under two conditions: in standard two-dimensional culture flasks or on laminin-coated micro-carriers in a bioreactor. Real-time monitoring of apoptosis was performed with the use of time-lapse confocal microscopy and the CellEvent Caspase-3/7 green detection reagent. Exosomes but not micro-vesicles derived from SHEDs grown on the laminin-coated three-dimensional alginate micro-carriers suppressed 6-OHDA-induced apoptosis in dopaminergic neurons by approximately 80% throughout the culture period. Strikingly, no such effects were observed for the exosomes derived from SHEDs grown under standard culture conditions. Our results suggest that exosomes derived from SHEDs are considered as new potential therapeutic tool in the treatment of Parkinson's disease. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Expression of mineralization markers during pulp response to biodentine and mineral trioxide aggregate.

    OpenAIRE

    Dalto é, Mariana O.; Paula-Silva, Francisco Wanderley G.; Faccioli, Lucia H.; Gatón Hernández, Patrícia; Rossi, Andiara de; Silva, Léa Assed Bezerra da

    2016-01-01

    INTRODUCTION: The purpose of this study was to compare the cell viability of dental pulp cells treated with Biodentine (Septodont, Saint-Maur, France) and mineral trioxide aggregate (MTA) and the in vitro and in vivo expression of mineralization markers induced by the 2 materials. METHODS: Human dental pulp cells isolated from 6 permanent teeth were stimulated with Biodentine and MTA extracts. Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromid...

  6. Characterization of p75 neurotrophin receptor expression in human dental pulp stem cells.

    Science.gov (United States)

    Pan, Wenru; Kremer, Karlea L; Kaidonis, Xenia; Ludlow, Victoria E; Rogers, Mary-Louise; Xie, Jianling; Proud, Christopher G; Koblar, Simon A

    2016-10-01

    Human adult dental pulp stem cells (DPSC) are a heterogeneous stem cell population, which are able to differentiate down neural, chondrocyte, osteocyte and adipocyte lineages. We studied the expression pattern of p75 neurotrophin receptors (p75NTR), a marker of neural stem cells, within human DPSC populations from eight donors. p75NTR are expressed at low levels (cell marker), SOX2 (cell pluripotency marker) and nestin (neural stem cell marker) in comparison to p75(-) DPSC. Our results suggest that p75(+) hDPSC may denote a subpopulation with greater neurogenic potential. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  7. Prevalence and Analysis of Factors Related to Occurrence of Pulp ...

    African Journals Online (AJOL)

    Objectives: The study investigated pulp stone occurrence in adult restorative patients. It also ighlighted the relationship between pulp stone and pristine posterior teeth, chronic periodontitis and posterior teeth with abrasion, as well as the effect of age and gender on pulp stone occurrence. Method: Three hundred subjects, ...

  8. Sensory Neuropeptides and Endogenous Opioids Expression in Human Dental Pulp with Asymptomatic Inflammation: In Vivo Study

    Directory of Open Access Journals (Sweden)

    Daniel Chavarria-Bolaños

    2015-01-01

    Full Text Available Purpose. This study quantified the expression of substance P (SP, calcitonin gene-related peptide (CGRP, β-endorphins (β-End, and methionine-enkephalin (Met-Enk in human dental pulp following orthodontic intrusion. Methods. Eight patients were selected according to preestablished inclusion criteria. From each patient, two premolars (indicated for extraction due to orthodontic reasons were randomly assigned to two different groups: the asymptomatic inflammation group (EXPg, which would undergo controlled intrusive force for seven days, and the control group (CTRg, which was used to determine the basal levels of each substance. Once extracted, dental pulp tissue was prepared to determine the expression levels of both neuropeptides and endogenous opioids by radioimmunoassay (RIA. Results. All samples from the CTRg exhibited basal levels of both neuropeptides and endogenous opioids. By day seven, all patients were asymptomatic, even when all orthodontic-intrusive devices were still active. In the EXPg, the SP and CGRP exhibited statistically significant different levels. Although none of the endogenous opioids showed statistically significant differences, they all expressed increasing trends in the EXPg. Conclusions. SP and CGRP were identified in dental pulp after seven days of controlled orthodontic intrusion movement, even in the absence of pain.

  9. Measurement of Ca, Zn and Sr in enamel of human teeth by XRF

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.; Featherstone, J.D.B.; Cohn, S.H.

    1984-01-01

    Energy dispersive x-ray fluorescence (EDXRF) has been employed to measure Ca, Zn, and Sr in enamel of human teeth. The calibration of the EDXRF system was performed by comparing Sr/Ca ratios with values obtained by atomic absorption analysis of acid etched biopsies of the enamel surface. Two calibration lines were obtained, one line for untreated teeth and the second line for teeth immersed (treated) in solutions containing Sr. A simple analytical model demonstrated that the two calibration lines were the result of the difference in the depth of the enamel sampled by EDXRF and by the acid-etched biopsy. The multi-elemental, non-destructive and quantitative aspects of EDXRF permit the sequential monitoring of the effects of Sr and Zn ions on the mineralization and demineralization processes in human enamel. The portability of the system and adaptability to non-invasive measurements makes it suitable for field studies. 26 references, 4 figures.

  10. Coronal microleakage of endodontically treated teeth with intracanal post exposed to fresh human saliva

    Directory of Open Access Journals (Sweden)

    Simone Gomes dias de Oliveira

    2013-09-01

    Full Text Available OBJECTIVE: The aim of this study was to investigate the coronal microleakage of endodontically treated teeth prepared to receive an intracanal post and teeth with an intracanal post but without a prosthetic crown and exposed to contamination by fresh human saliva. MATERIAL AND METHODS: A mechanical-chemical preparation following the step-back technique was carried out in 35 extracted single-rooted human teeth. The teeth were randomly divided into five groups: G1=root canals instrumented, obturated, and prepared to receive an intracanal post (N=10; G2=root canals with cemented posts but without coronal sealing (N=10; PC1=positive control root canals instrumented and open (N=5; PC2=positive control 2 root canals without instrumentation and open (N=5; and NC=negative control healthy teeth (N=5. The crowns were removed except for the control group of intact teeth. The root canals were obturated and sterilized with cobalt 60 gamma irradiation and were then adapted in an apparatus using a Brain Heart Infusion (BHI medium and fresh human saliva for contamination. Microbial growth was indicated by the presence of turbidity in the BHI liquid medium. RESULTS: Data were submitted to the Kaplan-Meier Survival Analysis and the Holm-Sidak statistic method, which observed an index of 90% of microleakage in root canals after 24 hours for G1 and 70% of microleakage in samples at the end of 40 days for G2. CONCLUSION: The results show that root canals with an intracanal post but without a prosthetic crown can be recontaminated when exposed to fresh human saliva in a short period.

  11. Molecular sex identification of dry human teeth specimens from Sokoto, Northwestern Nigeria.

    Science.gov (United States)

    Zagga, Ad; Ahmed, H Oon; Ismail, Sm; Tadros, Aa

    2014-05-01

    The advent of molecular techniques has revolutionized the ability of scientists to estimate the sex of individuals. Forensic odontology plays an important role in establishing the sex of victims with bodies mutilated beyond recognition due to major disaster. The genetic difference between males and females is defined by the presence or absence of the Y-chromosome. The use of alphoid-repeat primers in sex estimation was first applied on dried blood. Generally, the X, Y alphoid repeats blind test attest to the accuracy of genetic testing, and also point the potential for occasional error in morphometric sexing. To estimate genetic sex of dry human teeth specimens from Sokoto, Northwestern Nigeria, using polymerase chain reaction (PCR). A single-blind study of DNA analysis for sex estimation of nine dry human teeth specimens from Sokoto, Northwestern Nigeria, through PCR, using alphoid repeats primers, was undertaken. The genetic sex of each group of the teeth samples were accurately (100%) identified. For each group of teeth, PCR Sensitivity = 100%, Specificity = 0%, Predictive value of positive test = 100%, Predictive value of negative test = 0%, False positive rate = 0%, False negative rate = 0%, Efficiency of test = 100%. Fisher's exact probability test P = 1. Z-test: z- and P values were invalid. This study has demonstrated the successful use of alphoid-repeat primers in genetic sex identification of human dry teeth samples from Sokoto, Northwestern Nigeria. This is the first known study estimating the sex of human dry teeth specimens by means of PCR in Nigeria. There is need for further studies in Nigeria to complement the findings of this study.

  12. Evidence to suggest that teeth act as human ornament displays signalling mate quality.

    Directory of Open Access Journals (Sweden)

    Colin A Hendrie

    Full Text Available Ornament displays seen in animals convey information about genetic quality, developmental history and current disease state to both prospective sexual partners and potential rivals. In this context, showing of teeth through smiles etc is a characteristic feature of human social interaction. Tooth development is influenced by genetic and environmental factors. Adult teeth record environmental and traumatic events, as well as the effects of disease and ageing. Teeth are therefore a rich source of information about individuals and their histories. This study examined the effects of digital manipulations of tooth colour and spacing. Results showed that deviation away from normal spacing and/or the presence of yellowed colouration had negative effects on ratings of attractiveness and that these effects were markedly stronger in female models. Whitening had no effect beyond that produced by natural colouration. This indicates that these colour induced alterations in ratings of attractiveness are mediated by increased/decreased yellowing rather than whitening per se. Teeth become yellower and darker with age. Therefore it is suggested that whilst the teeth of both sexes act as human ornament displays, the female display is more complex because it additionally signals residual reproductive value.

  13. The effects of LPS on adhesion and migration of human dental pulp stem cells in vitro.

    Science.gov (United States)

    Li, Dongmei; Fu, Lei; Zhang, Yaqing; Yu, Qing; Ma, Fengle; Wang, Zhihua; Luo, Zhirong; Zhou, Zeyuan; Cooper, Paul R; He, Wenxi

    2014-10-01

    The aim of the present study was to investigate the effects of lipopolysaccharide (LPS) on the migration and adhesion of human dental pulp stem cells (hDPSCs) and the associated intracellular signalling pathways. hDPSCs obtained from impacted third molars were exposed to LPS and in vitro cell adhesion and migration were evaluated. The effects of LPS on gene expression of adhesion molecules and chemotactic factors were investigated using quantitative real-time reverse-transcriptase polymerase chain (qRT-PCR). The potential involvement of nuclear factor NF-kappa-B (NF-κB) or mitogen-activated protein kinase (MAPK) signalling pathways in the migration and adhesion of hDPSCs induced by LPS was assessed using a transwell cell migration assay and qRT-PCR. LPS promoted the adhesion of hDPSCs at 1μg/mL and 10μg/mL concentrations, 1μg/mL LPS showing the greater effect. Transwell cell migration assay demonstrated that LPS increased migration of hDPSCs at 1μg/mL concentration while decreasing it significantly at 10μg/mL. The mRNA expressions of adhesion molecules and chemotactic factors were enhanced significantly after stimulation with 1μg/mL LPS. Specific inhibitors for NF-κB and extracellular signal regulated kinases (ERK), c-Jun N-terminal kinase (JNK), and P38, markedly antagonised LPS-induced adhesion and migration of hDPSCs and also significantly abrogated LPS-induced up-regulation of adhesion molecules and chemotactic factors. In addition, specific inhibitors of SDF-1/CXCR4, AMD3100 significantly diminished LPS-induced migration of hDPSCs. LPS at specific concentrations can promote cell adhesion and migration in hDPSCs via the NF-κB and MAPK pathways by up-regulating the expression of adhesion molecules and chemotactic factors. LPS may influence pulp healing through enhancing the adhesion and migration of human dental pulp stem cells when it enters into pulp during pulp exposure or deep caries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Apoptosis in the human periodontal membrane evaluated in primary and permanent teeth

    DEFF Research Database (Denmark)

    Bille, Marie-Louise Bastholm; Thomsen, Bjarke; Kjær, Inger

    2011-01-01

    Abstract Objective. Recent studies revealed a highly innervated layer in close proximity to the root surface in the periodontal membrane of human teeth. Persistence of the epithelial cells of Malassez along root surfaces without resorption has also been demonstrated. It is hypothesized that resor...

  15. Pulp and plaque microbiotas of children with severe early childhood caries

    Directory of Open Access Journals (Sweden)

    Natalia I. Chalmers

    2015-02-01

    Full Text Available Background and objective: Bacterial invasion into pulps of primary teeth can lead to infection and premature tooth loss in children. This pilot study aimed to explore whether the microbiota of carious exposures of dental pulps resembles that of carious dentin or that of infected root canals. Design: Children with severe early childhood caries were studied. Children were consented and extent of caries, plaque, and gingivitis measured. Bacteria were sampled from carious lesion biofilms and vital carious exposures of pulps, and processed by anaerobic culture. Isolates were characterized from partial sequences of the 16S rRNA gene and identified by comparison with taxa in the Human Oral Microbiome Database (http://www.HOMD.org. The microbiotas of carious lesions and dental pulps were compared using univariate and multivariate approaches. Results: The microbiota of cariously exposed pulps was similar in composition to that of carious lesion biofilms except that fewer species/taxa were identified from pulps. The major taxa identified belonged to the phyla Firmicutes (mainly streptococci and Actinobacteria (mainly Actinomyces species. Actinomyces and Selenomonas species were associated with carious lesions whereas Veillonella species, particularly Veillonella dispar was associated with pulps. Other bacteria detected in pulps included Streptococcus mutans, Parascardovia denticolens, Bifidobacterium longum, and several Lactobacillus and Actinomyces species. By principal, component analysis pulp microbiotas grouped together, whereas those in caries biofilms were widely dispersed. Conclusions: We conclude that the microbiota of cariously exposed vital primary pulps is composed of a subset of species associated with carious lesions. Vital primary pulps had a dominant Firmicutes and Actinobacteria microbiota which contrasts with reports of endodontic infections which can harbor a gram-negative microbiota. The microbiota of exposed primary pulps may provide

  16. Pulp and plaque microbiotas of children with severe early childhood caries.

    Science.gov (United States)

    Chalmers, Natalia I; Oh, Kevin; Hughes, Christopher V; Pradhan, Nooruddin; Kanasi, Eleni; Ehrlich, Ygal; Dewhirst, Floyd E; Tanner, Anne C R

    2015-01-01

    Bacterial invasion into pulps of primary teeth can lead to infection and premature tooth loss in children. This pilot study aimed to explore whether the microbiota of carious exposures of dental pulps resembles that of carious dentin or that of infected root canals. Children with severe early childhood caries were studied. Children were consented and extent of caries, plaque, and gingivitis measured. Bacteria were sampled from carious lesion biofilms and vital carious exposures of pulps, and processed by anaerobic culture. Isolates were characterized from partial sequences of the 16S rRNA gene and identified by comparison with taxa in the Human Oral Microbiome Database (http://www.HOMD.org). The microbiotas of carious lesions and dental pulps were compared using univariate and multivariate approaches. The microbiota of cariously exposed pulps was similar in composition to that of carious lesion biofilms except that fewer species/taxa were identified from pulps. The major taxa identified belonged to the phyla Firmicutes (mainly streptococci) and Actinobacteria (mainly Actinomyces species). Actinomyces and Selenomonas species were associated with carious lesions whereas Veillonella species, particularly Veillonella dispar was associated with pulps. Other bacteria detected in pulps included Streptococcus mutans, Parascardovia denticolens, Bifidobacterium longum, and several Lactobacillus and Actinomyces species. By principal, component analysis pulp microbiotas grouped together, whereas those in caries biofilms were widely dispersed. We conclude that the microbiota of cariously exposed vital primary pulps is composed of a subset of species associated with carious lesions. Vital primary pulps had a dominant Firmicutes and Actinobacteria microbiota which contrasts with reports of endodontic infections which can harbor a gram-negative microbiota. The microbiota of exposed primary pulps may provide insight into bacterial species at the forefront of caries invasion in

  17. Outcome of Endodontically Treated Cracked Teeth

    Science.gov (United States)

    2016-06-01

    Reversible pulpitis _Symptomatic irreversible pulpitis _Asymptomatic irreversible pulpitis _Pulp necrosis _Previously treated _Previously initiated...treatment Diagnosis Pulpal: __ Normal pulp __ Reversible pulpitis __ Asymptomatic irreversible pulpitis __ Symptomatic irreversible pulp!Us...the course of the study. Opdam et al. (2008) followed 40 patients diagnosed with cracked teeth and reversible pulpitis . These patients received either

  18. Structure and microstructure of coronary dentin in non-erupted human deciduous incisor teeth

    Directory of Open Access Journals (Sweden)

    Costa Luciane R.R S.

    2002-01-01

    Full Text Available The dentin structure of non-erupted human deciduous mandibular and maxillary central and lateral incisor teeth was studied employing light and scanning electron microscopy. For light microscopy, nitric-acid-demineralized and ground sections were used. The sections were stained by hematoxylin-eosin, picrosirius and azo-carmim methods, and ground specimens were prepared using a carborundum disk mounted in a handpiece. For SEM study, teeth were frozen in liquid nitrogen and fractured at longitudinal and transversal directions. Structurally, demineralization and ground methods revealed tubules with primary and secondary curvatures, canaliculi, giant tubules, interglobular dentin, predentin, and intertubular dentin. Scanning electron microscopy showed three-dimensional aspects of dentinal tubules, canaliculi, peritubular dentin, intertubular dentin, and predentin. This study contributes to knowledge about dentin morphology showing characteristics of teeth not yet submitted to mastication stress.

  19. Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future.

    Science.gov (United States)

    Arora, Vipin; Arora, Pooja; Munshi, A K

    2009-01-01

    Tooth derived cells are readily accessible and provide an easy and minimally invasive way to obtain and store stem cells for future use. Banking ones own tooth-derived stem cells is a reasonable and simple alternative to harvesting stem cells from other tissues. Obtaining stem cells from human exfoliated deciduous teeth (SHED) is simple and convenient, with little or no trauma. Every child loses primary teeth, which creates the perfect opportunity to recover and store this convenient source of stem cells--should they be needed to treat future injuries or ailments and presents a far better alternative to simply discarding the teeth or storing them as mementos from the past. Furthermore, using ones own stem cells poses few, if any, risks for developing immune reactions or rejection following transplantation and also eliminates the potential of contracting disease from donor cells. Stem cells can also be recovered from developing wisdom teeth and permanent teeth. Individuals have different opportunities at different stages of their life to bank these valuable cells. It is best to recover stem cells when a child is young and healthy and the cells are strong and proliferative. The purpose of this review is to discuss the present scenario as well as the technical details of tooth banking as related to SHED cells.

  20. Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and Biodentine on Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Tomás-Catalá, Christopher J; Collado-González, Mar; García-Bernal, David; Oñate-Sánchez, Ricardo E; Forner, Leopoldo; Llena, Carmen; Lozano, Adrián; Moraleda, José M; Rodríguez-Lozano, Francisco J

    2018-01-01

    The aim of the present study was to evaluate the in vitro cytotoxicity of MTA Repair HP, NeoMTA Plus, and Biodentine, new bioactive materials used for dental pulp capping, on human dental pulp stem cells (hDPSCs). Biological testing was carried out in vitro on hDPSCs. Cell viability and cell migration assays were performed using eluates of each capping material. To evaluate cell morphology and cell attachment to the different materials, hDPSCs were directly seeded onto the material surfaces and analyzed by scanning electron microscopy. The chemical composition of the pulp-capping materials was determined by energy-dispersive X-ray and eluates were analyzed by inductively coupled plasma-mass spectrometry. Statistical differences were assessed by analysis of variance and Tukey test (P Biodentine showed higher rates of cell viability than MTA Repair HP and NeoMTA Plus (P Biodentine (P Biodentine disks but moderate rates on MTA Repair HP and NeoMTA Plus disks. Energy-dispersive X-ray pointed to similar weight percentages of C, O, and Ca in all 3 materials, whereas other elements such as Al, Si, and S were also found. The new pulp-capping materials MTA Repair HP, NeoMTA Plus, and Biodentine showed a suitable degree of cytocompatibility with hDPSCs, and good cell migration rates, although Biodentine showed higher rates of proliferation time-dependent. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Response of human dental pulp cells to a silver-containing PLGA/TCP-nanofabric as a potential antibacterial regenerative pulp-capping material.

    Science.gov (United States)

    Cvikl, Barbara; Hess, Samuel C; Miron, Richard J; Agis, Hermann; Bosshardt, Dieter; Attin, Thomas; Schmidlin, Patrick R; Lussi, Adrian

    2017-02-27

    Damage or exposure of the dental pulp requires immediate therapeutic intervention. This study assessed the biocompatibility of a silver-containing PLGA/TCP-nanofabric scaffold (PLGA/Ag-TCP) in two in vitro models, i.e. the material adapted on pre-cultured cells and cells directly cultured on the material, respectively. Collagen saffolds with and without hyaluronan acid (Coll-HA; Coll) using both cell culturing methods and cells growing on culture plates served as reference. Cell viability and proliferation were assessed after 24, 48, and 72 h based on formazan formation and BrdU incorporation. Scaffolds were harvested. Gene expression of interleukin(IL)-6, tumor necrosis factor (TNF)-alpha, and alkaline phosphatase (AP) was assessed 24 h after stimulation. In both models formazan formation and BrdU incorporation was reduced by PLGA/Ag-TCP on dental pulp cells, while no significant reduction was found in cells with Coll and Coll-HA. Cells with PLGA/Ag-TCP for 72 h showed similar relative BrdU incorporation than cells stimulated with Coll and Coll-HA. A prominent increase in the pro-inflammatory genes IL-6 and TNF-α was observed when cells were cultured with PLGA/Ag-TCP compared to the other groups. This increase was parallel with a slight increase in AP expression. Overall, no differences between the two culture methods were observed. PLGA/Ag-TCP decreased viability and proliferation rate of human dental pulp cells and increased the pro-inflammatory capacity and alkaline phosphatase expression. Whether these cellular responses observed in vitro translate into pulp regeneration in vivo will be assessed in further studies.

  2. FHL2 mediates tooth development and human dental pulp cell differentiation into odontoblasts, partially by interacting with Runx2.

    Science.gov (United States)

    Du, Jianxin; Wang, Qiang; Yang, Pishan; Wang, Xiaoying

    2016-04-01

    The differentiation of mesenchymal cells in tooth germ and dental pulp cells into odontoblasts is crucial for dentin formation, and the transcription factor runt-related transcription factor (Runx2) is necessary for odontoblast differentiation. Our previous study demonstrated that four and a half LIM domains 2 (FHL2) may play an important role in tooth development and human dental pulp cell differentiation. This study aimed to determine whether FHL2 mediated the mesenchymal cells in tooth development and human dental pulp cell differentiation into odontoblasts by interacting with Runx2. The expression patterns of FHL2 and Runx2 were examined at the early stages of mouse molar development using double immunofluorescence staining. Western blot analysis and co-immunoprecipitation (Co-IP) were conducted for the preliminary study of the relationship between FHL2 and Runx2 in human dental pulp cell differentiation into odontoblasts. Results of double immunofluorescence staining showed that FHL2 and Runx2 exhibited similar expression patterns at the early stages of tooth development. Western blot analysis indicated that the expression patterns of FHL2 and Runx2 were synchronized on day 7 of induction, whereas those on day 14 differed. Co-IP analysis revealed positive bands of protein complexes, revealing the interaction of FHL2 and Runx2 on days 0, 7 and 14 of induction. Our data suggested that FHL2 might interact with Runx2 to mediate mesenchymal cell differentiation at the early stages of tooth development and human dental pulp cell differentiation.

