WorldWideScience

Sample records for human skin wounds

  1. Functional electrospun fibers for the treatment of human skin wounds.

    Science.gov (United States)

    Wang, Jing; Windbergs, Maike

    2017-10-01

    Wounds are trauma induced defects of the human skin involving a multitude of endogenous biochemical events and cellular reactions of the immune system. The healing process is extremely complex and affected by the patient's physiological conditions, potential implications like infectious pathogens and inflammation as well as external factors. Due to increasing incidence of chronic wounds and proceeding resistance of infection pathogens, there is a strong need for effective therapeutic wound care. In this context, electrospun fibers with diameters in the nano- to micrometer range gain increasing interest. While resembling the structure of the native human extracellular matrix, such fiber mats provide physical and mechanical protection (including protection against bacterial invasion). At the same time, the fibers allow for gas exchange and prevent occlusion of the wound bed, thus facilitating wound healing. In addition, drugs can be incorporated within such fiber mats and their release can be adjusted by the material and dimensions of the individual fibers. The review gives a comprehensive overview about the current state of electrospun fibers for therapeutic application on skin wounds. Different materials as well as fabrication techniques are introduced including approaches for incorporation of drugs into or drug attachment onto the fiber surface. Against the background of wound pathophysiology and established therapy approaches, the therapeutic potential of electrospun fiber systems is discussed. A specific focus is set on interactions of fibers with skin cells/tissues as well as wound pathogens and strategies to modify and control them as key aspects for developing effective wound therapeutics. Further, advantages and limitations of controlled drug delivery from fiber mats to skin wounds are discussed and a future perspective is provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Thyrotropin-releasing hormone (TRH promotes wound re-epithelialisation in frog and human skin.

    Directory of Open Access Journals (Sweden)

    Natalia T Meier

    Full Text Available There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression. Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters.

  3. Thyrotropin-Releasing Hormone (TRH) Promotes Wound Re-Epithelialisation in Frog and Human Skin

    Science.gov (United States)

    Zhang, Guo-You; Emelianov, Vladimir; Paredes, Roberto; Debus, Sebastian; Augustin, Matthias; Funk, Wolfgang; Amaya, Enrique; Kloepper, Jennifer E.; Hardman, Matthew J.; Paus, Ralf

    2013-01-01

    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters. PMID:24023889

  4. Human Wharton's jelly mesenchymal stem cells promote skin wound healing through paracrine signaling.

    Science.gov (United States)

    Arno, Anna I; Amini-Nik, Saeid; Blit, Patrick H; Al-Shehab, Mohammed; Belo, Cassandra; Herer, Elaine; Tien, Col Homer; Jeschke, Marc G

    2014-02-24

    The prevalence of nonhealing wounds is predicted to increase due to the growing aging population. Despite the use of novel skin substitutes and wound dressings, poorly vascularized wound niches impair wound repair. Mesenchymal stem cells (MSCs) have been reported to provide paracrine signals to promote wound healing, but the effect of human Wharton's jelly-derived MSCs (WJ-MSCs) has not yet been described in human normal skin. Human WJ-MSCs and normal skin fibroblasts were isolated from donated umbilical cords and normal adult human skin. Fibroblasts were treated with WJ-MSC-conditioned medium (WJ-MSC-CM) or nonconditioned medium. Expression of genes involved in re-epithelialization (transforming growth factor-β2), neovascularization (hypoxia-inducible factor-1α) and fibroproliferation (plasminogen activator inhibitor-1) was upregulated in WJ-MSC-CM-treated fibroblasts (P≤0.05). WJ-MSC-CM enhanced normal skin fibroblast proliferation (P≤0.001) and migration (P≤0.05), and promoted wound healing in an excisional full-thickness skin murine model. Under our experimental conditions, WJ-MSCs enhanced skin wound healing in an in vivo mouse model.

  5. The electric field near human skin wounds declines with age and provides a noninvasive indicator of wound healing.

    Science.gov (United States)

    Nuccitelli, Richard; Nuccitelli, Pamela; Li, Changyi; Narsing, Suman; Pariser, David M; Lui, Kaying

    2011-01-01

    Due to the transepidermal potential of 15-50 mV, inside positive, an injury current is driven out of all human skin wounds. The flow of this current generates a lateral electric field within the epidermis that is more negative at the wound edge than at regions more lateral from the wound edge. Electric fields in this region could be as large as 40 mV/mm, and electric fields of this magnitude have been shown to stimulate human keratinocyte migration toward the wounded region. After flowing out of the wound, the current returns through the space between the epidermis and stratum corneum, generating a lateral field above the epidermis in the opposite direction. Here, we report the results from the first clinical trial designed to measure this lateral electric field adjacent to human skin wounds noninvasively. Using a new instrument, the Dermacorder®, we found that the mean lateral electric field in the space between the epidermis and stratum corneum adjacent to a lancet wound in 18-25-year-olds is 107-148 mV/mm, 48% larger on average than that in 65-80-year-olds. We also conducted extensive measurements of the lateral electric field adjacent to mouse wounds as they healed and compared this field with histological sections through the wound to determine the correlation between the electric field and the rate of epithelial wound closure. Immediately after wounding, the average lateral electric field was 122 ± 9 mV/mm. When the wound is filled in with a thick, disorganized epidermal layer, the mean field falls to 79 ± 4 mV/mm. Once this epidermis forms a compact structure with only three cell layers, the mean field is 59 ± 5 mV/mm. Thus, the peak-to-peak spatial variation in surface potential is largest in fresh wounds and slowly declines as the wound closes. The rate of wound healing is slightly greater when wounds are kept moist as expected, but we could find no correlation between the amplitude of the electric field and the rate of wound

  6. Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin.

    Directory of Open Access Journals (Sweden)

    Christoph Schaudinn

    Full Text Available Current research on wound infections is primarily conducted on animal models, which limits direct transferability of these studies to humans. Some of these limitations can be overcome by using-otherwise discarded-skin from cosmetic surgeries. Superficial wounds are induced in fresh ex vivo skin, followed by intradermal injection of Pseudomonas aeruginosa under the wound. Subsequently, the infected skin is incubated for 20 hours at 37°C and the CFU/wound are determined. Within 20 hours, the bacteria count increased from 107 to 109 bacteria per wound, while microscopy revealed a dense bacterial community in the collagen network of the upper wound layers as well as numerous bacteria scattered in the dermis. At the same time, IL-1alpha and IL-1beta amounts increased in all infected wounds, while-due to bacteria-induced cell lysis-the IL-6 and IL-8 concentrations rose only in the uninfected samples. High-dosage ciprofloxacin treatment resulted in a decisive decrease in bacteria, but consistently failed to eradicate all bacteria. The main benefits of the ex vivo wound model are the use of healthy human skin, a quantifiable bacterial infection, a measureable donor-dependent immune response and a good repeatability of the results. These properties turn the ex vivo wound model into a valuable tool to examine the mechanisms of host-pathogen interactions and to test antimicrobial agents.

  7. Examination of wound healing after curettage by multiphoton tomography of human skin in vivo.

    Science.gov (United States)

    Springer, S; Zieger, M; Böttcher, A; Lademann, J; Kaatz, M

    2017-11-01

    The multiphoton tomography (MPT) has evolved into a useful tool for the non-invasive investigation of morphological and biophysical characteristics of human skin in vivo. Until now, changes of the skin have been evaluated mainly by using clinical and histological techniques. In this study, the progress of wound healing was investigated by MPT over 3 weeks with a final examination after 24 months. Especially, the collagen degradation, reepithelization and tissue formation were examined. As specific parameter for wound healing and its course the second-harmonic generation-to-autofluorescence aging index of dermis (SAAID) was used. About 10 volunteers aged between 25 and 58 years were examined. Acute wounds were scanned with three Z-stacks taken per visit. The stacks were taken up to a depth of 225 μm at increments of 5 μm and a scan time for 3 seconds per scan. Subsequently, the SAAID was evaluated as an indicator for wound healing. Furthermore, single scans were taken for morphological investigations. The evaluation revealed a distinct difference in the SAAID behavior between the Z-stacks taken at each visit. Furthermore, the degradation of collagen and cells and their reappearance could be shown in the course of the visits. Clear differences in the curve behavior of the SAAID at every visit were shown in this study. The SAAID curves and morphological images could be correlated with findings of the clinical examination of different wound healing phases. Therefore, SAAID curves and morphological MPT imaging could provide a non-invasive tool for the determination of wound healing phases in patients in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Biological evaluation of human hair keratin scaffolds for skin wound repair and regeneration

    International Nuclear Information System (INIS)

    Xu, Songmei; Sang, Lin; Zhang, Yaping; Wang, Xiaoliang; Li, Xudong

    2013-01-01

    The cytocompatibility, in vivo biodegradation and wound healing of keratin biomaterials were investigated. For the purposes, three groups of keratin scaffolds were fabricated by freeze-drying reduced solutions at 2 wt.%, 4 wt.% and 8 wt.% keratins extracted from human hairs. These scaffolds exhibited evenly distributed high porous structures with pore size of 120–220 μm and the porosity > 90%. NIH3T3 cells proliferated well on these scaffolds in culture lasting up to 22 days. Confocal micrographs stained with AO visually revealed cell attachment and infiltration as well as scaffold architectural stability. In vivo animal experiments were conducted with 4 wt.% keratin scaffolds. Early degradation of subcutaneously implanted scaffolds occurred at 3 weeks in the outermost surface, in concomitant with inflammatory response. At 5 weeks, the overall porous structure of scaffolds severely deteriorated while the early inflammatory response in the outermost surface obviously subsided. A faster keratin biodegradation was observed in repairing full-thickness skin defects. Compared with the blank control, keratin scaffolds gave rise to more blood vessels at 2 weeks and better complete wound repair at 3 weeks with a thicker epidermis, less contraction and newly formed hair follicles. These preliminary results suggest that human hair keratin scaffolds are promising dermal substitutes for skin regeneration. - Highlights: ► Preparation of highly-interconnected human hair keratin scaffolds. ► Long-term cell culturing and in vivo animal experiments with keratin scaffolds. ► Biodegradation is dependent on implantation site and function ► Early vascularization and better repair in treating full-thickness skin wounds. ► A thicker epidermis, less contraction and newly formed hair follicles are observed.

  9. Leptin promotes wound healing in the skin.

    Directory of Open Access Journals (Sweden)

    Susumu Tadokoro

    Full Text Available Leptin, a 16 kDa anti-obesity hormone, exhibits various physiological properties. Interestingly, skin wound healing was proven to delay in leptin-deficient ob/ob mice. However, little is known on the mechanisms of this phenomenon. In this study, we attempted to elucidate a role of leptin in wound healing of skin.Immunohistochemical analysis was performed to confirm the expression of the leptin receptor (Ob-R in human and mouse skin. Leptin was topically administered to chemical wounds created in mouse back skin along with sustained-release absorbable hydrogel. The process of wound repair was histologically observed and the area of ulceration was measured over time. The effect of leptin on the proliferation, differentiation and migration of human epidermal keratinocytes was investigated.Ob-R was expressed in epidermal cells of human and mouse skin. Topical administration of leptin significantly promoted wound healing. Histological analysis showed more blood vessels in the dermal connective tissues in the leptin-treated group. The proliferation, differentiation/function and migration of human epidermal keratinocytes were enhanced by exogenous leptin.Topically administered leptin was proven to promote wound healing in the skin by accelerating proliferation, differentiation/function and migration of epidermal keratinocytes and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the skin.

  10. Wound healing delays in α-Klotho-deficient mice that have skin appearance similar to that in aged humans - Study of delayed wound healing mechanism.

    Science.gov (United States)

    Yamauchi, Makoto; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Matsumoto, Yoshitaka; Yamashita, Ken; Kayama, Musashi; Sato, Noriyuki; Yotsuyanagi, Takatoshi

    2016-05-13

    Skin atrophy and delayed wound healing are observed in aged humans; however, the molecular mechanism are still elusive. The aim of this study was to analyze the molecular mechanisms of delayed wound healing by aging using α-Klotho-deficient (kl/kl) mice, which have phenotypes similar to those of aged humans. The kl/kl mice showed delayed wound healing and impaired granulation formation compared with those in wild-type (WT) mice. The skin graft experiments revealed that delayed wound healing depends on humoral factors, but not on kl/kl skin tissue. The mRNA expression levels of cytokines related to acute inflammation including IL-1β, IL-6 and TNF-α were higher in wound lesions of kl/kl mice compared with the levels in WT mice by RT-PCR analysis. LPS-induced TNF-α production model using spleen cells revealed that TNF-α production was significantly increased in the presence of FGF23. Thus, higher levels of FGF23 in kl/kl mouse may have a role to increase TNF-α production in would lesion independently of α-Klotho protein, and impair granulation formation and delay wound healing. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Human skin wounds: A major and snowballing threat to public health and the economy

    DEFF Research Database (Denmark)

    Sen, C.K.; Gordillo, G.M.; Roy, S.

    2009-01-01

    . Forty million inpatient surgical procedures were performed in the United States in 2000, followed closely by 31.5 million outpatient surgeries. The need for post-surgical wound care is sharply on the rise. Emergency wound care in an acute setting has major significance not only in a war setting but also...... in homeland preparedness against natural disasters as well as against terrorism attacks. An additional burden of wound healing is the problem of skin scarring, a $12 billion annual market. The immense economic and social impact of wounds in our society calls for allocation of a higher level of attention...

  12. Development and Characterisation of a Human Chronic Skin Wound Cell Line-Towards an Alternative for Animal Experimentation.

    Science.gov (United States)

    Caley, Matthew; Wall, Ivan B; Peake, Matthew; Kipling, David; Giles, Peter; Thomas, David W; Stephens, Phil

    2018-03-27

    Background : Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives : To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results : Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions : These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening.

  13. Development and Characterisation of a Human Chronic Skin Wound Cell Line—Towards an Alternative for Animal Experimentation

    Science.gov (United States)

    Wall, Ivan B.; Peake, Matthew; Kipling, David; Giles, Peter; Thomas, David W.

    2018-01-01

    Background: Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives: To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results: Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions: These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening. PMID:29584680

  14. The effect of wound dressings on a bio-engineered human dermo-epidermal skin substitute in a rat model

    OpenAIRE

    Hüging, Martina; Biedermann, Thomas; Sobrio, Monia; Meyer, Sarah; Böttcher-Haberzeth, Sophie; Manuel, Edith; Horst, Maya; Hynes, Sally; Reichmann, Ernst; Schiestl, Clemens; Hartmann-Fritsch, Fabienne

    2017-01-01

    Autologous bio-engineered dermo-epidermal skin substitutes are a promising treatment for large skin defects such as burns. For their successful clinical application, the graft dressing must protect and support the keratinocyte layer and, in many cases, possess antimicrobial properties. However, silver in many antimicrobial dressings may inhibit keratinocyte growth and differentiation. The purpose of our study is to evaluate the effect of various wound dressings on the healing of a human hydro...

  15. Cell motility in models of wounded human skin is improved by Gap27 despite raised glucose, insulin and IGFBP-5

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Catherine S.; Berends, Rebecca F. [Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA (United Kingdom); Flint, David J. [Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE (United Kingdom); Martin, Patricia E.M., E-mail: Patricia.Martin@gcu.ac.uk [Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA (United Kingdom)

    2013-02-15

    Reducing Cx43 expression stimulates skin wound healing. This is mimicked in models when Cx43 function is blocked by the connexin mimetic peptide Gap27. IGF-I also stimulates wound healing with IGFBP-5 attenuating its actions. Further, the IGF-I to IGFBP-5 ratio is altered in diabetic skin, where wound closure is impaired. We investigated whether Gap27 remains effective in augmenting scrape-wound closure in human skin wound models simulating diabetes-induced changes, using culture conditions with raised glucose, insulin and IGFBP-5. Gap27 increased scrape-wound closure in normal glucose and insulin (NGI) and to a lesser extent in high glucose and insulin (HGI). IGF-I enhanced scrape-wound closure in keratinocytes whereas IGFBP-5 inhibited this response. Gap27 overcame the inhibitory effects of IGFBP-5 on IGF-I activity. Connexin-mediated communication (CMC) was reduced in HGI, despite raised Cx43, and Gap27 significantly decreased CMC in NGI and HGI. IGF-I and IGFBP-5 did not affect CMC. IGF-I increased keratinocyte proliferation in NGI, and Gap27 increased proliferation in NGI to a greater extent than in HGI. We conclude that IGF-I and Gap27 stimulate scrape-wound closure by independent mechanisms with Gap27 inhibiting Cx43 function. Gap27 can enhance wound closure in diabetic conditions, irrespective of the IGF-I:IGFBP-5 balance. - Highlights: ► Human organotypic and keratinocyte ‘diabetic’ skin models were used to demonstrate the ability of Gap27 to improve scrape-wound closure. ► Gap27 enhanced scrape-wound closure by reducing Cx43-mediated communication, whereas IGFBP-5 retarded cell migration. ► IGF-I and IGFBP-5 did not affect connexin-mediated pathways. ► Gap27 can override altered glucose, insulin, IGF-I, and IGFBP-5 in ‘diabetic’ skin models and thus has therapeutic potential.

  16. Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts.

    Science.gov (United States)

    Elliott, Christopher G; Forbes, Thomas L; Leask, Andrew; Hamilton, Douglas W

    2015-04-01

    Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds. Copyright © 2015. Published by Elsevier B.V.

  17. Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo.

    Science.gov (United States)

    Mohiti-Asli, M; Saha, S; Murphy, S V; Gracz, H; Pourdeyhimi, B; Atala, A; Loboa, E G

    2017-02-01

    This article presents successful incorporation of ibuprofen in polylactic acid (PLA) nanofibers to create scaffolds for the treatment of both acute and chronic wounds. Nanofibrous PLA scaffolds containing 10, 20, or 30 wt % ibuprofen were created and ibuprofen release profiles quantified. In vitro cytotoxicity to human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) of the three scaffolds with varying ibuprofen concentrations were evaluated and compared to pure PLA nanofibrous scaffolds. Thereafter, scaffolds loaded with ibuprofen at the concentration that promoted human skin cell viability and proliferation (20 wt %) were evaluated in vivo in nude mice using a full thickness skin incision model to determine the ability of these scaffolds to promote skin regeneration and/or assist with scarless healing. Both acellular and HEK and HDF cell-seeded 20 wt % ibuprofen loaded nanofibrous bandages reduced wound contraction compared with wounds treated with Tegaderm™ and sterile gauze. Newly regenerated skin on wounds treated with cell-seeded 20 wt % ibuprofen bandages exhibited significantly greater blood vessel formation relative to acellular ibuprofen bandages. We have found that degradable anti-inflammatory scaffolds containing 20 wt % ibuprofen promote human skin cell viability and proliferation in vitro, reduce wound contraction in vivo, and when seeded with skin cells, also enhance new blood vessel formation. The approaches and results reported here hold promise for multiple skin tissue engineering and wound healing applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 327-339, 2017. © 2015 Wiley Periodicals, Inc.

  18. Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization.

    Science.gov (United States)

    Tang, L; Wu, J J; Ma, Q; Cui, T; Andreopoulos, F M; Gil, J; Valdes, J; Davis, S C; Li, J

    2010-07-01

    Human lactoferrin (hLF), a member of the transferrin family, is known for its antimicrobial and anti-inflammatory effects. Recent studies on various nonskin cell lines indicate that hLF may have a stimulatory effect on cell proliferation. To study the potential role of hLF in wound re-epithelialization. The effects of hLF on cell growth, migration, attachment and survival were assessed, with a rice-derived recombinant hLF (holo-rhLF), using proliferation analysis, scratch migration assay, calcein-AM/propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) method, respectively. The mechanisms of hLF on cell proliferation and migration were explored using specific pathway inhibitors. The involvement of lactoferrin receptor low-density lipoprotein receptor-related protein 1 (LRP1) was examined with RNA interference technique. An in vivo swine second-degree burn wound model was also used to assess wound re-epithelialization. Studies revealed that holo-rhLF significantly stimulated keratinocyte proliferation which could be blocked by mitogen-activated protein kinase (MAPK) kinase 1 inhibitor. Holo-rhLF also showed strong promoting effects on keratinocyte migration, which could be blocked by either inhibition of the MAPK, Src and Rho/ROCK pathways, or downregulation of the LRP1 receptor. With cells under starving or 12-O-tetradecanoylphorbol-13-acetate exposure, the addition of holo-rhLF was found greatly to increase cell viability and inhibit cell apoptosis. Additionally, holo-rhLF significantly increased the rate of wound re-epithelialization in swine second-degree burn wounds. Our studies demonstrate the direct effects of holo-rhLF on wound re-epithelialization including the enhancement of keratinocyte proliferation and migration as well as the protection of cells from apoptosis. The data strongly indicate its potential therapeutic applications in wound healing.

  19. The external microenvironment of healing skin wounds

    DEFF Research Database (Denmark)

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron Cy

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment...

  20. Evaluation of Human Amniotic Membrane as a Wound Dressing for Split-Thickness Skin-Graft Donor Sites

    Directory of Open Access Journals (Sweden)

    Denys J. Loeffelbein

    2014-01-01

    Full Text Available Human amniotic membrane (HAM has been used as a biomaterial in various surgical procedures and exceeds some qualities of common materials. We evaluated HAM as wound dressing for split-thickness skin-graft (STSG donor sites in a swine model (Part A and a clinical trial (Part B. Part A: STSG donor sites in 4 piglets were treated with HAM or a clinically used conventional polyurethane (PU foil (n=8 each. Biopsies were taken on days 5, 7, 10, 20, 40, and 60 and investigated immunohistochemically for alpha-smooth muscle actin (αSMA: wound contraction marker, von Willebrand factor (vWF: angiogenesis, Ki-67 (cell proliferation, and laminin (basement membrane integrity. Part B: STSG donor sites in 45 adult patients (16 female/29 male were treated with HAM covered by PU foam, solely by PU foam, or PU foil/paraffin gauze (n=15 each. Part A revealed no difference in the rate of wound closure between groups. HAM showed improved esthetic results and inhibitory effects on cicatrization. Angioneogenesis was reduced, and basement membrane formation was accelerated in HAM group. Part B: no difference in re-epithelialization/infection rate was found. HAM caused less ichor exudation and less pruritus. HAM has no relevant advantage over conventional dressings but might be a cost-effective alternative.

  1. PREPARATIVE SKIN PREPARATION AND SURGICAL WOUND INFECTION

    Directory of Open Access Journals (Sweden)

    Anjanappa

    2015-01-01

    Full Text Available BACKGROUND AND OBJECTIVE: It is an established fact now that the normal skin of healthy human beings harbours a rich bacterial fl ora. Normally considered non - pathogenic , these organisms way be a potential source of infection of the surgical wound. Approximately 20% of the resident flora is beyond the reach of surgical scrubs and antiseptics. The goal of surgical preparation of the skin with antiseptics is to remove transient and pathogenic microorganisms on the skin surface and to reduce the resident flora to a low level. Povidone iodine (I odophors and chlorhexidine are most often used antiseptics for pre - operative skin preparation. OBJECTIVES : To evaluate the efficacy of povidone iodine alone and in combination with antiseptic agent containing alcoholic chlorhexidine in preoperative skin p reparation by taking swab culture. (2 To compare the rate of postoperative wound infection in both the groups. METHODS: One hundred patients (fifty in each group undergoing clean elective surgery with no focus of infection on the body were included in th e study. The pre - operative skin preparation in each group is done with the respective antiseptic regimen. In both the groups after application of antiseptics , sterile saline swab culture was taken immediately from site of incision. In cases which showed gr owth of organisms , the bacteria isolated were identified by their morphological and cultural characteristics. Grams staining , coagulase test and antibiotic sensitivity test were done wherever necessary and difference in colonization rates was determined as a measure of efficacy of antiseptic regimen. RESULTS: The results of the study showed that when compared to povidone iodine alone , using a combination of povidone iodine and alcoholic solution of chlorhexidine , the colonization rates of the site of incisi on were reduced significantly. As for the rate of post - operative wound infection , it is also proven that wound infections are also

  2. Histopathological detection of entry and exit holes in human skin wounds caused by firearms.

    Science.gov (United States)

    Baptista, Marcus Vinícius; d'Ávila, Solange C G P; d'Ávila, Antônio Miguel M P

    2014-07-01

    The judiciary needs forensic medicine to determine the difference between an entry hole and an exit hole in human skin caused by firearms for civilian use. This important information would be most useful if a practical and accurate method could be done with low-cost and minimal technological resources. Both macroscopic and microscopic analyses were performed on skin lesions caused by firearm projectiles, to establish histological features of 14 entry holes and 14 exit holes. Microscopically, in the abrasion area macroscopically observed, there were signs of burns (sub-epidermal cracks and keratinocyte necrosis) in the entrance holes in all cases. These signs were not found in three exit holes which showed an abrasion collar, nor in other exit holes. Some other microscopic features not found in every case were limited either to entry holes, such as cotton fibres, grease deposits, or tattooing in the dermis, or to exit holes, such as adipose tissue, bone or muscle tissue in the dermis. Coagulative necrosis of keratinocytes and sub-epidermal cracks are characteristic of entry holes. Despite the small sample size, it can be safely inferred that this is an important microscopic finding, among others less consistently found, to define an entry hole in questionable cases. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  3. The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?

    Science.gov (United States)

    Di Grazia, Antonio; Cappiello, Floriana; Imanishi, Akiko; Mastrofrancesco, Arianna; Picardo, Mauro; Paus, Ralf; Mangoni, Maria Luisa

    2015-01-01

    One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025-4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.

  4. The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?

    Directory of Open Access Journals (Sweden)

    Antonio Di Grazia

    Full Text Available One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells over a wide range of peptide concentrations (0.025-4 μM, and this notably more efficiently than human cathelicidin (LL-37. This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.

  5. Bioprinting of skin constructs for wound healing

    OpenAIRE

    He, Peng; Zhao, Junning; Zhang, Jiumeng; Li, Bo; Gou, Zhiyuan; Gou, Maling; Li, Xiaolu

    2018-01-01

    Extensive burns and full-thickness skin wounds are difficult to repair. Autologous split-thickness skin graft (ASSG) is still used as the gold standard in the clinic. However, the shortage of donor skin tissues is a serious problem. A potential solution to this problem is to fabricate skin constructs using biomaterial scaffolds with or without cells. Bioprinting is being applied to address the need for skin tissues suitable for transplantation, and can lead to the development of skin equivale...

  6. Human lung fibroblast-derived matrix facilitates vascular morphogenesis in 3D environment and enhances skin wound healing.

    Science.gov (United States)

    Du, Ping; Suhaeri, Muhammad; Ha, Sang Su; Oh, Seung Ja; Kim, Sang-Heon; Park, Kwideok

    2017-05-01

    Extracellular matrix (ECM) is crucial to many aspects of vascular morphogenesis and maintenance of vasculature function. Currently the recapitulation of angiogenic ECM microenvironment is still challenging, due mainly to its diverse components and complex organization. Here we investigate the angiogenic potential of human lung fibroblast-derived matrix (hFDM) in creating a three-dimensional (3D) vascular construct. hFDM was obtained via decellularization of in vitro cultured human lung fibroblasts and analyzed via immunofluorescence staining and ELISA, which detect multiple ECM macromolecules and angiogenic growth factors (GFs). Human umbilical vein endothelial cells (HUVECs) morphology was more elongated and better proliferative on hFDM than on gelatin-coated substrate. To prepare 3D construct, hFDM is collected, quantitatively analyzed, and incorporated in collagen hydrogel (Col) with HUVECs. Capillary-like structure (CLS) formation at 7day was significantly better with the groups containing higher doses of hFDM compared to the Col group (control). Moreover, the group (Col/hFDM/GFs) with both hFDM and angiogenic GFs (VEGF, bFGF, SDF-1) showed the synergistic activity on CLS formation and found much larger capillary lumen diameters with time. Further analysis of hFDM via angiogenesis antibody array kit reveals abundant biochemical cues, such as angiogenesis-related cytokines, GFs, and proteolytic enzymes. Significantly up-regulated expression of VE-cadherin and ECM-specific integrin subunits was also noticed in Col/hFDM/GFs. In addition, transplantation of Col/hFMD/GFs with HUVECs in skin wound model presents more effective re-epithelialization, many regenerated hair follicles, better transplanted cells viability, and advanced neovascularization. We believe that current system is a very promising platform for 3D vasculature construction in vitro and for cell delivery toward therapeutic applications in vivo. Functional 3D vasculature construction in vitro is still

  7. Human skin equivalents to study the prevention and treatment of wound infections

    NARCIS (Netherlands)

    Haisma, I.

    2018-01-01

    Infection of burn wounds remains the leading cause of death in burn patients. Topical treatment of such infections with conventional antibiotics is often unsuccessful due to the presence of drug-resistant bacteria and/or to the formation of bacterial biofilms. Taken together there is a clear

  8. Traditional Therapies for Skin Wound Healing.

    Science.gov (United States)

    Pereira, Rúben F; Bártolo, Paulo J

    2016-05-01

    Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used

  9. Human Wharton's Jelly Mesenchymal Stem Cells plasticity augments scar-free skin wound healing with hair growth.

    Directory of Open Access Journals (Sweden)

    Vikram Sabapathy

    Full Text Available Human mesenchymal stem cells (MSCs are a promising candidate for cell-based transplantation and regenerative medicine therapies. Thus in the present study Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs have been derived from extra embryonic umbilical cord matrix following removal of both arteries and vein. Also, to overcome the clinical limitations posed by fetal bovine serum (FBS supplementation because of xenogeneic origin of FBS, usual FBS cell culture supplement has been replaced with human platelet lysate (HPL. Apart from general characteristic features of bone marrow-derived MSCs, wharton jelly-derived MSCs have the ability to maintain phenotypic attributes, cell growth kinetics, cell cycle pattern, in vitro multilineage differentiation plasticity, apoptotic pattern, normal karyotype-like intrinsic mesenchymal stem cell properties in long-term in vitro cultures. Moreover, the WJ-MSCs exhibited the in vitro multilineage differentiation capacity by giving rise to differentiated cells of not only mesodermal lineage but also to the cells of ectodermal and endodermal lineage. Also, WJ-MSC did not present any aberrant cell state upon in vivo transplantation in SCID mice and in vitro soft agar assays. The immunomodulatory potential assessed by gene expression levels of immunomodulatory factors upon exposure to inflammatory cytokines in the fetal WJ-MSCs was relatively higher compared to adult bone marrow-derived MSCs. WJ-MSCs seeded on decellularized amniotic membrane scaffold transplantation on the skin injury of SCID mice model demonstrates that combination of WJ-MSCs and decellularized amniotic membrane scaffold exhibited significantly better wound-healing capabilities, having reduced scar formation with hair growth and improved biomechanical properties of regenerated skin compared to WJ-MSCs alone. Further, our experimental data indicate that indocyanin green (ICG at optimal concentration can be resourcefully used for labeling of stem cells

  10. Conducted healing to treat large skin wounds.

    Science.gov (United States)

    Salgado, M I; Petroianu, A; Alberti, L R; Burgarelli, G L; Barbosa, A J A

    2013-01-01

    Improvement of the healing process to provide better aesthetical and functional results continues to be a surgical challenge. This study compared the treatment of skin wounds by means of conducted healing (an original method of treatment by secondary healing) and by the use of autogenous skin grafts. Two skin segments, one on each side of the dorsum,were removed from 17 rabbits. The side that served as a graft donor site was left open as to undergo conducted healing (A)and was submitted only to debridement and local care with dressings. The skin removed from the side mentioned above was implanted as a graft (B) to cover the wound on the other side. Thus, each animal received the two types of treatment on its dorsum (A and B). The rabbits were divided into two groups according to the size of the wounds: Group 1 - A and B (4 cm2)and Group 2 - A and B (25 cm2). The healing time was 19 days for Group 1 and 35 days for Group 2. The final macro- and microscopic aspects of the healing process were analysed comparatively among all subgroups. The presence of inflammatory cells, epidermal cysts and of giant cells was evaluated. No macro- or microscopic differences were observed while comparing the wounds that underwent conducted healing and those in which grafting was employed, although the wounds submitted to conducted healing healed more rapidly. Conducted wound healing was effective for the treatment of skin wounds. Celsius.

  11. Mechanoregulation of Wound Healing and Skin Homeostasis

    Directory of Open Access Journals (Sweden)

    Joanna Rosińczuk

    2016-01-01

    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  12. Absorption of radionuclide through wounded skin

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Ogaki, Kazushi; Yoshizawa, Yasuo

    1982-01-01

    The translocation and absorption of 58 Co(CoCl 2 ) through a wound was investigated experimentally with mice. Physical and chemical skin damages became the objects of the investigation. Abrasion, puncture and incision were made for types of the physical damage. The chemical damage included both acid and alkaline burns. The absorptions of the radionuclide through the contaminated wounds were measured with both a 2 inches NaI(Tl) scintillation detector and an auto well gamma counter at 15,30 and 60 min after the contamination. The radionuclide was hardly absorbed through an undamaged skin. After 30 min, 20 to 40% of the radionuclide applied on the physically damaged skin was absorbed, but was not absorbed through the chemically damaged skin. The absorption rate through the physically damaged skin reached a maximum at 15 to 60 min after the contamination. The velocity of the absorption through the physically damaged skin was 100 times as much as the chemically damaged skin. The absorption rates through the physically and the chemically damaged skins were expressed by the following formulas: A=a(1-e sup(-bt)) and A=a(e sup(bt)-1), where a and b is constant, respectively. (author)

  13. Tight Skin 2 Mice Exhibit Delayed Wound Healing Caused by Increased Elastic Fibers in Fibrotic Skin.

    Science.gov (United States)

    Long, Kristen B; Burgwin, Chelsea M; Huneke, Richard; Artlett, Carol M; Blankenhorn, Elizabeth P

    2014-09-01

    Rationale: The Tight Skin 2 (Tsk2) mouse model of systemic sclerosis (SSc) has many features of human disease, including tight skin, excessive collagen deposition, alterations in the extracellular matrix (ECM), increased elastic fibers, and occurrence of antinuclear antibodies with age. A tight skin phenotype is observed by 2 weeks of age, but measurable skin fibrosis is only apparent at 10 weeks. We completed a series of wound healing experiments to determine how fibrosis affects wound healing in Tsk2/+ mice compared with their wild-type (WT) littermates. Method: We performed these experiments by introducing four 4 mm biopsy punched wounds on the back of each mouse, ventral of the midline, and observed wound healing over 10 days. Tsk2/+ mice showed significantly delayed wound healing and increased wound size compared with the WT littermates at both 5 and 10 weeks of age. We explored the potential sources of this response by wounding Tsk2/+ mice that were genetically deficient either for the NLRP3 inflammasome (a known fibrosis mediator), or for elastic fibers in the skin, using a fibulin-5 knockout. Conclusion: We found that the loss of elastic fibers restores normal wound healing in the Tsk2/+ mouse and that the loss of the NLRP3 inflammasome had no effect. We conclude that elastic fiber dysregulation is the primary cause of delayed wound healing in the Tsk2/+ mouse and therapies that promote collagen deposition in the tissue matrix in the absence of elastin deposition might be beneficial in promoting wound healing in SSc and other diseases.

  14. [Effects of human amniotic epithelial stem cells-derived exosomes on healing of wound with full-thickness skin defect in rats].

    Science.gov (United States)

    Zhao, B; Wu, G F; Zhang, Y J; Zhang, W; Yang, F F; Xiao, D; Zeng, K X; Shi, J H; Su, L L; Hu, D H

    2017-01-20

    Objective: To investigate the effects of human amniotic epithelial stem cells-derived exosomes on healing of wound with full-thickness skin defect in rats. Methods: (1) Human amniotic epithelial stem cells were isolated from the amnion tissue of 5 full-term pregnant women in Department of Obstetrics of our hospital by the method of trypsin digestion, and their morphology was observed. The third passage of cells were stained with rhodamine-phalloidin for cytoskeleton observation. The third passage of cells were identified with flow cytometry through the detection of expressions of cell surface markers CD29, CD31, CD34, CD90, CD105, SSEA3, SSEA4 and immunity-related marker human leukocyte antigen-D related site (HLA-DR). The third passage of cells were also assessed the ability of adipogenic and osteogenic differentiation. (2) The third passage of human amniotic epithelial stem cells were cultured in DMEM medium supplemented with 10% exosome-free fetal bovine serum. Exosomes were isolated from culture supernatant by the method of ultracentrifugation and represented with scanning electron microscope for morphologic observation. (3) Six adult SD rats were anesthetized, and four 1 cm×1 cm sized wounds with full-thickness skin defect were made on the back of each rat. The wounds on the back of each rat were divided into control group, 25 μg/mL exosomes group, 50 μg/mL exosomes group, and 100 μg/mL exosomes group according to the random number table (with 6 wounds in each group), and a total volume of 100 μL phosphate buffered saline, 25 μg/mL exosomes, 50 μg/mL exosomes, and 100 μg/mL exosomes were evenly injected around the wound through multiple subcutaneous sites, respectively. The wound healing rate was calculated based on measurement on post injury day (PID) 7, 14, and 21. On PID 21, the healed wound tissue of each group was collected and stained with HE to observe and count skin accessories, and the arrangement of collagen fibers was observed with Masson

  15. Photobiomodulation of distinct lineages of human dermal fibroblasts: a rational approach towards the selection of effective light parameters for skin rejuvenation and wound healing

    Science.gov (United States)

    Mignon, Charles; Uzunbajakava, Natallia E.; Raafs, Bianca; Moolenaar, Mitchel; Botchkareva, Natalia V.; Tobin, Desmond J.

    2016-03-01

    Distinct lineages of human dermal fibroblasts play complementary roles in skin rejuvenation and wound healing, which makes them a target of phototherapy. However, knowledge about differential responses of specific cell lineages to different light parameters and moreover the actual molecular targets remain to be unravelled. The goal of this study was to investigate the impact of a range of parameters of light on the metabolic activity, collagen production, and cell migration of distinct lineages of human dermal fibroblasts. A rational approach was used to identify parameters with high therapeutic potential. Fibroblasts exhibited both inhibitory and cytotoxic change when exposed to a high dose of blue and cyan light in tissue culture medium containing photo-reactive species, but were stimulated by high dose red and near infrared light. Cytotoxic effects were eliminated by refreshing the medium after light exposure by removing potential ROS formed by extracellular photo-reactive species. Importantly, distinct lineages of fibroblasts demonstrated opposite responses to low dose blue light treatment when refreshing the medium after exposure. Low dose blue light treatment also significantly increased collagen production by papillary fibroblasts; high dose significantly retarded closure of the scratch wound without signs of cytotoxicity, and this is likely to have involved effects on both cell migration and proliferation. We recommend careful selection of fibroblast subpopulations and their culture conditions, a systematic approach in choosing and translating treatment parameters, and pursuit of fundamental research on identification of photoreceptors and triggered molecular pathways, while seeking effective parameters to address different stages of skin rejuvenation and wound healing.

  16. Forensic photography. Ultraviolet imaging of wounds on skin.

    Science.gov (United States)

    Barsley, R E; West, M H; Fair, J A

    1990-12-01

    The use of ultraviolet light (UVL) to study and document patterned injuries on human skin has opened a new frontier for law enforcement. This article discusses the photographic techniques involved in reflective and fluorescent UVL. Documentation of skin wounds via still photography and dynamic video photographic techniques, which utilize various methods of UV illumination, are covered. Techniques important for courtroom presentation of evidence gathered from lacerations, contusions, abrasions, and bite marks are presented through case studies and controlled experiments. Such injuries are common sequelae in the crimes of child abuse, rape, and assault.

  17. Effective biofilm removal and changes in bacterial biofilm building capacity after wound debridement with low-frequency ultrasound as part of wound bed preparation before skin grafting

    Directory of Open Access Journals (Sweden)

    Yarets Y

    2017-03-01

    Full Text Available Yuliya Yarets Clinical Laboratory Medicine Department, The Republican Scientific Centre for Radiation Medicine and Human Ecology, Gomel, Belarus Abstract: The aim of the study was to evaluate the efficacy of ultrasonic-assisted wound debridement (UAW used for wound bed preparation of chronic wounds prior to skin grafting. Initially, 140 patients were enrolled into study. Group 1 patients (n=53 with critically colonized wounds underwent a single UAW procedure before skin grafting. Group 2 patients (n=87 with colonized wounds received two UAW sessions, skin grafting followed by the second UAW treatment. Initial wound classification in colonized and critically colonized wounds did not correlate with results from microbiological analysis of wound swab samples. Hence, comparison of efficacy of one or two debridement sessions was conducted solely for a similar group of patients, that is, patients with colonized wounds of group 1 (n=40 and group 2 (n=47. In wounds of group 1 patients, a single debridement session resulted in reduction of bacteria from >104 to <104 CFU/mL. However, bacteria remaining at wound site showed minor differences in biofilm slime production, with skin graft failure being observed in 25% cases. In wounds of group 2 patients, two debridement sessions significantly reduced bacterial presence up to <102 CFU/mL. Bacteria remaining at wound site showed low capacity for biofilm slime production and high accumulation of biomass; a complete graft healing was observed in all patients. We suggest two to three debridement sessions with UAW to be most effective in wound bed preparation before skin grafting of chronic wounds. UAW showed to be effective in cleaning the wound bed, destroying the extracellular substances in biofilms, and influencing biofilm slime building capacity of bacteria left at wound site. Keywords: wound debridement, wound bed preparation, biofilm, low-frequency ultrasound, skin grafting, biofilm assay

  18. Wounds as probes of electrical properties of skin

    Directory of Open Access Journals (Sweden)

    Olov Erik Wahlsten

    2010-11-01

    Full Text Available We have built a model where we use a wound as a probe of the dielectric properties of skin. We introduce the notion of a skin electrochemical capacitor. This gives good agreement with recent measurements for the electric potential landscape around a wound. Possible diagnostic consequences are briefly touched upon.

  19. Can thermal lasers promote skin wound healing?

    Science.gov (United States)

    Capon, Alexandre; Mordon, Serge

    2003-01-01

    Lasers are now widely used for treating numerous cutaneous lesions, for scar revision (hypertrophic and keloid scars), for tissue welding, and for skin resurfacing and remodeling (wrinkle removal). In these procedures lasers are used to generate heat. The modulation of the effect (volatilization, coagulation, hyperthermia) of the laser is obtained by using different wavelengths and laser parameters. The heat source obtained by conversion of light into heat can be very superficial, yet intense, if the laser light is well absorbed (far-infrared:CO(2) or Erbium:Yttrium Aluminum Garnet [Er:YAG] lasers), or it can be much deeper and less intense if the laser light is less absorbed by the skin (visible or near-infrared). Lasers transfer energy, in the form of heat, to surrounding tissues and, regardless of the laser used, a 45-50 degrees C temperature gradient will be obtained in the surrounding skin. If a wound healing process exists, it is a result of live cells reacting to this low temperature increase. The generated supraphysiologic level of heat is able to induce a heat shock response (HSR), which can be defined as the temporary changes in cellular metabolism. These changes are rapid and transient, and are characterized by the production of a small family of proteins termed the heat shock proteins (HSP). Recent experimental studies have clearly demonstrated that HSP 70, which is over-expressed following laser irradiation, could play a role with a coordinated expression of other growth factors such as transforming growth factor (TGF)-beta. TGF-beta is known to be a key element in the inflammatory response and the fibrogenic process. In this process, the fibroblasts are the key cells since they produce collagen and extracellular matrix. In conclusion, the analysis of the literature, and the fundamental considerations concerning the healing process when using thermal lasers, are in favor of a modification of the growth factors synthesis after laser irradiation, induced

  20. Topical photodynamic therapy following excisional wounding of human skin increases production of transforming growth factor-β3 and matrix metalloproteinases 1 and 9, with associated improvement in dermal matrix organization.

    Science.gov (United States)

    Mills, S J; Farrar, M D; Ashcroft, G S; Griffiths, C E M; Hardman, M J; Rhodes, L E

    2014-07-01

    Animal studies report photodynamic therapy (PDT) to improve healing of excisional wounds; the mechanism is uncertain and equivalent human studies are lacking. To explore the impact of methyl aminolaevulinate (MAL)-PDT on clinical and microscopic parameters of human cutaneous excisional wound healing, examining potential modulation through production of transforming growth factor (TGF)-β isoforms. In 27 healthy older men (60-77 years), a 4-mm punch biopsy wound was created in skin of the upper inner arm and treated with MAL-PDT three times over 5 days. An identical control wound to the contralateral arm was untreated and both wounds left to heal by secondary intention. Wounds were re-excised during the inflammatory phase (7 days, n = 10), matrix remodelling (3 weeks, n = 8) and cosmetic outcome/dermal structure (9 months, n = 9). Production of TGF-β1, TGF-β3 and matrix metalloproteinases (MMPs) was assessed by immunohistochemistry alongside microscopic measurement of wound size/area and clinical assessment of wound appearance. MAL-PDT delayed re-epithelialization at 7 days, associated with increased inflammation. However, 3 weeks postwounding, treated wounds were smaller with higher production of MMP-1 (P = 0·01), MMP-9 (P = 0·04) and TGF-β3 (P = 0·03). TGF-β1 was lower than control at 7 days and higher at 3 weeks (both P = 0·03). At 9 months, MAL-PDT-treated wounds showed greater, more ordered deposition of collagen I, collagen III and elastin (all P < 0·05). MAL-PDT increases MMP-1, MMP-9 and TGF-β3 production during matrix remodelling, ultimately producing scars with improved dermal matrix architecture. © 2014 British Association of Dermatologists.

  1. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Science.gov (United States)

    Das, Subhamoy; Baker, Aaron B.

    2016-01-01

    Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice. PMID:27843895

  2. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Directory of Open Access Journals (Sweden)

    Subhamoy Das

    2016-10-01

    Full Text Available Wound healing is an intricate process that requires complex coordination between many cells and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care; the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds including excessive inflammation, ischemia, scarring and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or currently used in clinical practice.

  3. Effects of tretinoin on wound healing in aged skin.

    Science.gov (United States)

    de Campos Peseto, Danielle; Carmona, Erica Vilaça; Silva, Kellyn Cristina da; Guedes, Flavia Roberta Valente; Hummel Filho, Fernando; Martinez, Natalia Peres; Pereira, José Aires; Rocha, Thalita; Priolli, Denise Gonçalves

    2016-03-01

    Aged and adult populations have differences in the structural, biological, and healing properties of skin. Comparative studies of healing under the influence of retinoids in both these populations are very important and, to the best of our knowledge, have not been performed to date. The purpose of this study was to compare the activities of topical tretinoin in aged and adult animal models of wound healing by secondary intention. Male aged rats (24 months old, n = 7) and adult rats (6 months old, n = 8) were used. The rats were assigned to the following groups according to the dates on which wound samples were excised (day 14 or 21 after model creation): treated group, control group, and naive group. Topical application of tretinoin cream was used only on the proximal wound and was applied daily for 7 days. Wound healing areas were measured using metal calipers, and morphological analysis was performed. Slides were stained with Hematoxylin and Eosin, Masson's trichrome, and periodic acid-Schiff stains. Statistical analysis adopted a 5% coefficient for rejection of the null hypothesis. Although aged animals showed skin repair, complete reepithelialization was found on day 21 in some animals of both groups (treated and control). In aged rats, the wound area was significantly smaller in treated wounds than in untreated wounds, resulting in a larger scar area compared with the adult group. When treated wounds were compared, no differences were found between the wound areas in adult and aged rats. As expected, the collagen concentration was higher in normal skin from adult rats than in normal skin from aged animals, but there was no difference when aged skin was treated with tretinoin. These results indicate that tretinoin increases collagen synthesis in aged skin and returns the healing process to a normal state of skin healing. © 2016 by the Wound Healing Society.

  4. Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates.

    Science.gov (United States)

    Madaghiele, Marta; Demitri, Christian; Sannino, Alessandro; Ambrosio, Luigi

    2014-01-01

    Wound closure represents a primary goal in the treatment of very deep and/or large wounds, for which the mortality rate is particularly high. However, the spontaneous healing of adult skin eventually results in the formation of epithelialized scar and scar contracture (repair), which might distort the tissues and cause lifelong deformities and disabilities. This clinical evidence suggests that wound closure attained by means of skin regeneration, instead of repair, should be the true goal of burn wound management. The traditional concept of temporary wound dressings, able to stimulate skin healing by repair, is thus being increasingly replaced by the idea of temporary scaffolds, or regenerative templates, able to promote healing by regeneration. As wound dressings, polymeric hydrogels provide an ideal moisture environment for healing while protecting the wound, with the additional advantage of being comfortable to the patient, due to their cooling effect and non-adhesiveness to the wound tissue. More importantly, recent advances in regenerative medicine demonstrate that bioactive hydrogels can be properly designed to induce at least partial skin regeneration in vivo. The aim of this review is to provide a concise insight on the key properties of hydrogels for skin healing and regeneration, particularly highlighting the emerging role of hydrogels as next generation skin substitutes for the treatment of full-thickness burns.

  5. Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates

    Directory of Open Access Journals (Sweden)

    Marta Madaghiele

    2014-10-01

    Full Text Available Wound closure represents a primary goal in the treatment of very deep and/or large wounds, for which the mortality rate is particularly high. However, the spontaneous healing of adult skin eventually results in the formation of epithelialized scar and scar contracture (repair, which might distort the tissues and cause lifelong deformities and disabilities. This clinical evidence suggests that wound closure attained by means of skin regeneration, instead of repair, should be the true goal of burn wound management. The traditional concept of temporary wound dressings, able to stimulate skin healing by repair, is thus being increasingly replaced by the idea of temporary scaffolds, or regenerative templates, able to promote healing by regeneration. As wound dressings, polymeric hydrogels provide an ideal moisture environment for healing while protecting the wound, with the additional advantage of being comfortable to the patient, due to their cooling effect and non-adhesiveness to the wound tissue. More importantly, recent advances in regenerative medicine demonstrate that bioactive hydrogels can be properly designed to induce at least partial skin regeneration in vivo. The aim of this review is to provide a concise insight on the key properties of hydrogels for skin healing and regeneration, particularly highlighting the emerging role of hydrogels as next generation skin substitutes for the treatment of full-thickness burns.

  6. Recipient Wound Bed Characteristics Affect Scarring and Skin Graft Contraction

    Science.gov (United States)

    2015-02-13

    wound debridement followed by coverage with split thickness skin grafts (STSGs). As a consequence, skin replacement therapy has been a topic of intense...number. 1. REPORT DATE 13 FEB 2015 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Recipient wound bed characteristics affect...E), Verhoeff’s Elas- tic Masson’s Tricrhome for total collagen and elastin, or picrosirius red for differential detection of Type I and III collagen

  7. Skin Wound Healing: An Update on the Current Knowledge and Concepts.

    Science.gov (United States)

    Sorg, Heiko; Tilkorn, Daniel J; Hager, Stephan; Hauser, Jörg; Mirastschijski, Ursula

    2017-01-01

    The integrity of healthy skin plays a crucial role in maintaining physiological homeostasis of the human body. The skin is the largest organ system of the body. As such, it plays pivotal roles in the protection against mechanical forces and infections, fluid imbalance, and thermal dysregulation. At the same time, it allows for flexibility to enable joint function in some areas of the body and more rigid fixation to hinder shifting of the palm or foot sole. Many instances lead to inadequate wound healing which necessitates medical intervention. Chronic conditions such as diabetes mellitus or peripheral vascular disease can lead to impaired wound healing. Acute trauma such as degloving or large-scale thermal injuries are followed by a loss of skin organ function rendering the organism vulnerable to infections, thermal dysregulation, and fluid loss. For this update article, we have reviewed the actual literature on skin wound healing purposes focusing on the main phases of wound healing, i.e., inflammation, proliferation, epithelialization, angiogenesis, remodeling, and scarring. The reader will get briefed on new insights and up-to-date concepts in skin wound healing. The macrophage as a key player in the inflammatory phase will be highlighted. During the epithelialization process, we will present the different concepts of how the wound will get closed, e.g., leapfrogging, lamellipodial crawling, shuffling, and the stem cell niche. The neovascularization represents an essential component in wound healing due to its fundamental impact from the very beginning after skin injury until the end of the wound remodeling. Here, the distinct pattern of the neovascularization process and the special new functions of the pericyte will be underscored. At the end, this update will present 3 topics of high interest in skin wound healing issues, dealing with scarring, tissue engineering, and plasma application. Although wound healing mechanisms and specific cell functions in wound

  8. Gender affects skin wound healing in plasminogen deficient mice

    DEFF Research Database (Denmark)

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge

    2013-01-01

    closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds...... functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency...... or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation...

  9. Comparison of the antiseptic efficacy of tissue-tolerable plasma and an octenidine hydrochloride-based wound antiseptic on human skin.

    Science.gov (United States)

    Lademann, J; Richter, H; Schanzer, S; Patzelt, A; Thiede, G; Kramer, A; Weltmann, K-D; Hartmann, B; Lange-Asschenfeldt, B

    2012-01-01

    Colonization and infection of wounds represent a major reason for the impairment of tissue repair. Recently, it has been reported that tissue-tolerable plasma (TTP) is highly efficient in the reduction of the bacterial load of the skin. In the present study, the antiseptic efficacy of TTP was compared to that of octenidine hydrochloride with 2-phenoxyethanol. Both antiseptic methods proved to be highly efficient. Cutaneous treatment of the skin with octenidine hydrochloride and 2-phenoxyethanol leads to a 99% elimination of the bacteria, and 74% elimination is achieved by TTP treatment. Technical challenges with an early prototype TTP device could be held responsible for the slightly reduced antiseptic properties of TTP, compared to a standard antiseptic solution, since the manual treatment of the skin surface with a small beam of the TTP device might have led to an incomplete coverage of the treated area. Copyright © 2012 S. Karger AG, Basel.

  10. Cell-based regenerative strategies for treatment of diabetic skin wounds, a comparative study between human umbilical cord blood-mononuclear cells and calves' blood haemodialysate.

    Directory of Open Access Journals (Sweden)

    Hala O El-Mesallamy

    Full Text Available BACKGROUND: Diabetes-related foot problems are bound to increase. However, medical therapies for wound care are limited; therefore, the need for development of new treatment modalities to improve wound healing in diabetic patients is essential and constitutes an emerging field of investigation. METHODS: Animals were randomly divided into 8 groups (I-VIII (32 rats/group, all were streptozotocin (STZ-induced diabetics except groups III and VIII were non-diabetic controls. The study comprised two experiments; the first included 3 groups. Group I injected with mononuclear cells (MNCs derived from human umbilical cord blood (HUCB, group II a diabetic control group (PBS i.v. The second experiment included 5 groups, groups IV, V, and VI received topical HUCB-haemodialysate (HD, calves' blood HD, and solcoseryl, respectively. Group VII was the diabetic control group (topical saline. Standard circular wounds were created on the back of rats. A sample of each type of HD was analyzed using the high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS system. Wound area measurement and photography were carried out every 4 days. Plasma glucose, catalase (CAT, malondialdehyde (MDA, nitric oxide (NO and platelets count were assessed. Wound samples were excised for hydroxyproline (HP and histopathological study. RESULTS: Treatment with HUCB MNCs or HUCB-HD resulted in wound contraction, increased CAT, NO, platelets count, body weights, and HP content, and decreased MDA and glucose. CONCLUSION: Systemic administration of HUCB MNCs and topical application of the newly prepared HUCB-HD or calves' blood HD significantly accelerated the rate of diabetic wound healing and would open the possibility of their future use in regenerative medicine.

  11. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  12. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohd Hilmi

    2013-01-01

    Full Text Available Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%, longest epithelial tongue (1.62 ± 0.13 mm, and shortest migratory tongue distance (7.11 ± 0.25 mm. The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm and chitosan skin substitute (0.16 ± 0.05 cm were significantly decreased (P<0.05 compared with duoderm (0.45 ± 0.11 cm. Human leukocyte antigen (HLA expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.

  13. The Role of Iron in the Skin & Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Josephine Anne Wright

    2014-07-01

    Full Text Available In this review article we discuss current knowledge about iron in the skin and the cutaneous wound healing process. Iron plays a key role in both oxidative stress and photo-induced skin damage. The main causes of oxidative stress in the skin include reactive oxygen species (ROS generated in the skin by ultraviolet (UVA 320-400 nm portion of the ultraviolet spectrum and biologically available iron. We also discuss the relationships between iron deficiency, anaemia and cutaneous wound healing. Studies looking at this fall into two distinct groups. Early studies investigated the effect of anaemia on wound healing using a variety of experimental methodology to establish anaemia or iron deficiency and focused on wound-strength rather than effect on macroscopic healing or re-epithelialisation. More recent animal studies have investigated novel treatments aimed at correcting the effects of systemic iron deficiency and localised iron overload. Iron overload is associated with local cutaneous iron deposition, which has numerous deleterious effects in chronic venous disease and hereditary haemochromatosis. Iron plays a key role in chronic ulceration and conditions such as Rheumatoid Arthritis (RA and Lupus Erythematosus are associated with both anaemia of chronic disease and dysregulation of local cutaneous iron haemostasis. Iron is a potential therapeutic target in the skin by application of topical iron chelators and novel pharmacological agents, and in delayed cutaneous wound healing by treatment of iron deficiency or underlying systemic inflammation.

  14. Injury-activated glial cells promote wound healing of the adult skin in mice.

    Science.gov (United States)

    Parfejevs, Vadims; Debbache, Julien; Shakhova, Olga; Schaefer, Simon M; Glausch, Mareen; Wegner, Michael; Suter, Ueli; Riekstina, Una; Werner, Sabine; Sommer, Lukas

    2018-01-16

    Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously associated with wound healing and promote myofibroblast differentiation by paracrine modulation of TGF-β signalling. Accordingly, depletion of these cells impairs epithelial proliferation and wound closure through contraction, while their expansion promotes myofibroblast formation. Thus, injury-activated glia and/or their secretome might have therapeutic potential in human wound healing disorders.

  15. [Relationship between FoxO1 Expression and Wound Age during Skin Incised Wound Healing].

    Science.gov (United States)

    Chen, Y; Ji, X Y; Fan, Y Y; Yu, L S

    2018-02-01

    To investigate FoxO1 expression and its time-dependent changes during the skin incised wound healing. After the establishment of the skin incised wound model in mice, the FoxO1 expression of skin in different time periods was detected by immunohistochemistry and Western blotting. Immunohistochemistry staining showed that FoxO1 was weakly expressed in a few fibroblasts of epidermis, hair follicles, sebaceous glands, vessel endothelium and dermis in the control group. The FoxO1 expression was enhanced in the epidermis and skin appendages around the wound during 6-12 h after injury, which could be detected in the infiltrating neutrophils and a small number of monocytes. FoxO1 was mainly expressed in monocytes during 1-3 d after injury, and in neovascular endothelial cells and fibroblasts during 5-10 d. On the 14th day after injury, the FoxO1 expression still could be detected in a few fibroblasts. The Western blotting results showed that the FoxO1 expression quantity of the tissue samples in injury group was higher than in control group. The FoxO1 expression peaked at 12 h and 7 d after injury. FoxO1 is time-dependently expressed in skin wound healing, which can be a useful marker for wound age determination. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  16. The Microbiota of the Human Skin.

    Science.gov (United States)

    Egert, Markus; Simmering, Rainer

    2016-01-01

    The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members, (c) the distinction of beneficial skin microorganisms from microorganisms or communities with an adverse or sickening effect on their hosts, (d) factors shaping the skin microbiota and its functional role in health and disease, (e) strategies to manipulate the skin microbiota for therapeutic reasons.

