WorldWideScience

Sample records for human skeletal development

  1. Development of severe skeletal defects in induced SHP-2-deficient adult mice: a model of skeletal malformation in humans with SHP-2 mutations

    Directory of Open Access Journals (Sweden)

    Timothy J. Bauler

    2011-03-01

    SHP-2 (encoded by PTPN11 is a ubiquitously expressed protein tyrosine phosphatase required for signal transduction by multiple different cell surface receptors. Humans with germline SHP-2 mutations develop Noonan syndrome or LEOPARD syndrome, which are characterized by cardiovascular, neurological and skeletal abnormalities. To study how SHP-2 regulates tissue homeostasis in normal adults, we used a conditional SHP-2 mouse mutant in which loss of expression of SHP-2 was induced in multiple tissues in response to drug administration. Induced deletion of SHP-2 resulted in impaired hematopoiesis, weight loss and lethality. Most strikingly, induced SHP-2-deficient mice developed severe skeletal abnormalities, including kyphoses and scolioses of the spine. Skeletal malformations were associated with alterations in cartilage and a marked increase in trabecular bone mass. Osteoclasts were essentially absent from the bones of SHP-2-deficient mice, thus accounting for the osteopetrotic phenotype. Studies in vitro revealed that osteoclastogenesis that was stimulated by macrophage colony-stimulating factor (M-CSF and receptor activator of nuclear factor kappa B ligand (RANKL was defective in SHP-2-deficient mice. At least in part, this was explained by a requirement for SHP-2 in M-CSF-induced activation of the pro-survival protein kinase AKT in hematopoietic precursor cells. These findings illustrate an essential role for SHP-2 in skeletal growth and remodeling in adults, and reveal some of the cellular and molecular mechanisms involved. The model is predicted to be of further use in understanding how SHP-2 regulates skeletal morphogenesis, which could lead to the development of novel therapies for the treatment of skeletal malformations in human patients with SHP-2 mutations.

  2. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System.

    Science.gov (United States)

    Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James

    2014-01-01

    In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.

  3. Satellite cells in human skeletal muscle plasticity

    Directory of Open Access Journals (Sweden)

    Tim eSnijders

    2015-10-01

    Full Text Available Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodelling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodelling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodelling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  4. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  5. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    , but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...... after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle...... amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...

  6. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... was unaltered. During saline infusion the adipose tissue release averaged 0.8 ± 0.3 ng min(-1) 100g tissue(-1) whereas skeletal muscle release was 0.5 ± 0.1 ng min(-1) 100g tissue(-1). In young healthy humans, skeletal muscle contribution to whole body leptin production could be substantial given the greater...

  7. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Petersson, Stine J; Sellathurai, Jeeva

    2009-01-01

    indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis...

  8. Role of skeletal muscle in lung development.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Gugic, Dijana; Saraga-Babic, Mirna; Kablar, Boris

    2012-07-01

    Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.

  9. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system.

    Science.gov (United States)

    Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman H; Hickman, James J

    2011-12-01

    Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Human skeletal muscle drug transporters determine local exposure and toxicity of statins.

    Science.gov (United States)

    Knauer, Michael J; Urquhart, Bradley L; Meyer zu Schwabedissen, Henriette E; Schwarz, Ute I; Lemke, Christopher J; Leake, Brenda F; Kim, Richard B; Tirona, Rommel G

    2010-02-05

    The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membrane drug transporters and metabolic enzymes are known to influence statin plasma pharmacokinetics and risk for myopathy. Interestingly, little is known regarding the molecular determinants of statin distribution into skeletal muscle and its relevance to toxicity. We sought to identify statin transporters in human skeletal muscle and determine their impact on statin toxicity in vitro. We demonstrate that the uptake transporter OATP2B1 (human organic anion transporting polypeptide 2B1) and the efflux transporters, multidrug resistance-associated protein (MRP)1, MRP4, and MRP5 are expressed on the sarcolemmal membrane of human skeletal muscle fibers and that atorvastatin and rosuvastatin are substrates of these transporters when assessed using a heterologous expression system. In an in vitro model of differentiated, primary human skeletal muscle myoblast cells, we demonstrate basal membrane expression and drug efflux activity of MRP1, which contributes to reducing intracellular statin accumulation. Furthermore, we show that expression of human OATP2B1 in human skeletal muscle myoblast cells by adenoviral vectors increases intracellular accumulation and toxicity of statins and such effects were abrogated when cells overexpressed MRP1. These results identify key membrane transporters as modulators of skeletal muscle statin exposure and toxicity.

  11. Using Human Induced Pluripotent Stem Cells to Model Skeletal Diseases.

    Science.gov (United States)

    Barruet, Emilie; Hsiao, Edward C

    2016-01-01

    Musculoskeletal disorders affecting the bones and joints are major health problems among children and adults. Major challenges such as the genetic origins or poor diagnostics of severe skeletal disease hinder our understanding of human skeletal diseases. The recent advent of human induced pluripotent stem cells (human iPS cells) provides an unparalleled opportunity to create human-specific models of human skeletal diseases. iPS cells have the ability to self-renew, allowing us to obtain large amounts of starting material, and have the potential to differentiate into any cell types in the body. In addition, they can carry one or more mutations responsible for the disease of interest or be genetically corrected to create isogenic controls. Our work has focused on modeling rare musculoskeletal disorders including fibrodysplasia ossificans progressive (FOP), a congenital disease of increased heterotopic ossification. In this review, we will discuss our experiences and protocols differentiating human iPS cells toward the osteogenic lineage and their application to model skeletal diseases. A number of critical challenges and exciting new approaches are also discussed, which will allow the skeletal biology field to harness the potential of human iPS cells as a critical model system for understanding diseases of abnormal skeletal formation and bone regeneration.

  12. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sara Martina Maffioletti

    2018-04-01

    Full Text Available Summary: Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. : Maffioletti et al. generate human 3D artificial skeletal muscles from healthy donors and patient-specific pluripotent stem cells. These human artificial muscles accurately model severe genetic muscle diseases. They can be engineered to include other cell types present in skeletal muscle, such as vascular cells and motor neurons. Keywords: skeletal muscle, pluripotent stem cells, iPS cells, myogenic differentiation, tissue engineering, disease modeling, muscular dystrophy, organoids

  13. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells...... hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation...

  14. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. I. An immunohistochemical analysis of creatine kinase isoenzyme expression patterns

    NARCIS (Netherlands)

    Wessels, A.; Vermeulen, J. L.; Virágh, S.; Kálmán, F.; Morris, G. E.; Man, N. T.; Lamers, W. H.; Moorman, A. F.

    1990-01-01

    Using monoclonal antibodies against the M and B subunit isoforms of creatine kinase (CK) we have investigated their distribution in developing human skeletal and cardiac muscle immunohistochemically. It is demonstrated that in skeletal muscle, a switch from CK-B to CK-M takes place around the week 8

  15. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...

  16. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering.

    Science.gov (United States)

    Maffioletti, Sara Martina; Sarcar, Shilpita; Henderson, Alexander B H; Mannhardt, Ingra; Pinton, Luca; Moyle, Louise Anne; Steele-Stallard, Heather; Cappellari, Ornella; Wells, Kim E; Ferrari, Giulia; Mitchell, Jamie S; Tyzack, Giulia E; Kotiadis, Vassilios N; Khedr, Moustafa; Ragazzi, Martina; Wang, Weixin; Duchen, Michael R; Patani, Rickie; Zammit, Peter S; Wells, Dominic J; Eschenhagen, Thomas; Tedesco, Francesco Saverio

    2018-04-17

    Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Expression of Gla proteins during fish skeletal development

    OpenAIRE

    Gavaia, Paulo J.

    2006-01-01

    Senegal sole skeletal development; Skeletal malformations; Skeletal malformation in mediterranean species; Senegal sole skeletal deformities; Zebra fish as model system: skeletal development; Identification of bone cells / skeletal development; Spatial - temporal pattern of bgp expression; Single cell resolution: localization of bgp mRNA; Single cell resolution: Immunolocalization of Bgp; Single cell resolution: localization of mgp mRNA; Single cell resolution: Immunolocalization of Mgp; An i...

  18. A Mechanical Musculo-Skeletal System for a Human-Shaped Robot Arm

    Directory of Open Access Journals (Sweden)

    Koichi Koganezawa

    2014-06-01

    Full Text Available This paper presents a mechanical system with a similar configuration to a human musculo-skeletal system for use in anthropomorphic robots or as artificial limbs for disabled persons. First, a mechanical module called ANLES (Actuator with Non-Linear Elasticity System is introduced. There are two types of ANLES: the linear-type ANLES and rotary-type ANLES. They can be used as a voluntary muscle in a wide-range of musculo-skeletal structures in which at least double actuators work in an antagonistic setup via some elastic elements. Next, an application of the two types of ANLES to a two-degree-of-freedom (DOF manipulator that has a similar configuration to the human elbow joint is shown. The experimental results of the joint stiffness and joint angle control elucidate that the developed mechanism effectively regulates joint stiffness in the same way as a musculo-skeletal system.

  19. Erythropoietin receptor in human skeletal muscle and the effects of acute and long-term injections with recombinant human erythropoietin on the skeletal muscle

    DEFF Research Database (Denmark)

    Lundby, Carsten; Hellsten, Ylva; Jensen, Mie B. F.

    2008-01-01

    The presence and potential physiological role of the erythropoietin receptor (Epo-R) were examined in human skeletal muscle. In this study we demonstrate that Epo-R is present in the endothelium, smooth muscle cells, and in fractions of the sarcolemma of skeletal muscle fibers. To study...... the potential effects of Epo in human skeletal muscle, two separate studies were conducted: one to study the acute effects of a single Epo injection on skeletal muscle gene expression and plasma hormones and another to study the effects of long-term (14 wk) Epo treatment on skeletal muscle structure. Subjects...... was studied in subjects (n = 8) who received long-term Epo administration, and muscle biopsies were obtained before and after. Epo treatment did not alter mean fiber area (0.84 +/- 0.2 vs. 0.72 +/- 0.3 mm(2)), capillaries per fiber (4.3 +/- 0.5 vs. 4.4 +/- 1.3), or number of proliferating endothelial cells...

  20. A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro.

    Science.gov (United States)

    Smith, A S T; Long, C J; Pirozzi, K; Najjar, S; McAleer, C; Vandenburgh, H H; Hickman, J J

    2014-09-20

    This report details the development of a non-invasive in vitro assay system for investigating the functional maturation and performance of human skeletal myotubes. Data is presented demonstrating the survival and differentiation of human myotubes on microscale silicon cantilevers in a defined, serum-free system. These cultures can be stimulated electrically and the resulting contraction quantified using modified atomic force microscopy technology. This system provides a higher degree of sensitivity for investigating contractile waveforms than video-based analysis, and represents the first system capable of measuring the contractile activity of individual human muscle myotubes in a reliable, high-throughput and non-invasive manner. The development of such a technique is critical for the advancement of body-on-a-chip platforms toward application in pre-clinical drug development screens. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    Science.gov (United States)

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.