  3. Allogenic banking of dental pulp stem cells for innovative therapeutics

    Science.gov (United States)

    Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J

    2015-01-01

    Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat. PMID:26328017

  4. Starch grains on human teeth reveal early broad crop diet in northern Peru

    OpenAIRE

    Piperno, Dolores R.; Dillehay, Tom D.

    2008-01-01

    Previous research indicates that the Ñanchoc Valley in northern Peru was an important locus of early and middle Holocene human settlement, and that between 9200 and 5500 14C yr B.P. the valley inhabitants adopted major crop plants such as squash (Cucurbita moschata), peanuts (Arachis sp.), and cotton (Gossypium barbadense). We report here an examination of starch grains preserved in the calculus of human teeth from these sites that provides direct evidence for the early consumption of cultiva...

  5. ESTHETICS IN PRIMARY TEETH

    OpenAIRE

    Mathew Renu Ann

    2013-01-01

    Dental esthetics is an integral part of facial esthetics. Esthetic problems in childhood and adolescence can have a significant effect on psychosocial development and interaction with peers. Esthetic restoration of primary anterior teeth can be especially challenging due to the small size of the teeth, close proximity of pulp to tooth surface, relatively thin enamel and surface area for bonding, issues related to child behavior and finally cost of the treatment. The advent of different techni...

  6. Direct Pulp Capping With Mineral Trioxide Aggregate: An Observational Study

    National Research Council Canada - National Science Library

    Bogen, George; Kim, Jay S; Bakland, Leif K

    2008-01-01

    .... A recently developed material, mineral trioxide aggregate (MTA), resists bacterial leakage and may provide protection for the pulp, allowing repair and continued pulp vitality in teeth when used in combination with a sealed restoration...

  7. Investigation of modified platelet-rich plasma (mPRP) in promoting the proliferation and differentiation of dental pulp stem cells from deciduous teeth.

    Science.gov (United States)

    Wen, J; Li, H T; Li, S H; Li, X; Duan, J M

    2016-09-01

    Stem cells from human exfoliated deciduous teeth (SHEDs) have great potential to treat various dental-related diseases in regenerative medicine. They are usually maintained with 10% fetal bovine serum (FBS) in vitro. Modified platelet-rich plasma (mPRP) would be a safe alternative to 10% FBS during SHEDs culture. Therefore, our study aimed to compare the proliferation and differentiation of SHEDs cultured in mPRP and FBS medium to explore an optimal concentration of mPRP for SHEDs maintenance. Platelets were harvested by automatic blood cell analyzer and activated by repeated liquid nitrogen freezing and thawing. The platelet-related cytokines were examined and analyzed by ELISA. SHEDs were extracted and cultured with different concentrations of mPRP or 10% FBS medium. Alkaline phosphatase (ALP) activity was measured. Mineralization factors, RUNX2 and OCN, were measured by real-time PCR. SHEDs were characterized with mesenchymal stem cells (MSCs) markers including vimentin, CD44, and CD105. mPRP at different concentrations (2, 5, 10, and 20%) enhanced the growth of SHEDs. Moreover, mPRP significantly stimulated ALP activity and promoted expression of RUNX2 and OCN compared with 10% FBS. mPRP could efficiently facilitate proliferation and differentiation of SHEDs, and 2% mPRP would be an optimal substitute for 10% FBS during SHEDs expansion and differentiation in clinical scale manufacturing.

  8. Investigation of modified platelet-rich plasma (mPRP in promoting the proliferation and differentiation of dental pulp stem cells from deciduous teeth

    Directory of Open Access Journals (Sweden)

    J. Wen

    2016-01-01

    Full Text Available Stem cells from human exfoliated deciduous teeth (SHEDs have great potential to treat various dental-related diseases in regenerative medicine. They are usually maintained with 10% fetal bovine serum (FBS in vitro. Modified platelet-rich plasma (mPRP would be a safe alternative to 10% FBS during SHEDs culture. Therefore, our study aimed to compare the proliferation and differentiation of SHEDs cultured in mPRP and FBS medium to explore an optimal concentration of mPRP for SHEDs maintenance. Platelets were harvested by automatic blood cell analyzer and activated by repeated liquid nitrogen freezing and thawing. The platelet-related cytokines were examined and analyzed by ELISA. SHEDs were extracted and cultured with different concentrations of mPRP or 10% FBS medium. Alkaline phosphatase (ALP activity was measured. Mineralization factors, RUNX2 and OCN, were measured by real-time PCR. SHEDs were characterized with mesenchymal stem cells (MSCs markers including vimentin, CD44, and CD105. mPRP at different concentrations (2, 5, 10, and 20% enhanced the growth of SHEDs. Moreover, mPRP significantly stimulated ALP activity and promoted expression of RUNX2 and OCN compared with 10% FBS. mPRP could efficiently facilitate proliferation and differentiation of SHEDs, and 2% mPRP would be an optimal substitute for 10% FBS during SHEDs expansion and differentiation in clinical scale manufacturing.

  9. Basic Fibroblast Growth Factor Regulates REX1 Expression Via IL-6 In Stem Cells Isolated From Human Exfoliated Deciduous Teeth.

    Science.gov (United States)

    Nowwarote, Nunthawan; Sukarawan, Waleerat; Pavasant, Prasit; Osathanon, Thanaphum

    2017-06-01

    Basic fibroblast growth factor (bFGF) regulates pluripotent marker expression and cellular differentiation in various cell types. However, the mechanism by which bFGF regulates REX1 expression in stem cells, isolated from human exfoliated deciduous teeth (SHEDs) remains unclear. The aim of the present study was to investigate the regulation of REX1 expression by bFGF in SHEDs. SHEDs were isolated and characterized. Their mRNA and protein expression levels were determined using real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. In some experiments, chemical inhibitors were added to the culture medium to impede specific signaling pathways. Cells isolated from human exfoliated deciduous tooth dental pulp tissue expressed mesenchymal stem cell surface markers (CD44, CD73, CD90, and CD105). These cells differentiated into osteogenic and adipogenic lineages, when appropriately induced. Treating SHEDs with bFGF induced REX1 mRNA expression and this effect was attenuated by pretreatment with FGFR or Akt inhibitors. Cycloheximide pretreatment also inhibited the bFGF-induced REX1 expression, implying the involvement of intermediate molecule(s). Further, the addition of an IL-6 neutralizing antibody attenuated the bFGF-induced REX1 expression by SHEDs. In conclusion, bFGF enhanced REX1 expression by SHEDs via the FGFR and Akt signaling pathways. Moreover, IL-6 participated in the bFGF-induced REX1 expression in SHEDs. J. Cell. Biochem. 118: 1480-1488, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Scanning laser-line source technique for nondestructive evaluation of cracks in human teeth.

    Science.gov (United States)

    Sun, Kaihua; Yuan, Ling; Shen, Zhonghua; Xu, Zhihong; Zhu, Qingping; Ni, Xiaowu; Lu, Jian

    2014-04-10

    This paper describes the first application of a remote nondestructive laser ultrasonic (LU) system for clinical diagnosis of cracks in human teeth, to our knowledge. It performs non-contact cracks detection on small-dimension teeth samples. Two extracted teeth with different types of cracks (cracked tooth and craze lines), which have different crack depths, are used as experimental samples. A series of ultrasonic waves were generated by a scanning laser-line source technique and detected with a laser-Doppler vibrometer on the two samples. The B-scan images and peak-to-peak amplitude variation curves of surface acoustic waves were obtained for evaluating the cracks' position and depth. The simulation results calculated by finite element method were combined with the experimental results for accurately measuring the depth of crack. The results demonstrate that this LU system has been successfully applied on crack evaluation of human teeth. And as a remote, nondestructive technique, it has great potential for early in vivo diagnosis of cracked tooth and even the future clinical dental tests.

  11. Three-dimensional analysis of the pulp cavity on surface models of molar teeth, using X-ray micro-computed tomography

    DEFF Research Database (Denmark)

    Markvart, Merete; Bjørndal, Lars; Darvann, Tron Andre

    2012-01-01

    . In summary, three-dimensional surface models were made with a high precision; an increased accumulation of mineral deposits was noted in molars with small pulp chambers and combined with the consistent pattern of intra-radicular connections, the potential endodontic treatment complexity is underlined...

  12. Toll-like Receptor Expression Profile of Human Dental Pulp Stem/Progenitor Cells.

    Science.gov (United States)

    Fawzy El-Sayed, Karim M; Klingebiel, Pauline; Dörfer, Christof E

    2016-03-01

    Human dental pulp stem/progenitor cells (DPSCs) show remarkable regenerative potential in vivo. During regeneration, DPSCs may interact with their inflammatory environment via toll-like receptors (TLRs). The present study aimed to depict for the first time the TLR expression profile of DPSCs. Cells were isolated from human dental pulp, STRO-1-immunomagnetically sorted, and seeded out to obtain single colony-forming units. DPSCs were characterized for CD14, CD34, CD45, CD73, CD90, CD105, and CD146 expression and for their multilineage differentiation potential. After incubation of DPSCs in basic or inflammatory medium (interleukin-1β, interferon-γ, interferon-α, tumor necrosis factor-α), TLR expression profiles were generated (DPSCs and DPSCs-i). DPSCs showed all characteristics of stem/progenitor cells. In basic medium DPSCs expressed TLRs 1-10 in different quantities. The inflammatory medium upregulated the expression of TLRs 2, 3, 4, 5, and 8, downregulated TLRs 1, 7, 9, and 10, and abolished TLR6. The current study describes for the first time the distinctive TLR expression profile of DPSCs in uninflamed and inflamed conditions. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Multipotent Differentiation of Human Dental Pulp Stem Cells: a Literature Review.

    Science.gov (United States)

    Nuti, N; Corallo, C; Chan, B M F; Ferrari, M; Gerami-Naini, B

    2016-10-01

    The advent of regenerative medicine has brought us the opportunity to regenerate, modify and restore human organs function. Stem cells, a key resource in regenerative medicine, are defined as clonogenic, self-renewing, progenitor cells that can generate into one or more specialized cell types. Stem cells have been classified into three main groups: embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult/postnatal stem cells (ASCs). The present review focused the attention on ASCs, which have been identified in many perioral tissues such as dental pulp, periodontal ligament, follicle, gingival, alveolar bone and papilla. Human dental pulp stem cells (hDPSCs) are ectodermal-derived stem cells, originating from migrating neural crest cells and possess mesenchymal stem cell properties. During last decade, hDPSCs have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and ability to differentiate in several cell phenotypes. In this review, we have carefully described the potential of hDPSCs to differentiate into odontoblasts, osteocytes/osteoblasts, adipocytes, chondrocytes and neural cells.

  14. The effects of human platelet lysate on dental pulp stem cells derived from impacted human third molars.

    Science.gov (United States)

    Chen, Bo; Sun, Hai-Hua; Wang, Han-Guo; Kong, Hui; Chen, Fa-Ming; Yu, Qing

    2012-07-01

    Human platelet lysate (PL) has been suggested as a substitute for fetal bovine serum (FBS) in the large-scale expansion of dental pulp stem cells (DPSCs). However, the biological effects and the optimal concentrations of PL for the proliferation and differentiation of human DPSCs remain unexplored. We isolated and expanded stem cells from the dental pulp of extracted third molars and evaluated the effects of PL on the cells' proliferative capacity and differentiation potential in vitro and in vivo. Before testing, immunocytochemical staining and flow cytometry-based cell sorting showed that the cells derived from human dental pulp contained mesenchymal stem cell populations. Cells were grown on tissue culture plastic or on hydroxyapatite-tricalcium phosphate (HA/TCP) biomaterials and were incubated with either normal or odontogenic/osteogenic media in the presence or absence of various concentrations of human PL for further investigation. The proliferation of DPSCs was significantly increased when the cells were cultured in 5% PL under all testing conditions (P models. We conclude that the appropriate concentration of PL enhances the proliferation and mineralized differentiation of human DPSCs both in vitro and in vivo, which supports the use of PL as an alternative to FBS or a nonzoonotic adjuvant for cell culture in future clinical trials. However, the elucidation of the molecular complexity of PL products and the identification of both the essential growth factors that determine the fate of a specific stem cell and the criteria to establish dosing require further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells.

    Directory of Open Access Journals (Sweden)

    Emilio Satoshi Hara

    Full Text Available Dental pulp cells (DPCs are known to be enriched in stem/progenitor cells but not well characterized yet. Small non-coding microRNAs (miRNAs have been identified to control protein translation, mRNA stability and transcription, and have been reported to play important roles in stem cell biology, related to cell reprogramming, maintenance of stemness and regulation of cell differentiation. In order to characterize dental pulp stem/progenitor cells and its mechanism of differentiation, we herein sorted stem-cell-enriched side population (SP cells from human DPCs and periodontal ligament cells (PDLCs, and performed a locked nucleic acid (LNA-based miRNA array. As a result, miR-720 was highly expressed in the differentiated main population (MP cells compared to that in SP cells. In silico analysis and a reporter assay showed that miR-720 targets the stem cell marker NANOG, indicating that miR-720 could promote differentiation of dental pulp stem/progenitor cells by repressing NANOG. Indeed, gain-and loss-of-function analyses showed that miR-720 controls NANOG transcript and protein levels. Moreover, transfection of miR-720 significantly decreased the number of cells positive for the early stem cell marker SSEA-4. Concomitantly, mRNA levels of DNA methyltransferases (DNMTs, which are known to play crucial factors during stem cell differentiation, were also increased by miR-720 through unknown mechanism. Finally, miR-720 decreased DPC proliferation as determined by immunocytochemical analysis against ki-67, and promoted odontogenic differentiation as demonstrated by alizarin red staining, as well as alkaline phosphatase and osteopontin mRNA levels. Our findings identify miR-720 as a novel miRNA regulating the differentiation of DPCs.

  16. The role of thymosin beta 4 on odontogenic differentiation in human dental pulp cells.

    Directory of Open Access Journals (Sweden)

    Sang-Im Lee

    Full Text Available We recently reported that overexpression of thymosin beta-4 (Tβ4 in transgenic mice promotes abnormal hair growth and tooth development, but the role of Tβ4 in dental pulp regeneration was not completely understood. The aim of this study was to investigate the role of Tβ4 on odontoblastic differentiation and the underlying mechanism regulating pulp regeneration in human dental pulp cells (HDPCs. Our results demonstrate that mRNA and protein expression of Tβ4 is upregulated during odontogenic differentiation in HDPCs. Transfection with Tβ4 siRNA decreases OM-induced odontoblastic differentiation by decreasing alkaline phosphatase (ALP activity, mRNA expression of differentiation markers, and calcium nodule formation. In contrast, Tβ4 activation with a Tβ4 peptide promotes these processes by enhancing the phosphorylation of p38, JNK, and ERK mitogen-activated protein kinases (MAPKs, bone morphogenetic protein (BMP 2, BMP4, phosphorylation of Smad1/5/8 and Smad2/3, and expression of transcriptional factors such as Runx2 and Osterix, which were blocked by the BMP inhibitor noggin. The expression of integrin receptors α1, α2, α3, and β1 and downstream signaling molecules including phosphorylated focal adhesion kinase (p-FAK, p-paxillin, and integrin-linked kinase (ILK were increased by Tβ4 peptide in HDPCs. ILK siRNA blocked Tβ4-induced odontoblastic differentiation and activation of the BMP and MAPK transcription factor pathways in HDPCs. In conclusion, this study demonstrates for the first time that Tβ4 plays a key role in odontoblastic differentiation of HDPCs and activation of Tβ4 could provide a novel mechanism for regenerative endodontics.

  17. Pulp response and cytotoxicity evaluation of 2 dentin bonding agents.

    Science.gov (United States)

    Demarco, F F; Tarquinio, S B; Jaeger, M M; de Araújo, V C; Matson, E

    2001-03-01

    This study evaluated the biocompatibility of two dentin bonding agents (Clearfil Liner Bond 2 and Scotchbond Multi-Purpose) applied in human dental pulps and cell cultures. In vivo: Twenty human third molars that were scheduled for extraction were used. After cavity preparation, pulp exposure was achieved with a carbide bur. Hemorrhage control was obtained with saline solution. In 16 teeth, adhesive pulp capping was performed and the cavities were sealed with resin composite. In the control group (n = 4), pulps were capped with Ca(OH)2 and the cavities were sealed with IRM. Teeth were extracted 30 or 90 days following treatment and prepared for histological examination and bacterial detection. In vitro: materials were applied in Petri dishes, where NIH-3T3 cells were plated. The cells were counted 2, 4, and 6 days after plating to obtain the growth curves and to determine cell viability. All data were submitted to statistical analysis. In vivo: Dentin bridge formation was seen in all teeth capped with Ca(OH)2, without an inflammatory response. Mild inflammatory responses and dentin bridge formation after 90 days were observed in 50% of specimens treated with Liner Bond 2. Pulps treated with Scotchbond Multi-Purpose presented mild to severe inflammatory response, and no mineralized tissue formation was detected. Bacteria were not disclosed in any specimen. In vitro: The cytotoxicity was similar between the two bonding agents, and both had statistically higher cytotoxic effects (P cytotoxic effects than both adhesive systems; however, pulp healing was also observed under Liner Bond 2.

  18. A new method to extract dental pulp DNA: application to universal detection of bacteria.

    Directory of Open Access Journals (Sweden)

    Lam Tran-Hung

    Full Text Available BACKGROUND: Dental pulp is used for PCR-based detection of DNA derived from host and bacteremic microorganims. Current protocols require odontology expertise for proper recovery of the dental pulp. Dental pulp specimen exposed to laboratory environment yields contaminants detected using universal 16S rDNA-based detection of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new protocol by encasing decontaminated tooth into sterile resin, extracting DNA into the dental pulp chamber itself and decontaminating PCR reagents by filtration and double restriction enzyme digestion. Application to 16S rDNA-based detection of bacteria in 144 teeth collected in 86 healthy people yielded a unique sequence in only 14 teeth (9.7% from 12 individuals (14%. Each individual yielded a unique 16S rDNA sequence in 1-2 teeth per individual. Negative controls remained negative. Bacterial identifications were all confirmed by amplification and sequencing of specific rpoB sequence. CONCLUSIONS/SIGNIFICANCE: The new protocol prevented laboratory contamination of the dental pulp. It allowed the detection of bacteria responsible for dental pulp colonization from blood and periodontal tissue. Only 10% such samples contained 16S rDNA. It provides a new tool for the retrospective diagnostic of bacteremia by allowing the universal detection of bacterial DNA in animal and human, contemporary or ancient tooth. It could be further applied to identification of host DNA in forensic medicine and anthropology.

  19. Three-dimensional simulation of human teeth and its application in dental education and research.

    Science.gov (United States)

    Koopaie, Maryam; Kolahdouz, Sajad

    2016-01-01

    Background: A comprehensive database, comprising geometry and properties of human teeth, is needed for dentistry education and dental research. The aim of this study was to create a three-dimensional model of human teeth to improve the dental E-learning and dental research. Methods: In this study, a cross-section picture of the three-dimensional model of the teeth was used. CT-Scan images were used in the first method. The space between the cross- sectional images was about 200 to 500 micrometers. Hard tissue margin was detected in each image by Matlab (R2009b), as image processing software. The images were transferred to Solidworks 2015 software. Tooth border curve was fitted on B-spline curves, using the least square-curve fitting algorithm. After transferring all curves for each tooth to Solidworks, the surface was created based on the surface fitting technique. This surface was meshed in Meshlab-v132 software, and the optimization of the surface was done based on the remeshing technique. The mechanical properties of the teeth were applied to the dental model. Results: This study presented a methodology for communication between CT-Scan images and the finite element and training software through which modeling and simulation of the teeth were performed. In this study, cross-sectional images were used for modeling. According to the findings, the cost and time were reduced compared to other studies. Conclusion: The three-dimensional model method presented in this study facilitated the learning of the dental students and dentists. Based on the three-dimensional model proposed in this study, designing and manufacturing the implants and dental prosthesis are possible.

  20. Effects of air-polishing devices with different abrasives on bovine primary and second teeth and deciduous human teeth

    OpenAIRE

    Khalefa, Mohammad

    2014-01-01

    Air-polishing-devices are used by adults to remove biofilm and discoloration as an efficient alternative to conventional tooth polishing. There is hardly any data for the effect of air-polishing-devices on the enamel of the 1st dentition. Therefore the purpose of this in vitro study was to examine, whether air-polishing-devices are suitable for regular teeth cleaning in children and adolescents with teeth of the 1st and 2nd dentition. Crowns from lower incisors of freshly slaughtered anim...

  1. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    Science.gov (United States)

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  2. Fluorine determination in human healthy and carious teeth using the PIGE technique

    Science.gov (United States)

    Carvalho, M. L.; Karydas, A. G.; Casaca, C.; Zarkadas, Ch; Paradellis, Th; Kokkoris, M.; Nsouli, B.; Cunha, A. S.

    2001-09-01

    The purpose of this study is to determine and compare the fluorine concentration in human teeth from two different populations, living in the Portuguese quite isolated islands of Açores: S. Miguel and Terceira. Both populations have similar dietary habits, similar occupational activities, mostly rural, and the age of both populations is more or less the same, around 40 years. No chronic diseases were registered in any of the donors. The two groups are exposed to different levels of fluorine in drinking water. Terceira island has moderate fluorine concentration levels (1-2 μg g -1) while S. Miguel island is known for the high fluorine concentration levels in its water (>3 μg g -1), especially in one area known as Furnas. Thirty-three teeth, 17 healthy and 16 carious without restoration (14 incisors and canines, 7 premolars and 12 molars), were collected and analyzed for the determination of fluorine concentration in the dentine region, using the nuclear reaction 19F( p, αγ) 16O. The teeth were cross-sectioned along the vertical plane and polished, in order to obtain a smooth and plane surface of about 1 mm thickness. In this work an association between caries prevalence and fluorine content of drinking water is discussed and the variation of fluorine concentration among different types of teeth (canines and incisors, premolars, molars) and physical state (carious and non-carious) is examined.

  3. Elemental composition of human teeth with emphasis on trace constituents: a review

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, W H

    1978-04-01

    Literature covered by the current review is based on a search of Chemical Abstracts, 1917 through 1975. Early studies, pre-dating 1940, are referenced primarily for historical interest. Emphasis is on the micro-constituents of human teeth, those present at concentrations less than a few tenths of a percent by weight. Within this category of data, we have been primarily concerned with the radiochemically stable nuclides. The important relationship between caries and trace elements is covered only insofar as carious teeth exhibit properties with respect to trace element composition that differ from normal teeth. Having made these disclaimers, we note that an attempt has been made to cover the literature exhaustively; although some important results have undoubtedly been overlooked. It is our hope, however, that sufficient material has been included in this review to facilitate further recovery of data by interested individuals. In Chapter 1, analytical techniques that have been employed in this field are briefly presented; discussion centers on problems associated with preparation of specimens for analysis. Chapter 2 is devoted to topical coverage of data on the inorganic composition of teeth. An element-by-element tabulation of concentration data is provided, our statistical analysis of selected data explained, and evidence concerning several major factors thought to influence dental composition evaluated. These include provenance, age, sex, distribution, and tooth type/intermouth variation.