  17. Ascorbic acid for the healing of skin wounds in rats

    Directory of Open Access Journals (Sweden)

    CC. Lima

    Full Text Available BACKGROUND: Healing is a complex process that involves cellular and biochemical events. Several medicines have been used in order to shorten healing time and avoid aesthetic damage. OBJECTIVE: to verify the topical effect of ascorbic acid for the healing of rats' skin wounds through the number of macrophages, new vessels and fibroblast verifications in the experimental period; and analyse the thickness and the collagen fibre organization in the injured tissue. METHODS: Male Rattus norvegicus weighing 270 ± 30 g were used. After thionembutal anesthesia, 15 mm transversal incisions were made in the animals' cervical backs. They were divided into two groups: Control Group (CG, n = 12 - skin wound cleaned with water and soap daily; Treated Group (TG, n = 12 - skin wound cleaned daily and treated with ascorbic acid cream (10%. Samples of skin were collected on the 3rd, 7th and 14th days. The sections were stained with hematoxylin-eosin and picrosirius red for morphologic analysis. The images were obtained and analysed by a Digital Analyser System. RESULTS: The ascorbic acid acted on every stage of the healing process. It reduced the number of macrophages, increased the proliferation of fibroblasts and new vessels, and stimulated the synthesis of thicker and more organized collagen fibres in the wounds when compared to CG. CONCLUSION: Ascorbic acid was shown to have anti-inflammatory and healing effects, guaranteeing a suiTable environment and conditions for faster skin repair.

  18. Influence of hypoandrogenism in skin wound healing resistance in rats

    Directory of Open Access Journals (Sweden)

    Denny Fabrício Magalhães Veloso

    2009-03-01

    Full Text Available Objective: The objective of the present study is to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and postoperative times. Methods: Forty-four Wistar male rats were divided into four groups: Group 1y (n = 11 – young control, sham-operated rats (30 days-old; Group 1A (n = 10 – adult control, sham-operated rats (three to four months old; Group 2Y (n = 10 – young rats after bilateral orchiectomy; and Group 2A (n = 11 – adult rats after bilateral orchiectomy. After six months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment with a tensiometer, on the 7th and 21st postoperative days. Rresults: The wound healing resistance was higher in Group 1Y than in Group 2Y after seven days (p < 0.05. Wound healing resistance at 21 days was higher than at seven days in all groups (p < 0.05. Late wound healing resistance was not different between young and adult rats. Cconclusions: Bilateral orchiectomy decreased the wound healing resistance only in young animals at the seventh postoperative day.

  19. Hypoandrogenism related to early skin wound healing resistance in rats.

    Science.gov (United States)

    Petroianu, A; Veloso, D F M; Alberti, L R; Figueiredo, J A; Rodrigues, F H O Carmo; Carneiro, B G M Carvalho E

    2010-04-01

    The purpose of this study was to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and post-operative periods. Forty-four Wistar male rats were divided into four groups: Group 1Y (n = 11) - young control, sham-operated rats (30-day old); Group 1A (n = 10) - adult control, sham-operated rats (3 to 4-month old); Group 2Y (n = 10) - young rats after bilateral orchiectomy; and Group 2A (n = 11) - adult rats after bilateral orchiectomy. After 6 months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment using a tensiometer, on the 7th and 21st post-operative days. The wound healing resistance was higher in Group 1Y than in Group 2Y after 7 days (P Wound healing resistance at 21 days was higher than at 7 days in all groups (P wound healing resistance was not different between young and adult rats. It is concluded that bilateral orchiectomy diminished the wound healing resistance only in young animals at the 7th post-operative day.

  20. Skin-resident stem cells and wound healing.

    Science.gov (United States)

    Iwata, Yohei; Akamatsu, Hirohiko; Hasebe, Yuichi; Hasegawa, Seiji; Sugiura, Kazumitsu

    2017-01-01

    CD271 is common stem cell marker for the epidermis and dermis. We assessed a kinetic movement of epidermal and dermal CD271 + cells in the wound healing process to elucidate the possible involvement with chronic skin ulcers. Epidermal CD271 + cells were proliferated and migrated from 3 days after wounding. Purified epidermal CD271 + cells expressed higher TGFβ2 and VEGFα transcripts than CD271 - cells. Delayed wound healing was observed in the aged mice compared with young mice. During the wound healing process, the peak of dermal CD271 + cell accumulation was delayed in aged mice compared with young mice. The expression levels of collagen-1, -3, -5, F4-80, EGF, FGF2, TGFβ1, and IL-1α were significantly increased in young mice compared with aged mice. Furthermore, purified dermal CD271 + cells expressed higher FGF2, EGF, PDGFB, and TGFβ1 gene transcripts than CD271 - cells. These results suggested that epidermal and dermal CD271 + cells were closely associated with wound healing process by producing various growth factors. Epidermal and dermal CD271 + cells in chronic skin ulcer patients were significantly reduced compared with healthy controls. Thus, both epidermal and dermal stem cells can play an important role in wound healing process.

  1. Nanofibrillar cellulose wound dressing in skin graft donor site treatment.

    Science.gov (United States)

    Hakkarainen, T; Koivuniemi, R; Kosonen, M; Escobedo-Lucea, C; Sanz-Garcia, A; Vuola, J; Valtonen, J; Tammela, P; Mäkitie, A; Luukko, K; Yliperttula, M; Kavola, H

    2016-12-28

    Although new therapeutic approaches for burn treatment have made progress, there is still need for better methods to enhance wound healing and recovery especially in severely burned patients. Nanofibrillar cellulose (NFC) has gained attention due to its renewable nature, good biocompatibility and excellent physical properties that are of importance for a range of applications in pharmaceutical and biomedical fields. In the present study, we investigated the potential of a wood based NFC wound dressing in a clinical trial on burn patients. Previously, we have investigated NFC as a topical functionalized wound dressing that contributes to improve wound healing in mice. Wood based NFC wound dressing was tested in split-thickness skin graft donor site treatment for nine burn patients in clinical trials at Helsinki Burn Centre. NFC dressing was applied to split thickness skin graft donor sites. The dressing gradually dehydrated and attached to donor site during the first days. During the clinical trials, physical and mechanical properties of NFC wound dressing were optimized by changing its composition. From patient 5 forward, NFC dressing was compared to commercial lactocapromer dressing, Suprathel® (PMI Polymedics, Germany). Epithelialization of the NFC dressing-covered donor site was faster in comparison to Suprathel®. Healthy epithelialized skin was revealed under the detached NFC dressing. NFC dressing self-detached after 11-21days for patients 1-9, while Suprathel® self-detached after 16-28days for patients 5-9. In comparison studies with patients 5-9, NFC dressing self-detached on average 4days earlier compared with Suprathel®. Lower NFC content in the material was evaluated to influence the enhanced pliability of the dressing and attachment to the wound bed. No allergic reaction or inflammatory response to NFC was observed. NFC dressing did not cause more pain for patients than the traditional methods to treat the skin graft donor sites. Based on the

  2. [Stimulation of skin wound contraction and epithelialization by soluble collage].

    Science.gov (United States)

    Melikiants, A G; Kut'kova, O N

    1992-04-01

    It is found that local applications of the unguent with soluble collagen, but not solution of the collagen, stimulate healing of erosions and full-thickness excision wounds in the rat skin. Not all the stages of healing were stimulated, but only two of them--contraction and epithelialization.

  3. Evaluation of Healing Intervals of Incisional Skin Wounds of Goats ...

    African Journals Online (AJOL)

    The aim of this study was to compare the healing intervals among simple interrupted (SI), ford interlocking (FI) and subcuticular (SC) suture patterns in goats. We hypothesized that these common suture patterns used for closure of incisional skin wounds may have effect on the healing interval. To test this hypothesis, two ...

  4. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing.

    Science.gov (United States)

    Hattori, Yoshiaki; Falgout, Leo; Lee, Woosik; Jung, Sung-Young; Poon, Emily; Lee, Jung Woo; Na, Ilyoun; Geisler, Amelia; Sadhwani, Divya; Zhang, Yihui; Su, Yewang; Wang, Xiaoqi; Liu, Zhuangjian; Xia, Jing; Cheng, Huanyu; Webb, R Chad; Bonifas, Andrew P; Won, Philip; Jeong, Jae-Woong; Jang, Kyung-In; Song, Young Min; Nardone, Beatrice; Nodzenski, Michael; Fan, Jonathan A; Huang, Yonggang; West, Dennis P; Paller, Amy S; Alam, Murad; Yeo, Woon-Hong; Rogers, John A

    2014-10-01

    Non-invasive, biomedical devices have the potential to provide important, quantitative data for the assessment of skin diseases and wound healing. Traditional methods either rely on qualitative visual and tactile judgments of a professional and/or data obtained using instrumentation with forms that do not readily allow intimate integration with sensitive skin near a wound site. Here, an electronic sensor platform that can softly and reversibly laminate perilesionally at wounds to provide highly accurate, quantitative data of relevance to the management of surgical wound healing is reported. Clinical studies on patients using thermal sensors and actuators in fractal layouts provide precise time-dependent mapping of temperature and thermal conductivity of the skin near the wounds. Analytical and simulation results establish the fundamentals of the sensing modalities, the mechanics of the system, and strategies for optimized design. The use of this type of "epidermal" electronics system in a realistic clinical setting with human subjects establishes a set of practical procedures in disinfection, reuse, and protocols for quantitative measurement. The results have the potential to address important unmet needs in chronic wound management. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characterization of a Cryopreserved Split-Thickness Human Skin Allograft-TheraSkin.

    Science.gov (United States)

    Landsman, Adam; Rosines, Eran; Houck, Amanda; Murchison, Angela; Jones, Alyce; Qin, Xiaofei; Chen, Silvia; Landsman, Arnold R

    2016-09-01

    The purpose of this study was to examine the characteristics of a cryopreserved split-thickness skin allograft produced from donated human skin and compare it with fresh, unprocessed human split-thickness skin. Cutaneous wound healing is a complex and organized process, where the body re-establishes the integrity of the injured tissue. However, chronic wounds, such as diabetic or venous stasis ulcers, are difficult to manage and often require advanced biologics to facilitate healing. An ideal wound care product is able to directly influence wound healing by introducing biocompatible extracellular matrices, growth factors, and viable cells to the wound bed. TheraSkin (processed by LifeNet Health, Virginia Beach, Virginia, and distributed by Soluble Systems, Newport News, Virginia) is a minimally manipulated, cryopreserved split-thickness human skin allograft, which contains natural extracellular matrices, native growth factors, and viable cells. The authors characterized TheraSkin in terms of the collagen and growth factor composition using ELISA, percentage of apoptotic cells using TUNEL analysis, and cellular viability using alamarBlue assay (Thermo Fisher Scientific, Waltham, Massachusetts), and compared these characteristics with fresh, unprocessed human split-thickness skin. It was found that the amount of the type I and type III collagen, as well as the ratio of type I to type III collagen in TheraSkin, is equivalent to fresh unprocessed human split-thickness skin. Similar quantities of vascular endothelial growth factor, insulinlike growth factor 1, fibroblast growth factor 2, and transforming growth factor β1 were detected in TheraSkin and fresh human skin. The average percent of apoptotic cells was 34.3% and 3.1% for TheraSkin and fresh skin, respectively. Cellular viability was demonstrated in both TheraSkin and fresh skin.

  6. Efficient Healing Takes Some Nerve: Electrical Stimulation Enhances Innervation in Cutaneous Human Wounds.

    Science.gov (United States)

    Emmerson, Elaine

    2017-03-01

    Cutaneous nerves extend throughout the dermis and epidermis and control both the functional and reparative capacity of the skin. Denervation of the skin impairs cutaneous healing, presenting evidence that nerves provide cues essential for timely wound repair. Sebastian et al. demonstrate that electrical stimulation promotes reinnervation and neural differentiation in human acute wounds, thus accelerating wound repair. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  7. Skin wound healing in different aged Xenopus laevis.

    Science.gov (United States)

    Bertolotti, Evelina; Malagoli, Davide; Franchini, Antonella

    2013-08-01

    Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8- and 15-month-old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re-epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti-inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti-tumor necrosis factor (TNF)-α, iNOS, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti-α-SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar-like pattern. The quantitative PCR analysis demonstrated an up-regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar-like tissue formation. Copyright © 2013 Wiley Periodicals, Inc.

  8. Honey ointment': a natural remedy of skin wound infections

    International Nuclear Information System (INIS)

    Tasleem, S.; Naqvi, S.B.S.; Hashimi, K.

    2011-01-01

    Background: Honey is a gift of nature, principally identified and valued to possess antimicrobial and anti-inflammatory activity and has been used as a natural remedy of wounds since ancient times. The objectives of this study were to evaluate the antimicrobial activity of honey against micro-organisms, to formulate a honey ointment and to evaluate the efficacy of such ointment by conducting clinical trials on skin wound infection. Methods: This experimental study was conducted at Department of Pharmaceutics, Faculty of Pharmacy, University of Karachi and Out-patient Department of Dermatology, Fauji Foundation Hospital, Rawalpindi from November 2009 to October 2010. The antimicrobial activity of Pakistani floral sources (Trachysperm copticum, Acacia nilotica species indica, Zizyphus) honey samples was investigated by disc diffusion method against freshly isolated wound infecting bacteria (Staphylococci aureus, Staphylococci epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Proteus vulgaris and Candida albicans), and Staphylococci aureus ATCC 6538, Pseudomonas aeruginosa ATCC 9022, Escherichia coli ATCC 25922, Candida albican ATCC 15146. An ointment containing 20% active antimicrobial honey was formulated. The efficacy of such ointment was evaluated by passing thought clinical trials. A total number of 27 patients (23 skin wound infection, and 4 diabetic foot ulcer) were involved in the study. Thin layer of newly formulated honey ointment on gauze were applied two to three times per day till complete healing. Results: In microbiological assay the honey samples were found to exhibit a very promising antimicrobial activity against all the micro-organisms tested. In clinical trial very significant results (99.15%) healing was observed in skin wound infections cases with mean healing time of 5.86 (2-20) days, and 95% diabetic foot ulcers healed with the mean healing time of 20 (8-40) days. Conclusion: Newly formulated

  9. PRFM enhance wound healing process in skin graft.

    Science.gov (United States)

    Reksodiputro, Mirta; Widodo, Dini; Bashiruddin, Jenny; Siregar, Nurjati; Malik, Safarina

    2014-12-01

    Facial plastic and reconstructive surgery often used skin graft on defects that cannot be covered primarily by a local flap. However, wound healing using skin graft is slow, most of the time the graft is contractured and the take of graft is not optimal. Platelet rich fibrin matrix (PRFM) is a new generation of concentrated platelets that produce natural fibrin and reported to speed up the healing process. Application of PRFM in the skin graft implants is expected to increase the survival of the graft. We used porcine as animal models to elucidate the effect of autologous PRFM on wound healing in full-thickness (FTSG) and split-thickness (STSG) skin grafts. Survival level of the skin graft was determined by using ImageJ software based on the formation of collagen type 1 and graft take. We observed that the use of PRFM in FTSG and STSG increased type 1 collagen formation. We also found that PRFM addition in STSG gave the best skin graft take. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. CLINICAL RESULTS FROM THE TREATMENT OF CHRONIC SKIN WOUNDS WITH PLATELET RICH PLASMA (PRP

    Directory of Open Access Journals (Sweden)

    Pencho Kossev

    2015-12-01

    Full Text Available PURPOSE: To show platelet rich plasma (PRP application of chronic skin wounds and to evaluate the results from the treatment. MATERIAL AND METHODS: A total of 14 patients with problematic skin wounds had been treated at the clinic for a period of five years (from May 2009 to December 2014 with the following patient sex ratio: male patients - 5 and female patients - 9. Average age - 48,5 (30-76. Patients with Type 2 Diabetes - 4, with decubitus ulcers - 6, traumatic - 8, with infection - 5. Based on a scheme developed by us, all cases were treated by administering platelet-rich plasma, derived by PRGF Endoret system. Follow-up period was within 4 - 6 months (4,5 on average. RESULTS: The results have been evaluated based on the following functional scoring systems - Total wound score, Total anatomic score and Total score (20. The baseline values at the very beginning of the follow-up period were as follows: Total wound score - 12 p.; Total anatomic score - 10 p., Total score - 17 p. By the end of the treatment period the score was 0 p., which means excellent results, i.e. complete healing of the wounds. CONCLUSION: We believe that the application of PRP may become optimal therapy in the treatment of difficult to heal wounds around joints, bone, subject tendons, plantar surface of the foot, etc., as it opens new perspectives in the field of human tissue regeneration.

  11. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast.

    Science.gov (United States)

    Hou, Jingang; Kim, Sunchang

    2018-05-05

    Cellular senescence suppresses cancer by inducing irreversible cell growth arrest. Nevertheless, senescent cells is proposed as causal link with aging and aging-related pathologies. The physiological beneficial functions of senescent cells are still of paucity. Here we show that senescent human dermal fibroblast accelerates keratinocytes scratch wound healing and stimulates differentiation of fibroblast. Using oxidative stress (100 μM H 2 O 2 exposure for 1 h) induction, we successfully triggered fibroblast senescence and developed senescence associated secretory phenotype (SASP). The induction of SASP was regulated by p38MAPK/MSK2/NF-κB pathway. Interestingly, inhibition of p38MAPK activation only partially suppressed SASP. However, SASP was significantly inhibited by SB747651A, a specific MSK inhibitor. Additionally, we demonstrate that SASP stimulates migration of keratinocytes and myofibroblast transition of fibroblast, through fold-increased secretion of growth factors, platelet-derived growth factor AA (PDGF-AA) and AB (PDGF-AB), transforming growth factor beta 1 (TGF-β1) and beta 2 (TGF-β2), vascular endothelial growth factor A (VEGF-A) and D (VEGF-D), vascular endothelial growth factor receptor 2 (VEGFR2) and 3 (VEGFR3). Importantly, we also confirmed ginsenoside Rb1 promoted SASP-mediated healing process via p38MAPK/MSK2/NF-κB pathway. The results pointed to senescent fibroblast as a potential mechanism of wound healing control in human skin. Further, it provided a candidate targeted for wound therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Cryopreserved cadaveric skin allograft for cover of excised burns wounds: early clinical experience in Singapore

    International Nuclear Information System (INIS)

    See, P.; Chua, J.J.; Phua, T.T.; Song, C.; Tan, K.C.; Foo, C.L.; Lee, S.T.; Ngim, R.

    1999-01-01

    Human cadaveric skin allograft is widely and effectively used in the treatment of extensive burns. A Skin Bank was established in Singapore National Burns Centre in late 1992 to cater to this need. Due to the shortage of skin donors, it was not until early 1998 that the Skin Bank began to store cadaveric skin harvested from consent donors under the Medical Therapy, Education and Research Act. Cadaveric skin has significant clinical usefulness particularly in the treatment of severe burns. The National Burns Centre admits on the average 300 patients a year, and about 25% of which have sustained major burns (total bum area in excess of 30% BSA or full thickness in excess of 20% BSA). In many cases, the bums are too extensive for autologous skin grafts. The pivotal role of the Skin Bank allows temporary coverage of the entire open bum wound following desloughing or bum wound excision. To date six skin donations have been dealt with. The national tissue transplant team coordinated the selection and screening of these donors. The skin harvested is cryopreserved with 10% dimethyl sulphoxide (DMSO) or glycerol in DMEM. Supplementation with antibiotics is important. Storage temperature is set at -150 degree C. The procurement, processing, preservation and storage of skin allografts were according to guidelines issued by the American Association of Tissue Banks.Three patients with extensive bums (45% mean body surface area) have benefited from this stored cadaveric skin as temporary biological dressings. The technique is by no means novel but the usage of cadaveric skin represents a further treatment milestone for the severe bum injury patients at our centre

  13. Topical haemostatic agents for skin wounds: a systematic review

    Directory of Open Access Journals (Sweden)

    Ubbink Dirk T

    2011-07-01

    Full Text Available Abstract Background Various agents and techniques have been introduced to limit intra-operative blood loss from skin lesions. No uniformity regarding the type of haemostasis exists and this is generally based on the surgeon's preference. To study the effectiveness of haemostatic agents, standardized wounds like donor site wounds after split skin grafting (SSG appear particularly suitable. Thus, we performed a systematic review to assess the effectiveness of haemostatic agents in donor site wounds. Methods We searched all randomized clinical trials (RCTs on haemostasis after SSG in Medline, Embase and the Cochrane Library until January 2011. Two reviewers independently assessed trial relevance and quality and performed data analysis. Primary endpoint was effectiveness regarding haemostasis. Secondary endpoints were wound healing, adverse effects, and costs. Results Nine relevant RCTs with a fair methodological quality were found, comparing epinephrine, thrombin, fibrin sealant, alginate dressings, saline, and mineral oil. Epinephrine achieved haemostasis significantly faster than thrombin (difference up to 2.5 minutes, saline or mineral oil (up to 6.5 minutes. Fibrin sealant also resulted in an up to 1 minute quicker haemostasis than thrombin and up to 3 minutes quicker than placebo, but was not directly challenged against epinephrine. Adverse effects appeared negligible. Due to lack of clinical homogeneity, meta-analysis was impossible. Conclusion According to best available evidence, epinephrine and fibrin sealant appear superior to achieve haemostasis when substantial topical blood loss is anticipated, particularly in case of (larger SSGs and burn debridement.

  14. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review.

    Science.gov (United States)

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an advanced wound healing solution for managing wounds. This article offers a review of the effects and mechanisms of the microcurrent dressing on the healing of skin wounds.

  15. Effects of permafrost microorganisms on skin wound reparation.

    Science.gov (United States)

    Kalenova, L F; Novikova, M A; Subbotin, A M

    2015-02-01

    Local application of ointment with Bacillus spp. strain MG8 (15,000-20,000 living bacterial cells), isolated from permafrost specimens, on the skin wound of about 60 mm(2) stimulated the reparation processes in experimental mice. A possible mechanism stimulating the regeneration of the damaged tissues under the effect of MG8 could be modulation of the immune system reactivity with more rapid switchover to humoral immunity anti-inflammatory mechanisms aimed at de novo synthesis of protein.

  16. 500-Gray γ-Irradiation May Increase Adhesion Strength of Lyophilized Cadaveric Split-Thickness Skin Graft to Wound Bed.

    Science.gov (United States)

    Wei, Lin-Gwei; Chen, Chieh-Feng; Wang, Chi-Hsien; Cheng, Ya-Chen; Li, Chun-Chang; Chiu, Wen-Kuan; Wang, Hsian-Jenn

    2017-03-01

    Human cadaveric skin grafts are considered as the "gold standard" for temporary wound coverage because they provide a more conductive environment for natural wound healing. Lyophilization, packing, and terminal sterilization with gamma-ray can facilitate the application of cadaveric split-thickness skin grafts, but may alter the adhesion properties of the grafts. In a pilot study, we found that 500 Gy γ-irradiation seemed not to reduce the adherence between the grafts and wound beds. We conducted this experiment to compare the adherences of lyophilized, 500-Gy γ-irradiated skin grafts to that of lyophilized, nonirradiated grafts. Pairs of wounds were created over the backs of Sprague- Dawley rats. Pairs of "lyophilized, 500-Gy γ-irradiated" and "lyophilized, nonirradiated" cadaveric split-thickness skin grafts were fixed to the wound beds. Adhesion strength between the grafts and the wound beds was measured and compared. On post-skin-graft day 7 and day 10, the adhesion strength of γ-irradiated grafts was greater than that of the nonirradiated grafts. Because lyophilized cadaveric skin grafts can be vascularized and the collagen of its dermal component can be remodeled after grafting, the superior adhesion strength of 500-Gy γ-irradiated grafts can be explained by the collagen changes from irradiation.

  17. Current Concepts in Tissue Engineering: Skin and Wound.

    Science.gov (United States)

    Tenenhaus, Mayer; Rennekampff, Hans-Oliver

    2016-09-01

    Pure regenerative healing with little to no donor morbidity remains an elusive goal for both surgeon and patient. The ability to engineer and promote the development of like tissue holds so much promise, and efforts in this direction are slowly but steadily advancing. Products selected and reviewed reflect historical precedence and importance and focus on current clinically available products in use. Emerging technologies we anticipate will further expand our therapeutic options are introduced. The topic of tissue engineering is incredibly broad in scope, and as such the authors have focused their review on that of constructs specifically designed for skin and wound healing. A review of pertinent and current clinically related literature is included. Products such as biosynthetics, biologics, cellular promoting factors, and commercially available matrices can be routinely found in most modern health care centers. Although to date no complete regenerative or direct identical soft-tissue replacement exists, currently available commercial components have proven beneficial in augmenting and improving some types of wound healing scenarios. Cost, directed specificity, biocompatibility, and bioburden tolerance are just some of the impending challenges to adoption. Quality of life and in fact the ability to sustain life is dependent on our most complex and remarkable organ, skin. Although pure regenerative healing and engineered soft-tissue constructs elude us, surgeons and health care providers are slowly gaining comfort and experience with concepts and strategies to improve the healing of wounds.

  18. [ROLE OF microRNA IN SKIN DEVELOPMENT AND WOUND HEALING].

    Science.gov (United States)

    Song, Zhifang; Liu, Dewu

    2014-07-01

    To review the role of microRNA (miRNA) in skin development and wound healing. The recent literature about miRNA in skin development and wound healing was reviewed and analyzed. miRNA extensively involved in the development of the skin, including epidermal cell proliferation, differentiation, aging and hair follicle development; miR-203 known as the "skin-specific miRNA" can directly inhibit the expression of p63 and promote the differentiation of the epidermis. Meanwhile, miRNA also involved in various stages of skin regeneration and wound healing. Abnormal expression of miRNA is closely related with abnormal wound healing. miRNA play an important role in maintaining normal skin physiology and skin regeneration. To explore their roles in the healing of skin wounds and their regulatory mechanism can provide a new target for the treatment, which has a potential value and broad prospects.

  19. Clinical application of a tissue-cultured skin autograft: an alternative for the treatment of non-healing or slowly healing wounds?

    Science.gov (United States)

    Zöller, Nadja; Valesky, Eva; Butting, Manuel; Hofmann, Matthias; Kippenberger, Stefan; Bereiter-Hahn, Jürgen; Bernd, August; Kaufmann, Roland

    2014-01-01

    The treatment regime of non-healing or slowly healing wounds is constantly improving. One aspect is surgical defect coverage whereby mesh grafts and keratinocyte suspension are applied. Tissue-cultured skin autografts may be an alternative for the treatment of full-thickness wounds and wounds that cover large areas of the body surface. Autologous epidermal and dermal cells were isolated, expanded in vitro and seeded on collagen-elastin scaffolds. The developed autograft was immunohistochemically characterized and subsequently transplanted onto a facial chronic ulceration of a 71-year-old patient with vulnerable atrophic skin. Characterization of the skin equivalent revealed comparability to healthy human skin due to the epidermal strata, differentiation and proliferation markers. Within 138 days, the skin structure at the transplantation site closely correlated with the adjacent undisturbed skin. The present study demonstrates the comparability of the developed organotypic skin equivalent to healthy human skin and the versatility for clinical applications.

  20. Stem Cell Therapy for Healing Wounded Skin and Soft Tissues

    Science.gov (United States)

    2014-03-01

    healing process. We selected fibrin and hydrogel as delivery vehicles for our test. The rationale is that fibrin, which is a natural biopolymer of blood...E.U. Alt, IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin- chitosan scaffold enhance wound repair in a murine soft

  1. PLATELET-RICH PLASMA (PRP FOR THE TREATMENT OF PROBLEMATIC SKIN WOUNDS

    Directory of Open Access Journals (Sweden)

    Tsvetan Sokolov

    2016-12-01

    Full Text Available OBJECTIVE: To show platelet-rich plasma (PRP application of problematic skin wounds and to evaluate the results from the treatment. MATERIAL AND METHODS: A total of 31 patients with problematic skin wounds had been treated at the clinic for a period of five years (from May 2010 to September 2015 with the following patient sex ratio: male patients– 13 and female patients– 18. Average age– 46,5 (22-82. Patients with Type 2 Diabetes– 10, with decubitus ulcers– 2, traumatic– 29, with infection– 12, acute– 15, chronic– 16. Based on a scheme developed by us, all cases were treated by administering platelet-rich plasma, derived by PRGF Endoret system. Follow-up period was within 4 – 6 months (4,5 on average. We used platelet rich plasma derived by PRGF Endoret system, applied on the wound bed on a weekly basis. RESULTS: The results have been evaluated based on the following functional scoring systems - Total wound score, Total anatomic score and Total score (20. The baseline values at the very beginning of the follow-up period were as follows: Total wound score – 10 p.; Total anatomic score – 8 p., Total score – 15 p. By the end of the treatment period the score was 0 p., which means excellent results, i.e. complete healing of the wounds. CONCLUSION: We believe that the application of PRP may become optimal therapy in the treatment of difficult to heal wounds around joints, bone, subject tendons, plantar surface of the foot, etc., as it opens new perspectives in the field of human tissue regeneration.

  2. Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-14-2-0153 TITLE: Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents...09/14/2017 4. TITLE AND SUBTITLE “Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents” 5a...of a specific topical anti-inflammatory drug that will reduce and shorten the inflammatory state of the recipient wound bed and thus, skin graft

  3. Development of the mechanical properties of engineered skin substitutes after grafting to full-thickness wounds.

    Science.gov (United States)

    Sander, Edward A; Lynch, Kaari A; Boyce, Steven T

    2014-05-01

    Engineered skin substitutes (ESSs) have been reported to close full-thickness burn wounds but are subject to loss from mechanical shear due to their deficiencies in tensile strength and elasticity. Hypothetically, if the mechanical properties of ESS matched those of native skin, losses due to shear or fracture could be reduced. To consider modifications of the composition of ESS to improve homology with native skin, biomechanical analyses of the current composition of ESS were performed. ESSs consist of a degradable biopolymer scaffold of type I collagen and chondroitin-sulfate (CGS) that is populated sequentially with cultured human dermal fibroblasts (hF) and epidermal keratinocytes (hK). In the current study, the hydrated biopolymer scaffold (CGS), the scaffold populated with hF dermal skin substitute (DSS), or the complete ESS were evaluated mechanically for linear stiffness (N/mm), ultimate tensile load at failure (N), maximum extension at failure (mm), and energy absorbed up to the point of failure (N-mm). These biomechanical end points were also used to evaluate ESS at six weeks after grafting to full-thickness skin wounds in athymic mice and compared to murine autograft or excised murine skin. The data showed statistically significant differences (p clinical morbidity from graft loss.

  4. In vivo performance of chitosan/soy-based membranes as wound-dressing devices for acute skin wounds.

    Science.gov (United States)

    Santos, Tírcia C; Höring, Bernhard; Reise, Kathrin; Marques, Alexandra P; Silva, Simone S; Oliveira, Joaquim M; Mano, João F; Castro, António G; Reis, Rui L; van Griensven, Martijn

    2013-04-01

    Wound management represents a major clinical challenge on what concerns healing enhancement and pain control. The selection of an appropriate dressing plays an important role in both recovery and esthetic appearance of the regenerated tissue. Despite the wide range of available dressings, the progress in the wound care market relies on the increasing interest in using natural-based biomedical products. Herein, a rat wound-dressing model of partial-thickness skin wounds was used to study newly developed chitosan/soy (cht/soy)-based membranes as wound-dressing materials. Healing and repair of nondressed, cht/soy membrane-dressed, and Epigard(®)-dressed wounds were followed macroscopically and histologically for 1 and 2 weeks. cht/soy membranes performed better than the controls, promoting a faster wound repair. Re-epithelialization, observed 1 week after wounding, was followed by cornification of the outermost epidermal layer at the second week of dressing, indicating repair of the wounded tissue. The use of this rodent model, although in impaired healing conditions, may enclose some drawbacks regarding the inevitable wound contraction. Moreover, being the main purpose the evaluation of cht/soy-based membranes' performance in the absence of growth factors, the choice of a clinically relevant positive control was limited to a polymeric mesh, without any growth factor influencing skin healing/repair, Epigard. These new cht/soy membranes possess the desired features regarding healing/repair stimulation, ease of handling, and final esthetic appearance-thus, valuable properties for wound dressings.

  5. Different types of biotechnological wound coverages created with the application of alive human cells

    Directory of Open Access Journals (Sweden)

    Papuga A. Ye.

    2015-04-01

    Full Text Available Currently, the development and the implementation of the new biotechnological wound coverings (skin equivalents designed for temporal or permanent replacement of damaged or destroyed areas of human skin remains extremely actual relevant in clinical practice. Skin equivalents or equivalents of individual skin layers which include alive cells of different types take a special place among the artificial wound coverings. They mostly contain two basic types of cells – fibroblasts and keratinocytes (together or separately. Such bioconstructions are usually served as temporary coverings, which supply the damaged skin by biologically active substances and stimulate the regeneration of the patient's own tissues. In this review we consider as commercially available wound coverings and those which are still studied in the laboratories. Until now ideal substitutes of natural skin have not yet created, so the efforts of many researchers are focusing on the solution of this problem.

  6. Platelet-Rich Fibrin Accelerates Skin Wound Healing in Diabetic Mice.

    Science.gov (United States)

    Ding, Yinjia; Cui, Lei; Zhao, Qiming; Zhang, Weiqiang; Sun, Huafeng; Zheng, Lijun

    2017-09-01

    Diabetic foot ulcers (DFUs) are associated with an increased risk of secondary infection and amputation. Platelet-rich fibrin (PRF), a platelet and leukocyte concentrate containing several cytokines and growth factors, is known to promote wound healing. However, the effect of PRF on diabetic wound healing has not been adequately investigated. The aim of the study was to investigate the effect of PRF on skin wound healing in a diabetic mouse model. Platelet-rich fibrin was prepared from whole blood of 8 healthy volunteers. Two symmetrical skin wounds per mouse were created on the back of 16 diabetic nude mice. One of the 2 wounds in each mouse was treated with routine dressings (control), whereas the other wound was treated with PRF in addition to routine dressings (test), each for a period of 14 days. Skin wound healing rate was calculated.Use of PRF was associated with significantly improved skin wound healing in diabetic mice. On hematoxylin and eosin and CD31 staining, a significant increase in the number of capillaries and CD31-positive cells was observed, suggesting that PRF may have promoted blood vessel formation in the skin wound. In this study, PRF seemed to accelerate skin wound healing in diabetic mouse models, probably via increased blood vessel formation.

  7. In Vivo Assessment of Printed Microvasculature in a Bilayer Skin Graft to Treat Full-Thickness Wounds

    Science.gov (United States)

    Yanez, Maria; Rincon, Julio; Dones, Aracely; De Maria, Carmelo; Gonzales, Raoul

    2015-01-01

    Chronic wounds such as diabetic foot ulcers and venous leg ulcers are common problems in people suffering from type 2 diabetes. These can cause pain, and nerve damage, eventually leading to foot or leg amputation. These types of wounds are very difficult to treat and sometimes take months or even years to heal because of many possible complications during the process. Allogeneic skin grafting has been used to improve wound healing, but the majority of grafts do not survive several days after being implanted. We have been studying the behavior of fibroblasts and keratinocytes in engineered capillary-like endothelial networks. A dermo-epidermal graft has been implanted in an athymic nude mouse model to assess the integration with the host tissue as well as the wound healing process. To build these networks into a skin graft, a modified inkjet printer was used, which allowed the deposit of human microvascular endothelial cells. Neonatal human dermal fibroblast cells and neonatal human epidermal keratinocytes were manually mixed in the collagen matrix while endothelial cells printed. A full-thickness wound was created at the top of the back of athymic nude mice and the area was covered by the bilayered graft. Mice of the different groups were followed until completion of the specified experimental time line, at which time the animals were humanely euthanized and tissue samples were collected. Wound contraction improved by up to 10% when compared with the control groups. Histological analysis showed the neoskin having similar appearance to the normal skin. Both layers, dermis and epidermis, were present with thicknesses resembling normal skin. Immunohistochemistry analysis showed favorable results proving survival of the implanted cells, and confocal images showed the human cells' location in the samples that were collocated with the bilayer printed skin graft. PMID:25051339

  8. Heterogeneous Stem Cells in Skin Homeostatis and Wound Repair

    Directory of Open Access Journals (Sweden)

    Anna Meilana

    2015-08-01

    Full Text Available BACKGROUND: The skin protects mammals from insults, infection and dehydration and enables thermoregulation and sensory perception. Various skin-resident cells carry out these diverse functions. Constant turnover of cells and healing upon injury necessitate multiple reservoirs of stem cells. The skin is a complex organ harboring several distinct populations of stem cells and a rich array of cell types. Advances in genetic and imaging tools have brought new findings about the lineage relationships between skin stem cells and their progeny. Such knowledge may offer novel avenues for therapeutics and regenerative medicine. CONTENT: In the past years, our view of the mechanisms that govern skin homeostasis and regeneration have markedly changed. New populations of stem cells have been identified that behave spatio-temporally differently in healthy tissues and in situations of damage, indicating that a great level of stem cell heterogeneity is present in the skin. There are believed to be distinct populations of stem cells in different locations. The lineages that they feed are normally constrained by signals from their local environment, but they can give rise to all epidermal lineages in response to appropriate stimuli. Given the richness of structures such as blood vessels, subcutaneous fat, innervation and the accumulation of fibroblasts under the upper parts of the rete ridges (in the case of human skin, it is reasonable to speculate that the microenvironment might be essential for interfollicular epidermal homeostasis. The bloodstream is probably the main source of long-range signals reaching the skin, and cues provided by the vascular niche might be essential for skin homeostasis. SUMMARY: A key function of the interfollicular epidermis is to act as a protective interface between the body and the external environment, and it contains several architectural elements that enable it to fulfill this function. All elements of the epidermis play

  9. Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model

    DEFF Research Database (Denmark)

    Trøstrup, Hannah; Thomsen, Kim; Christophersen, Lars J

    2013-01-01

    model in C3H/HeN and BALB/c mice. The chronic wound was established by an injection of seaweed alginate-embedded P. aeruginosa PAO1 beneath a third-degree thermal lesion providing full thickness skin necrosis, as in human chronic wounds. Cultures revealed growth of PA, and both alginate with or without......Chronic wounds are presumed to persist in the inflammatory state, preventing healing. Emerging evidence indicates a clinical impact of bacterial biofilms in soft tissues, including Pseudomonas aeruginosa (PA) biofilms. To further investigate this, we developed a chronic PA biofilm wound infection...... bacteria organized in clusters, resembling biofilms, and inflammation located adjacent to the PA. The chronic wound infection showed a higher number of PAO1 in the BALB/c mice at day 4 after infection as compared to C3H/HeN mice (p

  10. Skin lesions in Lorestan province chemically wounded combatants

    Directory of Open Access Journals (Sweden)

    roghaye Jebraili

    2004-01-01

    Findings: All of the studied cases with mean age of 39.26 years old had skin manifestations among which the most common symptoms were itching , burning ,dry skin , scaling. From view point of lesions, the most common signs were erythema (81% , excoriation (87.9% and pruritic papules (49.5%. Final diagnosis in 78% of the patients was chronic dermatitis and in 7.7% of them was seborrhoeic dermatitis and in 8.8% both chronic and seborrhoeic dermatitis were observed .During exposure to chemical gases only 37.9% of these combatants had used special masks and 40% had properly worn special clothes to protect themselves which covered their body completely , but rest of them had either used protection instruments improperly or had not used them at all. Most of the lesions were in trunk , lower extremities , abdomen , head and neck .78% of the cases had multiple lesions Conclusion: Regarding the results of this study all of the chemical wounded combatants of Lorestan province suffer from different degrees of skin lesions , although more than half of them were not aware of kind and nature of the chemical gases , but it is suggested to do further studies on long-term effects of these chemical gases.

  11. Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries

    Directory of Open Access Journals (Sweden)

    Ana Gomes

    2017-10-01

    Full Text Available As the incidence of diabetes continues to increase in the western world, the prevalence of chronic wounds related to this condition continues to be a major focus of wound care research. Additionally, over 50% of chronic wounds exhibit signs and symptoms that are consistent with localized bacterial biofilms underlying severe infections that contribute to tissue destruction, delayed wound-healing and other serious complications. Most current biomedical approaches for advanced wound care aim at providing antimicrobial protection to the open wound together with a matrix scaffold (often collagen-based to boost reestablishment of the skin tissue. Therefore, the present review is focused on the efforts that have been made over the past years to find peptides possessing wound-healing properties, towards the development of new and effective wound care treatments for diabetic foot ulcers and other skin and soft tissue infections.

  12. Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries.

    Science.gov (United States)

    Gomes, Ana; Teixeira, Cátia; Ferraz, Ricardo; Prudêncio, Cristina; Gomes, Paula

    2017-10-18

    As the incidence of diabetes continues to increase in the western world, the prevalence of chronic wounds related to this condition continues to be a major focus of wound care research. Additionally, over 50% of chronic wounds exhibit signs and symptoms that are consistent with localized bacterial biofilms underlying severe infections that contribute to tissue destruction, delayed wound-healing and other serious complications. Most current biomedical approaches for advanced wound care aim at providing antimicrobial protection to the open wound together with a matrix scaffold (often collagen-based) to boost reestablishment of the skin tissue. Therefore, the present review is focused on the efforts that have been made over the past years to find peptides possessing wound-healing properties, towards the development of new and effective wound care treatments for diabetic foot ulcers and other skin and soft tissue infections.

  13. An Alternative Treatment Strategy for Complicated Chronic Wounds: Negative Pressure Therapy over Mesh Skin Graft

    Directory of Open Access Journals (Sweden)

    Michele Maruccia

    2017-01-01

    Full Text Available Extensive skin defect represents a real problem and major challenge in plastic and reconstructive surgery. On one hand, skin grafts offer a practical method to deal with skin defects despite their unsuitability for several complicated wounds. On the other hand, negative pressure wound therapy (NPWT, applied before skin grafting, promotes granulation tissue growth. The aim of the study is to evaluate the improvement in wound healing given by the merger of these two different approaches. We treated 23 patients for large wounds of multiple factors. Of these, 15 were treated with the application of V.A.C.® Therapy (KCI Medical S.r.l., Milan, Italy, in combination with skin grafts after a prior unsuccessful treatment of 4 weeks with mesh skin grafts and dressings. Another 8 were treated with only mesh skin graft. Pain reduction and wound area reduction were found statistically significant (p<0.0009, p<0.0001. Infection was resolved in almost all patients. According to our study, the use of the negative pressure wound therapy over mesh skin grafts is significantly effective especially in wounds resistant to conventional therapies, thereby improving the rate of skin graft take.

  14. Tissue-Engineered Skin Substitute Enhances Wound Healing after Radiation Therapy.

    Science.gov (United States)

    Busra, Mohd Fauzi bin Mh; Chowdhury, Shiplu Roy; bin Ismail, Fuad; bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj

    2016-03-01

    When given in conjunction with surgery for treating cancer, radiation therapy may result in impaired wound healing, which, in turn, could cause skin ulcers. In this study, bilayer and monolayer autologous skin substitutes were used to treat an irradiated wound. A single dose of 30 Gy of linear electron beam radiation was applied to the hind limb of nude mice before creating the skin lesion (area of 78.6 mm). Monolayer tissue-engineered skin substitutes (MTESSs) were prepared by entrapping cultured keratinocytes in fibrin matrix, and bilayer tissue-engineered skin substitutes (BTESSs) were prepared by entrapping keratinocytes and fibroblasts in separate layers. Bilayer tissue-engineered skin substitute and MTESS were implanted to the wound area. Gross appearance and wound area were analyzed to evaluate wound healing efficiency. Skin regeneration and morphological appearance were observed via histological and electron microscopy. Protein expressions of transforming growth factor β1 (TGF-β1), platelet-derived growth factor BB (PDGF-BB), and vascular endothelial growth factor (VEGF) in skin regeneration were evaluated by immunohistochemistry (IHC). Macroscopic observation revealed that at day 13, treatments with BTESS completely healed the irradiated wound, whereas wound sizes of 1.1 ± 0.05 and 6.8 ± 0.14 mm were measured in the MTESS-treated and untreated control groups, respectively. Hematoxylin-eosin (H&E) analysis showed formation of compact and organized epidermal and dermal layers in the BTESS-treated group, as compared with MTESS-treated and untreated control groups. Ultrastructural analysis indicates maturation of skin in BTESS-treated wound evidenced by formation of intermediate filament bundles in the dermal layer and low intercellular space in the epidermal layer. Expressions of TGF-β1, PDGF-BB, and VEGF were also higher in BTESS-treated wounds, compared with MTESS-treated wounds. These results indicate that BTESS is the preferred treatment for

  15. Utility of a human-mouse xenograft model and in vivo near-infrared fluorescent imaging for studying wound healing.

    Science.gov (United States)

    Shanmugam, Victoria K; Tassi, Elena; Schmidt, Marcel O; McNish, Sean; Baker, Stephen; Attinger, Christopher; Wang, Hong; Shara, Nawar; Wellstein, Anton

    2015-12-01

    To study the complex cellular interactions involved in wound healing, it is essential to have an animal model that adequately mimics the human wound microenvironment. Currently available murine models are limited because wound contraction introduces bias into wound surface area measurements. The purpose of this study was to demonstrate utility of a human-mouse xenograft model for studying human wound healing. Normal human skin was harvested from elective abdominoplasty surgery, xenografted onto athymic nude (nu/nu) mice, and allowed to engraft for 3 months. The graft was then wounded using a 2-mm punch biopsy. Wounds were harvested on sequential days to allow tissue-based markers of wound healing to be followed sequentially. On the day of wound harvest, mice were injected with XenoLight RediJect cyclooxygenase-2 (COX-2) probe and imaged according to package instructions. Immunohistochemistry confirms that this human-mouse xenograft model is effective for studying human wound healing in vivo. Additionally, in vivo fluorescent imaging for inducible COX-2 demonstrated upregulation from baseline to day 4 (P = 0·03) with return to baseline levels by day 10, paralleling the reepithelialisation of the wound. This human-mouse xenograft model, combined with in vivo fluorescent imaging provides a useful mechanism for studying molecular pathways of human wound healing. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  16. Wound-healing activity of the skin of the common grape (Vitis Vinifera) variant, Cabernet Sauvignon.

    Science.gov (United States)

    Nayak, B Shivananda; Ramdath, D Dan; Marshall, Julien R; Isitor, Godwin N; Eversley, Mathew; Xue, Sophia; Shi, John

    2010-08-01

    The common Grape L. (Vitaceae) is regarded as an important medicinal plant. European healers have suggested the use of grapevine sap, juice, and whole grape in the treatment of pain, allergic reactions, inflammation, and to promote wound healing. We evaluated grape-skin powder for its wound-healing activity using an excision wound model in rats. Animals were randomly divided into three groups of six (n = 6) each. The test group animals were treated topically with the grape-skin powder (100 mg/kg/day). The controls and standard group animals were treated with petroleum jelly and mupirocin ointment respectively. Healing was assessed by the rate of wound contraction, period of epithelialization, and hydroxyproline content. On day 13, treatment of the wounds with grape-skin powder enhanced significantly the rate of wound contraction (100 %). Treated animals showed significant decrease in the epithelialization period (p < 0.000) and increase in the hydroxyproline content (p < 0.05) when compared to control and the standard. Histological analysis was also consistent with the proposal that grape-skin powder exhibits significant wound-healing potential. Increased rate of wound contraction, hydroxyproline content, and decrease in epithelialization time in the treated animals support the use of grape-skin powder in the management of wound healing. Copyright (c) 2010 John Wiley & Sons, Ltd.

  17. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Sivapragasam Gothai

    2016-03-01

    Full Text Available Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for treatment of cuts, wounds and burns. Moringa oleifera is an herb used as traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of M. oleifera leaves extract are completely unknown. Methods: In the current study, ethyl acetate fraction of Moringa oleifera leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 µg/ml, 25 µg/ml, and 50 µg/ml of ethyl acetate fraction of M. oleifera leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: The present study suggested that ethyl acetate fraction of M. oleifera leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. [J Complement Med Res 2016; 5(1.000: 1-6

  18. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo

    2015-01-01

    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Assessment of skin wound healing with a multi-aperture camera

    Science.gov (United States)

    Nabili, Marjan; Libin, Alex; Kim, Loan; Groah, Susan; Ramella-Roman, Jessica C.

    2009-02-01

    A clinical trial was conducted at the National Rehabilitation Hospital on 15 individuals to assess whether Rheparan Skin, a bio-engineered component of the extracellular matrix of the skin, is effective at promoting healing of a variety of wounds. Along with standard clinical outcome measures, a spectroscopic camera was used to assess the efficacy of Rheparan skin. Gauzes soaked with Rheparan skin were placed on volunteers wounds for 5 minutes twice weekly for four weeks. Images of the wounds were taken using a multi spectral camera and a digital camera at baseline and weekly thereafter. Spectral images collected at different wavelengths were used combined with optical skin models to quantify parameters of interest such as oxygen saturation (SO2), water content, and melanin concentration. A digital wound measurement system (VERG) was also used to measure the size of the wound. 9 of the 15 measured subjects showed a definitive improvement post treatment in the form of a decrease in wound area. 7 of these 9 individuals also showed an increase in oxygen saturation in the ulcerated area during the trial. A similar trend was seen in other metrics. Spectral imaging of skin wound can be a valuable tool to establish wound-healing trends and to clarify healing mechanisms.

  20. Hibiscus syriacus Extract from an Established Cell Culture Stimulates Skin Wound Healing.

    Science.gov (United States)

    di Martino, O; Tito, A; De Lucia, A; Cimmino, A; Cicotti, F; Apone, F; Colucci, G; Calabrò, V

    2017-01-01

    Higher plants are the source of a wide array of bioactive compounds that support skin integrity and health. Hibiscus syriacus , family Malvaceae, is a plant of Chinese origin known for its antipyretic, anthelmintic, and antifungal properties. The aim of this study was to assess the healing and hydration properties of H. syriacus ethanolic extract (HSEE). We established a cell culture from Hibiscus syriacus leaves and obtained an ethanol soluble extract from cultured cells. The properties of the extract were tested by gene expression and functional analyses on human fibroblast, keratinocytes, and skin explants. HSEE treatment increased the healing potential of fibroblasts and keratinocytes. Specifically, HSEE significantly stimulated fibronectin and collagen synthesis by 16 and 60%, respectively, while fibroblasts contractility was enhanced by 30%. These results were confirmed on skin explants, where HSEE accelerated the wound healing activity in terms of epithelium formation and fibronectin production. Moreover, HSEE increased the expression of genes involved in skin hydration and homeostasis. Specifically, aquaporin 3 and filaggrin genes were enhanced by 20 and 58%, respectively. Our data show that HSEE contains compounds capable of stimulating expression of biomarkers relevant to skin regeneration and hydration thereby counteracting molecular pathways leading to skin damage and aging.

  1. Hibiscus syriacus Extract from an Established Cell Culture Stimulates Skin Wound Healing

    Directory of Open Access Journals (Sweden)

    O. di Martino

    2017-01-01

    Full Text Available Higher plants are the source of a wide array of bioactive compounds that support skin integrity and health. Hibiscus syriacus, family Malvaceae, is a plant of Chinese origin known for its antipyretic, anthelmintic, and antifungal properties. The aim of this study was to assess the healing and hydration properties of H. syriacus ethanolic extract (HSEE. We established a cell culture from Hibiscus syriacus leaves and obtained an ethanol soluble extract from cultured cells. The properties of the extract were tested by gene expression and functional analyses on human fibroblast, keratinocytes, and skin explants. HSEE treatment increased the healing potential of fibroblasts and keratinocytes. Specifically, HSEE significantly stimulated fibronectin and collagen synthesis by 16 and 60%, respectively, while fibroblasts contractility was enhanced by 30%. These results were confirmed on skin explants, where HSEE accelerated the wound healing activity in terms of epithelium formation and fibronectin production. Moreover, HSEE increased the expression of genes involved in skin hydration and homeostasis. Specifically, aquaporin 3 and filaggrin genes were enhanced by 20 and 58%, respectively. Our data show that HSEE contains compounds capable of stimulating expression of biomarkers relevant to skin regeneration and hydration thereby counteracting molecular pathways leading to skin damage and aging.

  2. Raman Microscopy and Imaging: Applications to Skin Pharmacology and Wound Healing

    Science.gov (United States)

    Flach, Carol R.; Zhang, Guojin; Mendelsohn, Richard

    The utility of confocal Raman microscopy to study biological events in skin is demonstrated with three examples. (i) monitoring the spatial and structural differences between native and cultured skin, (ii) tracking the permeation and biochemical transformation in skin of a Vitamin E derivative and (iii) tracking the spatial distribution of three major skin proteins (keratin, collagen, and elastin) during wound healing in an explant skin model.

  3. [Healing of a deep skin wound using a collagen sponge as dressing in the animal experiment].

    Science.gov (United States)

    Sedlarik, K M; Schoots, C; Oosterbaan, J A; Klopper, J P

    1992-10-01

    The high number of available wound dressing materials as well as the scientific reports about the topic indicates that the problem of an ideal wound dressing is not jet solved. In the last thirty years lot of scientific reports about collagen as wound covering has been published. The positive effect of collagen by his application on a wound ist well known. We investigated the effect of a collagen sponge on healing of full thickness skin wound in guinea pig. The animals were divided in two control groups and two experimental groups. In the control group there were air exposed wounds and another wounds covered with paraffin gauze. In the experimental groups were such wounds covered with natural reconstituted collagen sponge as well as wounds covered with chemically prepared collagen sponge with hexamethyldiisocyanat. The results were compared. The air exposed wounds healed in 50 days, the wounds covered with paraffin gauze healed in 48 days. By covering the wounds with collagen sponge the healing was shortened in 24 or 27 days respectively. Not only the healing time was shortened but also the quality of the wound repair by dressing the wounds with collagen sponge was enhanced.

  4. Impaired Biomechanical Properties of Diabetic Skin Implications in Pathogenesis of Diabetic Wound Complications

    NARCIS (Netherlands)

    Bermudez, Dustin M.; Herdrich, Benjamin J.; Xu, Junwang; Lind, Robert; Beason, David P.; Mitchell, Marc E.; Soslowsky, Louis J.; Liechty, Kenneth W.

    Diabetic skin is known to have deficient wound healing properties, but little is known of its intrinsic biomeclhanical properties. We hypothesize that diabetic skin possesses inferior biomechanical properties at baseline, rendering it more prone to injury. Skin from diabetic and nondiabetic mice and

  5. Bilateral axillary skin fold flaps used for dorsal thoracic skin wound closure in a dog : clinical communication

    Directory of Open Access Journals (Sweden)

    B. G. Nevill

    2010-05-01

    Full Text Available A 10-year-old greyhound-cross dog was presented with a large, chronic skin wound extending over the interscapular region. The substantial skin defect was closed by making use of bilateral axillary skin fold flaps. It was possible to elevate the 2 skin flaps sufficiently to allow them to meet at the dorsal midline and thus facilitate complete closure of a large and awkwardly positioned wound. Small dorsal areas of the skin flaps underwent necrosis, but the resulting defects were closed without difficulty in a subsequent procedure. To the author's knowledge, this is the 1st clinical report of the use of bilateral axillary skin fold flaps in this fashion and describes an additional use of a versatile skin flap procedure.

  6. Agar/collagen membrane as skin dressing for wounds

    Energy Technology Data Exchange (ETDEWEB)

    Bao Lei; Yang Wei; Mao Xuan; Mou Shansong; Tang Shunqing [Biomedical Engineering Institute, Jinan University, Guangzhou (China)], E-mail: tshunqt@jnu.edu.cn, E-mail: tmuss@jnu.edu.cn

    2008-12-15

    Agar, a highly hydrophilic polymer, has a special gel property and favorable biocompatibility, but moderate intension strength in an aqueous condition and a low degradation rate. In order to tailor both properties of mechanical intension and degradation, type I collagen was composited with agar in a certain ratio by drying at 50 {sup 0}C or by a freeze-dry process. Glutaraldehyde was chosen as a crosslinking agent, and the most favorable condition for crosslinking was that the weight ratio of agar to glutaraldehyde was 66.7 and the pH value about 5. Dynamic mechanical analysis results showed that the single agar membrane had a modulus value between 640 MPa and 1064 MPa, but it was between 340 MPa and 819 MPa after being composited with type I collagen. It was discovered under an optical microscope that the pores were interconnected in the composite scaffolds instead of the honeycomb-like pores in a single type I collagen scaffold or the laminated gaps in a single agar scaffold. The results of an acute toxicity test disclosed that the composites were not toxic to mice although the composites were crosslinked with a certain concentration of glutaraldehyde. The results of gross examinations showed that when the composite membranes or scaffolds were applied to a repair rabbit skin lesion, the composites had a good repair effect without infection, liquid exudation or visible scar in the lesion covered with them. But in the control group, the autologous skin showed necrosis and there were a lot of scar tissues in the lesion site. H and E staining results showed that the repair tissue was similar to the normal one and very few scaffolds or membranes were left without degradation after 2 or 3 weeks. In conclusion, it is proved that type I collagen increases the toughness of the agar membrane, and the agar/type I collagen composites are promising biomaterials as wound dressings for healing burns or ulcers.

  7. Agar/collagen membrane as skin dressing for wounds

    International Nuclear Information System (INIS)

    Bao Lei; Yang Wei; Mao Xuan; Mou Shansong; Tang Shunqing

    2008-01-01

    Agar, a highly hydrophilic polymer, has a special gel property and favorable biocompatibility, but moderate intension strength in an aqueous condition and a low degradation rate. In order to tailor both properties of mechanical intension and degradation, type I collagen was composited with agar in a certain ratio by drying at 50 0 C or by a freeze-dry process. Glutaraldehyde was chosen as a crosslinking agent, and the most favorable condition for crosslinking was that the weight ratio of agar to glutaraldehyde was 66.7 and the pH value about 5. Dynamic mechanical analysis results showed that the single agar membrane had a modulus value between 640 MPa and 1064 MPa, but it was between 340 MPa and 819 MPa after being composited with type I collagen. It was discovered under an optical microscope that the pores were interconnected in the composite scaffolds instead of the honeycomb-like pores in a single type I collagen scaffold or the laminated gaps in a single agar scaffold. The results of an acute toxicity test disclosed that the composites were not toxic to mice although the composites were crosslinked with a certain concentration of glutaraldehyde. The results of gross examinations showed that when the composite membranes or scaffolds were applied to a repair rabbit skin lesion, the composites had a good repair effect without infection, liquid exudation or visible scar in the lesion covered with them. But in the control group, the autologous skin showed necrosis and there were a lot of scar tissues in the lesion site. H and E staining results showed that the repair tissue was similar to the normal one and very few scaffolds or membranes were left without degradation after 2 or 3 weeks. In conclusion, it is proved that type I collagen increases the toughness of the agar membrane, and the agar/type I collagen composites are promising biomaterials as wound dressings for healing burns or ulcers.

  8. Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications.

    Science.gov (United States)

    Ojeh, Nkemcho; Pastar, Irena; Tomic-Canic, Marjana; Stojadinovic, Olivera

    2015-10-23

    The skin is the largest organ of the body and has an array of functions. Skin compartments, epidermis, and hair follicles house stem cells that are indispensable for skin homeostasis and regeneration. These stem cells also contribute to wound repair, resulting in restoration of tissue integrity and function of damaged tissue. Unsuccessful wound healing processes often lead to non-healing wounds. Chronic wounds are caused by depletion of stem cells and a variety of other cellular and molecular mechanisms, many of which are still poorly understood. Current chronic wound therapies are limited, so the search to develop better therapeutic strategies is ongoing. Adult stem cells are gaining recognition as potential candidates for numerous skin pathologies. In this review, we will discuss epidermal and other stem cells present in the skin, and highlight some of the therapeutic applications of epidermal stem cells and other adult stem cells as tools for cell/scaffold-based therapies for non-healing wounds and other skin disorders. We will also discuss emerging concepts and offer some perspectives on how skin tissue-engineered products can be optimized to provide efficacious therapy in cutaneous repair and regeneration.

  9. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    Science.gov (United States)

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E

    2016-04-19

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.