    Science.gov (United States)

    van Moorsel, Dirk; Hansen, Jan; Havekes, Bas; Scheer, Frank A J L; Jörgensen, Johanna A; Hoeks, Joris; Schrauwen-Hinderling, Vera B; Duez, Helene; Lefebvre, Philippe; Schaper, Nicolaas C; Hesselink, Matthijs K C; Staels, Bart; Schrauwen, Patrick

    2016-08-01

    A disturbed day-night rhythm is associated with metabolic perturbations that can lead to obesity and type 2 diabetes mellitus (T2DM). In skeletal muscle, a reduced oxidative capacity is also associated with the development of T2DM. However, whether oxidative capacity in skeletal muscle displays a day-night rhythm in humans has so far not been investigated. Lean, healthy subjects were enrolled in a standardized living protocol with regular meals, physical activity and sleep to reflect our everyday lifestyle. Mitochondrial oxidative capacity was examined in skeletal muscle biopsies taken at five time points within a 24-hour period. Core-body temperature was lower during the early night, confirming a normal day-night rhythm. Skeletal muscle oxidative capacity demonstrated a robust day-night rhythm, with a significant time effect in ADP-stimulated respiration (state 3 MO, state 3 MOG and state 3 MOGS, p < 0.05). Respiration was lowest at 1 PM and highest at 11 PM (state 3 MOGS: 80.6 ± 4.0 vs. 95.8 ± 4.7 pmol/mg/s). Interestingly, the fluctuation in mitochondrial function was also observed in whole-body energy expenditure, with peak energy expenditure at 11 PM and lowest energy expenditure at 4 AM (p < 0.001). In addition, we demonstrate rhythmicity in mRNA expression of molecular clock genes in human skeletal muscle. Our results suggest that the biological clock drives robust rhythms in human skeletal muscle oxidative metabolism. It is tempting to speculate that disruption of these rhythms contribute to the deterioration of metabolic health associated with circadian misalignment.

  3. Calprotectin is released from human skeletal muscle tissue during exercise

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Andersen, Kasper; Fischer, Christian

    2008-01-01

    Skeletal muscle has been identified as a secretory organ. We hypothesized that IL-6, a cytokine secreted from skeletal muscle during exercise, could induce production of other secreted factors in skeletal muscle. IL-6 was infused for 3 h into healthy young males (n = 7) and muscle biopsies obtained...... in skeletal muscle following IL-6 infusion compared to controls. Furthermore, S100A8 and S100A9 mRNA levels were up-regulated 5-fold in human skeletal muscle following cycle ergometer exercise for 3 h at approximately 60% of in young healthy males (n = 8). S100A8 and S100A9 form calprotectin, which is known...... as an acute phase reactant. Plasma calprotectin increased 5-fold following acute cycle ergometer exercise in humans, but not following IL-6 infusion. To identify the source of calprotectin, healthy males (n = 7) performed two-legged dynamic knee extensor exercise for 3 h with a work load of approximately 50...

  4. Decomposing phenotype descriptions for the human skeletal phenome.

    Science.gov (United States)

    Groza, Tudor; Hunter, Jane; Zankl, Andreas

    2013-01-01

    Over the course of the last few years there has been a significant amount of research performed on ontology-based formalization of phenotype descriptions. The intrinsic value and knowledge captured within such descriptions can only be expressed by taking advantage of their inner structure that implicitly combines qualities and anatomical entities. We present a meta-model (the Phenotype Fragment Ontology) and a processing pipeline that enable together the automatic decomposition and conceptualization of phenotype descriptions for the human skeletal phenome. We use this approach to showcase the usefulness of the generic concept of phenotype decomposition by performing an experimental study on all skeletal phenotype concepts defined in the Human Phenotype Ontology.

  5. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Andrea Porzionato

    2015-07-01

    Full Text Available Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.

  6. Human age estimation combining third molar and skeletal development.

    Science.gov (United States)

    Thevissen, P W; Kaur, J; Willems, G

    2012-03-01

    The wide prediction intervals obtained with age estimation methods based on third molar development could be reduced by combining these dental observations with age-related skeletal information. Therefore, on cephalometric radiographs, the most accurate age-estimating skeletal variable and related registration method were searched and added to a regression model, with age as response and third molar stages as explanatory variable. In a pilot set up on a dataset of 496 (283 M; 213 F) cephalometric radiographs, the techniques of Baccetti et al. (2005) (BA), Seedat et al. (2005) (SE), Caldas et al. (2007) and Rai et al. (2008) (RA) were verified. In the main study, data from 460 (208 F, 224 M) individuals in an age range between 3 and 26 years, for which at the same day an orthopantogram and a cephalogram were taken, were collected. On the orthopantomograms, the left third molar development was registered using the scoring system described by Gleiser and Hunt (1955) and modified by Köhler (1994) (GH). On the cephalograms, cervical vertebrae development was registered according to the BA and SE techniques. A regression model, with age as response and the GH scores as explanatory variable, was fitted to the data. Next, information of BA, SE and BA + SE was, respectively, added to this model. From all obtained models, the determination coefficients and the root mean squared errors were calculated. Inclusion of information from cephalograms based on the BA, as well as the SE, technique improved the amount of explained variance in age acquired from panoramic radiographs using the GH technique with 48%. Inclusion of cephalometric BA + SE information marginally improved the previous result (+1%). The RMSE decreased with 1.93, 1.85 and 2.03 years by adding, respectively, BA, SE and BA + SE information to the GH model. The SE technique allows clinically the fastest and easiest registration of the degree of development of the cervical vertebrae. Therefore, the choice of

  7. Human skeletal muscle perilipin 2 and 3 expression varies with insulin sensitivity

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Prats Gavalda, Clara; Ploug, Thorkil

    2013-01-01

    Background: Impaired insulin sensitivity may partly arise from a dysregulated lipid metabolism in human skeletal muscle. This study investigates the expression levels of perilipin 2, 3, and 5, and four key lipases in human skeletal muscle from the subjects that exhibit a range from normal to very...

  8. The Human Skeletal Muscle Proteome Project

    DEFF Research Database (Denmark)

    Gonzalez-Freire, Marta; Semba, Richard D.; Ubaida-Mohien, Ceereena

    2017-01-01

    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a ri...

  9. Neuromuscular junction formation between human stem-cell-derived motoneurons and rat skeletal muscle in a defined system.

    Science.gov (United States)

    Guo, Xiufang; Das, Mainak; Rumsey, John; Gonzalez, Mercedes; Stancescu, Maria; Hickman, James

    2010-12-01

    To date, the coculture of motoneurons (MNs) and skeletal muscle in a defined in vitro system has only been described in one study and that was between rat MNs and rat skeletal muscle. No in vitro studies have demonstrated human MN to rat muscle synapse formation, although numerous studies have attempted to implant human stem cells into rat models to determine if they could be of therapeutic use in disease or spinal injury models, although with little evidence of neuromuscular junction (NMJ) formation. In this report, MNs differentiated from human spinal cord stem cells, together with rat skeletal myotubes, were used to build a coculture system to demonstrate that NMJ formation between human MNs and rat skeletal muscles is possible. The culture was characterized by morphology, immunocytochemistry, and electrophysiology, while NMJ formation was demonstrated by immunocytochemistry and videography. This defined system provides a highly controlled reproducible model for studying the formation, regulation, maintenance, and repair of NMJs. The in vitro coculture system developed here will be an important model system to study NMJ development, the physiological and functional mechanism of synaptic transmission, and NMJ- or synapse-related disorders such as amyotrophic lateral sclerosis, as well as for drug screening and therapy design.

  10. Development of an in vitro potency assay for human skeletal muscle derived cells.

    Science.gov (United States)

    Thurner, Marco; Asim, Faheem; Garczarczyk-Asim, Dorota; Janke, Katrin; Deutsch, Martin; Margreiter, Eva; Troppmair, Jakob; Marksteiner, Rainer

    2018-01-01

    Potency is a quantitative measure of the desired biological function of an advanced therapy medicinal product (ATMP) and is a prerequisite for market approval application (MAA). To assess the potency of human skeletal muscle-derived cells (SMDCs), which are currently investigated in clinical trials for the regeneration of skeletal muscle defects, we evaluated acetylcholinesterase (AChE), which is expressed in skeletal muscle and nervous tissue of all mammals. CD56+ SMDCs were separated from CD56- SMDCs by magnetic activated cell sorting (MACS) and both differentiated in skeletal muscle differentiation medium. AChE activity of in vitro differentiated SMDCs was correlated with CD56 expression, fusion index, cell number, cell doubling numbers, differentiation markers and compared to the clinical efficacy in patients treated with SMDCs against fecal incontinence. CD56- SMDCs did not form multinucleated myotubes and remained low in AChE activity during differentiation. CD56+ SMDCs generated myotubes and increased in AChE activity during differentiation. AChE activity was found to accurately reflect the number of CD56+ SMDCs in culture, their fusion competence, and cell doubling number. In patients with fecal incontinence responding to SMDCs treatment, the improvement of clinical symptoms was positively linked with the AChE activity of the SMDCs injected. AChE activity was found to truly reflect the in vitro differentiation status of SMDCs and to be superior to the mere use of surface markers as it reflects not only the number of myogenic SMDCs in culture but also their fusion competence and population doubling number, thus combining cell quality and quantification of the expected mode of action (MoA) of SMDCs. Moreover, the successful in vitro validation of the assay proves its suitability for routine use. Most convincingly, our results demonstrate a link between clinical efficacy and the AChE activity of the SMDCs preparations used for the treatment of fecal

  11. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.

    Science.gov (United States)

    Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N

    2018-05-10

    Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.

  12. The biorhythm of human skeletal growth.

    Science.gov (United States)

    Mahoney, Patrick; Miszkiewicz, Justyna J; Chapple, Simon; Le Luyer, Mona; Schlecht, Stephen H; Stewart, Tahlia J; Griffiths, Richard A; Deter, Chris; Guatelli-Steinberg, Debbie

    2018-01-01

    Evidence of a periodic biorhythm is retained in tooth enamel in the form of Retzius lines. The periodicity of Retzius lines (RP) correlates with body mass and the scheduling of life history events when compared between some mammalian species. The correlation has led to the development of the inter-specific Havers-Halberg oscillation (HHO) hypothesis, which holds great potential for studying aspects of a fossil species biology from teeth. Yet, our understanding of if, or how, the HHO relates to human skeletal growth is limited. The goal here is to explore associations between the biorhythm and two hard tissues that form at different times during human ontogeny, within the context of the HHO. First, we investigate the relationship of RP to permanent molar enamel thickness and the underlying daily rate that ameloblasts secrete enamel during childhood. Following this, we develop preliminary research conducted on small samples of adult human bone by testing associations between RP, adult femoral length (as a proxy for attained adult stature) and cortical osteocyte lacunae density (as a proxy for the rate of osteocyte proliferation). Results reveal RP is positively correlated with enamel thickness, negatively correlated with femoral length, but weakly associated with the rate of enamel secretion and osteocyte proliferation. These new data imply that a slower biorhythm predicts thicker enamel for children but shorter stature for adults. Our results develop the intra-specific HHO hypothesis suggesting that there is a common underlying systemic biorhythm that has a role in the final products of human enamel and bone growth. © 2017 Anatomical Society.

  13. A Human Pluripotent Stem Cell Model of Facioscapulohumeral Muscular Dystrophy-Affected Skeletal Muscles.

    Science.gov (United States)

    Caron, Leslie; Kher, Devaki; Lee, Kian Leong; McKernan, Robert; Dumevska, Biljana; Hidalgo, Alejandro; Li, Jia; Yang, Henry; Main, Heather; Ferri, Giulia; Petek, Lisa M; Poellinger, Lorenz; Miller, Daniel G; Gabellini, Davide; Schmidt, Uli

    2016-09-01

    : Facioscapulohumeral muscular dystrophy (FSHD) represents a major unmet clinical need arising from the progressive weakness and atrophy of skeletal muscles. The dearth of adequate experimental models has severely hampered our understanding of the disease. To date, no treatment is available for FSHD. Human embryonic stem cells (hESCs) potentially represent a renewable source of skeletal muscle cells (SkMCs) and provide an alternative to invasive patient biopsies. We developed a scalable monolayer system to differentiate hESCs into mature SkMCs within 26 days, without cell sorting or genetic manipulation. Here we show that SkMCs derived from FSHD1-affected hESC lines exclusively express the FSHD pathogenic marker double homeobox 4 and exhibit some of the defects reported in FSHD. FSHD1 myotubes are thinner when compared with unaffected and Becker muscular dystrophy myotubes, and differentially regulate genes involved in cell cycle control, oxidative stress response, and cell adhesion. This cellular model will be a powerful tool for studying FSHD and will ultimately assist in the development of effective treatments for muscular dystrophies. This work describes an efficient and highly scalable monolayer system to differentiate human pluripotent stem cells (hPSCs) into skeletal muscle cells (SkMCs) and demonstrates disease-specific phenotypes in SkMCs derived from both embryonic and induced hPSCs affected with facioscapulohumeral muscular dystrophy. This study represents the first human stem cell-based cellular model for a muscular dystrophy that is suitable for high-throughput screening and drug development. ©AlphaMed Press.