  4. Novel approach for transient protein expression in primary cultures of human dental pulp-derived cells.

    Science.gov (United States)

    Suguro, Hisashi; Mikami, Yoshikazu; Koshi, Rieko; Ogiso, Bunnai; Watanabe, Eri; Watanabe, Nobukazu; Honda, Masaki J; Asano, Masatake; Komiyama, Kazuo

    2011-08-01

    Transfection is a powerful method for investigating variable biological functions of desired genes. However, the efficiency of transfection into primary cultures of dental pulp-derived cells (DPDC) is low. Therefore, using a recombinant vaccinia virus (vTF7-3), which contains T7 RNA polymerase, we have established a transient protein expression system in DPDCs. In this study, we used the human polymeric immunoglobulin receptor (pIgR) cDNA as a model gene. pIgR expression by the vTF7-3 expression system was confirmed by flow cytometry analysis and Western blotting. Furthermore, exogenous pIgR protein localized at the cell surface in DPDCs and formed a secretory component (SC). This suggests that exogenous pIgR protein expressed by the vTF7-3 expression system acts like endogenous pIgR protein. These results indicate the applicability of the method for cells outgrown from dental pulp tissue. In addition, as protein expression could be detected shortly after transfection (approximately 5h), this experimental system has been used intensely for experiments examining very early steps in protein exocytosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Apoptosis and survivability of human dental pulp cells under exposure to Bis-GMA

    Directory of Open Access Journals (Sweden)

    Junya Yano

    2011-06-01

    Full Text Available OBJECTIVE: In the present study, we examined whether 2, 2-bis [4-(2-hydroxy-3-methacryloxypropoxy phenyl] propane (Bis-GMA has effects on LSC2 cells, human dental pulp cell line. MATERIAL AND METHODS: The viability, cell cycle, and morphology of LSC2 cells were analyzed after exposure to several different concentrations of Bis-GMA. The recovery of viability of Bis-GMA exposed cells was also analyzed in the condition without Bis-GMA. Further, penetration of Bis-GMA to dentin disc was examined using isocratic high-performance liquid chromatography. RESULTS: There was a concentration-dependent decrease in cell proliferation and an increase in cell number in the sub-G1 population after exposure to Bis-GMA. Furthermore, the cells showed typical characteristics of apoptotic cells after the exposure to high concentration of Bis-GMA. In contrast, cells exposed to lower concentrations of Bis-GMA recovered their viability after being cultured without Bis-GMA. We also found that Bis-GMA is capable of penetrating 1-mm-thick dentin discs, though the penetrated concentration was lower than that showing cytotoxicity. CONCLUSION: These results suggest that Bis-GMA has cytotoxic effects, though dental pulp exposed to lower concentrations is able to recover their viability when Bis-GMA is removed.

  6. Enamel matrix derivative promote primary human pulp cell differentiation and mineralization.

    Science.gov (United States)

    Riksen, Elisabeth Aurstad; Landin, Maria A; Reppe, Sjur; Nakamura, Yukio; Lyngstadaas, Ståle Petter; Reseland, Janne E

    2014-05-05

    Enamel matrix derivative (EMD) has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5-50 μg/mL) on primary human pulp cells were compared to untreated cells and cells incubated with 10⁻⁸ M dexamethasone (DEX) for 1, 2, 3, 7, and 14 days in culture. Expression analysis using Affymetrix microchips demonstrated that 10 μg/mL EMD regulated several hundred genes and stimulated the gene expression of proteins involved in mesenchymal proliferation and differentiation. Both EMD and DEX enhanced the expression of amelogenin (amel), and the dentinogenic markers dentin sialophosphoprotein (DSSP) and dentin matrix acidic phosphoprotein 1 (DMP1), as well as the osteogenic markers osteocalcin (OC, BGLAP) and collagen type 1 (COL1A1). Whereas, only EMD had effect on alkaline phosphatase (ALP) mRNA expression, the stimulatory effect were verified by enhanced secretion of OC and COL1A from EMD treated cells, and increased ALP activity in cell culture medium after EMD treatment. Increased levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant proteins (MCP-1) in the cell culture medium were also found. Consequently, the suggested effect of EMD is to promote differentiation of pulp cells and increases the potential for pulpal mineralization to favor reactive dentine formation.

  7. Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures

    Directory of Open Access Journals (Sweden)

    M. Riccio

    2010-11-01

    Full Text Available The aim of this study was to characterize the in vitro osteogenic differentiation of dental pulp stem cells (DPSCs in 2D cultures and 3D biomaterials. DPSCs, separated from dental pulp by enzymatic digestion, and isolated by magnetic cell sorting were differentiated toward osteogenic lineage on 2D surface by using an osteogenic medium. During the differentiation process, DPSCs express specific bone proteins like Runx-2, Osx, OPN and OCN with a sequential expression, analogous to those occurring during osteoblast differentiation, and produce extracellular calcium deposits. In order to differentiate cells in a 3D space that mimes the physiological environment, DPSCs were cultured in two distinct bioscaffolds, MatrigelTM and Collagen sponge. With the addition of a third dimension, osteogenic differentiation and mineralized extracellular matrix production significantly improved. In particular, in MatrigelTM DPSCs differentiated with osteoblast/osteocyte characteristics and connected by gap junction, and therefore formed calcified nodules with a 3D intercellular network. Furthermore, DPSCs differentiated in collagen sponge actively secrete human type I collagen micro-fibrils and form calcified matrix containing trabecular-like structures. These neo-formed DPSCs-scaffold devices may be used in regenerative surgical applications in order to resolve pathologies and traumas characterized by critical size bone defects.

  8. Mechanical changes in human dental pulp stem cells during early odontogenic differentiation.

    Science.gov (United States)

    Jones, Taneka D; Naimipour, Hamed; Sun, Shan; Cho, Michael; Alapati, Satish B

    2015-01-01

    Cell adhesion and migration in bioactive scaffolds require actin cytoskeleton remodeling and focal adhesion formation. Additionally, human dental pulp stem cells (hDPSCs) undergo several changes in their mechanical properties during odontogenic differentiation. The effect of factors essential for odontogenesis on actin stress fiber elasticity and focal adhesion formation is not known. Live hDPSCs cultured in odontogenic media were imaged for cytoskeleton changes using an atomic force microscope. The Young's modulus (kPa) of the cytoskeleton was recorded as a function of culture medium for 10 days. Focal adhesion formation was assessed using immunofluorescence. Cultured hDPSCs were incubated with a monoclonal vinculin antibody, and filamentous actins were visualized using 0.5 μmol/L phalloidin. Cytoskeletal elasticity significantly increased in response to odontogenic media. Both the number and physical size of focal adhesions in hDPSCs also increased. Up-regulation of vinculin expression was evident. The increase in the formation of focal adhesions was consistent with actin remodeling to stress fibers. Our findings suggest that hDPSCs firmly attach to the glass substrate in response to odontogenic media. Successful regeneration of pulp-dentin tissue using biomimetic scaffolds will likely require cell-extracellular matrix interactions influenced by biochemical induction factors. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Comparative In Vitro Evaluation of Human Dental Pulp and Follicle Stem Cell Commitment.

    Science.gov (United States)

    Karamzadeh, Razieh; Baghaban Eslaminejad, Mohamadreza; Sharifi-Zarchi, Ali

    2017-01-01

    Pulp and periodontal tissues are well-known sources of mesenchymal stem cells (MSCs) that provide a promising place in tissue engineering and regenerative medicine. The molecular mechanisms underlying commitment and differentiation of dental stem cells that originate from different dental tissues are not fully understood. In this study, we have compared the expression levels of pluripotency factors along with immunological and developmentally-related markers in the culture of human dental pulp stem cells (hDPSCs), human dental follicle stem cells (hDFSCs), and human embryonic stem cells (hESCs). In this experimental study, isolated human dental stem cells were investigated using quantitative polymerase chain reaction (qPCR), immunostaining, and fluorescence-activated cell sorting (FACS). Additionally, we conducted gene ontology (GO) analysis of differentially expressed genes and compared them between dental stem cells and pluripotent stem cells. The results demonstrated that pluripotency (OCT4 and SOX2) and immunological (IL-6 and TLR4) factors had higher expressions in hDFSCs, with the exception of the JAGGED-1/NOTCH1 ratio, c-MYC and NESTIN which expressed more in hDPSCs. Immunostaining of OCT4, SOX2 and c-MYC showed cytoplasmic and nucleus localization in both groups at similar passages. GO analysis showed that the majority of hDFSCs and hDPSCs populations were in the synthesis (S) and mitosis (M) phases of the cell cycle, respectively. This study showed different status of heterogeneous hDPSCs and hDFSCs in terms of stemness, differentiation fate, and cell cycle phases. Therefore, the different behaviors of dental stem cells should be considered based on clinical treatment variations.

  10. Quantification of color alteration in human teeth with optical coherence tomography

    Science.gov (United States)

    Ni, Y. R.; Guo, Z. Y.; Shu, S. Y.; Zeng, C. C.; Zhong, H. Q.; Chen, B. L.; Liu, Z. M.; Bao, Y.

    2011-11-01

    It is necessary to develop a laboratory model to evaluate tooth discoloration, because there are several limitations to assessment methods at present stage. Therefore, in this letter, we report the results from a pilot study on using optical coherence tomography imaging method to quantify color alteration in the human teeth treatment with 35% hydrogen peroxide bleaching in vitro. Quantitative comparison of chromogens reduction in dental tissue showed that near infrared attenuation coefficient (μ) increased for enamel with the bleaching passage time and diminution for dentine. Therefore, the precise detection of the change in attenuation coefficient is can accurate quantitative chromogens alteration in tooth. OCT has a potential to become a useful tool for the assessment color alteration in human teeth.

  11. Correlation between clinical and histologic pulp diagnoses.

    Science.gov (United States)

    Ricucci, Domenico; Loghin, Simona; Siqueira, José F

    2014-12-01

    Clinicians routinely face conditions in which they have to decide whether the dental pulp can be saved or not. This study evaluated how reliable the clinical diagnosis of normal pulp/reversible pulpitis (savable pulp) or irreversible pulpitis (nonsavable pulp) is when compared with the histologic diagnosis. The study material consisted of 95 teeth collected consecutively in a general practice over a 5-year period and extracted for reasons not related to this study. Based on clinical criteria, teeth were categorized as having normal pulps, reversible pulpitis, or irreversible pulpitis. The former 2 were grouped together because they represent similar conditions in terms of prognosis. Teeth were processed for histologic and histobacteriologic analyses, and pulps were categorized as healthy, reversibly inflamed, or irreversibly inflamed according to defined criteria. The number of matching clinical/histologic diagnosis was recorded. The clinical diagnosis of normal pulp/reversible pulpitis matched the histologic diagnosis in 57 of 59 (96.6%) teeth. Correspondence of the clinical and histologic diagnosis of irreversible pulpitis occurred in 27 of 32 (84.4%) cases. Infection advancing to the pulp tissue was a common finding in teeth with irreversible pulpitis but was never observed in normal/reversibly inflamed pulps. Findings using defined criteria for clinical and histologic classification of pulp conditions revealed a good agreement, especially for cases with no disease or reversible disease. This means that the classification of pulp conditions as normal pulps, reversible pulpitis, and irreversible pulpitis has high chances of guiding the correct therapy in the large majority of cases. However, there is still a need for refined and improved means for reliable pulp diagnosis. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Comparison of the Effect of PRP, PRF and Induced Bleeding in the Revascularization of Teeth with Necrotic Pulp and Open Apex: A Triple Blind Randomized Clinical Trial.

    Science.gov (United States)

    Shivashankar, Vasundara Yayathi; Johns, Dexton Antony; Maroli, Ramesh Kumar; Sekar, Mahalaxmi; Chandrasekaran, Rathinavel; Karthikeyan, Shanmugavel; Renganathan, Senthil Kumar

    2017-06-01

    Treatment of a tooth with necrotic pulp and open apex is a special challenge to the clinicians. Apexification with calcium hydroxide and MTA barrier technique fails to induce continued root maturation which makes the tooth susceptible to root fracture. Hence, an ideal outcome for such a tooth should be regeneration of pulp like tissue into the root canal capable of continuing normal root maturation. This study aims to compare the effect of Platelet Rich Fibrin (PRF), induced bleeding technique and Platelet Rich Plasma (PRP) in the revascularization of tooth with necrotic pulp and open apex. The main objectives of the study were to: (a) Radiographically evaluate the continuation of root development, increase in the dentin wall thickness and narrowing of canal space, apical closure and resolution of the periapical lesion; and to (b) To clinically evaluate the response to pulp sensibility testing and response to percussion and palpation tests. Sixty patients (6 to 28 years) with necrotic immature permanent tooth were randomly categorised into three groups after the root canal disinfection procedure. PRF as scaffolding material (Group A: n=20), revascularization with conventional induced bleeding technique (Group B: n=20), and PRP as the biomaterial (Group C: n=20). The primary outcome variable was measured using Periapical Index (PAI) (for periapical healing), Chen and Chen index (for apical responses), Schei's ruler (for root lengthening and root thickening) and other clinical parameters. The Chi-square test was used to interpret the data among the three groups at the end of 12 months for the variables root lengthening and lateral wall thickness. ANOVA test was performed to compare the mean of the PAI scores of the three groups at preoperative stage and 12 months. If statistically significant, Bonferroni test was done to compare the outcome among the three groups. The significant level was set at prevascularization of a non vital immature permanent tooth.

  13. Awareness and Knowledge of Undergraduate Dental Students about Sterilization/Disinfection Methods of Extracted Human Teeth.

    Science.gov (United States)

    Deogade, S C; Mantri, S S; Saxena, S; Sumathi, K

    2016-01-01

    Dental undergraduate students work on extracted human teeth in preclinical practical's to learn technical skills before entering the clinics and delivering dental care to the patients. The aim of the present investigation was to assess the awareness and knowledge toward sterilization/disinfection methods of extracted human teeth in a selected group of Indian dental students. In this descriptive cross-sectional study, the participants consisted of 2 nd -, 3 rd -, 4 th -, and 5 th -year dental students. Data were collected by questionnaires and analyzed by Mann-Whitney U-test and Kruskal-Wallis test using SPSS software version 16 for Windows (SPSS Inc., Chicago, IL, USA). In this study, 235 dental students participated in the study. The average awareness and knowledge score was 7.27 (1.92). Based on the opinion of 57% (134/235) students, hydrogen peroxide was selected as the suitable material for sterilization and 24.6% (58/235) students believed that autoclave sterilization is a good way for the purpose. The results of this investigation indicated that awareness and knowledge of undergraduate dental students in relation to sterilization/disinfection methods of extracted human teeth were good. However, deficiencies were observed in relation to teaching the material and methods suitable for sterilization.

  14. Light-microscopical investigation of the distribution of extracellular matrix molecules and calcifications in human dental pulps of various ages.

    Science.gov (United States)

    Hillmann, G; Geurtsen, W

    1997-07-01

    The distribution of extracellular matrix molecules, especially collagen types I, III, V, and VI, in the extracellular matrix of the connective tissue of human dental pulp of various ages was studied by polarization and indirect immunofluorescence microscopy by using a conventional fluorescence microscope and a confocal laser scanning microscope. Polarization and immunofluorescence microscopy of paraffin sections showed thick fibers of collagen type I, which represented the main component of the connective tissue matrix of the dental pulp. By indirect immunofluorescence, thin fibers and small bundles of collagen type III were determined to be one of the main fibrillar elements present in the dental pulp matrix. Collagen type IV was detected by a clear intense staining of the basement membrane of blood vessels at all ages examined. Collagens type V and VI formed a dense meshwork of thin microfibrils throughout the stroma of the connective tissue of the dental pulp. These fibers were localized around blood vessels and appeared to be enriched in the subodontoblastic layer. Investigations by means of confocal laser scanning microscopy revealed fibers of collagen type VI spiralling between fully differentiated odontoblasts toward the predentin layer. With advancing age, the connective tissue matrix appeared to be condensed and aggregates of thick fiber bundles could be observed. Furthermore, the participation of various collagen types in the composition of pulp stones was shown. These calcifications and diffuse calcifications increased in frequency with advancing age in a statistically significant manner.

  15. Efficacy of Sex Determination from Human Dental Pulp Tissue and its Reliability as a Tool in Forensic Dentistry

    OpenAIRE

    Khanna, Kaveri Surya

    2015-01-01

    Background: Sex determination is one of the primary steps in forensics. Barr body can be used as a histological method for identification of sex as it is found to be specific to female somatic cells and rare in male cells. To demarcate human dental pulp as an important identification tool of sex in forensic odontology (FO) and to evaluate the time period till which sex can be determined from pulp tissue using three stains H and E, Feulgen, and acridine - orange under fluorescence so as. Mater...

  16. The Effect of Capsaicine in Human Pulp Fibroblasts, in the Production of PGE2 and Proinflammatory Cytokines...

    OpenAIRE

    Bedoya Mejía, María Alexandra; Pontificia Universidad Javeriana, Bogotá; Rodríguez Camacho, Luz Stella; Pontificia Universidad Javeriana. Bogotá; Jaramillo Gómez, Lorenza María; Pontificia Universidad Javeriana, Bogotá; Moreno Abello, Gloria Cristina; Pontificia Universidad Javeriana, Bogotá

    2016-01-01

    ABSTRACT. Background: due of capsaicin effect on the control of various inflammatory mediators, it has been proposed to modulate inflammatory processes caused by physical assaults to pulp tissue. Purpose: to evaluate the effect of capsaicin diluted in 0.05 % ethanol and its vehicle on PGE2 production, IL-8, IL-6, IL-1β, and IL-12p70 in Human Fibroblasts Pulp (FPH). Methods: concentrations of PGE2, IL-8, IL-6, IL-1β, and IL-12p70 were analyzed by ELISA or flow cytometry in supernatants of FPH ...

  17. Effect of soluble and insoluble fibers within the in vitro fermentation of chicory root pulp by human gut bacteria

    NARCIS (Netherlands)

    Ramasamy, U.S.; Venema, K.; Schols, H.A.; Gruppen, H.

    2014-01-01

    The aim of this research was to study the in vitro fermentation of chicory root pulp (CRP) and ensiled CRP (ECRP) using human fecal inoculum. Analysis of carbohydrate levels in fermentation digests showed that 51% of all CRP carbohydrates were utilized after 24 h of fermentation. For ECRP, having

  18. Effect of Soluble and Insoluble Fibers within the in Vitro Fermentation of Chicory Root Pulp by Human Gut Bacteria

    NARCIS (Netherlands)

    Ramasamy, U.; Venema, K.; Schols, H.A.; Gruppen, H.

    2014-01-01

    The aim of this research was to study the in vitro fermentation of chicory root pulp (CRP) and ensiled CRP (ECRP) using human fecal inoculum. Analysis of carbohydrate levels in fermentation digests showed that 51% of all CRP carbohydrates were utilized after 24 h of fermentation. For ECRP, having

  19. TOOTH (The Open study Of dental pulp stem cell Therapy in Humans): Study protocol for evaluating safety and feasibility of autologous human adult dental pulp stem cell therapy in patients with chronic disability after stroke.

    Science.gov (United States)

    Nagpal, Anjali; Kremer, Karlea L; Hamilton-Bruce, Monica A; Kaidonis, Xenia; Milton, Austin G; Levi, Christopher; Shi, Songtao; Carey, Leeanne; Hillier, Susan; Rose, Miranda; Zacest, Andrew; Takhar, Parabjit; Koblar, Simon A

    2016-07-01

    Stroke represents a significant global disease burden. As of 2015, there is no chemical or biological therapy proven to actively enhance neurological recovery during the chronic phase post-stroke. Globally, cell-based therapy in stroke is at the stage of clinical translation and may improve neurological function through various mechanisms such as neural replacement, neuroprotection, angiogenesis, immuno-modulation, and neuroplasticity. Preclinical evidence in a rodent model of middle cerebral artery ischemic stroke as reported in four independent studies indicates improvement in neurobehavioral function with adult human dental pulp stem cell therapy. Human adult dental pulp stem cells present an exciting potential therapeutic option for improving post-stroke disability. TOOTH (The Open study Of dental pulp stem cell Therapy in Humans) will investigate the use of autologous stem cell therapy for stroke survivors with chronic disability, with the following objectives: (a) determine the maximum tolerable dose of autologous dental pulp stem cell therapy; (b) define that dental pulp stem cell therapy at the maximum tolerable dose is safe and feasible in chronic stroke; and (c) estimate the parameters of efficacy required to design a future Phase 2/3 clinical trial. TOOTH is a Phase 1, open-label, single-blinded clinical trial with a pragmatic design that comprises three stages: Stage 1 will involve the selection of 27 participants with middle cerebral artery ischemic stroke and the commencement of autologous dental pulp stem cell isolation, growth, and testing in sequential cohorts (n = 3). Stage 2 will involve the transplantation of dental pulp stem cell in each cohort of participants with an ascending dose and subsequent observation for a 6-month period for any dental pulp stem cell-related adverse events. Stage 3 will investigate the neurosurgical intervention of the maximum tolerable dose of autologous dental pulp stem cell followed by 9 weeks of intensive task

  20. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression.

    Science.gov (United States)

    Winderlich, Joshua N; Kremer, Karlea L; Koblar, Simon A

    2016-06-01

    Stem cell therapy is a promising new treatment option for stroke. Intravascular administration of stem cells is a valid approach as stem cells have been shown to transmigrate the blood-brain barrier. The mechanism that causes this effect has not yet been elucidated. We hypothesized that stem cells would mediate localized discontinuities in the blood-brain barrier, which would allow passage into the brain parenchyma. Here, we demonstrate that adult human dental pulp stem cells express a soluble factor that increases permeability across an in vitro model of the blood-brain barrier. This effect was shown to be the result of vascular endothelial growth factor-a. The effect could be amplified by exposing dental pulp stem cell to stromal-derived factor 1, which stimulates vascular endothelial growth factor-a expression. These findings support the use of dental pulp stem cell in therapy for stroke. © The Author(s) 2015.