  10. The Ability of Tissue Engineered Skin Accelerating the Closure of Different Wound

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionIn the past several decades, a number of reseacher have described the principal efficacy of tissue engineered skin to promote wound healing of venous and diabetic ulcers. But the true value of tissue-engineered skin products in different wound care remains yet to be more clearly defined. In this trial, we analysis the effective of tissue-engineered skin (ActivSkin) in the management of burns, donor sites and ulcers, which were also the frequently injury caused with warfare, disaster and terror...

  11. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin.

    Science.gov (United States)

    Li, Zhi; Gothard, Elizabeth; Coles, Mark C; Ambler, Carrie A

    2018-01-01

    In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.

  12. Human skin volatiles: a review.

    Science.gov (United States)

    Dormont, Laurent; Bessière, Jean-Marie; Cohuet, Anna

    2013-05-01

    Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.

  13. Secretion of wound healing mediators by single and bi-layer skin substitutes.

    Science.gov (United States)

    Maarof, Manira; Law, Jia Xian; Chowdhury, Shiplu Roy; Khairoji, Khairul Anuar; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2016-10-01

    Limitations of current treatments for skin loss caused by major injuries leads to the use of skin substitutes. It is assumed that secretion of wound healing mediators by these skin substitutes plays a role in treating skin loss. In our previous study, single layer keratinocytes (SK), single layer fibroblast (SF) and bilayer (BL; containing keratinocytes and fibroblasts layers) skin substitutes were fabricated using fibrin that had shown potential to heal wounds in preclinical studies. This study aimed to quantify the secretion of wound healing mediators, and compare between single and bi-layer skin substitutes. Skin samples were digested to harvest fibroblasts and keratinocytes, and expanded to obtain sufficient cells for the construction of skin substitutes. Acellular fibrin (AF) construct was used as control. Substitutes i.e. AF, SK, SF and BL were cultured for 2 days, and culture supernatant was collected to analyze secretion of wound healing mediators via multiplex ELISA. Among 19 wound healing mediators tested, BL substitute secreted significantly higher amounts of CXCL1 and GCSF compared to SF and AF substitute but this was not significant with respect to SK substitute. The BL substitute also secreted significantly higher amounts of CXCL5 and IL-6 compared to other substitutes. In contrast, the SK substitute secreted significantly higher amounts of VCAM-1 compared to other substitutes. However, all three skin substitutes also secreted CCL2, CCL5, CCL11, GM-CSF, IL8, IL-1α, TNF-α, ICAM-1, FGF-β, TGF-β, HGF, VEGF-α and PDGF-BB factors, but no significant difference was seen. Secretion of these mediators after transplantation may play a significant role in promoting wound healing process for the treatment of skin loss.

  14. NETosis Delays Diabetic Wound Healing in Mice and Humans.

    Science.gov (United States)

    Fadini, Gian Paolo; Menegazzo, Lisa; Rigato, Mauro; Scattolini, Valentina; Poncina, Nicol; Bruttocao, Andrea; Ciciliot, Stefano; Mammano, Fabio; Ciubotaru, Catalin Dacian; Brocco, Enrico; Marescotti, Maria Cristina; Cappellari, Roberta; Arrigoni, Giorgio; Millioni, Renato; Vigili de Kreutzenberg, Saula; Albiero, Mattia; Avogaro, Angelo

    2016-04-01

    Upon activation, neutrophils undergo histone citrullination by protein arginine deiminase (PAD)4, exocytosis of chromatin and enzymes as neutrophil extracellular traps (NETs), and death. In diabetes, neutrophils are primed to release NETs and die by NETosis. Although this process is a defense against infection, NETosis can damage tissue. Therefore, we examined the effect of NETosis on the healing of diabetic foot ulcers (DFUs). Using proteomics, we found that NET components were enriched in nonhealing human DFUs. In an independent validation cohort, a high concentration of neutrophil elastase in the wound was associated with infection and a subsequent worsening of the ulcer. NET components (elastase, histones, neutrophil gelatinase-associated lipocalin, and proteinase-3) were elevated in the blood of patients with DFUs. Circulating elastase and proteinase-3 were associated with infection, and serum elastase predicted delayed healing. Neutrophils isolated from the blood of DFU patients showed an increased spontaneous NETosis but an impaired inducible NETosis. In mice, skin PAD4 activity was increased by diabetes, and FACS detection of histone citrullination, together with intravital microscopy, showed that NETosis occurred in the bed of excisional wounds. PAD4 inhibition by Cl-amidine reduced NETting neutrophils and rescued wound healing in diabetic mice. Cumulatively, these data suggest that NETosis delays DFU healing. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. miRNA delivery for skin wound healing.

    Science.gov (United States)

    Meng, Zhao; Zhou, Dezhong; Gao, Yongsheng; Zeng, Ming; Wang, Wenxin

    2017-12-19

    The wound healing has remained a worldwide challenge as one of significant public health problems. Pathological scars and chronic wounds caused by injury, aging or diabetes lead to impaired tissue repair and regeneration. Due to the unique biological wound environment, the wound healing is a highly complicated process, efficient and targeted treatments are still lacking. Hence, research-driven to discover more efficient therapeutics is a highly urgent demand. Recently, the research results have revealed that microRNA (miRNA) is a promising tool in therapeutic and diagnostic fields because miRNA is an essential regulator in cellular physiology and pathology. Therefore, new technologies for wound healing based on miRNA have been developed and miRNA delivery has become a significant research topic in the field of gene delivery. Copyright © 2017. Published by Elsevier B.V.

  16. Mast cells are dispensable for normal and activin-promoted wound healing and skin carcinogenesis.

    Science.gov (United States)

    Antsiferova, Maria; Martin, Caroline; Huber, Marcel; Feyerabend, Thorsten B; Förster, Anja; Hartmann, Karin; Rodewald, Hans-Reimer; Hohl, Daniel; Werner, Sabine

    2013-12-15

    The growth and differentiation factor activin A is a key regulator of tissue repair, inflammation, fibrosis, and tumorigenesis. However, the cellular targets, which mediate the different activin functions, are still largely unknown. In this study, we show that activin increases the number of mature mast cells in mouse skin in vivo. To determine the relevance of this finding for wound healing and skin carcinogenesis, we mated activin transgenic mice with CreMaster mice, which are characterized by Cre recombinase-mediated mast cell eradication. Using single- and double-mutant mice, we show that loss of mast cells neither affected the stimulatory effect of overexpressed activin on granulation tissue formation and reepithelialization of skin wounds nor its protumorigenic activity in a model of chemically induced skin carcinogenesis. Furthermore, mast cell deficiency did not alter wounding-induced inflammation and new tissue formation or chemically induced angiogenesis and tumorigenesis in mice with normal activin levels. These findings reveal that mast cells are not major targets of activin during wound healing and skin cancer development and also argue against nonredundant functions of mast cells in wound healing and skin carcinogenesis in general.

  17. The effect of local hyperglycemia on skin cells in vitro and on wound healing in euglycemic rats

    DEFF Research Database (Denmark)

    Kruse, Carla R; Singh, Mansher; Sørensen, Jens A

    2016-01-01

    BACKGROUND: Multiple previous studies have established that high systemic blood glucose concentration impairs skin wound healing. However, the effects of local hyperglycemia on wound healing are not well defined. Comprehensive animal studies and in vitro studies using both fibroblasts and keratin......BACKGROUND: Multiple previous studies have established that high systemic blood glucose concentration impairs skin wound healing. However, the effects of local hyperglycemia on wound healing are not well defined. Comprehensive animal studies and in vitro studies using both fibroblasts...

  18. Skin Diseases: Cross-section of human skin

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  19. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition.

    Directory of Open Access Journals (Sweden)

    Barbara Gawronska-Kozak

    Full Text Available Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process.

  20. Bubaline Cholecyst Derived Extracellular Matrix for Reconstruction of Full Thickness Skin Wounds in Rats

    Directory of Open Access Journals (Sweden)

    Poonam Shakya

    2016-01-01

    Full Text Available An acellular cholecyst derived extracellular matrix (b-CEM of bubaline origin was prepared using anionic biological detergent. Healing potential of b-CEM was compared with commercially available collagen sheet (b-CS and open wound (C in full thickness skin wounds in rats. Thirty-six clinically healthy adult Sprague Dawley rats of either sex were randomly divided into three equal groups. Under general anesthesia, a full thickness skin wound (20 × 20 mm2 was created on the dorsum of each rat. The defect in group I was kept as open wound and was taken as control. In group II, the defect was repaired with commercially available collagen sheet (b-CS. In group III, the defect was repaired with cholecyst derived extracellular matrix of bovine origin (b-CEM. Planimetry, wound contracture, and immunological and histological observations were carried out to evaluate healing process. Significantly (P<0.05 increased wound contraction was observed in b-CEM (III as compared to control (I and b-CS (II on day 21. Histologically, improved epithelization, neovascularization, fibroplasia, and best arranged collagen fibers were observed in b-CEM (III as early as on postimplantation day 21. These findings indicate that b-CEM have potential for biomedical applications for full thickness skin wound repair in rats.

  1. The effect of mesenchymal stem cells combined with platelet-rich plasma on skin wound healing.

    Science.gov (United States)

    Mahmoudian-Sani, Mohammad-Reza; Rafeei, Fatemeh; Amini, Razieh; Saidijam, Massoud

    2018-03-04

    Mesenchymal stem cells (MSCs) are multipotent stem cells that have the potential of proliferation, high self-renewal, and the potential of multilineage differentiation. The differentiation potential of the MSCs in vivo and in vitro has caused these cells to be regarded as potentially appropriate tools for wound healing. After the burn, trauma or removal of the tumor of wide wounds is developed. Although standard treatment for skin wounds is primary healing or skin grafting, they are not always practical mainly because of limited autologous skin grafting. Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO), and Web of Science have been searched. For clinical use of the MSCs in wound healing, two key issues should be taken into account: First, engineering biocompatible scaffolds clinical use of which leads to the least amount of side effects without any immunologic response and secondly, use of stem cells secretions with the least amount of clinical complications despite their high capability of healing damage. In light of the MSCs' high capability of proliferation and multilineage differentiation as well as their significant role in modulating immunity, these cells can be used in combination with tissue engineering techniques. Moreover, the MSCs' secretions can be used in cell therapy to heal many types of wounds. The combination of MSCs and PRP aids wound healing which could potentially be used to promote wound healing. © 2018 Wiley Periodicals, Inc.

  2. Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities.

    Science.gov (United States)

    Bukowiecki, Anne; Hos, Deniz; Cursiefen, Claus; Eming, Sabine A

    2017-06-12

    The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of tissue integrity and organ-specific function. The easy accessibility makes the skin an attractive model system to study tissue damage and repair. Findings from skin research have contributed to unravelling novel fundamental principles in regenerative biology and the repair of other epithelial-mesenchymal tissues, such as the cornea. Following barrier disruption, the influx of inflammatory cells, myofibroblast differentiation, extracellular matrix synthesis and scar formation present parallel repair mechanisms in cornea and skin wound healing. Yet, capillary sprouting, while pivotal in proper skin wound healing, is a process that is rather associated with pathological repair of the cornea. Understanding the parallels and differences of the cellular and molecular networks that coordinate the wound healing response in skin and cornea are likely of mutual importance for both organs with regard to the development of regenerative therapies and understanding of the disease pathologies that affect epithelial-mesenchymal interactions. Here, we review the principal events in corneal wound healing and the mechanisms to restore corneal transparency and barrier function. We also refer to skin repair mechanisms and their potential implications for regenerative processes in the cornea.

  3. Barbatiman and chitosan creams as adjuvants in rabbit skin wound healing

    Directory of Open Access Journals (Sweden)

    Caroline Rocha de Oliveira Lima

    2016-06-01

    Full Text Available In this study, 5% barbatiman and 5% chitosan creams were evaluated as adjuvants in the tissue repair process by secondary intention of rabbit’s skin wounds. Four equidistant wounds were induced in the dorsal skin of 20 adult male rabbits, which were submitted to healing by secondary intention and treated with 5% chitosan cream (QC, n=5, 5% barbatiman cream (BC, n=5, 2% allantoin cream (n=5, and base cream (n=5. The creams were applied with the aid of disposable spatulas after washing the wounds. The wounds were daily analyzed by clinical examination for 21 days and histological analyses were performed on the 3rd, 14th, and 21st day after induction. The microscopic evaluation of the wounds of all groups showed macroscopic features of the healing process at different time intervals. The QC and BC treatments helped in the skin repair process in rabbits when compared to the other two treatments. They induced fibroblast activation and early collagen deposition, and modulated re-epithelialization and neovascularization. Thus, it was concluded that BC and QC are efficient and economically feasible as adjuvants in the healing process of skin wounds in rabbits.

  4. The Pharmaceutical Device Prisma® Skin Promotes in Vitro Angiogenesis through Endothelial to Mesenchymal Transition during Skin Wound Healing.

    Science.gov (United States)

    Belvedere, Raffaella; Bizzarro, Valentina; Parente, Luca; Petrella, Francesco; Petrella, Antonello

    2017-07-25

    Glycosaminoglycans are polysaccharides of the extracellular matrix supporting skin wound closure. Mesoglycan is a mixture of glycosaminoglycans such as chondroitin-, dermatan-, heparan-sulfate and heparin and is the main component of Prisma ® Skin, a pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. Here, we show the in vitro effects of this device in the new vessels formation by endothelial cells, since angiogenesis represents a key moment in wound healing. We found a strong increase of migration and invasion rates of these cells treated with mesoglycan and Prisma ® Skin which mediate the activation of the pathway triggered by CD44 receptor. Furthermore, endothelial cells form longer capillary-like structures with a great number of branches, in the presence of the same treatments. Thus, the device, thanks to the mesoglycan, leads the cells to the Endothelial-to-Mesenchymal Transition, suggesting the switch to a fibroblast-like phenotype, as shown by immunofluorescence assays. Finally, we found that mesoglycan and Prisma ® Skin inhibit inflammatory reactions such as nitric oxide secretion and NF-κB nuclear translocation in endothelial cells and Tumor Necrosis Factor-α production by macrophages. In conclusion, based on our data, we suggest that Prisma ® Skin may be able to accelerate angiogenesis in skin wound healing, and regulate inflammation avoiding chronic, thus pathological, responses.

  5. The Pharmaceutical Device Prisma® Skin Promotes in Vitro Angiogenesis through Endothelial to Mesenchymal Transition during Skin Wound Healing

    Directory of Open Access Journals (Sweden)

    Raffaella Belvedere

    2017-07-01

    Full Text Available Glycosaminoglycans are polysaccharides of the extracellular matrix supporting skin wound closure. Mesoglycan is a mixture of glycosaminoglycans such as chondroitin-, dermatan-, heparan-sulfate and heparin and is the main component of Prisma® Skin, a pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. Here, we show the in vitro effects of this device in the new vessels formation by endothelial cells, since angiogenesis represents a key moment in wound healing. We found a strong increase of migration and invasion rates of these cells treated with mesoglycan and Prisma® Skin which mediate the activation of the pathway triggered by CD44 receptor. Furthermore, endothelial cells form longer capillary-like structures with a great number of branches, in the presence of the same treatments. Thus, the device, thanks to the mesoglycan, leads the cells to the Endothelial-to-Mesenchymal Transition, suggesting the switch to a fibroblast-like phenotype, as shown by immunofluorescence assays. Finally, we found that mesoglycan and Prisma® Skin inhibit inflammatory reactions such as nitric oxide secretion and NF-κB nuclear translocation in endothelial cells and Tumor Necrosis Factor-α production by macrophages. In conclusion, based on our data, we suggest that Prisma® Skin may be able to accelerate angiogenesis in skin wound healing, and regulate inflammation avoiding chronic, thus pathological, responses.

  6. Biomechanical Skin Property Evaluation for Wounds Treated With Synthetic and Biosynthetic Wound Dressings and a Newly Developed Collagen Matrix During Healing of Superficial Skin Defects in a Rat Models.

    Science.gov (United States)

    Held, Manuel; Engelke, Anne-Sophie; Tolzmann, Dascha Sophie; Rahmanian-Schwarz, Afshin; Schaller, Hans-Eberhard; Rothenberger, Jens

    2016-09-01

    There is a high prevalence of superficial wounds such as partial-thickness burns. Treatment of these wounds frequently includes temporary application of wound dressings. The aim of this study was to compare a newly developed collagen matrix with commonly used temporary skin dressings for treatment of partial-thickness skin defects. Through a skin dermatome, 42 standardized superficial skin defects were generated on the back of 28 adult male Lewis rats. The wounds were treated with a synthetic wound dressing (Suprathel, Polymedics Innovations Inc, Woodstock, GA) (n = 14), a biosynthetic skin dressing (Biobrane, Smith & Nephew, Hull, UK) (n = 14), or a newly developed bovine collagen matrix, Collagen Cell Carrier (Viscofan BioEngineering, Weinheim, Germany) (n = 14). Biomechanical properties of the skin were determined and compared every 10 days over a 3-month period of using the Cutometer MPA 580 (Courage + Khazaka Electronic GmbH, Cologne, Germany). As opposed to healthy skin, statistically significant differences were detected between days 10 and 30, and between days 60 and 80, for calculated elasticity (Ue), firmness of skin (R0), and overall elasticity (R8). After 3 months, no statistically significant differences in skin elasticity were detected between the different wound dressings. The presented results give an opportunity to compare the wound dressings used for treatment with respect to skin elasticity and reveal the potential of the bovine collagen matrix in the treatment of superficial skin defects; therefore the results facilitate further evaluation of collagen matrix in surgical applications and regenerative medicine.

  7. Promotion of accelerated repair in a radiation impaired wound healing model in murine skin

    International Nuclear Information System (INIS)

    Walker, M.D.

    2000-02-01

    Surgical resection of many tumours following radiotherapy is well established as the preferred approach to eradicating the disease. However, prior irradiation compromises the healing of surgical wounds in 30-60% of cases, depending on the site of treatment. There is a need therefore, to understand the deficit in the repair process and to develop therapeutic interventions that may help address this problem. To this end, the aims of this thesis were to characterise a wound healing model in irradiated murine skin and to investigate the effects of topical- compounds and therapeutic modalities upon this wound healing model. Full-thickness dorsal skin excisions were made within a pre-irradiated area (20Gy) in male Balb/c mice and wounds were made in a corresponding area in control animals. Biopsies were removed for histological and immunohistochemical analysis, whilst wound closure experiments were used to determine effects of topical compounds and therapeutic modalities (Low Intensity Laser Therapy, Therapeutic Ultrasound and Transcutaneous Electrical Nerve Stimulation) upon the rate of repair. X-ray irradiation (20Gy) caused a significant delay in the rate of wound closure, whilst histological results indicated that prior irradiation delays the influx of inflammatory cells, delays wound reepithelialisation and reduces granulation tissue formation and collagen deposition. Macrophage and endothelial cell numbers were found to be significantly lower in the irradiated wounds when compared to unirradiated control wounds. Furthermore, apoptosis was affected by irradiation. Although results failed to support any claimed stimulatory effects of various therapeutic modalities upon wound healing, topical application of glucans were shown to have a slight beneficial effect upon the rate of repair. In conclusion, the observed cellular effects caused by irradiation may be a result of permanent damage to stem cells and their ability to replicate and reproduce. Furthermore, the

  8. Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Katsunari Makino

    Full Text Available Endothelin (ET-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF-α and connective tissue growth factor (CTGF were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach.

  9. Differential expression of system L amino acid transporters during wound healing process in the skin of young and old rats.

    Science.gov (United States)

    Jeong, Moon-Jin; Kim, Chun Sung; Park, Joo-Cheol; Kim, Heung-Joong; Ko, Yeong Mu; Park, Kyung Jin; Jeong, Soon-Jeong; Endou, Hitoshi; Kanai, Yoshikatsu; Lim, Do-Seon; Kim, Do Kyung

    2008-03-01

    In order to elucidate the role of the system L-type amino acid transporters (LATs) in the wound healing process of aged and young subjects, we investigated the expression of LAT1, LAT2 and their subunit 4F2hc in the skin healing process after artificial wounds of dorsal skin in the young and old rats. The 1 cm full-thickness incisional wounds were made through the skin and panniculus carnosus muscle. The wounds were harvested at days 1, 3, 5 and 7 post-wounding, the experimental controls were harvested the skin of rat without wounds and the various analyses were performed. In young rats, gradually and noticeable wound healing was detected, however, in old rats, wound healing was found to be greatly delayed. In young rats, the expression of LAT1 was increased rapidly on the day 1 after wound induction, on the other hand, in old rats, the expression of LAT1 after wound induction was not different from the control group. In young rats, the expression of LAT2 after the induction of wound was not different from the control group, however in old rats, the expression of LAT2 on the day 1 of wound induction was rapidly elevated. These results suggest that the LAT1 and LAT2 increase in the wound healing process after cell injury in young and old rats, respectively.

  10. Effect of low-power density laser radiation on heatling of open skin wounds in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kana, J.S.; Hutschenreiter, G.; Haina, D.; Waidelich, W.

    1981-03-01

    Researchers performed a study to determine whether laser radation of low-power density would affect the healing of open skin wounds in rats. The wounds were irradiated daily with a helium-neon laser and an argon laser at a constant power density of 45 mW/sq cm. The rate of wound closure was followed by photographing the wounds in a standardized way. The collagen hydroxyproline concentration in the scar tissue was determined on the 18th postoperative day. Helium-neon laser radiation had a statistically significant stimulating effect on collagen synthesis in the wound, with a maximum effect at an energy density of 4 joules/sq cm. The rate of wound closure was enhanced significantly between the third and 12th postoperative days. The argon laser exposure produced a significant increase in collagen concentration both in irradiated and nonirradiated contralateral wounds. However, an acceleration of the healing rate was not registered in this case. The wound contraction up to the fourth day of the experiment was inhibited under helium-neon and argon laser exposure to 20 joules/sq cm. The described effects were not specific for the laser light. There may be a wavelength-selective influence of coherent light on the metabolic and proliferation processes in wound healing, with the associated problem of the possible carcinogenic effects of laser radiation.

  11. Response of Human Skin to Aesthetic Scarification

    Science.gov (United States)

    Gabriel, Vincent A.; McClellan, Elizabeth A.; Scheuermann, Richard H.

    2014-01-01

    This study was undertaken to investigate changes in RNA expression in previously healthy adult human skin following thermal injury induced by contact with hot metal that was undertaken as part of aesthetic scarification, a body modification practice. Subjects were recruited to have pre-injury skin and serial wound biopsies performed. 4 mm punch biopsies were taken prior to branding and 1 hour, 1 week, and 1, 2 and 3 months post injury. RNA was extracted and quality assured prior to the use of a whole-genome based bead array platform to describe expression changes in the samples using the pre-injury skin as a comparator. Analysis of the array data was performed using k-means clustering and a hypergeometric probability distribution without replacement and corrections for multiple comparisons were done. Confirmatory q-PCR was performed. Using a k of 10, several clusters of genes were shown to co-cluster together based on Gene Ontology classification with probabilities unlikely to occur by chance alone. OF particular interest were clusters relating to cell cycle, proteinaceous extracellular matrix and keratinization. Given the consistent expression changes at one week following injury in the cell cycle cluster, there is an opportunity to intervene early following burn injury to influence scar development. PMID:24582755

  12. Bioprinted Amniotic Fluid-Derived Stem Cells Accelerate Healing of Large Skin Wounds

    Science.gov (United States)

    Skardal, Aleksander; Mack, David; Kapetanovic, Edi; Atala, Anthony; Jackson, John D.; Yoo, James

    2012-01-01

    Stem cells obtained from amniotic fluid show high proliferative capacity in culture and multilineage differentiation potential. Because of the lack of significant immunogenicity and the ability of the amniotic fluid-derived stem (AFS) cells to modulate the inflammatory response, we investigated whether they could augment wound healing in a mouse model of skin regeneration. We used bioprinting technology to treat full-thickness skin wounds in nu/nu mice. AFS cells and bone marrow-derived mesenchymal stem cells (MSCs) were resuspended in fibrin-collagen gel and “printed” over the wound site. At days 0, 7, and 14, AFS cell- and MSC-driven wound closure and re-epithelialization were significantly greater than closure and re-epithelialization in wounds treated by fibrin-collagen gel only. Histological examination showed increased microvessel density and capillary diameters in the AFS cell-treated wounds compared with the MSC-treated wounds, whereas the skin treated only with gel showed the lowest amount of microvessels. However, tracking of fluorescently labeled AFS cells and MSCs revealed that the cells remained transiently and did not permanently integrate in the tissue. These observations suggest that the increased wound closure rates and angiogenesis may be due to delivery of secreted trophic factors, rather than direct cell-cell interactions. Accordingly, we performed proteomic analysis, which showed that AFS cells secreted a number of growth factors at concentrations higher than those of MSCs. In parallel, we showed that AFS cell-conditioned media induced endothelial cell migration in vitro. Taken together, our results indicate that bioprinting AFS cells could be an effective treatment for large-scale wounds and burns. PMID:23197691

  13. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2018-02-01

    Full Text Available In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s, by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.

  14. Reduced FOXO1 expression accelerates skin wound healing and attenuates scarring.

    Science.gov (United States)

    Mori, Ryoichi; Tanaka, Katsuya; de Kerckhove, Maiko; Okamoto, Momoko; Kashiyama, Kazuya; Tanaka, Katsumi; Kim, Sangeun; Kawata, Takuya; Komatsu, Toshimitsu; Park, Seongjoon; Ikematsu, Kazuya; Hirano, Akiyoshi; Martin, Paul; Shimokawa, Isao

    2014-09-01

    The forkhead box O (FOXO) family has been extensively investigated in aging and metabolism, but its role in tissue-repair processes remains largely unknown. Herein, we clarify the molecular aspect of the FOXO family in skin wound healing. We demonstrated that Foxo1 and Foxo3a were both up-regulated during murine skin wound healing. Partial knockout of Foxo1 in Foxo1(+/-) mice throughout the body led to accelerated skin wound healing with enhanced keratinocyte migration, reduced granulation tissue formation, and decreased collagen density, accompanied by an attenuated inflammatory response, but we observed no wound phenotype in Foxo3a(-/-) mice. Fibroblast growth factor 2, adiponectin, and notch1 genes were significantly increased at wound sites in Foxo1(+/-) mice, along with markedly altered extracellular signal-regulated kinase 1/2 and AKT phosphorylation. Similarly, transient knockdown of Foxo1 at the wound site by local delivery of antisense oligodeoxynucleotides enhanced skin wound healing. The link between FOXO1 and scarring extends to patients, in particular keloid scars, where we see FOXO1 expression markedly increased in fibroblasts and inflammatory cells within the otherwise normal dermis. This occurs in the immediate vicinity of the keloid by comparison to the center of the mature keloid, indicating that FOXO1 is associated with the overgrowth of this fibrotic response into adjacent normal skin. Overall, our data indicate that molecular targeting of FOXO1 may improve the quality of healing and reduce pathological scarring. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  16. A human model of small fiber neuropathy to study wound healing.

    Science.gov (United States)

    Illigens, Ben M W; Gibbons, Christopher H

    2013-01-01

    The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter) and deep (>3 millimeter) punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (PDeep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (Pshallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy.

  17. A human model of small fiber neuropathy to study wound healing.

    Directory of Open Access Journals (Sweden)

    Ben M W Illigens

    Full Text Available The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter and deep (>3 millimeter punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (P<0.001 and day 14 (P<0.001. Deep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (P<0.01. In conclusion, topical application of capsaicin causes a small fiber neuropathy and is associated with a delay in healing of shallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy.

  18. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Directory of Open Access Journals (Sweden)

    Jingyan Liang

    Full Text Available Hot spring or hot spa bathing (Onsen is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  19. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lina [Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); National Engineering Research Center for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou, Ping [Institute of Organ Transplant of Tongji Hospital, Huazhong University of Science and Technology, Wuhan (China); Zhang, Shengmin [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan (China); Yang, Guang, E-mail: yang_sunny@yahoo.com [Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); National Engineering Research Center for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-07-01

    Bacterial nanocellulose (BNC) was biosynthesized by Gluconacetobacter xylinus. The surface area, physicochemical structure and morphology of the materials were characterized. Here provides a method for an efficient production of uniform BNC, which is beneficial for the fast characterization and evaluation of BNC. In vitro cytotoxicity of the materials was evaluated by the proliferation, the adhesion, the viability and the morphology of NIH/3T3 cells. Low cytotoxicity of the BNC was observed, and micrographs demonstrate a good proliferation and adhesion of NIH/3T3 cells on BNC. Large area full-thickness skin defects were made on the back of C57BL/6 mice in animal surgery. The wounds were transplanted with BNC films and the results compared to those in a control group. The rehabilitation of the wound surfaces and the pathological sections of mice were investigated and are discussed. Histological examinations demonstrated faster and better healing effect and lower inflammatory response in the BNC group than those in the control group. Preliminary results on wound dressings from BNC show a curative effect promoting the healing of epithelial tissue. BNC is a promising natural polymer with medical applications in wound dressings. - Highlights: • BNC is expected to be a promising material in wound healing and skin transplantation. • We studied surface area, physicochemical structures and morphology of uniform BNC. • Cyto-evaluation results of BNC-based wound dressing show a good biocompatibility. • Large area skin transplantation experiments suggest a good performance of healing.

  20. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation

    International Nuclear Information System (INIS)

    Fu, Lina; Zhou, Ping; Zhang, Shengmin; Yang, Guang

    2013-01-01

    Bacterial nanocellulose (BNC) was biosynthesized by Gluconacetobacter xylinus. The surface area, physicochemical structure and morphology of the materials were characterized. Here provides a method for an efficient production of uniform BNC, which is beneficial for the fast characterization and evaluation of BNC. In vitro cytotoxicity of the materials was evaluated by the proliferation, the adhesion, the viability and the morphology of NIH/3T3 cells. Low cytotoxicity of the BNC was observed, and micrographs demonstrate a good proliferation and adhesion of NIH/3T3 cells on BNC. Large area full-thickness skin defects were made on the back of C57BL/6 mice in animal surgery. The wounds were transplanted with BNC films and the results compared to those in a control group. The rehabilitation of the wound surfaces and the pathological sections of mice were investigated and are discussed. Histological examinations demonstrated faster and better healing effect and lower inflammatory response in the BNC group than those in the control group. Preliminary results on wound dressings from BNC show a curative effect promoting the healing of epithelial tissue. BNC is a promising natural polymer with medical applications in wound dressings. - Highlights: • BNC is expected to be a promising material in wound healing and skin transplantation. • We studied surface area, physicochemical structures and morphology of uniform BNC. • Cyto-evaluation results of BNC-based wound dressing show a good biocompatibility. • Large area skin transplantation experiments suggest a good performance of healing

  1. Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties.

    Science.gov (United States)

    Chanda, Arnab; Unnikrishnan, Vinu; Flynn, Zachary; Lackey, Kim

    2017-01-01

    Skin injuries are the most common type of injuries occurring in day-to-day life. A skin injury usually manifests itself in the form of a wound or a cut. While a shallow wound may heal by itself within a short time, deep wounds require surgical interventions such as suturing for timely healing. To date, suturing practices are based on a surgeon's experience and may vary widely from one situation to another. Understanding the mechanics of wound closure and suturing of the skin is crucial to improve clinical suturing practices and also to plan automated robotic surgeries. In the literature, phenomenological two-dimensional computational skin models have been developed to study the mechanics of wound closure. Additionally, the effect of skin pre-stress (due to the natural tension of the skin) on wound closure mechanics has been studied. However, in most of these analyses, idealistic two-dimensional skin geometries, materials and loads have been assumed, which are far from reality, and would clearly generate inaccurate quantitative results. In this work, for the first time, a biofidelic human skin tissue phantom was developed using a two-part silicone material. A wound was created on the phantom material and sutures were placed to close the wound. Uniaxial mechanical tests were carried out on the phantom specimens to study the effect of varying wound size, quantity, suture and pre-stress on the mechanical behavior of human skin. Also, the average mechanical behavior of the human skin surrogate was characterized using hyperelastic material models, in the presence of a wound and sutures. To date, such a robust experimental study on the effect of injury and sutures on human skin mechanics has not been attempted. The results of this novel investigation will provide important guidelines for surgical planning and validation of results from computational models in the future.

  2. New strategies in clinical care of skin wound healing.

    Science.gov (United States)

    Günter, C I; Machens, H-G

    2012-01-01

    The prevalence of chronic wounds is closely correlated to the aging population and so-called civilizational diseases. Therefore, they are causing morbidity and mortality of millions of patients worldwide, with an unbroken upward trend. As a consequence, chronic wounds induce enormous and rapidly growing costs for our health care systems and society in general. Thus, medically effective and cost-efficient treatment methods are urgently needed. Methods of 'regenerative medicine' might offer innovative scientific solutions, including the use of stem cells, growth factors and new bioactive materials. These tools are experimentally well described but clinically poorly performed. The main reasons for this are both legislative and economic. This review describes state-of-the-art techniques, up-to-date research projects, innovative preclinical and clinical approaches in wound care, and activities to translate these innovative techniques into clinical routine. Copyright © 2012 S. Karger AG, Basel.

  3. In vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healing and antioxidant activities.

    Science.gov (United States)

    Gunes, Seda; Tamburaci, Sedef; Dalay, Meltem Conk; Deliloglu Gurhan, Ismet

    2017-12-01

    Algae have gained importance in cosmeceutical product development due to their beneficial effects on skin health and therapeutical value with bioactive compounds. Spirulina platensis Parachas (Phormidiaceae) is renowned as a potential source of high-value chemicals and recently used in skincare products. This study develops and evaluates skin creams incorporated with bioactive S. platensis extract. Spirulina platensis was cultivated, the aqueous crude extract was prepared and in vitro cytotoxicity of S. platensis extract in the range of 0.001-1% concentrations for 1, 3 and 7 d on HS2 keratinocyte cells was determined. Crude extracts were incorporated in skin cream formulation at 0.01% (w/w) concentration and in vitro wound healing and genotoxicity studies were performed. Immunohistochemical staining was performed to determine the collagen activity. 0.1% S. platensis extract exhibited higher proliferation activity compared with the control group with 198% of cell viability after 3 d. Skin cream including 1.125% S. platensis crude extract showed enhanced wound healing effect on HS2 keratinocyte cell line and the highest HS2 cell viability % was obtained with this concentration. The micronucleus (MN) assay results indicated that S. platensis extract incorporated creams had no genotoxic effect on human peripheral blood cells. Immunohistochemical analysis showed that collagen 1 immunoreactivity was improved by increased extract concentration and it was strongly positive in cells treated with 1.125% extract incorporated skin cream. The cell viability, wound healing activity and genotoxicity results showed that S. platensis incorporated skin cream could be of potential value in cosmeceutical and biomedical applications.

  4. MiR-21/PTEN Axis Promotes Skin Wound Healing by Dendritic Cells Enhancement.

    Science.gov (United States)

    Han, Zhaofeng; Chen, Ya; Zhang, Yile; Wei, Aizhou; Zhou, Jian; Li, Qian; Guo, Lili

    2017-10-01

    A number of miRNAs associated with wound repair have been identified and characterized, but the mechanism has not been fully clarified. MiR-21 is one of wound-related lncRNAs, and the study aimed to explore the functional involvement of miR-21 and its concrete mechanism in wound healing. In this study, the rat model of skin wounds was established. The expression of miR-21, PTEN and related molecules of wound tissues or cells was determined by quantitative real-time PCR and Western blot, respectively. The regulatory role of miR-21 on PTEN was examined by luciferase reporter gene assay. Flow cytometry assay was applied to measure cell number changes. MiR-21 was upregulated at 6, 24, 48, 72 h after model establishment, and the increase reached a maximum at 24 h in wound tissues. MMP-9 expression presented the same tread as miR-21 and was significantly enhanced within 6 h of wound formation, and then remained to be increased to the maximum at 24 h. The increase of miR-21 was accompanied by the increase of cell total number and DCs ratio in wound fluids. MiR-21 overexpression significantly improved the healing of skin wounds and increased the ratio of DCs in rats. The results of using FL confirmed that miR-21 overexpression obviously promoted DCs differentiation. Additionally, miR-21 could activate AKT/PI3K signaling pathway via inhibition of PTEN. MiR-21 contributes to wound healing via inhibition of PTEN that activated AKT/PI3K signaling pathway to increase DCs. J. Cell. Biochem. 118: 3511-3519, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds.

    Science.gov (United States)

    Harman, Rebecca M; Yang, Steven; He, Megan K; Van de Walle, Gerlinde R

    2017-07-04

    The prevalence of chronic skin wounds in humans is high, and treatment is often complicated by the presence of pathogenic bacteria. Therefore, safe and innovative treatments to reduce the bacterial load in cutaneous wounds are needed. Mesenchymal stromal cells (MSC) are known to provide paracrine signals that act on resident skin cells to promote wound healing, but their potential antibacterial activities are not well described. The present study was designed to examine the antibacterial properties of MSC from horses, as this animal model offers a readily translatable model for MSC therapies in humans. Specifically, we aimed to (i) evaluate the in vitro effects of equine MSC on the growth of representative gram-negative and gram-positive bacterial species commonly found in skin wounds and (ii) define the mechanisms by which MSC inhibit bacterial growth. MSC were isolated from the peripheral blood of healthy horses. Gram-negative E. coli and gram-positive S. aureus were cultured in the presence of MSC and MSC conditioned medium (CM), containing all factors secreted by MSC. Bacterial growth was measured by plating bacteria and counting viable colonies or by reading the absorbance of bacterial cultures. Bacterial membrane damage was detected by incorporation of N-phenyl-1-naphthylamine (NPN). Antimicrobial peptide (AMP) gene and protein expression by equine MSC were determined by RT-PCR and Western blot analysis, respectively. Blocking of AMP activity of MSC CM was achieved using AMP-specific antibodies. We found that equine MSC and MSC CM inhibit the growth of E. coli and S. aureus, and that MSC CM depolarizes the cell membranes of these bacteria. In addition, we found that equine MSC CM contains AMPs, and blocking these AMPs with antibodies reduces the effects of MSC CM on bacteria. Our results demonstrate that equine MSC inhibit bacterial growth and secrete factors that compromise the membrane integrity of bacteria commonly found in skin wounds. We also identified

  6. Nanotechnology-Based Therapies for Skin Wound Regeneration

    International Nuclear Information System (INIS)

    Tocco, I.; Bassetto, F.; Vindigni, V.; Zavan, B.

    2012-01-01

    The cutting-edge combination of nano technology with medicine offers the unprecedented opportunity to create materials and devices at a nano scale level, holding the potential to revolutionize currently available macro scale therapeutics. Nano technology already provides a plethora of advantages to medical care, and the success of nano particulate systems suggests that a progressive increase in the exploration of their potential will take place in the near future. An overview on the current applications of nano technology to wound healing and wound care is presented

  7. Volumetric Visualization of Human Skin

    Science.gov (United States)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  8. Epidermal stem cells - role in normal, wounded and pathological psoriatic and cancer skin

    DEFF Research Database (Denmark)

    Kamstrup, M.; Faurschou, A.; Gniadecki, R.

    2008-01-01

    In this review we focus on epidermal stem cells in the normal regeneration of the skin as well as in wounded and psoriatic skin. Furthermore, we discuss current data supporting the idea of cancer stem cells in the pathogenesis of skin carcinoma and malignant melanoma. Epidermal stem cells present...... or transit amplifying cells constitute a primary pathogenetic factor in the epidermal hyperproliferation seen in psoriasis. In cutaneous malignancies mounting evidence supports a stem cell origin in skin carcinoma and malignant melanoma and a possible existence of cancer stem cells Udgivelsesdato: 2008/5...

  9. Examination of the skin barrier repair/wound healing process using a living skin equivalent model and matrix-assisted laser desorption-ionization-mass spectrometry imaging.

    Science.gov (United States)

    Lewis, E E L; Barrett, M R T; Freeman-Parry, L; Bojar, R A; Clench, M R

    2018-04-01

    Examination of the skin barrier repair/wound healing process using a living skin equivalent (LSE) model and matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to identify lipids directly involved as potential biomarkers. These biomarkers may be used to determine whether an in vivo wound is going to heal for example if infected. An in vitro LSE model was wounded with a scalpel blade and assessed at day 4 post-wounding by histology and MALDI-MSI. Samples were sectioned at wound site and were either formalin-fixed paraffin-embedded (FFPE) for histology or snapped frozen (FF) for MSI analysis. The combination of using an in vitro wounded skin model with MSI allowed the identification of lipids involved in the skin barrier repair/wound healing process. The technique was able to highlight lipids directly in the wound site and distinguish differences in lipid distribution between the epidermis and wound site. This novel method of coupling an in vitro LSE with MSI allowed in-depth molecular analysis of the skin barrier repair/wound healing process. The technique allowed the identification of lipids directly involved in the skin barrier repair/wound healing process, indicating these biomarkers may be potentially be used within the clinic. These biomarkers will help to determine, which stage of the skin barrier repair/wound healing process the wound is in to provide the best treatment. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  10. Studies of the in vivo radiosensitivity of human skin fibroblasts

    International Nuclear Information System (INIS)

    Hill, Richard P.; Kaspler, Pavel; Griffin, Anthony M.; O'Sullivan, Brian; Catton, Charles; Alasti, Hamideh; Abbas, Ahmar; Heydarian, Moustafa; Ferguson, Peter; Wunder, Jay S.; Bell, Robert S.

    2007-01-01

    Background and purpose: To examine the radiosensitivity of skin cells obtained directly from the irradiated skin of patients undergoing fractionated radiation treatment prior to surgery for treatment of soft tissue sarcoma (STS) and to determine if there was a relationship with the development of wound healing complications associated with the surgery post-radiotherapy. Methods: Micronucleus (MN) formation was measured in cells (primarily dermal fibroblasts) obtained from human skin at their first division after being removed from STS patients during post-radiotherapy surgery (2-9 weeks after the end of the radiotherapy). At the time of radiotherapy (planned tumor dose - 50 Gy in 25 daily fractions) measurements were made of surface skin dose at predetermined marked sites. Skin from these sites was obtained at surgery and cell suspensions were prepared directly for the cytokinesis-blocked MN assay. Cultured strains of the fibroblasts were also established from skin nominally outside the edge of the radiation beam and DNA damage (MN formation) was examined following irradiation in vitro for comparison with the results from the in situ irradiations. Results: Extensive DNA damage (MN) was detectable in fibroblasts from human skin at extended periods after irradiation (2-9 weeks after the end of the 5-week fractionated radiotherapy). Analysis of skin receiving a range of doses demonstrated that the level of damage observed was dose dependent. There was no clear correlation between the level of damage observed after irradiation in situ and irradiation of cell strains in culture. Similarly, there was no correlation between the extent of MN formation following in situ irradiation and the propensity for the patient to develop wound healing complications post-surgery. Conclusions: Despite the presence of DNA damage in dermal fibroblasts weeks after the end of the radiation treatment, there was no relationship between this damage and wound healing complications following

  11. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Science.gov (United States)

    Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi

    2014-01-01

    MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair

  12. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Directory of Open Access Journals (Sweden)

    Fumihito Noguchi

    Full Text Available MED1 (Mediator complex subunit 1 is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/- that develop epidermal hyperplasia. Herein, to investigate the function(s of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/- and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/- mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/- mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/- keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/- keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/- keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/- keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/- mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/- mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/- mice, indicating a decreased contribution of hair

  13. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Su, Zhongchun; Ma, Huan; Wu, Zhengzheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China); Zeng, Huilan [Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Li, Zhizhong [Department of Bone, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Wang, Yuechun; Liu, Gexiu [Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632 (China); Xu, Bin; Lin, Yongliang; Zhang, Peng [Grandhope Biotech Co., Ltd., Building D, #408, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, Guangdong (China); Wei, Xing, E-mail: wei70@hotmail.com [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China)

    2014-11-01

    Current therapy for skin wound healing still relies on skin transplantation. Many studies were done to try to find out ways to replace skin transplantation, but there is still no effective alternative therapy. In this study, decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments, and scaffolds loaded with hyaluronic acid (HA) and epidermal growth factor (EGF) were tested for their effect on wound healing. MTT assay showed that EGF increased NIH3T3 cell viability and confirmed that EGF used in this study was biologically active in vitro. Scanning electron microscope (SEM) showed that HA stably attached to scaffolds even after soaking in PBS for 48 h. ELISA assay showed that HA increased the adsorption of EGF to scaffolds and sustained the release of EGF from scaffolds. Animal study showed that the wounds covered with scaffolds containing HA and EGF recovered best among all 4 groups and had wound healing rates of 49.86%, 70.94% and 87.41% respectively for days 10, 15 and 20 post-surgery compared to scaffolds alone with wound healing rates of 29.26%, 42.80% and 70.14%. In addition, the wounds covered with scaffolds containing EGF alone were smaller than no EGF scaffolds on days 10, 15 and 20 post-surgery. Hematoxylin–Eosin (HE) staining confirmed these results by showing that on days 10, 15 and 20 post-surgery, the thicker epidermis and dermis layers were observed in the wounds covered with scaffolds containing HA and EGF than scaffolds alone. In addition, the thicker epidermis and dermis layers were also observed in the wounds covered with scaffolds containing EGF than scaffolds alone. Skin appendages were observed on day 20 only in the wound covered with scaffolds containing HA and EGF. These results demonstrate that the scaffolds containing HA and EGF can enhance wound healing. - Highlights: • HA can increase the adsorption of EGF to decellularized scaffolds. • HA can sustain the release of EGF from

  14. Acceleration of skin wound healing with tragacanth (Astragalus preparation: an experimental pilot study in rats.

    Directory of Open Access Journals (Sweden)

    Ehsan Fayazzadeh

    2014-01-01

    Full Text Available Gum tragacanth is a natural complex mixture of polysaccharides and alkaline minerals extracted from species of Astragalus plant, which is found widely in arid regions of the Middle East. In a pilot experimental study we examined the effects of its topical application on wound healing in ten albino adult male rats. Two similar parasagittal elliptical full-thickness wounds (control vs. test samples were created on the dorsum of each animal. Test group samples were fully covered by a thin layer of gum tragacanth daily. The extent of wound healing was evaluated by planimetric analysis on multiple occasions during the 10-day study period. On the 7th day of the study, the percent of wound closure was significantly higher in gum tragacanth-treated specimens compared to the control samples (87%±2% vs. 70%±4%, P<0.001. The majority of wounds in the test group were completely closed by the 10th day of the study. The difference in wound healing index measured by histological examination on day 10 of the study was also statistically meaningful between the two groups (0.624±0.097 vs. 0.255±0.063, P<0.05. The results of this study clearly showed the useful effects of topical application of gum tragacanth in acceleration of skin wound contraction and healing. More studies are encouraged to identify the implicating agents and precisely understand the mechanism by which they exert their wound healing effects.

  15. Effect of calorie restriction and refeeding on skin wound healing in the rat.

    Science.gov (United States)

    Hunt, Nicole D; Li, Garrick D; Zhu, Min; Miller, Marshall; Levette, Andrew; Chachich, Mark E; Spangler, Edward L; Allard, Joanne S; Hyun, Dong-Hoon; Ingram, Donald K; de Cabo, Rafael

    2012-12-01

    Calorie restriction (CR) is a reliable anti-aging intervention that attenuates the onset of a number of age-related diseases, reduces oxidative damage, and maintains function during aging. In the current study, we assessed the effects of CR and other feeding regimens on wound healing in 7-month-old Fischer-344 rats from a larger cohort of rats that had been fed either ad libitum (AL) or 40% calorie restricted based on AL consumption. Rats were assigned to one of three diet groups that received three skin punch wounds along the dorsal interscapular region (12-mm diameter near the front limbs) of the back as follows: (1) CR (n = 8) were wounded and maintained on CR until they healed, (2) AL (n = 5) were wounded and maintained on AL until wound closure was completed, and (3) CR rats were refed (RF, n = 9) AL for 48 h prior to wounding and maintained on AL until they healed. We observed that young rats on CR healed more slowly while CR rats refed for 48 h prior to wounding healed as fast as AL fed rats, similar to a study reported in aged CR and RF mice (Reed et al. 1996). Our data suggest that CR subjects, regardless of age, fail to heal well and that provision of increased nutrition to CR subjects prior to wounding enhances the healing process.

  16. Mast cell concentration and skin wound contraction in rats treated with Brazilian pepper essential oil (Schinus terebinthifolius Raddi).

    Science.gov (United States)

    Estevão, Lígia Reis Moura; Medeiros, Juliana Pinto de; Simões, Ricardo Santos; Arantes, Rosa Maria Esteves; Rachid, Milene Alvarenga; Silva, Regildo Márcio Gonçalves da; Mendonça, Fábio de Souza; Evêncio-Neto, Joaquim

    2015-04-01

    To evaluate wound contraction and the concentration of mast cells in skin wounds treated with 5% BPT essential oil-based ointment in rats. Twenty rats, male, of adult age, were submitted to skin surgery on the right (RA) and left antimeres (LA) of the thoracic region. They were divided into two groups: control (RA - wounds receiving daily topical application of vaseline and lanolin) and treated (LA - wounds treated daily with the topical ointment). The skin region with wounds were collected at days 4, 7, 14 and 21 after surgery. Those were fixed in 10% formaldehyde and later processed for paraffin embedding. Sections were obtained and stained by H.E for histopathology analysis. The degree of epithelial contraction was measured and mast cell concentration were also evaluated. The treated group showed higher mast cell concentrations (poil increases mast cell concentration and promotes skin wound contraction in rats.

  17. The morphological effect of electron irradiation on the healing of skin wounds and skin grafts in the rat

    International Nuclear Information System (INIS)

    Wang, Q.

    1995-01-01

    Current oncological practice frequently uses pre-, intra- or post-operative radiotherapy/chemotherapy. Before such treatment can begin it is imperative to establish that satisfactory wound healing will occur. Many previous studies have examined the response of wound healing to ionizing and non-ionizing radiation. In general, clinical and experimental reports indicate that ionizing radiation produces poor to difficult healing of wounds, and can even prevent healing altogether. It is for this reason that the effect of radiation on wound repair has been a long standing concern for surgeons, radiotherapists and radiobiologists. Electron irradiation produces large differences in depth-dose distributions. This enables the delivery of a constant maximal dose throughout the superficial layer of tissue, for example, the total depth of skin, with less damage in deeper tissue layers, compared to that produced by the use of electromagnetic radiation such as X-rays. It is for this reason that electron beam irradiation has been selected as a radiation source for radiation of the graft bed. To date there have been few morphological examinations of the effect of electron radiation on the healing of skin wounds in rats. A review of the literature shows no information on the use of radiation of the graft bed in skin graft surgery. In the present work the processes involved in wound repair in response to radiation were studied, morphologically, using two experimental models, incisional wounds combined with pre-operative radiation and skin autografts combined with radiation of the wound bed. In the latter case an unirradiated skin graft was surgically attached to an irradiated wound bed. Light microscopy (LM), backscattered electron imaging (BEI), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used as investigative tools. These repair processes include inflammation, re-epithelialization, re-formation of the dermo-epidermal junction, re

  18. The morphological effect of electron irradiation on the healing of skin wounds and skin grafts in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q

    1995-07-01

    Current oncological practice frequently uses pre-, intra- or post-operative radiotherapy/chemotherapy. Before such treatment can begin it is imperative to establish that satisfactory wound healing will occur. Many previous studies have examined the response of wound healing to ionizing and non-ionizing radiation. In general, clinical and experimental reports indicate that ionizing radiation produces poor to difficult healing of wounds, and can even prevent healing altogether. It is for this reason that the effect of radiation on wound repair has been a long standing concern for surgeons, radiotherapists and radiobiologists. Electron irradiation produces large differences in depth-dose distributions. This enables the delivery of a constant maximal dose throughout the superficial layer of tissue, for example, the total depth of skin, with less damage in deeper tissue layers, compared to that produced by the use of electromagnetic radiation such as X-rays. It is for this reason that electron beam irradiation has been selected as a radiation source for radiation of the graft bed. To date there have been few morphological examinations of the effect of electron radiation on the healing of skin wounds in rats. A review of the literature shows no information on the use of radiation of the graft bed in skin graft surgery. In the present work the processes involved in wound repair in response to radiation were studied, morphologically, using two experimental models, incisional wounds combined with pre-operative radiation and skin autografts combined with radiation of the wound bed. In the latter case an unirradiated skin graft was surgically attached to an irradiated wound bed. Light microscopy (LM), backscattered electron imaging (BEI), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used as investigative tools. These repair processes include inflammation, re-epithelialization, re-formation of the dermo-epidermal junction, re

  19. [Expression of cannabinoid receptor I during mice skin incised wound healing course].

    Science.gov (United States)

    Zhao, Zhen-bin; Guan, Da-wei; Liu, Wei-wei; Wang, Tao; Fan, Yan-yan; Cheng, Zi-hui; Zheng, Ji-long; Hu, Geng-yi

    2010-08-01

    To investigate the expression of cannabinoid receptor I (CB1R) during mice skin incised wound healing course and time-dependent changes of CB1R in wound age determination. The changes of CBIR expression in skin incised wound were detected by immunohistochemistry and Western blotting. The control group showed a low expression of CB1R detected mainly in epidermis, hair follicles, sebaceous gland and dermomuscular layer. CB1R expression was undetectable in neutrophils in the wound specimens from 6h to 12h post-injury. CB1R positive cells were mostly mononuclear cells (MNCs) and fibroblastic cells (FBCs) from 1 d to 5 d post-injury. CB1R positive cells were mostly FBCs from 7 d to 14d post-injury. The ratio of the CB1R positive cells increased gradually in the wound specimens from 6 h to 3 d post-injury, reached peak level at 5 d, and then decreased gradually from 7d to 14 d post-injury. The positive bands of CB1R were observed in all time points of the wound healing course by Western blotting. The expression peak showed at 5 d post-injury. CB1R is activated during the wound healing course. The expression of CB1R is found in mononuclear cells, which could be involved in inflammation reaction. CBIR is observed in fibroblastic cells, which could participate in the wound healing. CB1R may be a potentially useful marker for determination of wound healing age.

  20. Evaluation of dermal-epidermal skin equivalents ('composite-skin') of human keratinocytes in a collagen-glycosaminoglycan matrix(Integra artificial skin).

    Science.gov (United States)

    Kremer, M; Lang, E; Berger, A C

    2000-09-01

    Integra artificial skin (Integra LifeSciences Corp., Plainsboro, NJ, USA) is a dermal template consisting of bovine collagen, chondroitin-6-sulphate and a silastic membrane manufactured as Integra. This product has gained widespread use in the clinical treatment of third degree burn wounds and full thickness skin defects of different aetiologies. The product was designed to significantly reduce the time needed to achieve final wound closure in the treatment of major burn wounds, to optimise the sparse autologous donor skin resources and to improve the durable mechanical quality of the skin substitute. The clinical procedure requires two stages. The first step creates a self neodermis, the second creates a self epidermis on the neodermis. However, it is desirable to cover major burn wounds early in a single step by a skin substitute consisting of a dermal equivalent seeded in vitro with autologous keratinocytes ('composite-skin') out of which a full thickness skin develops in vivo.The goal of this experimental study was to develop a method to integrate human keratinocytes in homogeneous distribution and depth into Integra Artificial Skin. The seeded cell-matrix composites were grafted onto athymic mice in order to evaluate their potential to reconstitute a human epidermis in vivo. We were able to demonstrate that the inoculated human keratinocytes reproducibly displayed a homogeneous pattern of distribution, adherence, proliferation and confluence. The cell-matrix composites grafted in this model exhibited good wound adherence, complete healing, minor wound contraction and had the potential to reconstitute an elastic, functional and durable human skin. Histologically we were able to show that the inoculated human keratinocytes in vivo colonised the matrix in a histomorphologically characteristic epidermal pattern (keratomorula, keratinocyte bubbling) and developed a persisting, stratified, keratinising epidermis which immunohistologically proved to be of human

  1. Tissue engineering skin: a paradigm shift in wound care.

    Science.gov (United States)

    Mason, C

    2005-12-01

    Tissue-engineered skin for the treatment of burns and ulcers is a clinical success, but making it commercially viable is more problematic. This article examines the industry, its techniques and suggests the way forward.

  2. Advanced skin, scar and wound care centre for children: A new era of care

    Directory of Open Access Journals (Sweden)

    Andrew Burd

    2012-01-01

    Full Text Available Advanced wound care centres are now a well established response to the growing epidemic of chronic wounds in the adult population. Is the concept transferable to children? Whilst there is not the same prevalence of chronic wounds in children there are conditions affecting the integumentary system that do have a profound effect on the quality of life of both children and their families. We have identified conditions involving the skin, scars and wounds which contribute to a critical number of potential patients that can justify the setting up of an advanced skin, scar and wound care centre for children. The management of conditions such as giant naevi, extensive scarring and epidermolysis bullosa challenge medical professionals and lead to new and novel treatments to be developed. The variation between and within such conditions calls for a customizing of individual patient care that involves a close relationship between research scientists and clinicians. This is translational medicine of its best and we predict that this is the future of wound care particularly and specifically in children.

  3. Innate sensing of microbial products promotes wound-induced skin cancer

    Science.gov (United States)

    Hoste, Esther; Arwert, Esther N.; Lal, Rohit; South, Andrew P.; Salas-Alanis, Julio C.; Murrell, Dedee F.; Donati, Giacomo; Watt, Fiona M.

    2015-01-01

    The association between tissue damage, chronic inflammation and cancer is well known. However, the underlying mechanisms are unclear. Here we characterize a mouse model in which constitutive epidermal extracellular-signal-regulated kinase-MAP-kinase signalling results in epidermal inflammation, and skin wounding induces tumours. We show that tumour incidence correlates with wound size and inflammatory infiltrate. Ablation of tumour necrosis factor receptor (TNFR)-1/-2, Myeloid Differentiation primary response gene 88 or Toll-like receptor (TLR)-5, the bacterial flagellin receptor, but not other innate immune sensors, in radiosensitive leukocytes protects against tumour formation. Antibiotic treatment inhibits, whereas injection of flagellin induces, tumours in a TLR-5-dependent manner. TLR-5 is also involved in chemical-induced skin carcinogenesis in wild-type mice. Leukocytic TLR-5 signalling mediates upregulation of the alarmin HMGB1 (High Mobility Group Box 1) in wound-induced papillomas. HMGB1 is elevated in tumours of patients with Recessive Dystrophic Epidermolysis Bullosa, a disease characterized by chronic skin damage. We conclude that in our experimental model the combination of bacteria, chronic inflammation and wounding cooperate to trigger skin cancer. PMID:25575023

  4. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin.

    Science.gov (United States)

    Kim, Yoon-Jin; Yoo, Sae Mi; Park, Hwan Hee; Lim, Hye Jin; Kim, Yu-Lee; Lee, Seunghee; Seo, Kwang-Won; Kang, Kyung-Sun

    2017-11-18

    Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) play an important role in cutaneous wound healing, and recent studies suggested that MSC-derived exosomes activate several signaling pathways, which are conducive in wound healing and cell growth. In this study, we investigated the roles of exosomes that are derived from USC-CM (USC-CM Exos) in cutaneous collagen synthesis and permeation. We found that USC-CM has various growth factors associated with skin rejuvenation. Our in vitro results showed that USC-CM Exos integrate in Human Dermal Fibroblasts (HDFs) and consequently promote cell migration and collagen synthesis of HDFs. Moreover, we evaluated skin permeation of USC-CM Exos by using human skin tissues. Results showed that Exo-Green labeled USC-CM Exos approached the outermost layer of the epidermis after 3 h and gradually approached the epidermis after 18 h. Moreover, increased expressions of Collagen I and Elastin were found after 3 days of treatment on human skin. The results showed that USC-CM Exos is absorbed into human skin, it promotes Collagen I and Elastin synthesis in the skin, which are essential to skin rejuvenation and shows the potential of USC-CM integration with the cosmetics or therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. β-lapachone accelerates the recovery of burn-wound skin.