  14. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    Science.gov (United States)

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  15. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  16. Osteogenic differentiation capacity of human skeletal muscle-derived progenitor cells.

    Directory of Open Access Journals (Sweden)

    Teruyo Oishi

    Full Text Available Heterotopic ossification (HO is defined as the formation of ectopic bone in soft tissue outside the skeletal tissue. HO is thought to result from aberrant differentiation of osteogenic progenitors within skeletal muscle. However, the precise origin of HO is still unclear. Skeletal muscle contains two kinds of progenitor cells, myogenic progenitors and mesenchymal progenitors. Myogenic and mesenchymal progenitors in human skeletal muscle can be identified as CD56(+ and PDGFRα(+ cells, respectively. The purpose of this study was to investigate the osteogenic differentiation potential of human skeletal muscle-derived progenitors. Both CD56(+ cells and PDGFRα(+ cells showed comparable osteogenic differentiation potential in vitro. However, in an in vivo ectopic bone formation model, PDGFRα(+ cells formed bone-like tissue and showed successful engraftment, while CD56(+ cells did not form bone-like tissue and did not adapt to an osteogenic environment. Immunohistological analysis of human HO sample revealed that many PDGFRα(+ cells were localized in proximity to ectopic bone formed in skeletal muscle. MicroRNAs (miRNAs are known to regulate many biological processes including osteogenic differentiation. We investigated the participation of miRNAs in the osteogenic differentiation of PDGFRα(+ cells by using microarray. We identified miRNAs that had not been known to be involved in osteogenesis but showed dramatic changes during osteogenic differentiation of PDGFRα(+ cells. Upregulation of miR-146b-5p and -424 and downregulation of miR-7 during osteogenic differentiation of PDGFRα(+ cells were confirmed by quantitative real-time RT-PCR. Inhibition of upregulated miRNAs, miR-146b-5p and -424, resulted in the suppression of osteocyte maturation, suggesting that these two miRNAs have the positive role in the osteogenesis of PDGFRα(+ cells. Our results suggest that PDGFRα(+ cells may be the major source of HO and that the newly identified mi

  17. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    Science.gov (United States)

    Jørgensen, Louise H.; Petersson, Stine J.; Sellathurai, Jeeva; Andersen, Ditte C.; Thayssen, Susanne; Sant, Dorte J.; Jensen, Charlotte H.; Schrøder, Henrik D.

    2009-01-01

    Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15–16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment. (J Histochem Cytochem 57:29–39, 2009) PMID:18796407

  18. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2015-05-01

    Full Text Available Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.

  19. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    Science.gov (United States)

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  20. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Søren; Scheele, Camilla; Yfanti, Christina

    2010-01-01

    Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR-1, miR-133a, miR-133b and miR-206 in muscle biopsies from vastus...... lateralis of healthy young males (n = 10) in relation to a hyperinsulinaemic–euglycaemic clamp as well as acute endurance exercise before and after 12 weeks of endurance training. The subjects increased their endurance capacity, VO2max (l min-1) by 17.4% (P improved insulin sensitivity by 19......, but their role in regulating human skeletal muscle adaptation remains unknown....

  1. Histone Deacetylases in Bone Development and Skeletal Disorders

    Science.gov (United States)

    Bradley, Elizabeth W.; Carpio, Lomeli R.; van Wijnen, Andre J.; McGee-Lawrence, Meghan E.; Westendorf, Jennifer J.

    2015-01-01

    Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn2+ for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2+. Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the utility of

  2. Duplex Alu Screening for Degraded DNA of Skeletal Human Remains

    Directory of Open Access Journals (Sweden)

    Fabian Haß

    2017-10-01

    Full Text Available The human-specific Alu elements, belonging to the class of Short INterspersed Elements (SINEs, have been shown to be a powerful tool for population genetic studies. An earlier study in this department showed that it was possible to analyze Alu presence/absence in 3000-year-old skeletal human remains from the Bronze Age Lichtenstein cave in Lower Saxony, Germany. We developed duplex Alu screening PCRs with flanking primers for two Alu elements, each combined with a single internal Alu primer. By adding an internal primer, the approximately 400–500 bp presence signals of Alu elements can be detected within a range of less than 200 bp. Thus, our PCR approach is suited for highly fragmented ancient DNA samples, whereas NGS analyses frequently are unable to handle repetitive elements. With this analysis system, we examined remains of 12 individuals from the Lichtenstein cave with different degrees of DNA degradation. The duplex PCRs showed fully informative amplification results for all of the chosen Alu loci in eight of the 12 samples. Our analysis system showed that Alu presence/absence analysis is possible in samples with different degrees of DNA degradation and it reduces the amount of valuable skeletal material needed by a factor of four, as compared with a singleplex approach.

  3. Radiology of postnatal skeletal development. Pt. 6

    International Nuclear Information System (INIS)

    McCarthy, S.M.; Ogden, J.A.; Yale Univ., New Haven, CT; Yale Univ., New Haven, CT

    1982-01-01

    Thirty-six pairs of proximal radioulnar and elbow units from cadavers and prepared skeletons ranging in age from full-term neonates to fourteen years, were studied morphologically and roentgenographically. Air/cartilage interfacing was used to demonstrate the osseous and cartilaginous portions of the developing epiphyses. These roentgenographic aspects are discussed and illustrated to provide a reference index. The skeletal development is outlined with regard to the diagnosis of several traumatic skeletal diseases as dislocation of elbow or radial head. Moteggia fracture dislocation and Nursemaid's elbow. (orig./WU)

  4. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail

    2013-01-01

    , we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates......Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here...

  5. A contemporary Colombian skeletal reference collection: A resource for the development of population specific standards.

    Science.gov (United States)

    Sanabria-Medina, Cesar; González-Colmenares, Gretel; Restrepo, Hadaluz Osorio; Rodríguez, Juan Manuel Guerrero

    2016-09-01

    Several authors who have discussed human variability and its impact on the forensic identification of bodies pose the need for regional studies documenting the global variation of the attributes analyzed osteological characteristics that aid in establishing biological profile (sex, ancestry, biological age and height). This is primarily accomplished by studying documented human skeletal collections in order to investigate secular trends in skeletal development and aging, among others in the Colombian population. The purpose of this paper is to disclose the details of the new "Contemporary Colombian Skeletal Reference Collection" that currently comprises 600 identified skeletons of both sexes, who died between 2005 and 2008; and which contain information about their cause of death. This collection has infinite potential for research, open to the national and international community, and still has pending opportunities to address a variety of topics such as studies on osteopathology, bone trauma and taphonomic studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Human skeletal muscle digitalis glycoside receptors (Na,K-ATPase)--importance during digitalization.

    Science.gov (United States)

    Schmidt, T A; Holm-Nielsen, P; Kjeldsen, K

    1993-02-01

    The aims of the present study were to evaluate in humans the putative importance of skeletal muscle digitalis glycoside receptors (Na,K-ATPase) in the volume of distribution of digoxin and to assess whether therapeutic digoxin exposure might cause digitalis receptor upregulation in skeletal muscle. Samples of the vastus lateralis were obtained postmortem from 11 long-term (9 months to 9 years) digitalized (125-187.5 micrograms daily) and eight undigitalized subjects. In intact samples from digitalized patients, vanadate-facilitated 3H-ouabain binding increased 15% (p 0.30) before and after washing in specific digoxin antibody fragments, respectively. Thus, the present study indicates a approximately 13% occupancy of skeletal muscle digitalis glycoside receptors with digoxin during digitalization. In light of the large skeletal muscle contribution to body mass, this indicates that the skeletal muscle Na,K-ATPase pool constitutes a major volume of distribution for digoxin during digitalization. The results gave no indication of skeletal muscle digitalis glycoside receptor upregulation in response to digoxin treatment. On the contrary, there was evidence of significantly lower (37%, p digitalized patients, which may be of importance for skeletal muscle incapacity in heart failure.

  7. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  8. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease.

    Science.gov (United States)

    Crist, Colin

    2017-01-01

    Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  9. Peripheral endocannabinoids regulate skeletal muscle development and maintenance

    Directory of Open Access Journals (Sweden)

    Dongjiao Zhao

    2010-12-01

    Full Text Available As a principal tissue responsible for insulin-mediated glucose uptake, skeletal muscle is important for whole-body health. The role of peripheral endocannabinoids as regulators of skeletal muscle metabolism has recently gained a lot of interest, as endocannabinoid system disorders could cause peripheral insulin resistance. We investigated the role of the peripheral endocannabinoid system in skeletal muscle development and maintenance. Cultures of C2C12 cells, primary satellite cells and mouse skeletal muscle single fibers were used as model systems for our studies. We found an increase in cannabinoid receptor type 1 (CB1 mRNA and endocannabinoid synthetic enzyme mRNA skeletal muscle cells during differentiation. We also found that activation of CB1 inhibited myoblast differentiation, expanded the number of satellite cells, and stimulated the fast-muscle oxidative phenotype. Our findings contribute to understanding of the role of the endocannabinoid system in skeletal muscle metabolism and muscle oxygen consumption, and also help to explain the effects of the peripheral endocannabinoid system on whole-body energy balance.

  10. FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Lassiter, David G; Nylén, Carolina; Sjögren, Rasmus J O

    2018-01-01

    the FAK gene, PTK2. RESULTS: AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated...

  11. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance.

    Science.gov (United States)

    Bassett, J H Duncan; Williams, Graham R

    2016-04-01

    The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.

  12. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo.

    Science.gov (United States)

    Ma, Xiaorong; Zhang, Shengli; Zhou, Junmei; Chen, Baisong; Shang, Yafeng; Gao, Tongbing; Wang, Xue; Xie, Hua; Chen, Fang

    2012-08-01

    Stem cell-based therapy may be the most promising method to cure skeletal muscle degenerative diseases such as Duchenne muscular dystrophy (DMD) and trauma in the future. Human amniotic fluid is enriched with early-stage stem cells from developing fetuses and these cells have cardiomyogenic potential both in vitro and in vivo. In the present study, we investigated the characteristics of human amniotic fluid-derived AF-type stem (HAF-AFS) cells by flow cytometry, immunofluorescence staining, reverse-transcription polymerase chain reaction, and osteogenic and adipogenic differentiation analysis. After confirming the stemness of HAF-AFS cells, we tested whether HAF-AFS cells could differentiate into skeletal myogenic cells in vitro and incorporate into regenerating skeletal muscle in vivo. By temporary exposure to the DNA demethylation agent 5-aza-2'-deoxycytidine (5-Aza dC) or co-cultured with C2C12 myoblasts, HAF-AFS cells differentiated into skeletal myogenic cells, expressing skeletal myogenic cell-specific markers such as Desmin, Troponin I (Tn I) and α-Actinin. Four weeks after transplantation into cardiotoxin-injured and X-ray-irradiated tibialis anterior (TA) muscles of NOD/SCID mice, HAF-AFS cells survived, differentiated into myogenic precursor cells and fused with host myofibres. The findings that HAF-AFS cells differentiate into myogenic cells in vitro and incorporate in skeletal muscle regeneration in vivo hold the promise of HAF-AFS cell-based therapy for skeletal muscle degenerative diseases. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans.