  1. Improving the spatial orientation of human teeth using a virtual 3D approach.

    Science.gov (United States)

    Benazzi, Stefano; Fantini, Massimiliano; De Crescenzio, Francesca; Persiani, Franco; Gruppioni, Giorgio

    2009-03-01

    Since teeth are resistant to decomposition processes, they provide important and at times unique sources of information about fossil humans. Fortunately, dental remains reflect significant evolutionary changes. These changes make a very important and often exclusive contribution to the definition of new taxa or the attribution of fossil specimens to existing taxa. The traditional approach to dental morphometric analyses usually focuses on the recording of several measures of the tooth with calipers, especially the two basic crown diameters (buccolingual and mesiodistal). However, since these measures do not adequately represent the complex morphology of the tooth, 2D images and 3D digital models of dental morphology have been used. For both types of analysis, the possibility of correctly comparing homologous teeth depends on the adoption of a common orientation system. The lack of such a system makes it difficult to compare the results of different studies. Here we describe a new method for orienting teeth specifically devised for the upper and lower first molar (M1). Samples of unworn maxillary (n=15) and mandibular (n=15) first molars of modern humans were scanned with a Roland Picza 3D digitizer. The 3D virtual models were used to compare our new orientation method with those proposed in the literature. The new orientation system, which meets a geometric criterion, is based on three points identified on the cervical line and ensures acceptable repeatability of the spatial positioning and orientation independent of the shape and wear of the first molar under investigation. This orientation system is a first step toward the creation of a virtual set of hominid and fossil human first molars, which will allow us to make comparisons via a sophisticated and noninvasive approach. This pilot study also provides guidelines to extend the new methodology to the other types of teeth.

  2. Cell proliferation-inducing protein 52/mitofilin is a surface antigen on undifferentiated human dental pulp stem cells.

    Science.gov (United States)

    Hwang, Hyo-In; Lee, Tae-Hyong; Jang, Young-Joo

    2015-06-01

    Dental pulp is a soft tissue located inside the hard part of a tooth and it contains a stem cell population that can regenerate damaged dentin and/or pulp itself. Human dental pulp stem cells (hDPSCs) are multipotent adult stem cells that have the potential to be differentiated into a variety of cell types. Although cells cultured primarily from pulp tissue show heterogeneous phenotypes and variable efficiency in their dentinogenic differentiation, proper selection markers, which are specific to hDPSCs, are essential for the osteo/dentinogenic study of human dental pulp cells. We had previously screened a set of undifferentiation-specific cell surface antibodies of hDPSCs through decoy immunization. In this study, we show that one of these surface monoclonal antibodies, 3C4, is bound to intact pulp cells in a highly undifferentiation-specific manner. The surface antigen protein bound specifically to 3C4 antibody was identified through direct immunoprecipitation and liquid chromatography-tandem mass spectrometry as the cell proliferation-inducing protein 52/Mitofilin, which is a protein of the inner mitochondrial membrane and is a possible antagonist to maintaining mitochondrial activation during differentiation. The expression of mitofilin/3C4 antigen dramatically decreased during differentiation, and the depletion of mitofilin/3C4 antigen induced the expression of osteogenic/dentinogenic markers earlier than during normal differentiation. The 3C4-positive cells isolated by a magnetic-activated cell sorting system were differentiated with a higher efficiency than 3C4-negative cells. These results indicate that finding mitochondria-related stem cell markers is valuable to be able to identify and isolate primitive stem cells.

  3. Comparison of different techniques for disinfection of teeth internal space in preclinical teaching

    Directory of Open Access Journals (Sweden)

    Tabrizizadeh M.

    2009-12-01

    Full Text Available "nBackground and Aim: Extracted teeth used in preclinic should be disinfected. The aim of this study was to evaluate the effects of some disinfectants on microorganisms cultured from pulp chamber of extracted teeth."nMaterials and Methods: In this experimental study 54 intact human teeth were collected. After access cavity preparation, 10 8 B. streothermophillus endospors were inoculated into pulp chamber. Then cavities were sealed with a temporary restorative material. Teeth were divided into 5 groups of 10 each. The teeth were then stored in these disinfectants: 5.25% hypochlorite sodium, 5% Microten, 5% Deconex, 2% Glutaraldehyd, and 10% Formalin for 48 hours. Two teeth were autoclaved as negative controls and two were stored in normal saline as positive controls. The teeth were then sectioned in cervical area and cultured in Trypticase Soy Broth. After three days turbidity in tubes was evaluated. Statistical analysis was done by Fisher's exact test."nResults: None of these solutions were able to prevent microorganism growth in all samples; however, Formalin was better in six cases than that of other disinfectants. Differences between these five groups were not statistically significant (P=0.384."nConclusion: Sterilization of the teeth with autoclave is the only absolute method for disinfecting the root canals of extracted teeth and disinfectants are not reliable for this purpose.

  4. Cytotoxic effects of bulk fill composite resins on human dental pulp stem cells.

    Science.gov (United States)

    Şişman, Reyhan; Aksoy, Ayça; Yalçın, Muhammet; Karaöz, Erdal

    2016-01-01

    Five bulk fill composite resins, including SDR, Tetric EvoCeram Bulk Fill (TEC), X-trafil (XTF), Sonic Fill (SF), Filtek Bulk Fill (FBF), were used in this study. Human dental pulp stem cells were cultured in 12-well culture dishes (3 × 104 cells per cm(2)) and stored in an incubator at 37°C and 5% CO2 for 1 day. On days 1, 7, 14, and 21 of co-culture, viable cells were measured using a WST-1 assay. Lower cell viability was observed with XTF and SDR bulk fill composite resins compared to the control group during the WST-1 assay. Although bulk fill composite resins provide advantages in practical applications, they are limited by their cytotoxic properties. (J Oral Sci 58, 299-305, 2016).

  5. Forensic identification in teeth with caries.

    Science.gov (United States)

    Alia-García, Esther; Parra-Pecharromán, David; Sánchez-Díaz, Ana; Mendez, Susy; Royuela, Ana; Gil-Alberdi, Laura; López-Palafox, Juan; del Campo, Rosa

    2015-12-01

    Human teeth are biological structures that resist extreme conditions thus becoming a useful source of DNA for human forensic identification purposes. When it is possible, forensic prefer only non-damaged teeth whereas those with cavities are usually rejected to avoid both external and internal bacterial contamination. Cavities are one of the most prevalent dental pathology and its incidence increases with ageing. The aim of this study was to validate the use of teeth with cavities for forensic identification. A total of 120 individual teeth from unrelated patients (60 healthy and 60 with cavities, respectively) extracted by a dentist as part of the normal process of treatment, were submitted for further analysis. Dental pulp was obtained after tooth fragmentation, complete DNA was extracted and the corresponding human identification profile was obtained by the AmpFlSTR® NGM SElect™ kit. Cariogenic microbiota was determined by PCR-DGGE with bacterial universal primers and bands were excised, re-amplified and sequenced. From the 120 dental pieces analyzed, a defined genetic profile was obtained in 81 (67.5%) of them, with no statistical differences between the healthy and the cavities-affected teeth. Statistical association between teeth status, DNA content and genetic profiles was not observed. Complex bacterial communities were only detected in the cavities group, being the Streptococcus/Enterococcus, and Lactobacillus genera the most represented. We conclude that teeth with cavities are as valid as healthy dental pieces for forensic human identification. Moreover, the severity of the cariogenic lesion as well as associated bacterial communities seems not to influence the establishment of human dental profiles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells.

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    Full Text Available As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists' attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2 were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.

  7. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress.

    Science.gov (United States)

    Lee, Y H; Kim, H S; Kim, J S; Yu, M K; Cho, S D; Jeon, J G; Yi, H K

    2016-04-01

    Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases. © International & American Associations

  8. Interferon Gamma-treated Dental Pulp Stem Cells Promote Human Mesenchymal Stem Cell Migration In Vitro.

    Science.gov (United States)

    Strojny, Chelsee; Boyle, Michael; Bartholomew, Amelia; Sundivakkam, Premanand; Alapati, Satish

    2015-08-01

    Chronic inflammation disrupts dental pulp regeneration by disintegrating the recruitment process of progenitors for repair. Bone marrow-derived mesenchymal stem cells (BM-MSCs) share the common features with dental pulp stem cells (DPSCs). The aim of the study was to investigate the migration of BM-MSCs toward DPSCs in response to inflammatory chemoattractants. Additionally, our studies also delineated the signaling mechanisms from BM-MSCs in mediating the proliferation and differentiation of DPSCs in vitro. Human DPSCs and BM-MSCs between passages 2 and 4 were used and were grown in odontogenic differentiation medium. Mineralization was determined by alizarin red staining analysis. Migration was assessed using crystal violet staining in cells grown in Boyden chamber Transwell inserts (Corning Inc Foundation, Tewksbury, MA). The mineralization potential of DPSCs was evaluated using alkaline phosphatase activity assay. Real-time polymerase chain reaction analysis was performed to assess the gene expression profile of chemokine (C-X-C motif) ligand (Cxcl) 3, 5, 6, 10, 11, 12, 14, and 16; stromal cell-derived factor (SDF) α; vascular endothelial growth factor; and fibroblast growth factor. Interferon gamma (FN-γ) treatment significantly abrogated the differentiation potential of DPSCs as shown by using alizarin red and alkaline phosphatase activity analysis. An increase in the migration of BM-MSCs was documented when cocultured with IFN-γ-treated DPSCs. RNA expression studies showed an increase in the levels of Cxcl6 and Cxcl12 in BM-MSCs when cocultured with IFN-γ-treated DPSCs. Additionally, an up-regulation of proangiogenic factors vascular endothelial growth factor and fibroblast growth factor were observed in DPSCs exposed to IFN-γ. Our findings indicate that inflamed IFN-γ-treated DPSCs release factors (presumably Cxcl6 and 12) that contribute to the homing of MSCs. This model might provide a potential research tool for studying MSC-DPSC cross talk and

  9. Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy

    DEFF Research Database (Denmark)

    Gilbert, M. T. P.; Rudbeck, L.; Willerslev, E.

    2005-01-01

    The majority of ancient DNA studies on human specimens have utilised teeth and bone as a source of genetic material. In this study the levels of endogenous contamination (i.e. present within the sample prior to sampling for the DNA analysis) are assessed within human bone and teeth specimens...... across Europe, where a significant number of human bones was well preserved. The findings demonstrate several important issues: (a) although teeth are more resilient to contamination than bone, both are readily contaminated (presumably through handling or washing), and (b) once contaminated in this way...... with the presence of observable contamination in both bone and teeth samples from individual samples. While we can only speculate on the cause of this relationship, we posit that they provide useful guides for the assessment of whether samples are likely to be contaminated or not. (c) 2005 Elsevier Ltd. All rights...

  10. Overexpression of Receptor for Advanced Glycation End Products and High-Mobility Group Box 1 in Human Dental Pulp Inflammation

    Directory of Open Access Journals (Sweden)

    Salunya Tancharoen

    2014-01-01

    Full Text Available High mobility group box 1 (HMGB1, a nonhistone DNA-binding protein, is released into the extracellular space and promotes inflammation. HMGB1 binds to related cell signaling transduction receptors, including receptor for advanced glycation end products (RAGE, which actively participate in vascular and inflammatory diseases. The aim of this study was to examine whether RAGE and HMGB1 are involved in the pathogenesis of pulpitis and investigate the effect of Prevotella intermedia (P. intermedia lipopolysaccharide (LPS on RAGE and HMGB1 expression in odontoblast-like cells (OLC-1. RAGE and HMGB1 expression levels in clinically inflamed dental pulp were higher than those in healthy dental pulp. Upregulated expression of RAGE was observed in odontoblasts, stromal pulp fibroblasts-like cells, and endothelial-like cell lining human pulpitis tissue. Strong cytoplasmic HMGB1 immunoreactivity was noted in odontoblasts, whereas nuclear HMGB1 immunoreactivity was seen in stromal pulp fibroblasts-like cells in human pulpitis tissue. LPS stimulated OLC-1 cells produced HMGB1 in a dose-dependent manner through RAGE. HMGB1 translocation towards the cytoplasm and secretion from OLC-1 in response to LPS was inhibited by TPCA-1, an inhibitor of NF-κB activation. These findings suggest that RAGE and HMGB1 play an important role in the pulpal immune response to oral bacterial infection.

  11. Overexpression of Receptor for Advanced Glycation End Products and High-Mobility Group Box 1 in Human Dental Pulp Inflammation

    Science.gov (United States)

    Tancharoen, Salunya; Tengrungsun, Tassanee; Suddhasthira, Theeralaksna; Kikuchi, Kiyoshi; Vechvongvan, Nuttavun; Maruyama, Ikuro

    2014-01-01

    High mobility group box 1 (HMGB1), a nonhistone DNA-binding protein, is released into the extracellular space and promotes inflammation. HMGB1 binds to related cell signaling transduction receptors, including receptor for advanced glycation end products (RAGE), which actively participate in vascular and inflammatory diseases. The aim of this study was to examine whether RAGE and HMGB1 are involved in the pathogenesis of pulpitis and investigate the effect of Prevotella intermedia (P. intermedia) lipopolysaccharide (LPS) on RAGE and HMGB1 expression in odontoblast-like cells (OLC-1). RAGE and HMGB1 expression levels in clinically inflamed dental pulp were higher than those in healthy dental pulp. Upregulated expression of RAGE was observed in odontoblasts, stromal pulp fibroblasts-like cells, and endothelial-like cell lining human pulpitis tissue. Strong cytoplasmic HMGB1 immunoreactivity was noted in odontoblasts, whereas nuclear HMGB1 immunoreactivity was seen in stromal pulp fibroblasts-like cells in human pulpitis tissue. LPS stimulated OLC-1 cells produced HMGB1 in a dose-dependent manner through RAGE. HMGB1 translocation towards the cytoplasm and secretion from OLC-1 in response to LPS was inhibited by TPCA-1, an inhibitor of NF-κB activation. These findings suggest that RAGE and HMGB1 play an important role in the pulpal immune response to oral bacterial infection. PMID:25114379

  12. Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold.

    Science.gov (United States)

    Petridis, Xenos; Diamanti, Evangelia; Trigas, George Ch; Kalyvas, Demos; Kitraki, Efthymia

    2015-05-01

    The rat calvarial defect is an established model to evaluate craniofacial bone regeneration using cell-scaffold biocomplexes. Dental pulp harbors stem cells with significant osteogenic properties. Extracellular matrix (ECM)-like scaffolds simulate the environment that cells observe in vivo. In the present study, we evaluated the osteogenic effect of a biocomplex of human dental pulp cells and a hyaluronic-based hydrogel scaffold in calvarial defects of immunocompetent rats. Dental pulp cells at the 2nd passage were characterized by flow cytometry, osteodifferentiated ex vivo for 4 days and the whole population was encapsulated in the synthetic ECM matrix. Cell vitality was verified 24 h upon encapsulation. 5 mm calvarial defects were created in 30 male rats and filled with the biocomplex, the scaffold alone, or left untreated. Histological evaluation at 8 weeks showed incomplete bone regeneration in all groups. The scaffold was not fully degraded and entrapped cells were detected in it. Histomorphometry showed statistically significant superior new bone formation in the biocomplex-treated group, compared to the two other groups. The present study provides evidence that the whole population of human dental pulp cells can advance bone healing when transplanted in immunocompetent animals and highlights the importance of proper scaffold degradation in cell-driven bioengineering treatments. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. A prospective study of the incidence of asymptomatic pulp necrosis following crown preparation.

    Science.gov (United States)

    Kontakiotis, E G; Filippatos, C G; Stefopoulos, S; Tzanetakis, G N

    2015-06-01

    To determine the incidence of asymptomatic pulp necrosis following crown preparation as well as the positive predictive value of the electric pulp testing. A total of 120 teeth with healthy pulps scheduled to receive fixed crowns (experimental teeth) were included. Teeth were divided into two groups according to the preoperative crown condition (intact teeth and teeth with preoperative caries, restorations or crowns) and into four groups according to tooth type (maxillary anterior teeth, maxillary posterior teeth, mandibular anterior teeth and mandibular posterior teeth). Experimental and control teeth were submitted to electric pulp testing on three different occasions before treatment commencement (stage 0), at the impression making session (stage 1) and just before the final cementation of the crown (stage 2). Teeth that were considered to contain necrotic pulps were submitted to root canal treatment. Upon access, absence of bleeding was considered as a confirmation of pulp necrosis. Data were analysed using bivariate (chi-square) and multivariate analysis (logistic regression). All reported probability values (P-values) were based on two-sided tests and compared to a significance level of 5%. The overall incidence of pulp necrosis was 9%. Intact teeth had a significantly lower incidence of pulp necrosis (5%) compared with preoperatively structurally compromised teeth (13%) [(OR: 9.113, P = 0.035)]. No significant differences were found amongst the four groups with regard to tooth type (P = 0.923). The positive predictive value of the electric pulp testing was 1.00. The incidence of asymptomatic pulp necrosis of teeth following crown preparation is noteworthy. The presence of preoperative caries, restorations or crowns of experimental teeth correlated with a significantly higher incidence of pulp necrosis. Electric pulp testing remains a useful diagnostic instrument for determining the pulp condition. © 2014 International Endodontic Journal. Published by

  14. Effects of epicatechin, a crosslinking agent, on human dental pulp cells cultured in collagen scaffolds

    Directory of Open Access Journals (Sweden)

    Eun-su Lim

    2016-02-01

    Full Text Available ABSTRACT Objective The purpose of this study was to investigate the biological effects of epicatechin (ECN, a crosslinking agent, on human dental pulp cells (hDPCs cultured in collagen scaffolds. Material and Method To evaluate the effects of ECN on the proliferation of hDPCs, cell counting was performed using optical and fluorescent microscopy. Measurements of alkaline phosphatase (ALP activity, alizarin red staining, and real-time polymerase chain reactions were performed to assess odontogenic differentiation. The compressive strength and setting time of collagen scaffolds containing ECN were measured. Differential scanning calorimetry was performed to analyze the thermal behavior of collagen in the presence of ECN. Results Epicatechin increased ALP activity, mineralized nodule formation, and the mRNA expression of dentin sialophosphoprotein (DSPP, a specific odontogenic-related marker. Furthermore, ECN upregulated the expression of DSPP in hDPCs cultured in collagen scaffolds. Epicatechin activated the extracellular signal-regulated kinase (ERK and the treatment with an ERK inhibitor (U0126 blocked the expression of DSPP. The compressive strength was increased and the setting time was shortened in a dose-dependent manner. The number of cells cultured in the ECN-treated collagen scaffolds was significantly increased compared to the cells in the untreated control group. Conclusions Our results revealed that ECN promoted the proliferation and differentiation of hDPCs. Furthermore, the differentiation was regulated by the ERK signaling pathway. Changes in mechanical properties are related to cell fate, including proliferation and differentiation. Therefore, our study suggests the ECN treatment might be desirable for dentin-pulp complex regeneration.

  15. Effects of glutamine on proliferation, migration, and differentiation of human dental pulp cells.

    Science.gov (United States)

    Kim, Duck-Su; Jue, Seong-Suk; Lee, So-Youn; Kim, Young-Suk; Shin, Seung-Yun; Kim, Eun-Cheol

    2014-08-01

    Although glutamine (Gln) is mitogenic in various cell types, little is known about its role in human dental pulp cells (HDPCs). This study investigated the effects of Gln on proliferation, migration, and odontoblastic differentiation of HDPCs and the underlying signal pathway mechanisms. Growth and migration were assessed by cell counting and colorimetric cell migration kits. Differentiation was measured as alkaline phosphatase activity, calcified nodule formation by alizarin red staining, and marker mRNA expression by reverse transcriptase-polymerase chain reaction (RT-PCR). Chemokine expression was also evaluated by RT-PCR. Signal transduction pathways were examined by RT-PCR and Western blot analysis. Gln dose-dependently increased proliferation, migration, alkaline phosphatase activity, mineralized nodule formation, and odontoblast-marker mRNA of HDPCs. Gln also up-regulated expression of interleukin-6, interleukin-8, MCP-1, MIP-3α, CCL2, CCL20, and CXCL1. Gln increased BMP-2 and BMP-4 mRNA, phosphorylation of Smad 1/5/8, β-catenin, and key proteins of the Wnt signaling pathway. Furthermore, Gln resulted in up-regulation of extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase. In addition, noggin, DKK1, inhibitors of p38, ERK, and JNK significantly attenuatted Gln-induced growth, migration, and odontoblastic differentiation. Collectively, this study demonstrated that Gln promoted growth, migration, and differentiation in HDPCs through the BMP-2, Wnt, and MAPK pathways, leading to improved pulp repair and regeneration. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Designing protocols for the human teeth biobank of the Universidad Nacional de Colombia

    Directory of Open Access Journals (Sweden)

    Lina Constanza Gonzáles-Pita

    2015-01-01

    Full Text Available Protocols in a Tooth Bank are essential in order to assure smooth operation, reproducibility and standardization that minimize cross contamination, maintain original characteristics and physicochemical properties of teeth, fulll ethical and legal regulations and a proper disposal of residues. Objective: to propose the disinfection, storing and transportation protocols for the UNTB. Methods: A literature search was conducted using the words “teeth, human, tooth bank, disinfection, sterilization, storage, organization, biosecurity, biobank, protocol, prevention” in the Pubmed, Science Direct and Scielo databases. 37 papers ranging from 1988 up to 2014 were selected. International and Colombian ethical and legal regulations for organ donation, handling and investigation were taken into account as well as laboratory observations and chemical basic principles gained through several undergraduate and graduate thesis. All this input was carefully studied, analysed and critically modied for setting the recommended processes for the conversion of donated teeth into organs suitable for research. Results: Collection, transportation, cleaning/disinfection and storing protocols were planned and elaborated. Conclusions: Based on scientic literature, national and international regulations and experimental experience, several protocols for the UNTB were presented.

  17. Viability of human dental pulp in determination of sex of an individual by identifying srygene through DNA analysis: A single blind pilot study

    Directory of Open Access Journals (Sweden)

    Prachi Ravikant Naik

    2012-01-01

    Full Text Available Recognition of importance of human teeth in personal identification has been recognized from time immemorial. In any natural calamity or man-made catastrophe identification of an individual is of paramount importance. Here tooth plays an important role as it is the last one to get affected in a disaster due to its durable nature and good survival rate. This information comes under the aegis of forensic odontology and is of paramount importance from legal and social viewpoints. This analysis uses highly informative genetic markers and can be carried out easily in a typical forensic lab oratory. The SRY gene marker (sex determining region Y is a sex-determining gene on the Y chromosome in the therians (placental mammals and marsupials and this gene marker is considered as a signature gene to differentiate the male from female sex chromosome. The detection of SRY gene in the DNA from a forensic sample can be confirmatory to type the gender as male. This study was taken up to identify the viability of human tooth pulp by identification of SRY gene in gender determination.

  18. Teneurin-2 presence in rat and human odontoblasts

    Science.gov (United States)

    Dias, C. A.; Guiati, I. Z.; Ervolino, E.; Gonçalves, A.; Beneti, I. M.; Lovejoy, D. A.