    Science.gov (United States)

    Fu, Shih-Chen; Chau, Yat-Pang; Lu, Kuo-Shyan; Kung, Hsiu-Ni

    2011-07-01

    β-lapachone is a quinone of lapachol extracted from the bark of lapacho tree. Recent findings demonstrated that punched skin wounds of mice healed faster with β-lapachone treatment. The present study investigates the effects of β-lapachone on burn-wound skin of C57BL/6 mice injured by a 100 °C iron stick. Our results indicated that wounds treated with β-lapachone recovered faster than those treated with control ointment containing no β-lapachone. On the third day after burning, the area of β-lapachone treated-wound was 30% smaller than wound treated with control ointment. H&E and immunohistochemistry staining showed that burn-wound skin treated with ointment containing β-lapachone healed faster in its epidermis, dermis, and underlying connective tissues with more macrophages appeared than those treated with control ointment alone. RAW264.7 cell, a macrophage-like cell line derived from BALB/C mice, was used as a model for scrutinizing the effect of β-lapachone on macrophages. We found that the proliferation and the secretion of EGF and VEGF by macrophages were higher in cultures treated with β-lapachone and that ß-lapachone can also increase the release of EGF with TNF-α pretreatment. We conclude that β-lapachone plays an important role in accelerating burn wound healing, and that β-lapachone not only can raise the proliferation of macrophages but also increase the release of VEGF from macrophages.

  6. Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin.

    Science.gov (United States)

    Ferris, Donald R; Satoh, Akira; Mandefro, Berhan; Cummings, Gillian M; Gardiner, David M; Rugg, Elizabeth L

    2010-10-01

    Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re-epithelialization of the wound area is rapid (typically <11 h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.

  7. Skin and the non-human human

    DEFF Research Database (Denmark)

    Rösing, Lilian Munk

    2013-01-01

    The article puts forward an aesthetic and psychoanalytic analysis of Titian's painting, The Flaying of Marsyas, arguing that the painting is a reflection on the human subject as a being constituted by skin and by a core of non-humanity. The analysis is partly an answer to Melanie Hart's (2007) ar...... of the 'Muselmann', and Anton Ehrenzweig's psychoanalytic theory of artistic creation. Whereas Hart is focusing on form and colour, I also turn my attention towards the texture of the painting....

  8. Rapid preparation of a noncultured skin cell suspension that promotes wound healing.

    Science.gov (United States)

    Yoon, Cheonjae; Lee, Jungsuk; Jeong, Hyosun; Lee, Sungjun; Sohn, Taesik; Chung, Sungphil

    2017-06-01

    Autologous skin cell suspensions have been used for wound healing in patients with burns and against normal pigmentation in vitiligo. To separate cells and the extracellular matrix from skin tissue, most researchers use enzymatic digestion. Therefore, this process is difficult to perform during a routine surgical procedure. We aimed to prepare a suspension of noncultured autologous skin cells (NCSCs) using a tissue homogenizer as a new method instead of harsh biochemical reagents. The potential clinical applicability of NCSCs was analyzed using a nude-rat model of burn healing. After optimization of the homogenizer settings, cell viability ranged from 52 to 89%. Scanning electron microscopy showed evidence of keratinocyte-like cell morphology, and several growth factors, including epidermal growth factor and basic fibroblast growth factor, were present in the NCSCs. The rat model revealed that NCSCs accelerated skin regeneration. NCSCs could be generated using a tissue homogenizer for enhancement of wound healing in vivo. In the NCSC group of wounds, on day 7 of epithelialization, granulation was observed, whereas on day 14, there was a significant increase in skin adnexa regeneration as compared to the control group (PBS treatment; p study suggests that the proposed process is rapid and does not require the use of biochemical agents. Thus, we recommend a combination of surgical treatment with the new therapy for a burn as an effective method.

  9. Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: potential role for CTGF in human diabetic foot ulcer healing.

    Science.gov (United States)

    Henshaw, F R; Boughton, P; Lo, L; McLennan, S V; Twigg, S M

    2015-01-01

    Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1 μg rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulation tissue. In the human study across 32 subjects, serial CTGF regulation was analyzed longitudinally in postdebridement diabetic wound fluid. CTGF treated diabetic wounds had an accelerated closure rate compared with vehicle treated diabetic wounds. Healed skin withstood more strain before breaking in CTGF treated rat wounds. Granulation tissue from CTGF treatment in diabetic wounds showed collagen IV accumulation compared with nondiabetic animals. Wound α-smooth muscle actin was increased in CTGF treated diabetic wounds compared with untreated diabetic wounds, as was macrophage infiltration. Endogenous wound fluid CTGF protein rate of increase in human diabetic foot ulcers correlated positively with foot ulcer healing rate (r = 0.406; P diabetic foot ulcers.

  10. Recombinant human erythropoietin stimulates angiogenesis and wound healing in the genetically diabetic mouse.

    Science.gov (United States)

    Galeano, Mariarosaria; Altavilla, Domenica; Cucinotta, Domenico; Russo, Giuseppina T; Calò, Margherita; Bitto, Alessandra; Marini, Herbert; Marini, Rolando; Adamo, Elena B; Seminara, Paolo; Minutoli, Letteria; Torre, Valerio; Squadrito, Francesco

    2004-09-01

    The effects of recombinant human erythropoietin (rHuEPO) in diabetes-related healing defects were investigated by using an incisional skin-wound model produced on the back of female diabetic C57BL/KsJ-m(+/+)Lept(db) mice (db(+)/db(+)) and their normoglycemic littermates (db(+/+)m). Animals were treated with rHuEPO (400 units/kg in 100 microl s.c.) or its vehicle alone (100 microl). Mice were killed on different days (3, 6, and 12 days after skin injury) for measurement of vascular endothelial growth factor (VEGF) mRNA expression and protein synthesis, for monitoring angiogenesis by CD31 expression, and for evaluating histological changes. Furthermore, we evaluated wound-breaking strength at day 12. At day 6, rHuEPO injection in diabetic mice resulted in an increase in VEGF mRNA expression (vehicle = 0.33 +/- 0.1 relative amount of mRNA; rHuEPO = 0.9 +/- 0.09 relative amount of mRNA; P < 0.05) and protein wound content (vehicle = 23 +/- 5 pg/wound; rHuEPO = 92 +/- 12 pg/wound; P < 0.05) and caused a marked increase in CD31 gene expression (vehicle = 0.18 +/- 0.05 relative amount of mRNA; rHuEPO = 0.98 +/- 0.21 relative amount of mRNA; P < 0.05) and protein synthesis. Furthermore, rHuEPO injection improved the impaired wound healing and, at day 12, increased the wound-breaking strength in diabetic mice (vehicle = 12 +/- 2 g/mm; rHuEPO 21 +/- 5 g/mm; P < 0.05). Erythropoietin may have a potential application in diabetes-related wound disorders.

  11. Regenerative Skin Wound Healing in Mammals: State-of-the-Art on Growth Factor and Stem Cell Based Treatments

    Directory of Open Access Journals (Sweden)

    Bizunesh M. Borena

    2015-04-01

    Full Text Available Mammal skin has a crucial function in several life-preserving processes such as hydration, protection against chemicals and pathogens, initialization of vitamin D synthesis, excretion and heat regulation. Severe damage of the skin may therefore be life-threatening. Skin wound repair is a multiphased, yet well-orchestrated process including the interaction of various cell types, growth factors and cytokines aiming at closure of the skin and preferably resulting in tissue repair. Regardless various therapeutic modalities targeting at enhancing wound healing, the development of novel approaches for this pathology remains a clinical challenge. The time-consuming conservative wound management is mainly restricted to wound repair rather than restitution of the tissue integrity (the so-called “restitutio ad integrum”. Therefore, there is a continued search towards more efficacious wound therapies to reduce health care burden, provide patients with long-term relief and ultimately scarless wound healing. Recent in vivo and in vitro studies on the use of skin wound regenerative therapies provide encouraging results, but more protracted studies will have to determine whether the effect of observed effects are clinically significant and whether regeneration rather than repair can be achieved. For all the aforementioned reasons, this article reviews the emerging field of regenerative skin wound healing in mammals with particular emphasis on growth factor- and stem cell-based therapies.

  12. Effect of laser irradiation for healing of the skin-muscle wounds of animals

    Science.gov (United States)

    Lapina, Victoria A.; Veremei, Eduard I.; Pancovets, Evgeniy A.

    2000-05-01

    The purpose of our investigation was to study the medical effect of low-intensity laser influence on healing of skin- muscle wounds of agricultural animals. We used the laser radiation of low intensity for cub's therapy: to sucking-pigs after herniotomy and castration, to cattle cubs after skin- muscle wounds. The animals were kept under clinical observation up to their recovery. The recuperation dynamic was observed by changing of blood quotients, leukograms, sizes of inflammatory edema, general behavior of animals. The positive dynamic of blood quotients of the experimental animal groups was really higher than that in control. The analysis of wound healing after laser influence shows that wound surface of experimental group was to a great extent smaller in comparison with control group of animals. So, these facts testify about anti-inflammatory action of laser radiation, which hastens regenerative and rehabilitative processes. Analysis of the obtained experimental data has revealed the positive influence of laser irradiation on the dynamics of wound adhesion of agricultural animals.

  13. "Healing Effect of Topical Nifedipine on Skin Wounds of Diabetic Rats "

    Directory of Open Access Journals (Sweden)

    Abbas Ebadi

    2003-07-01

    Full Text Available Non-healing foot ulcers in patients with diabetes are the leading causes of complications such as infection and amputation. Ulceration is the most common single precursor to amputation and has been identified as a causative factor in 85% of lower extremity amputations. It seems that poor outcomes are generally associated with infection, peripheral vascular disease and wounds of increasing depth. Nifedipine, a calcium channel blocker that is mainly used for the treatment of cardiovascular disorders has recently been used to treat wounds caused by peripheral vascular disorders. In present study topical Nifedipine 3% has been used to treat skin wounds in normal and diabetic rats. Effects of Nifedipine were evaluated in three different phases of wound healing process. In both experiments (normal and diabetic rats topical Nifedipine significantly improved inflammatory phase. However, maturation phase was only significantly improved in diabetic rats. Nifedipine did not affect proliferation phase in either group significantly. Overall results of this study showed topical Nifedipine improved skin wound healing process in normal and diabetic rats.

  14. Photodynamic therapy (PDT) to treat a chronic skin wound in a dog

    Science.gov (United States)

    Hage, Raduan; Plapler, Hélio; Bitar, Renata A.

    2008-02-01

    Photodynamic Therapy (PDT) is an emerging and promising therapeutic modality for treatment of a wide variety of malignant and nononcologic tumors, as well as in the treatment of infected skin ulcers. This study evaluated the effectiveness of the PDT to treat a chronic skin wound that had been already subjected to several clinical and surgical type treatments in a dog. The animal with an infected chronic skin wound with 8 cm diameter in the left leg received an injection of an aqueous solution of 1% methylene blue (MB) with 2% lidocaine into the lesion. After MB injection the wound was irradiated using a LED (LED-VET MMOptics(r)) with a wavelength between 600 and 700 nm, 2 cm diameter circular light beam, of 150 mW of power, light dose of 50 J/cm2. After 3 and 6 weeks PDT was repeated and the wound was re-evaluated. Complete healing was achieved 10 weeks after the first procedure.

  15. Marine Collagen Peptides from the Skin of Nile Tilapia (Oreochromis niloticus): Characterization and Wound Healing Evaluation.

    Science.gov (United States)

    Hu, Zhang; Yang, Ping; Zhou, Chunxia; Li, Sidong; Hong, Pengzhi

    2017-03-30

    Burns can cause tremendous economic problems associated with irreparable harm to patients and their families. To characterize marine collagen peptides (MCPs) from the skin of Nile tilapia ( Oreochromis niloticus ), molecular weight distribution and amino acid composition of MCPs were determined, and Fourier transform infrared spectroscopy (FTIR) was used to analyze the chemical structure. Meanwhile, to evaluate the wound healing activity, in vitro and in vivo experiments were carried out. The results showed that MCPs prepared from the skin of Nile tilapia by composite enzymatic hydrolysis were composed of polypeptides with different molecular weights and the contents of polypeptides with molecular weights of less than 5 kDa accounted for 99.14%. From the amino acid composition, the majority of residues, accounting for over 58% of the total residues in MCPs, were hydrophilic. FTIR indicated that the main molecular conformations inside MCPs were random coil. In vitro scratch assay showed that there were significant effects on the scratch closure by the treatment of MCPs with the concentration of 50.0 μg/mL. In the experiments of deep partial-thickness scald wound in rabbits, MCPs could enhance the process of wound healing. Therefore, MCPs from the skin of Nile tilapia ( O. niloticus ) have promising applications in wound care.

  16. Effect of Postoperative Diclofenac on Anastomotic Healing, Skin Wounds and Subcutaneous Collagen Accumulation

    DEFF Research Database (Denmark)

    Klein, M; Krarup, Peter-Martin; Kongsbak, Mikkel

    2012-01-01

    Background: Retrospective studies have drawn attention to possible detrimental effects of non-steroidal anti-inflammatory drugs (NSAIDs) on the anastomotic leakage rate after colorectal resection. In this study, we examined the effects of the NSAID diclofenac on the breaking strength...... diclofenac treatment significantly inhibited collagen deposition in subcutaneous granulation tissue. Anastomotic strength and skin wound strength were not significantly affected. The ePTFE model is suitable for assessing the effect of various drugs on collagen formation and thus on wound healing....

  17. Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds.

    Science.gov (United States)

    Galeano, Mariarosaria; Altavilla, Domenica; Bitto, Alessandra; Minutoli, Letteria; Calò, Margherita; Lo Cascio, Patrizia; Polito, Francesca; Giugliano, Giovanni; Squadrito, Giovanni; Mioni, Chiara; Giuliani, Daniela; Venuti, Francesco S; Squadrito, Francesco

    2006-04-01

    Erythropoietin interacts with vascular endothelial growth factor (VEGF) and stimulates endothelial cell mitosis and motility; thus it may be of importance in the complex phenomenon of wound healing. The purpose of this study was to investigate the effect of recombinant human erythropoietin (rHuEPO) on experimental burn wounds. Randomized experiment. Research laboratory. C57BL/6 male mice weighing 25-30 g. Mice were immersed in 80 degrees C water for 10 secs to achieve a deep-dermal second degree burn. Animals were randomized to receive either rHuEPO (400 units/kg/day for 14 days in 100 microL subcutaneously) or its vehicle alone (100 microl/day distilled water for 14 days subcutaneously). On day 14 the animals were killed. Burn areas were used for histologic examination, evaluation of neoangiogenesis by immunohistochemistry, and expression (Western blot) of the specific endothelial marker CD31 as well as quantification of microvessel density, measurement of VEGF wound content (enzyme-linked immunosorbent assay), expression (Western blot) of endothelial and inducible nitric oxide synthases, and determination of wound nitric oxide (NO) products. rHuEPO increased burn wound reepithelialization and reduced the time to final wound closure. These effects were completely abated by a passive immunization with specific antibodies against erythropoietin. rHuEPO improved healing of burn wound through increased epithelial proliferation, maturation of the extracellular matrix, and angiogenesis. The hematopoietic factor augmented neoangiogenesis as suggested by the marked increase in microvessel density and by the robust expression of the specific endothelial marker CD31. Furthermore, rHuEPO enhanced the wound content of VEGF caused a marked expression of endothelial and inducible nitric oxide synthases and increased wound content of nitric oxide products. Our study suggests that rHuEPO may be an effective therapeutic approach to improve clinical outcomes after thermal injury.

  18. Acceleration of skin wound healing with tragacanth (Astragalus) preparation: an experimental pilot study in rats.

    Science.gov (United States)

    Fayazzadeh, Ehsan; Rahimpour, Sina; Ahmadi, Seyed Mohsen; Farzampour, Shahrokh; Sotoudeh Anvari, Maryam; Boroumand, Mohammad Ali; Ahmadi, Seyed Hossein

    2014-01-01

    Gum tragacanth is a natural complex mixture of polysaccharides and alkaline minerals extracted from species of Astragalus plant, which is found widely in arid regions of the Middle East. In a pilot experimental study we examined the effects of its topical application on wound healing in ten albino adult male rats. Two similar parasagittal elliptical full-thickness wounds (control vs. test samples) were created on the dorsum of each animal. Test group samples were fully covered by a thin layer of gum tragacanth daily. The extent of wound healing was evaluated by planimetric analysis on multiple occasions during the 10-day study period. On the 7th day of the study, the percent of wound closure was significantly higher in gum tragacanth-treated specimens compared to the control samples (87%±2% vs. 70%±4%, Ptragacanth in acceleration of skin wound contraction and healing. More studies are encouraged to identify the implicating agents and precisely understand the mechanism by which they exert their wound healing effects.

  19. Nanofat grafting under a split-thickness skin graft for problematic wound management.

    Science.gov (United States)

    Kemaloğlu, Cemal Alper

    2016-01-01

    Obesity and certain medical disorders make the reconstruction of skin defects challenging. Different kind of procedure can be used for these defect, besides, skin grafting is one of the most common and simplest procedure. Fat grafting and stem cells which are located in the adipose tissue have been commonly used in plastic surgery for regeneration and rejuvenation purposes. To decrease graft failure rate we performed nanofat grafting under an autologous split-thickness skin graft in our patient who had a problematic wound. The case of a 35-year-old female patient with a traumatic skin defect on her left anterior crural region is described herein. After subsequent flap reconstruction, the result was disappointing and the defect size was widened. The defect was treated with combined grafting (nanofat grafting under an autologous split-thickness skin graft). At the 6 months follow-up assessment after combined grafting, the integrity of the skin graft was good with excellent pliability. Combined grafting for problematic wounds seems to be a useful technique for cases requiring reconstruction. The potential existence of stem cells may be responsible for the successful result in our patient.

  20. [Effectiveness of vacuum sealing drainage combined with anti-taken skin graft for primary closing of open amputation wound].

    Science.gov (United States)

    Liao, Qiande; Xu, Jian; Weng, Xiao-Jun; Zhong, Da; Liu, Zhiqin; Wang, Chenggong

    2012-05-01

    To observe the effectiveness of vacuum sealing drainage (VSD) combined with anti-taken skin graft on open amputation wound by comparing with direct anti-taken skin graft. Between March 2005 and June 2010, 60 cases of amputation wounds for limbs open fractures were selected by using the random single-blind method. The amputation wounds were treated with VSD combined with anti-taken skin graft (test group, n = 30) and direct anti-taken skin graft (control group, n = 30). No significant difference was found in age, gender, injury cause, amputation level, defect size, preoperative albumin index, or injury time between 2 groups (P > 0.05). In test group, the redundant stump skin was used to prepare reattached staggered-meshed middle-thickness skin flap by using a drum dermatome dealing after amputation, which was transplanted amputation wounds, and then the skin surface was covered with VSD for continuous negative pressure drainage for 7-10 days. In control group, wounds were covered by anti-taken thickness skin flap directly after amputation, and conventional dress changing was given. To observe the survival condition of the skin graft in test group, the VSD device was removed at 8 days after operation. The skin graft survival rate, wound infection rate, reamputation rate, times of dressing change, and the hospitalization days in test group were significantly better than those in control group [ 90.0% vs. 63.3%, 3.3% vs. 20.0%, 0 vs. 13.3%, (2.0 +/- 0.5) times vs. (8.0 +/- 1.5) times, and (12.0 +/- 2.6) days vs. (18.0 +/- 3.2) days, respectively] (P 0.05). In comparison with the contralateral limbs, the muscle had disuse atrophy and decreased strength in residual limbs of 2 groups. There was significant difference in the muscle strength between normal and affected limbs (P 0.05). Compared with direct anti-taken skin graft on amputation wound, the wound could be closed primarily by using the VSD combined with anti-taken skin graft. At the same time it could achieve

  1. In vivo evaluation of wound bed reaction and graft performance after cold skin graft storage: new targets for skin tissue engineering.

    Science.gov (United States)

    Knapik, Alicia; Kornmann, Kai; Kerl, Katrin; Calcagni, Maurizio; Schmidt, Christian A; Vollmar, Brigitte; Giovanoli, Pietro; Lindenblatt, Nicole

    2014-01-01

    Surplus harvested skin grafts are routinely stored at 4 to 6°C in saline for several days in plastic surgery. The purpose of this study was to evaluate the influence of storage on human skin graft performance in an in vivo intravital microscopic setting after transplantation. Freshly harvested human full-thickness skin grafts and split-thickness skin grafts (STSGs) after storage of 0, 3, or 7 days in moist saline at 4 to 6°C were transplanted into the modified dorsal skinfold chamber, and intravital microscopy was performed to evaluate vessel morphology and angiogenic change of the wound bed. The chamber tissue was harvested 10 days after transplantation for evaluation of tissue integrity and inflammation (hematoxylin and eosin) as well as for immunohistochemistry (human CD31, murine CD31, Ki67, Tdt-mediated dUTP-biotin nick-end labelling). Intravital microscopy results showed no differences in the host angiogenic response between fresh and preserved grafts. However, STSGs and full-thickness skin grafts exhibited a trend toward different timing and strength in capillary widening and capillary bud formation. Preservation had no influence on graft quality before transplantation, but fresh STSGs showed better quality 10 days after transplantation than 7-day preserved grafts. Proliferation and apoptosis as well as host capillary in-growth and graft capillary degeneration were equal in all groups. These results indicate that cells may activate protective mechanisms under cold conditions, allowing them to maintain function and morphology. However, rewarming may disclose underlying tissue damage. These findings could be translated to a new approach for the design of full-thickness skin substitutes.

  2. Proteolytic signatures define unique thrombin-derived peptides present in human wound fluid in vivo.

    Science.gov (United States)

    Saravanan, Rathi; Adav, Sunil S; Choong, Yeu Khai; van der Plas, Mariena J A; Petrlova, Jitka; Kjellström, Sven; Sze, Siu Kwan; Schmidtchen, Artur

    2017-10-13

    The disease burden of failing skin repair and non-healing ulcers is extensive. There is an unmet need for new diagnostic approaches to better predict healing activity and wound infection. Uncontrolled and excessive protease activity, of endogenous or bacterial origin, has been described as a major contributor to wound healing impairments. Proteolytic peptide patterns could therefore correlate and "report" healing activity and infection. This work describes a proof of principle delineating a strategy by which peptides from a selected protein, human thrombin, are detected and attributed to proteolytic actions. With a particular focus on thrombin-derived C-terminal peptides (TCP), we show that distinct peptide patterns are generated in vitro by the human S1 peptidases human neutrophil elastase and cathepsin G, and the bacterial M4 peptidases Pseudomonas aeruginosa elastase and Staphylococcus aureus aureolysin, respectively. Corresponding peptide sequences were identified in wound fluids from acute and non-healing ulcers, and notably, one peptide, FYT21 (FYTHVFRLKKWIQKVIDQFGE), was only present in wound fluid from non-healing ulcers colonized by P. aeruginosa and S. aureus. Our result is a proof of principle pointing at the possibility of defining peptide biomarkers reporting distinct proteolytic activities, of potential implication for improved diagnosis of wound healing and infection.

  3. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W

    1999-01-01

    Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found in epithe......-inhibiting antibodies, we provide evidence that LN5 and its two integrin receptors (alpha6beta4 and alpha3beta1) appear necessary for wound healing to occur in MCF-10A cell culture wounds. We propose a model for healing of wounded epithelial tissues based on these results....... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...... the wound site. A similar phenomenon is observed in human skin wounds, since we also detect expression of the unprocessed alpha3 laminin subunit at the leading tip of the sheet of epidermal cells that epithelializes skin wounds in vivo. In addition, using alpha3 laminin subunit and integrin function...

  4. Influence of acidic pH on keratinocyte function and re-epithelialisation of human in vitro wounds.

    Science.gov (United States)

    Lönnqvist, Susanna; Emanuelsson, Peter; Kratz, Gunnar

    2015-01-01

    Chronic wounds are one of the greatest challenges for the healthcare system. Today, a plethora of dressings are used in the treatment of these wounds, each with specific influence on the wound environment. Due to differences in the permeability of the dressings the use will result in differences in the pH balance in the wound bed. However, little is known about how changes in the pH in the wound environment affect the different phases of the healing process. The aim of the present study was to investigate the effects of acidic pH on the regeneration phase by studying keratinocyte function in vitro and re-epithelialisation in an in vitro model of human skin. In vitro assays showed reduced viability and migration rates in human keratinocytes when pH was lowered. Real time PCR revealed differential expression of genes related to wound healing and environmental impairment. Tissue culture showed no re-epithelialisation of wounds subjected to pH 5.0 and moderate re-epithelialisation at pH 6.0, compared to controls at pH 7.4. The results indicate that lowering pH down to pH 5.0 in wounds is counterproductive in aspect of keratinocyte function which is crucial for successful wound healing.

  5. Human reconstructed skin xenografts on mice to model skin physiology.

    Science.gov (United States)

    Salgado, Giorgiana; Ng, Yi Zhen; Koh, Li Fang; Goh, Christabelle S M; Common, John E

    Xenograft models to study skin physiology have been popular for scientific use since the 1970s, with various developments and improvements to the techniques over the decades. Xenograft models are particularly useful and sought after due to the lack of clinically relevant animal models in predicting drug effectiveness in humans. Such predictions could in turn boost the process of drug discovery, since novel drug compounds have an estimated 8% chance of FDA approval despite years of rigorous preclinical testing and evaluation, albeit mostly in non-human models. In the case of skin research, the mouse persists as the most popular animal model of choice, despite its well-known anatomical differences with human skin. Differences in skin biology are especially evident when trying to dissect more complex skin conditions, such as psoriasis and eczema, where interactions between the immune system, epidermis and the environment likely occur. While the use of animal models are still considered the gold standard for systemic toxicity studies under controlled environments, there are now alternative models that have been approved for certain applications. To overcome the biological limitations of the mouse model, research efforts have also focused on "humanizing" the mice model to better recapitulate human skin physiology. In this review, we outline the different approaches undertaken thus far to study skin biology using human tissue xenografts in mice and the technical challenges involved. We also describe more recent developments to generate humanized multi-tissue compartment mice that carry both a functioning human immune system and skin xenografts. Such composite animal models provide promising opportunities to study drugs, disease and differentiation with greater clinical relevance. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  6. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds

    Science.gov (United States)

    Pfalzgraff, Anja; Brandenburg, Klaus; Weindl, Günther

    2018-01-01

    Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market. PMID:29643807

  7. Skin appendage-derived stem cells: cell biology and potential for wound repair.

    Science.gov (United States)

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.

  8. Xenobiotic metabolism in human skin and 3D human skin reconstructs: A review

    NARCIS (Netherlands)

    Gibbs, S.; Sandt, J.J.M. van de; Merk, H.F.; Lockley, D.J.; Pendlington, R.U.; Pease, C.K.

    2007-01-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental

  9. Ischaemic wound complications in above-knee amputations in relation to the skin perfusion pressure

    DEFF Research Database (Denmark)

    Holstein, P

    1980-01-01

    Healing of the stumps in 59 above-knee amputations was correlated with the local skin perfusion pressure (SPP) measured preoperatively as the external pressure required to stop isotope washout using 131I-(-) or 125I-(-) antipyrine mixed with histamine. Out of the 11 cases with an SPP below 30 mm...... ischaemic wound complications in above-knee amputations as has previously been shown to be the case in below-knee amputations....

  10. Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: Implications toward conservation, migration and wound healing.

    Science.gov (United States)

    Lisse, Thomas S; King, Benjamin L; Rieger, Sandra

    2016-02-05

    Skin wounds need to be repaired rapidly after injury to restore proper skin barrier function. Hydrogen peroxide (H2O2) is a conserved signaling factor that has been shown to promote a variety of skin wound repair processes, including immune cell migration, angiogenesis and sensory axon repair. Despite growing research on H2O2 functions in wound repair, the downstream signaling pathways activated by this reactive oxygen species in the context of injury remain largely unknown. The goal of this study was to provide a comprehensive analysis of gene expression changes in the epidermis upon exposure to H2O2 concentrations known to promote wound repair. Comparative transcriptome analysis using RNA-seq data from larval zebrafish and previously reported microarray data from a human epidermal keratinocyte line shows that H2O2 activates conserved cell migration, adhesion, cytoprotective and anti-apoptotic programs in both zebrafish and human keratinocytes. Further assessment of expression characteristics and signaling pathways revealed the activation of three major H2O2-dependent pathways, EGF, FOXO1, and IKKα. This study expands on our current understanding of the clinical potential of low-level H2O2 for the promotion of epidermal wound repair and provides potential candidates in the treatment of wound healing deficits.

  11. Evaluation of subcutaneous infiltration of autologous platelet-rich plasma on skin-wound healing in dogs.

    Science.gov (United States)

    Farghali, Haithem A; AbdElKader, Naglaa A; Khattab, Marwa S; AbuBakr, Huda O

    2017-04-28

    Platelet-rich plasma (PRP) is known to be rich in growth factors and cytokines, which are crucial to the healing process. This study investigate the effect of subcutaneous (S/C) infiltration of autologous PRP at the wound boundaries on wound epithelization and contraction. Five adult male mongrel dogs were used. Bilateral acute full thickness skin wounds (3 cm diameter) were created on the thorax symmetrically. Right side wounds were subcutaneously infiltrated with activated PRP at day 0 and then every week for three consecutive weeks. The left wound was left as control. Wound contraction and epithelization were clinically evaluated. Expression of collagen type I (COLI) A2, (COLIA2),histopathology and immunohistochemical (IHC) staining of COLI α1 (COLIA1) were performed on skin biopsies at first, second and third weeks. The catalase activity, malondialdehyde (MDA) concentration and matrix metalloproteinase (MMP) 9 (MMP-9) activity were assessed in wound fluid samples. All data were analysed statistically. The epithelization percent significantly increased in the PRP-treated wound at week 3. Collagen was well organized in the PRP-treated wounds compared with control wounds at week 3. The COLIA2 expression and intensity of COLIA1 significantly increased in PRP-treated wounds. MDA concentration was significantly decreased in PRP-treated wound at week 3. The catalase activity exhibited no difference between PRP treated and untreated wounds. The activity of MMP-9 reached its peak at the second week and was significantly high in the PRP-treated group. S/C infiltration of autologous PRP at the wound margins enhances the wound epithelization and reduces the scar tissue formation. © 2017 The Author(s).

  12. Low levels of glutathione are sufficient for survival of keratinocytes after UV irradiation and for healing of mouse skin wounds.

    Science.gov (United States)

    Telorack, Michèle; Abplanalp, Jeannette; Werner, Sabine

    2016-08-01

    Reduced levels of the cellular antioxidant glutathione are associated with premature skin aging, cancer and impaired wound healing, but the in vivo functions of glutathione in the skin remain largely unknown. Therefore, we analyzed mice lacking the modifier subunit of the glutamate cysteine ligase (Gclm), the enzyme that catalyzes the rate-limiting step of glutathione biosynthesis. Glutathione levels in the skin of these mice were reduced by 70 %. However, neither skin development and homeostasis, nor UVA- or UVB-induced apoptosis in the epidermis were affected. Histomorphometric analysis of excisional wounds did not reveal wound healing abnormalities in young Gclm-deficient mice, while the area of hyperproliferative epithelium as well as keratinocyte proliferation were affected in aged mice. These findings suggest that low levels of glutathione are sufficient for wound repair in young mice, but become rate-limiting upon aging.

  13. Black and white human skin differences

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Maibach, H I

    1979-01-01

    This review of black and white human skin differences emphasizes the alleged importance of factors other than the obvious, i.e., skin color. Physicochemical differences and differences in susceptibility to irritants and allergens suggest a more resistant black than white skin. Differences appear...

  14. A Comparison of Healing Effects of Propolis and Silver Sulfadiazine on Full Thickness Skin Wounds in Rats

    Directory of Open Access Journals (Sweden)

    E. Moghtaday Khorasgani*, A. H. Karimi and M. R. Nazem

    2010-04-01

    Full Text Available Healing effects of propolis and silver sulfadiazine (SS on skin wounds in rats were compared using qualitative and quantitative parameters and histopathological findings. A total of 30 full thickness skin wounds were created on dorsal aspects of 10 rats; i.e., three wounds on each rat. Of these wounds, 10 each were allocated to group A (propolis, group B (SS and group C (control. The skin wounds in the rats of groups A, B and C were covered daily for 14 days with 50% propolis cream, SS skin cream and bepanthane cream (control, respectively. Postoperatively, the wound surfaces were examined macroscopically and the healing process and the rates of wound expansion, contraction and epithelialization processes were quantitatively analyzed. As a result, propolis was found in general to have a better wound healing effect than others. At the 10th day of experiment histopathologically, there was inflammatory reaction with infiltration of lymphocytes, macrophages and neutrophils and proliferation of fibroblastic loose connective tissue in dermis of rats of all groups. The severity of these changes was lower in propolis treated group compared to other two groups.

  15. Effects of carbon dioxide therapy on the healing of acute skin wounds induced on the back of rats

    Directory of Open Access Journals (Sweden)

    Maria Vitória Carmo Penhavel

    2013-05-01

    Full Text Available PURPOSE: To evaluate the healing effect of carbon dioxide therapy on skin wounds induced on the back of rats. METHODS: Sixteen rats underwent excision of a round dermal-epidermal dorsal skin flap of 2.5 cm in diameter. The animals were divided into two groups, as follows: carbon dioxide group - subcutaneous injections of carbon dioxide on the day of operation and at three, six and nine days postoperatively; control group - no postoperative wound treatment. Wounds were photographed on the day of operation and at six and 14 days postoperatively for analysis of wound area and major diameter. All animals were euthanized on day 14 after surgery. The dorsal skin and the underlying muscle layer containing the wound were resected for histopathological analysis. RESULTS: There was no statistically significant difference between groups in the percentage of wound closure, in histopathological findings, or in the reduction of wound area and major diameter at 14 days postoperatively. CONCLUSION: Under the experimental conditions in which this study was conducted, carbon dioxide therapy had no effects on the healing of acute skin wounds in rats.

  16. Wound healing from dermal grafts containing CD34+ cells is comparable to split-thickness skin micrografts

    DEFF Research Database (Denmark)

    Nuutila, Kristo; Singh, Mansher; Kruse, Carla

    2017-01-01

    BACKGROUND:: Epidermal stem cells present in the skin appendages of the dermis might be crucial in wound healing. In this study we located these cells in the dermis and evaluated their contribution to full-thickness wound healing in a porcine model. METHODS:: Four sequentially deeper 0.35mm thick...

  17. Quality system and audit of human skin allografts

    International Nuclear Information System (INIS)

    Van Baare, J.

    1999-01-01

    Allograft skin has long been recognised as an important resource in the management of bum wounds. The important issue in skin banking is fust to guarantee safety of human cadaveric donor skin. Second, the quality of the allografts should be assured. The Euro Skin Bank, established in 1976, is located in The Netherlands. Not only in The Netherlands, but in many other (European) countries no specific regulation exists for tissue banking. With respect to skin banking in The Netherlands the Euro Skin Bank requested the government what regulations should be applied on their activities. It was stated in 1994 that human allografl skin should be regarded as a phan-naceutical drug, a magistral preparation. The Euro Skin Bank should therefore be subjected to the guidelines given for the Good Laboraton, Practices and Good Manufacturing Practices to process allogmft skin. Nevertheless, it was in the opinion of the Euro Skin Bank that regulating human tissue as a pharmaceutical drug was not sufficient e.g. no specific regulations for serologic testing of the tissue donor is given, which should be one of the most important issues in tissue banking. Recently the government has published new legislation for tissue banks in The Netherlands: on July I st, 1998, a new legislation was enforced concerning organ and tissue donation and on November I st, 1998, quality requirements for organ and tissue banks are published. The European Community discussed the possibility to bring all animal and human tissues under the Medical Device Directive (MDD). Soon it was proposed not to incorporate viable hw-nan tissue into the MDD. Last year all human tissue was excluded from the MDD. Lack of European regulations has been resulted in national laws, e.g. in The Netherlands, Germany and France. Possibly there might be a more significant role for the European Association of Tissue Banks in the near future for European legislation on tissue banking. In order to have a standard quality system wmch is

  18. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process.

    Science.gov (United States)

    Flegg, Jennifer A; Menon, Shakti N; Maini, Philip K; McElwain, D L Sean

    2015-01-01

    Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

  19. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip.

    Science.gov (United States)

    Li, Ying; Wang, Shiwen; Huang, Rong; Huang, Zhuo; Hu, Binfeng; Zheng, Wenfu; Yang, Guang; Jiang, Xingyu

    2015-03-09

    Bacterial cellulose (BC) is a kind of nanobiomaterial for tissue engineering. How the nanoscale structure of BC affects skin wound repair is unexplored. Here, the hierarchical structure of BC films and their different effects on skin wound healing were studied both in vitro and in vivo. The bottom side of the BC film had a larger pore size, and a looser and rougher structure than that of the top side. By using a microfluidics-based in vitro wound healing model, we revealed that the bottom side of the BC film can better promote the migration of cells to facilitate wound healing. Furthermore, the full-thickness skin wounds on Wistar rats demonstrated that, compared with gauze and the top side of the BC film, the wound covered by the bottom side of the BC film showed faster recovery rate and less inflammatory response. The results indicate that the platform based on the microfluidic chip provide a rapid, reliable, and repeatable method for wound dressing screening. As an excellent biomaterial for wound healing, the BC film displays different properties on different sides, which not only provides a method to optimize the biocompatibility of wound dressings but also paves a new way to building heterogeneous BC-based biomaterials for complex tissue engineering.

  20. Topical application of Acheflan on rat skin injury accelerates wound healing: a histopathological, immunohistochemical and biochemical study.

    Science.gov (United States)

    Perini, Jamila Alessandra; Angeli-Gamba, Thais; Alessandra-Perini, Jessica; Ferreira, Luiz Claudio; Nasciutti, Luiz Eurico; Machado, Daniel Escorsim

    2015-06-30

    Dermal wound healing involves a cascade of complex events including angiogenesis and extracellular matrix remodeling. Several groups have focused in the study of the skin wound healing activity of natural products. The phytomedicine Acheflan®, and its main active constituent is the oil from Cordia verbenacea which has known anti-inflammatory, analgesic and antimicrobial activities. To our knowledge, no investigation has evaluated the effect of Acheflan® in an experimental model of skin wound healing. The present study has explored the wound healing property of Acheflan® and has compared it with topical effectiveness of collagenase and fibrinolysin by using Wistar rat cutaneous excision wound model. Animals were divided into four groups: untreated animals are negative control (NC), wounds were treated topically every day with Collagenase ointment (TC), with Fibrinolysin ointment (TF) and with cream Acheflan (TAc). Skin samples were collected on zero, 8th and 15th days after wounding. The healing was assessed by hematoxylin-eosin (HE), picrosirius red, hydoxyproline content and immunohistochemical analysis of the vascular endothelial growth factor (VEGF) and matrix metalloprotease-9 (MMP-9). Statistical analysis was done by ANOVA and Student t-test (p Cordia verbenacea) and TC possess higher therapeutic properties for wound healing compared with TF. These ointments seem to accelerate wound healing, probably due to their involvement with the increase of angiogenesis and dermal remodeling.

  1. Predictive value of skin perfusion pressure after endovascular therapy for wound healing in critical limb ischemia.

    Science.gov (United States)

    Utsunomiya, Makoto; Nakamura, Masato; Nagashima, Yoshinori; Sugi, Kaoru

    2014-10-01

    To determine the predictive value of skin perfusion pressure (SPP) for wound healing after endovascular therapy (EVT). Between May 2004 and March 2011, 113 consecutive patients (84 men; mean age 71.5±12.5 years) with CLI (123 limbs) underwent successful balloon angioplasty ± stenting (flow from >1 vessel to the foot without bypass) and were physically able to undergo SPP measurement before and within 48 hours after EVT. The status of wound healing was recorded over a mean follow-up of 17.4±12.4 months. The wound healing rate was 78.9% (97 limbs of 89 patients). SPP values after EVT were significantly higher in these patients than in the 24 patients (26 limbs) without wound healing (44.2±15.6 mmHg vs. 27.5±10.4 mmHg, pwound healing had an area under the curve of 0.81 (95% CI 0.723 to 0.899, pwound healing was 30 mmHg, with a sensitivity of 81.4% and a specificity of 69.2%. Binary logistic regression analysis demonstrated SPP after EVT to be an independent predictor of wound healing (pwound healing with SPP values >30 mmHg, 40 mmHg, and 50 mmHg were 69.8%, 86.3%, and 94.5%, respectively. SPP after EVT is an independent predictor of wound healing in patients with CLI. In our study, an SPP value of 30 mmHg was shown to be the best cutoff for prediction of wound healing after EVT.

  2. A novel model of human skin pressure ulcers in mice.

    Directory of Open Access Journals (Sweden)

    Andrés A Maldonado

    Full Text Available INTRODUCTION: Pressure ulcers are a prevalent health problem in today's society. The shortage of suitable animal models limits our understanding and our ability to develop new therapies. This study aims to report on the development of a novel and reproducible human skin pressure ulcer model in mice. MATERIAL AND METHODS: Male non-obese, diabetic, severe combined immunodeficiency mice (n = 22 were engrafted with human skin. A full-thickness skin graft was placed onto 4×3 cm wounds created on the dorsal skin of the mice. Two groups with permanent grafts were studied after 60 days. The control group (n = 6 was focused on the process of engraftment. Evaluations were conducted with photographic assessment, histological analysis and fluorescence in situ hybridization (FISH techniques. The pressure ulcer group (n = 12 was created using a compression device. A pressure of 150 mmHg for 8 h, with a total of three cycles of compression-release was exerted. Evaluations were conducted with photographic assessment and histological analysis. RESULTS: Skin grafts in the control group took successfully, as shown by visual assessment, FISH techniques and histological analysis. Pressure ulcers in the second group showed full-thickness skin loss with damage and necrosis of all the epidermal and dermal layers (ulcer stage III in all cases. Complete repair occurred after 40 days. CONCLUSIONS: An inexpensive, reproducible human skin pressure ulcer model has been developed. This novel model will facilitate the development of new clinically relevant therapeutic strategies that can be tested directly on human skin.

  3. Biostimulative effects of 809 nm diode laser on cutaneous skin wounds

    Science.gov (United States)

    Solmaz, Hakan; Gülsoy, Murat; Ülgen, Yekta

    2015-03-01

    The use of low-level laser therapy (LLLT) for therapeutic purposes in medicine has become widespread recently. There are many studies in literature supporting the idea of therapeutic effects of laser irradiation on biological tissues. The aim of this study is to investigate the biostimulative effect of 809nm infrared laser irradiation on the healing process of cutaneous incisional skin wounds. 3-4 months old male Wistar Albino rats weighing 300 to 350 gr were used throughout this study. Lowlevel laser therapy was applied through local irradiation of 809nm infrared laser on open skin incisional wounds of 1 cm length. Each animal had six identical incisions on their right and left dorsal region symmetrical to each other. The wounds were separated into three groups of control, 1 J/cm2 and 3 J/cm2 of laser irradiation. Two of these six wounds were kept as control group and did not receive any laser application. Rest of the incisions was irradiated with continuous diode laser of 809nm in wavelength and 20mW power output. Two of them were subjected to laser irradiation of 1 J/cm2 and the other two were subjected to laser light with energy density of 3 J/cm2. Biostimulation effects of irradiation were studied by means of tensile strength tests and histological examinations. Wounded skin samples were morphologically examined and removed for mechanical and histological examinations at days 3, 5 and 7 following the laser applications. Three of the six fragments of skin incisions including a portion of peripheral healthy tissue from each animal were subjected to mechanical tests by means of a universal tensile test machine, whereas the other three samples were embedded in paraffin and stained with hematoxylin and eosin for histological examinations. The findings of the study show that tissue repair following laser irradiation of 809nm has been accelerated in terms of tissue morphology, strength and cellular content. These results seem to be consistent with the results of many

  4. 3D bioprinting of functional human skin: production and in vivo analysis.

    Science.gov (United States)

    Cubo, Nieves; Garcia, Marta; Del Cañizo, Juan F; Velasco, Diego; Jorcano, Jose L

    2016-12-05

    Significant progress has been made over the past 25 years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin, or for the establishment of in vitro human skin models. In this sense, laboratory-grown skin substitutes containing dermal and epidermal components offer a promising approach to skin engineering. In particular, a human plasma-based bilayered skin generated by our group, has been applied successfully to treat burns as well as traumatic and surgical wounds in a large number of patients in Spain. There are some aspects requiring improvements in the production process of this skin; for example, the relatively long time (three weeks) needed to produce the surface required to cover an extensive burn or a large wound, and the necessity to automatize and standardize a process currently performed manually. 3D bioprinting has emerged as a flexible tool in regenerative medicine and it provides a platform to address these challenges. In the present study, we have used this technique to print a human bilayered skin using bioinks containing human plasma as well as primary human fibroblasts and keratinocytes that were obtained from skin biopsies. We were able to generate 100 cm 2 , a standard P100 tissue culture plate, of printed skin in less than 35 min (including the 30 min required for fibrin gelation). We have analysed the structure and function of the printed skin using histological and immunohistochemical methods, both in 3D in vitro cultures and after long-term transplantation to immunodeficient mice. In both cases, the generated skin was very similar to human skin and, furthermore, it was indistinguishable from bilayered dermo-epidermal equivalents, handmade in our laboratories. These results demonstrate that 3D bioprinting is a suitable technology to generate bioengineered skin for therapeutical and industrial applications in an automatized manner.

  5. Health-related quality of life and patient burden in patients with split-thickness skin graft donor site wounds.

    Science.gov (United States)

    Humrich, Marco; Goepel, Lisa; Gutknecht, Mandy; Lohrberg, David; Blessmann, Marco; Bruning, Guido; Diener, Holger; Dissemond, Joachim; Hartmann, Bernd; Augustin, Matthias

    2018-04-01

    Split-thickness skin grafting is a common procedure to treat different kinds of wounds. This systematic, multicentre, observational, cross-sectional study of adult patients with split-thickness skin graft (STSG) donor site wounds was conducted to evaluate quality of life (QoL) impairments caused by donor site wounds following split-thickness skin grafting. Therefore, 112 patients from 12 wound centres in Germany were examined based on patient and physician questionnaires as well as a physical examination of the donor site wound. Most indications for skin grafting were postsurgical treatment (n = 51; 42.5%) and chronic wounds (n = 47; 39.2%). European QoL visual analoque scale (EQ VAS) averaged 64.7 ± 23.3, European QoL 5 dimensions (EQ-5D) averaged 77.4 ± 30.0. Wound-QoL (range: 0-4) was rated 0.8 ± 0.8 post-surgery and 0.4 ± 0.6 at the time of survey (on average 21 weeks between the time points). Compared to averaged Wound-QoL scores of chronic wounds donor site-related QoL impairments in split-thickness skin-graft patients were less pronounced. There were significant differences in patient burden immediately after surgery compared to the time of the survey, with medium effect sizes. This supports the hypothesis that faster healing of the donor site wound leads to more favourable patient-reported outcomes. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  6. Development of human skin equivalents to unravel the impaired skin barrier in atopic dermatitis skin

    NARCIS (Netherlands)

    Eweje, M.O.

    2016-01-01

    The studies in this thesis describes the barrier defects in Atopic Dermatitis (AD) skin and various techniques to develop AD Human Skin Equivalents (HSEs) which can be used to better understand the role of several factors in the pathogenesis of AD skin. The results described show that Inflammation

  7. Middle age has a significant impact on gene expression during skin wound healing in male mice.

    Science.gov (United States)

    Yanai, Hagai; Lumenta, David Benjamin; Vierlinger, Klemens; Hofner, Manuela; Kitzinger, Hugo-Benito; Kamolz, Lars-Peter; Nöhammer, Christa; Chilosi, Marco; Fraifeld, Vadim E

    2016-08-01

    The vast majority of research on the impact of age on skin wound healing (WH) compares old animals to young ones. The middle age is often ignored in biogerontological research despite the fact that many functions that decline in an age-dependent manner have starting points in mid-life. With this in mind, we examined gene expression patterns during skin WH in late middle-aged versus young adult male mice, using the head and back punch models. The rationale behind this study was that the impact of age would first be detectable at the transcriptional level. We pinpointed several pathways which were over-activated in the middle-aged mice, both in the intact skin and during WH. Among them were various metabolic, immune-inflammatory and growth-promoting pathways. These transcriptional changes were much more pronounced in the head than in the back. In summary, the middle age has a significant impact on gene expression in intact and healing skin. It seems that the head punch model is more sensitive to the effect of age than the back model, and we suggest that it should be more widely applied in aging research on wound healing.

  8. [Clinical application of artificial dermis combined with basic fibroblast growth factor in the treatment of cicatrix and deep skin wounds].

    Science.gov (United States)

    Liu, Yang; Zhang, Yilan; Huang, Yalan; Luo, Gaoxing; Peng, Yizhi; Yan, Hong; Luo, Qizhi; Zhang, Jiaping; Wu, Jun; Peng, Daizhi

    2016-04-01

    To observe the effects of artificial dermis combined with basic fibroblast growth factor (bFGF) on the treatment of cicatrix and deep skin wounds. The clinical data of 72 patients with wounds repaired with artificial dermis, hospitalized in our unit from October 2010 to April 2015, conforming to the study criteria, were retrospectively analyzed. The types of wounds were wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone, in a total number of 102. Wounds were divided into artificial dermis group (A, n=60) and artificial dermis+ bFGF group (B, n=42) according to whether or not artificial dermis combined with bFGF. In group A, after release and resection of cicatrices or thorough debridement of deep skin wounds, artificial dermis was directly grafted to wounds in the first stage operation. After complete vascularization of artificial dermis, wounds were repaired with autologous split-thickness skin grafts in the second stage operation. In group B, all the procedures were exactly the same as those in group A except that artificial dermis had been soaked in bFGF for 30 min before grafting. Operation area, complete vascularization time of artificial dermis, survival of skin grafts, and the follow-up condition of wounds in the two groups were recorded. Data were processed with t test and Fisher's exact test. (1) Operation areas of wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in the two groups were about the same (with t values from -1.853 to -0.200, P values above 0.05). Complete vascularization time of artificial dermis in wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in group B were respectively (15.6 ± 2.9), (14.7 ± 2.7), and (20.3 ± 4.4) d, and they were shorter by an

  9. [Treatment of the infected wound with exposed silver-ring vascular graft and delayed Thiersch method of skin transplant covering ].

    Science.gov (United States)

    Nenezić, Dragoslav; Pandaitan, Simon; Ilijevski, Nenad; Matić, Predrag; Gajin, Predag; Radak, Dorde

    2005-01-01

    Although the incidence of prosthetic infection is low (1%-6%), the consequences (limb loss or death) are dramatic for a patient, with high mortality rate (25%-75%) and limb loss in 40%-75% of cases. In case of Szilagyi's grade III infection, standard procedure consists of the excision of prosthesis and wound debridement. Alternative method is medical treatment. This is a case report of a patient with prosthetic infection of Silver-ring graft, used for femoropopliteal reconstruction, in whom an extreme skin necrosis developed in early postoperative period. This complication was successfully treated medically. After repeated debridement and wound-packing, the wound was covered using Thiersch skin graft.

  10. Armpits, Belly Buttons and Chronic Wounds: The ABCs of Our Body Bacteria

    Science.gov (United States)

    ... and Chronic Wounds: The ABCs of Our Body Bacteria By Alisa Machalek and Allison MacLachlan Posted April ... treating skin and other conditions. Chronic Wounds and Bacteria Bacteria from human skin grown on agar in ...

  11. Full-thickness skin wound healing using autologous keratinocytes and dermal fibroblasts with fibrin: bilayered versus single-layered substitute.

    Science.gov (United States)

    Idrus, Ruszymah Bt Hj; Rameli, Mohd Adha bin P; Low, Kiat Cheong; Law, Jia Xian; Chua, Kien Hui; Latiff, Mazlyzam Bin Abdul; Saim, Aminuddin Bin

    2014-04-01

    Split-skin grafting (SSG) is the gold standard treatment for full-thickness skin defects. For certain patients, however, an extensive skin lesion resulted in inadequacies of the donor site. Tissue engineering offers an alternative approach by using a very small portion of an individual's skin to harvest cells for propagation and biomaterials to support the cells for implantation. The objective of this study was to determine the effectiveness of autologous bilayered tissue-engineered skin (BTES) and single-layer tissue-engineered skin composed of only keratinocytes (SLTES-K) or fibroblasts (SLTES-F) as alternatives for full-thickness wound healing in a sheep model. Full-thickness skin biopsies were harvested from adult sheep. Isolated fibroblasts were cultured using medium Ham's F12: Dulbecco modified Eagle medium supplemented with 10% fetal bovine serum, whereas the keratinocytes were cultured using Define Keratinocytes Serum Free Medium. The BTES, SLTES-K, and SLTES-F were constructed using autologous fibrin as a biomaterial. Eight full-thickness wounds were created on the dorsum of the body of the sheep. On 4 wounds, polyvinyl chloride rings were used as chambers to prevent cell migration at the edge. The wounds were observed at days 7, 14, and 21. After 3 weeks of implantation, the sheep were euthanized and the skins were harvested. The excised tissues were fixed in formalin for histological examination via hematoxylin-eosin, Masson trichrome, and elastin van Gieson staining. The results showed that BTES, SLTES-K, and SLTES-F promote wound healing in nonchambered and chambered wounds, and BTES demonstrated the best healing potential. In conclusion, BTES proved to be an effective tissue-engineered construct that can promote the healing of full-thickness skin lesions. With the support of further clinical trials, this procedure could be an alternative to SSG for patients with partial- and full-thickness burns.

  12. Characterization of ionizing radiation effects on human skin allografts

    International Nuclear Information System (INIS)

    Bourroul, Selma Cecilia

    2004-01-01

    The skin has a fundamental role in the viability of the human body. In the cases of extensive wounds, allograft skin provides an alternative to cover temporarily the damaged areas. After donor screening and preservation in glycerol (above 85%), the skin can be stored in the Skin Banks. The glycerol at this concentration has a bacteriostatic effect after certain time of preservation. On the other hand, skin sterilization by ionizing radiation may reduces the quarantine period for transplantation in patients and its safety is considered excellent. The objectives of this work were to establish procedures using two sources of ionizing radiation for sterilization of human skin allograft, and to evaluate the skin after gamma and electron beam irradiation. The analysis of stress-strain intended to verify possible effects of the radiation on the structure of preserved grafts. Skin samples were submitted to doses of 25 kGy and 50 kGy in an irradiator of 60 Co and in an electron beam accelerator. Morphology and ultra-structure studies were also accomplished. The samples irradiated with a dose of 25 kGy seemed to maintain the bio mechanic characteristics. The gamma irradiated samples with a dose of 50 kGy and submitted to an electron beam at doses of 25 kGy and 50 kGy presented significant differences in the values of the elasticity modulus, in relation to the control. The analysis of the ultramicrographies revealed modifications in the structure and alterations in the pattern of collagen fibrils periodicity of the irradiated samples. (author)

  13. Neutralisation of uPA with a monoclonal antibody reduces plasmin formation and delays skin wound healing in tPA-deficient mice

    DEFF Research Database (Denmark)

    Jögi, Annika; Rønø, Birgitte; Lund, Ida K

    2010-01-01

    Proteolytic degradation by plasmin and metalloproteinases is essential for epidermal regeneration in skin wound healing. Plasminogen deficient mice have severely delayed wound closure as have mice simultaneously lacking the two plasminogen activators, urokinase-type plasminogen activator (u......PA) and tissue-type plasminogen activator (tPA). In contrast, individual genetic deficiencies in either uPA or tPA lead to wound healing kinetics with no or only slightly delayed closure of skin wounds....

  14. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway.

    Science.gov (United States)

    Tandon, Nina; Cimetta, Elisa; Villasante, Aranzazu; Kupferstein, Nicolette; Southall, Michael D; Fassih, Ali; Xie, Junxia; Sun, Ying; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been implied in many biological mechanisms, including wound healing, which has been associated with transient electrical currents not present in intact skin. One method to generate electrical signals similar to those naturally occurring in wounds is by supplementation of galvanic particles dispersed in a cream or gel. We constructed a three-layered model of skin consisting of human dermal fibroblasts in hydrogel (mimic of dermis), a hydrogel barrier layer (mimic of epidermis) and galvanic microparticles in hydrogel (mimic of a cream containing galvanic particles applied to skin). Using this model, we investigated the effects of the properties and amounts of Cu/Zn galvanic particles on adult human dermal fibroblasts in terms of the speed of wound closing and gene expression. The collected data suggest that the effects on wound closing are due to the ROS-mediated enhancement of fibroblast migration, which is in turn mediated by the BMP/SMAD signaling pathway. These results imply that topical low-grade electric currents via microparticles could enhance wound healing. © 2013 Elsevier Inc. All rights reserved.

  15. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair.

    Science.gov (United States)

    Huang, Sha; Lu, Gang; Wu, Yan; Jirigala, Enhe; Xu, Yongan; Ma, Kui; Fu, Xiaobing

    2012-04-01

    Bone-marrow-derived mesenchymal stem cells (BM-MSCs) can contribute to wound healing after skin injury. However, the role of BM-MSCs on repairing skin appendages in renewal tissues is incompletely explored. Moreover, most preclinical studies suggest that the therapeutic effects afforded by BM-MSCs transplantation are short-lived and relatively unstable. To assess whether engrafted bone-marrow-derived mesenchymal stem cells via a delivery system can participate in cutaneous wound healing and sweat-gland repair in mice. For safe and effective delivery of BM-MSCs to wounds, epidermal growth factor (EGF) microspheres were firstly developed to both support cells and maintain appropriate stimuli, then cell-seeded microspheres were incorporated with biomimetic scaffolds and thus fabricated an engineered skin construct with epithelial differentiation and proliferative potential. The applied efficacy was examined by implanting them into excisional wounds on both back and paws of hind legs in mice. After 3 weeks, BM-MSC-engineered skin (EGF loaded) treated wounds exhibited accelerated healing with increased re-epithelialization rates and less skin contraction. Furthermore, histological and immunofluorescence staining analysis revealed sweat glands-like structures became more apparent in BM-MSC-engineered skin (EGF loaded) treated wounds but the number of implanted BM-MSCs were decreased gradually in later phases of healing progression. Our study suggests that BM-MSCs delivered by this EGF microspheres-based engineered skin model may be a promising strategy to repair sweat glands and improve cutaneous wound healing after injury and success in this study might provide a potential benefit for BM-MSCs administration clinically. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Early burn wound excision and skin grafting postburn trauma restores in vivo neutrophil delivery to inflammatory lesions

    International Nuclear Information System (INIS)

    Tchervenkov, J.I.; Epstein, M.D.; Silberstein, E.B.; Alexander, J.W.