    Directory of Open Access Journals (Sweden)

    David Patsouris

    Full Text Available Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D. However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.

  14. Comparison of radiological changes in humans and beagles with skeletal deposits of radium

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, J P [Univ. of California, Davis; Pool, R R; Kirsh, I E

    1983-01-01

    At the Laboratory for Energy-related Health Research at the University of California, Davis, semimonthly injections of /sup 226/Ra were given to a group of beagle dogs, and periodic skeletal radiography followed, as well as histological studies of the bones. At the Center for Human Radiobiology measurements were made of radium body content in 2259 occupationally or otherwise exposed persons. Of these, 1768 had skeletal radiography (one or more times). In humans, the radiographic changes were, in decreasing order of frequency, osteolytic cortical and cancellous bone destruction, bone sclerosis, pathological fracture, and avascular necrosis of bone. In beagles, osteolytic destruction and pathological fractures were common, avascular necrosis was not observed, but there was frequently cortical thickening and new-bone formation in cancellous bone. In both population groups, there was a high incidence of bone sarcoma. In the beagles, one high-dosage group numbering 38 dogs had 49 malignant bone tumors. Among the 2259 measured persons, there were 60 who had bone sarcoma, and 29 who had cancer of the mastoids or paranasal sinuses. No significant skeletal effects have been diagnosed radiologically in persons with systemic intakes of /sup 226/Ra or /sup 228/Ra below about 10 ..mu..Ci or with skeletal doses below about 100 rad. In humans, the lowest skeletal dose at which a bone sarcoma has been diagnosed is 890 rad, and the lowest intake associated with a bone sarcoma is 96 ..integral..Ci /sup 226/Ra or about 1.7 ..mu..Ci per kg body weight.

  15. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, M; Poulsen, P; Handberg, A

    2000-01-01

    GLUT-4 expression in individual fibers of human skeletal muscles in younger and older adults was studied. Furthermore, the dependency of insulin-stimulated glucose uptake on fiber type distribution was investigated. Fiber type distribution was determined in cryosections of muscle biopsies from 8...... of slow fibers in the young (r = -0.45, P > 0.25) or in the elderly (r = 0. 11, P > 0.75) subjects. In conclusion, in human skeletal muscle, GLUT-4 expression is fiber type dependent and decreases with age, particularly in fast muscle fibers....

  16. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    International Nuclear Information System (INIS)

    Wei, Yan; Li, Yuan; Chen, Chao; Stoelzel, Katharina; Kaufmann, Andreas M.; Albers, Andreas E.

    2011-01-01

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  17. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells....

  18. Skeletal muscle munc18c and syntaxin 4 in human obesity

    Directory of Open Access Journals (Sweden)

    Bessesen Daniel H

    2008-07-01

    Full Text Available Abstract Background Animal and cell culture data suggest a critical role for Munc18c and Syntaxin 4 proteins in insulin mediated glucose transport in skeletal muscle, but no studies have been published in humans. Methods We investigated the effect of a 12 vs. 48 hr fast on insulin action and skeletal muscle Munc18c and Syntaxin 4 protein in lean and obese subjects. Healthy lean (n = 14; age = 28.0 +/- 1.4 yr; BMI = 22.8 +/- 0.42 kg/m2 and obese subjects (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5 kg/m2 were studied twice following a 12 and 48 hr fast. Skeletal muscle biopsies were obtained before a 3 hr 40 mU/m2/min hyperinsulinemic-euglycemic clamp with [6,6-2H2]glucose infusion. Results Glucose rate of disappearance (Rd during the clamp was lower in obese vs. lean subjects after the 12 hr fast (obese: 6.25 +/- 0.67 vs. lean: 9.42 +/- 1.1 mg/kgFFM/min, p = 0.007, and decreased significantly in both groups after the 48 hr fast (obese 3.49 +/- 0.31 vs. lean: 3.91 +/- 0.42 mg/kgFFM/min, p = 0.002. Munc18c content was not significantly different between lean and obese subjects after the 12 hour fast, and decreased after the 48 hr fast in both groups (p = 0.013. Syntaxin 4 content was not altered by obesity or fasting duration. There was a strong positive relationship between plasma glucose concentration and Munc18c content in lean and obese subjects during both 12 and 48 hr fasts (R2 = 0.447, p = 0.0015. Significant negative relationships were also found between Munc18c and FFA (p = 0.041, beta-hydroxybutyrate (p = 0.039, and skeletal muscle AKT content (p = 0.035 in lean and obese subjects. Conclusion These data indicate Munc18c and Syntaxin 4 are present in human skeletal muscle. Munc18c content was not significantly different between lean and obese subjects, and is therefore unlikely to explain obesity-induced insulin resistance. Munc18c content decreased after prolonged fasting in lean and obese subjects concurrently with reduced insulin

  19. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Jensen, Line

    2012-01-01

    Important insights concerning the molecular basis of skeletal muscle disuse-atrophy and aging related muscle loss have been obtained in cell culture and animal models, but these regulatory signaling pathways have not previously been studied in aging human muscle. In the present study, muscle...... atrophy was induced by immobilization in healthy old and young individuals to study the time-course and transcriptional factors underlying human skeletal muscle atrophy. The results reveal that irrespectively of age, mRNA expression levels of MuRF-1 and Atrogin-1 increased in the very initial phase (2......-4 days) of human disuse-muscle atrophy along with a marked reduction in PGC-1α and PGC-1β (1-4 days) and a ∼10% decrease in myofiber size (4 days). Further, an age-specific decrease in Akt and S6 phosphorylation was observed in young muscle within the first days (1-4 days) of immobilization. In contrast...

  20. Lactate oxidation in human skeletal muscle mitochondria

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Meinild, Anne-Kristine; Nordsborg, Nikolai B

    2013-01-01

    of four separate and specific substrate titration protocols, the respirometric analysis revealed that mitochondria were capable of oxidizing lactate in the absence of exogenous LDH. The titration of lactate and NAD(+) into the respiration medium stimulated respiration (P = 0.003). The addition...... of exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within...

  1. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  2. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  3. Characterisation of L-Type Amino Acid Transporter 1 (LAT1 Expression in Human Skeletal Muscle by Immunofluorescent Microscopy

    Directory of Open Access Journals (Sweden)

    Nathan Hodson

    2017-12-01

    Full Text Available The branch chain amino acid leucine is a potent stimulator of protein synthesis in skeletal muscle. Leucine rapidly enters the cell via the L-Type Amino Acid Transporter 1 (LAT1; however, little is known regarding the localisation and distribution of this transporter in human skeletal muscle. Therefore, we applied immunofluorescence staining approaches to visualise LAT1 in wild type (WT and LAT1 muscle-specific knockout (mKO mice, in addition to basal human skeletal muscle samples. LAT1 positive staining was visually greater in WT muscles compared to mKO muscle. In human skeletal muscle, positive LAT1 staining was noted close to the sarcolemmal membrane (dystrophin positive staining, with a greater staining intensity for LAT1 observed in the sarcoplasmic regions of type II fibres (those not stained positively for myosin heavy-chain 1, Type II—25.07 ± 5.93, Type I—13.71 ± 1.98, p < 0.01, suggesting a greater abundance of this protein in these fibres. Finally, we observed association with LAT1 and endothelial nitric oxide synthase (eNOS, suggesting LAT1 association close to the microvasculature. This is the first study to visualise the distribution and localisation of LAT1 in human skeletal muscle. As such, this approach provides a validated experimental platform to study the role and regulation of LAT1 in human skeletal muscle in response to various physiological and pathophysiological models.

  4. "SINCE I MUST PLEASE THOSE BELOW": HUMAN SKELETAL REMAINS RESEARCH AND THE LAW.

    Science.gov (United States)

    Holland, Thomas D

    2015-01-01

    The ethics of non-invasive scientific research on human skeletal remains are poorly articulated and lack a single, definitive analogue in western law. Laws governing invasive research on human fleshed remains, as well as bio-ethical principles established for research on living subjects, provide effective models for the establishment of ethical guidelines for non-invasive research on human skeletal remains. Specifically, non-invasive analysis of human remains is permissible provided that the analysis and collection of resulting data (1) are accomplished with respect for the dignity of the individual, (2) do not violate the last-known desire of the deceased, (3) do not adversely impact the right of the next of kin to perform a ceremonious and decent disposal of the remains, and (4) do not unduly or maliciously violate the privacy interests of the next of kin.

  5. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder.

    Science.gov (United States)

    Debashree, Bandopadhyay; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Natarajan, Archana; Christopher, Rita; Nalini, Atchayaram; Bindu, Parayil Sankaran; Gayathri, Narayanappa; Srinivas Bharath, Muchukunte Mukunda

    2018-02-09

    Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. © 2018 International Society for Neurochemistry.

  6. Human skeletal muscle contains no detectable guanidinoacetic acid

    DEFF Research Database (Denmark)

    Ostojic, Sergej M; Ostojic, Jelena

    2018-01-01

    We analyzed data from previously completed trials to determine the effects of supplemental guanidinoacetic acid (GAA) on markers of muscle bioenergetics in healthy men using 1.5 T magnetic resonance spectroscopy. No detectable GAA (<0.1 μmol/L) was found in the vastus medialis muscle at baseline ...... nor at follow-up. This implies deficient GAA availability in the human skeletal muscle, suggesting absent or negligible potential for creatine synthesis from GAA inside this tissue, even after GAA loading....

  7. Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Høier, Birgitte; Prats Gavalda, Clara; Qvortrup, Klaus

    2013-01-01

    The subcellular distribution and secretion of vascular endothelial growth factor (VEGF) was examined in skeletal muscle of healthy humans. Skeletal muscle biopsies were obtained from m.v. lateralis before and after a 2 h bout of cycling exercise. VEGF localization was conducted on preparations...... regions and between the contractile elements within the muscle fibers; and in pericytes situated on the skeletal muscle capillaries. Quantitation of the subsarcolemmal density of VEGF vesicles, calculated on top of myonuclei, in the muscle fibers revealed a ∼50% increase (P...

  8. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  9. Endurance training enhances skeletal muscle interleukin-15 in human male subjects

    DEFF Research Database (Denmark)

    Rinnov, Anders; Yfanti, Christina; Nielsen, Søren

    2014-01-01

    Regular endurance exercise promotes metabolic and oxidative changes in skeletal muscle. Overexpression of interleukin-15 (IL-15) in mice exerts similar metabolic changes in muscle as seen with endurance exercise. Muscular IL-15 production has been shown to increase in mice after weeks of regular...... endurance running. With the present study we aimed to determine if muscular IL-15 production would increase in human male subjects following 12 weeks of endurance training. In two different studies we obtained plasma and muscle biopsies from young healthy subjects performing: (1) 12 weeks of ergometer...... weeks of regular endurance training induced a 40% increase in basal skeletal muscle IL-15 protein content (p...