    2017-01-01

    Teneurins are transmembrane proteins consisting of four paralogues (Ten-1-4), notably expressed in the central nervous system during development. All teneurins contain a bioactive peptide in their carboxyl terminal named teneurin C-terminal associated peptide (TCAP). The present study analyzed the detailed distribution of teneurin-2-like immunoreactive (Ten-2-LI) cells in developing and mature rat molar teeth, as well as in mature human dental pulps. Ten-2 and TCAP-2 genic expressions were also evaluated in rat and human dental pulps. Finally, Ten-2-LI cells were analyzed during the repair process after dentin-pulp complex injury in rat lower molar teeth. For this, histological sections of rat molar teeth and human dental pulps were submitted to immunohistochemical techniques, while total RNA from developing rat teeth and mature human dental pulps were submitted to conventional RT-PCR. Ten-2-LI cells were evident in the initial bell stage of rat molar teeth development, especially in ectomesenchymal cells of the dental papilla. Ten-2-LI odontoblasts showed strong immunoreactivity in rat and human mature teeth. Ten-2 and TCAP-2 genic expressions were confirmed in rat and human dental pulps. Dentin-pulp complex injury resulted in a decrease of Ten-2-LI odontoblasts after traumatic injury. Interestingly, Ten-2-LI cells were also evident in the pulp cell-rich zone in all postoperative days. In conclusion, Ten-2-LI presence in rat and human odontoblasts was demonstrated for the first time and Ten-2/TCAP-2 genic expressions were confirmed in rat and human dental pulps. Furthermore, it was revealed that Ten-2-LI rat odontoblasts can be modulated during the regenerative process. PMID:28926618

  19. Paleoproteomics of the Dental Pulp: The plague paradigm.

    Science.gov (United States)

    Barbieri, Rémi; Mekni, Rania; Levasseur, Anthony; Chabrière, Eric; Signoli, Michel; Tzortzis, Stéfan; Aboudharam, Gérard; Drancourt, Michel

    2017-01-01

    Chemical decomposition and fragmentation may limit the detection of ancient host and microbial DNA while some proteins can be detected for extended periods of time. We applied paleoproteomics on 300-year-old dental pulp specimens recovered from 16 individuals in two archeological funeral sites in France, comprising one documented plague site and one documented plague-negative site. The dental pulp paleoproteome of the 16 teeth comprised 439 peptides representative of 30 proteins of human origin and 211 peptides representative of 27 proteins of non-human origin. Human proteins consisted of conjunctive tissue and blood proteins including IgA immunoglobulins. Four peptides were indicative of three presumable Yersinia pestis proteins detected in 3/8 dental pulp specimens from the plague-positive site but not in the eight dental pulp specimens collected in the plague-negative site. Paleoproteomics applied to the dental pulp is a new and innovative approach to screen ancient individuals for the detection of blood-borne pathogens and host inflammatory response.

  20. Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution.

    Science.gov (United States)

    Asaduzzaman, Khandoker; Khandaker, Mayeen Uddin; Binti Baharudin, Nurul Atiqah; Amin, Yusoff Bin Mohd; Farook, Mohideen Salihu; Bradley, D A; Mahmoud, Okba

    2017-06-01

    With rapid urbanization and large-scale industrial activities, modern human populations are being increasingly subjected to chronic environmental heavy metal exposures. Elemental uptake in tooth dentine is a bioindicator, the uptake occurring during the formation and mineralization processes, stored to large extent over periods of many years. The uptake includes essential elements, most typically geogenic dietary sources, as well as non-essential elements arising through environmental insults. In this study, with the help of the Dental Faculty of the University of Malaya, a total of 50 separate human teeth were collected from dental patients of various ethnicity, age, gender, occupation, dietary habit, residency, etc. Analysis was conducted using inductively coupled plasma-mass spectrometry (ICP-MS), most samples indicating the presence of the following trace elements, placed in order of concentration, from least to greatest: As, Mn, Ba, Cu, Cr, Pb, Zn, Hg, Sb, Al, Sr, Sn. The concentrations have been observed to increase with age. Among the ethnic groups, the teeth of ethnic Chinese showed marginally greater metal concentrations than those of the Indians and Malays, the teeth dentine of females generally showing greater concentrations than that of males. Greater concentrations of Hg, Cu and Sn were found in molars while Pb, Sr, Sb and Zn were present in greater concentrations in incisors. With the elevated concentration levels of heavy metals in tooth dentine reflecting pollution from industrial emissions and urbanization, it is evident that human tooth dentine can provide chronological information on exposure, representing a reliable bio-indicator of environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Histological and Ultrastructure Analysis of Dentin Dysplasia Type I in Primary Teeth: A Case Report.

    Science.gov (United States)

    Pintor, Andrea; Alexandria, Adilis; Marques, Andrea; Abrahao, Aline; Guedes, Fabio; Primo, Laura

    2015-01-01

    Dentin dysplasia type I (DD-I) is a rare human dentin disorder that may affect both the primary and permanent dentitions. The teeth present crowns with normal morphology but short or absent roots. Pulp chamber obliteration and early exfoliation of primary teeth are also observed. We describe herein the typical and atypical features of DD-I presented by a 6-year-old patient, the diagnostic rationale and assessment emphasizing the histological and scanning electron microscopic analysis and the therapeutic approach. The DD-I diagnosis in patients in the mixed dentition period is challenging, especially when only some teeth are affected.

  2. Direct effect of radiation on the solubility of human teeth in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.

    1975-01-01

    Defects in human tooth enamel following high-dose irradiation to the head and neck have been reported for many years, but the mechanism by which these defects are produced remains controversial. Two alternative explanations are favored. One is that radiation directly alters the susceptibility of teeth to carious destruction; the other is that radiation causes salivary gland dysfunction, which in turn produces xerostomia, a condition associated with increased carious activity. In this study, we tested the first possibility by measuring the direct effect of radiation on the solubility of enamel and dentin in lactic acid, a primary factor in tooth decay in vivo.

  3. Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA

    DEFF Research Database (Denmark)

    Gilbert, M. T. P.; Hansen, Anders J.; Willerslev, E.

    2006-01-01

    A principal problem facing human DNA studies that use old and degraded remains is contamination from other sources of human DNA. In this study we have attempted to contaminate deliberately bones and teeth sampled from a medieval collection excavated in Trondheim, Norway, in order to investigate...... to lambda=254nm ultraviolet light, prior to DNA extraction and analysis for evidence of the persistence of the contaminant. The results support previous speculation that bone is more susceptible to water-borne sources of contaminant DNA, although both bone and teeth are readily contaminated...... and are difficult to decontaminate using the tested protocol. We believe that this is largely due to the porous nature of bone and teeth facilitating the deep penetration of the contaminant DNA. To simulate a more realistic handling situation, 27 further teeth were directly handled and washed, then decontaminated...

  4. Predictable management of cracked teeth with reversible pulpitis.

    Science.gov (United States)

    Abbott, P; Leow, N

    2009-12-01

    The aims of this study were to assess symptoms and signs caused by cracks in teeth and to assess a conservative management protocol. The symptoms and signs of 100 consecutive teeth that had reversible pulpitis associated with cracks were compared to findings from other reports. Teeth were managed with a conservative protocol which involved removal of cracks, caries and restorations, followed by placement of a sedative lining and interim restoration unless there were pulp exposures or insufficient tooth structure remaining. Teeth were monitored for pulp healing after three months and for up to five years. Eighty teeth did not require endodontic treatment. One tooth had an uncertain pulp status at review appointments. Fifteen teeth required endodontic treatment at the initial appointment because of carious pulp exposures (4 teeth), cracks extending into the pulp (2), and posts required (9). Four other teeth required endodontic treatment later following conservative pulp treatment due to continued pulpitis under the temporary restoration (1), pulpitis after core restoration (2), and pulp necrosis diagnosed at the review (1). Provided there is an accurate diagnosis of the pulp status and its cause, teeth with reversible pulpitis due to cracks can be treated conservatively without endodontic treatment in about 80 per cent of cases.

  5. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  6. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Directory of Open Access Journals (Sweden)

    Yvette M Coulson-Thomas

    Full Text Available Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs. Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS and hyaluronic acid (HA. In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  7. Starch grains on human teeth reveal early broad crop diet in northern Peru.

    Science.gov (United States)

    Piperno, Dolores R; Dillehay, Tom D

    2008-12-16

    Previous research indicates that the Nanchoc Valley in northern Peru was an important locus of early and middle Holocene human settlement, and that between 9200 and 5500 (14)C yr B.P. the valley inhabitants adopted major crop plants such as squash (Cucurbita moschata), peanuts (Arachis sp.), and cotton (Gossypium barbadense). We report here an examination of starch grains preserved in the calculus of human teeth from these sites that provides direct evidence for the early consumption of cultivated squash and peanuts along with two other major food plants not previously detected. Starch from the seeds of Phaseolus and Inga feuillei, the flesh of Cucurbita moschata fruits, and the nuts of Arachis was routinely present on numerous teeth that date to between 8210 and 6970 (14)C yr B.P. Early plant diets appear to have been diverse and stable through time and were rich in cultivated foods typical of later Andean agriculture. Our data provide early archaeological evidence for Phaseolus beans and I. feuillei, an important tree crop, and indicate that effective food production systems that contributed significant dietary inputs were present in the Nanchoc region by 8000 (14)C yr B.P. Starch grain studies of dental remains document plants and edible parts of them not normally preserved in archaeological records and can assume primary roles as direct indicators of ancient human diets and agriculture.

  8. Isolation and morphology of Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC)

    Science.gov (United States)

    Ariffin, Shahrul Hisham Zainal; Manogaran, Thanaletchumi; Abidin, Intan Zarina Zainol; Senafi, Sahidan; Wahab, Rohaya Megat Abdul

    2016-11-01

    Dental pulp is a tissue obtained from pulp chamber of deciduous and permanent tooth which contain stem cells. Stem cell isolation procedure is performed to obtain cells from tissue using enzymatic digestion. The aim of this study is to isolate and observe the morphology of stem cells during passage 0 and passage 3. Dental pulp from deciduous and permanent tooth was enzymatically digested using collagenase Type I and cells obtained were cultured in DMEM-KO that contains 10% fetal bovine serum, 1% antibiotic-antimycotic solution and 0.001× GlutaMax®. During culture, cell morphology was observed under the microscope on day 3, 16 and 33 and captured using cellB software. Giemsa staining was conducted on cells at passage 3. Cells attached at the bottom of the flask on day 3 and started forming small colonies. Cells became confluent after approximately 4 weeks. Both Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC) exhibited fibroblast-like morphology during passage 0 and passage 3. Meanwhile, Giemsa staining at passage 3 revealed single intact nucleus surrounded by fibroblastic cytoplasm structure. It can be concluded that SHED and hDPSC showed consistent fibroblast-like morphology throughout culture period.

  9. Manufacturing of dental pulp cell-based products from human third molars: current strategies and future investigations

    Directory of Open Access Journals (Sweden)

    Maxime eDucret

    2015-08-01

    Full Text Available In recent years, mesenchymal cell-based products have been developed to improve surgical therapies aimed at repairing human tissues. In this context, the tooth has recently emerged as a valuable source of stem/progenitor cells for regenerating orofacial tissues, with easy access to pulp tissue and high differentiation potential of dental pulp mesenchymal cells. International guidelines now recommend the use of standardized procedures for cell isolation, storage and expansion in culture to ensure optimal reproducibility, efficacy and safety when cells are used for clinical application. However, most dental pulp cell-based medicinal products manufacturing procedures may not be fully satisfactory since they could alter the cells biological properties and the quality of derived products. Cell isolation, enrichment and cryopreservation procedures combined to long-term expansion in culture media containing xeno- and allogeneic components are known to affect cell phenotype, viability, proliferation and differentiation capacities. This article focuses on current manufacturing strategies of dental pulp cell-based medicinal products and proposes a new protocol to improve efficiency, reproducibility and safety of these strategies.

  10. The Role of Nephronectin on Proliferation and Differentiation in Human Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Jia Tang

    2017-01-01

    Full Text Available Aim. The purpose of the current study was to investigate the effects of nephronectin (Npnt in human dental pulp stem cells (hDPSCs. Methodology. Npnt was coated to nontissue culture-treated polystyrene (non-PS plates. The presence of immobilized protein on the surface was detected by polyclonal rabbit primary anti-Npnt antibody. Then the cell number was counted and compared with PBS-, bovine serum albumin- (BSA-, fish scale type I collagen- (FCOL1-, and human fibronectin- (Fn- coated wells. Cell proliferation was assessed using CCK-8 assay. Cell morphology was observed under light microscopy and fluorescence microscopy. Lastly, the mRNA expression profiles of integrins, dentin sialophosphoprotein (DSPP, bone sialoprotein (BSP, and mineralization capacity of hDPSCs were investigated by real time RT-PCR and alizarin red staining, respectively. Results. Npnt mediates hDPSC adhesion and spreading partially via the Arg-Gly-Asp (RGD motif. Npnt enhanced the mRNA expression of ITGA1, ITGA4, ITGA7, and ITGB1 on day five. Npnt downregulated DSPP but significantly upregulated BSP mRNA expression at day 28. Further, Npnt and FCOL1 accelerated the matrix mineralization in hDPSCs. Conclusions. The current findings implicate that Npnt would be favorable to recruit hDPSCs and conducive to mineralization in hDPSCs. The combination of Npnt with hDPSCs may offer a promising approach for hard tissue regeneration.

  11. Human Dental Pulp Stem Cells via the NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Shensheng Gu

    2015-07-01

    Full Text Available Background/Aims: Odontogenic differentiation of human dental pulp stem cells (HDPSCs is regulated by multiple factors and signaling molecules. However, their regulatory mechanisms are not completely understood. In this study, we investigated the role of Zinc finger and BTB domain-containing 20 (ZBTB20 in odontoblastic differentiation of HDPSCs. Methods: HDPSCs were obtained from human third molars and ZBTB20 expression was examined by qRT-PCR and western blot. Their osteo/odontogenic differentiation and the involvement of NF-κB pathway were subsequently investigated. Results: The expression of ZBTB20 is upregulated in a time-dependent manner during odontogenic differentiation of hDPSCs. Inhibition of ZBTB20 reduced osteogenic medium (OM-induced odontogenic differentiation, reflected in decreased alkaline phosphatase (ALP activity, mineralized nodule formation and mRNA expression of odonto/osteogenic marker genes. In contrast, overexpression of ZBTB20 enhanced ALP activity, mineralization and the expression of differentiation marker genes. Furthermore, the expression of IκBa was increased by ZBTB20 silencing in HDPSCs, whereas ZBTB20 overexpression decreased IκBa and enhanced nuclear NF-κB p65. Inhibition of the NF-κB pathway significantly suppressed the odontogenic differentiation of HDPSCs induced by ZBTB20. Conclusion: This study shows for the first time that ZBTB20 plays an important role during odontoblastic differentiation of HDPSCs and may have clinical implications for regenerative endodontics.

  12. Effects of high-mobility group box 1 on the proliferation and odontoblastic differentiation of human dental pulp cells.

    Science.gov (United States)

    Qi, S C; Cui, C; Yan, Y H; Sun, G H; Zhu, S R

    2013-12-01

    To investigate the expression of high-mobility group box 1 (HMGB1) in human dental pulp tissues and the effects of HMGB1 on proliferation and odontoblastic differentiation of human dental pulp cells (hDPCs). Immunohistochemical assay, immunofluorescence staining and flow cytometric analysis were used to detect the expression of HMGB1 in the human dental pulp and hDPCs, respectively. The proliferation of hDPCs was examined by CCK-8 after culturing human primary hDPCs in the presence of HMGB1 with different doses. Odontoblastic differentiation of hDPCs was determined using alkaline phosphatase (ALPase) activity assay and mineralized nodule formation. Important mineralization-related genes such as ALP, dental sialophosphoprotein (DSPP) and dental matrix protein-1 (DMP-1) were determined by real-time polymerase chain reaction. Western blot analysis was performed to determine the difference in expressions of DMP-1 and DSP with or without the presence of exogenous HMGB1. Simultaneously, messenger RNA and protein levels of HMGB1 and RAGE were also detected. The protein level of HMGB1 in the supernatants was quantified using ELISA analysis. HMGB1 was found in human dental pulp tissue and in the nuclei of hDPCs. During hDPC odontoblastic differentiation, HMGB1 translocated from the nuclei to the cytoplasm and then secreted out from hDPCs. Exogenous HMGB1 promoted hDPC proliferation and mineralized nodule formation. It up-regulated the activity of ALPase and the mRNA and protein levels of dentine matrix protein-1 (DMP-1), alkaline phosphatase (ALP), dentine sialophosphoprotein (DSPP) and receptor for advance glycation end (RAGE) of hDPCs. HMGB1 promoted the proliferation and odontoblastic differentiation of hDPCs. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Functionalized scaffolds to control dental pulp stem cell fate.

    Science.gov (United States)

    Piva, Evandro; Silva, Adriana F; Nör, Jacques E

    2014-04-01

    Emerging understanding about interactions between stem cells, scaffolds, and morphogenic factors has accelerated translational research in the field of dental pulp tissue engineering. Dental pulp stem cells constitute a subpopulation of cells endowed with self-renewal and multipotency. Dental pulp stem cells seeded in biodegradable scaffolds and exposed to dentin-derived morphogenic factors give rise to a pulplike tissue capable of generating new dentin. Notably, dentin-derived proteins are sufficient to induce dental pulp stem cell differentiation into odontoblasts. Ongoing work is focused on developing ways of mobilizing dentin-derived proteins and disinfecting the root canal of necrotic teeth without compromising the morphogenic potential of these signaling molecules. On the other hand, dentin by itself does not appear to be capable of inducing endothelial differentiation of dental pulp stem cells despite the well-known presence of angiogenic factors in dentin. This is particularly relevant in the context of dental pulp tissue engineering in full root canals in which access to blood supply is limited to the apical foramina. To address this challenge, scientists are looking at ways to use the scaffold as a controlled-release device for angiogenic factors. The aim of this article was to present and discuss current strategies to functionalize injectable scaffolds and customize them for dental pulp tissue engineering. The long-term goal of this work is to develop stem cell-based therapies that enable the engineering of functional dental pulps capable of generating new tubular dentin in humans. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Human dental pulp stem cells cultured in serum-free supplemented medium

    Directory of Open Access Journals (Sweden)

    Virginie eBonnamain

    2013-12-01

    Full Text Available Growing evidence show that human dental pulp stem cells (DPSCs could provide a source of adult stem cells for the treatment of neurodegenerative pathologies. In this study, DPSCs were expanded and cultured with a protocol generally used for the culture of neural stem/progenitor cells.Methodology: DPSC cultures were established from third molars. The pulp tissue was enzymatically digested and cultured in serum-supplemented basal medium for 12 hours. Adherent (ADH and non-adherent (non-ADH cell populations were separated according to their differential adhesion to plastic and then cultured in serum-free defined N2 medium with epidermal growth factor (EGF and basic fibroblast growth factor (bFGF. Both ADH and non-ADH populations were analyzed by FACS and/or PCR.Results: FACS analysis of ADH-DPSCs revealed the expression of the mesenchymal cell marker CD90, the neuronal marker CD56, the transferrin receptor CD71, and the chemokine receptor CXCR3, whereas hematopoietic stem cells markers CD45, CD133 and CD34 were not expressed. ADH-DPSCs expressed transcripts coding for the Nestin gene, whereas expression levels of genes coding for the neuronal markers β-III tubulin and NF-M, and the oligodendrocyte marker PLP-1 were donor dependent. ADH-DPSCs did not express the transcripts for GFAP, an astrocyte marker. Cells of the non-ADH population that grew as spheroids expressed Nestin, β-III tubulin, NF-M and PLP-1 transcripts. DPSCs migrated out of the spheroids exhibited an odontoblast-like morphology and expressed a higher level of DSPP and osteocalcin transcripts than ADH-DPSCs. Conclusion: Collectively, these data indicate that human DPSCs can be expended and cultured in serum-free supplemented medium with EGF and bFGF. ADH-DPSCs and non-ADH populations contained neuronal and/or oligodendrocyte precursors at different stages of commitment and interestingly, cells from spheroid structures seem to be more engaged into the odontoblastic lineage than the

  15. Effect of laser treatment on the root canal of human teeth.

    Science.gov (United States)

    Khan, M A; Khan, M F; Khan, M W; Wakabayashi, H; Matsumoto, K

    1997-06-01

    The purpose of this study was to examine the morphological and temperature changes of the apical portion of human extracted teeth treated by Nd: YAG, CO2 and Argon-lasers. Seventy-two single-rooted human teeth were studied. The root canals were prepared conventionally. Laser treatment of the apical portion of the canal was carried out by means of an optic fiber or metal tip. Temperatures were recorded thermographically. Two-thirds of the specimens were stained with black India ink and 36% silver ammonium fluoride solution. All specimens were irradiated by the three types of lasers at several intensities and the temperatures were recorded. Half of the specimens were prepared for the telescopic light microscope and for scanning electron microscopic observation, and the rest for histopathological examination by light microscope. The scanning electron microscopic evaluation showed that the laser energy vaporized the deposited debris, producing a glaze-like surface. The histopathological investigation revealed a tapered, enlarged apical lased area. All three laser devices were capable of vaporizing the debris in this way but the degree of morphological change was highly dependent on energy level and duration. The Argon-laser produced the highest temperatures.

  16. Effects of decellularized matrices derived from periodontal ligament stem cells and SHED on the adhesion, proliferation and osteogenic differentiation of human dental pulp stem cells in vitro.

    Science.gov (United States)

    Heng, Boon Chin; Zhu, Shaoyue; Xu, Jianguang; Yuan, Changyong; Gong, Ting; Zhang, Chengfei

    2016-04-01

    A major bottleneck to the therapeutic applications of dental pulp stem cells (DPSC) are their limited proliferative capacity ex vivo and tendency to undergo senescence. This may be partly due to the sub-optimal in vitro culture milieu, which could be improved by an appropriate extracellular matrix substratum. This study therefore examined decellularized matrix (DECM) from stem cells derived from human exfoliated deciduous teeth (SHED) and periodontal ligament stem cells (PDLSC), as potential substrata for DPSC culture. Both SHED-DECM and PDLSC-DECM promoted rapid adhesion and spreading of newly-seeded DPSC compared to bare polystyrene (TCPS), with vinculin immunocytochemistry showing expression of more focal adhesions by newly-adherent DPSC cultured on DECM versus TCPS. Culture of DPSC on SHED-DECM and PDLSC-DECM yielded higher proliferation of cell numbers compared to TCPS. The qRT-PCR data showed significantly higher expression of nestin by DPSC cultured on DECM versus the TCPS control. Osteogenic differentiation of DPSC was enhanced by culturing on PDLSC-DECM and SHED-DECM versus TCPS, as demonstrated by alizarin red S staining for mineralized calcium deposition, alkaline phosphatase assay and qRT-PCR analysis of key osteogenic marker expression. Hence, both SHED-DECM and PDLSC-DECM could enhance the ex vivo culture of DPSC under both non-inducing and osteogenic-inducing conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mesenchymal and embryonic characteristics of stem cells obtained from mouse dental pulp

    DEFF Research Database (Denmark)

    Guimarães, Elisalva Teixeira; Cruz, Gabriela Silva; de Jesus, Alan Araújo

    2011-01-01

    OBJECTIVE: Several studies have demonstrated that human dental pulp is a source of mesenchymal stem cells. To better understand the biological properties of these cells we isolated and characterized stem cells from the dental pulp of EGFP transgenic mice. METHODS: The pulp tissue was gently...... abnormalities was evaluated by G banding. RESULTS: The mouse dental pulp stem cells (mDPSC) were highly proliferative, plastic-adherent, and exhibited a polymorphic morphology predominantly with stellate or fusiform shapes. The presence of cell clusters was observed in cultures of mDPSC. Some cells were...... separated from the roots of teeth extracted from C57BL/6 mice, and cultured under appropriate conditions. Flow cytometry, RT-PCR, light microscopy (staining for alkaline phosphatase) and immunofluorescence were used to investigate the expression of stem cell markers. The presence of chromosomal...