    1988-01-01

    This study assessed the effect of early vs delayed postburn wound excision and skin grafting on the in vivo neutrophil delivery to a delayed-type hypersensitivity (DTH) reaction and a bacterial skin lesion (BSL). Male Lewis rats were presensitized to keyhole-limpet hemocyanin. Group 1 comprised sham controls. Groups 2 through 4 were given a 30% 3 degrees scald burn, but the burn wounds were excised, and skin was grafted on days 1, 3, and 7, respectively, after the burn. Group 5 comprised burn controls. Twelve days after burn trauma, all rats were injected at different intervals (during a 24-hour period) with a trio of intradermal injections of keyhole-limpet hemocyanin, Staphylococcus aureus 502A, and saline at different sites. In vivo neutrophil delivery to these dermal lesions was determined by injecting indium in 111 oxyquinoline-labeled neutrophils isolated from similarly treated groups of rats. Neutrophil delivery to DTH and BSL lesions was restored to normal by excision and skin grafting of the burn wound one day after burn trauma. Waiting three days after burn trauma to excise and skin graft the wound partially, but not completely, restored the in vivo neutrophil delivery to DTH and BSL lesions. Waiting one week to excise and skin graft a burn wound resulted in no improvement in neutrophil delivery to DTH and BSL dermal lesions. It was concluded that burn wound excision and skin grafting immediately after burn trauma restored in vivo neutrophil delivery to a BSL and DTH dermal lesion. This may, in part, explain the beneficial effect of early aggressive burn wound debridement in patients with burn injuries

  17. Mechanical compression attenuates normal human bronchial epithelial wound healing

    Directory of Open Access Journals (Sweden)

    Malavia Nikita

    2009-02-01

    Full Text Available Abstract Background Airway narrowing associated with chronic asthma results in the transmission of injurious compressive forces to the bronchial epithelium and promotes the release of pro-inflammatory mediators and the denudation of the bronchial epithelium. While the individual effects of compression or denudation are well characterized, there is no data to elucidate how these cells respond to the application of mechanical compression in the presence of a compromised epithelial layer. Methods Accordingly, differentiated normal human bronchial epithelial cells were exposed to one of four conditions: 1 unperturbed control cells, 2 single scrape wound only, 3 static compression (6 hours of 30 cmH2O, and 4 6 hours of static compression after a scrape wound. Following treatment, wound closure rate was recorded, media was assayed for mediator content and the cytoskeletal network was fluorescently labeled. Results We found that mechanical compression and scrape injury increase TGF-β2 and endothelin-1 secretion, while EGF content in the media is attenuated with both injury modes. The application of compression after a pre-existing scrape wound augmented these observations, and also decreased PGE2 media content. Compression stimulated depolymerization of the actin cytoskeleton and significantly attenuated wound healing. Closure rate was partially restored with the addition of exogenous PGE2, but not EGF. Conclusion Our results suggest that mechanical compression reduces the capacity of the bronchial epithelium to close wounds, and is, in part, mediated by PGE2 and a compromised cytoskeleton.

  18. Is rate of skin wound healing associated with aging or longevity phenotype?

    Science.gov (United States)

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Fraifeld, Vadim E

    2011-12-01

    Wound healing (WH) is a fundamental biological process. Is it associated with a longevity or aging phenotype? In an attempt to answer this question, we compared the established mouse models with genetically modified life span and also an altered rate of WH in the skin. Our analysis showed that the rate of skin WH in advanced ages (but not in the young animals) may be used as a marker for biological age, i.e., to be indicative of the longevity or aging phenotype. The ability to preserve the rate of skin WH up to an old age appears to be associated with a longevity phenotype, whereas a decline in WH-with an aging phenotype. In the young, this relationship is more complex and might even be inversed. While the aging process is likely to cause wounds to heal slowly, an altered WH rate in younger animals could indicate a different cellular proliferation and/or migration capacity, which is likely to affect other major processes such as the onset and progression of cancer. As a point for future studies on WH and longevity, using only young animals might yield confusing or misleading results, and therefore including older animals in the analysis is encouraged.

  19. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    International Nuclear Information System (INIS)

    Walter, M.N.M.; Wright, K.T.; Fuller, H.R.; MacNeil, S.; Johnson, W.E.B.

    2010-01-01

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-β1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  20. Chronic effects of UV on human skin

    International Nuclear Information System (INIS)

    Cesarini, J.P.

    1996-01-01

    Chronic exposures and acute accidents of the skin to UV has been recognized as an important risk for skin cancers in human. Attempts have been made with mathematical models to correlate the ambient UV dose and occupational irradiations with the risk of skin cancers. Development of accurate global measurements of solar irradiance and personal dosimetry is expected in the future in order to reduce the exposure of the general population, to precise the measures to be taken for indoor and outdoor workers. (author)

  1. Coverage of Deep Cutaneous Wounds Using Dermal Template in Combination with Negative-pressure Therapy and Subsequent Skin Graft

    Science.gov (United States)

    Chang, Alexandre A.; Lobato, Rodolfo C.; Nakamoto, Hugo A.; Tuma, Paulo; Ferreira, Marcus C.

    2014-01-01

    Background: We consider the use of dermal matrix associated with a skin graft to cover deep wounds in the extremities when tendon and bone are exposed. The objective of this article was to evaluate the efficacy of covering acute deep wounds through the use of a dermal regeneration template (Integra) associated with vacuum therapy and subsequent skin grafting. Methods: Twenty patients were evaluated prospectively. All of them had acute (up to 3 weeks) deep wounds in the limbs. We consider a deep wound to be that with exposure of bone, tendon, or joint. Results: The average area of integration of the dermal regeneration template was 86.5%. There was complete integration of the skin graft over the dermal matrix in 14 patients (70%), partial integration in 5 patients (25%), and total loss in 1 case (5%). The wound has completely closed in 95% of patients. Conclusions: The use of Integra dermal template associated with negative-pressure therapy and skin grafting showed an adequate rate of resolution of deep wounds with low morbidity. PMID:25289363

  2. Wound healing in above-knee amputations in relation to skin perfusion pressure

    DEFF Research Database (Denmark)

    Holstein, P; Dovey, H; Lassen, N A

    1979-01-01

    In 59 above-knee amputations healing of the stumps was correlated with the local skin perfusion pressure (SPP) measured preoperatively as the external pressure required to stop isotope washout using 1318-- or 125I--antipyrine mixed with histamine. Out of the 11 cases with an SPP below 30 mm...... on the stumps was on average only slightly and insignificantly higher than the preoperative values, explaining why the preoperative values related so closely to the postoperative clinical course. We conclude that the SPP can be used to predict ischaemic wound complications in above-knee amputations as has...... previously been shown to be the case in below-knee amputations....

  3. Effect of Hevea brasiliensis latex sap gel on healing of acute skin wounds induced on the back of rats

    Directory of Open Access Journals (Sweden)

    Maria Vitória Carmo Penhavel

    Full Text Available Objective : to evaluate the effect of topical delivery of latex cream-gel in acute cutaneous wounds induced on the back of rats. Methods : we subjected sixteen rats to dermo-epidermal excision of a round dorsal skin flap, with 2.5cm diameter. We divided the animals into two groups: Latex Group: application of cream-gel-based latex throughout the wound bed on postoperative days zero, three, six and nine; Control group: no treatment on the wound. Photographs of the lesions were taken on the procedure day and on the 6th and 14th postoperative days, for analyzing the area and the larger diameter of the wound. We carried out euthanasia of all animals on the 14th postoperative day, when we resected he dorsal skin and the underlying muscle layer supporting the wound for histopathological study. Results : there was no statistically significant difference in the percentage of wound closure, in the histopathological findings or in the reduction of the area and of the largest diameter of the wounds among the groups studied on the 14th postoperative day. Conclusion : according to the experimental conditions in which the study was conducted, latex cream-gel did not interfere in the healing of acute cutaneous wounds in rats.

  4. Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L. DC. on Skin Wound in Rats

    Directory of Open Access Journals (Sweden)

    Yuxin Pang

    2017-12-01

    Full Text Available Chinese herbal medicine (CHM evolved through thousands of years of practice and was popular not only among the Chinese population, but also most countries in the world. Blumea balsamifera (L. DC. as a traditional treatment for wound healing in Li Nationality Medicine has a long history of nearly 2000 years. This study was to evaluate the effects of total flavonoids from Blumea balsamifera (L. DC. on skin excisional wound on the back of Sprague-Dawley rats, reveal its chemical constitution, and postulate its action mechanism. The rats were divided into five groups and the model groups were treated with 30% glycerol, the positive control groups with Jing Wan Hong (JWH ointment, and three treatment groups with high dose (2.52 g·kg−1, medium dose (1.26 g·kg−1, and low dose (0.63 g·kg−1 of total flavonoids from B. balsamifera. During 10 consecutive days of treatment, the therapeutic effects of rates were evaluated. On day 1, day 3, day 5, day 7, and day 10 after treatment, skin samples were taken from all the rats for further study. Significant increases of granulation tissue, fibroblast, and capillary vessel proliferation were observed at day 7 in the high dose and positive control groups, compared with the model group, with the method of 4% paraformaldehyde for histopathological examination and immunofluorescence staining. To reveal the action mechanisms of total flavonoids on wound healing, the levels of CD68, vascular endothelial growth factor (VEGF, transforming growth factor-β1 (TGF-β1, and hydroxyproline were measured at different days. Results showed that total flavonoids had significant effects on rat skin excisional wound healing compared with controls, especially high dose ones (p < 0.05. Furthermore, the total flavonoid extract was investigated phytochemically, and twenty-seven compounds were identified from the total flavonoid sample by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass

  5. Neurogenic inflammation in human and rodent skin

    DEFF Research Database (Denmark)

    Schmelz, M; Petersen, Lars Jelstrup

    2001-01-01

    The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...... about neurogenic inflammation in human skin, including the involvement of mast cells.......The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...

  6. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  7. Comparison of advanced therapy medicinal product gingiva and skin substitutes and their in vitro wound healing potentials.

    Science.gov (United States)

    Boink, Mireille A; Roffel, Sanne; Breetveld, Melanie; Thon, Maria; Haasjes, Michiel S P; Waaijman, Taco; Scheper, Rik J; Blok, Chantal S; Gibbs, Susan

    2018-02-01

    Skin and oral mucosa substitutes are a therapeutic option for closing hard-to-heal skin and oral wounds. Our aim was to develop bi-layered skin and gingiva substitutes, from 3 mm diameter biopsies, cultured under identical conditions, which are compliant with current European regulations for advanced therapy medicinal products. We present in vitro mode of action methods to (i) determine viability: epithelial expansion, proliferation (Ki-67), metabolic activity (MTT assay); (ii) characterize skin and gingiva substitutes: histology and immunohistochemistry; and (iii) determine potency: soluble wound healing mediator release (enzyme-linked immunosorbent assay). Both skin and gingiva substitutes consist of metabolically active autologous reconstructed differentiated epithelium expanding from the original biopsy sheet on a fibroblast populated connective tissue matrix (donor dermis). Gingival epithelium expanded 1.7-fold more than skin epithelium during the 3 week culture period. The percentage of proliferating Ki-67-positive cells located in the basal layer of the gingiva substitute was >1.5-fold higher than in the skin substitute. Keratins 16 and 17, which are upregulated during normal wound healing, were expressed in both the skin and gingiva substitutes. Notably, the gingiva substitute secreted higher amounts of key cytokines involved in mitogenesis, motogenesis and chemotaxis (interleukin-6 > 23-fold, CXCL8 > 2.5-fold) as well as higher amounts of the anti-fibrotic growth factor, hepatocyte growth factor (>7-fold), compared with the skin substitute. In conclusion, while addressing the viability, characterization and potency of the tissue substitutes, important intrinsic differences between skin and gingiva were discovered that may explain in part the superior quality of wound healing observed in the oral mucosa compared with skin. Copyright © 2017 The Authors. Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.

  8. Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats.

    Science.gov (United States)

    Kato, Jiro; Kamiya, Hideki; Himeno, Tatsuhito; Shibata, Taiga; Kondo, Masaki; Okawa, Tetsuji; Fujiya, Atsushi; Fukami, Ayako; Uenishi, Eita; Seino, Yusuke; Tsunekawa, Shin; Hamada, Yoji; Naruse, Keiko; Oiso, Yutaka; Nakamura, Jiro

    2014-01-01

    Although the initial healing stage involves a re-epithelialization in humans, diabetic foot ulceration (DFU) has been investigated using rodent models with wounds on the thigh skin, in which a wound contraction is initiated. In this study, we established a rodent model of DFU on the plantar skin and evaluated the therapeutic efficacy of bone-marrow-derived mesenchymal stem cells (BM-MSCs) in this model. The wounds made on the hind paws or thighs of streptozotocin induced diabetic or control rats were treated with BM-MSCs. Expression levels of phosphorylated focal adhesion kinase (pFAK), matrix metaroprotease (MMP)-2, EGF, and IGF-1, were evaluated in human keratinocytes, which were cultured in conditioned media of BM-MSCs (MSC-CM) with high glucose levels. Re-epithelialization initiated the healing process on the plantar, but not on the thigh, skin. The therapy utilizing BM-MSCs ameliorated the delayed healing in diabetic rats. In the keratinocytes cultured with MSC-CM, the decreased pFAK levels in the high glucose condition were restored, and the MMP2, EGF, and IGF-1 levels increased. Our study established a novel rat DFU model. The impaired healing process in diabetic rats was ameliorated by transplantation of BM-MSCs. This amelioration might be accounted for by the modification of keratinocyte functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. [Physiological features of skin ageing in human].

    Science.gov (United States)

    Tikhonova, I V; Tankanag, A V; Chemeris, N K

    2013-01-01

    The issue deals with the actual problem of gerontology, notably physiological features of human skin ageing. In the present review the authors have considered the kinds of ageing, central factors, affected on the ageing process (ultraviolet radiation and oxidation stress), as well as the research guidelines of the ageing changes in the skin structure and fuctions: study of mechanical properties, microcirculation, pH and skin thickness. The special attention has been payed to the methods of assessment of skin blood flow, and to results of investigations of age features of peripheral microhemodynamics. The laser Doppler flowmetry technique - one of the modern, noninvasive and extensively used methods for the assessmant of skin blood flow microcirculation system has been expanded in the review. The main results of the study of the ageing changes of skin blood perfusion using this method has been also presented.

  10. Cell-cycle regulatory proteins in human wound healing

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Grøn, Birgitte; Dabelsteen, Erik

    2003-01-01

    Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cell......-cycle regulators critical for G(1)-phase progression and S-phase entry was here analysed immunohistochemically. Compared to normal human mucosa, epithelia migrating to cover 2- or 3-day-old wounds made either in vivo or in an organotypic cell culture all showed loss of the proliferation marker Ki67 and cyclins D(1......) and A, and reduced expression of cyclins D(3) and E, the cyclin D-dependent kinase 4 (CDK4), the MCM7 component of DNA replication origin complexes and the retinoblastoma protein pRb. Among the CDK inhibitors (CKIs), p16ink4a and p21Cip1 were moderately increased and decreased, respectively, whereas...

  11. The time-course analysis of gene expression during wound healing in mouse skin.

    Science.gov (United States)

    Kagawa, Shinichiro; Matsuo, Aya; Yagi, Yoichi; Ikematsu, Kazuya; Tsuda, Ryouichi; Nakasono, Ichiro

    2009-03-01

    RNA analysis has been applied to forensic work to determine wound age. We investigated mRNA expression using quantitative RT-PCR of ten genes, including c-fos, fosB, mitogen-activated protein kinase phosphatase-1 (MKP-1), CD14, chemokine (C-C motif) ligand 9 (CCL9), placenta growth factor (PlGF), mast cell protease-5 (MCP-5), growth arrest specific 5 (Gas5), beta-2 microglobulin (B2M) and major urinary protein-1 (MUP-1), in terms of repair response in adult mice. The expression level of c-fos, fosB and MKP-1 transcripts increased drastically, peaked within 1h, and that of the CD14 and CCL9 transcripts peaked from 12 to 24h. An increase in PlGF and MCP-5 mRNA appeared on about day 5. Gas5, B2M and MUP-1 transcripts showed no significant change. Each gene had differentially expressional patterns with time-course. Our result implied that the observation of the 7 genes in wounded skin could serve to aid in the accurate diagnosis of wound age.

  12. Interaction of low-intensity linearly polarized laser radiation with living tissues: effects on tissular acceleration of skin wound healing

    International Nuclear Information System (INIS)

    Ribeiro, Martha Simoes

    2000-01-01

    According to the Maxwell's equations to optical properties of surfaces, the energy deposition efficiency in a microroughness interface depends on the electrical field polarization component. Considering a linearly polarized beam, this efficiency will depend on the roughness parameters to p-polarized light and it will not depend on such parameters to s-polarized light. In this work it was investigated the effects of low-intensity, linearly polarized He-Ne laser beam on skin wounds healing, considering two orthogonal directions of polarization. We have considered a preferential axis as the animals' spinal column and we aligned the linear laser polarization first parallel, then perpendicular to this direction. Burns about 6 mm in diameter were created with liquid N 2 on the back of the animals and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1,0 J/cm 2 . Control lesions were not irradiated. The theoretical model consisted in describing linearly polarized light propagation in biological tissues using transport theory. The degree of polarization was measured in normal and pathological skin samples. It was verified that linearly polarized light can survive in the superficial layers of skin and it can be more preserved in skin under pathological condition when compared with health skin. The analysis of skin wound healing process has demonstrated that the relative direction of the laser polarization plays an important role on the wound healing process by light microscopy, transmission electron microscopy and radioautography. (author)

  13. Oral administration of marine collagen peptides from Chum Salmon skin enhances cutaneous wound healing and angiogenesis in rats.

    Science.gov (United States)

    Zhang, Zhaofeng; Wang, Junbo; Ding, Ye; Dai, Xiaoqian; Li, Yong

    2011-09-01

    A wound is a clinical entity which often poses problems in clinical practice. The present study was aimed to investigate the wound healing potential of administering marine collagen peptides (MCP) from Chum Salmon skin by using two wound models (incision and excision) in rats. Ninety-six animals were equally divided into the two wound models and then within each model animals were randomly divided into two groups: vehicle-treated group and 2 g kg(-1) MCP-treated group. Wound closure and tensile strength were calculated. Collagen deposition was assessed by Masson staining and hydroxyproline measurement. Angiogenesis was assessed by immunohistological methods. MCP-treated rats showed faster wound closure and improved tissue regeneration at the wound site, which was supported by histopathological parameters pertaining to wound healing. MCP treatment improved angiogenesis and helped form thicker and better organised collagen fibre deposition compared to vehicle-treated group. The results show the efficacy of oral MCP treatment on wound healing in animals. Copyright © 2011 Society of Chemical Industry.

  14. Oxidative stress and CCN1 protein in human skin connective tissue aging

    Directory of Open Access Journals (Sweden)

    Zhaoping Qin

    2016-06-01

    Full Text Available Reactive oxygen species (ROS is an important pathogenic factor involved in human aging. Human skin is a primary target of oxidative stress from ROS generated from both extrinsic and intrinsic sources, like ultraviolet irradiation (UV and endogenous oxidative metabolism. Oxidative stress causes the alterations of collagen-rich extracellular matrix (ECM, the hallmark of skin connective tissue aging. Age-related alteration of dermal collagenous ECM impairs skin structural integrity and creates a tissue microenvironment that promotes age-related skin diseases, such as poor wound healing and skin cancer. Here, we review recent advances in our understanding of oxidative stress and CCN1 protein (first member of CCN family proteins, a critical mediator of oxidative stress-induced skin connective tissue aging.

  15. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhonghua [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Wang, Haiqin [Department of Obstetrics and Gynecology, The Fifth People' s Hospital Of Jinan, Jinan 250022 (China); Yang, Bo; Sun, Yukai [Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Huo, Ran, E-mail: rhuo12@163.com [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing.

  16. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    International Nuclear Information System (INIS)

    Li, Zhonghua; Wang, Haiqin; Yang, Bo; Sun, Yukai; Huo, Ran

    2015-01-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing

  17. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds.

    Science.gov (United States)

    Qi, Yu; Jiang, Dongsheng; Sindrilaru, Anca; Stegemann, Agatha; Schatz, Susanne; Treiber, Nicolai; Rojewski, Markus; Schrezenmeier, Hubert; Vander Beken, Seppe; Wlaschek, Meinhard; Böhm, Markus; Seitz, Andreas; Scholz, Natalie; Dürselen, Lutz; Brinckmann, Jürgen; Ignatius, Anita; Scharffetter-Kochanek, Karin

    2014-02-01

    Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-β1 (TGF-β1)/TGF-β3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.

  18. The Role of Carotenoids in Human Skin

    Directory of Open Access Journals (Sweden)

    Theognosia Vergou

    2011-12-01

    Full Text Available The human skin, as the boundary organ between the human body and the environment, is under the constant influence of free radicals (FR, both from the outside in and from the inside out. Carotenoids are known to be powerful antioxidant substances playing an essential role in the reactions of neutralization of FR (mainly reactive oxygen species ROS. Carotenoid molecules present in the tissue are capable of neutralizing several attacks of FR, especially ROS, and are then destroyed. Human skin contains carotenoids, such as α-, γ-, β-carotene, lutein, zeaxanthin, lycopene and their isomers, which serve the living cells as a protection against oxidation. Recent studies have reported the possibility to investigate carotenoids in human skin quickly and non-invasively by spectroscopic means. Results obtained from in-vivo studies on human skin have shown that carotenoids are vital components of the antioxidative protective system of the human skin and could serve as marker substances for the overall antioxidative status. Reflecting the nutritional and stress situation of volunteers, carotenoids must be administered by means of antioxidant-rich products, e.g., in the form of fruit and vegetables. Carotenoids are degraded by stress factors of any type, inter alia, sun radiation, contact with environmental hazards, illness, etc. The kinetics of the accumulation and degradation of carotenoids in the skin have been investigated.

  19. Non-invasive in vivo characterization of skin wound healing using label-free multiphoton microscopy (Conference Presentation)

    Science.gov (United States)

    Jones, Jake D.; Majid, Fariah; Ramser, Hallie; Quinn, Kyle P.

    2017-02-01

    Non-healing ulcerative wounds, such as diabetic foot ulcers, are challenging to diagnose and treat due to their numerous possible etiologies and the variable efficacy of advanced wound care products. Thus, there is a critical need to develop new quantitative biomarkers and diagnostic technologies that are sensitive to wound status in order to guide care. The objective of this study was to evaluate the utility of label-free multiphoton microscopy for characterizing wound healing dynamics in vivo and identifying potential differences in diabetic wounds. We isolated and measured an optical redox ratio of FAD/(NADH+FAD) autofluorescence to provide three-dimensional maps of local cellular metabolism. Using a mouse model of wound healing, in vivo imaging at the wound edge identified a significant decrease in the optical redox ratio of the epidermis (p≤0.0103) between Days 3 through 14 compared to Day 1. This decrease in redox ratio coincided with a decrease in NADH fluorescence lifetime and thickening of the epithelium, collectively suggesting a sensitivity to keratinocyte hyperproliferation. In contrast to normal wounds, we have found that keratinocytes from diabetic wounds remain in a proliferative state at later time points with a lower redox ratio at the wound edge. Microstructural organization and composition was also measured from second harmonic generation imaging of collagen and revealed differences between diabetic and non-diabetic wounds. Our work demonstrates label-free multiphoton microscopy offers potential to provide non-invasive structural and functional biomarkers associated with different stages of skin wound healing, which may be used to detect delayed healing and guide treatment.

  20. High transverse skin incisions may reduce wound complications in obese women having cesarean sections: a pilot study.

    Science.gov (United States)

    Walton, Robert B; Shnaekel, Kelsey L; Ounpraseuth, Songthip T; Napolitano, Peter G; Magann, Everett F

    2017-11-01

    Women having cesarean section have a high risk of wound complications. Our objective was to determine whether high transverse skin incisions are associated with a reduced risk of cesarean wound complications in women with BMI greater than 40. A retrospective cohort study was undertaken of parturients ages 18-45 with BMI greater than 40 having high transverse skin incisions from January 2010 to April 2015 at a tertiary maternity hospital. Temporally matched controls had low transverse skin incisions along with a BMI greater than 40. The primary outcome, wound complication, was defined as any seroma, hematoma, dehiscence, or infection requiring opening and evacuating/debriding the wound. Secondary outcomes included rates of endometritis, number of hospital days, NICU admission, Apgar scores, birth weight, and gestational age at delivery. Analysis of outcomes was performed using two-sample t-test or Wilcoxon rank-sum test for continuous variables and Fisher's exact test for categorical variables. Thirty-two women had high transverse incisions and were temporally matched with 96 controls (low transverse incisions). The mean BMI was 49 for both groups. There was a trend toward reduced wound complications in those having high transverse skin incisions, but this did not reach statistical significance (15.63% versus 27.08%, p = .2379). Those having high transverse skin incisions had lower five minute median Apgar scores (8.0 versus 9.0, p = .0021), but no difference in umbilical artery pH values. The high transverse group also had increased NICU admissions (28.13% versus 5.21%, p = .0011), and early gestational age at delivery (36.8 versus 38.0, p = .0272). High transverse skin incisions may reduce the risk of wound complications in parturients with obesity. A study with more power should be considered.

  1. Acute effects of low-level laser therapy (660 nm) on oxidative stress levels in diabetic rats with skin wounds.

    Science.gov (United States)

    Denadai, Amanda Silveira; Aydos, Ricardo Dutra; Silva, Iandara Schettert; Olmedo, Larissa; de Senna Cardoso, Bruno Mendonça; da Silva, Baldomero Antonio Kato; de Carvalho, Paulo de Tarso Camillo

    2017-09-01

    Laser therapy influences oxidative stress parameters such as the activity of antioxidant enzymes and the production of reactive oxygen species. To analyze the effects of low-level laser therapy on oxidative stress in diabetics rats with skin wounds. Thirty-six animals were divided into 4 groups: NDNI: non-diabetic rats with cutaneous wounds that not received laser therapy; NDI: non-diabetic rats with cutaneous wounds that received laser therapy; DNI: diabetic rats with skin wounds who did not undergo laser therapy; DI: rats with diabetes insipidus and cutaneous wounds and received laser therapy. The animals were treated with LLLT (660 nm, 100 mW, 6 J/cm, spot size 0.028 cm). On the day of killing the animals, tissue-wrapped cutaneous wounds were collected and immediately frozen, centrifuged, and stored to analyze malondialdehyde (MDA) levels. Significant difference was observed within the groups of MDA levels (ANOVA, p = 0.0001). Tukey's post-hoc test showed significantly lower values of MDA in irradiated tissues, both in diabetic and non-diabetic rats. ANOVA of the diabetic group revealed a significant difference (p < 0.01) when all groups, except NDI and DI, were compared. LLLT was effective in decreasing MDA levels in acute surgical wounds in diabetic rats.

  2. The combined effect of laser and oral administration of Iranian propolis extract on skin wound healing in male rats

    Directory of Open Access Journals (Sweden)

    Nematollah Ghaibi

    2015-05-01

    Full Text Available Background: To date, a lot of research has been carried out on the effect of medications and surgical methods on the treatment of wounds, but no ideal achievement has been obtained yet. This study was conducted to investigate the single and combined effect of laser and propolis on skin wound healing in male rats. Methods: 40 Wistar male rats (200-250 g were divided into 4 groups (n= 10. All animals were anesthetized and sterile skin wound was created by surgical scissors. Control group had no treatment, the second group was treated with laser (10 mW, the third group was treated with oral propolis (100 mg /kg; 3 times /day and the forth group was treated with both laser and propolis. The wound healing level was measured based on the wound area and urinary hydroxyproline content. Results: Urinary hydroxyproline content was increased in groups treated with laser, propolis and combined laser and propolis compared to the control group (P<0.01, 0.05 and 0.01, respectively. Also at the end of the treatment period, the wound extent was significantly lower in the laser, propolis, and combined laser and propolis groups than the control (P<0.05, 0.05 and 0.01, respectively. There was no significant difference between treatment groups. Conclusion: Our results showed that oral administration of propolis or low power laser radiation can increase the wound healing rate.

  3. Prospective, double-blinded, randomised controlled trial assessing the effect of an Octenidine-based hydrogel on bacterial colonisation and epithelialization of skin graft wounds in burn patients.

    Science.gov (United States)

    W, Eisenbeiß; F, Siemers; G, Amtsberg; P, Hinz; B, Hartmann; T, Kohlmann; A, Ekkernkamp; U, Albrecht; O, Assadian; A, Kramer

    2012-01-01

    Moist wound treatment improves healing of skin graft donor site wounds. Microbial colonised wounds represent an increased risk of wound infection; while antimicrobially active, topical antiseptics may impair epithelialization. The aim of this prospective randomised controlled clinical trial was to examine the influence of an Octenidine-dihydrochloride (OCT) hydrogel on bacterial colonisation and epithelialization of skin graft donor sites. The study was designed as a randomised, double-blinded, controlled clinical trial. Skin graft donor sites from a total of 61 patients were covered either with 0.05% OCT (n=31) or an OCT-free placebo wound hydrogel (n=30). Potential interaction with wound healing was assessed by measuring the time until 100% re-epithelialization. In addition, microbial wound colonisation was quantitatively determined in all skin graft donor sites. There was no statistically significant difference in the time for complete epithelialization of skin graft donor sites in the OCT and the placebo group (7.3±0.2 vs. 6.9±0.2 days; p=0.236). Microbial wound colonisation was significantly lower in the OCT group than in the placebo group (p=0.014). The OCT-based hydrogel showed no delay in wound epithelialization and demonstrated a significantly lower bacterial colonisation of skin graft donor site wounds.

  4. Isolation of Human Skin Dendritic Cell Subsets.

    Science.gov (United States)

    Gunawan, Merry; Jardine, Laura; Haniffa, Muzlifah

    2016-01-01

    Dendritic cells (DCs) are specialized leukocytes with antigen-processing and antigen-presenting functions. DCs can be divided into distinct subsets by anatomical location, phenotype and function. In human, the two most accessible tissues to study leukocytes are peripheral blood and skin. DCs are rare in human peripheral blood (skin covering an average total surface area of 1.8 m(2) has approximately tenfold more DCs than the average 5 L of total blood volume (Wang et al., J Invest Dermatol 134:965-974, 2014). DCs migrate spontaneously from skin explants cultured ex vivo, which provide an easy method of cell isolation (Larsen et al., J Exp Med 172:1483-1493, 1990; Lenz et al., J Clin Invest 92:2587-2596, 1993; Nestle et al., J Immunol 151:6535-6545, 1993). These factors led to the extensive use of skin DCs as the "prototype" migratory DCs in human studies. In this chapter, we detail the protocols to isolate DCs and resident macrophages from human skin. We also provide a multiparameter flow cytometry gating strategy to identify human skin DCs and to distinguish them from macrophages.

  5. Electroosmotic pore transport in human skin.

    Science.gov (United States)

    Uitto, Olivia D; White, Henry S

    2003-04-01

    To determine the pathways and origin of electroosmotic flow in human skin. Iontophoretic transport of acetaminophen in full thickness human cadaver skin was visualized and quantified by scanning electrochemical microscopy. Electroosmotic flow in the shunt pathways of full thickness skin was compared to flow in the pores of excised stratum corneum and a synthetic membrane pore. The penetration of rhodamine 6G into pore structures was investigated by laser scanning confocal microscopy. Electroosmotic transport is observed in shunt pathways in full thickness human skin (e.g., hair follicles and sweat glands), but not in pore openings of freestanding stratum corneum. Absolute values of the diffusive and iontophoretic pore fluxes of acetaminophen in full thickness human skin are also reported. Rhodamine 6G is observed to penetrate to significant depths (approximately 200 microm) along pore pathways. Iontophoresis in human cadaver skin induces localized electroosmotic flow along pore shunt paths. Electroosmotic forces arise from the passage of current through negatively charged mesoor nanoscale pores (e.g., gap functions) within cellular regions that define the pore structure beneath the stratum corneum.

  6. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin.

    Science.gov (United States)

    Doctrow, Susan R; Lopez, Argelia; Schock, Ashley M; Duncan, Nathan E; Jourdan, Megan M; Olasz, Edit B; Moulder, John E; Fish, Brian L; Mäder, Marylou; Lazar, Jozef; Lazarova, Zelmira

    2013-04-01

    In the event of a radionuclear attack or nuclear accident, the skin would be the first barrier exposed to radiation, though skin injury can progress over days to years following exposure. Chronic oxidative stress has been implicated as being a potential contributor to the progression of delayed radiation-induced injury to skin and other organs. To examine the causative role of oxidative stress in delayed radiation-induced skin injury, including impaired wound healing, we tested a synthetic superoxide dismutase (SOD)/catalase mimetic, EUK-207, in a rat model of combined skin irradiation and wound injury. Administered systemically, beginning 48 hours after irradiation, EUK-207 mitigated radiation dermatitis, suppressed indicators of tissue oxidative stress, and enhanced wound healing. Evaluation of gene expression in irradiated skin at 30 days after exposure revealed a significant upregulation of several key genes involved in detoxication of reactive oxygen and nitrogen species. This gene expression pattern was primarily reversed by EUK-207 therapy. These results demonstrate that oxidative stress has a critical role in the progression of radiation-induced skin injury, and that the injury can be mitigated by appropriate antioxidant compounds administered 48 hours after exposure.

  7. Characterization of SLC transporters in human skin

    Directory of Open Access Journals (Sweden)

    Marion Alriquet

    2015-03-01

    Full Text Available Most identified drug transporters belong to the ATP-binding Cassette (ABC and Solute Carrier (SLC families. Recent research indicates that some of these transporters play an important role in the absorption, distribution and excretion of drugs, and are involved in clinically relevant drug-drug interactions for systemic drugs. However, very little is known about the role of drug transporters in human skin in the disposition of topically applied drugs and their involvement in drug-drug interactions. The aim of this work was to compare the expression in human skin (vs human hepatocytes and kidney of SLC transporters included in the EMA guidance as the most likely clinical sources of drug interactions. The expression of SLC transporters in human tissues was analyzed by quantitative RT-PCR. Modulation of SLC47A1 and SLC47A2 (MATE1 and MATE2 expression was analyzed after treatment of human skin in organ-culture with rifampicin and UV irradiation. The expression of SLCO2B1 (OATPB, SLCO3A1 (OATPD, SLCO4A1 (OATPE, SLC47A1 and SLC47A2 (MATE1 and MATE2 was detected in human skin, OATPE and MATE1 being the most expressed. OATPE is about 70 times more expressed in human skin than in human hepatocytes. Moreover, the expression of SLC47A1 and SLC47A2 was down-regulated after treatment with rifampicin or after exposure to UV light. The present findings demonstrate that SLCO4A1 (OATPE and SLC47A1 (MATE1 are highly expressed in human skin and suggest the involvement of SLC transporters in the disposition of topically applied drugs.

  8. Upregulation of BAG3 with apoptotic and autophagic activities in maggot extract‑promoted rat skin wound healing.

    Science.gov (United States)

    Dong, Jian-Li; Dong, Hai-Cao; Yang, Liang; Qiu, Zhe-Wen; Liu, Jia; Li, Hong; Zhong, Li-Xia; Song, Xue; Zhang, Peng; Li, Pei-Nan; Zheng, Lian-Jie

    2018-03-01

    Maggot extract (ME) accelerates rat skin wound healing, however its effect on cell maintenance in wound tissues remains unclear. B‑cell lymphoma (Bcl) 2‑associated athanogene (BAG)3 inhibits apoptosis and promotes autophagy by associating with Bcl‑2 or Beclin 1. Bcl‑2, the downstream effector of signal transducer and activator of transcription 3 signaling, is enhanced in ME‑treated wound tissues, which may reinforce the Bcl‑2 anti‑apoptotic activity and/or cooperate with Beclin 1 to regulate autophagy during wound healing. The present study investigated expression levels of BAG3, Bcl‑2, Beclin 1 and light chain (LC)3 levels in rat skin wound tissues in the presence and absence of ME treatment. The results revealed frequent TUNEL‑negative cell death in the wound tissues in the early three days following injury, irrespective to ME treatment. TUNEL‑positive cells appeared in the wound tissues following 4 days of injury and 150 µg/ml ME efficiently reduced apoptotic rate and enhanced BAG3 and Bcl‑2 expression. Elevated Beclin 1 and LC3 levels and an increased LC3 II ratio were revealed in the ME‑treated tissues during the wound healing. The results of the present study demonstrate the anti‑apoptotic effects of BAG3 and Bcl‑2 in ME‑promoted wound healing. Beclin 1/LC3 mediated autophagy may be favorable in maintaining cell survival in the damaged tissues and ME‑upregulated BAG3 may enhance its activity.

  9. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect.

    Science.gov (United States)

    Lao, Guojuan; Ren, Meng; Wang, Xiaoyi; Zhang, Jinglu; Huang, Yanrui; Liu, Dan; Luo, Hengcong; Yang, Chuan; Yan, Li

    2017-09-08

    Impaired wound healing accompanies severe cell apoptosis in diabetic patients. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was known to have effects on promoting growth and anti-apoptosis for cells. We aimed to determine the actual levels of TIMP-1 and cell apoptosis in: (i) the biopsies of diabetic and non-diabetic foot tissue and (ii) the human fibroblasts with or without treatments of advanced glycation end-products (AGEs). Next, we aimed to determine the improved levels of cell apoptosis and wound healing after the treatments of either active protein of TIMP-1 or in vivo expression of gene therapy vector-mediated TIMP-1 in both the human fibroblasts and the animal model of diabetic rats. The levels of TIMP-1 were significantly reduced in diabetic skin tissues and in AGEs-treated fibroblasts. Both AGEs-treated cells were effectively protected from apoptosis by active protein of TIMP-1 at appropriate dose level. So did the induced in vivo TIMP-1 expression after gene delivery. Similar effects were also found on the significant improvement of impaired wound healing in diabetic rats. We concluded that TIMP-1 improved wound healing through its anti-apoptotic effect. Treatments with either active protein TIMP-1 or TIMP-1 gene therapy delivered in local wound sites may be used as a strategy for accelerating diabetic wound healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Beneficial effects of a novel shark-skin collagen dressing for the promotion of seawater immersion wound healing.

    Science.gov (United States)

    Shen, Xian-Rong; Chen, Xiu-Li; Xie, Hai-Xia; He, Ying; Chen, Wei; Luo, Qun; Yuan, Wei-Hong; Tang, Xue; Hou, Deng-Yong; Jiang, Ding-Wen; Wang, Qing-Rong

    2017-10-27

    Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing. Shark skin collagen (SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for pH. A shark skin collagen sponge (SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane (PU) film (SSCS + PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS + PU on the healing of seawater-immersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawater-immersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3rd day group, 5th day group, 7th day group and 12th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS + PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze (GZ) + PU group, chitosan (CS) + PU group and SSCS + PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-β expression levels in the wounded tissues were measured by standard methods. The results of Ultraviolet-visible (UV-vis) spectrum, Fourier-transform infrared (FTIR) spectrum, circular dichroism (CD) spectra

  11. Bacterial recolonization of the skin and wound contamination during cardiac surgery: a randomized controlled trial of the use of plastic adhesive drape compared with bare skin.

    Science.gov (United States)

    Falk-Brynhildsen, K; Söderquist, B; Friberg, O; Nilsson, U G

    2013-06-01

    Sternal wound infection after cardiac surgery is a serious complication. Various perioperative strategies, including plastic adhesive drapes, are used to reduce bacterial contamination of surgical wounds. To compare plastic adhesive drape to bare skin regarding bacterial growth in wound and time to recolonization of the adjacent skin intraoperatively, in cardiac surgery patients. This single-blinded randomized controlled trial (May 2010 to May 2011) included 140 patients scheduled for cardiac surgery via median sternotomy. The patients were randomly allocated to the adhesive drape (chest covered with plastic adhesive drape) or bare skin group. Bacterial samples were taken preoperatively and intraoperatively every hour during surgery until skin closure. Disinfection with 0.5% chlorhexidine solution in 70% alcohol decreased coagulase-negative staphylococci (CoNS), while the proportion colonized with Propionibacterium acnes was not significantly reduced and was still present in more than 50% of skin samples. P. acnes was significantly more common in men than in women. Progressive bacterial recolonization of the skin occurred within 2-3 h. At 120 min there were significantly more positive cultures in the adhesive drape group versus bare skin group for P. acnes (63% vs 44%; P = 0.034) and for CoNS (45% vs 24%; P = 0.013). The only statistically significant difference in bacterial growth in the surgical wound was higher proportion of CoNS at the end of surgery in the adhesive drape group (14.7% vs 4.4%; P = 0.044). Plastic adhesive drape does not reduce bacterial recolonization. P. acnes colonized men more frequently, and was not decreased by disinfection with chlorhexidine solution in alcohol. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Multiphoton spectroscopy of human skin in vivo

    Science.gov (United States)

    Breunig, Hans G.; Weinigel, Martin; König, Karsten

    2012-03-01

    In vivo multiphoton-intensity images and emission spectra of human skin are reported. Optical sections from different depths of the epidermis and dermis have been measured with near-infrared laser-pulse excitation. While the intensity images reveal information on the morphology, the spectra show emission characteristics of main endogenous skin fluorophores like keratin, NAD(P)H, melanin, elastin and collagen as well as of second harmonic generation induced by the excitation-light interaction with the dermal collagen network.

  13. Randomized Clinical Trial of the Innovative Bilayered Wound Dressing Made of Silk and Gelatin: Safety and Efficacy Tests Using a Split-Thickness Skin Graft Model

    Science.gov (United States)

    Hasatsri, Sukhontha; Angspatt, Apichai

    2015-01-01

    We developed the novel silk fibroin-based bilayered wound dressing for the treatment of partial thickness wounds. And it showed relevant characteristics and accelerated the healing of full-thickness wounds in a rat model. This study is the clinical evaluation of the bilayered wound dressing to confirm its safety and efficacy for the treatment of split-thickness skin donor sites. The safety test was performed using a patch model and no evidence of marked and severe cutaneous reactions was found. The efficacy test of the bilayered wound dressing was conducted on 23 patients with 30 split-thickness skin graft donor sites to evaluate healing time, pain score, skin barrier function, and systemic reaction in comparison to Bactigras. We found that the healing time of donor site wounds treated with the bilayered wound dressing (11 ± 6 days) was significantly faster than those treated with Bactigras (14 ± 6 days) (p = 10−6). The wound sites treated with the bilayered wound dressing showed significantly less pain and more rapid skin functional barrier recovery than those treated with Bactigras (p = 10−5). Therefore, these results confirmed the clinical safety and efficacy of the bilayered wound dressing for the treatment of split-thickness skin graft donor sites. PMID:26221170

  14. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sven van Eijl

    Full Text Available BACKGROUND: Human skin has the capacity to metabolise foreign chemicals (xenobiotics, but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. METHODOLOGY/PRINCIPAL FINDINGS: Label-free proteomic analysis of whole human skin (10 donors was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4-10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. CONCLUSIONS/SIGNIFICANCE: The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these

  15. Antimicrobial efficacy of preoperative skin antisepsis and clonal relationship to postantiseptic skin-and-wound flora in patients undergoing clean orthopedic surgery.

    Science.gov (United States)

    Daeschlein, G; Napp, M; Layer, F; von Podewils, S; Haase, H; Spitzmueller, R; Assadian, O; Kasch, R; Werner, G; Jünger, M; Hinz, P; Ekkernkamp, A

    2015-11-01

    Nosocomial surgical site infections (SSI) are still important complications in surgery. The underlying mechanisms are not fully understood. The aim of this study was to elucidate the possible role of skin flora surviving preoperative antisepsis as a possible cause of SSI. We conducted a two-phase prospective clinical trial in patients undergoing clean orthopedic surgery at a university trauma center in northern Germany. Quantitative swab samples were taken from pre- and postantiseptic skin and, additionally, from the wound base, wound margin, and the suture of 137 patients. Seventy-four patients during phase I and 63 during phase II were investigated. Microbial growth, species spectrum, and antibiotic susceptibility were analyzed. In phase two, the clonal relationship of strains was additionally analyzed. 18.0 % of the swab samples were positive for bacterial growth in the wound base, 24.5 % in the margin, and 27.3 % in the suture. Only 65.5 % of patients showed a 100 % reduction of the skin flora after antisepsis. The microbial spectrum in all postantiseptic samples was dominated by coagulase-negative staphylococci (CoNS). Clonally related staphylococci were detected in ten patients [nine CoNS, one methicillin-susceptible Staphylococcus aureus (MSSA)]. Six of ten patients were suspected of having transmitted identical clones from skin flora into the wound. Ethanol-based antisepsis results in unexpected high levels of skin flora, which can be transmitted into the wound during surgery causing yet unexplained SSI. Keeping with the concept of zero tolerance, further studies are needed in order to understand the origin of this flora to allow further reduction of SSI.

  16. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review

    OpenAIRE

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an...

  17. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats.

    Science.gov (United States)

    Jabbari, Nasrollah; Farjah, Gholam Hossein; Ghadimi, Behnam; Zanjani, Hajar; Heshmatian, Behnam

    2017-08-01

    A recent hypothesis has revealed that low-dose irradiation (LDI) with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam) and indirect (gamma-ray) low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG-I and IG-II and respectively exposed to electron and gamma-radiations (75 cGy) immediately after the surgical procedure. The third group was considered as the control (CG) and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing. Copyright © 2017. Published by Elsevier Taiwan.

  18. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats

    Directory of Open Access Journals (Sweden)

    Nasrollah Jabbari

    2017-08-01

    Full Text Available A recent hypothesis has revealed that low-dose irradiation (LDI with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam and indirect (gamma-ray low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG–I and IG–II and respectively exposed to electron and gamma-radiations (75 cGy immediately after the surgical procedure. The third group was considered as the control (CG and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing.

  19. Simultaneous Delivery of Highly Diverse Bioactive Compounds from Blend Electrospun Fibers for Skin Wound Healing.

    Science.gov (United States)

    Peh, Priscilla; Lim, Natalie Sheng Jie; Blocki, Anna; Chee, Stella Min Ling; Park, Heyjin Chris; Liao, Susan; Chan, Casey; Raghunath, Michael

    2015-07-15

    Blend emulsion electrospinning is widely perceived to destroy the bioactivity of proteins, and a blend emulsion of water-soluble and nonsoluble molecules is believed to be thermodynamically unstable to electrospin smoothly. Here we demonstrate a method to retain the bioactivity of disparate fragile biomolecules when electrospun. Using bovine serum albumin as a carrier protein; water-soluble vitamin C, fat soluble vitamin D3, steroid hormone hydrocortisone, peptide hormone insulin, thyroid hormone triiodothyronine (T3), and peptide epidermal growth factor (EGF) were simultaneously blend-spun into PLGA-collagen nanofibers. Upon release, vitamin C maintained the ability to facilitate Type I collagen secretion by fibroblasts, EGF stimulated skin fibroblast proliferation, and insulin potentiated adipogenic differentiation. Transgenic cell reporter assays confirmed the bioactivity of vitamin D3, T3, and hydrocortisone. These factors concertedly increased keratinocyte and fibroblast proliferation while maintaining keratinocyte basal state. This method presents an elegant solution to simultaneously deliver disparate bioactive biomolecules for wound healing applications.

  20. Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts.

    Science.gov (United States)

    Merjaneh, Mays; Langlois, Amélie; Larochelle, Sébastien; Cloutier, Chanel Beaudoin; Ricard-Blum, Sylvie; Moulin, Véronique J

    2017-08-01

    Wound healing is a very highly organized process where numerous cell types are tightly regulated to restore injured tissue. Myofibroblasts are cells that produce new extracellular matrix and contract wound edges. We previously reported that the human myofibroblasts isolated from normal wound (WMyos) produced microvesicles (MVs) in the presence of the serum. In this study, MVs were further characterized using a proteomic strategy and potential functions of the MVs were determined. MV proteins isolated from six WMyo populations were separated using two-dimensional differential gel electrophoresis. Highly conserved spots were selected and analyzed using mass spectrometry resulting in the identification of 381 different human proteins. Using the DAVID database, clusters of proteins involved in cell motion, apoptosis and adhesion, but also in extracellular matrix production (21 proteins, enrichment score: 3.32) and in blood vessel development/angiogenesis (19 proteins, enrichment score: 2.66) were identified. Another analysis using the functional enrichment analysis tool FunRich was consistent with these results. While the action of the myofibroblasts on extracellular matrix formation is well known, their angiogenic potential is less studied. To further characterize the angiogenic activity of the MVs, they were added to cultured microvascular endothelial cells to evaluate their influence on cell growth and migration using scratch test and capillary-like structure formation in Matrigel ® . The addition of a MV-enriched preparation significantly increased endothelial cell growth, migration and capillary formation compared with controls. The release of microvesicles by the wound myofibroblasts brings new perspectives to the field of communication between cells during the normal healing process.

  1. Does treatment of split-thickness skin grafts with negative-pressure wound therapy improve tissue markers of wound healing in a porcine experimental model?

    Science.gov (United States)

    Ward, Christopher; Ciraulo, David; Coulter, Michael; Desjardins, Steven; Liaw, Lucy; Peterson, Sarah

    2012-08-01

    Negative-pressure wound therapy (NPWT) has been used for to treat wounds for more than 15 years and, more recently, has been used to secure split-thickness skin grafts. There are some data to support this use of NPWT, but the actual mechanism by which NPWT speeds healing or improves skin graft take is not entirely known. The purpose of this project was to assess whether NPWT improved angiogenesis, wound healing, or graft survival when compared with traditional bolster dressings securing split-thickness skin grafts in a porcine model. We performed two split-thickness skin grafts on each of eight 30 kg Yorkshire pigs. We took graft biopsies on postoperative days 2, 4, 6, 8, and 10 and submitted the samples for immunohistochemical staining, as well as standard hematoxylin and eosin staining. We measured the degree of vascular ingrowth via immunohistochemical staining for von Willenbrand's factor to better identify blood vessel epithelium. We determined the mean cross-sectional area of blood vessels present for each representative specimen, and then compared the bolster and NPWT samples. We also assessed each graft for incorporation and survival at postoperative day 10. Our analysis of the data revealed that there was no statistically significant difference in the degree of vascular ingrowth as measured by mean cross-sectional capillary area (p = 0.23). We did not note any difference in graft survival or apparent incorporation on a macroscopic level, although standard hematoxylin and eosin staining indicated that microscopically, there seemed to be better subjective graft incorporation in the NPWT samples and a nonsignificant trend toward improved graft survival in the NPWT group. We were unable to demonstrate a significant difference in vessel ingrowth when comparing NPWT and traditional bolster methods for split-thickness skin graft fixation. More studies are needed to elucidate the manner by which NPWT exerts its effects and the true clinical magnitude of these

  2. [The morphological features of skin wounds inflicted by joinery hand saws designed for different types of sawing].

    Science.gov (United States)

    Sarkisian, B A; Azarov, P A

    2014-01-01

    The objective of the present work was to study the morphological features of skin wounds inflicted by joinery hand saws designed for longitudinal, transverse, and mixed sawing. A total of 60 injuries to the thigh skin inflicted by the recurring and reciprocating saw movements were simulated. The hand saws had 5 mm high "sharp" and "blunt"-tipped teeth. The analysis of the morphological features of the wounds revealed differences in their length and depth, shape of edge cuts and defects, and the relief of the walls depending on the sawtooth sharpness and the mode of sawing. It is concluded that morphological features of the wounds may be used to determine the type of the saw, the sharpness of its teeth, the direction and frequency of its movements.

  3. Hyaluronate nanoparticles included in polymer films for the prolonged release of vitamin E for the management of skin wounds.

    Science.gov (United States)

    Pereira, Gabriela Garrastazu; Detoni, Cassia Britto; Balducci, Anna Giulia; Rondelli, Valeria; Colombo, Paolo; Guterres, Silvia Stanisçuaski; Sonvico, Fabio

    2016-02-15

    Lecithin and hyaluronic acid were used for the preparation of polysaccharide decorated nanoparticles loaded with vitamin E using the cationic lipid dioctadecyldimethylammonium bromide (DODMA). Nanoparticles showed mean particle size in the range 130-350 nm and narrow size distribution. Vitamin E encapsulation efficiency was higher than 99%. These nanoparticles were incorporated in polymeric films containing Aloe vera extract, hyaluronic acid, sodium alginate, polyethyleneoxide (PEO) and polyvinylalcohol (PVA) as an innovative treatment in skin wounds. Films were thin, flexible, resistant and suitable for application on burn wounds. Additionally, in vitro occlusion study highlighted the dependence of the occlusive effect on the presence of nanoparticles. The results obtained show that the bioadhesive films containing vitamin E acetate and Aloe vera could be an innovative therapeutic system for the treatment of skin wounds, such as burns. The controlled release of the vitamin along with a reduction in water loss through damaged skin provided by the nanoparticle-loaded polymer film are considered important features for an improvement in wound healing and skin regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Negative Pressure Wound Therapy Applied Before and After Split-Thickness Skin Graft Helps Healing of Fournier Gangrene

    Science.gov (United States)

    Ye, Junna; Xie, Ting; Wu, Minjie; Ni, Pengwen; Lu, Shuliang

    2015-01-01

    Abstract Fournier gangrene is a rare but highly infectious disease characterized by fulminant necrotizing fasciitis involving the genital and perineal regions. Negative pressure wound therapy (NPWT; KCI USA Inc, San Antonio, TX) is a widely adopted technique in many clinical settings. Nevertheless, its application and effect in the treatment of Fournier gangrene are unclear. A 47-year-old male patient was admitted with an anal abscess followed by a spread of the infection to the scrotum, which was caused by Pseudomonas aeruginosa. NPWT was applied on the surface of the scrotal area and continued for 10 days. A split-thickness skin graft from the scalp was then grafted to the wound, after which, NPWT utilizing gauze sealed with an occlusive dressing and connected to a wall suction was employed for 7 days to secure the skin graft. At discharge, the percentage of the grafted skin alive on the scrotum was 98%. The wound beside the anus had decreased to 4 × 0.5 cm with a depth of 1 cm. Follow-up at the clinic 1 month later showed that both wounds had healed. The patient did not complain of any pain or bleeding, and was satisfied with the outcome. NPWT before and after split-thickness skin grafts is safe, well tolerated, and efficacious in the treatment of Fournier gangrene. PMID:25654376

  5. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression.

    Science.gov (United States)

    Shannon, Diane B; McKeown, Scott T W; Lundy, Fionnuala T; Irwin, Chris R

    2006-01-01

    Wounds of the oral mucosa heal in an accelerated fashion with reduced scarring compared with cutaneous wounds. The differences in healing outcome between oral mucosa and skin could be because of phenotypic differences between the respective fibroblast populations. This study compared paired mucosal and dermal fibroblasts in terms of collagen gel contraction, alpha-smooth muscle actin expression (alpha-SMA), and production of the epithelial growth factors: keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (HGF). The effects of transforming growth factor -beta1 and -beta3 on each parameter were also determined. Gel contraction in floating collagen lattices was determined over a 7-day period. alpha-SMA expression by fibroblasts was determined by Western blotting. KGF and HGF expression were determined by an enzyme-linked immunosorbent assay. Oral fibroblasts induced accelerated collagen gel contraction, yet surprisingly expressed lower levels of alpha-SMA. Oral cells also produced significantly greater levels of both KGF and HGF than their dermal counterparts. Transforming growth factor-beta1 and -beta3, over the concentration range of 0.1-10 ng/mL, had similar effects on cell function, stimulating both gel contraction and alpha-SMA production, but inhibiting KGF and HGF production by both cell types. These data indicate phenotypic differences between oral and dermal fibroblasts that may well contribute to the differences in healing outcome between these two tissues.

  6. Wound infection following stoma takedown: primary skin closure versus subcuticular purse-string suture.

    Science.gov (United States)

    Marquez, Thao T; Christoforidis, Dimitrios; Abraham, Anasooya; Madoff, Robert D; Rothenberger, David A

    2010-12-01

    Stoma closure has been associated with a high rate of surgical site infection (SSI) and the ideal stoma-site skin closure technique is still debated. The aim of this study was to compare the rate of SSI following primary skin closure (PC) versus a skin-approximating, subcuticular purse-string closure (APS). All consecutive patients undergoing stoma closure between 2002 and 2007 by two surgeons at a single tertiary-care institution were retrospectively assessed. Patients who had a new stoma created at the same site or those without wound closure were excluded. The end point was SSI, determined according to current CDC guidelines, at the stoma closure site and/or the midline laparotomy incision. There were 61 patients in the PC group (surgeon A: 58 of 61) and 17 in the APS group (surgeon B: 16 of 17). The two groups were similar in baseline and intraoperative characteristics, except that patients in the PC group were more often diagnosed with benign disease (p = 0.0156) and more often had a stapled anastomosis (p = 0.002). The overall SSI rate was 14 of 78 (18%). All SSIs occurred in the PC group (14 of 61 vs. 0 of 17, p = 0.03). Our study suggests that a skin-approximating closure with a subcuticular purse-string of the stoma site leads to less SSI than a primary closure. Randomized studies are needed to confirm our findings and assess additional end points such as healing time, cost, and patient satisfaction.

  7. Adenoviral Gene Delivery to Primary Human Cutaneous Cells and Burn Wounds

    OpenAIRE

    Hirsch, Tobias; von Peter, Sebastian; Dubin, Grzegorz; Mittler, Dominik; Jacobsen, Frank; Lehnhardt, Markus; Eriksson, Elof; Steinau, Hans-Ulrich; Steinstraesser, Lars

    2006-01-01

    The adenoviral transfer of therapeutic genes into epidermal and dermal cells is an interesting approach to treat skin diseases and to promote wound healing. The aim of this study was to assess the in vitro and in vivo transfection efficacy in skin and burn wounds after adenoviral gene delivery. Primary keratinocytes (HKC), fibroblasts (HFB), and HaCaT cells were transfected using different concentrations of an adenoviral construct (eGFP). Transfection efficiency and cytotoxicity was determine...

  8. Biohydrogels for the In Vitro Re-construction and In Situ Regeneration of Human Skin

    Science.gov (United States)

    Korkina, Liudmila; Kostyuk, Vladimir; Guerra, Liliana

    Natural and synthetic biohydrogels are of great interest for the development of innovative medicinal and cosmetic products feasible for the treatment of numerous skin diseases and age-related changes in skin structure and function. Here, the characteristics of bio-resorbable hydrogels as scaffolds for the in vitro re-construction of temporary skin substitutes or full skin equivalents for further transplantation are reviewed. Another fast developing area of regenerative medicine is the in situ regeneration of human skin. The approach is mainly applicable to activate and facilitate the skin regeneration process and angiogenesis in chronic wounds with impaired healing. In this case, extracellular matrix resembling polymers are used to stimulate cell growth, adhesion, and movement. Better results could be achieved by activation of biocompatible hydrogels either with proteins (growth factors, adhesion molecules or/and cytokines) or with allogenic skin cells producing and releasing these molecules. Hydrogels are widely applied as carriers of low molecular weight substances with antioxidant, anti-inflammatory, anti-ageing, and wound healing action. Incorporation of these substances into hydrogels enhances their penetration through the skin barrier and prevents their destruction by oxidation. Potential roles of hydrogel-based products for modern dermatology and cosmetology are also discussed.

  9. CONTAMINATED PROBLEMATIC SKIN WOUNDS IN DIABETIC PATIENTS TREATED WITH AUTOLOGOUS PLATELET-RICH PLASMA (PRP: A case series study

    Directory of Open Access Journals (Sweden)

    Tsvetan Sokolov

    2016-03-01

    Full Text Available OBJECTIVE: To study the effect of platelet-rich plasma (PRP on contaminated problematic skin ulcers in patients with diabetes. MATERIAL AND METHODS: A total of 6 patients had been treated within the period from 2012 to 2014; they had various types of problematic wounds and diabetes type 2. Patients’ distribution by sex was as follows: 1 man and 5 women; mean age- 68 years. Ulcer types: acute (2 patients, hard-to-heal (2 patients and chronic (2 patients ulcers. The mean size of the skin and soft tissue defect was 9,5 cm2. Pathogenic microflora was isolated in 4 patients - S. aureus in three and Е. Coli in one. Based on a scheme developed by us, all cases were treated by administering platelet-rich plasma, derived by PRGF Endoret system. Follow-up period was within 4 – 6 months (4,5 on average. We used platelet rich plasma derived by PRGF Endoret system, applied on the wound bed on a weekly basis. RESULTS: Application of PRP allowed successful closure of all wounds. There were no complications associated with treatment of PRP. Epithelialization of the wound took 15 weeks on average for all patients. One patient presented with hyperkeratosis. Initial score of followed wounds, based on the scales are as follows: Total wound score – 10 p. Total anatomic score – 8 p. Total score – 15 p. at the initial stage. At the end of the treatment period scores were as follows - 0 p., which means excellent results CONCLUSION: We believe that the application of PRP may become optimal therapy in the treatment of contaminated problematic wounds in diabetic patients. PRP not only stimulates wound healing, but also has antimicrobial properties, which may contribute to the prevention of infections.