  10. Loss of ATRX in chondrocytes has minimal effects on skeletal development.

    Directory of Open Access Journals (Sweden)

    Lauren A Solomon

    Full Text Available BACKGROUND: Mutations in the human ATRX gene cause developmental defects, including skeletal deformities and dwarfism. ATRX encodes a chromatin remodeling protein, however the role of ATRX in skeletal development is currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: We induced Atrx deletion in mouse cartilage using the Cre-loxP system, with Cre expression driven by the collagen II (Col2a1 promoter. Growth rate, body size and weight, and long bone length did not differ in Atrx(Col2cre mice compared to control littermates. Histological analyses of the growth plate did not reveal any differences between control and mutant mice. Expression patterns of Sox9, a transcription factor required for cartilage morphogenesis, and p57, a marker of cell cycle arrest and hypertrophic chondrocyte differentiation, was unaffected. However, loss of ATRX in cartilage led to a delay in the ossification of the hips in some mice. We also observed hindlimb polydactily in one out of 61 mutants. CONCLUSIONS/SIGNIFICANCE: These findings indicate that ATRX is not directly required for development or growth of cartilage in the mouse, suggesting that the short stature in ATR-X patients is caused by defects in cartilage-extrinsic mechanisms.

  11. Obscurin Depletion Impairs Organization of Skeletal Muscle in Developing Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Maide Ö. Raeker

    2011-01-01

    Full Text Available During development, skeletal myoblasts differentiate into myocytes and skeletal myotubes with mature contractile structures that are precisely oriented with respect to surrounding cells and tissues. Establishment of this highly ordered structure requires reciprocal interactions between the differentiating myocytes and the surrounding extracellular matrix to form correctly positioned and well-organized attachments from the skeletal muscle to the bony skeleton. Using the developing zebrafish embryo as a model, we examined the relationship between new myofibril assembly and the organization of the membrane domains involved in cell-extracellular matrix interactions. We determined that depletion of obscurin, a giant muscle protein, resulted in irregular cell morphology and disturbed extracellular matrix organization during skeletal muscle development. The resulting impairment of myocyte organization was associated with disturbance of the internal architecture of the myocyte suggesting that obscurin participates in organizing the internal structure of the myocyte and translating those structural cues to surrounding cells and tissues.

  12. Obscurin Depletion Impairs Organization of Skeletal Muscle in Developing Zebrafish Embryos

    Science.gov (United States)

    Raeker, Maide Ö.; Russell, Mark W.

    2011-01-01

    During development, skeletal myoblasts differentiate into myocytes and skeletal myotubes with mature contractile structures that are precisely oriented with respect to surrounding cells and tissues. Establishment of this highly ordered structure requires reciprocal interactions between the differentiating myocytes and the surrounding extracellular matrix to form correctly positioned and well-organized attachments from the skeletal muscle to the bony skeleton. Using the developing zebrafish embryo as a model, we examined the relationship between new myofibril assembly and the organization of the membrane domains involved in cell-extracellular matrix interactions. We determined that depletion of obscurin, a giant muscle protein, resulted in irregular cell morphology and disturbed extracellular matrix organization during skeletal muscle development. The resulting impairment of myocyte organization was associated with disturbance of the internal architecture of the myocyte suggesting that obscurin participates in organizing the internal structure of the myocyte and translating those structural cues to surrounding cells and tissues. PMID:22190853

  13. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Science.gov (United States)

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  14. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Michael P Housley

    2016-06-01

    Full Text Available Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD, lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  15. Factors regulating fat oxidation in human skeletal muscle

    DEFF Research Database (Denmark)

    Kiens, Bente; Alsted, Thomas Junker; Jeppesen, Jacob

    2011-01-01

    In modern societies, oversupply of calories leads to obesity and chronic metabolic stress, which may lead to development of disease. Oversupply of calories is often associated with elevated plasma lipid concentrations and accumulation of lipids in skeletal muscle leading to decreased insulin...

  16. Acute moderate elevation of TNF-{alpha} does not affect systemic and skeletal muscle protein turnover in healthy humans

    DEFF Research Database (Denmark)

    Petersen, Anne Marie; Plomgaard, Peter; Fischer, Christian P

    2009-01-01

    -alpha infusion (rhTNF-alpha). We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibit synthesis. Subjects and Methods: Using a randomized controlled, crossover design post-absorptive healthy young males (n=8) were studied 2 hours under basal conditions followed by 4 hours infusion...... with the phenylalanine 3-compartment model showed similar muscle synthesis, breakdown and net muscle degradation after 2 hours basal and after 4 hours Control or rhTNF-alpha infusion. Conclusion: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when......Context: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. Objective: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover, via a 4 hours recombinant human TNF...

  17. Role of skeletal muscle in ear development.

    Science.gov (United States)

    Rot, Irena; Baguma-Nibasheka, Mark; Costain, Willard J; Hong, Paul; Tafra, Robert; Mardesic-Brakus, Snjezana; Mrduljas-Djujic, Natasa; Saraga-Babic, Mirna; Kablar, Boris

    2017-10-01

    The current paper is a continuation of our work described in Rot and Kablar, 2010. Here, we show lists of 10 up- and 87 down-regulated genes obtained by a cDNA microarray analysis that compared developing Myf5-/-:Myod-/- (and Mrf4-/-) petrous part of the temporal bone, containing middle and inner ear, to the control, at embryonic day 18.5. Myf5-/-:Myod-/- fetuses entirely lack skeletal myoblasts and muscles. They are unable to move their head, which interferes with the perception of angular acceleration. Previously, we showed that the inner ear areas most affected in Myf5-/-:Myod-/- fetuses were the vestibular cristae ampullaris, sensitive to angular acceleration. Our finding that the type I hair cells were absent in the mutants' cristae was further used here to identify a profile of genes specific to the lacking cell type. Microarrays followed by a detailed consultation of web-accessible mouse databases allowed us to identify 6 candidate genes with a possible role in the development of the inner ear sensory organs: Actc1, Pgam2, Ldb3, Eno3, Hspb7 and Smpx. Additionally, we searched for human homologues of the candidate genes since a number of syndromes in humans have associated inner ear abnormalities. Mutations in one of our candidate genes, Smpx, have been reported as the cause of X-linked deafness in humans. Our current study suggests an epigenetic role that mechanical, and potentially other, stimuli originating from muscle, play in organogenesis, and offers an approach to finding novel genes responsible for altered inner ear phenotypes.

  18. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration.

    Science.gov (United States)

    Chen, Wei; Xie, Minkai; Yang, Bin; Bharadwaj, Shantaram; Song, Lujie; Liu, Guihua; Yi, Shanhong; Ye, Gang; Atala, Anthony; Zhang, Yuanyuan

    2017-02-01

    Stem cells are regarded as possible cell therapy candidates for skeletal muscle regeneration. However, invasive harvesting of those cells can cause potential harvest-site morbidity. The goal of this study was to assess whether human urine-derived stem cells (USCs), obtained through non-invasive procedures, can differentiate into skeletal muscle linage cells (Sk-MCs) and potentially be used for skeletal muscle regeneration. In this study, USCs were harvested from six healthy individuals aged 25-55. Expression profiles of cell-surface markers were assessed by flow cytometry. To optimize the myogenic differentiation medium, we selected two from four different types of myogenic differentiation media to induce the USCs. Differentiated USCs were identified with myogenic markers by gene and protein expression. USCs were implanted into the tibialis anterior muscles of nude mice for 1 month. The results showed that USCs displayed surface markers with positive staining for CD24, CD29, CD44, CD73, CD90, CD105, CD117, CD133, CD146, SSEA-4 and STRO-1, and negative staining for CD14, CD31, CD34 and CD45. After myogenic differentiation, a change in morphology was observed from 'rice-grain'-like cells to spindle-shaped cells. The USCs expressed specific Sk-MC transcripts and protein markers (myf5, myoD, myosin, and desmin) after being induced with different myogenic culture media. Implanted cells expressed Sk-MC markers stably in vivo. Our findings suggest that USCs are able to differentiate into the Sk-MC lineage in vitro and after being implanted in vivo. Thus, they might be a potential source for cell injection therapy in the use of skeletal muscle regeneration. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise

    DEFF Research Database (Denmark)

    Vissing, Kristian; Schjerling, Peter

    2014-01-01

    Few studies have investigated exercise-induced global gene expression responses in human skeletal muscle and these have typically focused at one specific mode of exercise and not implemented non-exercise control models. However, interpretation on effects of differentiated exercise necessitate dir...

  20. Actovegin, a non-prohibited drug increases oxidative capacity in human skeletal muscle

    DEFF Research Database (Denmark)

    Søndergård, Stine D; Dela, Flemming; Helge, Jørn W

    2016-01-01

    Actovegin, a deproteinized haemodialysate of calf blood, is suggested to have ergogenic properties, but this potential effect has never been investigated in human skeletal muscle. To investigate this purported ergogenic effect, we measured the mitochondrial respiratory capacity in permeabilized h...

  1. Relative Skeletal Muscle Mass Is Associated with Development of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Byung Sam Park

    2013-12-01

    Full Text Available BackgroundVisceral adiposity is related to insulin resistance. Skeletal muscle plays a central role in insulin-mediated glucose disposal; however, little is known about the association between muscle mass and metabolic syndrome (MS. This study is to clarify the clinical role of skeletal muscle mass in development of MS.MethodsA total of 1,042 subjects were enrolled. Subjects with prior MS and chronic diseases were excluded. After 24 months, development of MS was assessed using NCEP-ATP III criteria. Skeletal muscle mass (SMM; kg, body fat mass (BFM; kg, and visceral fat area (VFA; cm2 were obtained from bioelectrical analysis. Then, the following values were calculated as follows: percent of SMM (SMM%; %: SMM (kg/weight (kg, skeletal muscle index (SMI; kg/m2: SMM (kg/height (m2, skeletal muscle to body fat ratio (MFR: SMM (kg/BFM (kg, and skeletal muscle to visceral fat ratio (SVR; kg/cm2: SMM (kg/VFA (cm2.ResultsAmong 838 subjects, 88 (10.5% were newly diagnosed with MS. Development of MS increased according to increasing quintiles of BMI, SMM, VFA, and SMI, but was negatively associated with SMM%, MFR, and SVR. VFA was positively associated with high waist circumference (WC, high blood pressure (BP, dysglycemia, and high triglyceride (TG. In contrast, MFR was negatively associated with high WC, high BP, dysglycemia, and high TG. SVR was negatively associated with all components of MS.ConclusionRelative SMM ratio to body composition, rather than absolute mass, may play a critical role in development of MS and could be used as a strong predictor.

  2. Influence of erythrocyte oxygenation and intravascular ATP on resting and exercising skeletal muscle blood flow in humans with mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina D; Vissing, John; González-Alonso, José

    2012-01-01

    Oxygen (O(2)) extraction is impaired in exercising skeletal muscle of humans with mutations of mitochondrial DNA (mtDNA), but the muscle hemodynamic response to exercise has never been directly investigated. This study sought to examine the extent to which human skeletal muscle perfusion can incr...

  3. Interleukin-6 receptor expression in contracting human skeletal muscle: regulating role of IL-6

    DEFF Research Database (Denmark)

    Keller, Pernille; Penkowa, Milena; Keller, Charlotte

    2005-01-01

    Contracting muscle fibers produce and release IL-6, and plasma levels of this cytokine are markedly elevated in response to physical exercise. We recently showed autocrine regulation of IL-6 in human skeletal muscle in vivo and hypothesized that this may involve up-regulation of the IL-6 receptor....... Infusion of rhIL-6 to humans had no effect on the mRNA level of the IL-6 receptor, whereas there was an increase at the protein level. IL-6 receptor mRNA increased similarly in muscle of both IL-6 KO mice and wild-type mice in response to exercise. In conclusion, exercise increases IL-6 receptor production....... Therefore, we investigated IL-6 receptor regulation in response to exercise and IL-6 infusion in humans. Furthermore, using IL-6-deficient mice, we investigated the role of IL-6 in the IL-6 receptor response to exercise. Human skeletal muscle biopsies were obtained in relation to: 3 h of bicycle exercise...

  4. Single sodium channels from human skeletal muscle in planar lipid bilayers: characterization and response to pentobarbital

    NARCIS (Netherlands)

    Wartenberg, Hans C.; Urban, Bernd W.