  18. Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jian Chen

    Full Text Available Induced pluripotent stem cell (iPSC technology is providing an opportunity to study neuropsychiatric disorders through the capacity to grow patient-specific neurons in vitro. Skin fibroblasts obtained by biopsy have been the most reliable source of cells for reprogramming. However, using other somatic cells obtained by less invasive means would be ideal, especially in children with autism spectrum disorders (ASD and other neurodevelopmental conditions. In addition to fibroblasts, iPSCs have been developed from cord blood, lymphocytes, hair keratinocytes, and dental pulp from deciduous teeth. Of these, dental pulp would be a good source for neurodevelopmental disorders in children because obtaining material is non-invasive. We investigated its suitability for disease modeling by carrying out gene expression profiling, using RNA-seq, on differentiated neurons derived from iPSCs made from dental pulp extracted from deciduous teeth (T-iPSCs and fibroblasts (F-iPSCs. This is the first RNA-seq analysis comparing gene expression profiles in neurons derived from iPSCs made from different somatic cells. For the most part, gene expression profiles were quite similar with only 329 genes showing differential expression at a nominally significant p-value (p<0.05, of which 63 remained significant after correcting for genome-wide analysis (FDR <0.05. The most striking difference was the lower level of expression detected for numerous members of the all four HOX gene families in neurons derived from T-iPSCs. In addition, an increased level of expression was seen for several transcription factors expressed in the developing forebrain (FOXP2, OTX1, and LHX2, for example. Overall, pathway analysis revealed that differentially expressed genes that showed higher levels of expression in neurons derived from T-iPSCs were enriched for genes implicated in schizophrenia (SZ. The findings suggest that neurons derived from T-iPSCs are suitable for disease

  19. Shear bond strength and fracture analysis of human vs. bovine teeth.

    Directory of Open Access Journals (Sweden)

    Stefan Rüttermann

    Full Text Available PURPOSE: To evaluate if bovine enamel and dentin are appropriate substitutes for the respective human hard tooth tissues to test shear bond strength (SBS and fracture analysis. MATERIALS AND METHODS: 80 sound and caries-free human erupted third molars and 80 freshly extracted bovine permanent central incisors (10 specimens for each group were used to investigate enamel and dentine adhesion of one 2-step self-etch (SE and one 3-step etch and rinse (E&R product. To test SBS the buccal or labial areas were ground plane to obtain appropriate enamel or dentine areas. SE and E&R were applied and SBS was measured prior to and after 500 thermocycles between +5 and +55°C. Fracture analysis was performed for all debonded areas. RESULTS: ANOVA revealed significant differences of enamel and dentin SBS prior to and after thermocycling for both of the adhesives. SBS- of E&R-bonded human enamel increased after thermocycling but SE-bonded did not. Bovine enamel SE-bonded showed higher SBS after TC but E&R-bonded had lower SBS. No differences were found for human dentin SE- or E&R-bonded prior to or after thermocycling but bovine dentin SE-bonded increased whereas bovine dentine E&R-bonded decreased. Considering the totalized and adhesive failures, fracture analysis did not show significances between the adhesives or the respective tooth tissues prior to or after thermocycling. CONCLUSION: Although SBS was different on human and bovine teeth, no differences were found for fracture analysis. This indicates that solely conducted SBS on bovine substrate are not sufficient to judge the perfomance of adhesives, thus bovine teeth are questionnable as a substrate for shear bond testing.

  20. Morphometric computerized analysis on the dentinal tubules and the collagen fibers in the dentine of human permanent teeth.

    Science.gov (United States)

    Marchetti, C; Piacentini, C; Menghini, P

    1992-01-01

    A morphometric analysis has been performed on important components of human dentine using an image computerized analyzer. The dentinal tubule diameter and their area percentage were calculated. Moreover the area percentage of the collagen fibers in the dentinal matrix was measured. These parameters have been evaluated in different areas of the coronal and the radicular dentine in permanent teeth. Measurements have been performed on undecalcified and decalcified teeth and on teeth treated with enzymatic digestion to remove the organic non collagen matrix and to evidentiate the collagen fiber network. The values obtained in different areas of the tooth and in samples submitted to different treatments were evaluated by statistical analysis. Dentinal tubule diameter and area percentage significatively decrease from the inner to the peripheral dentine both in the undecalcified teeth as in the decalcified ones and in the samples undergone to enzymatic digestion. The collagen fiber percentage in the organic matrix is significatively lower in the mantle dentine.

  1. High-plasticity mesenchymal stem cells isolated from adult-retained primary teeth and autogenous adult tooth pulp--A potential source for regenerative therapies?

    Science.gov (United States)

    Kushnerev, E; Shawcross, S G; Hillarby, M C; Yates, J M

    2016-02-01

    The objective of this study was to compare the growth rate, morphology, immunohistology and plasticity of autogenous adult-retained SHEDs (arSHEDs) and adult dental pulp stem cells (DPSCs) obtained from the same donor. Expression of the mesenchymal stem cell markers CD44, CD90, CD105, caspase-3 and GAPDH were assessed using RT-PCR. Caspase-3 and CD44 were also evaluated at the protein level by western blotting of cell lysates. Plasticity of DPSCs and arSHEDs were tested by culture in adipogenic, chondrogenic, osteogenic and Schwann cells induction media. DPSCs and arSHEDs were isolated by explant culturing and were similarly positive for growth rate and all tested markers. Furthermore, DPSCs and arSHEDs could be driven to adipocyte, chondrocyte, osteocyte and Schwann cells lineages thus indicating similar plasticity as precursor cells. This study demonstrates the similarities between DPSCs and arSHEDs in a unique situation, where both stem cells (SC) types were obtained from a single patient and thus represent an alternative source of SC's for tissue engineering and regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Cytotoxicity of 5 endodontic sealers on L929 cell line and human dental pulp cells.

    Science.gov (United States)

    Karapınar-Kazandağ, M; Bayrak, O F; Yalvaç, M E; Ersev, H; Tanalp, J; Sahin, F; Bayırlı, G

    2011-07-01

    To investigate the cytotoxicity of five root canal sealers on L929 mouse fibroblasts and primary human dental pulp cells. Cylindrical specimens of AH Plus (Dentsply De Trey GmbH, Konstanz, Germany), RoekoSeal (Coltène Whaledent, Langenau, Germany), EndoREZ (Ultradent Products Inc., South Jordan, UT, USA), Epiphany (Pentron Clinical Technologies, LLCC, Wallingford, CT, USA) and Activ GP (Brasseller Inc., USA, Savannah, GA, USA) were kept at 37 °C in a humidified atmosphere of 5% CO(2) for thrice the length of the setting time given by the manufacturer. Extraction of specimens was performed after setting in cell growth medium for 1, 4 and 7 days. Undiluted, 50% and 25% diluted eluates were incubated with cultured cells for 24 and 72 h. Cytotoxicity was assessed using MTS colorimetric bioassay. Kruskal-Wallis test and post hoc Dunn's multiple comparison test were used to compare the sealers and diluted/undiluted eluates in terms of cell viability (% of control). Friedman test and post hoc Dunn's multiple comparison test were performed to compare extraction periods. Wilcoxon test was utilized in comparing 24- and 72-h readings. Undiluted 1-day eluate of Activ GP was significantly more cytotoxic than all other sealers (P Endodontic Journal.

  3. [The evaluation of the cytotoxicity of 2 dental adhesives using human pulp cells in culture].

    Science.gov (United States)

    Bouillaguet, S; Ciucchi, B; Holz, J

    1993-01-01

    This in vitro study was designed to ascertain the cytotoxicity of two new dentin systems, Scotchbond MP (3M) and A.R.T. Bond (Coltène), on cultured cell monolayers prepared from fresh explants of human pulp tissue and placed in contact with the materials according to two methods. In a direct method, the two components (primer, adhesive) of each bonding system were placed directly on the cell layers. In an indirect method the bonding agents were placed on dentin slices of 0.3 and 1.0 mm thickness, that were interposed between agents and cells. After 8 days the cytotoxicity was quantitatively assessed by counting of the remaining living cells. The results indicate that the different primer solutions, when placed in direct contact with the cells, are more cytotoxic than the adhesive resins. In indirect contact through dentin, both bonding systems exhibited a similar cytotoxicity. The cytotoxicity appeared to be considerably diminished with a thick dentin slice interposed. These data confirm the role of dentin as a diffusion and buffer membrane for bonding materials. This kind of experiment could in the future improve the correlation between in vitro and in vivo results.

  4. Vitamin D Promotes Odontogenic Differentiation of Human Dental Pulp Cells via ERK Activation

    Science.gov (United States)

    Woo, Su-Mi; Lim, Hae-Soon; Jeong, Kyung-Yi; Kim, Seon-Mi; Kim, Won-Jae; Jung, Ji-Yeon

    2015-01-01

    The active metabolite of vitamin D such as 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) is a well-known key regulatory factor in bone metabolism. However, little is known about the potential of vitamin D as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro. The purpose of this study was to evaluate the effect of vitamin D3 metabolite, 1α,25(OH)2D3, on odontoblastic differentiation in HDPCs. HDPCs extracted from maxillary supernumerary incisors and third molars were directly cultured with 1α,25(OH)2D3 in the absence of differentiation-inducing factors. Treatment of HDPCs with 1α,25(OH)2D3 at a concentration of 10 nM or 100 nM significantly upregulated the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein1 (DMP1), the odontogenesis-related genes. Also, 1α,25(OH)2D3 enhanced the alkaline phosphatase (ALP) activity and mineralization in HDPCs. In addition, 1α,25(OH)2D3 induced activation of extracellular signal-regulated kinases (ERKs), whereas the ERK inhibitor U0126 ameliorated the upregulation of DSPP and DMP1 and reduced the mineralization enhanced by 1α,25(OH)2D3. These results demonstrated that 1α,25(OH)2D3 promoted odontoblastic differentiation of HDPCs via modulating ERK activation. PMID:26062551

  5. Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells.

    Science.gov (United States)

    AbdulQader, Sarah Talib; Kannan, Thirumulu Ponnuraj; Rahman, Ismail Ab; Ismail, Hanafi; Mahmood, Zuliani

    2015-04-01

    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300μm and 65% porosity were prepared from phosphoric acid (H2PO4) and calcium carbonate (CaCO3) sintered at 1000°C for 2h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Genetic Comparison of Stemness of Human Umbilical Cord and Dental Pulp

    Directory of Open Access Journals (Sweden)

    Chung-Min Kang

    2016-01-01

    Full Text Available This study focuses on gene expression patterns and functions in human umbilical cord (UC and dental pulp (DP containing mesenchymal stem cells (MSCs. DP tissues were collected from 25 permanent premolars. UC tissue samples were obtained from three newborns. Comparative gene profiles were obtained using cDNA microarray analysis and the expression of tooth development-associated and MSC-related genes was assessed by the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR. Genes related to cell proliferation, angiogenesis, and immune responses were expressed at higher levels in UC, whereas genes related to growth factor and receptor activity and signal transduction were more highly expressed in DP. Although UC and DP tissues exhibited similar expression of surface markers for MSCs, UC showed higher expression of CD29, CD34, CD44, CD73, CD105, CD146, and CD166. qRT-PCR analysis showed that CD146, CD166, and MYC were expressed 18.3, 8.24, and 1.63 times more highly in UC, whereas the expression of CD34 was 2.15 times higher in DP. Immunohistochemical staining revealed significant differences in the expression of genes (DSPP, DMP1, and CALB1 related to odontogenesis and angiogenesis in DP. DP and UC tissue showed similar gene expression, with the usual MSC markers, while they clearly diverged in their differentiation capacity.

  7. THE EFFECT OF FETAL CALF SERUM ON HUMAN DENTAL PULP STEM CELLS

    Directory of Open Access Journals (Sweden)

    Jakub Suchánek

    2013-01-01

    Full Text Available Aims: Authors studied potential side effects of fetal calf serum (FCS in cultivation media on human dental pulp stem cells (DPSC during long term cultivation. Methods: Two lines of DPSC obtained healthy donors (male 22 years, female 23 years were used. Both lines were cultivated under standard cultivation conditions in four different media containing 10% or 2% FCS and substituted with growth factors. During long term cultivation proliferation ability, karyotype and phenotype of DPSC were measured. Results: Both lines of DPSC cultivated in a media containing 2% FCS and ITS supplement showed the highest number of population doublings. On the other hand the proliferation rate of DPSC cultivated in a media with 2% FCS without ITS supplement was slowest. Proliferation rate of DPSC cultivated in 10% FCS media with or without FGF-2 was comparable. DPSC cultivated in a media with 10% FCS showed a significantly higher amount of chromosomal aberrations. These chromosomal aberrations do not seem to be clonal but surprisingly we found large amounts of tetraploid cells in the 9th passage in both media containing 10% FCS. Conclusions: Our study proved that cultivation of DPSC in media containing higher concentration of FCS has critical side effects on cell chromosomal stability.

  8. Cellular Responses in Human Dental Pulp Stem Cells Treated with Three Endodontic Materials

    Directory of Open Access Journals (Sweden)

    Alejandro Victoria-Escandell

    2017-01-01

    Full Text Available Human dental pulp stem cells (HDPSCs are of special relevance in future regenerative dental therapies. Characterizing cytotoxicity and genotoxicity produced by endodontic materials is required to evaluate the potential for regeneration of injured tissues in future strategies combining regenerative and root canal therapies. This study explores the cytotoxicity and genotoxicity mediated by oxidative stress of three endodontic materials that are widely used on HDPSCs: a mineral trioxide aggregate (MTA-Angelus white, an epoxy resin sealant (AH-Plus cement, and an MTA-based cement sealer (MTA-Fillapex. Cell viability and cell death rate were assessed by flow cytometry. Oxidative stress was measured by OxyBlot. Levels of antioxidant enzymes were evaluated by Western blot. Genotoxicity was studied by quantifying the expression levels of DNA damage sensors such as ATM and RAD53 genes and DNA damage repair sensors such as RAD51 and PARP-1. Results indicate that AH-Plus increased apoptosis, oxidative stress, and genotoxicity markers in HDPSCs. MTA-Fillapex was the most cytotoxic oxidative stress inductor and genotoxic material for HDPSCs at longer times in preincubated cell culture medium, and MTA-Angelus was less cytotoxic and genotoxic than AH-Plus and MTA-Fillapex at all times assayed.

  9. Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities.

    Science.gov (United States)

    Alraies, Amr; Alaidaroos, Nadia Y A; Waddington, Rachel J; Moseley, Ryan; Sloan, Alastair J

    2017-02-02

    Dental pulp stem cells (DPSCs) are increasingly being recognized as a viable cell source for regenerative medicine. Although significant variations in their ex vivo expansion are well-established, DPSC proliferative heterogeneity remains poorly understood, despite such characteristics influencing their regenerative and therapeutic potential. This study assessed clonal human DPSC regenerative potential and the impact of cellular senescence on these responses, to better understand DPSC functional behaviour. All DPSCs were negative for hTERT. Whilst one DPSC population reached >80 PDs before senescence, other populations only achieved high proliferative capacities possessing longer telomeres (18.9 kb) than less proliferative populations (5-13 kb). High proliferative capacity DPSCs exhibited prolonged stem cell marker expression, but lacked CD271. Early-onset senescence, stem cell marker loss and positive CD271 expression in DPSCs with low proliferative capacities were associated with impaired osteogenic and chondrogenic differentiation, favouring adipogenesis. DPSCs with high proliferative capacities only demonstrated impaired differentiation following prolonged expansion (>60 PDs). This study has identified that proliferative and regenerative heterogeneity is related to contrasting telomere lengths and CD271 expression between DPSC populations. These characteristics may ultimately be used to selectively screen and isolate high proliferative capacity/multi-potent DPSCs for regenerative medicine exploitation.

  10. The effect of TRPM7 suppression on the proliferation, migration and osteogenic differentiation of human dental pulp stem cells.

    Science.gov (United States)

    Cui, L; Xu, S M; Ma, D D; Wu, B L

    2014-06-01

    To investigate the role of the Ca(2+) -Mg(2+) ion channel TRPM7 in the proliferation, migration and osteogenic differentiation of human dental pulp stem cells (hDPSCs). Immunohistochemistry was used to localize expression of TRPM7 in human dental pulp tissues and in cultured hDPSCs. Isolated hDPSCs were infected with recombinant lentiviruses expressing short hairpin RNA (shRNA) specific for TRPM7, or control shRNA, in order to suppress TRPM7 mRNA expression and investigate its functional role. The proliferation of the shRNA-infected hDPSCs was evaluated using both an MTT assay to measure viable cell numbers and cell cycle analysis. Cell migration was assessed using a transwell assay. The dynamic mRNA expression of TRPM7 during osteogenic differentiation of hDPSCs and the effect of shRNA specific for TRPM7 on hDPSC osteogenic differentiation were evaluated by real-time PCR. TRPM7 expression was widespread in human dental pulp tissue and was detected mainly in the cytomembrane and cytoplasm of hDPSCs. Suppression of TRPM7 inhibited both the proliferation and the migratory capacity of hDPSCs. TRPM7 mRNA expression was elevated during osteogenic differentiation of hDPSCs. TRPM7-specific shRNA inhibited osteogenic differentiation of hDPSCs, with downregulated mRNA expression of the osteogenic markers alkaline phosphatase (ALP), dentine sialophosphoprotein (DSPP), bone sialoprotein (BSP), runt-related transcription factor (RUNX2) and osterix (OSX). TRPM7 was involved in the regulation of hDPSC proliferation, migration and osteogenic differentiation and may play a role in the dental pulp repair process. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo.

    Science.gov (United States)

    Limjeerajarus, Chalida Nakalekha; Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Pavasant, Prasit

    2014-07-01

    Prostacyclin (PGI2) is a biomolecule capable of enhancing angiogenesis and cellular proliferation. We investigated the influence of a PGI2 analogue (iloprost) on dental pulp revascularization in vitro and in vivo by using human dental pulp cells (HDPCs) and a rat tooth injury model, respectively. Iloprost stimulated the human dental pulp cell mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor (PDGF) in a significant dose-dependent manner. This mRNA up-regulation was significantly inhibited by pretreatment with a PGI2 receptor antagonist and forskolin (a protein kinase A activator). In contrast, a protein kinase A inhibitor significantly enhanced the iloprost-induced mRNA expression of VEGF, FGF-2, and PDGF. Pretreatment with a fibroblast growth factor receptor inhibitor attenuated the VEGF, FGF-2, and PDGF mRNA expression, indicating opposing regulatory mechanisms. The effect of iloprost on the dental pulp was investigated in vivo by using a rat molar pulp injury model. The iloprost-treated group exhibited a significant increase in pulpal blood flow at 72 hours compared with control. The present study indicates that iloprost may be a candidate agent to promote neovascularization in dental pulp tissue, suggesting the potential clinical use of iloprost in vital pulp therapy. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Insight into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA.

    NARCIS (Netherlands)

    Gilbert, M.T.P.; Willerslev, A.J.H.E.; Turner-Walker, G.; Collins, M.J.

    2006-01-01

    A principal problem facing human DNA studies that use old and degraded remains is contamination from other sources of human DNA. In this study we have attempted to contaminate deliberately bones and teeth sampled from a medieval collection excavated in Trondheim, Norway, in order to investigate this

  13. A Comparison of the Discoloration Potential for EndoSequence Bioceramic Root Repair Material Fast Set Putty and ProRoot MTA in Human Teeth: An In Vitro Study.

    Science.gov (United States)

    Alsubait, S; Al-Haidar, S; Al-Sharyan, N

    2017-02-01

    To compare the discoloration potential of Endosequence Bioceramic Root Repair Material fast set putty (ERRMF) and ProRoot MTA (PMTA) when placed coronally in human extracted teeth over a 4-month period. Forty-eight premolars were sectioned 2 mm below the cementoenamel junction. The pulp chambers were cleaned chemo-mechanically. The specimens were randomly assigned to three groups: PMTA, ERRMF, and no fill (control). Tooth color was measured spectrophotometrically at six time points: after material placement, after 2, 4, 8, 12, and 16 weeks. Data were transformed into Commission Internationale de l'éclairage (CIE) L*a*b* system and color difference values (ΔΕ) were calculated. Specimen images were recorded for each time point. Three random specimens from experimental groups were sectioned longitudinally and examined under a stereomicroscope. For data analyses, we used one-way analysis of variance with repeated measurements and Tukey's test (α = 0.05). At 2 weeks, the ΔE means did not differ significantly between the groups. At 4, 8, 12, and 16 weeks, PMTA group exhibited a significantly higher ΔE compared with the ERRMF and control groups. The ΔE did not differ significantly between the ERRMF and control groups. Teeth restored using PMTA exhibited a visually progressive dark discoloration. The control and ERRMF group specimens exhibited color stability. Sections of PMTA specimens revealed grayish discoloration of the material with dark dentinal staining that was not visible in the ERRMF specimens. Teeth restored using PMTA exhibited progressive discoloration, whereas teeth restored with ERRMF maintained color stability over a 4-month period. The results found in the present study suggest that PMTA produces tooth discoloration over time, whereas ERRMF does not induce tooth discoloration. Therefore, ERRMF might be an alternative to PMTA, especially for coronal restoration in aesthetic zone teeth. (J Esthet Restor Dent 29:59-67, 2017). © 2016 Wiley

  14. The variation in surface morphology and hardness of human deciduous teeth samples after laser irradiation

    Science.gov (United States)

    Khalid, Arooj; Bashir, Shazia; Akram, Mahreen; Salman Ahmed, Qazi

    2017-11-01

    The variation in surface morphology and hardness of human deciduous teeth samples has been investigated after laser irradiation at different wavelengths and energies. Nd:YAG was employed as a source of irradiation for IR (1064 nm) and visible (532 nm) radiation, whereas an excimer laser was used as the source of UV (248 nm) radiation. Scanning electron microscope (SEM) analysis was carried out to reveal the surface morphological evolution of teeth samples. Vickers microhardness tester was employed to investigate the modifications in the hardness of the laser-treated samples. It is observed from SEM analysis that IR wavelength is responsible for ablation of collagen matrix and intertubular dentine. For visible radiation, the ablation of collagen along with hydroxypatite is observed. With UV radiation, the ablation of peritubular dentine is dominant and is responsible for the sealing of tubules. The decrease in hardness at lower energy for both wavelengths is due to the evaporation of carbon content. With increasing energy, evaporation of water along with carbon content, and resolidification and re-organization of inorganic content causes the increase in hardness of the treated dentine. SEM as well as microhardness analyses reveal that laser wavelengths and energy of laser radiation significantly influence the surface morphology and hardness of samples.