  10. Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties.

    Science.gov (United States)

    Shimizu, Rana; Nonomura, Yoshimune

    2018-01-01

    We have developed an artificial skin that mimics the morphological and mechanical properties of human skin. The artificial skin comprises a polyurethane block possessing a microscopically rough surface. We evaluated the tactile sensations when skin-care cream was applied to the artificial skin. Many subjects perceived smooth, moist, and soft feels during the application process. Cluster analysis showed that these characteristic tactile feels are similar to those when skin-care cream is applied to real human skin. Contact angle analysis showed that an oil droplet spread smoothly on the artificial skin surface, which occurred because there were many grooves several hundred micrometers in width on the skin surface. In addition, when the skin-care cream was applied, the change in frictional force during the dynamic friction process increased. These wetting and frictional properties are important factors controlling the similarity of artificial skin to real human skin.

  11. Deposition of contaminant aerosol on human skin

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Roed, Jørn; Byrne, M.A.

    2006-01-01

    Over recent years, it has been established that deposition of various types of pollutant aerosols (e.g., radioactive) on human skin can have serious deleterious effects on health. However. only few investigations in the past have been devoted to measurement of deposition velocities on skin...... of particles of the potentially problematic sizes. An experimental programme has shown the deposition velocities on skin of particles in the ca. 0.5-5 mu m AMAD range to be high and generally associated with great variations. A series of investigations have been made to identify some of the factors that lead...... to this variation. Part of the variation was found to be caused by differences between individuals, whereas another part was found to be related to environmental factors, The identification of major influences on skin contaminant deposition is important in estimating health effects as well as in identifying means...

  12. Human Skin Constructs with Spatially Controlled Vasculature Using Primary and iPSC-Derived Endothelial Cells.

    Science.gov (United States)

    Abaci, Hasan E; Guo, Zongyou; Coffman, Abigail; Gillette, Brian; Lee, Wen-Han; Sia, Samuel K; Christiano, Angela M

    2016-07-01

    Vascularization of engineered human skin constructs is crucial for recapitulation of systemic drug delivery and for their long-term survival, functionality, and viable engraftment. In this study, the latest microfabrication techniques are used and a novel bioengineering approach is established to micropattern spatially controlled and perfusable vascular networks in 3D human skin equivalents using both primary and induced pluripotent stem cell (iPSC)-derived endothelial cells. Using 3D printing technology makes it possible to control the geometry of the micropatterned vascular networks. It is verified that vascularized human skin equivalents (vHSEs) can form a robust epidermis and establish an endothelial barrier function, which allows for the recapitulation of both topical and systemic delivery of drugs. In addition, the therapeutic potential of vHSEs for cutaneous wounds on immunodeficient mice is examined and it is demonstrated that vHSEs can both promote and guide neovascularization during wound healing. Overall, this innovative bioengineering approach can enable in vitro evaluation of topical and systemic drug delivery as well as improve the potential of engineered skin constructs to be used as a potential therapeutic option for the treatment of cutaneous wounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electro spinning of Poly(ethylene-co-vinyl alcohol) Nano fibres Encapsulated with Ag Nanoparticles for Skin Wound Healing

    International Nuclear Information System (INIS)

    Xu, Ch.; Wang, B.; Lu, T.; Xu, F.; Xu, F.; Wang, B.; Xu, F.

    2011-01-01

    Skin wound healing is an urgent problem in clinics and military activities. Although significant advances have been made in its treatment, there are several challenges associated with traditional methods, for example, limited donor skin tissue for transplantation and inflammation during long-term healing time. To address these challenges, in this study we present a method to fabricate Poly(ethylene-co-vinyl alcohol) (EVOH) nano fibres encapsulated with Ag nanoparticle using electro spinning technique. The fibres were fabricated with controlled diameters (59 nm 3μm) by regulating three main parameters, that is, EVOH solution concentration, the electric voltage, and the distance between the injection needle tip (high-voltage point) and the fibre collector. Ag was added to the nano fibres to offer long-term anti-inflammation effect by slow release of Ag nanoparticles through gradual degradation of EVOH nano fibre. The method developed here could lead to new dressing materials for treatment of skin wounds.

  14. Use of Clotted Human Plasma and Aprotinin in Skin Tissue Engineering: A Novel Approach to Engineering Composite Skin on a Porous Scaffold.

    Science.gov (United States)

    Paul, Michelle; Kaur, Pritinder; Herson, Marisa; Cheshire, Perdita; Cleland, Heather; Akbarzadeh, Shiva

    2015-10-01

    Tissue-engineered composite skin is a promising therapy for the treatment of chronic and acute wounds, including burns. Providing the wound bed with a dermal scaffold populated by autologous dermal and epidermal cellular components can further entice host cell infiltration and vascularization to achieve permanent wound closure in a single stage. However, the high porosity and the lack of a supportive basement membrane in most commercially available dermal scaffolds hinders organized keratinocyte proliferation and stratification in vitro and may delay re-epithelization in vivo. The objective of this study was to develop a method to enable the in vitro production of a human skin equivalent (HSE) that included a porous scaffold and dermal and epidermal cells expanded ex vivo, with the potential to be used for definitive treatment of skin defects in a single procedure. A collagen-glycosaminoglycan dermal scaffold (Integra(®)) was populated with adult fibroblasts. A near-normal skin architecture was achieved by the addition of coagulated human plasma to the fibroblast-populated scaffold before seeding cultured keratinocytes. This resulted in reducing scaffold pore size and improving contact surfaces. Skin architecture and basement membrane formation was further improved by the addition of aprotinin (a serine protease inhibitor) to the culture media to inhibit premature clot digestion. Histological assessment of the novel HSE revealed expression of keratin 14 and keratin 10 similar to native skin, with a multilayered neoepidermis morphologically comparable to human skin. Furthermore, deposition of collagen IV and laminin-511 were detected by immunofluorescence, indicating the formation of a continuous basement membrane at the dermal-epidermal junction. The proposed method was efficient in producing an in vitro near native HSE using the chosen off-the-shelf porous scaffold (Integra). The same principles and promising outcomes should be applicable to other biodegradable

  15. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management.

    Science.gov (United States)

    Pal, Pallabi; Dadhich, Prabhash; Srivas, Pavan Kumar; Das, Bodhisatwa; Maulik, Dhrubajyoti; Dhara, Santanu

    2017-08-22

    Mimicking skin extracellular matrix hierarchy, the present work aims to develop a bilayer skin graft comprising a porous cotton-wool-like 3D layer with membranous structure of PCL-chitosan nanofibers. Emulsion electrospinning with differential stirring periods of PCL-chitosan emulsion results in development of a bilayer 3D structure with varied morphology. The electrospun membrane has fiber diameter ∼274 nm and pore size ∼1.16 μm while fluffy 3D layer has fiber diameter ∼1.62 μm and pore size ∼62 μm. The 3D layer was further coated with collagen I isolated from Cirrhinus cirrhosus fish scales to improve biofunctionality. Surface coating with collagen I resulted in bundling the fibers together, thereby increasing their average diameter to 2.80 μm and decreasing pore size to ∼45 μm. The architecture and composition of the scaffold promotes efficient cellular activity where interconnected porosity with ECM resembling collagen I coating assists cellular adhesion, infiltration, and proliferation from initial days of fibroblast seeding, while keratinocytes migrate on the surface only without infiltrating in the membranous nanofiber layer. Anatomy of the scaffold arising due to variation in pore size distribution at different layers thereby facilitates compartmentalization and prevents initial cellular transmigration. The scaffold also assists in extracellular matrix protein synthesis and keratinocyte stratification in vitro. Further, the scaffold effectively integrates and attaches with third-degree burn wound margins created in rat models and accelerates healing in comparison to standard Tegaderm dressing™. The bilayer scaffold is thus a promising, readily available, cost-effective, off-the-shelf matrix as a skin substitute.

  16. Effect of the Lectin of Bauhinia variegata and Its Recombinant Isoform on Surgically Induced Skin Wounds in a Murine Model

    Directory of Open Access Journals (Sweden)

    Rodrigo Bainy Leal

    2011-11-01

    Full Text Available Lectins are a structurally heterogeneous group of highly specific carbohydrate-binding proteins. Due to their great biotechnological potential, lectins are widely used in biomedical research. The purpose of the present study was to evaluate the healing potential of the lectin of Bauhinia variegata (nBVL and its recombinant isoform (rBVL-1. Following surgical creation of dorsal skin wounds, seven groups of mice were submitted to topical treatment for 12 days with lectin, D-galactose, BSA and saline. The animals were anesthetized and euthanized on POD 2, 7 and 12 in order to evaluate the healing potential of each treatment. The parameters considered included wound size, contraction rate, epithelialization rate and histopathological findings. Wound closure was fastest in animals treated with rBVL-1 (POD 7. nBVL was more effective than the controls. All skin layers were reconstructed and keratin deposition increased. Our findings indicate that the lectin of Bauhinia variegata possesses pro-healing properties and may be employed in the treatment of acute skin wounds.

  17. Effect of the lectin of Bauhinia variegata and its recombinant isoform on surgically induced skin wounds in a murine model.

    Science.gov (United States)

    Neto, Luiz Gonzaga do Nascimento; Pinto, Luciano da Silva; Bastos, Rafaela Mesquita; Evaristo, Francisco Flávio Vasconcelos; Vasconcelos, Mayron Alves de; Carneiro, Victor Alves; Arruda, Francisco Vassiliepe Sousa; Porto, Ana Lúcia Figueiredo; Leal, Rodrigo Bainy; Júnior, Valdemiro Amaro da Silva; Cavada, Benildo Sousa; Teixeira, Edson Holanda

    2011-11-07

    Lectins are a structurally heterogeneous group of highly specific carbohydrate-binding proteins. Due to their great biotechnological potential, lectins are widely used in biomedical research. The purpose of the present study was to evaluate the healing potential of the lectin of Bauhinia variegata (nBVL) and its recombinant isoform (rBVL-1). Following surgical creation of dorsal skin wounds, seven groups of mice were submitted to topical treatment for 12 days with lectin, D-galactose, BSA and saline. The animals were anesthetized and euthanized on POD 2, 7 and 12 in order to evaluate the healing potential of each treatment. The parameters considered included wound size, contraction rate, epithelialization rate and histopathological findings. Wound closure was fastest in animals treated with rBVL-1 (POD 7). nBVL was more effective than the controls. All skin layers were reconstructed and keratin deposition increased. Our findings indicate that the lectin of Bauhinia variegata possesses pro-healing properties and may be employed in the treatment of acute skin wounds.

  18. The Effects of Aloe vera Cream on the Expression of CD4+ and CD8+ Lymphocytes in Skin Wound Healing.

    Science.gov (United States)

    Prakoso, Yos Adi; Kurniasih

    2018-01-01

    The aim of this study is to explore the effect of topical application of Aloe vera on skin wound healing. Thirty-six male Sprague-Dawley rats weighing 150-200 grams were divided into four groups. All groups were anesthetized, shaved, and exposed to round full-thickness punch biopsy on the back: group I (control); group II (treated with 1% Aloe vera cream); group III (treated with 2% Aloe vera cream); and group IV (treated with madecassol®). The treatments were given once a day. Macroscopic and microscopic examination were observed at 5, 10, and 15 days after skin biopsy. Skin specimens were prepared for histopathological study using H&E stain and IHC stain against CD4 + and CD8 + lymphocytes. All the data were analyzed using SPSS16. The result showed that topical application of 1% and 2% Aloe vera cream significantly reduced the percentage of the wound, leucocytes infiltration, angiogenesis, and expression of CD8 + lymphocytes and increased the epidermal thickness and the expression of CD4 + lymphocytes ( p ≤ 0,05). There was no significant difference in the number of fibroblasts in all groups. Topical application of 1% and 2% Aloe vera cream has wound healing potential via their ability to increase the ratio of CD4 + /CD8 + lymphocytes in the wound area.

  19. Clinical Evaluation of Wound Healing in Split-Skin Graft Donor Sites Using Microscopic Quantification of Reepithelialization.

    Science.gov (United States)

    Wehrens, Kim Marlou Emiele; Arnoldussen, Carsten W K P; Booi, Darren Ivar; van der Hulst, Rene R W J

    2016-06-01

    Impaired or delayed wound healing is a common health problem. However, it remains challenging to predict whether wounds in patients will heal without complication or will have a prolonged healing time. In this study, the authors developed an objective screening tool to assess wound healing using microscopic quantification of reepithelialization in a split-thickness skin graft wound model and used this tool to identify risk factors for defective wound healing. Thirty patients (16 male and 14 female) were included in this prospective study. Anterior thigh skin biopsies from the donor site region of partial-thickness skin grafts were dressed with moisture-retentive dressings, and biopsies were examined on days 0, 2, 5, and 10 postoperatively by microscopy. Images were then transferred to a computer for image analysis and epithelial measurements (epithelial thickness and total reepithelialized surface). The effects of gender, age, body mass index, and smoking behavior on these wound healing parameters were determined. The authors found comparable results for the computer and traditional measure methods. However, the time required to perform the measurements using the semiautomated computer method was less than half the time of the traditional method. Image capturing, enhancing, and analysis with the new method required approximately 2 minutes 30 seconds, whereas the traditional methods took up to 7 minutes per image. The total size of the reepithelialized surface (P = .047) and percentage of the biopsy resurfaced with epithelia (P = .011) at day 10 were both significantly higher in male patients compared with female patients. In patients younger than 55 years, reepithelialized areas were significantly thicker than in patients older than 55 years (P = .008), whereas the size of the reepithelialized surface showed no differences. No significant differences in reepithelialization parameters were found concerning body mass index and smoking behavior. Both male gender and

  20. In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care

    Science.gov (United States)

    Dong, Rui-Hua; Jia, Yue-Xiao; Qin, Chong-Chong; Zhan, Lu; Yan, Xu; Cui, Lin; Zhou, Yu; Jiang, Xingyu; Long, Yun-Ze

    2016-02-01

    Current strategies for wound care provide limited relief to millions of patients who suffer from burns, chronic skin ulcers or surgical-related wounds. The goal of this work is to develop an in situ deposition of a personalized nanofibrous dressing via a handy electrospinning (e-spinning) device and evaluate its properties related to skin wound care. MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs) were prepared by a facile and environmentally friendly approach, which possessed long-term antibacterial activity and low cytotoxicity. Poly-ε-caprolactone (PCL) incorporated with Ag-MSNs was successfully electrospun (e-spun) into nanofibrous membranes. These in situ e-spun nanofibrous membranes allowed the continuous release of Ag ions and showed broad-spectrum antimicrobial activity against two common types of pathogens, Staphylococcus aureus and Escherichia coli. In addition, the in vivo studies revealed that these antibacterial nanofibrous membranes could reduce the inflammatory response and accelerate wound healing in Wistar rats. The above results strongly demonstrate that such patient-specific dressings could be broadly applied in emergency medical transport, hospitals, clinics and at the patients' home in the near future.Current strategies for wound care provide limited relief to millions of patients who suffer from burns, chronic skin ulcers or surgical-related wounds. The goal of this work is to develop an in situ deposition of a personalized nanofibrous dressing via a handy electrospinning (e-spinning) device and evaluate its properties related to skin wound care. MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs) were prepared by a facile and environmentally friendly approach, which possessed long-term antibacterial activity and low cytotoxicity. Poly-ε-caprolactone (PCL) incorporated with Ag-MSNs was successfully electrospun (e-spun) into nanofibrous membranes. These in situ e

  1. Chimeric Human Skin Substitute Tissue: A Novel Treatment Option for the Delivery of Autologous Keratinocytes.

    Science.gov (United States)

    Rasmussen, Cathy A; Allen-Hoffmann, B Lynn

    2012-04-01

    For patients suffering from catastrophic burns, few treatment options are available. Chimeric coculture of patient-derived autologous cells with a "carrier" cell source of allogeneic keratinocytes has been proposed as a means to address the complex clinical problem of severe skin loss. Currently, autologous keratinocytes are harvested, cultured, and expanded to form graftable epidermal sheets. However, epidermal sheets are thin, are extremely fragile, and do not possess barrier function, which only develops as skin stratifies and matures. Grafting is typically delayed for up to 4 weeks to propagate a sufficient quantity of the patient's cells for application to wound sites. Fully stratified chimeric bioengineered skin substitutes could not only provide immediate wound coverage and restore barrier function, but would simultaneously deliver autologous keratinocytes to wounds. The ideal allogeneic cell source for this application would be an abundant supply of clinically evaluated, nontumorigenic, pathogen-free, human keratinocytes. To evaluate this potential cell-based therapy, mixed populations of a green fluorescent protein-labeled neonatal human keratinocyte cell line (NIKS) and unlabeled primary keratinocytes were used to model the allogeneic and autologous components of chimeric monolayer and organotypic cultures. Relatively few autologous keratinocytes may be required to produce fully stratified chimeric skin substitute tissue substantially composed of autologous keratinocyte-derived regions. The need for few autologous cells interspersed within an allogeneic "carrier" cell population may decrease cell expansion time, reducing the time to patient application. This study provides proof of concept for utilizing NIKS keratinocytes as the allogeneic carrier for the generation of bioengineered chimeric skin substitute tissues capable of providing immediate wound coverage while simultaneously supplying autologous human cells for tissue regeneration.

  2. [Effects of arnebia root oil on wound healing of rats with full-thickness skin defect and the related mechanism].

    Science.gov (United States)

    Shen, J Y; Ma, Q; Yang, Z B; Gong, J J; Wu, Y S

    2017-09-20

    Objective: To observe the effects of arnebia root oil on wound healing of rats with full-thickness skin defect, and to explore the related mechanism. Methods: Eighty SD rats were divided into arnebia root oil group and control group according to the random number table, with 40 rats in each group, then full-thickness skin wounds with area of 3 cm×3 cm were inflicted on the back of each rat. Wounds of rats in arnebia root oil group and control group were treated with sterile medical gauze and bandage package infiltrated with arnebia root oil gauze or Vaseline gauze, respectively, with dressing change of once every two days. On post injury day (PID) 3, 7, 14, and 21, 10 rats in each group were sacrificed respectively for general observation and calculation of wound healing rate. The tissue samples of unhealed wound were collected for observation of histomorphological change with HE staining, observation of expressions of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) with immunohistochemical staining, and determination of mRNA expressions of VEGF and bFGF with real time fluorescent quantitive reverse transcription polymerase chain reaction. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) On PID 3, there were a few secretions in wounds of rats in the two groups. On PID 7, there were fewer secretions and more granulation tissue in wounds of rats in arnebia root oil group, while there were more secretions and less granulation tissue in wounds of rats in control group. On PID 14, most of the wounds of rats in arnebia root oil group were healed and there was much red granulation tissue in unhealed wounds, while part of wounds of rats in control group was healed and there were a few secretions and less granulation tissue in unhealed wounds. On PID 21, wounds of rats in arnebia root oil group were basically healed, while there were still some unhealed wounds of rats in

  3. Adipose Extracellular Matrix/Stromal Vascular Fraction Gel Secretes Angiogenic Factors and Enhances Skin Wound Healing in a Murine Model

    Directory of Open Access Journals (Sweden)

    Mingliang Sun

    2017-01-01

    Full Text Available Mesenchymal stem cells are an attractive cell type for cytotherapy in wound healing. The authors recently developed a novel, adipose-tissue-derived, injectable extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel for stem cell therapy. This study was designed to assess the therapeutic effects of ECM/SVF-gel on wound healing and potential mechanisms. ECM/SVF-gel was prepared for use in nude mouse excisional wound healing model. An SVF cell suspension and phosphate-buffered saline injection served as the control. The expression levels of vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF, and monocyte chemotactic protein-1 (MCP-1 in ECM/SVF-gel were analyzed at different time points. Angiogenesis (tube formation assays of ECM/SVF-gel extracts were evaluated, and vessels density in skin was determined. The ECM/SVF-gel extract promoted tube formation in vitro and increased the expression of the angiogenic factors VEGF and bFGF compared with those in the control. The expression of the inflammatory chemoattractant MCP-1 was high in ECM/SVF-gel at the early stage and decreased sharply during the late stage of wound healing. The potent angiogenic effects exerted by ECM/SVF-gel may contribute to the improvement of wound healing, and these effects could be related to the enhanced inflammatory response in ECM/SVF-gel during the early stage of wound healing.

  4. The Effects of Topical Application of Thyroid Hormone (Liothyronine, T3 on Skin Wounds in Diabetic Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mahmoud Ali Kaykhaei

    2016-04-01

    Full Text Available Background Efficient treatment of skin ulcers, a leading cause of substantial number of morbidities among diabetic patients, is a subject of matter. Objectives Since current therapies are partially effective and/or expensive and topical liothyronine (T3 was shown to get faster wound healing in mice, the present study was designed to assess its effectiveness in diabetic male rats. Materials and Methods In this experimental study, 30 male wistar rats with mean weight of 242 g were randomly assigned into control (group C (n = 10 and diabetic (n = 20 groups. Diabetes was induced by intraperitoneal (i.p. injection of streptozotocin. Diabetic rats were randomly subdivided into two groups: diabetic T3 group (group A which was treated with 150 ng/day topical T3 and diabetic placebo group (group B received vehicle. Full thickness wound on dorsum was created in each rat (1 cm2. Photographs were taken at baseline, fourth and tenth day to analyze changes in surface areas of wounds. Results Results obtained from the present study showed that baseline surface areas of wounds were similar in all groups. Conversely, wound contraction was significantly better in T3 group in fourth and tenth days compared to placebo group, (P = 0.001, P < 0.00001. Moreover, wound healing was impaired in diabetic placebo group compared to other groups (all P < 0.05. Conclusions This study revealed that topical T3 administration is an effective measure for treatment of ulcers in diabetic male rats.

  5. Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: a noninferiority study.

    Science.gov (United States)

    Baldursson, Baldur Tumi; Kjartansson, Hilmar; Konrádsdóttir, Fífa; Gudnason, Palmar; Sigurjonsson, Gudmundur F; Lund, Sigrún Helga

    2015-03-01

    A novel product, the fish skin acellular dermal matrix (ADM) has recently been introduced into the family of biological materials for the treatment of wounds. Hitherto, these products have been produced from the organs of livestock. A noninferiority test was used to compare the effect of fish skin ADM against porcine small-intestine submucosa extracellular matrix in the healing of 162 full-thickness 4-mm wounds on the forearm of 81 volunteers. The fish skin product was noninferior at the primary end point, healing at 28 days. Furthermore, the wounds treated with fish skin acellular matrix healed significantly faster. These results might give the fish skin ADM an advantage because of its environmental neutrality when compared with livestock-derived products. The study results on these acute full-thickness wounds might apply for diabetic foot ulcers and other chronic full-thickness wounds, and the shorter healing time for the fish skin-treated group could influence treatment decisions. To test the autoimmune reactivity of the fish skin, the participants were tested with the following ELISA (enzyme-linked immunosorbent assay) tests: RF, ANA, ENA, anti ds-DNA, ANCA, anti-CCP, and anticollagen I and II. These showed no reactivity. The results demonstrate the claims of safety and efficacy of fish skin ADM for wound care. © The Author(s) 2015.

  6. Antimicrobial-impregnated dressing combined with negative-pressure wound therapy increases split-thickness skin graft engraftment: a simple effective technique.

    Science.gov (United States)

    Wu, Cheng-Chun; Chew, Khong-Yik; Chen, Chien-Chang; Kuo, Yur-Ren

    2015-01-01

    Immobilization and adequate surface contact to wounds are critical for skin graft take. Techniques such as the tie-over dressing, cotton bolster, and vacuum-assisted closure are used to address this, but each has its limitations. This study is designed to assess the effect of antimicrobial-impregnated dressing (AMD) combined with negative-pressure wound therapy (NPWT) on skin graft survival. Retrospective case-control study : Patients with chronic or contaminated wounds treated with split-thickness skin graft. A broad spectrum of wounds was included, from causes such as trauma, burns, chronic diabetic ulcers, and infection. Antimicrobial-impregnated dressing, which contains 0.2% polyhexamethylene biguanide, with NPWT MAIN OUTCOME MEASURE:: Success of skin graft : In the AMD group, all skin grafts achieved 100% take without secondary intervention. No infection or graft failure was observed in any patients, and no complications, such as hematoma or seroma formation, were noted, although in the control group partial loss of skin grafts was noted in 3 patients. Infection and inadequate immobilization were thought to be the main reasons. There were no hematoma or seroma formations in the control group. Use of an AMD dressing with NPWT after split-thickness skin grafting can be an effective method to ensure good graft to wound contact and enhances skin graft take in chronic and contaminated wounds.

  7. Temporal expression of wound healing-related genes in skin burn injury.

    Science.gov (United States)

    Kubo, Hidemichi; Hayashi, Takahito; Ago, Kazutoshi; Ago, Mihoko; Kanekura, Takuro; Ogata, Mamoru

    2014-01-01

    Determination of the age of burns, as well as of wounds induced mechanically, is essential in forensic practice, particularly in cases of suspected child abuse. Here, we investigated temporal changes in the expression of 13 genes during wound healing after a burn. The expression of cytokines (IL-1β, IL-6, IL-10, TNF-α, and IFN-γ), chemokines (KC, MCP-1), proliferative factors (TGF-β, VEGF), proteases (MMP-2, 9, 13) and type I collagen in murine skin was examined by real-time PCR at 3, 6, 9, and 12 h and 1, 2, 3, 5, 7, and 14 days after a burn. Based on macroscopic and histological appearance, the healing process of a burn consists of 3 phases: inflammatory (from 3 h to 1 day after the burn), proliferative (from 1 to 7 days), and maturation (from 7 to 14 days). Expression of IL-1β, IL-6, TNF-α, IFN-γ and KC increased significantly in a biphasic pattern from 3 or 6 h to 12 h or 1 day and from 3 or 5 days to 7 days. Expression of MCP-1 increased significantly from 6 h to 5 days. Expression of both IL-10 and TGF-β increased significantly from 12 h to 7 days. Expression of VEGF, MMP-2, MMP-13 and type I collagen increased significantly from 3 days to 7 or 14 days. Expression of MMP-9 increased significantly from 6 h to 14 days. Our results suggest that evaluating the expression of a combination of these genes would enable the exact estimation of the age of a burn. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. [VISIBLE LIGHT AND HUMAN SKIN (REVIEW)].

    Science.gov (United States)

    Tsibadze, A; Chikvaidze, E; Katsitadze, A; Kvachadze, I; Tskhvediani, N; Chikviladze, A

    2015-09-01

    Biological effect of a visible light depends on extend of its property to penetrate into the tissues: the greater is a wavelength the more is an effect of a radiation. An impact of a visible light on the skin is evident by wave and quantum effects. Quanta of a visible radiation carry more energy than infrared radiation, although an influence of such radiation on the skin is produced by the light spectrum on the boarder of the ultraviolet and the infrared rays and is manifested by thermal and chemical effects. It is determined that large doses of a visible light (405-436 nm) can cause skin erythema. At this time, the ratio of generation of free radicals in the skin during an exposure to the ultraviolet and the visible light range from 67-33% respectively. Visible rays of 400-500 nm length of wave cause an increase of the concentration of oxygen's active form and mutation of DNA and proteins in the skin. The urticaria in 4-18% of young people induced by photodermatosis is described. As a result of a direct exposure to sunlight photosensitive eczema is more common in elderly. Special place holds a hereditary disease - porphyria, caused by a visible light. In recent years, dermatologists widely use phototherapy. The method uses polychromatic, non-coherent (wavelength of 515-1200 nm) pulsating beam. During phototherapy/light treatment a patient is being exposed to sunlight or bright artificial light. Sources of visible light are lasers, LEDs and fluorescent lamps which have the full range of a visible light. Phototherapy is used in the treatment of acne vulgaris, seasonal affective disorders, depression, psoriasis, eczema and neurodermities. LED of the red and near infrared range also is characterized by the therapeutic effect. They have an ability to influence cromatophores and enhance ATP synthesis in mitochondria. To speed up the healing of wounds and stimulate hair growth light sources of a weak intensity are used. The light of blue-green spectrum is widely used for

  9. Designing a New Nano-Plant Composite of Cucurbita pepo for Wound Repair of Skin in Male Albino Mice: A New Nano Approach for Skin Repair

    Directory of Open Access Journals (Sweden)

    Nooshin Naghsh

    2013-06-01

    Full Text Available Background & Objective : The Cucurbita pepo is one of plants that are functional in traditional therapy. This plant has antioxidant and skin damage repair properties. This study investigated the effect of Cucurbita pepo nano silver as a new nano-plant composition in wound repair skin in male mice.   Materials & Methods: In this investigation, male albino mice were places in 8 groups, each containing 8 animals. Group I – VIII were treated with nano silver (500, 250, and 125 ppm concentrations and different concentrations of extracts [70%, 50%, and 25%] and the control group received a mixture of 25% Cucurbita pepo extract (125 ppm nano silver. The eighth group, as control, was treated with sterile deionizer water after the induction of wound skin. The average diameter of the wounds was measured 28 days after treatment in the control and treatment groups. These data were analyzed using the t-test and ANOVA statistical method.   Results: The results of this study showed that ethanol extraction (80% has its highest repair effect 28 days post treatment. The average diameter of the wounds in the control group was 1.16 ±. 0.46 cm, which was decreased to 0 cm and 0.12 ±. 0.23 cm in the ethanol extract (70% of the Cucurbita pepo and component groups, respectively (p value ≤ 0.01.   Conclusion: In this project, nano silver-Cucurbita pepo ethanol extraction for wound repair in albino male mice was more effective than single materials. These findings show that the repair synergic effects are between alcoholic extract and nano silver in this nano composite.

  10. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Szu-Hsien [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Tsao, Ching-Ting [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Epithelial Biology Laboratory/Transgenic Mice Core-Laboratory, Department of Anatomy, Chang Gung University, Taoyuan 33302, Taiwan (China); Chang, Chih-Hao [Department of Orthopedics, National Taiwan University Hospital, Taiwan (China); National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Taipei City 10018, Taiwan (China); Lai, Yi-Ting [Department of Chemical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Wu, Ming-Fung [Animal Medicine Center, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Taipei City 10018, Taiwan (China); Chuang, Ching-Nan [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Chou, Hung-Chia [Department of Chemical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Hsieh, Kuo-Haung, E-mail: khhsieh@ntu.edu.tw [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China)

    2013-07-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m{sup 2}/day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing. Highlights: ► Mouse angiogenesis study on reinforced poly(ethylene glycol)-chitosan (RPC) ► Water vapor transmission rate of about 2000 g/m{sup 2}/day is characteristic of RPC. ► RPC suppressed inflammatory cells and accelerated fibroblast proliferation. ► RPC composed of 1000-RP10C90 can be used as a biomaterial for wound dressing.

  11. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model

    International Nuclear Information System (INIS)

    Chen, Szu-Hsien; Tsao, Ching-Ting; Chang, Chih-Hao; Lai, Yi-Ting; Wu, Ming-Fung; Chuang, Ching-Nan; Chou, Hung-Chia; Wang, Chih-Kuang; Hsieh, Kuo-Haung

    2013-01-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m 2 /day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing. Highlights: ► Mouse angiogenesis study on reinforced poly(ethylene glycol)-chitosan (RPC) ► Water vapor transmission rate of about 2000 g/m 2 /day is characteristic of RPC. ► RPC suppressed inflammatory cells and accelerated fibroblast proliferation. ► RPC composed of 1000-RP10C90 can be used as a biomaterial for wound dressing

  12. Modelling glucose and water dynamics in human skin

    NARCIS (Netherlands)

    Groenendaal, W.; Schmidt, K.H.; Basum, von G.; Riel, van N.A.W.; Hilbers, P.A.J.

    2008-01-01

    Background: Glucose is heterogeneously distributed in the different physiological compartments in the human skin. Therefore, for the development of a noninvasive measurement method, both a good quantification of the different compartments of human skin and an understanding of glucose transport

  13. Plasma Rich in Growth Factors Enhances Wound Healing and Protects from Photo-oxidative Stress in Dermal Fibroblasts and 3D Skin Models.

    Science.gov (United States)

    Anitua, Eduardo; Pino, Ander; Jaen, Pedro; Orive, Gorka

    2016-01-01

    Optimal skin repair has been a desired goal for many researchers. Recently, plasma rich in growth factors (PRGF) has gained importance in dermatology proving it is beneficial effects in wound healing and cutaneous regeneration. The anti-fibrotic, pro-contractile and photo-protective effect of PRGF on dermal fibroblasts and 3D skin models has been evaluated. The effect against TGFβ1 induced myofibroblast differentiation was tested. Cell contractile activity over collagen gel matrices was analyzed and the effect against UV derived photo-oxidative stress was assessed. The effectiveness of PRGF obtained from young aged and middle aged donors was compared. Furthermore, 3D organotypic skin explants were used as human skin models with the aim of analyzing ex vivo cutaneous preventive and regenerative photo-protection after UV exposure. TGFβ1 induced myofibroblast levels decreased significantly after treatment with PRGF while the contractile activity increased compared to the control group. After UV irradiation, cell survival was promoted while apoptotic and ROS levels were noticeably reduced. Photo-exposed 3D explants showed higher levels of metabolic activity and lower levels of necrosis, cell damage, irritation and ROS formation when treated with PRGF. The histological integrity and connective tissue fibers showed lower signals of photodamage among PRGF injected skin models. No significant differences for the assessed biological outcomes were observed when PRGF obtained from young aged and middle aged donors were compared. These findings suggest that this autologous approach might be useful for antifibrotic wound healing and provide an effective protection against sun derived photo-oxidative stress regardless the age of the patient.

  14. The effectiveness of platelet-rich plasma on the skin wound healing process: A comparative experimental study in sheep

    Directory of Open Access Journals (Sweden)

    Daikh Badis

    2018-06-01

    Full Text Available Aim: The therapeutic evaluation of the biological effect of platelet-rich plasma (PRP used as a surgical adjunct to maintain the inflammatory process and to potentiate tissue healing, make the subject of recent research in regenerative medicine. This study was designed to evaluate the healing activity of PRP by its topical application on the skin experimentally injured in a sheep model. Materials and Methods: The study was conducted on 9 adult and clinically healthy males sheep. PRP was obtained by a protocol of double centrifugation of whole blood from each animal. After sterile skin preparation, full-thickness excisional wounds (20 mm x 20 mm were created on the back of each animal. The animals were randomly divided into three equal groups of three sheep for each. In Group I, the wounds were treated with PRP, in Group II; wounds were treated with Asiaticoside; in Group III, wounds were treated with saline solution. The different treatments were administered topically every 3 days. Morphometric measurements of the contraction surface of the wounds and histopathological biopsies were carried out at the 3rd, 7th, 14th, 21st, and 28th days of healing. Results: The results of the morphometric data obtained revealed that it was significant differences recorded at the 7th and 14th day of healing in favor for animals of Group I. Semi-quantitative histopathological evaluation showed that PRP reduces inflammation during 3 first days post-surgical and promotes epithelialization in 3 weeks of healing. Conclusion: We concluded that topical administration of PRP obtained by double centrifugation protocol could potentially improve the skin healing process in sheep.

  15. The detection of metallic residues in skin stab wounds by means of SEM-EDS: A pilot study.

    Science.gov (United States)

    Palazzo, Elisa; Amadasi, Alberto; Boracchi, Michele; Gentile, Guendalina; Maciocco, Francesca; Marchesi, Matteo; Zoja, Riccardo

    2018-05-01

    The morphological analysis of stab wounds may often not be accurate enough to link it with the type of wounding weapon, but a further evaluation may be performed with the search for metallic residues left during the contact between the instrument and the skin. In this study, Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) was applied to the study of cadaveric stab wounds performed with kitchen knives composed of iron, chromium and nickel, in order to verify the presence of metallic residues on the wound's edge. Two groups of 10 corpses were selected: group A, including victims of stab wounds and a control group B (died of natural causes). Samplings were performed on the lesions and in intact areas of group A, whereas in group B sampling were performed in non-exposed intact skin. Samples were then analysed with optical microscopy and SEM-EDS. In group A, optical microscopic analysis showed the presence of vital haemorrhagic infiltration, while SEM-EDS showed evidence of microscopic metal traces, isolated or clustered, consisting of iron, chromium and nickel. Moreover, in two cases organic residues of calcium and phosphate were detected, as a probable sign of bone lesion. Control samples (group A in intact areas and group B), were negative for the search of exogenous material to optical microscopy and SEM-EDS. The results show the utility and possible application of the SEM-EDS in theidentification of metallic residues from sharp weapons on the skin. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  16. Polyurethane Foam Wound Dressing Technique for Areola Skin Graft Stabilization and Nipple Protection After Nipple-Areola Reconstruction.

    Science.gov (United States)

    Satake, Toshihiko; Muto, Mayu; Nagashima, Yu; Haga, Shoko; Homma, Yuki; Nakasone, Reiko; Kadokura, Marina; Kou, Seiko; Fujimoto, Hiroshi; Maegawa, Jiro

    2018-04-01

    We describe a new wound management technique using a soft dressing material to stabilize the areola skin graft and protect the nipple after nipple-areola reconstruction at the final stage of breast reconstruction. We introduced a center-fenestrated multilayered hydrocellular polyurethane foam dressing material that provides adequate pressure and retains a moist environment for a smooth skin graft "take." Moreover, the reconstructed nipple can be monitored at any time through the fenestrated window for adequate blood circulation. Altogether, this simple and inexpensive wound dressing technique improves the clinical outcome. Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  17. Evaluation of the healing activity of therapeutic clay in rat skin wounds.

    Science.gov (United States)

    Dário, Giordana Maciel; da Silva, Geovana Gomes; Gonçalves, Davi Ludvig; Silveira, Paulo; Junior, Adilson Teixeira; Angioletto, Elidio; Bernardin, Adriano Michael

    2014-10-01

    The use of clays for therapeutic practice is widespread in almost all regions of the world. In this study the physicochemical and microbiological healing characteristics of a clay from Ocara, Brazil, popularly used for therapeutic uses, were analyzed. The presence of Ca, Mg, Al, Fe, and Si was observed, which initially indicated that the clay had potential for therapeutic use. The average particle size of the clay (26.3 μm) can induce the microcirculation of the skin and the XRD analysis shows that the clay is formed by kaolinite and illite, a swelling clay. During the microbiological evaluation there was the need to sterilize the clay for later incorporation into the pharmaceutical formula. The accelerated stability test at 50°C for 3 months has showed that the pharmaceutical formula remained stable with a shelf life of two years. After the stability test the wound-healing capacity of the formulation in rats was evaluated. It was observed that the treatment made with the formulation containing the Ocara clay showed the best results since the formula allowed greater formation of collagen fibers and consequent regeneration of the deep dermis after seven days of treatment and reepithelialization and continuous formation of granulation tissue at the 14th day. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ultrasonic evaluation of local human skin anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tokar, Daniel; Převorovský, Zdeněk; Hradilová, Jana

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : anisotropy * ultrasonic testing * human skin in-vivo * fabric-fiber composite * signal processing Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Paper/324_Tokar.pdf

  19. Human skin kinetics of cyclic depsipeptide mycotoxins

    OpenAIRE

    Taevernier, Lien; Veryser, Lieselotte; ROCHE, NATHALIE; De Spiegeleer, Bart

    2014-01-01

    Cyclic depsipeptides (CDPs) are an emerging group of naturally occurring bioactive peptides, some of which are already developed as pharmaceutical drugs, e.g. valinomycin. They are produced by bacteria, marine organisms and fungi [1]. Some CDPs are secondary fungal metabolites, which can be very toxic to humans and animals, and are therefore called mycotoxins. Currently, dermal exposure data of CDP mycotoxins is scarce and fragmentary with a lack of understanding about the local skin and syst...

  20. Topical treatment of oral cavity and wounded skin with a new disinfection system utilizing photolysis of hydrogen peroxide in rats.

    Science.gov (United States)

    Yamada, Yasutomo; Mokudai, Takayuki; Nakamura, Keisuke; Hayashi, Eisei; Kawana, Yoshiko; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2012-01-01

    The present study aimed to evaluate the acute locally injurious property of hydroxyl radical generation system by photolysis of H(2)O(2), which is a new disinfection system for the treatment of periodontitis developed in our laboratory. Firstly, generation of the hydroxyl radical by a test device utilizing the photolysis of H(2)O(2) was confirmed by applying an electron spin resonance (ESR)-spin trapping technique. Secondly, the bactericidal effect of the device was examined under a simulant condition in which Staphylococcus aureus suspended in 1 M H(2)O(2) was irradiated with laser light emitted from the test device, resulting in substantial reduction of the colony forming unit of the bacteria within a short time as 2 min. Finally, acute topical effect of the disinfection system on rat oral mucosa and wounded skin was evaluated by histological examination. No abnormal findings were observed in the buccal mucosal region treated three times with 1 M H(2)O(2) and irradiation. Similarly, no abnormal findings were observed during the healing of skin treated with 1 M H(2)O(2) and irradiation immediately after wounding. Since topical treatment with the novel disinfection technique utilizing the photolysis of H(2)O(2) had no detrimental effect on the oral mucosa and the healing of full thickness skin wounds in rats, it is expected that the acute locally injurious property of the disinfection technique is low.

  1. Skin friction: a novel approach to measuring in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.

    2013-01-01

    The human skin plays an important role in people’s lives. It is in constant interaction with the environment, clothing and consumer products. This thesis discusses one of the parameters in the interaction between the human skin in vivo and other materials: skin friction. The thesis is divided into

  2. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin

    NARCIS (Netherlands)

    Bos, J. D.; Zonneveld, I.; Das, P. K.; Krieg, S. R.; van der Loos, C. M.; Kapsenberg, M. L.

    1987-01-01

    The complexity of immune response-associated cells present in normal human skin was recently redefined as the skin immune system (SIS). In the present study, the exact immunophenotypes of lymphocyte subpopulations with their localizations in normal human skin were determined quantitatively. B cells

  3. Microbiologic evaluation of skin wounds: alarming trend toward antibiotic resistance in an inpatient dermatology service during a 10-year period.

    Science.gov (United States)

    Valencia, Isabel C; Kirsner, Robert S; Kerdel, Francisco A

    2004-06-01

    Increasing resistance to commonly used antibiotics has been seen for patients with superficial skin wounds and leg ulcers. We sought to evaluate bacterial isolates from leg ulcers and superficial wounds for resistance to commonly used antibiotics and to compare current data with previous data. We performed a chart review for patients admitted to a tertiary care dermatology inpatient unit from January to December 2001. Comparison was made with 2 previous surveys of the same inpatient service from 1992 and 1996. Bacterial isolates were cultured from 148 patients, 84% (72 of 86) with leg ulcers and 38% (76 of 202) with superficial wounds. Staphylococcus aureus and Pseudomonas aeruginosa were the most common bacterial isolates in both groups. For patients with leg ulcers, S aureus grew in 67% of isolates (48/72) of which 75% (36/48) were methicillin-resistant (MRSA). Of leg ulcers, 35% (25/72) grew P aeruginosa, which was resistant to quinolones in 56% of cultures (14/25). For patients with superficial wounds, S aureus was isolated in 75% (57/76) and 44% were MRSA (25/57). P aeruginosa grew in 17% of isolates (13/76) and was resistant to quinolones in 18%. We found a marked increase in antibiotic resistance for both leg ulcers and superficial wounds. Over time, MRSA increased in leg ulcers from 26% in 1992 to 75% in 2001. For superficial wounds, MRSA increased from 7% in 1992 to 44% in 2001. P aeruginosa resistance to quinolones in leg ulcers increased from 19% in 1992 to 56% in 2001, whereas for superficial wounds there was no resistance in 1992 and 18% resistance in 2001. Rapid emergence of antibiotic-resistant bacteria continues and is a problem of increasing significance in dermatology. Common pathogenic bacteria, S aureus and P aeruginosa, showed increased resistance to commonly used antibiotics. Selection of antibiotics should be on the basis of local surveillance programs.

  4. Delayed wound healing in aged skin rat models after thermal injury is associated with an increased MMP-9, K6 and CD44 expression.

    Science.gov (United States)

    Simonetti, Oriana; Oriana, Simonetti; Lucarini, Guendalina; Guendalina, Lucarini; Cirioni, Oscar; Oscar, Cirioni; Zizzi, Antonio; Antonio, Zizzi; Orlando, Fiorenza; Fiorenza, Orlando; Provinciali, Mauro; Mauro, Provinciali; Di Primio, Roberto; Roberto, Di Primio; Giacometti, Andrea; Andrea, Giacometti; Offidani, Annamaria; Annamaria, Offidani

    2013-06-01

    Age-related differences in wound healing have been documented but little is known about the wound healing mechanism after burns. Our aim was to compare histological features and immunohistochemical expression of matrix metalloproteinase-9 (MMP-9), collagen IV, K6 and CD44 in the burn wound healing process in aged and young rats. Following burns the appearance of the wound bed in aged rats had progressed but slowly, resulting in a delayed healing process compared to the young rats. At 21 days after injury, epithelial K6, MMP-9 and CD44 expression was significantly increased in aged rats with respect to young rats; moreover, in the aged rat group we observed a not fully reconstituted basement membrane. K6, MMP-9 and CD44 expression was significantly increased in wounded skin compared to unwounded skin both in young and aged rats. We hypothesise that delayed burn skin wound healing process in the aged rats may represent an age dependent response to injury where K6, MMP-9 and CD44 play a key role. It is therefore possible to suggest that these factors contribute to the delayed wound healing in aged skin and that modulation could lead to a better and faster recovery of skin damage in elderly. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  5. Materials used to simulate physical properties of human skin.

    Science.gov (United States)

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Skin friction: a novel approach to measuring in vivo human skin

    OpenAIRE

    Veijgen, N.K.

    2013-01-01

    The human skin plays an important role in people’s lives. It is in constant interaction with the environment, clothing and consumer products. This thesis discusses one of the parameters in the interaction between the human skin in vivo and other materials: skin friction. The thesis is divided into three parts. The first part is an introduction to skin friction and to current knowledge on skin friction. The second part presents the RevoltST, the tribometer that was specially developed for skin...

  7. Negative pressure wound therapy using polyvinyl alcohol foam to bolster full-thickness mesh skin grafts in dogs.

    Science.gov (United States)

    Or, Matan; Van Goethem, Bart; Kitshoff, Adriaan; Koenraadt, Annika; Schwarzkopf, Ilona; Bosmans, Tim; de Rooster, Hilde

    2017-04-01

    To report the use of negative pressure wound therapy (NPWT) with polyvinyl alcohol (PVA) foam to bolster full-thickness mesh skin grafts in dogs. Retrospective case series. Client-owned dogs (n = 8). Full-thickness mesh skin graft was directly covered with PVA foam. NPWT was maintained for 5 days (in 1 or 2 cycles). Grafts were evaluated on days 2, 5, 10, 15, and 30 for graft appearance and graft take, granulation tissue formation, and complications. Firm attachment of the graft to the recipient bed was accomplished in 7 dogs with granulation tissue quickly filling the mesh holes, and graft take considered excellent. One dog had bandage complications after cessation of the NPWT, causing partial graft loss. The PVA foam did not adhere to the graft or damage the surrounding skin. The application of NPWT with a PVA foam after full-thickness mesh skin grafting in dogs provides an effective method for securing skin grafts, with good graft acceptance. PVA foam can be used as a primary dressing for skin grafts, obviating the need for other interposing materials to protect the graft and the surrounding skin. © 2017 The American College of Veterinary Surgeons.

  8. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.

    Directory of Open Access Journals (Sweden)

    Paul P Bonvallet

    Full Text Available Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone electrospun scaffold (70:30 col/PCL containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM, and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344 rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14% over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold. Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration

  9. Tissue repair genes: the TiRe database and its implication for skin wound healing

    OpenAIRE

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E.

    2016-01-01

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that ...

  10. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    Science.gov (United States)

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Škalko-Basnet, Nataša

    2017-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Wound healing in porcine skin following low-output carbon dioxide laser irradiation of the incision

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.K.; Garden, J.M.; Taute, P.M.; Leibovich, S.J.; Lautenschlager, E.P.; Hartz, R.S.

    1987-06-01

    Wound healing of scalpel incisions to the depth of adipose tissue closed with conventional methods was compared with closure by low-output carbon dioxide laser irradiation. In 3 Pitman-Moore minipigs wound healing was evaluated at intervals from 1 to 90 days by the following methods: clinical variables of wound healing; formation of the basement membrane components bullous pemphigoid antigen, laminin, and fibronectin; and histological evaluation of the regeneration of the epidermis, neovascularization, and elastin and collagen formation. There was no significant difference in healing between wounds closed by the various conventional methods and by the low-output carbon dioxide laser.

  12. Th erapeutic potential of d-Th erapeutic potential of d-δ-tocotrienol rich fraction -tocotrienol rich fraction on excisional skin wounds in diabetic rats

    Directory of Open Access Journals (Sweden)

    Bijo Elsy

    2017-10-01

    Full Text Available Introduction: Long-standing hyperglycemia in addition to many of its associated complications also hampers normal wound healing which may be further aggravated in the presence of infection and oxidative stress. Therefore, antioxidant supplementation appears to be strategically relevant for wound healing. This study is designed to explore the therapeutic potential of d-δ-tocotrienol rich fraction (d-δ-TRF on skin wound healing in both healthy and diabetic rats. Materials and Methods: Diabetes was induced through single subcutaneous injection of alloxan at the dose of 100 mg/kg at hip region. 24 albino rats were divided into four groups; healthy control, diabetic control, healthy treated and diabetic treated. d-δ-TRF was administered to treated groups (200 mg/kg, orally, daily for 3 weeks. Full thickness excisional skin wounds were. Wound area was studied by assessing the morphological, histomorphological and histological features at weekly intervals and biochemical analyses were performed at the end of 3rd week. Results: The findings of present study revealed that d-δ-TRF accelerated the skin wound healing by means of early regeneration of both epidermal and dermal components; enhancement of serum protein synthesis, improvement of antioxidant status, maintenance of glycemic condition and controlling serum creatinine levels in diabetic rats. Conclusion: It is concluded that d-δ-TRF has significant therapeutic potency on the healing of skin wounds in both healthy and diabetics.

  13. Cicatrização conduzida e enxerto de pele parcial no tratamento de feridas Conducted healing and skin graft for the treatment of skin wounds

    Directory of Open Access Journals (Sweden)

    Mauro Ivan Salgado

    2007-02-01

    Full Text Available OBJETIVO: Avaliar comparativamente os tratamentos para área cruenta da pele por meio de cicatrização conduzida (método original de cicatrização cutânea por segunda intenção e enxerto de pele autógena. MÉTODOS: Foram utilizados 17 coelhos, dos quais foram retirados dois segmentos de pele, um de cada lado do dorso. De um lado, a área doadora do enxerto permaneceu cruenta, para cicatrização conduzida (A. Do outro lado do dorso, a pele foi implantada como enxerto (B, para recobrir a área cruenta. Assim, cada animal tinha em seu dorso os dois tipos de tratamentos (A e B. Os coelhos foram distribuídos em dois grupos, de acordo com o tamanho das feridas provocadas em seu dorso: grupo 1 - A e B (4 cm² e grupo 2 - A e B (25 cm². Avaliou-se o tempo de cicatrização de ambos os tratamentos: grupo 1, após 19 dias, e grupo 2, após 35 dias. Os aspectos macro e microscópico finais da cicatrização foram analisados comparativamente nos quatro subgrupos. À histologia, avaliaram-se o número e a espessura de estratos da epiderme, a presença de células inflamatórias, bem como de cistos epidérmicos e de células gigantes. O estudo estatístico usou os testes não paramétricos de Fischer, Kruskall-Wallis e Wilcoxon. RESULTADOS: Não se observou diferença macro ou microscópica entre a cicatrização conduzida e o enxerto de pele. CONCLUSÃO: A cicatrização conduzida parece ser uma boa opção terapêutica para áreas cruentas cutâneas em coelhos.OBJECTIVE: The present study compared the treatment of skin wounds by means of conducted healing (an innovative method for treatment of secondary healing and autogenous skin graft. METHODS: Seventeen rabbits were submitted to removal of two skin segments, one on each side of the dorsum. The graft donor area was left as a wound for conducted healing (A and was submitted only to debridement, local care and dressings. The skin removed from the above mentioned side was implanted as a graft (B to

  14. Effect of a Semisolid Formulation of Linum usitatissimum L. (Linseed Oil on the Repair of Skin Wounds

    Directory of Open Access Journals (Sweden)

    Eryvelton de Souza Franco

    2012-01-01

    Full Text Available The purpose of this study was to investigate the effects of a semisolid formulation of linseed oil, SSFLO (1%, 5%, or 10% or in natura linseed oil on skin wounds of rats. We used wound models, incisional and excisional, to evaluate, respectively, the contraction/reepithelialization of the wound and resistance to mechanical traction. The groups (n=6 treated with SSFLO (1% or 5% began the process of reepithelialization, to a significant extent (P<.05, on the sixth day, when compared to the petroleum jelly control group. On 14th day for the groups treated with SSFLO (1% or 5%, 100% reepithelialization was found, while in the petroleum jelly control group, this was only 33.33%. Our study showed that topical administration of SSFLO (1% or 5% in excisional wounds allowed reepithelialization in 100% of treated animals. Therefore, a therapeutic potential of linseed oil, when used at low concentrations in the solid pharmaceutical formulations, is suggested for the process of dermal repair.

  15. Relating friction on the human skin to the hydration and temperature of the skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2013-01-01

    The human skin is constantly in interaction with materials and products. Therefore, skin friction is relevant to all people. In the literature, the frictional properties of the skin have been linked to a large variety of variables, like age, gender and hydration. The present study compares the data

  16. Tribology of skin : review and analysis of experimental results for the friction coefficient of human skin

    NARCIS (Netherlands)

    Derler, S.; Gerhardt, L.C.

    2012-01-01

    In this review, we discuss the current knowledge on the tribology of human skin and present an analysis of the available experimental results for skin-friction coefficients. Starting with an overview on the factors influencing the friction behaviour of skin, we discuss the up-to-date existing

  17. Cultivation and grafting of human keratinocytes on a poly(hydroxyethyl methacrylate) support to the wound bed: a clinical study.

    Science.gov (United States)

    Dvoránková, B; Smetana, K; Königová, R; Singerová, H; Vacík, J; Jelínková, M; Kapounková, Z; Zahradník, M

    1998-01-01

    Cultured epithelial sheets on a textile support are used for the treatment of seriously burned patients. In this study we demonstrate a new procedure for the grafting of keratinocytes directly on a polymer cultivation support. This procedure is much easier in comparison with classical techniques, and encouraging results of clinical trials demonstrate the improved healing of the wound bed after the use of this procedure. There is no difference in the cytokeratine pattern (LP-34, cytokeratin-10) of the reconstructed epidermis and normal human skin.

  18. Diffusion of [2-14C]diazepam across hairless mouse skin and human skin

    International Nuclear Information System (INIS)

    Koch, R.L.; Palicharla, P.; Groves, M.J.

    1987-01-01

    The objectives of this study were to investigate the absorption of diazepam applied topically to the hairless mouse in vivo and to determine the diffusion of diazepam across isolated hairless mouse skin and human skin. [ 14 C]Diazepam was readily absorbed after topical administration to the intact hairless mouse, a total of 75.8% of the 14 C-label applied being recovered in urine and feces. Diazepam was found to diffuse across human and hairless mouse skin unchanged in experiments with twin-chambered diffusion cells. The variation in diffusion rate or the flux for both human and mouse tissues was greater among specimens than between duplicate or triplicate trials for a single specimen. Fluxes for mouse skin (stratum corneum, epidermis, and dermis) were greater than for human skin (stratum corneum and epidermis): 0.35-0.61 microgram/cm2/h for mouse skin vs 0.24-0.42 microgram/cm2/h for human skin. The permeability coefficients for mouse skin ranged from 1.4-2.4 X 10(-2)cm/h compared with 0.8-1.4 X 10(-2)cm/h for human skin. Although human stratum corneum is almost twice the thickness of that of the hairless mouse, the diffusion coefficients for human skin were 3-12 times greater (0.76-3.31 X 10(-6) cm2/h for human skin vs 0.12-0.27 X 10(-6) cm2/h for hairless mouse) because of a shorter lag time for diffusion across human skin. These differences between the diffusion coefficients and diffusion rates (or permeability coefficients) suggest that the presence of the dermis may present some barrier properties. In vitro the dermis may require complete saturation before the diazepam can be detected in the receiving chamber

  19. North America Wound, Ostomy, and Continence and Enterostomal Therapy Nurses Current Ostomy Care Practice Related to Peristomal Skin Issues.

    Science.gov (United States)

    Colwell, Janice C; McNichol, Laurie; Boarini, Joy

    The purpose of this study was to describe the practice of 796 ostomy nurses in North America in 2014 related to peristomal skin issues. Descriptive study. Participants were 796 wound, ostomy, and continence (WOC) and enterostomal therapy (ET) nurses currently practicing in the United States or Canada and caring for patients with ostomies. The collection of data occurred in conjunction with an educational program on peristomal skin complications and practice issues and solicited the participant's perception on the incidence and frequency of peristomal skin issues as well as on practice patterns. Participants attended an educational program. They were also asked to anonymously respond to multiple-choice questions on ostomy care management via an audience response system followed by discussion of each item and their responses. This descriptive study reports on the answers to the questions as well as the pertinent discussion points. Participants estimated that approximately 77.70% of their patients developed peristomal skin issues. The most commonly encountered problem was irritant contact dermatitis (peristomal moisture-associated skin damage). Contributing factors were inappropriate use of a pouching system owing to lack of follow-up after hospital discharge. Reported interventions for the prevention and management of peristomal skin issues included preoperative stoma site marking, use of a convex pouching system, and barrier rings. However, subsequent discussion revealed that the frequency of use of these products varied considerably. Participants identified shortened hospital stays, absence of preoperative stoma marking, and limited outpatient follow-up as contributing to development of peristomal skin problems. WOC and ET nurses estimate that more than three-quarters of persons living with an ostomy develop peristomal skin problems. Multiple interventions for managing these problems were identified, but some variability in management approaches emerged.

  20. Continuous Aspirin Use Does Not Increase Bleeding Risk of Split-Thickness Skin Transplantation Repair to Chronic Wounds.

    Science.gov (United States)

    Sun, Yanwei; Wang, Yibing; Li, Liang; Zhang, Zheng; Wang, Ning; Wu, Dan

    Discontinuation of aspirin therapy before cutaneous surgery may cause serious complications. The aim of this prospective study was to evaluate the bleeding risk of split-thickness skin transplantation repair to chronic wounds in patients on aspirin therapy. A total of 97 patients who underwent split-thickness skin transplantation surgery of chronic wounds during a 2-year period were enrolled. They were categorized on the basis of aspirin therapies. The primary outcome was postoperative bleeding and bleeding complications. Univariate analysis was performed to examine the association between aspirin and bleeding complications. Among the 26 patients taking aspirin continuously in group A, there were 5 bleeding complications (19.23%). Among the 55 nonusers in group B, there were 10 bleeding complications (18.18%). Among the 16 discontinuous patients in group C, there were 3 bleeding complications (18.75%). No statistical differences were found among the groups ( P = .956). Univariate analysis showed that continuous aspirin use was not significantly associated with bleeding complications (odds ratio, 0.933; 95% confidence interval, 0.283-3.074; P = .910 in the aspirin and control groups) and that discontinuous aspirin use was not significantly associated with bleeding complications (odds ratio, 0.963; 95% confidence interval, 0.230-4.025; P = .959 in the aspirin and control groups; odds ratio, 0.969; 95% confidence interval, 0.198-4.752; P = .969 in the aspirin and discontinuous groups). Continuous aspirin use does not produce an additional bleeding risk in patients who undergo split-thickness skin transplantation repair of chronic wounds.

  1. Comparison between Conventional Mechanical Fixation and Use of Autologous Platelet Rich Plasma (PRP) in Wound Beds Prior to Resurfacing with Split Thickness Skin Graft.