    2004-01-01

    PURPOSE: To investigate the response to general anesthetics of different sodium-channel subtypes, we examined the effects of pentobarbital, a close thiopental analogue, on single sodium channels from human skeletal muscle and compared them to existing data from human brain and human ventricular

  5. In Vivo Human Somitogenesis Guides Somite Development from hPSCs

    Directory of Open Access Journals (Sweden)

    Haibin Xi

    2017-02-01

    Full Text Available Somites form during embryonic development and give rise to unique cell and tissue types, such as skeletal muscles and bones and cartilage of the vertebrae. Using somitogenesis-stage human embryos, we performed transcriptomic profiling of human presomitic mesoderm as well as nascent and developed somites. In addition to conserved pathways such as WNT-β-catenin, we also identified BMP and transforming growth factor β (TGF-β signaling as major regulators unique to human somitogenesis. This information enabled us to develop an efficient protocol to derive somite cells in vitro from human pluripotent stem cells (hPSCs. Importantly, the in-vitro-differentiating cells progressively expressed markers of the distinct developmental stages that are known to occur during in vivo somitogenesis. Furthermore, when subjected to lineage-specific differentiation conditions, the hPSC-derived somite cells were multipotent in generating somite derivatives, including skeletal myocytes, osteocytes, and chondrocytes. This work improves our understanding of human somitogenesis and may enhance our ability to treat diseases affecting somite derivatives.

  6. Skeletal Muscle Na+ Channel Disorders

    Directory of Open Access Journals (Sweden)

    Dina eSimkin

    2011-10-01

    Full Text Available Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the importance of understanding the role of the sodium channel in skeletal muscle function and disease state grows.

  7. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  8. Phosphorylation of human skeletal muscle myosin

    International Nuclear Information System (INIS)

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-01-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30 0 C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with ( 30 P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ

  9. Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Maclean, D.; Rådegran, G.

    1998-01-01

    BACKGROUND: Adenosine has been proposed to be a locally produced regulator of blood flow in skeletal muscle. However, the fundamental questions of to what extent adenosine is formed in skeletal muscle tissue of humans, whether it is present in the interstitium, and where it exerts its vasodilatory...... rest (0.13+/-0.03, 0.07+/-0.03, and 0.07+/-0.02 micromol/L, respectively) to exercise (10 W; 2.00+/-1.32, 2.08+/-1.23, and 1.65+/-0.50 micromol/L, respectively; Pskeletal muscle...... and demonstrates that adenosine and its precursors increase in the exercising muscle interstitium, at a rate associated with intensity of muscle contraction and the magnitude of muscle blood flow....

  10. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Birk, Jesper Bratz; Wojtaszewski, Jørgen

    2006-01-01

    -Thr-172 AMPK phosphorylation (r2 = 0.84, P important actor in exercise-regulated AMPK signalling in human skeletal muscle, probably mediating phosphorylation of ACCß.......5'AMP-activated protein kinase (AMPK) is a key regulator of cellular metabolism and is regulated in muscle during exercise. We have previously established that only three of 12 possible AMPK a/ß/¿-heterotrimers are present in human skeletal muscle. Previous studies describe discrepancies between...... total AMPK activity and regulation of its target acetyl-CoA-carboxylase (ACC)ß. Also, exercise training decreases expression of the regulatory ¿3 AMPK subunit and attenuates a2 AMPK activity during exercise. We hypothesize that these observations reflect a differential regulation of the AMPK...

  11. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Madsen, Agnete Louise Bjerregaard; Kleinert, Maximilian

    2016-01-01

    Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exer......Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one......-legged exercise training as well as in response to subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (phuman muscle....... The decrease in LC3-II/LC3-I ratio did not correlate with activation of AMPK trimer complexes in human muscle. Consistently, pharmacological AMPK activation with AICAR in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (p

  12. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.......Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  13. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse.

    Science.gov (United States)

    Salanova, Michele; Schiffl, Gudrun; Gutsmann, Martina; Felsenberg, Dieter; Furlan, Sandra; Volpe, Pompeo; Clarke, Andrew; Blottner, Dieter

    2013-01-01

    Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, -SERCA1 and -PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  14. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse

    Directory of Open Access Journals (Sweden)

    Michele Salanova

    2013-01-01

    Full Text Available Activity-induced nitric oxide (NO imbalance and “nitrosative stress” are proposed mechanisms of disrupted Ca2+ homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study without and with exercise as countermeasure in order to assess (i the negative effects of chronic muscle disuse by nitrosative stress, (ii to test for possible attenuation by exercise countermeasure in bed rest and (iii to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre and at end (End from a bed rest disuse control group (CTR, n=9 and two bed rest resistive exercise groups either without (RE, n=7 or with superimposed vibration stimuli (RVE, n=7. At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, –SERCA1 and –PMCA and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  15. Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish.

    Directory of Open Access Journals (Sweden)

    Tomoaki Fujii

    Full Text Available Modifications of histone tails are involved in the regulation of a wide range of biological processes including cell cycle, cell survival, cell division, and cell differentiation. Among the modifications, histone methylation plays a critical role in cardiac and skeletal muscle differentiation. In our earlier studies, we found that SMYD3 has methyltransferase activity to histone H3 lysine 4, and that its up-regulation is involved in the tumorigenesis of human colon, liver, and breast. To clarify the role of Smyd3 in development, we have studied its expression patterns in zebrafish embryos and the effect of its suppression on development using Smyd3-specific antisense morpholino-oligonucleotides. We here show that transcripts of smyd3 were expressed in zebrafish embryos at all developmental stages examined and that knockdown of smyd3 in embryos resulted in pericardial edema and defects in the trunk structure. In addition, these phenotypes were associated with abnormal expression of three heart-chamber markers including cmlc2, amhc and vmhc, and abnormal expression of myogenic regulatory factors including myod and myog. These data suggest that Smyd3 plays an important role in the development of heart and skeletal muscle.

  16. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity

    International Nuclear Information System (INIS)

    Hoyt, Kenneth; Kneezel, Timothy; Castaneda, Benjamin; Parker, Kevin J

    2008-01-01

    A novel quantitative sonoelastography technique for assessing the viscoelastic properties of skeletal muscle tissue was developed. Slowly propagating shear wave interference patterns (termed crawling waves) were generated using a two-source configuration vibrating normal to the surface. Theoretical models predict crawling wave displacement fields, which were validated through phantom studies. In experiments, a viscoelastic model was fit to dispersive shear wave speed sonoelastographic data using nonlinear least-squares techniques to determine frequency-independent shear modulus and viscosity estimates. Shear modulus estimates derived using the viscoelastic model were in agreement with that obtained by mechanical testing on phantom samples. Preliminary sonoelastographic data acquired in healthy human skeletal muscles confirm that high-quality quantitative elasticity data can be acquired in vivo. Studies on relaxed muscle indicate discernible differences in both shear modulus and viscosity estimates between different skeletal muscle groups. Investigations into the dynamic viscoelastic properties of (healthy) human skeletal muscles revealed that voluntarily contracted muscles exhibit considerable increases in both shear modulus and viscosity estimates as compared to the relaxed state. Overall, preliminary results are encouraging and quantitative sonoelastography may prove clinically feasible for in vivo characterization of the dynamic viscoelastic properties of human skeletal muscle

  17. Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise.

    Science.gov (United States)

    D'Lugos, Andrew C; Patel, Shivam H; Ormsby, Jordan C; Curtis, Donald P; Fry, Christopher S; Carroll, Chad C; Dickinson, Jared M

    2018-04-01

    Resistance exercise (RE) is a powerful stimulus for skeletal muscle adaptation. Previous data demonstrate that cyclooxygenase (COX)-inhibiting drugs alter the cellular mechanisms regulating the adaptive response of skeletal muscle. The purpose of this study was to determine whether prior consumption of the COX inhibitor acetaminophen (APAP) alters the immediate adaptive cellular response in human skeletal muscle after RE. In a double-blinded, randomized, crossover design, healthy young men ( n = 8, 25 ± 1 yr) performed two trials of unilateral knee extension RE (8 sets, 10 reps, 65% max strength). Subjects ingested either APAP (1,000 mg/6 h) or placebo (PLA) for 24 h before RE (final dose consumed immediately after RE). Muscle biopsies (vastus lateralis) were collected at rest and 1 h and 3 h after exercise. Mammalian target of rapamycin (mTOR) complex 1 signaling was assessed through immunoblot and immunohistochemistry, and mRNA expression of myogenic genes was examined via RT-qPCR. At 1 h p-rpS6 Ser240/244 was increased in both groups but to a greater extent in PLA. At 3 h p-S6K1 Thr389 was elevated only in PLA. Furthermore, localization of mTOR to the lysosome (LAMP2) in myosin heavy chain (MHC) II fibers increased 3 h after exercise only in PLA. mTOR-LAMP2 colocalization in MHC I fibers was greater in PLA vs. APAP 1 h after exercise. Myostatin mRNA expression was reduced 1 h after exercise only in PLA. MYF6 mRNA expression was increased 1 h and 3 h after exercise only in APAP. APAP consumption appears to alter the early adaptive cellular response of skeletal muscle to RE. These findings further highlight the mechanisms through which COX-inhibiting drugs impact the adaptive response of skeletal muscle to exercise. NEW & NOTEWORTHY The extent to which the cellular reaction to acetaminophen impacts the mechanisms regulating the adaptive response of human skeletal muscle to resistance exercise is not well understood. Consumption of acetaminophen before

  18. Effect of ionizing radiation on human skeletal muscle precursor cells

    International Nuclear Information System (INIS)

    Jurdana, Mihaela; Cemazar, Maja; Pegan, Katarina; Mars, Tomaz

    2013-01-01

    Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions

  19. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    , of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle......Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence...

  20. Myo/Nog cells: targets for preventing the accumulation of skeletal muscle-like cells in the human lens.

    Directory of Open Access Journals (Sweden)

    Jacquelyn Gerhart

    Full Text Available Posterior capsule opacification (PCO is a vision impairing condition that arises in some patients following cataract surgery. The fibrotic form of PCO is caused by myofibroblasts that may emerge in the lens years after surgery. In the chick embryo lens, myofibroblasts are derived from Myo/Nog cells that are identified by their expression of the skeletal muscle specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin, and the epitope recognized by the G8 monoclonal antibody. The goal of this study was to test the hypothesis that depletion of Myo/Nog cells will prevent the accumulation of myofibroblasts in human lens tissue. Myo/Nog cells were present in anterior, equatorial and bow regions of the human lens, cornea and ciliary processes. In anterior lens tissue removed by capsulorhexis, Myo/Nog cells had synthesized myofibroblast and skeletal muscle proteins, including vimentin, MyoD and sarcomeric myosin. Alpha smooth muscle actin (α-SMA was detected in a subpopulation of Myo/Nog cells. Areas of the capsule denuded of epithelial cells were surrounded by Myo/Nog cells. Some of these cell free areas contained a wrinkle in the capsule. Depletion of Myo/Nog cells eliminated cells expressing skeletal muscle proteins in 5-day cultures but did not affect cells immunoreactive for beaded filament proteins that accumulate in differentiating lens epithelial cells. Transforming growth factor-betas 1 and 2 that mediate an epithelial-mesenchymal transition, did not induce the expression of skeletal muscle proteins in lens cells following Myo/Nog cell depletion. This study demonstrates that Myo/Nog cells in anterior lens tissue removed from cataract patients have undergone a partial differentiation to skeletal muscle. Myo/Nog cells appear to be the source of skeletal muscle-like cells in explants of human lens tissue. Targeting Myo/Nog cells with the G8 antibody during cataract surgery may reduce the incidence of PCO.