  15. Intratubular Antibacterial Effect of Polyethyleneimine Nanoparticles: An Ex Vivo Study in Human Teeth

    Directory of Open Access Journals (Sweden)

    Itzhak Abramovitz

    2015-01-01

    Full Text Available Enterococcus faecalis is a facultative gram positive bacterium which can remain in the teeth root canals and cause refractory or persistent periapical diseases. E. faecalis bacteria that penetrate the dentinal tubules can be the source of intracanal infection and endodontic disease. Quaternary ammonium polyethyleneimine (QPEI nanopolymers were shown to have long lasting antibacterial activity against gram positive and gram negative bacteria. The present study evaluated the intratubular antibacterial effect of an epoxy resin sealer incorporating 1% QPEI against E. faecalis in a human dentin model. Root canals of extracted teeth were inoculated with E. faecalis for 7 days prior to standard endodontic treatment. The antibacterial effect of an epoxy-amine resin endodontic sealer was tested at concentration of 0% or 1% (wt/wt added QPEI nanoparticles. Reduction in bacterial viability p<0.01 was depicted in the dentinal tubules of the root canals obturated with the sealer incorporating QPEI nanoparticles. In conclusion, QPEI nanoparticles when incorporated in a small percentage into epoxy-resin based sealer may target E. faecalis in the dentinal tubules, producing a potent antibacterial effect that reduces significantly bacterial viability.

  16. Diagenesis-inspired reaction of magnesium ions with surface enamel mineral modifies properties of human teeth.

    Science.gov (United States)

    Abdallah, Mohamed-Nur; Eimar, Hazem; Bassett, David C; Schnabel, Martin; Ciobanu, Ovidiu; Nelea, Valentin; McKee, Marc D; Cerruti, Marta; Tamimi, Faleh

    2016-06-01

    Mineralized tissues such as teeth and bones consist primarily of highly organized apatitic calcium-phosphate crystallites within a complex organic matrix. The dimensions and organization of these apatite crystallites at the nanoscale level determine in part the physical properties of mineralized tissues. After death, geological processes such as diagenesis and dolomitization can alter the crystallographic properties of mineralized tissues through cycles of dissolution and re-precipitation occurring in highly saline environments. Inspired by these natural exchange phenomena, we investigated the effect of hypersalinity on tooth enamel. We discovered that magnesium ions reacted with human tooth enamel through a process of dissolution and re-precipitation, reducing enamel crystal size at the surface of the tooth. This change in crystallographic structure made the teeth harder and whiter. Salt-water rinses have been used for centuries to ameliorate oral infections; however, our discovery suggests that this ancient practice could have additional unexpected benefits. Here we describe an approach inspired by natural geological processes to modify the properties of a biomineral - human tooth enamel. In this study we showed that treatment of human tooth enamel with solutions saturated with magnesium induced changes in the nanocrystals at the outer surface of the protective enamel layer. As a consequence, the physical properties of the tooth were modified; tooth microhardness increased and the color shade became whiter, thus suggesting that this method could be used as a clinical treatment to improve dental mechanical properties and esthetics. Such an approach is simple and straightforward, and could also be used to develop new strategies to synthesize and modify biominerals for biomedical and industrial applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Investigation of human teeth with respect to the photon interaction, energy absorption and buildup factor

    Energy Technology Data Exchange (ETDEWEB)

    Kurudirek, Murat, E-mail: mkurudirek@gmail.co [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey); Topcuoglu, Sinan [Faculty of Dentistry, Department of Endodontic, Ataturk University, 25240 Erzurum (Turkey)

    2011-05-15

    The effective atomic numbers and electron densities of human teeth have been calculated for total photon interaction (Z{sub PI{sub e{sub f{sub f}}}},Ne{sub PI{sub e{sub f{sub f}}}}) and photon energy absorption (Z{sub PEA{sub e{sub f{sub f}}}},Z{sub RW{sub e{sub f{sub f}}}}Ne{sub PEA{sub e{sub f{sub f}}}}) in the energy region 1 keV-20 MeV. Besides, the energy absorption (EABF) and exposure (EBF) buildup factors have been calculated for these samples by using the geometric progression fitting approximation in the energy region 0.015-15 MeV up to 40 mfp (mean free path). Wherever possible the results were compared with experiment. Effective atomic numbers (Z{sub PI{sub e{sub f{sub f}}}}) of human teeth were calculated using different methods. Discrepancies were noted in Z{sub PI{sub e{sub f{sub f}}}} between the direct and interpolation methods in the low and high energy regions where absorption processes dominate while good agreement was observed in intermediate energy region where Compton scattering dominates. Significant variations up to 22% were observed between Z{sub PI{sub e{sub f{sub f}}}} and Z{sub PEA{sub e{sub f{sub f}}}} in the energy region 30-150 keV which is the used energy range in dental cone beam computed tomography (CBCT) X-ray machines. The Z{sub eff} values of human teeth were found to relatively vary within 1% if different laser treatments are applied. In this variation, the Er:YAG laser treated samples were found to be less effected than Nd:YAG laser treated ones when compared with control group. Relative differences between EABF and EBF were found to be significantly high in the energy region 60 keV-1 MeV even though they have similar variations with respect to the different parameters viz. photon energy, penetration depth.

  18. Proteome of human stem cells from periodontal ligament and dental pulp.

    Directory of Open Access Journals (Sweden)

    Enrica Eleuterio

    Full Text Available BACKGROUND: Many adult tissues contain a population of stem cells with the ability to regenerate structures similar to the microenvironments from which they are derived in vivo and represent a promising therapy for the regeneration of complex tissues in the clinical disorder. Human adult stem cells (SCs including bone marrow stem cells (BMSCs, dental pulp stem cells (DPSCs and periodontal ligament stem cells (PDLSCs have been characterized for their high proliferative potential, expression of characteristic SC-associated markers and for the plasticity to differentiate in different lineage in vitro. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study is to define the molecular features of stem cells from oral tissue by comparing the proteomic profiles obtained with 2-DE followed by MALDI-TOF/TOF of ex-vivo cultured human PDLSCs, DPSCs and BMSCs. Our results showed qualitative similarities in the proteome profiles among the SCs examined including some significant quantitative differences. To enrich the knowledge of oral SCs proteome we performed an analysis in narrow range pH 4-7 and 6-9, and we found that DPSCs vs PDLSCs express differentially regulated proteins that are potentially related to growth, regulation and genesis of neuronal cells, suggesting that SCs derived from oral tissue source populations may possess the potential ability of neuronal differentiation which is very consistent with their neural crest origin. CONCLUSION/SIGNIFICANCE: This study identifies some differentially expressed proteins by using comparative analysis between DPSCs and PDLSCs and BMSCs and suggests that stem cells from oral tissue could have a different cell lineage potency compared to BMSCs.

  19. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    Science.gov (United States)

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.

  20. Effect of bleaching agents on bonding to pulp chamber dentine.

    Science.gov (United States)

    Timpawat, S; Nipattamanon, C; Kijsamanmith, K; Messer, H H

    2005-04-01

    To determine the effect of intracoronal bleaching agents on adhesion of bonding agents to pulp chamber dentine. Forty extracted human maxillary anterior teeth were randomly divided into four groups of 10 teeth each. Bleaching agents were sealed in pulp chambers for 7 days, as in clinical use. Group 1 (control): distilled water, group 2: 35% hydrogen peroxide, group 3: sodium perborate mixed with water, and group 4: sodium perborate mixed with 35% hydrogen peroxide. Teeth were stored in saline at 37 degrees C for 7 days. After the bleaching agent was removed, teeth were leached in water for a further 7 days prior to bonding. The crown was cut vertically from mesial to distal and the labial pulp chamber dentine was prepared for bonding with Clearfil SE-Bond and filled with resin composite (Clearfil AP-X). The bonded specimens were kept moist at 37 degrees C for 24 h. Microtensile bond strengths were determined using a universal testing machine. Additional teeth were prepared using the same bleaching procedures to investigate the scanning electron microscopic appearance of the dentine surface. Mean values (+/-SD) of microtensile bond strength for the experimental groups were: group 1: 5.29 +/- 2.21 MPa, group 2: 5.99 +/- 1.51 MPa, group 3: 9.17 +/- 1.65 MPa and group 4: 3.99 +/- 1.31 MPa. Dentine treated with sodium perborate in water (group 3) had significantly higher mean bond strength when compared with the other three groups (P sodium perborate plus hydrogen peroxide (group 4). In terms of subsequent bond strength during restoration, sodium perborate mixed with distilled water appears to be the best intracoronal bleaching agent.

  1. In Vitro Osteogenic and Odontogenic Differentiation of Human Dental Pulp Stem Cells Seeded on Carboxymethyl Cellulose-Hydroxyapatite Hybrid Hydrogel.

    Directory of Open Access Journals (Sweden)

    Gabriella eTeti

    2015-10-01

    Full Text Available Stem cells from human dental pulp have been considered as an alternative source of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages.Recently, polysaccharide based hydrogels have become especially attractive as matrices for the repair and regeneration of a wide variety of tissues and organs. The incorporation of inorganic minerals as hydroxyapatite nanoparticles can modulate the performance of the scaffolds with potential applications in tissue engineering. The aim of this study was to verify the osteogenic and odontogenic differentiation of dental pulp stem cells (DPSCs cultured on a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Human DPSCs were seeded on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel and on carboxymethyl cellulose hydrogel for 1, 3, 5, 7, 14 and 21 days. Cell viability assay and ultramorphological analysis were carried out to evaluate biocompatibility and cell adhesion. Real Time PCR was carried out to demonstrate the expression of osteogenic and odontogenic markers. Results showed a good adhesion and viability in cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel, while a low adhesion and viability was observed in cells cultured on carboxymethyl cellulose hydrogel. Real Time PCR data demonstrated a temporal up-regulation of osteogenic and odontogenic markers in dental pulp stem cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. In conclusion, our in vitro data confirms the ability of DPSCs to differentiate toward osteogenic and odontogenic lineages in presence of a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Taken together, our results provide evidence that DPSCs and carboxymethyl cellulose—hydroxyapatite hybrid hydrogel could be considered promising candidates for dental pulp complex and periodontal tissue engineering.

  2. Evidence of the protein content of bovine and human dental pulps by the action of endodontic irrigation solutions through electrophoretic patterns

    Directory of Open Access Journals (Sweden)

    María E López

    2013-01-01

    Full Text Available Background: Sodium dodecyl sulfate polyacrylamide gel electrophoresis let to show the protein content of different tissues. Dental pulp contains connective tissue which is removed during the endodontic treatment. Many studies consider bovine rather than human pulp tissue because of its size. Aim: To evidence the protein content of bovine and human dental pulps and the action of endodontic irrigation solutions through electrophoretic patterns. Materials and Methods: Extracts of human and bovine dental pulps were prepared. Sodium hypochlorite, calcium hydroxide, chlorhexidine and ethylenediamine tetraacetic acid were used as irrigating solutions. Results: Bovine and human pulps have a small difference in two bands of proteins present between 74 kDa and 80 kDa. The denaturizing capacity of sodium hypochlorite and the washing action of calcium hydroxide and chlorhexidine were evidenced. Ethylenediamine tetraacetic acid solution was shown to contain proteins continuously during the endodontic root canal washing. Conclusions: Differences in pulp tissues and the action of irrigating solutions on their protein content would help on the understanding of the biological process of the endodontic treatment.

  3. Discrimination of human bodies from bones and teeth remains by Laser Induced Breakdown Spectroscopy and Neural Networks

    Science.gov (United States)

    Moncayo, S.; Manzoor, S.; Ugidos, T.; Navarro-Villoslada, F.; Caceres, J. O.

    2014-11-01

    A fast and minimally destructive method based on Laser Induced Breakdown Spectroscopy (LIBS) and Neural Networks (NN) has been developed and applied to the classification and discrimination of human bones and teeth fragments. The methodology can be useful in Disaster Victim Identification (DVI) tasks. The elemental compositions of bone and teeth samples provided enough information to achieve a correct discrimination and reassembling of different human remains. Individuals were classified with spectral correlation higher than 95%, regardless of the type of bone or tooth sample analyzed. No false positive or false negative was observed, demonstrating the high robustness and accuracy of the proposed methodology.

  4. Comparison of resin push-out strength to root dentin of bovine- and human-teeth

    Directory of Open Access Journals (Sweden)

    Galhano Graziela

    2009-01-01

    Full Text Available Aim : To compare the push-out strength of bovine- and human-root dentin and, thus, evaluate the suitability of bovine-root dentin to substitute human-root dentin for bond strength testing. Materials and Methods : Ten single-rooted human-teeth and ten bovine incisors were prepared using a #3 bur of a fiber post system (12 mm long. The posts were duplicated with resin cement (Duolink. The root canals were treated with All Bond 2 adhesive system and the resin posts were cemented using Duolink. The specimens were cut perpendicular to their long axis, yielding disc-specimens with 1.5 mm thickness, which were submitted to a push-out test (1 mm/min. Ten bond strength values per group (n = 10 were used for statistical analysis (Student t test, a =.05. Results : Statistically significant differences were found for the bond strength values between bovine- (4.1 ± 1.3 MPa and human-root dentin (8.6 ± 5.7 MPa (P =.0001. Conclusion : The push-out strengths of bovine- and human-root dentin were statistically different.

  5. Teeth discoloration during orthodontic treatment.

    Science.gov (United States)

    Baik, Un-Bong; Kim, Hoon; Chae, Hwa-Sung; Myung, Ji-Yun; Chun, Youn-Sic

    2017-09-01

    Teeth discoloration is a rare orthodontic complication. The aim of this study was to report the clinical progression of discoloration during orthodontic treatment. Discolored teeth, detected during orthodontic treatment between January 2003 and December 2012 by a single dentist using similar techniques and appliances, were analyzed. The total number of teeth that showed discoloration was 28. Progression of discoloration was evaluated in only 24 teeth that were observed without any treatment. During the observation period, the discoloration "improved" in 8 of the 24 teeth (33.3%) and was "maintained" in 16 (66.6%). The electric pulp test performed at the time of initial detection of discoloration showed 14.3% positivity, which improved to 21.4% at the final follow-up. None of the initial and final follow-up radiographic findings showed any abnormalities. When teeth discoloration is detected during orthodontic treatment, observation as an initial management is recommended over immediate treatments.

  6. Extensive human DNA contamination in extracts from ancient dog bones and teeth.

    Science.gov (United States)

    Malmström, Helena; Storå, Jan; Dalén, Love; Holmlund, Gunilla; Götherström, Anders

    2005-10-01

    Ancient DNA (aDNA) sequences, especially those of human origin, are notoriously difficult to analyze due to molecular damage and exogenous DNA contamination. Relatively few systematic studies have focused on this problem. Here we investigate the extent and origin of human DNA contamination in the most frequently used sources for aDNA studies, that is, bones and teeth from museum collections. To distinguish contaminant DNA from authentic DNA we extracted DNA from dog (Canis familiaris) specimens. We monitored the presence of a 148-bp human-specific and a 152-bp dog-specific mitochondrial DNA (mtDNA) fragment in DNA extracts as well as in negative controls. The total number of human and dog template molecules were quantified using real-time polymerase chain reaction (PCR), and the sequences were characterized by amplicon cloning and sequencing. Although standard precautions to avoid contamination were taken, we found that all samples from the 29 dog specimens contained human DNA, often at levels exceeding the amount of authentic ancient dog DNA. The level of contaminating human DNA was also significantly higher in the dog extracts than in the negative controls, and an experimental setup indicated that this was not caused by the carrier effect. This suggests that the contaminating human DNA mainly originated from the dog bones rather than from laboratory procedures. When cloned, fragments within a contaminated PCR product generally displayed several different sequences, although one haplotype was often found in majority. This leads us to believe that recognized criteria for authenticating aDNA cannot separate contamination from ancient human DNA the way they are presently used.

  7. Prevalence and analysis of factors related to ooccurrence of pulp stone in adult restorative patients.

    Science.gov (United States)

    Udoye, Ci; Sede, Ma

    2011-01-01

    Pulp stone, though of an unclear aetiology, is clinically common. It potentially poses procedural difficulty to the endodontist and may also be a marker of an underlying systemic condition. The study investigated pulp stone occurrence in adult restorative patients. It also highlighted the relationship between pulp stone and pristine posterior teeth, chronic periodontitis and posterior teeth with abrasion, as well as the effect of age and gender on pulp stone occurrence. Three hundred subjects, aged 18-60 years participated in the cross sectional study. Pristine teeth, teeth with chronic periodontitis and those with abrasion were recruited. Pulp stone was seen more often in the 41-50 years age band, in molars and in teeth with chronic periodontitis but less often in teeth with abrasion. In addition, coronal and free form of pulp stone were more popular. It is recommended that researchers should pay special care in case selections, and during biomechanical coronal instrumentation.

  8. Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture.

    Science.gov (United States)

    Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer

    2015-08-01

    The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.

  9. The Role of Lysyl Oxidase-like 2 in the Odontogenic Differentiation of Human Dental Pulp Stem Cells

    Science.gov (United States)

    Kim, Joo-Hyun; Lee, Eun-Hyang; Park, Hye-jeong; Park, Eui-Kyun; Kwon, Tae-Geon; Shin, Hong-In; Cho, Je-Yoel

    2013-01-01

    Adult human dental pulp stem cells (hDPSCs) are a unique population of precursor cells those are isolated from postnatal dental pulp and have the ability to differentiate into a variety of cell types utilized for the formation of a reparative dentin-like complex. Using LC-MS/MS proteomics approaches, we identified the proteins secreted from the differentiating hDPSCs in mineralization media. Lysyl oxidase-like 2 (LOXL2) was identified as a protein that was down-regulated in the hDPSCs that differentiate into odontoblast-like cells. The role of LOXL2 has not been studied in dental pulp stem cells. LOXL2 mRNA levels were reduced in differentiating hDPSCs, whereas the levels of other LOX family members including LOX, LOXL1, LOXL3, and LOXL4, are increased. The protein expression and secretion levels of LOXL2 were also decreased during odontogenic differentiation. Recombinant LOXL2 protein treatment to hDPSCs resulted in a dose-dependent decrease in the early differentiation and the mineralization accompanying with the lower levels of odontogenic markers such as DSPP, DMP-1 and ALP. These results suggest that LOXL2 has a negative effect on the differentiation of hDPSCs and blocking LOXL2 can promote the hDPSC differentiation to odontoblasts. PMID:23677379

  10. Formation of a hard tissue barrier after experimental pulp capping or partial pulpotomy in humans: an updated systematic review.

    Science.gov (United States)

    Fransson, H; Wolf, E; Petersson, K

    2016-06-01

    The aim was to update a systematic review of pulp capping and partial pulpotomy by Olsson et al. (2006), by evaluating new evidence on formation of a hard tissue barrier after pulp capping and partial pulpotomy of experimental exposures in humans. PubMed (01-01-2005 to 01-03-2014) and CENTRAL were searched using specific keywords. Hand searches were made and the level of evidence for each included article was evaluated by the authors. The evidence of the conclusions was graded as strong, moderately strong, limited or insufficient. The initial search in PubMed yielded 215 abstracts. Hand searches of reference lists yielded no additional original scientific articles. After a selection process and interpretation, 22 articles were included and rated for level of evidence: no article was rated as high and seven as moderate. Overall the methodological quality of studies has improved since the previous systematic review was published in 2006. The conclusions are that there is limited scientific evidence that application of calcium hydroxide or mineral trioxide aggregate to an exposed pulp frequently results in formation of a hard tissue barrier, whereas adhesives or enamel matrix derivatives do not. There is insufficient scientific evidence that mineral trioxide aggregate promotes hard tissue formation more frequently than calcium hydroxide. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. In vitro differentiation into insulin-producing β-cells of stem cells isolated from human amniotic fluid and dental pulp.

    Science.gov (United States)

    Carnevale, Gianluca; Riccio, Massimo; Pisciotta, Alessandra; Beretti, Francesca; Maraldi, Tullia; Zavatti, Manuela; Cavallini, Gian Maria; La Sala, Giovanni Battista; Ferrari, Adriano; De Pol, Anto

    2013-08-01

    To investigate the ability of human amniotic fluid stem cells and human dental pulp stem cells to differentiate into insulin-producing cells. Human amniotic fluid stem cells and human dental pulp stem cells were induced to differentiate into pancreatic β-cells by a multistep protocol. Islet-like structures were assessed in differentiated human amniotic fluid stem cells and human dental pulp stem cells after 21 days of culture by dithizone staining. Pancreatic and duodenal homebox-1, insulin and Glut-2 expression were detected by immunofluorescence and confocal microscopy. Insulin secreted from differentiated cells was tested with SELDI-TOF MS and by enzyme-linked immunosorbent assay. Human amniotic fluid stem cells and human dental pulp stem cells, after 7 days of differentiation started to form islet-like structures that became evident after 14 days of induction. SELDI-TOF MS analysis, revealed the presence of insulin in the media of differentiated cells at day 14, further confirmed by enzyme-linked immunosorbent assay after 7, 14 and 21 days. Both stem cell types expressed, after differentiation, pancreatic and duodenal homebox-1, insulin and Glut-2 and were positively stained by dithizone. Either the cytosol to nucleus translocation of pancreatic and duodenal homebox-1, either the expression of insulin, are regulated by glucose concentration changes. Day 21 islet-like structures derived from both human amniotic fluid stem cells and human dental pulp stem cell release insulin in a glucose-dependent manner. The present study demonstrates the ability of human amniotic fluid stem cells and human dental pulp stem cell to differentiate into insulin-producing cells, offering a non-pancreatic, low-invasive source of cells for islet regeneration. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  12. An Optimized Injectable Hydrogel Scaffold Supports Human Dental Pulp Stem Cell Viability and Spreading

    Directory of Open Access Journals (Sweden)

    T. D. Jones

    2016-01-01

    Full Text Available Introduction. HyStem-C™ is a commercially available injectable hydrogel composed of polyethylene glycol diacrylate (PEGDA, hyaluronan (HA, and gelatin (Gn. These components can be mechanically tuned to enhance cell viability and spreading. Methods. The concentration of PEGDA with an added disulfide bond (PEGSSDA was varied from 0.5 to 8.0% (w/v to determine the optimal concentration for injectable clinical application. We evaluated the cell viability of human dental pulp stem cells (hDPSCs embedded in 2% (w/v PEGSSDA-HA-Gn hydrogels. Volume ratios of HA : Gn from 100 : 0 to 25 : 75 were varied to encourage hDPSC spreading. Fibronectin (Fn was added to our model to determine the effect of extracellular matrix protein concentration on hDPSC behavior. Results. Our preliminary data suggests that the hydrogel gelation time decreased as the PEGSSDA cross-linker concentration increased. The PEGSSDA-HA-Gn was biocompatible with hDPSCs, and increased ratios of HA : Gn enhanced cell viability for 14 days. Additionally, cell proliferation with added fibronectin increased significantly over time at concentrations of 1.0 and 10.0 μg/mL in PEGDA-HA-Gn hydrogels, while cell spreading significantly increased at Fn concentrations of 0.1 μg/mL. Conclusions. This study demonstrates that PEG-based injectable hydrogels maintain hDPSC viability and facilitate cell spreading, mainly in the presence of extracellular matrix (ECM proteins.