    Science.gov (United States)

    P Waiker, Veena; Shivalingappa, Shanthakumar

    2015-01-01

    Platelet rich plasma is known for its hemostatic, adhesive and healing properties in view of the multiple growth factors released from the platelets to the site of wound. The primary objective of this study was to use autologous platelet rich plasma (PRP) in wound beds for anchorage of skin grafts instead of conventional methods like sutures, staplers or glue. In a single center based randomized controlled prospective study of nine months duration, 200 patients with wounds were divided into two equal groups. Autologous PRP was applied on wound beds in PRP group and conventional methods like staples/sutures used to anchor the skin grafts in a control group. Instant graft adherence to wound bed was statistically significant in the PRP group. Time of first post-graft inspection was delayed, and hematoma, graft edema, discharge from graft site, frequency of dressings and duration of stay in plastic surgery unit were significantly less in the PRP group. Autologous PRP ensured instant skin graft adherence to wound bed in comparison to conventional methods of anchorage. Hence, we recommend the use of autologous PRP routinely on wounds prior to resurfacing to ensure the benefits of early healing.

  2. Identification of a transcriptional signature for the wound healing continuum

    OpenAIRE

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Mi...

  3. Assessment of organ culture for the conservation of human skin allografts.

    Science.gov (United States)

    Hautier, A; Sabatier, F; Stellmann, P; Andrac, L; Nouaille De Gorce, Y; Dignat-George, F; Magalon, G

    2008-03-01

    Human skin allografts are used in the treatment of severe burns and their preservation is therefore critical for optimal clinical benefit. Current preservation methods, such as 4 degrees C storage or cryopreservation, cannot prevent the decrease of tissue viability. The aim of this study was to assess viability and function of skin allografts in a new skin organ culture model, allowing conservation parameters as close as possible to physiological conditions: 32 degrees C, air-liquid interface and physiological skin tension. Twelve skin samples, harvested from 6 living surgical donors, were conserved 35 days in two conditions: conservation at 4 degrees C and organ culture. Viability and function of skin samples were investigated at Day 0, 7, 14, 21, 28 and 35 using cell culture methods (trypan blue exclusion, Colony Forming Efficiency and Growth Rate), histopathological and histoenzymological studies (Ki67 immunostaining). In the two conditions, fibroblast and keratinocyte viability was progressively affected by storage, with a significant decrease observed after 35 days. No statistical difference could be observed between the two conditions. The two methods were also comparable regarding alterations of fibroblast and keratinocyte culture parameters, which were respectively significantly reduced at Day 7 and 21, compared to fresh skin. By contrast, histopathological and histoenzymological studies revealed a better preservation of skin architecture and proliferative potential at 4 degrees C, as compared to organ culture. These results indicate that skin organ culture does not provide significant advantages for skin allograft preservation. However, its potential use as an experimental model to study skin physiology and wound healing should be further evaluated.

  4. Red Maca (Lepidium meyenii), a Plant from the Peruvian Highlands, Promotes Skin Wound Healing at Sea Level and at High Altitude in Adult Male Mice.

    Science.gov (United States)

    Nuñez, Denisse; Olavegoya, Paola; Gonzales, Gustavo F; Gonzales-Castañeda, Cynthia

    2017-12-01

    Nuñez, Denisse, Paola Olavegoya, Gustavo F. Gonzales, and Cynthia Gonzales-Castañeda. Red maca (Lepidium meyenii), a plant from the Peruvian highlands, promotes skin wound healing at sea level and at high altitude in adult male mice. High Alt Med Biol 18:373-383, 2017.-Wound healing consists of three simultaneous phases: inflammation, proliferation, and remodeling. Previous studies suggest that there is a delay in the healing process in high altitude, mainly due to alterations in the inflammatory phase. Maca (Lepidium meyenii) is a Peruvian plant with diverse biological properties, such as the ability to protect the skin from inflammatory lesions caused by ultraviolet radiation, as well as its antioxidant and immunomodulatory properties. The aim of this study was to determine the effect of high altitude on tissue repair and the effect of the topical administration of the spray-dried extract of red maca (RM) in tissue repair. Studies were conducted in male Balb/c mice at sea level and high altitude. Lesions were inflicted through a 10 mm-diameter excisional wound in the skin dorsal surface. Treatments consisted of either (1) spray-dried RM extract or (2) vehicle (VH). Animals wounded at high altitude had a delayed healing rate and an increased wound width compared with those at sea level. Moreover, wounding at high altitude was associated with an increase in inflammatory cells. Treatment with RM accelerated wound closure, decreased the level of epidermal hyperplasia, and decreased the number of inflammatory cells at the wound site. In conclusion, RM at high altitude generate a positive effect on wound healing, decreasing the number of neutrophils and increasing the number of macrophages in the wound healing at day 7 postwounding. This phenomenon is not observed at sea level.

  5. Proteolytic signatures define unique thrombin-derived peptides present in human wound fluid in vivo

    DEFF Research Database (Denmark)

    Saravanan, Rathi; Adav, Sunil S; Choong, Yeu Khai

    2017-01-01

    The disease burden of failing skin repair and non-healing ulcers is extensive. There is an unmet need for new diagnostic approaches to better predict healing activity and wound infection. Uncontrolled and excessive protease activity, of endogenous or bacterial origin, has been described as a majo...

  6. Analysis of human skin tissue by millimeter-wave reflectometry

    NARCIS (Netherlands)

    Smulders, P.F.M.

    2013-01-01

    Background/pupose: Millimeter-wave reflectometry is a potentially interesting technique to analyze the human skin in vivo in order to determine the water content locally in the skin. Purpose of this work is to investigate the possibility of skin-tissue differentiation. In addition, it addresses the

  7. Characterisation of mechanical behaviour of human skin in vivo

    NARCIS (Netherlands)

    Douven, L.F.A.; Meijer, R.; Oomens, C.W.J.

    2000-01-01

    Characterization of the biomechanical properties of human skin in vivo is studied both experimentally and by numerical modeling. These properties can be important in the evaluation of skin condition (e.g. aging) as well as skin disorders. In this study the authors focus on the static behavior of the

  8. First genomic survey of human skin fungal diversity

    Science.gov (United States)

    Fungal infections of the skin affect 29 million people in the United States. In the first study of human fungal skin diversity, National Institutes of Health researchers sequenced the DNA of fungi that thrive at different skin sites of healthy adults to d

  9. Chemical ecology of interactions between human skin microbiota and mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Takken, W.; Dicke, M.; Schraa, G.; Smallegange, R.C.

    2010-01-01

    Microbiota on the human skin plays a major role in body odour production. The human microbial and chemical signature displays a qualitative and quantitative correlation. Genes may influence the chemical signature by shaping the composition of the microbiota. Recent studies on human skin microbiota,

  10. Compounds from Lactobacillus plantarum culture supernatants with potential pro-healing and anti-pathogenic properties in skin chronic wounds.

    Science.gov (United States)

    Ramos, Alberto N; Sesto Cabral, Maria E; Arena, Mario E; Arrighi, Carlos F; Arroyo Aguilar, Abel A; Valdéz, Juan C

    2015-03-01

    It is necessary to advance the field of alternative treatments for chronic wounds that are financially accessible to the least economically developed countries. Previously we demonstrated that topical applications of Lactobacillus plantarum culture supernatants (LAPS) on human-infected chronic wounds reduce the pathogenic bioburden, the amount of necrotic tissue, and the wound area, as well as promote debridement, granulation tissue, and wound healing. To study LAPS chemically and biologically and to find potential molecules responsible for its pro-healing and anti-pathogenic properties in chronic wounds. (1) Chemical analysis: extracts were subjected to a column chromatography and the fractions obtained were studied by GCMS. (2) Quantification: dl-lactic acid (commercial kit), phenolic compounds (Folin-Ciocalteu), H2O2 (micro-titration), and cations (flame photometry). (3) Biological analysis: autoinducers type 2 (AI-2) (Vibrio harveyi BB170 bioassay), DNAase activity (Agar DNAase), and Pseudomonas aeruginosa biofilm inhibition (crystal violet technique). According to its biological activity, the most significant molecules found by GCMS were the following: antimicrobials (mevalonolactone, 5-methyl-hydantoine, benzoic acid, etc.); surfactants (di-palmitin, distearin, and 1,5-monolinolein); anesthetics (barbituric acid derivatives), and AI-2 precursors (4,5-dihydroxy-2,3-pentanedione and 2-methyl-2,3,3,4-tetrahydroxytetrahydrofurane). Concentrations measured (µg/mL): DL-lactic acid (11.71 ± 1.53) and H2O2 (36 ± 2.0); phenolic compounds (485.2 ± 15.20); sodium (370 ± 17); potassium 920 ± 24); calcium (20 ± 4); and magnesium (15 ± 3). DNAase from LAPS had activity on genomic DNA from PMNs and P. aeruginosa. The molecules and biological activities found in LAPS could explain the observed effects in human chronic wounds.

  11. Skin appendage-derived stem cells: cell biology and potential for wound repair

    OpenAIRE

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundament...

  12. Analogs of human genetic skin disease in domesticated animals

    Directory of Open Access Journals (Sweden)

    Justin Finch, MD

    2017-09-01

    The genetic skin diseases we will review are pigmentary mosaicism, piebaldism, albinism, Griscelli syndrome, ectodermal dysplasias, Waardenburg syndrome, and mucinosis in both humans and domesticated animals.

  13. Design and fabrication of human skin by three-dimensional bioprinting.

    Science.gov (United States)

    Lee, Vivian; Singh, Gurtej; Trasatti, John P; Bjornsson, Chris; Xu, Xiawei; Tran, Thanh Nga; Yoo, Seung-Schik; Dai, Guohao; Karande, Pankaj

    2014-06-01

    Three-dimensional (3D) bioprinting, a flexible automated on-demand platform for the free-form fabrication of complex living architectures, is a novel approach for the design and engineering of human organs and tissues. Here, we demonstrate the potential of 3D bioprinting for tissue engineering using human skin as a prototypical example. Keratinocytes and fibroblasts were used as constituent cells to represent the epidermis and dermis, and collagen was used to represent the dermal matrix of the skin. Preliminary studies were conducted to optimize printing parameters for maximum cell viability as well as for the optimization of cell densities in the epidermis and dermis to mimic physiologically relevant attributes of human skin. Printed 3D constructs were cultured in submerged media conditions followed by exposure of the epidermal layer to the air-liquid interface to promote maturation and stratification. Histology and immunofluorescence characterization demonstrated that 3D printed skin tissue was morphologically and biologically representative of in vivo human skin tissue. In comparison with traditional methods for skin engineering, 3D bioprinting offers several advantages in terms of shape- and form retention, flexibility, reproducibility, and high culture throughput. It has a broad range of applications in transdermal and topical formulation discovery, dermal toxicity studies, and in designing autologous grafts for wound healing. The proof-of-concept studies presented here can be further extended for enhancing the complexity of the skin model via the incorporation of secondary and adnexal structures or the inclusion of diseased cells to serve as a model for studying the pathophysiology of skin diseases.

  14. Transforming growth factor-β (TGF-β) signaling in healthy human fetal skin: a descriptive study.

    Science.gov (United States)

    Walraven, M; Beelen, R H J; Ulrich, M M W

    2015-05-01

    TGF-β plays an important role in growth and development but is also involved in scarring and fibrosis. Differences for this growth factor are known between scarless fetal wound healing and adult wound healing. Nonetheless, most of the data in this area are from animal studies or in vitro studies and, thus, information about the human situation is incomplete and scarce. The aim of this study was to compare the canonical TGF-β signaling in unwounded human fetal and adult skin. Q-PCR, immunohistochemistry, Western Blot and Luminex assays were used to determine gene expression, protein levels and protein localization of components of this pathway in healthy skin. All components of the canonical TGF-β pathway were present in unwounded fetal skin. Compared to adult skin, fetal skin had differential concentrations of the TGF-β isoforms, had high levels of phosphorylated receptor-Smads, especially in the epidermis, and had low expression of several fibrosis-associated target genes. Further, the results indicated that the processes of receptor endocytosis might also differ between fetal and adult skin. This descriptive study showed that there are differences in gene expression, protein concentrations and protein localization for most components of the canonical TGF-β pathway between fetal and adult skin. The findings of this study can be a starting point for further research into the role of TGF-β signaling in scarless healing. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Effective herbs on the wound and skin disorders: a ethnobotanical study in Lorestan province, west of Iran

    Directory of Open Access Journals (Sweden)

    Bahram Delfan

    2014-09-01

    Full Text Available Objective: To identify medicinal plants in Lorestan Province (west of Iran in treatment of wound healing and skin lesions. Methods: Questionnaire were made by health volunteers who were trained. The questionnaire about the beliefs and herbal therapy were filled by liaisons trained in the villages. Results: Questionnaire survey showed that 18 medicinal plants from 11 plant families were detected in the province for treating and healing skin lesions. Conclusions: The achieving information in the study reported that bioactive substances in some plants have pharmacologic effects in regulating biological processes which can accelerate healing, reducing inflammation and improving health effects. Suggested ideas in this study should be tested in clinical trials and the effectiveness of their therapeutic effects, their effective recognition and secondary materials in the form of natural medicine must be detected for releasing into the pharmaceutical market.

  16. Adenoviral gene delivery to primary human cutaneous cells and burn wounds.

    Science.gov (United States)

    Hirsch, Tobias; von Peter, Sebastian; Dubin, Grzegorz; Mittler, Dominik; Jacobsen, Frank; Lehnhardt, Markus; Eriksson, Elof; Steinau, Hans-Ulrich; Steinstraesser, Lars

    2006-01-01

    The adenoviral transfer of therapeutic genes into epidermal and dermal cells is an interesting approach to treat skin diseases and to promote wound healing. The aim of this study was to assess the in vitro and in vivo transfection efficacy in skin and burn wounds after adenoviral gene delivery. Primary keratinocytes (HKC), fibroblasts (HFB), and HaCaT cells were transfected using different concentrations of an adenoviral construct (eGFP). Transfection efficiency and cytotoxicity was determined up to 30 days. Expression was quantified by FACS analysis and fluorimeter. Cytotoxicity was measured using the trypan blue exclusion method. 45 male Sprague Dawley rats received 2x10(8) pfu of Ad5-CMV-LacZ or carrier control intradermally into either superficial partial thickness scald burn or unburned skin. Animals were euthanized after 48 h, 7 or 14 days posttreatment. Transgene expression was assessed using immunohistochemistry and bioluminescent assays. The highest transfection rate was observed 48 h posttransfection: 79% for HKC, 70% for HFB, and 48% for HaCaT. The eGFP expression was detectable in all groups over 30 days (P>0.05). Cytotoxic effects of the adenoviral vector were observed for HFB after 10 days and HaCaT after 30 days. Reporter gene expression in vivo was significantly higher in burned skin compared with unburned skin (P=0,004). Gene expression decreases from 2 to 7 days with no significant expression after 14 days. This study demonstrates that effective adenoviral-mediated gene transfer of epidermal primary cells and cell-lines is feasible. Ex vivo gene transfer in epithelial cells might have promise for the use in severely burned patients who receive autologous keratinocyte sheets. Transient cutaneous gene delivery in burn wounds using adenoviral vectors causes significant concentrations in the wound tissue for at least 1 week. Based on these findings, we hypothesize that transient cutaneous adenoviral gene delivery of wound healing promoting factors has

  17. Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate

    Science.gov (United States)

    Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S.; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan

    2018-01-01

    Objective IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in

  18. [The clinical use of cryopreserved human skin allografts for transplantation].

    Science.gov (United States)

    Martínez-Flores, Francisco; Chacón-Gómez, María; Madinaveitia-Villanueva, Juan Antonio; Barrera-Lopez, Araceli; Aguirre-Cruz, Lucinda; Querevalu-Murillo, Walter

    2015-01-01

    The biological recovery of human skin allografts is the gold standard for preservation in Skin Banks. However, there is no worldwide consensus about specific allocation criteria for preserved human skin allografts with living cells. A report is presented on the results of 5 years of experience of using human skin allografts in burned patient in the Skin and Tissue Bank at the "Instituto Nacional de Rehabilitacion" The human skin allografts were obtained from multi-organ donors. processed and preserved at -80 °C for 12 months. Allocation criteria were performed according to blood type match, clinical history, and burned body surface. Up to now, the Skin and Tissue Bank at 'Instituto Nacional de Rehabilitacion" has processed and recovered 125,000 cm(2) of human skin allografts. It has performed 34 surgical implants on 21 burned patients. The average of burn body surface was 59.2%. More than two-thirds (67.7%) of recipients of skin allografts were matched of the same to type blood of the donor, and 66.6% survived after 126 days hospital stay. It is proposed to consider recipient's blood group as allocation criteria to assign tissue; and use human skin allografts on patiens affected with burns over 30% of body surface (according the "rule of the 9"). Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  19. Studies in human skin epithelial cell carcinogenesis

    International Nuclear Information System (INIS)

    Lehman, T.A.

    1987-01-01

    Metabolism and DNA adduct formation of benzo[a]pyrene (BP) by human epidermal keratinocytes pretreated with inhibitors or inducer of cytochrame P450 was studied. To study DNA adduct analysis, cultures were pretreated as described above, and then treated with non-radiolabeled BP. DNA was prepared from these cultures, digested to the nucleotide level, and 32 P-postlabeled for adduct analysis. Cultures pretreated with BHA, 7,8-BF or disulfiralm formed significantly fewer BPDE I-dB adducts than non-pretreated cultures, while cultures pretreated with MeBHA formed more BPDE-I-dG adducts. MeBHA increased BP activation and adduct formation inhuman keratinocyte in cultures by inducing a specific isoenzyme of cytochrome P450 which preferentially increases the oxidative metabolism of BP to 7,8 diol BP and 7,8 diol BP to BPDE I. To approximate an in vivo human system, metabolism of BPDE I by human skin xenografts treated with cell cycles modulators was studied. When treated with BPDE I, specific carcinogen-DNA adducts were formed. Separation and identification of these adducts by the 32 P-postlabeling technique indicated that the 7R- and 7S-BPDE I-dG adducts were the major adducts

  20. Effect of auto-skin grafting on bacterial infection of wound in rats inflicted with combined radiation-burn injury

    International Nuclear Information System (INIS)

    Ran Xinze; Yan Yongtang; Wei Shuqing

    1992-01-01

    Rats were exposed to 6 Gy whole body γ-ray irradiation from a 60 Co source followed by light radiation burn (15% TBSA, full thickness burn) from a 5 kw bromo-tungsten lamp. The effect of auto-skin grafting on invasive bacterial infection of wound in the rats with combined radiation-burn injury was studied, In the control group inflicted with combined radiation-burn injury but without skin grafting, bacteria were found on and in the eschars at 24th hour after injury, and in the subeschar tissue on 3rd day. Tremendous bacterial multiplication occurred from 7th to 15th day, and the amount of bacteria in the internal organs increased along with the increase of subeschar infection. At the same time, no bacterial infection was found in internal organs in auto-skin grafted group at 24th hour after injury. The results show that skin grafting can decrease or prevent bacterial infection in both subeschar tissue and internal organs

  1. Human bites (image)

    Science.gov (United States)

    Human bites present a high risk of infection. Besides the bacteria which can cause infection, there is ... the wound extends below the skin. Anytime a human bite has broken the skin, seek medical attention.

  2. Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves.

    Science.gov (United States)

    Yannas, I V; Tzeranis, D; So, P T

    2015-12-23

    We review the details of preparation and of the recently elucidated mechanism of biological (regenerative) activity of a collagen scaffold (dermis regeneration template, DRT) that has induced regeneration of skin and peripheral nerves (PN) in a variety of animal models and in the clinic. DRT is a 3D protein network with optimized pore size in the range 20-125 µm, degradation half-life 14 ± 7 d and ligand densities that exceed 200 µM α1β1 or α2β1 ligands. The pore has been optimized to allow migration of contractile cells (myofibroblasts, MFB) into the scaffold and to provide sufficient specific surface for cell-scaffold interaction; the degradation half-life provides the required time window for satisfactory binding interaction of MFB with the scaffold surface; and the ligand density supplies the appropriate ligands for specific binding of MFB on the scaffold surface. A dramatic change in MFB phenotype takes place following MFB-scaffold binding which has been shown to result in blocking of wound contraction. In both skin wounds and PN wounds the evidence has shown clearly that contraction blocking by DRT is followed by induction of regeneration of nearly perfect organs. The biologically active structure of DRT is required for contraction blocking; well-matched collagen scaffold controls of DRT, with structures that varied from that of DRT, have failed to induce regeneration. Careful processing of collagen scaffolds is required for adequate biological activity of the scaffold surface. The newly understood mechanism provides a relatively complete paradigm of regenerative medicine that can be used to prepare scaffolds that may induce regeneration of other organs in future studies.

  3. Open Wound Healing In Vivo: Monitoring Binding and Presence of Adhesion/Growth-Regulatory Galectins in Rat Skin during the Course of Complete Re-Epithelialization

    International Nuclear Information System (INIS)

    Gál, Peter; Vasilenko, Tomáš; Kostelníková, Martina; Jakubco, Ján; Kovác, Ivan; Sabol, František; André, Sabine; Kaltner, Herbert; Gabius, Hans-Joachim; Smetana, Karel Jr.

    2011-01-01

    Galectins are a family of carbohydrate-binding proteins that modulate inflammation and immunity. This functional versatility prompted us to perform a histochemical study of their occurrence during wound healing using rat skin as an in vivo model. Wound healing is a dynamic process that exhibits three basic phases: inflammation, proliferation, and maturation. In this study antibodies against keratins-10 and -14, wide-spectrum cytokeratin, vimentin, and fibronectin, and non-cross-reactive antibodies to galectins-1, -2, and -3 were applied to frozen sections of skin specimens two days (inflammatory phase), seven days (proliferation phase), and twenty-one days (maturation phase) after wounding. The presence of binding sites for galectins-1, -2, -3, and -7 as a measure for assessing changes in reactivity was determined using labeled proteins as probes. Our study detected a series of alterations in galectin parameters during the different phases of wound healing. Presence of galectin-1, for example, increased during the early phase of healing, whereas galectin-3 rapidly decreased in newly formed granulation tissue. In addition, nuclear reactivity of epidermal cells for galectin-2 occurred seven days post-trauma. The dynamic regulation of galectins during re-epithelialization intimates a role of these proteins in skin wound healing, most notably for galectin-1 increasing during the early phases and galectin-3 then slightly increasing during later phases of healing. Such changes may identify a potential target for the development of novel drugs to aid in wound repair and patients’ care

  4. Chitosan: A potential biopolymer for wound management.

    Science.gov (United States)

    Bano, Ijaz; Arshad, Muhammad; Yasin, Tariq; Ghauri, Muhammad Afzal; Younus, Muhammad

    2017-09-01

    It has been seen that slow healing and non-healing wounds conditions are treatable but still challenging to humans. Wound dressing usually seeks for biocompatible and biodegradable recipe. Natural polysaccharides like chitosan have been examined for its antimicrobial and healing properties on the basis of its variation in molecular weight and degree of deacetylation. Chitosan adopts some vital characteristics for treatment of various kinds of wounds which include its bonding nature, antifungal, bactericidal and permeability to oxygen. Chitosan therefore has been modified into various forms for the treatment of wounds and burns. The purpose of this review article is to understand the exploitation of chitosan and its derivatives as wound dressings. This article will also provide a concise insight on the properties of chitosan necessary for skin healing and regeneration, particularly highlighting the emerging role of chitosan films as next generation skin substitutes for the treatment of full thickness wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The adhesion of pacemaker skin wounds with Histoacryl tissue adhesive: an analysis of its efficacy and cost

    International Nuclear Information System (INIS)

    Zhou Yong; Jiang Haibin; Qin Yongwen; Chen Shaoping

    2011-01-01

    Objective: To evaluate the clinical efficacy and cost of Histoacryl tissue adhesive in adhering the pacemaker skin wounds. Methods: During the period from April 2010 to October 2010, permanent cardiac pacemaker implantation was performed in 112 patients in authors' hospital. The patients were divided into tissue adhesive group (n=64) and conventional suture group (n=48). Histoacryl tissue adhesive was employed in patients of tissue adhesive group. The extent of wound healing, the post-procedure hospitalization days and the hospitalization cost were recorded, and the results were compared between the two groups. Results: The clinical baselines of the two groups were compatible with each other. Primary closure of wounds was achieved in all patients of two groups. The mean post-procedure hospitalization time in tissue adhesive group and in conventional suture group was (4.4±1.4) days and (6.2±1.3) days respectively, the difference between the two groups was statistically significant (P<0.01). If the costs of pacemaker equipment, surgery and DSA were not included, the mean medical expenses in tissue adhesive group and in conventional suture group were (4383.39±792.40) and (4199.81±1059.93) Chinese Yuan respectively, and no significant difference in medical expenses existed between the two groups (P=0.651). Conclusion: Histoacryl tissue adhesive can effectively adhere pacemaker wounds tissue. Compared to the use of conventional suture, the use of Histoacryl tissue adhesive can reduce the post-procedure hospitalization days although the medical expenses are quite the same as that using conventional suture treatment. (authors)

  6. Human age and skin physiology shape diversity and abundance of Archaea on skin.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Probst, Alexander J; Birarda, Giovanni; Auerbach, Anna; Koskinen, Kaisa; Wolf, Peter; Holman, Hoi-Ying N

    2017-06-22

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or younger than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. Amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.

  7. Molecular cartography of the human skin surface in 3D

    Science.gov (United States)

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M.; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W.; Meehan, Michael J.; Dorrestein, Kathleen; Gallo, Richard L.; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C.

    2015-01-01

    The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778

  8. Effect of Topical Administration of Fractions and Isolated Molecules from Plant Extracts on Skin Wound Healing: A Systematic Review of Murine Experimental Models

    Directory of Open Access Journals (Sweden)

    Mariáurea Matias Sarandy

    2016-01-01

    Full Text Available Background and Purpose. Skin wound healing is a dynamic process driven by molecular events responsible for the morphofunctional repair of the injured tissue. In a systematic review, we analyzed the relevance of plant fractions and isolates on skin wound healing. By revising preclinical investigations with murine models, we investigated if the current evidence could support clinical trials. Methods. Studies were selected in the MEDLINE/PubMed and Scopus databases according to the PRISMA statement. All 32 identified studies were submitted to data extraction and the methodological bias was investigated according to ARRIVE strategy. Results. The studies demonstrated that plant fractions and isolates are able to modulate the inflammatory process during skin wound healing, being also effective in attenuating the oxidative tissue damage in the scar tissue and stimulating cell proliferation, neoangiogenesis, collagen synthesis, granulation tissue expansion, reepithelialization, and the wound closure rate. However, we identified serious methodological flaws in all studies, such as the high level of reporting bias and absence of standardized experimental designs, analytical methods, and outcome measures. Conclusion. Considering these limitations, the current evidence generated from flawed methodological animal studies makes it difficult to determine the relevance of herbal medicines to treat skin wounds and derails conducting clinical studies.

  9. Human bite wounds: a swiss emergency department experience.

    Science.gov (United States)

    Tabbara, Malek; Hatzigianni, Panagiota; Fux, Christoph; Zimmermann, Heinz; Exadaktylos, Aristomenis K

    2012-04-01

     Human bites (HB) are the third most common bite wound diagnosed in emergency departments, after dog and cat bites. Management of HB can be challenging, given the high risk of infection associated with multiorganism-rich oral flora. Recognition and early aggressive treatment are essential steps in preventing infections and other associated complications. A retrospective, 10-year electronic chart review was performed, which identified 104 HB. Diagnosis, treatment, and outcome were noted for each case. Most of the patients were male, with a male:female ratio of 4:1. A majority of patients (n = 53, 51%) presented with finger and hand injuries. Only 13.8% were bitten on the head or neck, and 25% on the upper limbs. The remainder (35.2%) of patients sustained injuries to other body parts. Twelve operations were necessary and performed by plastic and hand surgeons. More than half of the patients (60.5%) received antibiotic therapy, and 84.6% of the patients had their tetanus prophylaxis administered or received a booster by the time of treatment. Only 40.4% of patients had a post-bite serology test to rule out bloodborne viral infections, none of whom tested positive. The viral status of the biter was known in two cases. The goals of HB management are to minimize infection risk and its complications, and to prevent the transmission of systemic infections, such as hepatitis B/C and HIV. Accurate documentation and a management algorithm should be instituted in emergency departments in order to achieve these goals. .

  10. Proteome Analysis of Human Sebaceous Follicle Infundibula Extracted from Healthy and Acne-Affected Skin

    Science.gov (United States)

    Bek-Thomsen, Malene; Lomholt, Hans B.; Scavenius, Carsten; Enghild, Jan J.; Brüggemann, Holger

    2014-01-01

    Acne vulgaris is a very common disease of the pilosebaceous unit of the human skin. The pathological processes of acne are not fully understood. To gain further insight sebaceous follicular casts were extracted from 18 healthy and 20 acne-affected individuals by cyanoacrylate-gel biopsies and further processed for mass spectrometry analysis, aiming at a proteomic analysis of the sebaceous follicular casts. Human as well as bacterial proteins were identified. Human proteins enriched in acne and normal samples were detected, respectively. Normal follicular casts are enriched in proteins such as prohibitins and peroxiredoxins which are involved in the protection from various stresses, including reactive oxygen species. By contrast, follicular casts extracted from acne-affected skin contained proteins involved in inflammation, wound healing and tissue remodeling. Among the most distinguishing proteins were myeloperoxidase, lactotransferrin, neutrophil elastase inhibitor and surprisingly, vimentin. The most significant biological process among all acne-enriched proteins was ‘response to a bacterium’. Identified bacterial proteins were exclusively from Propionibacterium acnes. The most abundant P. acnes proteins were surface-exposed dermatan sulphate adhesins, CAMP factors, and a so far uncharacterized lipase in follicular casts extracted from normal as well as acne-affected skin. This is a first proteomic study that identified human proteins together with proteins of the skin microbiota in sebaceous follicular casts. PMID:25238151

  11. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Wu Minjuan

    2016-01-01

    Full Text Available Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs onto the human acellular amniotic membrane (AAM. The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration.

  12. Advanced haptic sensor for measuring human skin conditions

    Science.gov (United States)

    Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami

    2010-01-01

    This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.

  13. Effects of whole-body and partial-body x irradiation upon epidermal mitotic activity during wound healing in mouse skin

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1977-01-01

    Mitotic activity of normal (unwounded) and wounded skin was measured in the control (nonirradiated) and whole-body or partial-body x-irradiated mouse. Higher mitotic activity in the anterior than in the posterior region of the body was found in both the normal and the wounded skin of the control mouse. Whole-body irradiation (500 R) depressed completely the mitotic activity of normal skin 2 to 4 days after irradiation. In spite of this depression in mitotic activity, a surgical incision made 1 to 3 days after irradiation could induce a burst of proliferation after an inhibition of an initial mitosis increase. When the animals were partially irradiated with 500 R 3 days before wounding, it was shown that mitosis at 24 hr after wounding was inhibited markedly by the local effect of irradiation and that mitosis also could be inhibited diversely by the abscopal effect of irradiation. Because of a close similarity of sequential mitotic patterns between whole-body-irradiated and flapped-skin-only-irradiated groups (direct irradiation), the effect of irradiation upon mitosis was considered to be primarily local. Some discussions were made concerning the possible reasons which made a difference in mitotic patterns between the head-only-irradiated group, the irradiated group including the head and other parts of the body except for the skin flap

  14. Stable Skin-specific Overexpression of Human CTLA4-Ig in Transgenic Mice through Seven Generations

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Yong NI; Hong WEI; Feng-Chao WANG; Liang-Peng GE; Xiang GAO

    2006-01-01

    Skin graft rejection is a typical cellular immune response, mainly mediated by T cells. Cytotoxic T lymphocyte associated antigen 4-immunoglobin (CTLA4-Ig) extends graft survival by blocking the T cell co-stimulation pathway and inhibiting T cell activation. To investigate the efficacy of CTLA4-Ig in prolonging skin graft survival, human CTLA4-Ig (hCTLA4-Ig) was engineered to overexpress in mouse skin by transgenesis using the K14 promoter. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay indicated that the expression of CTLA4-Ig remained skin-specific and relatively constant compared to the internal control protein, AKT, through seven generations. The presence and concentration of the hCTLA4-Ig protein in transgenic mouse sera was determined by enzyme-linked immunosorbent assay (ELISA), and the results indicated that the serum CTLA4-Ig concentration also remained constant through generations. Survival of transgenic mouse skins grafted onto rat wounds was remarkably prolonged compared to that of wild-type skins from the same mouse strain, and remained comparable among all seven generations. This suggested that the bioactive hCTLA4-Ig protein was stably expressed in transgenical mice through at least seven generations, which was consistent with the stable skin-specific CTLA4-Ig expression.The results demonstrated that the transgenic expression of hCTLA4-Ig in skin driven by the K14 promoter remained constant through generations, and a transgenic line can be established to provide transgenic skin with extended survival reproducibly.

  15. Differentially expressed wound healing-related microRNAs in the human diabetic cornea.

    Science.gov (United States)

    Funari, Vincent A; Winkler, Michael; Brown, Jordan; Dimitrijevich, Slobodan D; Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2013-01-01

    MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC) in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6) and diabetic (n=6) central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR) and by in situ hybridization (ISH) in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR) or their inhibitors (antagomirs) using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.

  16. Differentially expressed wound healing-related microRNAs in the human diabetic cornea.

    Directory of Open Access Journals (Sweden)

    Vincent A Funari

    Full Text Available MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6 and diabetic (n=6 central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR and by in situ hybridization (ISH in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR or their inhibitors (antagomirs using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.

  17. Assessing human skin with diffuse reflectance spectroscopy and colorimetry

    Science.gov (United States)

    Seo, InSeok; Liu, Yang; Bargo, Paulo R.; Kollias, Nikiforos

    2012-02-01

    Colorimetry has been used as an objective measure of perceived skin color by human eye to document and score physiological responses of the skin from external insults. CIE color space values (L*, a* and b*) are the most commonly used parameters to correlate visually perceived color attributes such as L* for pigment, a* for erythema, and b* for sallowness of the skin. In this study, we investigated the relation of Lab color scale to the amount of major skin chromophores (oxy-, deoxyhemoglobin and melanin) calculated from diffuse reflectance spectroscopy. Thirty two healthy human subjects with ages from 20 to 70 years old, skin types I-VI, were recruited for the study. DRS and colorimetry measurements were taken from the left and right cheeks, and on the right upper inner arm. The melanin content calculated from 630-700 nm range of DRS measurements was shown to correlate with the lightness of skin (L*) for most skin types. For subjects with medium-to-light complexion, melanin measured at the blue part spectrum and hemoglobin interfered on the relation of lightness of the skin color to the melanin content. The sallowness of the skin that is quantified by the melanin contribution at the blue part spectrum of DRS was found to be related to b* scale. This study demonstrates the importance of documenting skin color by assessing individual skin chromophores with diffuse reflectance spectroscopy, in comparison to colorimetry assessment.

  18. The Histopathological Investigation of Red and Blue Light Emitting Diode on Treating Skin Wounds in Japanese Big-Ear White Rabbit.

    Directory of Open Access Journals (Sweden)

    Yanhong Li

    Full Text Available The biological effects of different wavelengths of light emitting diode (LED light tend to vary from each other. Research into use of photobiomodulation for treatment of skin wounds and the underlying mechanisms has been largely lacking. We explored the histopathological basis of the therapeutic effect of photobiomodulation and the relation between duration of exposure and photobiomodulation effect of different wavelengths of LED in a Japanese big-ear white rabbit skin-wound model. Skin wound model was established in 16 rabbits (three wounds per rabbit: one served as control, the other two wounds were irradiated by red and blue LED lights, respectively. Rabbits were then divided into 2 equal groups based on the duration of exposure to LED lights (15 and 30 min/exposure. The number of wounds that showed healing and the percentage of healed wound area were recorded. Histopathological examination and skin expression levels of fibroblast growth factor (FGF, epidermal growth factor (EGF, endothelial marker (CD31, proliferating cell nuclear antigen (Ki67 and macrophagocyte (CD68 infiltration, and the proliferation of skin collagen fibers was assessed. On days 16 and 17 of irradiation, the healing rates in red (15 min and 30 min and blue (15 min and 30 min groups were 50%, 37.5%, 25% and 37.5%, respectively, while the healing rate in the control group was 12.5%. The percentage healed area in the red light groups was significantly higher than those in other groups. Collagen fiber and skin thickness were significantly increased in both red light groups; expression of EGF, FGF, CD31 and Ki67 in the red light groups was significantly higher than those in other groups; the expression of FGF in red (30 min group was not significantly different from that in the blue light and control groups. The effect of blue light on wound healing was poorer than that of red light. Red light appeared to hasten wound healing by promoting fibrous tissue, epidermal and

  19. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo.

    Science.gov (United States)

    Wahedi, Hussain Mustatab; Jeong, Minsun; Chae, Jae Kyoung; Do, Seon Gil; Yoon, Hyeokjun; Kim, Sun Yeou

    2017-05-15

    Cutaneous wound healing is a complex process involving various regulatory factors at the molecular level. Aloe vera is widely used for cell rejuvenation, wound healing, and skin moisturizing. This study aimed to investigate the effects of aloesin from Aloe vera on cutaneous wound healing and mechanisms involved therein. This study consisted of both in vitro and in vivo experiments involving skin cell lines and mouse model to demonstrate the wound healing effects of aloesin by taking into account several parameters ranging from cultured cell migration to wound healing in mice. The activities of Smad signaling molecules (Smad2 and Smad3), MAPKs (ERK and JNK), and migration-related proteins (Cdc42, Rac1, and α-Pak) were assessed after aloesin treatment in cultured cells (1, 5 and 10µM) and mouse skin (0.1% and 0.5%). We also monitored macrophage recruitment, secretion of cytokines and growth factors, tissue development, and angiogenesis after aloesin treatment using IHC analysis and ELISAs. Aloesin increased cell migration via phosphorylation of Cdc42 and Rac1. Aloesin positively regulated the release of cytokines and growth factors (IL-1β, IL-6, TGF-β1 and TNF-α) from macrophages (RAW264.7) and enhanced angiogenesis in endothelial cells (HUVECs). Aloesin treatment accelerated wound closure rates in hairless mice by inducing angiogenesis, collagen deposition and granulation tissue formation. More importantly, aloesin treatment resulted in the activation of Smad and MAPK signaling proteins that are key players in cell migration, angiogenesis and tissue development. Aloesin ameliorates each phase of the wound healing process including inflammation, proliferation and remodeling through MAPK/Rho and Smad signaling pathways. These findings indicate that aloesin has the therapeutic potential for treating cutaneous wounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. A comparative study of histopathological effects of aqueous extract of cinnamon and honey with sulfadiazine on skin burn wound healing in rats infected with Pseudomonas aeuroginosa

    Directory of Open Access Journals (Sweden)

    Mohammadreza Valilou

    2017-11-01

    Full Text Available Pseudomonas aeruginosa, a ubiquitous opportunistic pathogen, is the most common infective agent of burn wounds. The aim of this study was to compare the histopathological effect of a mixture of aqueous extract of cinnamon and honey with silver sulfadiazine on the healing of Pseudomonas aeruginosa infected second grade skin burn wounds in rats. To this end, 60 male rats were randomly assigned to four experimental groups (15 rats in each group. After inducing anesthesia, second grade burn wound with the diameter of 12 mm was created in the dorsal region of rats. Then, 1.5×108 cfu/ml P. aeruginosa PA01was equally bestrewed on the wound of all rats. Every 12 hours, silver sulfadiazine (group 1, honey (group 2 and aqueous extract of cinnamon and honey (group 3 were applied to the wounds and group 4 was kept as control. On days 7, 14, and 21, five rats were selected from each group at each time point and after inducing anesthesia and measuring the diameter of the wound by coliseum, microbial and histopathological samples were taken from the wounds. Microbial studies showed that in all groups except the control group, the growth of the microbe was stopped. Histopathological observations regarding wound healing and diameter showed that there was a significant difference between treatment groups and the control group on days 7, 14 and 21 (p

  1. Effects of whole body γ irradiation on skin wound cells and the repaired-promoting action of W11-a12

    International Nuclear Information System (INIS)

    Shu Chongxiang; Cheng Tianmin; Yan Guohe; Ran Xinze

    2002-01-01

    Objective: To study the effects of 6 Gy whole body γ irradiation on components of wound cells and the repair-promoting action of W 11 -a 12 , an extract from Periplaneta americana. Methods: After mice were received 6 Gy gamma ray irradiation, the area of healing range in wound cross section, the cellular infiltration of wound and the content of basic fibroblast growth factor (bFGF) in wound epithelial cells were observed and the healing-promoting effect of W 11 -a 12 on the radiation-impaired wound was investigated. Results: The area of healing range in cross section was decreased, various infiltrated cells were all inhibited by radiation, but the range of inhibition was more or less different, and the descending order of severity was as follows: macrophages, vascular endothelial cells, fibroblasts and epithelial cells. The content of bFGF in epithelial cells was decreased. W 11 -a 12 had beneficial heal-promoting effect on radiation-impaired wound: it increased cellular infiltration and promoted synthesis and secretion of bFGF in epithelial cells. Conclusion: The depletion of wound cells is mainly responsible for the healing deficits of radiation-impaired skin wound and W 11 -a 12 enhances cell migration and proliferation and promotes synthesis and secretion of bFGF in epithelial cells

  2. Millimeter-wave emissivity as a metric for the non-contact diagnosis of human skin conditions.

    Science.gov (United States)

    Owda, Amani Yousef; Salmon, Neil; Harmer, Stuart William; Shylo, Sergiy; Bowring, Nicholas John; Rezgui, Nacer Ddine; Shah, Mamta

    2017-10-01

    A half-space electromagnetic model of human skin over the band 30-300 GHz was constructed and used to model radiometric emissivity. The model showed that the radiometric emissivity rose from 0.4 to 0.8 over this band, with emission being localized to a layer approximately one millimeter deep in the skin. Simulations of skin with differing water contents associated with psoriasis, eczema, malignancy, and thermal burn wounds indicated radiometry could be used as a non-contact technique to detect and monitor these conditions. The skin emissivity of a sample of 30 healthy volunteers, measured using a 95 GHz radiometer, was found to range from 0.2 to 0.7, and the experimental measurement uncertainty was ±0.002. Men on average were found to have an emissivity 0.046 higher than those of women, a measurement consistent with men having thicker skin than women. The regions of outer wrist and dorsal forearm, where skin is thicker, had emissivities 0.06-0.08 higher than the inner wrist and volar forearms where skin is generally thinner. Recommendations are made to develop a more sophisticated model of the skin and to collect larger data sets to obtain a deeper understanding of the signatures of human skin in the millimeter wave band. Bioelectromagnetics. 38:559-569, 2017. © 2017 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc. © 2017 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.

  3. Exercise, Obesity, and Cutaneous Wound Healing: Evidence from Rodent and Human Studies.

    Science.gov (United States)

    Pence, Brandt D; Woods, Jeffrey A

    2014-01-01

    Significance: Impaired cutaneous wound healing is a major health concern. Obesity has been shown in a number of studies to impair wound healing, and chronic nonhealing wounds in obesity and diabetes are a major cause of limb amputations in the United States. Recent Advances: Recent evidence indicates that aberrant wound site inflammation may be an underlying cause for delayed healing. Obesity, diabetes, and other conditions such as stress and aging can result in a chronic low-level inflammatory state, thereby potentially affecting wound healing negatively. Critical Issues: Interventions which can speed the healing rate in individuals with slowly healing or nonhealing wounds are of critical importance. Recently, physical exercise training has been shown to speed healing in both aged and obese mice and in older adults. Exercise is a relatively low-cost intervention strategy which may be able to be used clinically to prevent or treat impairments in the wound-healing process. Future Directions: Little is known about the mechanisms by which exercise speeds healing. Future translational studies should address potential mechanisms for these exercise effects. Additionally, clinical studies in obese humans are necessary to determine if findings in obese rodent models translate to the human population.

  4. Biological stimulation of the Human skin applying health promoting light and plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Awakowicz, P.; Bibinov, N. [Center for Plasma Science and Technology, Ruhr-University, Bochum (Germany); Born, M.; Niemann, U. [Philips Research, Aachen (Germany); Busse, B. [Zell-Kontakt GmbH, Noerten-Hardenberg (Germany); Gesche, R.; Kuehn, S.; Porteanu, H.E. [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Helmke, A. [University of Applied Sciences and Arts, Goettingen (Germany); Kaemling, A.; Wandke, D. [CINOGY GmbH, Duderstadt (Germany); Kolb-Bachofen, V.; Liebmann, J. [Institute for Immunobiology, Heinrich-Heine University, Duesseldorf (Germany); Kovacs, R.; Mertens, N.; Scherer, J. [Aurion Anlagentechnik GmbH, Seligenstadt (Germany); Oplaender, C.; Suschek, C. [Clinic for Plastic Surgery, University Clinic, Aachen (Germany); Vioel, W. [Laser-Laboratorium, Goettingen (Germany); University of Applied Sciences and Arts, Goettingen (Germany)

    2009-10-15

    In the frame of BMBF project ''BioLiP'', new physical treatment techniques aiming at medical treatment of the human skin have been developed. The acronym BioLiP stands for ''Desinfektion, Entkeimung und biologische Stimulation der Haut durch gesundheitsfoerdernde Licht- und Plasmaquellen'' (Disinfection, germ reduction and biological stimulation of the human skin by health promoting light and plasma sources). A source applying a low-temperature dielectric barrier discharge plasma (DBD) has been investigated on its effectiveness for skin disinfection and stimulation of biological material. Alternatively an atmospheric plasma source consisting of a microwave resonator combined with a solid state power oscillator has been examined. This concept which allows for a compact and efficient design avoiding external microwave power supply and matching units has been optimized with respect to nitrogen monoxide (NO) production in high yields. In both cases various application possibilities in the medical and biological domain are opened up. Light sources in the visible spectral range have been investigated with respect to the proliferation of human cell types. Intensive highly selective blue light sources based on LED technology can slow down proliferation rates without inducing toxic effects which offers new opportunities for treatments of so-called hyperproliferative skin conditions (e.g. with psoriasis or in wound healing) using UV-free light. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Human Epidermal Langerhans Cells Maintain Immune Homeostasis in Skin by Activating Skin Resident Regulatory T Cells

    Science.gov (United States)

    Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.

    2013-01-01

    Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445

  6. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats.

    Directory of Open Access Journals (Sweden)

    Lingying Liu

    Full Text Available BACKGROUND: Severe burns are a common and highly lethal trauma. The key step for severe burn therapy is to promote the wound healing as early as possible, and reports indicate that mesenchymal stem cell (MSC therapy contributes to facilitate wound healing. In this study, we investigated effect of human umbilical cord MSCs (hUC-MSCs could on wound healing in a rat model of severe burn and its potential mechanism. METHODS: Adult male Wistar rats were randomly divided into sham, burn, and burn transplanted hUC-MSCs. GFP labeled hUC-MSCs or PBS was intravenous injected into respective groups. The rate of wound closure was evaluated by Image Pro Plus. GFP-labeled hUC-MSCs were tracked by in vivo bioluminescence imaging (BLI, and human-specific DNA expression in wounds was detected by PCR. Inflammatory cells, neutrophils, macrophages, capillaries and collagen types I/III in wounds were evaluated by histochemical staining. Wound blood flow was evaluated by laser Doppler blood flow meter. The levels of proinflammatory and anti-inflammatory factors, VEGF, collagen types I/III in wounds were analyzed using an ELISA. RESULTS: We found that wound healing was significantly accelerated in the hUC-MSC therapy group. The hUC-MSCs migrated into wound and remarkably decreased the quantity of infiltrated inflammatory cells and levels of IL-1, IL-6, TNF-α and increased levels of IL-10 and TSG-6 in wounds. Additionally, the neovascularization and levels of VEGF in wounds in the hUC-MSC therapy group were markedly higher than those in other control groups. The ratio of collagen types I and III in the hUC-MSC therapy group were markedly higher than that in the burn group at indicated time after transplantation. CONCLUSION: The study suggests that hUC-MSCs transplantation can effectively improve wound healing in severe burned rat model. Moreover, these data might provide the theoretical foundation for the further clinical application of hUC-MSC in burn areas.

  7. Buried chip skin grafting in neuropathic diabetic foot ulcers following vacuum-assisted wound bed preparation: enhancing a classic surgical tool with novel technologies.

    Science.gov (United States)

    Kopp, Jürgen; Kneser, Ulrich; Bach, Alexander D; Horch, Raymund E

    2004-09-01

    In patients with diabetes mellitus, complications such as polyneuropathy and peripheral angiopathy inevitably lead to diabetic foot complications including foot ulcers, gangrene, and osteoarthropathy. These conditions necessitate minor or major amputation as part of treatment. In patients with Charcot's arthropathy and predominant neuropathy, recurrent foot ulcers are common in areas of high pressure. Such high pressure is caused by the degrading of the architecture of the foot and inadequate footwear. These patients are a clinical challenge. A select group of such patients may benefit from free surgical tissue transfer, though free or local flap surgery is often difficult or even impossible owing to an impaired arterial circulation. In such wounds, surgical debridement followed by skin grafts often fail due to bacterial burden in the wounds. To circumvent these problems, the authors developed a therapeutic approach using buried chip skin grafting to close granulation wound beds in diabetic feet. Locally applied vacuum therapy (VAC) for wound bed preparation of chronic, nonresponsive foot ulcers and subsequent grafting using the burying technique with a minute fraction of skin was used. Firm closure was achieved. The closed wound was resistant to mechanical irritation.

  8. Hyperbaric Oxygen Therapy and Oxygen Compatibility of Skin and Wound Care Products.

    Science.gov (United States)

    Bernatchez, Stéphanie F; Tucker, Joseph; Chiffoleau, Gwenael

    2017-11-01

    Objective: Use test methods to assess the oxygen compatibility of various wound care products. Approach: There are currently no standard test methods specifically for evaluating the oxygen compatibility and safety of materials under hyperbaric oxygen (HBO) conditions. However, tests such as the oxygen index (OI), oxygen exposure (OE), and autogenous ignition temperature (AIT) can provide useful information. Results: The OI test measures the minimum oxygen concentration that will support candle-like burning, and it was used to test 44 materials. All but two exhibited an OI equal to or greater (safer) than a control material commonly used in HBO. The OE test exposes each material to an oxygen-enriched atmosphere (>99.5% oxygen) to monitor temperature and pressure for an extended duration. The results of the OE testing indicated that none of the 44 articles tested with this method self-ignited within the 60°C, 3 atm pressurized oxygen atmosphere. The AIT test exposes materials to a rapid ramp up in temperature in HBO conditions at 3 atm until ignition occurs. Ten wound care materials and seven materials usually avoided in HBO chambers were tested. The AIT ranged from 138°C to 384°C for wound care products and from 146°C to 420°C for the other materials. Innovation: This work provides useful data and recommendations to help develop a new standard approach for evaluating the HBO compatibility of wound care products to ensure safety for patients and clinicians. Conclusion: The development of an additional test to measure the risk of electrostatic discharge of materials in HBO conditions is needed.

  9. Photosensitive semiconducting polymer-incorporated nanofibers for promoting the regeneration of skin wound

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Guorui [Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 (Singapore); The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi' an Jiaotong University, School of Life Science and Technology, Xi' an 710049 (China); Li, Jun [Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 (Singapore); Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ (United Kingdom); Li, Kai, E-mail: kai_li_cn@hotmail.com [Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 (Singapore); Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, 94305 (United States)

    2017-01-01

    Photosensitive semiconducting polymer (SP) combined with light stimulation has shown the capability in promoting the proliferation of human dermal fibroblasts (HDFs). However, the high cytotoxicity of the used SP hindered its further application in bioactive scaffolds. In this contribution, we designed and synthesized a SP, poly (N,N-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c] pyrrole-1,4-dione-alt-thieno[3,2-b]thiophene) (PDBTT) with low cytotoxicity and strong absorbance in red and near-infrared region (600–1200 nm). The photosensitive SP was then applied in electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffold and evaluated its proliferative effect on HDFs under the illumination from red light-emitting diode (LED) with high tissue penetration. After 9 days of continuous stimulation, the hybrid electrospun PCL/PDBTT nanofibers with low cytotoxicity showed excellent support for HDFs adhesion, proliferation and collagen secretion than neat PCL nanofibers and HDFs on the stimulated PCL/PDBTT nanofibers gained typical spindle morphology, indicating the well cell spreading on the stimulated PCL/PDBTT nanofibers. The incorporation of functional materials within synthetic biomaterials could be a novel way in improving the performance of engineered tissue constructs by providing multiple cues (e.g. electrical stimulation) to the attached cells. - Highlights: • A photosensitive semiconducting polymer (SP) was applied in electrospun nanofibrous scaffold. • The SP-incorporated scaffold could promote cell proliferation upon light stimulation. • The designed photosensitive SP could be applied as functional material with low cost and high durability in skin tissue engineering.

  10. First donation of human skin obtained from corpse

    International Nuclear Information System (INIS)

    Reyes F, M.L.; Luna Z, D.

    2007-01-01

    The first donation of human skin coming from a cadaverous donor was obtained in the State of Mexico. The skin was obtained of a 34 year-old multi organic donor, the extraction of the same was carried out in an operating theatre by medical personnel, supported by personal of the Radio sterilized Tissue Bank (BTR) of the ININ. The skin was transported to the BTR for it processing. (Author)

  11. Lysophosphatidic acid induces expression of genes in human oral keratinocytes involved in wound healing.

    Science.gov (United States)

    Thorlakson, Hong Huynh; Engen, Stian Andre; Schreurs, Olav; Schenck, Karl; Blix, Inger Johanne Schytte

    2017-08-01

    Epithelial cells participate in wound healing by covering wounds, but also as important mediators of wound healing processes. Topical application of the phospholipid growth factor lysophosphatidic acid (LPA) accelerates dermal wound healing and we hypothesized that LPA can play a role in human oral wound healing through its effects on human oral keratinocytes (HOK). HOK were isolated from gingival biopsies and exposed to LPA. The LPA receptor profile, signal transduction pathways, gene expression and secretion of selected cytokines were analyzed. HOK expressed the receptors LPA 1 , LPA 5 and LPA 6 and LPA activated the ERK1/2, JNK and p38 intracellular pathways, substantiated by secretion of IL-6 and IL-8. The early (2h) and intermediate (6h) gene expression profiles of HOK after LPA treatment showed a wide array of regulated genes. The majority of the strongest upregulated genes were related to chemotaxis and inflammation, and became downregulated after 6h. At 6h, genes coding for factors involved in extracellular matrix remodeling and re-epithelialization became highly expressed. IL-36γ, not earlier known to be regulated by LPA, was strongly transcribed and translated but not secreted. After stimulation with LPA, HOK responded by regulating factors and genes that are essential in wound healing processes. As LPA is found in saliva and is released by activated cells after wounding, our results indicate that LPA has a favorable physiological role in oral wound healing. This may further point towards a beneficial role for application of LPA on oral surgical or chronic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Early Gene Expression in Wounded Human Keratinocytes Revealed by DNA Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Pascal Barbry

    2006-04-01

    Full Text Available Wound healing involves several steps: spreading of the cells, migration and proliferation. We have profiled gene expression during the early events of wound healing in normal human keratinocytes with a home-made DNA microarray containing about 1000 relevant human probes. An original wounding machine was used, that allows the wounding of up to 40% of the surface of a confluent monolayer of cultured cells grown on a Petri dish (compared with 5% with a classical ‘scratch’ method. The two aims of the present study were: (a to validate a limited number of genes by comparing the expression levels obtained with this technique with those found in the literature; (b to combine the use of the wounding machine with DNA microarray analysis for large-scale detection of the molecular events triggered during the early stages of the wound-healing process. The time-courses of RNA expression observed at 0.5, 1.5, 3, 6 and 15 h after wounding for genes such as c-Fos, c-Jun, Egr1, the plasminogen activator PLAU (uPA and the signal transducer and transcription activator STAT3, were consistent with previously published data. This suggests that our methodologies are able to perform quantitative measurement of gene expression. Transcripts encoding two zinc finger proteins, ZFP36 and ZNF161, and the tumour necrosis factor α-induced protein TNFAIP3, were also overexpressed after wounding. The role of the p38 mitogen-activated protein kinase (p38MAPK in wound healing was shown after the inhibition of p38 by SB203580, but our results also suggest the existence of surrogate activating pathways.

  13. Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice

    Directory of Open Access Journals (Sweden)

    Lee H

    2016-07-01

    Full Text Available Hyunji Lee,1 Youngeun Hong,1 So Hee Kwon,2 Jongsun Park,1 Jisoo Park1 1Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 2Department of Pharmacy, College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea Background: Aging of skin is associated with environmental factors such as ultraviolet rays, air pollution, gravity, and genetic factors, all of which can lead to wrinkling of skin. Previous reports suggest that the wound repair is impaired by the aging process and strategies to manipulate the age-related wound healing are necessary in order to stimulate repair.Objective: Several traditional plant extracts are well-known for their properties of skin protection and care. Piper cambodianum P. Fourn. (PPF, a member of Piperacecae, is a plant found in Vietnam that might have therapeutic properties. Therefore, the effects of PPF stem and leaf extract on aging process were investigated in vitro and in vivo.Methods: PPF extract dissolved in methanol was investigated using Western blotting, real-time quantitative reverse transcription-polymerase chain reaction, flow cytometry, and cell wound-healing assays. We assessed the anti-aging effect of PPF in mouse using the wound-healing assay. The results were analyzed by Student’s unpaired t-test; *P<0.05 and **P<0.01 were considered to indicate significant and highly significant values, respectively, compared with corresponding controls.Results: PPF treatment demonstrated in vitro and in vivo anti-aging activity. Western blot analysis of PPF-treated normal human dermal fibroblast cells showed a dose-dependent increase in the expression of extracellular matrix genes such as collagen and elastin, but decreased expression of the aging gene matrix metalloproteinase-3. Quantitative polymerase chain reaction showed

  14. Effects of negative pressure wound therapy on the expression of EDA+ FN in granulation tissues of human diabetic foot wounds

    Directory of Open Access Journals (Sweden)

    Shao-ling YANG

    2017-04-01

    Full Text Available Objective  To investigate the effects of negative pressure wound therapy (NPWT on the expression of EDA+ FN in granulation tissues of human diabetic foot wounds. Methods  Forty patients with diabetic foot wounds fitting the inclusion criteria, admitted from Jan. 2014 to Jun. 2016, were randomly and equally apportioned to receive either NPWT or conventional gauze therapy (control for 14 days. Granulated tissue biopsies were collected before (0 day and after (14 day treatment in both groups. All biopsies were subdivided into two parts. One part was preserved in 4% paraformaldehyde for immunocytochemical staining of EDA+ FN, and the other part was stored at –80℃for Western blotting and PCR analysis of EDA+ FN. Results  The immunohistochemical analysis revealed that the mean area density of EDA+ FN increased in both NPWT group and control group at day 14 relative to day 0, but the change value of mean area density was higher in NPWT group than in control group (P<0.01. Western blotting showed that the relative protein levels of EDA+ FN increased in both NPWT group and control group at day 14 relative to day 0, but the change value of relative protein levels of EDA+ FN was higher in NPWT group than in control group (P<0.01. The real time PCR analysis demonstrated that the relative mRNA levels of EDA+ FN increased in both NPWT group and control group at day 14 relative to day 0, but the change value of relative mRNA levels of EDA+ FN was higher in NPWT group than in control group (P<0.01. The results demonstrated the higher protein and mRNA levels of EDA+ FN in NPWT group than that in control group. Conclusion  NPWT obviously enhances EDA+ FN expression in granulation tissue of diabetic foot wound, as a result promotes wound healing. DOI: 10.11855/j.issn.0577-7402.2017.03.09

  15. Negative pressure wound therapy applied before and after split-thickness skin graft helps healing of Fournier gangrene: a case report (CARE-Compliant).