  1. Plasticity and function of human skeletal muscle in relation to disuse and rehabilitation

    DEFF Research Database (Denmark)

    Suetta, Charlotte

    2017-01-01

    not be achieved with the use of neuromuscular electrical stimulation or conventional rehabilitation efforts alone. Collectively, these findings strongly underline the importance of implementing resistive exercises in future rehabilitation programs for elderly individuals. In addition, comparing young and old able...... gains in myofibre area, in parallel with smaller increases in satellite cell number despite no age-related differences were observed in factors known to promote skeletal muscle hypertrophy and myogenic stem cell proliferation (IGF-Ea, MGF, MyoD, myogenin, HGF). Moreover, an age-specific regulation...... and satellite cell proliferation in the acute phase of re-loading, these data indicates that myostatin play an important role in the impaired ability of aged human skeletal muscle....

  2. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle.

    Science.gov (United States)

    Rodríguez-Rosell, David; Pareja-Blanco, Fernando; Aagaard, Per; González-Badillo, Juan José

    2017-12-20

    Rate of force development (RFD) refers to the ability of the neuromuscular system to increase contractile force from a low or resting level when muscle activation is performed as quickly as possible, and it is considered an important muscle strength parameter, especially for athletes in sports requiring high-speed actions. The assessment of RFD has been used for strength diagnosis, to monitor the effects of training interventions in both healthy populations and patients, discriminate high-level athletes from those of lower levels, evaluate the impairment in mechanical muscle function after acute bouts of eccentric muscle actions and estimate the degree of fatigue and recovery after acute exhausting exercise. Notably, the evaluation of RFD in human skeletal muscle is a complex task as influenced by numerous distinct methodological factors including mode of contraction, type of instruction, method used to quantify RFD, devices used for force/torque recording and ambient temperature. Another important aspect is our limited understanding of the mechanisms underpinning rapid muscle force production. Therefore, this review is primarily focused on (i) describing the main mechanical characteristics of RFD; (ii) analysing various physiological factors that influence RFD; and (iii) presenting and discussing central biomechanical and methodological factors affecting the measurement of RFD. The intention of this review is to provide more methodological and analytical coherency on the RFD concept, which may aid to clarify the thinking of coaches and sports scientists in this area. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. Exercise increases TBC1D1 phosphorylation in human skeletal muscle

    Science.gov (United States)

    Jessen, Niels; An, Ding; Lihn, Aina S.; Nygren, Jonas; Hirshman, Michael F.; Thorell, Anders

    2011-01-01

    Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% V̇o2 max). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser711 (AMPK), TBC1D1 Ser231 (AMPK), TBC1D1 Ser660 (AMPK), TBC1D1 Ser700 (AMPK), and TBC1D1 Thr590 (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser711, TBC1D1 Ser231, and TBC1D1 Ser660 but had no effect on TBC1D1 Ser700. Exercise did not increase TBC1D1 Thr590 phosphorylation or TBC1D1/AS160 PAS

  4. TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans.

    Science.gov (United States)

    Capitanio, Daniele; Fania, Chiara; Torretta, Enrica; Viganò, Agnese; Moriggi, Manuela; Bravatà, Valentina; Caretti, Anna; Levett, Denny Z H; Grocott, Michael P W; Samaja, Michele; Cerretelli, Paolo; Gelfi, Cecilia

    2017-08-29

    In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O 2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.

  5. Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2*

    Science.gov (United States)

    Dudakovic, Amel; Camilleri, Emily T.; Xu, Fuhua; Riester, Scott M.; McGee-Lawrence, Meghan E.; Bradley, Elizabeth W.; Paradise, Christopher R.; Lewallen, Eric A.; Thaler, Roman; Deyle, David R.; Larson, A. Noelle; Lewallen, David G.; Dietz, Allan B.; Stein, Gary S.; Montecino, Martin A.; Westendorf, Jennifer J.; van Wijnen, Andre J.

    2015-01-01

    Epigenetic control of gene expression is critical for normal fetal development. However, chromatin-related mechanisms that activate bone-specific programs during osteogenesis have remained underexplored. Therefore, we investigated the expression profiles of a large cohort of epigenetic regulators (>300) during osteogenic differentiation of human mesenchymal cells derived from the stromal vascular fraction of adipose tissue (AMSCs). Molecular analyses establish that the polycomb group protein EZH2 (enhancer of zeste homolog 2) is down-regulated during osteoblastic differentiation of AMSCs. Chemical inhibitor and siRNA knockdown studies show that EZH2, a histone methyltransferase that catalyzes trimethylation of histone 3 lysine 27 (H3K27me3), suppresses osteogenic differentiation. Blocking EZH2 activity promotes osteoblast differentiation and suppresses adipogenic differentiation of AMSCs. High throughput RNA sequence (mRNASeq) analysis reveals that EZH2 inhibition stimulates cell cycle inhibitory proteins and enhances the production of extracellular matrix proteins. Conditional genetic loss of Ezh2 in uncommitted mesenchymal cells (Prrx1-Cre) results in multiple defects in skeletal patterning and bone formation, including shortened forelimbs, craniosynostosis, and clinodactyly. Histological analysis and mRNASeq profiling suggest that these effects are attributable to growth plate abnormalities and premature cranial suture closure because of precocious maturation of osteoblasts. We conclude that the epigenetic activity of EZH2 is required for skeletal patterning and development, but EZH2 expression declines during terminal osteoblast differentiation and matrix production. PMID:26424790

  6. Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains

    NARCIS (Netherlands)

    J. Draus-Barini (Jolanta); S. Walsh (Susan); E. Pośpiech (Ewelina); T. Kupiec (Tomasz); H. Głab (Henryk); W. Branicki (Wojciech); M.H. Kayser (Manfred)

    2013-01-01

    textabstractBackground: DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing

  7. Dicarbonyl stress and glyoxalase enzyme system regulation in human skeletal muscle.

    Science.gov (United States)

    Mey, Jacob T; Blackburn, Brian K; Miranda, Edwin R; Chaves, Alec B; Briller, Joan; Bonini, Marcelo G; Haus, Jacob M

    2018-02-01

    Skeletal muscle insulin resistance is a hallmark of Type 2 diabetes (T2DM) and may be exacerbated by protein modifications by methylglyoxal (MG), known as dicarbonyl stress. The glyoxalase enzyme system composed of glyoxalase 1/2 (GLO1/GLO2) is the natural defense against dicarbonyl stress, yet its protein expression, activity, and regulation remain largely unexplored in skeletal muscle. Therefore, this study investigated dicarbonyl stress and the glyoxalase enzyme system in the skeletal muscle of subjects with T2DM (age: 56 ± 5 yr.; BMI: 32 ± 2 kg/m 2 ) compared with lean healthy control subjects (LHC; age: 27 ± 1 yr.; BMI: 22 ± 1 kg/m 2 ). Skeletal muscle biopsies obtained from the vastus lateralis at basal and insulin-stimulated states of the hyperinsulinemic (40 mU·m -2 ·min -1 )-euglycemic (5 mM) clamp were analyzed for proteins related to dicarbonyl stress and glyoxalase biology. At baseline, T2DM had increased carbonyl stress and lower GLO1 protein expression (-78.8%), which inversely correlated with BMI, percent body fat, and HOMA-IR, while positively correlating with clamp-derived glucose disposal rates. T2DM also had lower NRF2 protein expression (-31.6%), which is a positive regulator of GLO1, while Keap1 protein expression, a negative regulator of GLO1, was elevated (207%). Additionally, insulin stimulation during the clamp had a differential effect on NRF2, Keap1, and MG-modified protein expression. These data suggest that dicarbonyl stress and the glyoxalase enzyme system are dysregulated in T2DM skeletal muscle and may underlie skeletal muscle insulin resistance. Whether these phenotypic differences contribute to the development of T2DM warrants further investigation.

  8. STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function

    Directory of Open Access Journals (Sweden)

    Kiviluoto Santeri

    2011-04-01

    enhanced Ca2+ influx through Orai1 and/or TRPC channels, leading to Ca2+-dependent apoptosis and muscle degeneration. In addition, human myopathies have been associated with dysfunctional SOCE. Immunodeficient patients harboring loss-of-function Orai1 mutations develop myopathies, while patients suffering from Duchenne muscular dystrophy display alterations in their Ca2+-handling proteins, including STIM proteins. In any case, the molecular determinants responsible for SOCE in human skeletal muscle and for dysregulated SOCE in patients of muscular dystrophy require further examination.

  9. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity

    DEFF Research Database (Denmark)

    Beck Jørgensen, Sebastian; O'Neill, Hayley M; Sylow, Lykke

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin...... of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy...... expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance....

  10. Assessment of satellite cell number and activity status in human skeletal muscle biopsies

    DEFF Research Database (Denmark)

    Mackey, Abigail; Kjaer, Michael; Charifi, Nadia

    2009-01-01

    The primary aim of our study was to validate the assessment of myonuclear and satellite cell number in biopsies from human skeletal muscle. We found that 25 type I and 25 type II fibers are sufficient to estimate the mean number of myonuclei per fiber. In contrast, the assessment of satellite cells...

  11. Hypoxia in Combination With Muscle Contraction Improves Insulin Action and Glucose Metabolism in Human Skeletal Muscle via the HIF-1α Pathway.

    Science.gov (United States)

    Görgens, Sven W; Benninghoff, Tim; Eckardt, Kristin; Springer, Christian; Chadt, Alexandra; Melior, Anita; Wefers, Jakob; Cramer, Andrea; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Al-Hasani, Hadi; Eckel, Jürgen

    2017-11-01

    Skeletal muscle insulin resistance is the hallmark of type 2 diabetes and develops long before the onset of the disease. It is well accepted that physical activity improves glycemic control, but the knowledge on underlying mechanisms mediating the beneficial effects remains incomplete. Exercise is accompanied by a decrease in intramuscular oxygen levels, resulting in induction of HIF-1α. HIF-1α is a master regulator of gene expression and might play an important role in skeletal muscle function and metabolism. Here we show that HIF-1α is important for glucose metabolism and insulin action in skeletal muscle. By using a genome-wide gene expression profiling approach, we identified RAB20 and TXNIP as two novel exercise/HIF-1α-regulated genes in skeletal muscle. Loss of Rab20 impairs insulin-stimulated glucose uptake in human and mouse skeletal muscle by blocking the translocation of GLUT4 to the cell surface. In addition, exercise/HIF-1α downregulates the expression of TXNIP , a well-known negative regulator of insulin action. In conclusion, we are the first to demonstrate that HIF-1α is a key regulator of glucose metabolism in skeletal muscle by directly controlling the transcription of RAB20 and TXNIP These results hint toward a novel function of HIF-1α as a potential pharmacological target to improve skeletal muscle insulin sensitivity. © 2017 by the American Diabetes Association.

  12. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Saltin, Bengt; Neufer, P. Darrell

    2003-01-01

    Endurance exercise training induces mitochondrial biogenesis in skeletal muscle. The peroxisome proliferator activated receptor co-activator 1a (PGC-1a) has recently been identified as a nuclear factor critical for coordinating the activation of genes required for mitochondrial biogenesis in cell...... culture and rodent skeletal muscle. To determine whether PGC-1a transcription is regulated by acute exercise and exercise training in human skeletal muscle, seven male subjects performed 4 weeks of one-legged knee extensor exercise training. At the end of training, subjects completed 3 h of two......-legged knee extensor exercise. Biopsies were obtained from the vastus lateralis muscle of both the untrained and trained legs before exercise and after 0, 2, 6 and 24 h of recovery. Time to exhaustion (2 min maximum resistance), as well as hexokinase II (HKII), citrate synthase and 3-hydroxyacyl...

  13. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts.