  13. Effect of dentin treatment on proliferation and differentiation of human dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    Minjeong Park

    2015-11-01

    Full Text Available Objectives Sodium hypochlorite (NaOCl is an excellent bactericidal agent, but it is detrimental to stem cell survival, whereas intracanal medicaments such as calcium hydroxide (Ca[OH]2 promote the survival and proliferation of stem cells. This study evaluated the effect of sequential NaOCl and Ca[OH]2 application on the attachment and differentiation of dental pulp stem cells (DPSCs. Materials and Methods DPSCs were obtained from human third molars. All dentin specimens were treated with 5.25% NaOCl for 30 min. DPSCs were seeded on the dentin specimens and processed with additional 1 mg/mL Ca[OH]2, 17% ethylenediaminetetraacetic acid (EDTA treatment, file instrumentation, or a combination of these methods. After 7 day of culture, we examined DPSC morphology using scanning electron microscopy and determined the cell survival rate with 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. We measured cell adhesion gene expression levels after 4 day of culture and odontogenic differentiation gene expression levels after 4 wk using quantitative real-time polymerase chain reaction. Results DPSCs did not attach to the dentin in the NaOCl-treated group. The gene expression levels of fibronectin-1 and secreted phosphoprotein-1 gene in both the Ca[OH]2- and the EDTA-treated groups were significantly higher than those in the other groups. All Ca[OH]2-treated groups showed higher expression levels of dentin matrix protein-1 than that of the control. The dentin sialophosphoprotein level was significantly higher in the groups treated with both Ca[OH]2 and EDTA. Conclusions The application of Ca[OH]2 and additional treatment such as EDTA or instrumentation promoted the attachment and differentiation of DPSCs after NaOCl treatment.

  14. Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    AbdulQader, Sarah Talib [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Department of Pedodontic and Preventive Dentistry, College of Dentistry, University of Baghdad, Baghdad (Iraq); Kannan, Thirumulu Ponnuraj, E-mail: kannan@usm.my [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Rahman, Ismail Ab [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Ismail, Hanafi [School of Materials and Minerals Resource Engineering, Universiti Sains Malaysia, 14300 Penang (Malaysia); Mahmood, Zuliani [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-01

    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300 μm and 65% porosity were prepared from phosphoric acid (H{sub 2}PO{sub 4}) and calcium carbonate (CaCO{sub 3}) sintered at 1000 °C for 2 h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration. - Highlights: • BCPs of different HA/β-TCP ratios influence cell microenvironment. • BCP20 decreases cell viability of HDPCs as compared to BCP50 and BCP80. • HDPCs cultured with BCP20 express highest ALP activity. • HDPCs cultured with BCP20 up-regulate BSP, DMP-1 and DSPP gene expressions. • BCP20 can support HDPC differentiation for dentin tissue regeneration.

  15. Human platelet lysate permits scale-up of dental pulp stromal cells for clinical applications.

    Science.gov (United States)

    Govindasamy, Vijayendran; Ronald, Veronica Sainik; Abdullah, Aimi Naim Binti; Ganesan Nathan, Kavitha R; Aziz, Zeti Adura Che Abdul; Abdullah, Mariam; Zain, Rosnah Binti; Kasim, Noor Hayaty Abu; Musa, Sabri; Bhonde, Ramesh R

    2011-11-01

    BACKGROUND AIMS. Dental pulp stromal cells (DPSC) are considered to be a promising source of stem cells in the field of regenerative therapy. However, the usage of DPSC in transplantation requires large-scale expansion to cater for the need for clinical quantity without compromising current good manufacturing practice (cGMP). Existing protocols for cell culturing make use of fetal bovine serum (FBS) as a nutritional supplement. Unfortunately, FBS is an undesirable additive to cells because it carries the risk of transmitting viral and prion diseases. Therefore, the present study was undertaken to examine the efficacy of human platelet lysate (HPL) as a substitute for FBS in a large-scale set-up. METHODS. We expanded the DPSC in Dulbecco's modified Eagle's medium-knock-out (DMEM-KO) with either 10% FBS or 10% HPL, and studied the characteristics of DPSC at pre- (T25 culture flask) and post- (5-STACK chamber) large-scale expansion in terms of their identity, quality, functionality, molecular signatures and cytogenetic stability. RESULTS. In both pre- and post-large-scale expansion, DPSC expanded in HPL showed extensive proliferation of cells (c. 2-fold) compared with FBS; the purity, immune phenotype, colony-forming unit potential and differentiation were comparable. Furthermore, to understand the gene expression profiling, the transcriptomes and cytogenetics of DPSC expanded under HPL and FBS were compared, revealing similar expression profiles. CONCLUSIONS. We present a highly economized expansion of DPSC in HPL, yielding double the amount of cells while retaining their basic characteristics during a shorter time period under cGMP conditions, making it suitable for therapeutic applications.

  16. Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells.

    Science.gov (United States)

    Kumar, Ajay; Bhattacharyya, Shalmoli; Rattan, Vidya

    2015-12-01

    Human dental pulp stem cells (hDPSCs) hold great promise as a source of adult stem cells for utilization in regenerative medicine. Successful storage and post thaw recovery of DPSCs without loss of function is a key issue for future clinical application. Most of the cryopreservation methods use controlled rate freezing and vapor phase nitrogen to store stem cells. But these methods are both expensive and laborious. In this study, we isolated DPSCs from a patient undergoing impacted mandibular third molar extraction. We adopted eight different methods of cryopreservation at -80 °C for long term storage of the DPSC aliquots. Various parameters like proliferation, cell death, cell cycle, retention of stemness markers and differentiation potential were studied post cryopreservation period of 1 year. We observed successful recovery of stem cells in every method and a significant difference in proliferation potential and cell death between samples stored by different methods. However, post thaw, all cells retained their stemness markers. All DPSCs stored by different methods were able to differentiate into osteoblast like cells, adipocytes and neural cells. Based on these parameters we concluded that uncontrolled freezing at a temperature of -80 °C is as effective as controlled freezing using ethanol vessels and other cryopreservation methods. To the best of our knowledge, our study provides the first proof of concept that long term storage in uncontrolled freezing of cells at -80 °C in 10 % DMSO does not affect the revival capacity of hDPSCs. This implies that DPSCs may be used successfully for tissue engineering and cell based therapeutics even after long term, uncontrolled cryopreservation.

  17. Odontogenic stimulation of human dental pulp cells with bioactive nanocomposite fiber.

    Science.gov (United States)

    Kim, Ga-Hyun; Park, Yong-Duk; Lee, So-Youn; El-Fiqi, Ahmed; Kim, Jung-Ju; Lee, Eun-Jung; Kim, Hae-Won; Kim, Eun-Cheol

    2015-01-01

    The aim of the present study was to investigate the effects of a composite nanofibrous matrix made of biopolymer blend polycaprolactone-gelatin (BP) and mesoporous bioactive glass nanoparticles (BGNs) on the odontogenic differentiation of human dental pulp cells (HDPCs). BGN-BP nanomatrices, with BGN content of up to 20 wt%, were produced via electrospinning. The differentiation of the HDPCs was evaluated by using an ALP activity assay, calcified nodule formation, and mRNA expression for markers. Integrin and its underlying signal pathways were assessed via reverse transcriptase-polymerase chain reaction and Western blot analysis. Although cell growth and attachment on the BGN-BP nanomatrix was similar to that on BP, ALP activity, mineralized nodule formation, and mRNA, expressions involving ALP, osteocalcin, osteopontin, dentin sialophosphoprotein, and dentin matrix protein-1 were greater on BGN-BP. BGN-BP upregulated the key adhesion receptors (integrin components α1, α2, α5, and β1) and activated integrin downstream pathways, such as phosphorylated-focal adhesion kinase (p-FAK), and p-paxillin. In addition, BGN-BP activated BMP receptors, BMP-2 mRNA, and p-Smad 1/5/8, and such activation was blocked by the BMP antagonist, noggin. Furthermore, BGN-BP induced phosphorylation of extracellular signal-regulated kinase, protein kinase 38, and c-Jun-N-terminal kinase mitogen-activated protein kinases and activated expression of the transcription factors Runx2 and Osterix in HDPCs. Collectively, the results indicated for the first time that a BGN-BP composite nanomatrix promoted odontogenic differentiation of HDPCs through the integrin, BMP, and mitogen-activated protein kinases signaling pathway. Moreover, the nanomatrix is considered to be promising scaffolds for the culture of HDPCs and dental tissue engineering. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. EZH2 Impairs Human Dental Pulp Cell Mineralization via the Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Li, B; Yu, F; Wu, F; Hui, T; A, P; Liao, X; Yin, B; Wang, C; Ye, L

    2017-12-01

    The enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of PRC2 (polycomb repressor complex 2). It mediates gene silencing via methyltransferase activity and is involved in the determination of cell lineage. However, the function of EZH2 and the underlying mechanisms by which it affects the differentiation of human dental pulp cell (hDPC) have remained underexplored. In this research, we found that EZH2 expression decreased during the mineralization of hDPCs, with attenuated H3K27me3 (trimethylation on lysine 27 in histone H3). Overexpression of EZH2 impaired the odontogenic differentiation of hDPCs, while EZH2 without methyltransferase activity mutation (mutation of suppressed variegation of 3 to 9, enhancer of zeste and trithorax domain, EZH2ΔSET) did not display this phenotype. In addition, siRNA knockdown studies showed that EZH2 negatively modulated hDPC differentiation in vitro and inhibited mineralized nodule formation in transplanted β-tricalcium phosphate / hDPC composites. To further investigate the underlying mechanisms, we explored the Wnt/β-catenin signaling pathway in view of the fact that previous research had documented the essential role that it plays during hDPC mineralization, as well as its links to EZH2 in other cells. We demonstrated for the first time that EZH2 depletion activated the Wnt/β-catenin signaling pathway and enhanced the accumulation of β-catenin in hDPCs. Chromatin immunoprecipitation analysis suggested that these effects are attributable to the level of the EZH2-regulated H3K27me3 on the β-catenin promoter. We conclude that EZH2 plays a negative role during the odontogenic differentiation of hDPCs. Suppression of EZH2 could promote hDPC mineralization by epigenetically regulating the expression of β-catenin and activating the Wnt canonical signaling pathway.

  19. Isolation, Characterization, and Differentiation of Dental Pulp Stem Cells in Ferrets.

    Science.gov (United States)

    Homayounfar, Negar; Verma, Prashant; Nosrat, Ali; El Ayachi, Ikbale; Yu, Zongdong; Romberg, Elaine; Huang, George T-J; Fouad, Ashraf F

    2016-03-01

    The ferret canine tooth has been introduced as a suitable model for studying dental pulp regeneration. The aim of this study was to isolate and characterize ferret dental pulp stem cells (fDPSCs) and their differentiation potential. Dental pulp stem cells were isolated from freshly extracted ferret canine teeth. The cells were examined for the expression of stem cell markers STRO-1, CD90, CD105, and CD146. The osteo/odontogenic and adipogenic differentiation potential of fDPSCs was evaluated. Osteogenic and odontogenic marker genes were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) on days 1, 4, and 8 after osteo/odontogenic induction of fDPSCs including dentin sialophosphoprotein (DSPP), dentin matrix protein-1, osteopontin, and alkaline phosphatase. Human dental pulp cells were used as the control. The results were analyzed using 3-way analysis of variance. fDPSCs were positive for STRO1, CD90, and CD105 and negative for CD146 markers with immunohistochemistry. fDPSCs showed strong osteogenic and weak adipogenic potential. The overall expression of DSPP was not significantly different between fDPSCs and human dental pulp cells. The expression of DSPP in osteo/odontogenic media was significantly higher in fDPSCs on day 4 (P dental pulp stem cells resembling human DPSCs and appeared to show a stronger potential to differentiate to osteoblastic rather than odontoblastic lineage. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Phenotypic and growth characterization of human mesenchymal stem cells cultured from permanent and deciduous teeth

    Directory of Open Access Journals (Sweden)

    Revathi Shekar

    2012-01-01

    Conclusions: Permanent and deciduous teeth are both viable sources of stem cells. The permanent teeth were easier to culture because of a lower chance of contamination with oral microflora. The growth characteristics of the cells obtained from both these sources were similar. However, there was a difference in the ratio of fibroblastoid cells to epithelioid cells between the cultures obtained from the permanent and deciduous teeth.

  1. Scanning electron microscopy and calcification in amelogenesis imperfecta in anterior and posterior human teeth

    OpenAIRE

    Sánchez-Quevedo, M.C.; Ceballos, G.; García, J. M.; Rodriguez, I. A.; Gómez de Ferraris, M.E.; Campos, Antonio

    2001-01-01

    Teeth fragments from members of a famil? clinically and genetically diagnosed as having amelogenesis imperfecta were studied by scanning electron microscopy and X-ray microprobe analysis to establish the morphological patterns and the quantitative concentration of calcium in the enamel of anterior (canine, incisor) and posterior (premolar and molar) teeth. The prism patterns in the enamel of teeth from both regions were parallel or irregularly decussate, with ...

  2. In vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages.

    NARCIS (Netherlands)

    Zhang, W.; Walboomers, X.F.; Kuppevelt, A.H.M.S.M. van; Daamen, W.F.; Damme, P.A. van; Bian, Z.; Jansen, J.A.

    2008-01-01

    An increasing number of investigations supports that adult stem cells have the potential to differentiate into matured cell types beyond their origin, a property defined as plasticity. Previously, the plasticity of stem cells derived from dental pulp (DPSC) has been confirmed by culturing cells in

  3. Sodium channel Nav1.7 immunoreactivity in painful human dental pulp and burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    Yiangou Yiangos

    2010-06-01

    Full Text Available Abstract Background Voltage gated sodium channels Nav1.7 are involved in nociceptor nerve action potentials and are known to affect pain sensitivity in clinical genetic disorders. Aims and Objectives To study Nav1.7 levels in dental pulpitis pain, an inflammatory condition, and burning mouth syndrome (BMS, considered a neuropathic orofacial pain disorder. Methods Two groups of patients were recruited for this study. One group consisted of patients with dental pulpitis pain (n = 5 and controls (n = 12, and the other patients with BMS (n = 7 and controls (n = 10. BMS patients were diagnosed according to the International Association for the Study of Pain criteria; a pain history was collected, including the visual analogue scale (VAS. Immunohistochemistry with visual intensity and computer image analysis were used to evaluate levels of Nav1.7 in dental pulp tissue samples from the dental pulpitis group, and tongue biopsies from the BMS group. Results There was a significantly increased visual intensity score for Nav1.7 in nerve fibres in the painful dental pulp specimens, compared to controls. Image analysis showed a trend for an increase of the Nav1.7 immunoreactive % area in the painful pulp group, but this was not statistically significant. When expressed as a ratio of the neurofilament % area, there was a strong trend for an increase of Nav1.7 in the painful pulp group. Nav1.7 immunoreactive fibres were seen in abundance in the sub-mucosal layer of tongue biopsies, with no significant difference between BMS and controls. Conclusion Nav1.7 sodium channel may play a significant role in inflammatory dental pain. Clinical trials with selective Nav1.7 channel blockers should prioritise dental pulp pain rather than BMS.

  4. A Miniature Swine Model for Stem Cell-Based De Novo Regeneration of Dental Pulp and Dentin-Like Tissue.

    Science.gov (United States)

    Zhu, Xiaofei; Liu, Jie; Yu, Zongdong; Chen, Chao-An; Aksel, Hacer; Azim, Adham A; Huang, George T-J

    2018-01-03

    The goal of this study was to establish mini-swine as a large animal model for stem cell-based pulp regeneration studies. Swine dental pulp stem cells (sDPSCs) were isolated from mini-swine and characterized in vitro. For in vivo studies, we first employed both ectopic and semi-orthotopic study models using severe combined immunodeficiency mice. One is hydroxyapatite-tricalcium phosphate (HA/TCP) model for pulp-dentin complex formation, and the other is tooth fragment model for complete pulp regeneration with new dentin depositing along the canal walls. We found that sDPSCs are similar to their human counterparts exhibiting mesenchymal stem cell characteristics with ability to form colony forming unit-fibroblastic and odontogenic differentiation potential. sDPSCs formed pulp-dentin complex in the HA/TCP model and showed pulp regeneration capacity in the tooth fragment model. We then tested orthotopic pulp regeneration on mini-swine including the use of multi-rooted teeth. Using autologous sDPSCs carried by hydrogel and transplanted into the mini-swine root canal space, we observed regeneration of vascularized pulp-like tissue with a layer of newly deposited dentin-like (rD) tissue or osteodentin along the canal walls. In some cases, dentin bridge-like structure was observed. Immunohistochemical analysis detected the expression of nestin, dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein in odontoblast-like cells lining against the produced rD. We also tested the use of allogeneic sDPSCs for the same procedures. Similar findings were observed in allogeneic transplantation. This study is the first to show an establishment of mini-swine as a suitable large animal model utilizing multi-rooted teeth for further cell-based pulp regeneration studies.

  5. Microtomography evaluation of dental tissue wear surface induced by in vitro simulated chewing cycles on human and composite teeth

    Directory of Open Access Journals (Sweden)

    Rossella Bedini

    2012-01-01

    Full Text Available In this study a 3D microtomography display of tooth surfaces after in vitro dental wear tests has been obtained. Natural teeth have been compared with prosthetic teeth, manufactured by three different polyceramic composite materials. The prosthetic dental element samples, similar to molars, have been placed in opposition to human teeth extracted by paradontology diseases. After microtomography analysis, samples have been subjected to in vitro fatigue test cycles by servo-hydraulic mechanical testing machine. After the fatigue test, each sample has been subjected again to microtomography analysis to obtain volumetric value changes and dental wear surface images. Wear surface images were obtained by 3D reconstruction software and volumetric value changes were measured by CT analyser software. The aim of this work has been to show the potential of microtomography technique to display very clear and reliable wear surface images. Microtomography analysis methods to evaluate volumetric value changes have been used to quantify dental tissue and composite material wear.

  6. Radiobiological long-term accumulation of environmental alpha radioactivity in extracted human teeth and animal bones in Malaysia.

    Science.gov (United States)

    Almayahi, B A; Tajuddin, A A; Jaafar, M S

    2014-03-01

    In this study, the radiobiological analysis of natural alpha emitters in extracted human teeth and animal bones from Malaysia was estimated. The microdistributions of alpha particles in tooth and bone samples were measured using CR-39 alpha-particle track detectors. The lowest and highest alpha emission rates in teeth in the Kedah and Perak states were 0.0080 ± 0.0005 mBq cm(-2) and 0.061 ± 0.008 mBq cm(-2), whereas those of bones in the Perlis and Kedah states were 0.0140 ± 0.0001 mBq cm(-2) and 0.7700 ± 0.0282 mBq cm(-2), respectively. The average alpha emission rate in male teeth was 0.0209 ± 0.0008 mBq cm(-2), whereas that of female teeth was 0.0199 ± 0.0010 mBq cm(-2). The alpha emission rate in teeth is higher in smokers (0.0228 ± 0.0008 mBq cm(-2)) than in non-smokers (0.0179 ± 0.0008 mBq cm(-2)). Such difference was found statistically significant (p < 0.01). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. [Confusion and solution for vital pulp therapy].

    Science.gov (United States)

    Dingming, Huang; Qian, Lu; Qian, Liao; Ling, Ye; Xuedong, Zhou

    2017-06-01

    Dental pulp tissue plays a role in forming dentin, providing nutrition, conducting pain, and generating protective responses to environmental stimuli. Bacterial infection is the main cause of pulp disease, where histopathological changes are the histological basis for determining the choice of treatment and the evaluation of therapeutic effect. Thus, particular attention should be given to eliminate infection, as well as preserve and maintain pulpal health in teeth that show reversible or limited pulpal injuries. Vital pulp therapy, especially its indications and prognostic factors, has been a research hotspot that often causes confusion among clinicians. In this paper, we briefly introduce the confusion and solution for vital pulp therapy in terms of indications, pulp condition assessment, infection elimination, and capping material selection. In addition, we develop a clinical pathway and an operation normalization of vital pulp therapy to better perform the therapy.

  8. A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells

    OpenAIRE

    Doo Yeon Kwon; Jin Seon Kwon; Seung Hun Park; Ji Hun Park; So Hee Jang; Xiang Yun Yin; Jeong-Ho Yun; Jae Ho Kim; Byoung Hyun Min; Jun Hee Lee; Wan-Doo Kim; Moon Suk Kim

    2015-01-01

    A computer-designed, solvent-free scaffold offer several potential advantages such as ease of customized manufacture and in vivo safety. In this work, we firstly used a computer-designed, solvent-free scaffold and human dental pulp stem cells (hDPSCs) to regenerate neo-bone within cranial bone defects. The hDPSCs expressed mesenchymal stem cell markers and served as an abundant source of stem cells with a high proliferation rate. In addition, hDPSCs showed a phenotype of differentiated osteob...

  9. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth.

    Science.gov (United States)

    Korlević, Petra; Gerber, Tobias; Gansauge, Marie-Theres; Hajdinjak, Mateja; Nagel, Sarah; Aximu-Petri, Ayinuer; Meyer, Matthias

    2015-08-01

    Although great progress has been made in improving methods for generating DNA sequences from ancient biological samples, many, if not most, samples are still not amenable for analyses due to overwhelming contamination with microbial or modern human DNA. Here we explore different DNA decontamination procedures for ancient bones and teeth for use prior to DNA library preparation and high-throughput sequencing. Two procedures showed promising results: (i) the release of surface-bound DNA by phosphate buffer and (ii) the removal of DNA contamination by sodium hypochlorite treatment. Exposure to phosphate removes on average 64% of the microbial DNA from bone powder but only 37% of the endogenous DNA (from the organism under study), increasing the percentage of informative sequences by a factor of two on average. An average 4.6-fold increase, in one case reaching 24-fold, is achieved by sodium hypochlorite treatment, albeit at the expense of destroying 63% of the endogenous DNA preserved in the bone. While both pretreatment methods described here greatly reduce the cost of genome sequencing from ancient material due to efficient depletion of microbial DNA, we find that the removal of human DNA contamination remains a challenging problem.

  10. Photon dose conversion coefficients for the human teeth in standard irradiation geometries

    Energy Technology Data Exchange (ETDEWEB)

    Ulanovsky, A.; Wieser, A.; Zankl, M.; Jacob, P.

    2005-07-01

    Photon dose conversion coefficients for the human tooth materials are computed in energy range from 0.01 to 10 MeV by the Monte Carlo method. The