    Science.gov (United States)

    Ye, Junna; Xie, Ting; Wu, Minjie; Ni, Pengwen; Lu, Shuliang

    2015-02-01

    Fournier gangrene is a rare but highly infectious disease characterized by fulminant necrotizing fasciitis involving the genital and perineal regions. Negative pressure wound therapy (NPWT; KCI USA Inc, San Antonio, TX) is a widely adopted technique in many clinical settings. Nevertheless, its application and effect in the treatment of Fournier gangrene are unclear. A 47-year-old male patient was admitted with an anal abscess followed by a spread of the infection to the scrotum, which was caused by Pseudomonas aeruginosa. NPWT was applied on the surface of the scrotal area and continued for 10 days. A split-thickness skin graft from the scalp was then grafted to the wound, after which, NPWT utilizing gauze sealed with an occlusive dressing and connected to a wall suction was employed for 7 days to secure the skin graft. At discharge, the percentage of the grafted skin alive on the scrotum was 98%. The wound beside the anus had decreased to 4 × 0.5 cm with a depth of 1 cm. Follow-up at the clinic 1 month later showed that both wounds had healed. The patient did not complain of any pain or bleeding, and was satisfied with the outcome. NPWT before and after split-thickness skin grafts is safe, well tolerated, and efficacious in the treatment of Fournier gangrene.

  16. Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 2: evaluation of in vitro topical decontamination efficacy using undamaged skin.

    Science.gov (United States)

    Dalton, Christopher H; Hall, Charlotte A; Lydon, Helen L; Chipman, J K; Graham, John S; Jenner, John; Chilcott, Robert P

    2015-05-01

    The risk of penetrating, traumatic injury occurring in a chemically contaminated environment cannot be discounted. Should a traumatic injury be contaminated with a chemical warfare (CW) agent, it is likely that standard haemostatic treatment options would be complicated by the need to decontaminate the wound milieu. Thus, there is a need to develop haemostatic products that can simultaneously arrest haemorrhage and decontaminate CW agents. The purpose of this study was to evaluate a number of candidate haemostats for efficacy as skin decontaminants against three CW agents (soman, VX and sulphur mustard) using an in vitro diffusion cell containing undamaged pig skin. One haemostatic product (WoundStat™) was shown to be as effective as the standard military decontaminants Fuller's earth and M291 for the decontamination of all three CW agents. The most effective haemostatic agents were powder-based and use fluid absorption as a mechanism of action to sequester CW agent (akin to the decontaminant Fuller's earth). The envisaged use of haemostatic decontaminants would be to decontaminate from within wounds and from damaged skin. Therefore, WoundStat™ should be subject to further evaluation using an in vitro model of damaged skin. Copyright © 2014 Crown copyright. Journal of Applied Toxicology © 2014 John Wiley & Sons, Ltd.

  17. Combined application of alginate dressing and human granulocyte-macrophage colony stimulating factor promotes healing in refractory chronic skin ulcers.

    Science.gov (United States)

    Huang, Guobao; Sun, Tangqing; Zhang, Lei; Wu, Qiuhe; Zhang, Keyan; Tian, Qingfen; Huo, Ran

    2014-06-01

    The aim of the present study was to evaluate the clinical therapeutic effect of the combined application of alginate and recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) on the healing of refractory chronic skin ulcers. A single center, three arm, randomized study was performed at Jinan Central Hospital (Jinan, Shandong, China). A total of 60 patients with refractory chronic skin ulcers, which persisted for >1 month, were enrolled and randomly assigned into one of the following three groups: alginate dressing/rhGM-CSF group (group A), rhGM-CSF only group (group B) and conventional (vaseline dressing) group (group C). The wound area rate was measured, granulation and color were observed and pain was evaluated. The data were summarized and statistical analysis was performed. The results demonstrated that group A exhibited a significantly faster wound healing rate and lower pain score compared with the other groups (PCSF for the treatment of refractory chronic skin ulcers demonstrated significant advantages. It promoted the growth of granulation tissue, accelerated re-epithelialization and also effectively reduced wound pain, and thus improved the quality of life for the patient. This suggests that the combined application of alginate and rhGM-CSF may be an effective therapeutic strategy for the clinical treatment of refractory chronic skin ulcers.

  18. Management of pediatric skin-graft donor sites: a randomized controlled trial of three wound care products.

    Science.gov (United States)

    Brenner, Maria; Hilliard, Carol; Peel, Glynis; Crispino, Gloria; Geraghty, Ruth; OʼCallaghan, Gill

    2015-01-01

    Skin grafts are used to treat many types of skin defects in children, including burns, traumatic wounds, and revision of scars. The objective of this prospective randomized controlled trial was to compare the effectiveness of three dressing types for pediatric donor sites: foam, hydrofiber, and calcium alginate. Children attending a pediatric Burns & Plastics Service from October 2010 to March 2013, who required a split-skin graft, were recruited to the trial. Patients were randomly assigned to the two experimental groups, foam or hydrofiber, and to the control group, calcium alginate. Data were gathered on the management of exudate, assessment of pain, time to healing, and infection. Fifty-seven children aged 1 to 16 years (mean = 4.9 years) were recruited to the trial. Fifty-six patients had evaluable data and one participant from the control group was lost to follow-up. Most children required skin grafting for a burn injury (78%). The median size of the donor site was 63.50 cm (8-600 cm). There was a statistically significant difference in time to healing across the three dressing groups (x [2, n = 56] = 6.59, P = .037). The calcium alginate group recorded a lower median value of days to healing (median = 7.5 days) compared to the other two groups, which recorded median values of 8 days (hydrofiber) and 9.5 days (foam). The greatest leakage of exudate, regardless of dressing type, occurred on day 2 after grafting. No statistically significant difference was found in leakage of exudate, pain scores, or infection rates across the three groups. Calcium alginate emerged as the optimum dressing for pediatric donor site healing in this trial.

  19. Effect of fibrin-binding synthetic oligopeptide on the healing of full-thickness skin wounds in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Chung, Jae-Eun; Kim, Yun-Jeong; Park, Yoon-Jeong; Koo, Ki-Tae; Seol, Yang-Jo; Lee, Yong-Moo; Rhyu, In-Chul; Ku, Young

    2013-01-01

    The aim of this study was to investigate whether topical application of fibrin-binding oligopeptides derived from FN promotes wound healing in streptozotocin (STZ)-induced diabetic rats. Oligopeptides including fibrin-binding sequences (FF3: CFDKYTGNTYRV, FF5 : CTSRNRCNDQ) of FN repeats were synthesized. Each peptide was loaded in 15 x 15 mm fibrous alginate dressings, and the release kinetics of the peptides was evaluated using trinitrobenzene sulfonic acid for 336 hours. Two full-thickness cutaneous wounds were prepared on the dorsal skin of each 75 diabetes induced rats. Each wound was divided into FF3-loaded alginate dressing group, FF5-loaded alginate dressing group, alginate dressing group and negative control group. Animals were sacrificed at day 0,3,7 and 14. The wound closure rate, inflammation degree, expression of TGF-β1 and hydroxyproline contents were evaluated. Both FF3 and FF5 peptides were released rapidly within the first 24 hours. FF3-loaded dressing treated wounds closed significantly faster than other wounds at day 3. And at day 14, FF3- & FF5- loaded dressing treated wounds demonstrated less inflammatory cells infiltration than alginate dressing treated and negative group wounds. TGF-β1 positive cells were more abundant in FF3-, FF5-treated alginate dressing treated wound at day 3 and 14. At last, the hyrdroxyproline contents in the FF3, FF5 group were higher at day 7 and day 14. Topical application of fibrin-binding domain synthetic oligopeptides from FN resulted in acceleration of full-thickness cutaneous wound healing in diabetic rats.

  20. Variables influencing the frictional behaviour of in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2013-01-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables. This study has used a large dataset to identify the effect of variables on

  1. Variables influencing the frictional behaviour of in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, M.A.; Heide, E. van der

    2013-01-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables.This study has used a large dataset to identify the effect of variables on the

  2. A combination of subcuticular sutures and a drain for skin closure reduces wound complications in obese women undergoing surgery using vertical incisions.

    Science.gov (United States)

    Inotsume-Kojima, Y; Uchida, T; Abe, M; Doi, T; Kanayama, N

    2011-02-01

    Obesity is a risk factor for surgical site or wound complications in women undergoing surgery involving vertical incisions. Several investigators have reported the efficacy of subcutaneous drains in minimising the complication rate but there is no consensus on using these for surgery in obese patients. In 2006, the Scottish Surveillance of Healthcare Associated Infection Programme showed that using subcuticular sutures rather than staples to close incisions significantly reduced the risk of surgical site infection. Before January 2008 (group 1; N = 40), wound complications occurred in some obese patients in our hospital after obstetric and gynaecological surgery when only staples were used for skin closure. In January 2008 (group 2; N = 31), we changed the method of skin closure for obese patients [body mass index (BMI) > 28 kg/m(2)] and we now use a subcutaneous drain with four channels along the running tube and subcuticular sutures with interrupted, buried 4-0 polydioxanone sutures. The aim of this study was to assess the effects of these interventions for skin closure in obese women. The general characteristics (age, weight and BMI) were similar between the two groups. There were no wound complications in group 2. In group 1, wound disruptions and a seroma occurred in five (12.5%) and one (2.5%) patients, respectively. The wound complication rate in group 2 was significantly lower than that in group 1 (P = 0.0319). Thus, new materials and techniques for skin closure can reduce the wound complication rate in obese women. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. Recovery of the Decorin-Enriched Fraction, Extract (D, From Human Skin: An Accelerated Protocol

    Directory of Open Access Journals (Sweden)

    Denys N. Wheatley

    2004-01-01

    Full Text Available The original extraction procedure of Engel and Catchpole [1] has often been used to recover decorin-enriched material from the skin. This material has a strong inhibitory effect on fibroblast proliferation, and clearly suppresses it in skin except after the first 5–6 days of wounding when new scaffold material is required. The aim of our present study has been to find and evaluate the product of a faster recovery method, and to check its consistency as a more reliable means of regularly obtaining sufficient material for topical application in wounds that might become hypertrophic. Modifications of the original Toole and Lowther [2] extraction procedure have been carefully evaluated in an attempt to cut preparation time without compromising biological activity of the inhibitory extract. We have devised a faster recovery procedure without compromising biological activity, even if initial recovery has been somewhat reduced. The latter problem could be offset by repeated cycles of the final extraction step. The main inhibitory activity is shown to be within the decorin-enriched “extract D,” as the core protein and DSPG II. Adjustment of the extract towards neutrality after dialysis against water keeps most of the extracted protein in solution and yielded a decorin-enriched preparation that had a specific activity equivalent to that of the old method. It also yielded a fraction that was readily lyophilised to give a small amount of material that could be stored indefinitely without loss of activity and readily redissolved in aqueous solution. A reliable and relatively quick method is presented for the production, from human skin, of a decorin-enriched preparation that has strong fibroblast inhibitory action. The value of the procedure is that it is inexpensive and can produce the quantities that might be used topically in reducing hypertrophic scarring of wounds.

  4. Mast Cells Regulate Wound Healing in Diabetes.

    Science.gov (United States)

    Tellechea, Ana; Leal, Ermelindo C; Kafanas, Antonios; Auster, Michael E; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C; Veves, Aristidis

    2016-07-01

    Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Human skin penetration of silver nanoparticles through intact and damaged skin

    International Nuclear Information System (INIS)

    Larese, Francesca Filon; D'Agostin, Flavia; Crosera, Matteo; Adami, Gianpiero; Renzi, Nadia; Bovenzi, Massimo; Maina, Giovanni

    2009-01-01

    There is a growing interest on nanoparticle safety for topical use. The benefits of nanoparticles have been shown in several scientific fields, but little is known about their potential to penetrate the skin. This study aims at evaluating in vitro skin penetration of silver nanoparticles. Experiments were performed using the Franz diffusion cell method with intact and damaged human skin. Physiological solution was used as receiving phase and 70 μg/cm 2 of silver nanoparticles coated with polyvinylpirrolidone dispersed in synthetic sweat were applied as donor phase to the outer surface of the skin for 24 h. The receptor fluid measurements were performed by electro thermal atomic absorption spectroscopy (ETAAS). Human skin penetration was also determined by using transmission electron microscope (TEM) to verify the location of silver nanoparticles in exposed membranes. Median silver concentrations of 0.46 ng cm -2 (range -2 (range 0.43-11.6) were found in the receiving solutions of cells where the nanoparticles solution was applied on intact skin (eight cells) and on damaged skin (eight cells), respectively. Twenty-four hours silver flux permeation in damaged skin was 0.62 ± 0.2 ng cm -2 with a lag time <1 h. Our experimental data showed that silver nanoparticles absorption through intact and damaged skin was very low but detectable, and that in case of damaged skin it was possible an increasing permeation of silver applied as nanoparticles. Moreover, silver nanoparticles could be detected in the stratum corneum and the outermost surface of the epidermis by electron microscopy. We demonstrated for the first time that silver applied as nanoparticles coated with polyvinylpirrolidone is able to permeate the damaged skin in an in vitro diffusion cell system

  6. Utilization of reconstructed cultured human skin models as an alternative skin for permeation studies of chemical compounds

    OpenAIRE

    Kano, Satoshi; 藤堂, 浩明; 杉江, 謙一; 藤本, 英哲; 中田, 圭一; 徳留, 嘉寛; 橋本, フミ惠; 杉林, 堅次

    2010-01-01

    Two reconstructed human skin models, EpiskinSM and EpiDermTM, have been approved as alternative membranes for skin corrosive/irritation experiments due to their close correlation with animal skin. Such reconstructed human skin models were evaluated as alternative membranes for skin permeation experiments. Seven drugs with different lipophilicities and almost the same molecular weight were used as test penetrants. Relationships were investigated between permeability coefficients (P values) of ...

  7. Effect of fluocinolone acetonide cream on human skin blood flow

    International Nuclear Information System (INIS)

    Chimoskey, J.E.; Holloway, A. Jr.; Flanagan, W.J.

    1975-01-01

    Blood flow rate was measured in the forearm skin of human subjects exposed to ultraviolet irradiation. Blood flow was determined by the 133 Xe disappearance technique 18 hr after ultraviolet (UV) irradiation with a Westinghouse RS sunlamp held 10 inches from the skin for 10 min. Ultraviolet irradiation caused skin blood flow to increase. Application of fluocinolone acetonide cream, 0.025 percent, 4 times in the 16 hr following UV irradiation had no effect on either control skin blood flow or the UV-induced hyperemia

  8. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    Science.gov (United States)

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  9. The use of wound healing assessment methods in psychological studies: a review and recommendations.

    Science.gov (United States)

    Koschwanez, Heidi E; Broadbent, Elizabeth

    2011-02-01

    To provide a critical review of methods used to assess human wound healing in psychological research and related disciplines, in order to guide future research into psychological influences on wound healing. Acute wound models (skin blister, tape stripping, skin biopsy, oral palate biopsy, expanded polytetrafluoroethylene tubing), surgical wound healing assessment methods (wound drains, wound scoring), and chronic wound assessment techniques (surface area, volumetric measurements, wound composition, and assessment tools/scoring systems) are summarized, including merits, limitations, and recommendations. Several dermal and mucosal tissue acute wound models have been established to assess the effects of psychological stress on the inflammatory, proliferative, and repair phases of wound healing in humans, including material-based models developed to evaluate factors influencing post-surgical recovery. There is a paucity of research published on psychological factors influencing chronic wound healing. There are many assessment techniques available to study the progression of chronic wound healing but many difficulties inherent to long-term clinical studies. Researchers need to consider several design-related issues when conducting studies into the effects of psychological stress on wound healing, including the study aims, type of wound, tissue type, setting, sample characteristics and accessibility, costs, timeframe, and facilities available. Researchers should consider combining multiple wound assessment methods to increase the reliability and validity of results and to further understand mechanisms that link stress and wound healing. ©2010 The British Psychological Society.

  10. An ex vivo human skin model for studying skin barrier repair.

    Science.gov (United States)

    Danso, Mogbekeloluwa O; Berkers, Tineke; Mieremet, Arnout; Hausil, Farzia; Bouwstra, Joke A

    2015-01-01

    In the studies described in this study, we introduce a novel ex vivo human skin barrier repair model. To develop this, we removed the upper layer of the skin, the stratum corneum (SC) by a reproducible cyanoacrylate stripping technique. After stripping the explants, they were cultured in vitro to allow the regeneration of the SC. We selected two culture temperatures 32 °C and 37 °C and a period of either 4 or 8 days. After 8 days of culture, the explant generated SC at a similar thickness compared to native human SC. At 37 °C, the early and late epidermal differentiation programmes were executed comparably to native human skin with the exception of the barrier protein involucrin. At 32 °C, early differentiation was delayed, but the terminal differentiation proteins were expressed as in stripped explants cultured at 37 °C. Regarding the barrier properties, the SC lateral lipid organization was mainly hexagonal in the regenerated SC, whereas the lipids in native human SC adopt a more dense orthorhombic organization. In addition, the ceramide levels were higher in the cultured explants at 32 °C and 37 °C than in native human SC. In conclusion, we selected the stripped ex vivo skin model cultured at 37 °C as a candidate model to study skin barrier repair because epidermal and SC characteristics mimic more closely the native human skin than the ex vivo skin model cultured at 32 °C. Potentially, this model can be used for testing formulations for skin barrier repair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Anti-microbial and skin wound dressing application of molecular iodine nanoparticles

    Science.gov (United States)

    Viswanathan, Kaliyaperumal; Bharathi Babu, Divya; Jayakumar, Gomathi; Dhinakar Raj, Gopal

    2017-10-01

    In this study, iodine nanoparticles were synthesized without use of any stabilizer by a new co-precipitation process using polyvinyl pyrolidone, calcium lactate, disodium hydrogen phosphate and iodine solution as precursor and the reaction was catalyzed by sodium hydroxide. Ten mg of the synthesized nanoparticles killed 95% of bacteria and inhibited 90% of bio film formation. Assays on membrane disintegration activities of the nanoparticles indicated that these nanoparticles destroyed the extracellular membrane of the bacteria. The wound healing application evaluated using mice model showed that it was hastened by iodine nanoparticles.

  12. An in vitro human skin test for assessing sensitization potential.

    Science.gov (United States)

    Ahmed, S S; Wang, X N; Fielding, M; Kerry, A; Dickinson, I; Munuswamy, R; Kimber, I; Dickinson, A M

    2016-05-01

    Sensitization to chemicals resulting in an allergy is an important health issue. The current gold-standard method for identification and characterization of skin-sensitizing chemicals was the mouse local lymph node assay (LLNA). However, for a number of reasons there has been an increasing imperative to develop alternative approaches to hazard identification that do not require the use of animals. Here we describe a human in-vitro skin explant test for identification of sensitization hazards and the assessment of relative skin sensitizing potency. This method measures histological damage in human skin as a readout of the immune response induced by the test material. Using this approach we have measured responses to 44 chemicals including skin sensitizers, pre/pro-haptens, respiratory sensitizers, non-sensitizing chemicals (including skin-irritants) and previously misclassified compounds. Based on comparisons with the LLNA, the skin explant test gave 95% specificity, 95% sensitivity, 95% concordance with a correlation coefficient of 0.9. The same specificity and sensitivity were achieved for comparison of results with published human sensitization data with a correlation coefficient of 0.91. The test also successfully identified nickel sulphate as a human skin sensitizer, which was misclassified as negative in the LLNA. In addition, sensitizers and non-sensitizers identified as positive or negative by the skin explant test have induced high/low T cell proliferation and IFNγ production, respectively. Collectively, the data suggests the human in-vitro skin explant test could provide the basis for a novel approach for characterization of the sensitizing activity as a first step in the risk assessment process. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Experimental metagenomics and ribosomal profiling of the human skin microbiome.

    Science.gov (United States)

    Ferretti, Pamela; Farina, Stefania; Cristofolini, Mario; Girolomoni, Giampiero; Tett, Adrian; Segata, Nicola

    2017-03-01

    The skin is the largest organ in the human body, and it is populated by a large diversity of microbes, most of which are co-evolved with the host and live in symbiotic harmony. There is increasing evidence that the skin microbiome plays a crucial role in the defense against pathogens, immune system training and homoeostasis, and microbiome perturbations have been associated with pathological skin conditions. Studying the skin resident microbial community is thus essential to better understand the microbiome-host crosstalk and to associate its specific configurations with cutaneous diseases. Several community profiling approaches have proved successful in unravelling the composition of the skin microbiome and overcome the limitations of cultivation-based assays, but these tools remain largely inaccessible to the clinical and medical dermatology communities. The study of the skin microbiome is also characterized by specific technical challenges, such as the low amount of microbial biomass and the extensive human DNA contamination. Here, we review the available community profiling approaches to study the skin microbiome, specifically focusing on the practical experimental and analytical tools necessary to generate and analyse skin microbiome data. We describe all the steps from the initial samples collection to the final data interpretation, with the goal of enabling clinicians and researchers who are not familiar with the microbiome field to perform skin profiling experiments. © 2016 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  14. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C

    1992-01-01

    Chromium permeation studies were performed on full thickness human skin in diffusion cells. All samples were analysed for the total chromium content by graphite furnace Zeeman-corrected atomic absorption spectrometry. Some samples were analysed by an ion chromatographic method permitting...... the simultaneous determination of Cr(VI) and Cr(III) as well. The amounts of chromium found in all skin layers were significantly higher when potassium dichromate was applied to the skin compared with chromium chloride or chromium nitrate. Chromium could only be detected in the recipient phase after application...... of the dichromate solution. Chromium skin levels increased with increasing concentrations of applied chromium salts up to 0.034 M Cr. The amount of chromium in recipient phase and skin layers increased with increasing pH when the applied solution contained potassium dichromate. This was ascribed to a decreased skin...

  15. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    RNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between......MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate mi...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease....

  16. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    RNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease.......MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate mi...

  17. Effect of Different Skin Penetration Promoters in Halobetasol Propionate Permeation and Retention in Human Skin

    Directory of Open Access Journals (Sweden)

    Paulina Carvajal-Vidal

    2017-11-01

    Full Text Available Halobetasol propionate (HB is a potent synthetic corticosteroid used against inflammatory skin diseases, such as dermatitis, eczema, and psoriasis, among others. The aim of this study is to define how the presence of different skin penetration enhancers (nonane, menthone, limonene, azone, carene, decanol, linoleic acid and cetiol affects the penetration and retention in skin of HB. To determine drug penetration through skin, 5% of each promoter was used in an ex vivo system with human skin on Franz cells. The results showed that the highest permeation occurs in the presence of menthone, followed by nonane. Permeation parameters were determined. The in vivo test was assessed, and the formulation containing HB-menthone presented better anti-inflammatory efficacy. These results are useful to generate a specific treatment according to each patient’s needs, and the inflammatory characteristics of the disease.

  18. Wound healing in below-knee amputations in relation to skin perfusion pressure

    DEFF Research Database (Denmark)

    Holstein, P; Sager, P; Lassen, N A

    1979-01-01

    In 60 below-knee amputations the healing of the stumps was correlated with the local skin perfusion pressure (SPP) measured preoperatively as the external pressure required to stop isotope washout using 131I- or 125I--antipyrine mixed with histamine. Of the eight cases with an SPP below 20 mm...

  19. Method of protecting human skin from actinic radiation

    International Nuclear Information System (INIS)

    Fusaro, R.M.

    1975-01-01

    Enhanced protection from sunlight is achieved by applying to human skin beforehand separate, time-spaced applications of (1) a carbonyl compound which is reactive with amino groups in human skin, for example dihydroxyacetone, and (2) a benzo- or naptho-quinone such as lawsone. Preferably several sequential applications of each active component in a separate carrier are made the evening before the first exposure, and protection is thereafter maintained by applying each component separately each evening

  20. Tribological behaviour of skin equivalents and ex-vivo human skin against the material components of artificial turf in sliding

    NARCIS (Netherlands)

    Morales Hurtado, Marina; Peppelman, P.; Zeng, Xiangqiong; van Erp, P.E.J.; van der Heide, Emile

    2016-01-01

    This research aims to analyse the interaction of three artificial skin equivalents and human skin against the main material components of artificial turf. The tribological performance of Lorica, Silicone Skin L7350 and a recently developed Epidermal Skin Equivalent (ESE) were studied and compared to

  1. Vehicle effects on human stratum corneum absorption and skin penetration.

    Science.gov (United States)

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  2. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    International Nuclear Information System (INIS)

    Sharma, Rakesh

    2010-01-01

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  3. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rakesh, E-mail: rs05h@fsu.ed [Departments of Chemical Engineering and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States)

    2010-07-21

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  4. Multivariate Models for Prediction of Human Skin Sensitization ...

    Science.gov (United States)

    One of the lnteragency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens TM assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches , logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine

  5. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold.

    Science.gov (United States)

    Mazlyzam, A L; Aminuddin, B S; Fuzina, N H; Norhayati, M M; Fauziah, O; Isa, M R; Saim, L; Ruszymah, B H I

    2007-05-01

    Our aim of this study was to develop a new methodology for constructing a bilayer human skin equivalent to create a more clinical compliance skin graft composite for the treatment of various skin defects. We utilized human plasma derived fibrin as the scaffold for the development of a living bilayer human skin equivalent: fibrin-fibroblast and fibrin-keratinocyte (B-FF/FK SE). Skin cells from six consented patients were culture-expanded to passage 1. For B-FF/FK SE formation, human fibroblasts were embedded in human fibrin matrix and subsequently another layer of human keratinocytes in human fibrin matrix was stacked on top. The B-FF/FK SE was then transplanted to athymic mice model for 4 weeks to evaluate its regeneration and clinical performance. The in vivo B-FF/FK SE has similar properties as native human skin by histological analysis and expression of basal Keratin 14 gene in the epidermal layer and Collagen type I gene in the dermal layer. Electron microscopy analysis of in vivo B-FF/FK SE showed well-formed and continuous epidermal-dermal junction. We have successfully developed a technique to engineer living bilayer human skin equivalent using human fibrin matrix. The utilization of culture-expanded human skin cells and fibrin matrix from human blood will allow a fully autologous human skin equivalent construction.

  6. Accelerated re-epithelialization of partial-thickness skin wounds by a topical betulin gel: Results of a randomized phase III clinical trials program.

    Science.gov (United States)

    Barret, Juan P; Podmelle, Fred; Lipový, Břetislav; Rennekampff, Hans-Oliver; Schumann, Hauke; Schwieger-Briel, Agnes; Zahn, Tobias R; Metelmann, Hans-Robert

    2017-09-01

    The clinical significance of timely re-epithelialization is obvious in burn care, since delayed wound closure is enhancing the risk of wound site infection and extensive scarring. Topical treatments that accelerate wound healing are urgently needed to reduce these sequelae. Evidence from preliminary studies suggests that betulin can accelerate the healing of different types of wounds, including second degree burns and split-thickness skin graft wounds. The goal of this combined study program consisting of two randomized phase III clinical trials in parallel is to evaluate whether a topical betulin gel (TBG) is accelerating re-epithelialization of split-thickness skin graft (STSG) donor site wounds compared to standard of care. Two parallel blindly evaluated, randomised, controlled, multicentre phase III clinical trials were performed in adults undergoing STSG surgery (EudraCT nos. 2012-003390-26 and 2012-000777-23). Donor site wounds were split into two equal halves and randomized 1:1 to standard of care (a non-adhesive moist wound dressing) or standard of care plus TBG consisting of 10% birch bark extract and 90% sunflower oil (Episalvan, Birken AG, Niefern-Oeschelbronn, Germany). The primary efficacy assessment was the intra-individual difference in time to wound closure assessed from digital photographs by three blinded experts. A total of 219 patients were included and treated in the two trials. Wounds closed faster with TBG than without it (15.3 vs. 16.5 days; mean intra-individual difference=-1.1 days [95% CI, -1.5 to -0.7]; p<0.0001). This agreed with unblinded direct clinical assessment (difference=-2.1 days [95% CI, -2.7 to -1.5]; p<0.0001). Adverse events possibly related to treatment were mild or moderate and mostly at the application site. TBG accelerates re-epithelialization of partial thickness wounds compared to the current standard of care, providing a well-tolerated contribution to burn care in practice. Copyright © 2017 The Authors. Published by

  7. Development of haemostatic decontaminants for treatment of wounds contaminated with chemical warfare agents. 3: Evaluation of in vitro topical decontamination efficacy using damaged skin.

    Science.gov (United States)

    Lydon, Helen L; Hall, Charlotte A; Dalton, Christopher H; Chipman, J Kevin; Graham, John S; Chilcott, Robert P

    2017-08-01

    Previous studies have demonstrated that haemostatic products with an absorptive mechanism of action retain their clotting efficiency in the presence of toxic materials and are effective in decontaminating chemical warfare (CW) agents when applied to normal, intact skin. The purpose of this in vitro study was to assess three candidate haemostatic products for effectiveness in the decontamination of superficially damaged porcine skin exposed to the radiolabelled CW agents, soman (GD), VX and sulphur mustard (HD). Controlled physical damage (removal of the upper 100 μm skin layer) resulted in a significant enhancement of the dermal absorption of all three CW agents. Of the haemostatic products assessed, WoundStat™ was consistently the most effective, being equivalent in performance to a standard military decontaminant (fuller's earth). These data suggest that judicious application of haemostatic products to wounds contaminated with CW agents may be a viable option for the clinical management of casualties presenting with contaminated, haemorrhaging injuries. Further studies using a relevant animal model are required to confirm the potential clinical efficacy of WoundStat™ for treating wounds contaminated with CW agents. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Eff ect of vitamin E isoforms on the primary intention Eff ect of vitamin E isoforms on the primary intention skin wound healing of diabetic rats

    Directory of Open Access Journals (Sweden)

    Bijo Elsy

    2017-10-01

    Full Text Available Introduction: Impaired wound healing events is a common complication in diabetes. One of the effective nutritional antioxidant on skin wound healing is vitamin E which contains saturated tocopherol and unsaturated tocotrienol forms. This present study is designed to explore the effect of different vitamin E isoforms on stitched skin wound in both healthy and diabetic rats. Materials and Methods: Forty eight albino rats were divided into eight groups; healthy control, diabetic control, healthy treated (d-α-tocopherol, d-δ-TRF and co-administrated and diabetic treated (d-αtocopherol, d-δ-TRF and co-administrated. Diabetes was induced through single subcutaneous injection of alloxan at the dose of 100 mg/kg. Treated groups were administered d-a-tocopherol (200 mg/kg, d-δ-TRF (200 mg/kg and co-administration (100 mg/kg of these two compounds each orally and daily for three weeks. A horizontal skin incision was made on right mid-thigh region at 2.95 ± 0.17cm in length and wound was closed with an absorbable suture. Results: Histopathological and histomorphological results at the end of 3rd week revealed that the d-δ-TRF treated groups promote the regeneration and reorganization of epidermal and dermal components in healing of primary intention more effectively than the d-α-tocopherol and co-administrated groups. Conclusion: It is concluded that among different vitamin E isoforms the d-δ-TRF appears to be a more effective nutritional antioxidant on skin wound healing in both healthy and diabetics.

  9. Hibiscus syriacus Extract from an Established Cell Culture Stimulates Skin Wound Healing

    OpenAIRE

    di Martino, O.; Tito, A.; De Lucia, A.; Cimmino, A.; Cicotti, F.; Apone, F.; Colucci, G.; Calabrò, V.

    2017-01-01

    Higher plants are the source of a wide array of bioactive compounds that support skin integrity and health. Hibiscus syriacus, family Malvaceae, is a plant of Chinese origin known for its antipyretic, anthelmintic, and antifungal properties. The aim of this study was to assess the healing and hydration properties of H. syriacus ethanolic extract (HSEE). We established a cell culture from Hibiscus syriacus leaves and obtained an ethanol soluble extract from cultured cells. The properties of th...

  10. DNA damage and repair in human skin in situ

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs.

  11. DNA damage and repair in human skin in situ

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs

  12. Manejo quirúrgico urgente de heridas faciales por mordedura humana Urgent surgical management of facial human bite wounds

    Directory of Open Access Journals (Sweden)

    A. Fernández García

    2011-09-01

    Full Text Available Las heridas por mordedura pueden generar algunas dificultades quirúrgicas en su manejo inicial debido a su especial predisposición a las complicaciones sépticas y la importante destrucción tisular frecuentemente asociada. Sin embargo, es importante su reparación inmediata, especialmente en el caso de amputaciones y colgajos por avulsión. Las mordeduras humanas se hallan envueltas además en consideraciones psicológicas que incrementan la dificultad del tratamiento debido a las espectativas estéticas de los pacientes que las sufren. Este trabajo analiza 7 casos de mordedura facial humana desde los puntos de vista epidemiológico y clínico. Presentamos y discutimos el uso de los tejidos amputados como fuente de injertos de piel, injertos condrales y el papel de los colgajos locales en dos tiempos en la cirugía de urgencia de estas lesiones.Bite wounds can create several surgical difficulties in their initial management due to the special facility for infectious complications and the frequent association with extensive tissue damage. However, the immediate repair its desirable, mainly in amputations and flap avulsions. The human bite wounds are also involved by psychological considerations that increase the difficulty of the treatment due to patient´s aesthetic expectations. This article analyzes 7 cases of facial human bites under the epidemiological and clinical points of view. The use of the amputated tissues to obtain skin grafts, condral grafts, and the role of local two stage flaps in the emergency surgery of these wounds are exposed and discussed.

  13. Gross and histologic evaluation of effects of photobiomodulation, silver sulfadiazine, and a topical antimicrobial product on experimentally induced full-thickness skin wounds in green iguanas (Iguana iguana).

    Science.gov (United States)

    Cusack, Lara M; Mayer, Joerg; Cutler, Daniel C; Rissi, Daniel R; Divers, Stephen J

    2018-04-01

    OBJECTIVE To assess effects of photobiomodulation, silver sulfadiazine, and a topical antimicrobial product for the treatment of experimentally induced full-thickness skin wounds in green iguanas (Iguana iguana). ANIMALS 16 healthy subadult green iguanas. PROCEDURES Iguanas were anesthetized, and three 5-mm cutaneous biopsy specimens were obtained from each iguana (day 0). Iguanas were randomly assigned to 2 treatment groups, each of which had a control treatment. Wounds in the topical treatment group received silver sulfadiazine, a topical antimicrobial product, or no treatment. Wounds in the laser treatment group received treatment with a class 4 laser at 5 or 10 J/cm 2 or no treatment. Wound measurements were obtained daily for 14 days. Iguanas were euthanized, and treatment sites were evaluated microscopically to detect ulceration, bacterial contamination, reepithelialization, necrosis, inflammation, fibrosis, and collagen maturity. RESULTS On day 14, wounds treated with a laser at 10 J/cm 2 were significantly smaller than those treated with silver sulfadiazine, but there were no other significant differences among treatments. Histologically, there were no significant differences in ulceration, bacterial infection, reepithelialization, necrosis, inflammation, fibrosis, and collagen maturity among treatments. CONCLUSIONS AND CLINICAL RELEVANCE Photobiomodulation at 10 J/cm 2 appeared to be a safe treatment that was tolerated well by green iguanas, but it did not result in substantial improvement in histologic evidence of wound healing, compared with results for other treatments or no treatment.

  14. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    Science.gov (United States)

    Oesch, F; Fabian, E; Guth, K; Landsiedel, R

    2014-12-01

    The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the "Overview and Conclusions" section in the end of this review.

  15. Thermal Response of In Vivo Human Skin to Fractional Radiofrequency Microneedle Device

    Directory of Open Access Journals (Sweden)

    Woraphong Manuskiatti

    2016-01-01

    Full Text Available Background. Fractional radiofrequency microneedle system (FRMS is a novel fractional skin resurfacing system. Data on thermal response to this fractional resurfacing technique is limited. Objectives. To investigate histologic response of in vivo human skin to varying energy settings and pulse stacking of a FRMS in dark-skinned subjects. Methods. Two female volunteers who were scheduled for abdominoplasty received treatment with a FRMS with varying energy settings at 6 time periods including 3 months, 1 month, 1 week, 3 days, 1 day, and the time immediately before abdominoplasty. Biopsy specimens were analyzed using hematoxylin and eosin (H&E, Verhoeff-Van Gieson (VVG, colloidal iron, and Fontana-Masson stain. Immunohistochemical study was performed by using Heat Shock Protein 70 (HSP70 antibody and collagen III monoclonal antibody. Results. The average depth of radiofrequency thermal zone (RFTZ ranged from 100 to 300 μm, correlating with energy levels. Columns of cell necrosis and collagen denaturation followed by inflammatory response were initially demonstrated, with subsequent increasing of mucin at 1 and 3 months after treatment. Immunohistochemical study showed positive stain with HSP70. Conclusion. A single treatment with a FRMS using appropriate energy setting induces neocollagenesis. This wound healing response may serve as a mean to improve the appearance of photodamaged skin and atrophic scars.

  16. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    International Nuclear Information System (INIS)

    Hufbauer, M.; Lazic, D.; Akguel, B.; Brandsma, J.L.; Pfister, H.; Weissenborn, S.J.

    2010-01-01

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  17. Development of human skin equivalents mimicking skin aging : contrast between papillary and reticular fibroblasts as a lead

    NARCIS (Netherlands)

    Janson, D.

    2017-01-01

    This thesis describes the development of human skin equivalents that show characteristics of skin aging. The type of skin equivalent used was a fibroblast derived matrix equivalent, in which the dermal compartment is generated by fibroblasts and thus is fully of human origin. Two strategies are

  18. How to reduce hospital-acquired pressure ulcers on a neuroscience unit with a skin and wound assessment team.

    Science.gov (United States)

    McGuinness, Janice; Persaud-Roberts, Sherry; Marra, Susan; Ramos, Jeannine; Toscano, Diane; Policastro, Linda; Epstein, Nancy E

    2012-01-01

    In 2008, the incidence of hospital acquired pressure ulcers (HAPUs) continued to increase on a neuroscience unit that included both neurosurgical and neurological patients in a 14-bed intensive care unit, and in a 18-bed floor unit. To reduce HAPUs, several changes were instituted in 2008; (1) turning patients every 1-2 h/repositioning, (2) specialty beds, and (3) a "skin and wound assessment team (SWAT)" that included one (or two) "expert" nurses/nursing assistants who made rounds on all the patients in the unit at least once a week. They would examine patients from "head to toe", document/measure all pressure ulcers, and educate primary nurses/nurse assistants on the plan/products needed for the patients wound care based on their assessments. In 2010, further measures included: (1) adding eight Stryker beds, (2) adding pressure relieving heel protector boots, and (3) requiring that all new hospital orientees work one shift (7.5 h) shadowing the SWAT team. The SWAT team initially decreased HAPUs by 48% in 2009; this reduction was further increased in 2010 (57%), and 2011 (61%). Additionally, in 2010, the SWAT team was required to educate nurses in all other units. By 2011, all nurses had to complete the hospital acquired pressure ulcer prevention tutorial. Since instituting a specialized SWAT team for our neuroscience unit, the incidence of HAPUs (cost estimated for grade IV, US $129,248) was decreased by 48% in 2009, by 57% in 2010, and by 61% in 2011. The SWAT program is now hospital-wide.

  19. In-vitro percutaneous absorption of losartan potassium in human skin and prediction of human skin permeability

    Directory of Open Access Journals (Sweden)

    Petkar K.C.

    2007-05-01

    Full Text Available This study describes the feasibility of transdermal controlled administration of Losartan potassium (LP across human cadaver skin. Study also defines the influence of capsaicin, sex and site of application on permeation characteristics and determined an appropriate animal model for human skin permeability. The permeation of LP of various formulations was studied using Keshary-Chein diffusion cell. Optimized controlled formulation (without capsaicin released 42.17% (±1.85 of LP in 12 hr whereas treatment formulation (with capsaicin 0.028 % w/v released 48.94% (±1.71 of LP with significant difference on null hypothesis. Influence of sex showed statistically significant difference for permeation of LP through male and female rats, as well as male and female mice across both the abdominal and dorsal sides of the skin (p<0.05. Similarly statistically significant differences were noted for permeation of LP across male and female mice abdomen-dorsal, but not for male rat abdomen-dorsal and female rat abdomen-dorsal. Furthermore, in-vitro permeation of LP across human skin was compared with the permeation across rat and mice skins. Male rat and male mice dorsal skin was found to have closer permeability characteristics to human than other skin membranes, but the Factor of Difference values were < 3 for all membranes which were used suggesting the membranes are good models for human skin permeability. In conclusion simple transdermal adhesive patches formulations incorporating high molecular weight of LP can deliver a dose in-vivo and proposed model skin membranes can be utilized for future pharmacokineic and toxicokinetic studies as well as metabolism studies of LP

  20. Skin graft influence in human tissue radiated in nude mice regeneration

    International Nuclear Information System (INIS)

    Miranda, Jurandir Tomaz de

    2016-01-01

    Over the last few years it has increased the interest in the human skin grafts radio sterilized for application mainly in extensive and deep burns. Because these grafts quickly grip and present antigenic lower potential, compared with other treatments used. The purpose of this study was to evaluate the histoarchitecture of human skin grafts irradiated with doses 25 kGy, 50 kGy and non-irradiated during the repair tissue process in nude mice submitted by skin grafting in the dorsal region. Three groups of animals received irradiated human skin grafts (25 kGy and 50 kGy) and non-irradiated and were euthanized on the 3 rd , 7 th and 21 th day after the surgery. Indeed, routine histologic procedures, tissue samples were stained with hematoxylin and eosin (HE) for quantification of keratinocytes, fibroblasts, immune cells and blood vessels and immunofluorescence (IF) was performed to determine the expression human collagen type I and collagen type I and III mouse. Therefore, quantification of both the cells and the collagen types was performed by image analysis using Image-Pro Plus 6.0 software. Histologic results demonstrated at a dose of 25 kGy that human skin irradiation when grafted influences the increase in the number of cells in wound site over time and it provides better dispersion of these cells. In addition, on the 21 st day, three groups of animals with human skin graft were embedded part of the graft in the healing process. On the other hand, the group not irradiated showed greater incorporation of the graft (43 %), but less production of collagen type III mouse (22 %). Since the groups irradiated skin graft showed lower graft incorporation (6 and 15%), but with greater production of collagen type III mice (35 % and 28 % to 25 kGy and 50 kGy, respectively). In conclusion, this study presented that the group irradiated to 25 kGy and it has a higher cell proliferation and vessel formation, and better remodeling of the healing area. (author)

  1. Human Amniotic Membrane Dressing: an Excellent Method for Outpatient Management of Burn Wounds

    Directory of Open Access Journals (Sweden)

    Ali Akbar Mohammadi

    2009-03-01

    Full Text Available Background: Burns are among the most common traumas indeveloping countries, which consume large amounts of medicalresources. It is important to find an appropriate materialfor dressing of burn wounds that improves healing and is readilyavailable, easily applicable, and economical.Methods: In a single-blind randomized controlled clinicaltrial from March to October 2006, 211 patients with less than20% burn were enrolled into two groups. The first group contained104 patients with average burn of 11.90± 3.80% of totalbody surface area (TBSA for whom amnion dressing wasused. The second group composed of 107 patients with averageburn of 12.30± 4.14% of TBSA treated with routine silversulfadiazine dressing.Results: Amniotic membrane usage was accompanied by accelerationin wound healing, less need for skin graft, and lesspain. The mean healing time in superficial parts of burnwounds in the amnion group was significantly shorter than thecontrol group (9.50±2.13 v 14.30±2.60 days; P value < 0.01.The extent of the wound with granulation tissue which neededskin graft was less in the amnion group (2.10 ± 2.21% v 4.20±1.44%; P value < 0.01.Conclusion: Widespread use of amniotic membrane dressingis recommended for limited burn wound management.

  2. Mechanical response of human female breast skin under uniaxial stretching.

    Science.gov (United States)

    Kumaraswamy, N; Khatam, Hamed; Reece, Gregory P; Fingeret, Michelle C; Markey, Mia K; Ravi-Chandar, Krishnaswamy

    2017-10-01

    Skin is a complex material covering the entire surface of the human body. Studying the mechanical properties of skin to calibrate a constitutive model is of great importance to many applications such as plastic or cosmetic surgery and treatment of skin-based diseases like decubitus ulcers. The main objective of the present study was to identify and calibrate an appropriate material constitutive model for skin and establish certain universal properties that are independent of patient-specific variability. We performed uniaxial tests performed on breast skin specimens freshly harvested during mastectomy. Two different constitutive models - one phenomenological and another microstructurally inspired - were used to interpret the mechanical responses observed in the experiments. Remarkably, we found that the model parameters that characterize dependence on previous maximum stretch (or preconditioning) exhibited specimen-independent universal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Human Skin 3D Bioprinting Using Scaffold-Free Approach.

    Science.gov (United States)

    Pourchet, Léa J; Thepot, Amélie; Albouy, Marion; Courtial, Edwin J; Boher, Aurélie; Blum, Loïc J; Marquette, Christophe A

    2017-02-01

    Organ in vitro synthesis is one of the last bottlenecks between tissue engineering and transplantation of synthetic organs. Bioprinting has proven its capacity to produce 3D objects composed of living cells but highly organized tissues such as full thickness skin (dermis + epidermis) are rarely attained. The focus of the present study is to demonstrate the capability of a newly developed ink formulation and the use of an open source printer, for the production of a really complete skin model. Proofs are given through immunostaining and electronic microscopy that the bioprinted skin presents all characteristics of human skin, both at the molecular and macromolecular level. Finally, the printability of large skin objects is demonstrated with the printing of an adult-size ear. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A methodology for extracting the electrical properties of human skin

    International Nuclear Information System (INIS)

    Birgersson, Ulrik; Nicander, Ingrid; Ollmar, Stig; Birgersson, Erik

    2013-01-01

    A methodology to determine dielectrical properties of human skin is presented and analyzed. In short, it is based on a mathematical model that considers the local transport of charge in the various layers of the skin, which is coupled with impedance measurements of both stripped and intact skin, an automated code generator, and an optimization algorithm. New resistivity and permittivity values for the stratum corneum soaked with physiological saline solution for 1 min and the viable skin beneath are obtained and expressed as easily accessible functions. The methodology can be extended to account for different electrode designs as well as more physical phenomena that are relevant to electrical impedance measurements of skin and their interpretation. (paper)

  5. Measurement of interstitial cetirizine concentrations in human skin

    DEFF Research Database (Denmark)

    Petersen, Lars Jelstrup; Church, M K; Rihoux, J P

    1999-01-01

    BACKGROUND: The purpose of the present study was to measure the concentrations of cetirizine in the extracellular water compartment in intact human skin and assess simultaneously inhibition of histamine-induced wheal and flare reactions. METHODS: Skin cetirizine levels were collected...... by the microdialysis technique and analyzed by high-pressure liquid chromatography with mass spectrometry detection. Skin levels in 20 subjects were compared to plasma levels for 4 h after a single oral dose of 10 or 20 mg of cetirizine. Skin prick tests were performed with histamine 100 mg/ml. RESULTS: Plasma...... cetirizine levels increased within 30 min to reach peak values of 315+/-10 and 786+/-45 ng/ml 90-120 min after administration of 10 and 20 mg of cetirizine. This was followed by a slow decline. In the skin, dialysate cetirizine levels (non-protein-bound fraction only) peaked at 1.6+/-0.1 and 2.4+/-0.3 ng...

  6. Wound healing morbidity in STS patients treated with preoperative radiotherapy in relation to in vitro skin fibroblast radiosensitivity, proliferative capacity and TGF-β activity

    International Nuclear Information System (INIS)

    Akudugu, John M.; Bell, Robert S.; Catton, Charles; Davis, Aileen M.; Griffin, Anthony M.; O'Sullivan, Brian; Waldron, John N.; Ferguson, Peter C.; Wunder, Jay S.; Hill, Richard P.

    2006-01-01

    Background and purpose: In a recent study, we demonstrated that the ability of dermal fibroblasts, obtained from soft tissue sarcoma (STS) patients, to undergo initial division in vitro following radiation exposure correlated with the development of wound healing morbidity in the patients following their treatment with preoperative radiotherapy. Transforming growth factor beta (TGF-β) is thought to play an important role in fibroblast proliferation and radiosensitivity both of which may impact on wound healing. Thus, in this study we examined the interrelationship between TGF-β activity, radiosensitivity and proliferation of cultured fibroblasts and the wound healing response of STS patients after preoperative radiotherapy to provide a validation cohort for our previous study and to investigate mechanisms. Patients and methods: Skin fibroblasts were established from skin biopsies of 46 STS patients. The treatment group consisted of 28 patients who received preoperative radiotherapy. Eighteen patients constituted a control group who were either irradiated postoperatively or did not receive radiation treatment. Fibroblast cultures were subjected to the colony forming and cytokinesis-blocked binucleation assays (low dose rate: ∼0.02 Gy/min) and TGF-β assays (high dose-rate: ∼1.06 Gy/min) following γ-irradiation. Fibroblast radiosensitivity and initial proliferative ability were represented by the surviving fraction at 2.4 Gy (SF 2.4 ) and binucleation index (BNI), respectively. Active and total TGF-β levels in fibroblast cultures were determined using a biological assay. Wound healing complication (WHC), defined as the requirement for further surgery or prolonged deep wound packing, was the clinical endpoint examined. Results: Of the 28 patients treated with preoperative radiotherapy, 8 (29%) had wound healing difficulties. Fibroblasts from patients who developed WHC showed a trend to retain a significantly higher initial proliferative ability after

  7. Multivariate Models for Prediction of Human Skin Sensitization Hazard

    Science.gov (United States)

    Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M.; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole

    2016-01-01

    One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays—the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT), and KeratinoSens™ assay—six physicochemical properties, and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression (LR) and support vector machine (SVM), to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three LR and three SVM) with the highest accuracy (92%) used: (1) DPRA, h-CLAT, and read-across; (2) DPRA, h-CLAT, read-across, and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens, and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy = 88%), any of the alternative methods alone (accuracy = 63–79%), or test batteries combining data from the individual methods (accuracy = 75%). These results suggest that computational methods are promising tools to effectively identify potential human skin sensitizers without animal testing. PMID:27480324

  8. In vitro activation of the neuro-transduction mechanism in sensitive organotypic human skin model.

    Science.gov (United States)

    Martorina, Francesca; Casale, Costantino; Urciuolo, Francesco; Netti, Paolo A; Imparato, Giorgia

    2017-01-01

    Recent advances in tissue engineering have encouraged researchers to endeavor the production of fully functional three-dimensional (3D) thick human tissues in vitro. Here, we report the fabrication of a fully innervated human skin tissue in vitro that recapitulates and replicates skin sensory function. Previous attempts to innervate in vitro 3D skin models did not demonstrate an effective functionality of the nerve network. In our approach, we initially engineer functional human skin tissue based on fibroblast-generated dermis and differentiated epidermis; then, we promote rat dorsal root ganglion (DRG) neurons axon ingrowth in the de-novo developed tissue. Neurofilaments network infiltrates the entire native dermis extracellular matrix (ECM), as demonstrated by immunofluorescence and second harmonic generation (SHG) imaging. To prove sensing functionality of the tissue, we use topical applications of capsaicin, an agonist of transient receptor protein-vanilloid 1 (TRPV1) channel, and quantify calcium currents resulting from variations of Ca ++ concentration in DRG neurons innervating our model. Calcium currents generation demonstrates functional cross-talking between dermis and epidermis compartments. Moreover, through a computational fluid dynamic (CFD) analysis, we set fluid dynamic conditions for a non-planar skin equivalent growth, as proof of potential application in creating skin grafts tailored on-demand for in vivo wound shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization

    OpenAIRE

    Alves, Vinicius M.; Capuzzi, Stephen J.; Muratov, Eugene; Braga, Rodolpho C.; Thornton, Thomas; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2016-01-01

    Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for virtual screening of chemical libraries to identify putative skin sensitizers. The overall concordance between murine LLNA and human skin ...

  10. Large-scale expansion of human skin-derived precursor cells (hSKPs) in stirred suspension bioreactors.

    Science.gov (United States)

    Surrao, Denver C; Boon, Kathryn; Borys, Breanna; Sinha, Sarthak; Kumar, Ranjan; Biernaskie, Jeff; Kallos, Michael S

    2016-12-01

    Human skin-derived precursor cells (hSKPs) are multipotent adult stem cells found in the dermis of human skin. Incorporation of hSKPs into split-thickness skin grafts (STSGs), the current gold standard to treat severe burns or tissue resections, has been proposed as a treatment option to enhance skin wound healing and tissue function. For this approach to be clinically viable substantial quantities of hSKPs are required, which is the rate-limiting step, as only a few thousand hSKPs can be isolated from an autologous skin biopsy without causing donor site morbidity. In order to produce sufficient quantities of clinically viable cells, we have developed a bioprocess capable of expanding hSKPs as aggregates in stirred suspension bioreactors (SSBs). In this study, we found hSKPs from adult donors to expand significantly more (P skin biopsy without causing donor site morbidity. At 60 rpm, aggregates were markedly smaller and did not experience oxygen diffusional limitations, as seen in hSKPs cultured at 40 rpm. While hSKPs also grew at 80 rpm (0.74 Pa) and 100 rpm (1 Pa), they produced smaller aggregates due to high shear stress. The pH of the media in all the SSBs was closer to biological conditions and significantly different (P skin wounds. Biotechnol. Bioeng. 2016;113: 2725-2738. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Regenerative and Antibacterial Properties of Acellular Fish Skin Grafts and Human Amnion/Chorion Membrane: Implications for Tissue Preservation in Combat Casualty Care.

    Science.gov (United States)

    Magnusson, Skuli; Baldursson, Baldur Tumi; Kjartansson, Hilmar; Rolfsson, Ottar; Sigurjonsson, Gudmundur Fertram

    2017-03-01

    Improvised explosive devices and new directed energy weapons are changing warfare injuries from penetrating wounds to large surface area thermal and blast injuries. Acellular fish skin is used for tissue repair and during manufacturing subjected to gentle processing compared to biologic materials derived from mammals. This is due to the absence of viral and prion disease transmission risk, preserving natural structure and composition of the fish skin graft. The aim of this study was to assess properties of acellular fish skin relevant for severe battlefield injuries and to compare those properties with those of dehydrated human amnion/chorion membrane. We evaluated cell ingrowth capabilities of the biological materials with microscopy techniques. Bacterial barrier properties were tested with a 2-chamber model. The microstructure of the acellular fish skin is highly porous, whereas the microstructure of dehydrated human amnion/chorion membrane is mostly nonporous. The fish skin grafts show superior ability to support 3-dimensional ingrowth of cells compared to dehydrated human amnion/chorion membrane (p fish skin is a bacterial barrier for 24 to 48 hours. The unique biomechanical properties of the acellular fish skin graft make it ideal to be used as a conformal cover for severe trauma and burn wounds in the battlefield. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  12. Microneedle Enhanced Delivery of Cosmeceutically Relevant Peptides in Human Skin

    Science.gov (United States)

    Mohammed, Yousuf H.; Yamada, Miko; Lin, Lynlee L.; Grice, Jeffrey E.; Roberts, Michael S.; Raphael, Anthony P.; Benson, Heather A. E.; Prow, Tarl W.

    2014-01-01

    Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length) on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides. PMID:25033398

  13. Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin.

    Directory of Open Access Journals (Sweden)

    Yousuf H Mohammed

    Full Text Available Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides.

  14. Sacha Inchi Oil (Plukenetia volubilis L.), effect on adherence of Staphylococus aureus to human skin explant and keratinocytes in vitro.

    Science.gov (United States)

    Gonzalez-Aspajo, German; Belkhelfa, Haouaria; Haddioui-Hbabi, Laïla; Bourdy, Geneviève; Deharo, Eric

    2015-08-02

    Plukenetia volubilis L. (Euphorbiaceae) is a domesticated vine distributed from the high-altitude Andean rain forest to the lowlands of the Peruvian Amazon. Oil from the cold-pressed seeds, sold under the commercial name of Sacha Inchi Oil (SIO) is actually much in favour because it contains a high percentage of omega 3 and omega 6, and is hence used as a dietary supplement. SIO is also used traditionally for skin care, in order to maintain skin softness, and for the treatment of wounds, insect bites and skin infections, in a tropical context where the skin is frequently damaged. This study was designed in order to verify whether the traditional use of SIO for skin care would have any impact on Staphylococcus aureus growth and skin adherence, as S. aureus is involved in many skin pathologies (impetigo, folliculitis, furuncles and subcutaneous abscesses) being one if the main pathogens that can be found on the skin. Therefore, our objective was to assess SIO bactericidal activity and interference with adherence to human skin explants and the keratinocyte cell line. Cytotoxicity on that cells was also determined. The activity of SIO was compared to coconut oil (CocO), which is widely used for skin care but has different unsaturated fatty acids contents. Laboratory testing with certified oil, determined antibacterial activity against radio labelled S. aureus. Cytotoxic effects were measured with XTT on keratinocyte cells and with neutral red on human skin explants; phenol was used as cytotoxic control. Adherence assays were carried out by mixing H3-labelled S. aureus bacteria with keratinocyte cells and human skin explants, incubated with oils 2h before (to determine the inhibition of adherence, assimilated to a preventive effect) or 2h after the contact of the biological material with S. aureus (to assess the detachment of the bacteria, assimilated to a curative effect). Residual radioactivity measured after washings made it possible to determine the adherence

  15. Myofibroblast Expression in Skin Wounds Is Enhanced by Collagen III Suppression

    Directory of Open Access Journals (Sweden)

    Mohammed M. Al-Qattan

    2015-01-01

    Full Text Available Generally speaking, the excessive expression of myofibroblasts is associated with excessive collagen production. One exception is seen in patients and animal models of Ehlers-Danlos syndrome type IV in which the COL3A1 gene mutation results in reduced collagen III but with concurrent increased myofibroblast expression. This paradox has not been examined with the use of external drugs/modalities to prevent hypertrophic scars. In this paper, we injected the rabbit ear wound model of hypertrophic scarring with two doses of a protein called nAG, which is known to reduce collagen expression and to suppress hypertrophic scarring in that animal model. The higher nAG dose was associated with significantly less collagen III expression and concurrent higher degree of myofibroblast expression. We concluded that collagen III content of the extracellular matrix may have a direct or an indirect effect on myofibroblast differentiation. However, further research is required to investigate the pathogenesis of this paradoxical phenomenon.

  16. Assessment of the relation between prealbumin serum level and healing of skin-grafted burn wounds.

    Science.gov (United States)

    Moghazy, A M; Adly, O A; Abbas, A H; Moati, T A; Ali, O S; Mohamed, B A

    2010-06-01

    Nutritional status is an important factor in graft healing. Prealbumin (transthyretin) is a better nutritional marker than the widely used albumin serum level. Prealbumin serum levels were estimated in an endeavour to correlate them to graft healing and to serve as a predictor of graft healing in burn wounds. Fifty burned patients undergoing graft in the Suez Canal University Hospital Burn Unit were subjected to this cross-sectional study. Prealbumin levels were assessed on preoperative day and on the fourth postoperative day. Graft healing was considered complete when the take was 90% or more of the grafted area. The most significantly correlated factor to graft healing was serum prealbumin. Serum albumin levels were not in significant correlation with graft healing or prealbumin levels. In addition, serum prealbumin levels were significantly higher in the younger age group and significantly lower in patients with chronic diseases. Serum prealbumin level is a sensitive tool in predicting graft take in burned patients when all local conditions are favourable and optimised. Nevertheless, it seems less sensitive in the prediction of graft healing in small raw areas less than 5% of total body surface area (TBSA). (c) 2009 Elsevier Ltd and ISBI. All rights reserved.

  17. Friction of Human Skin against Different Fabrics for Medical Use

    Directory of Open Access Journals (Sweden)

    Luís Vilhena

    2016-03-01

    Full Text Available Knowledge of the tribology of huma