    Directory of Open Access Journals (Sweden)

    Maléne E Lindholm

    2016-09-01

    Full Text Available Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity.

  14. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup

    2014-01-01

    , we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...... obtained from healthy individuals before and after 4 h of insulin infusion. In total, we identified 207 phosphorylation sites in 95 mitochondrial proteins. Of these phosphorylation sites, 45% were identified in both basal and insulin-stimulated samples. Insulin caused a 2-fold increase in the number...... of different mitochondrial phosphopeptides (87 ± 7 vs 40 ± 7, p = 0.015) and phosphoproteins (46 ± 2 vs 26 ± 3, p = 0.005) identified in each mitochondrial preparation. Almost half of the mitochondrial phosphorylation sites (n = 94) were exclusively identified in the insulin-stimulated state and included...

  15. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training

    DEFF Research Database (Denmark)

    Olsen, Steen; Aagaard, Per; Kadi, Fawzi

    2006-01-01

    The present study investigated the influence of creatine and protein supplementation on satellite cell frequency and number of myonuclei in human skeletal muscle during 16 weeks of heavy-resistance training. In a double-blinded design 32 healthy, male subjects (19-26 years) were assigned to stren......The present study investigated the influence of creatine and protein supplementation on satellite cell frequency and number of myonuclei in human skeletal muscle during 16 weeks of heavy-resistance training. In a double-blinded design 32 healthy, male subjects (19-26 years) were assigned...

  16. Promotion of The Human Skeletal Heritage: A Milanese Perspective

    Directory of Open Access Journals (Sweden)

    Cristina Cattaneo

    2015-06-01

    Full Text Available The history and cultural heritage of a city can be evaluated not only through the study of the works of art, artifacts or buildings, but also through the examination of the remains of persons who walked the city in the past millennia. Therefore several thousands of skeletal remains found in Lombardia, especially in Milano, act as cultural assets, though in an the ethical scenario of full respect of human remains. In this way the skeletons tell a history concerning the conditions of health, the richness, culture and even violence, which may confirm, integrate or deny the historical sources when available. Preliminary studies performed on skeletons from different areas of Lombardia have already demonstrated the potential of skeletal material in highlighting for example the evolution of infectious diseases from the Roman age to the Middle Ages, the multiethnicity of Milan at the time of St Ambrose, the heavy labor of children which seems to be present among the Longobards who inhabited the geographic areas of Bergamo as well as Manzoni’s plague affecting the remains found under the Spanish walls. How were they different from us for what concerns life expectancy, diseases, interpersonal violence and lifestyle? In this the skeleton comes through as a true cultural asset.

  17. Insights into skeletal muscle development and applications in regenerative medicine.

    Science.gov (United States)

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Skeletal and total body volumes of human fetuses: assessment of reference data by spiral CT

    International Nuclear Information System (INIS)

    Braillon, Pierre M.; Buenerd, Annie; Bouvier, Raymonde; Lapillonne, Alexandre

    2002-01-01

    Objective: To define reference data for skeletal and total body volumes of normal human fetuses. Materials and methods: Spiral CT was used to assess the skeletal and total body volumes of 31 normal human stillborn infants with gestational age (GA) and body weight (BW) ranging from 14 to 41.5 weeks and 22 to 3,760 g, respectively. CT scans (slice thickness 2.7 mm, pitch 0.7) were performed within the first 24 h after delivery. Precise bone and soft-tissue windows were defined from analysis of the density along the diaphysis of the fetal long bones and from the measurement of a phantom that mimics soft tissues. Lengths and volumes were obtained from 3D reconstructions. The femur lengths measured from CT images (FLct) were compared with those provided by US studies (FLus). Results: Significant correlations (r>0.9) were found between BW, measured volumes of the entire skeleton or head, long-bone lengths, biparietal diameter and GA. Strong linear correlations (r>0.98) were observed between FLct and FLus. Conclusions: Skeletal and total body volume values obtained using spiral CT were significantly correlated with fetal biometric measurements. These data could complement those obtained in obstetric investigations with US. (orig.)

  19. Induction of GLUT-1 protein in adult human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Staehr, P

    2000-01-01

    Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscle...... fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed...... GLUT-1. In contrast to GLUT-1, GLUT-4 was expressed in all investigated muscle fibers. Although the significance of GLUT-1 in adult human muscle fibers appears limited, GLUT-1 may be of importance for the glucose supplies in immature and regenerating muscle....

  20. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle

    Directory of Open Access Journals (Sweden)

    Velleman Sandra G

    2011-03-01

    Full Text Available Abstract Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia, 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy, and 16wk (market age from two genetic lines: a randombred control line (RBC2 maintained without selection pressure, and a line (F selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of

  1. Protein translation, proteolysis and autophagy in human skeletal muscle atrophy after spinal cord injury.

    Science.gov (United States)

    Lundell, L S; Savikj, M; Kostovski, E; Iversen, P O; Zierath, J R; Krook, A; Chibalin, A V; Widegren, U

    2018-02-08

    Spinal cord injury-induced loss of skeletal muscle mass does not progress linearly. In humans, peak muscle loss occurs during the first 6 weeks postinjury, and gradually continues thereafter. The aim of this study was to delineate the regulatory events underlying skeletal muscle atrophy during the first year following spinal cord injury. Key translational, autophagic and proteolytic proteins were analysed by immunoblotting of human vastus lateralis muscle obtained 1, 3 and 12 months following spinal cord injury. Age-matched able-bodied control subjects were also studied. Several downstream targets of Akt signalling decreased after spinal cord injury in skeletal muscle, without changes in resting Akt Ser 473 and Akt Thr 308 phosphorylation or total Akt protein. Abundance of mTOR protein and mTOR Ser 2448 phosphorylation, as well as FOXO1 Ser 256 phosphorylation and FOXO3 protein, decreased in response to spinal cord injury, coincident with attenuated protein abundance of E3 ubiquitin ligases, MuRF1 and MAFbx. S6 protein and Ser 235/236 phosphorylation, as well as 4E-BP1 Thr 37/46 phosphorylation, increased transiently after spinal cord injury, indicating higher levels of protein translation early after injury. Protein abundance of LC3-I and LC3-II decreased 3 months postinjury as compared with 1 month postinjury, but not compared to able-bodied control subjects, indicating lower levels of autophagy. Proteins regulating proteasomal degradation were stably increased in response to spinal cord injury. Together, these data provide indirect evidence suggesting that protein translation and autophagy transiently increase, while whole proteolysis remains stably higher in skeletal muscle within the first year after spinal cord injury. © 2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  2. Potentiation of cGMP signaling increases oxygen delivery and oxidative metabolism in contracting skeletal muscle of older but not young humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Piil, Peter Bergmann; Egelund, Jon

    2015-01-01

    regulation remain unresolved. Cyclic guanosine monophosphate (cGMP) is one of the main second messengers that mediate smooth muscle vasodilation and alterations in cGMP signaling could, therefore, be one mechanism by which skeletal muscle perfusion is impaired with advancing age. The current study aimed...... to evaluate the effect of inhibiting the main enzyme involved in cGMP degradation, phosphodiesterase 5 (PDE5), on blood flow and O2 delivery in contracting skeletal muscle of young and older humans. A group of young (23 ± 1 years) and a group of older (72 ± 2 years) male human subjects performed submaximal...... in the older subjects correlated with the increase in leg O2 uptake (r (2) = 0.843). These findings suggest an insufficient O2 delivery to the contracting skeletal muscle of aged individuals and that reduced cGMP availability is a novel mechanism underlying impaired skeletal muscle perfusion with advancing age....

  3. The expression of myosin genes in developing skeletal muscle in the mouse embryo

    International Nuclear Information System (INIS)

    Lyons, G.E.; Ontell, M.; Cox, R.; Sassoon, D.; Buckingham, M.

    1990-01-01

    Using in situ hybridization, we have investigated the temporal sequence of myosin gene expression in the developing skeletal muscle masses of mouse embryos. The probes used were isoform-specific, 35S-labeled antisense cRNAs to the known sarcomeric myosin heavy chain and myosin alkali light chain gene transcripts. Results showed that both cardiac and skeletal myosin heavy chain and myosin light chain mRNAs were first detected between 9 and 10 d post coitum (p.c.) in the myotomes of the most rostral somites. Myosin transcripts appeared in more caudal somites at later stages in a developmental gradient. The earliest myosin heavy chain transcripts detected code for the embryonic skeletal (MHCemb) and beta-cardiac (MHC beta) isoforms. Perinatal myosin heavy chain (MHCpn) transcripts begin to accumulate at 10.5 d p.c., which is much earlier than previously reported. At this stage, MHCemb is the major MHC transcript. By 12.5 d p.c., MHCpn and MHCemb mRNAs are present to an equal extent, and by 15.5 d p.c. the MHCpn transcript is the major MHC mRNA detected. Cardiac MHC beta transcripts are always present as a minor component. In contrast, the cardiac MLC1A mRNA is initially more abundant than that encoding the skeletal MLC1F isoform. By 12.5 d p.c. the two MLC mRNAs are present at similar levels, and by 15.5 d p.c., MLC1F is the predominant MLC transcript detected. Transcripts for the ventricular/slow (MLC1V) and another fast skeletal myosin light chain (MLC3F) are not detected in skeletal muscle before 15 d p.c., which marks the beginning of the fetal stage of muscle development. This is the first stage at which we can detect differences in expression of myosin genes between developing muscle fibers. We conclude that, during the development of the myotome and body wall muscles, different myosin genes follow independent patterns of activation and acculumation

  4. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Serup, Annette Karen; Karstoft, Kristian

    2014-01-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hyper-caloric and high-fat diet regime. Muscle biopsies were taken before......-regulated by increased fatty acid availability. This suggests a time dependency in the up-regulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion......, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein could...

  5. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines.

    Science.gov (United States)

    Norouzi, Shaghayegh; Adulcikas, John; Sohal, Sukhwinder Singh; Myers, Stephen

    2018-01-01

    Zinc is a metal ion that is an essential cell signaling molecule. Highlighting this, zinc is an insulin mimetic, activating cellular pathways that regulate cellular homeostasis and physiological responses. Previous studies have linked dysfunctional zinc signaling with several disease states including cancer, obesity, cardiovascular disease and type 2 diabetes. The present study evaluated the insulin-like effects of zinc on cell signaling molecules including tyrosine, PRSA40, Akt, ERK1/2, SHP-2, GSK-3β and p38, and glucose oxidation in human and mouse skeletal muscle cells. Insulin and zinc independently led to the phosphorylation of these proteins over a 60-minute time course in both mouse and human skeletal muscle cells. Similarly, utilizing a protein array we identified that zinc could active the phosphorylation of p38, ERK1/2 and GSK-3B in human and ERK1/2 and GSK-3B in mouse skeletal muscle cells. Glucose oxidation assays were performed on skeletal muscle cells treated with insulin, zinc, or a combination of both and resulted in a significant induction of glucose consumption in mouse (pzinc alone. Insulin, as expected, increased glucose oxidation in mouse (pzinc and insulin did not augment glucose consumption in these cells. Zinc acts as an insulin mimetic, activating key molecules implicated in cell signaling to maintain glucose homeostasis in mouse and human skeletal muscle cells. Zinc is an important metal ion implicated in several biological processes. The role of zinc as an insulin memetic in activating key signaling molecules involved in glucose homeostasis could provide opportunities to utilize this ion therapeutically in treating disorders associated with dysfunctional zinc signaling.

  6. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development.

    Directory of Open Access Journals (Sweden)

    Miriam Aza-Carmona

    Full Text Available SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD and Langer mesomelic dysplasia (LMD, while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1 the natriuretic peptide precursor B gene (NPPB involved in the endochondral ossification signalling and directly activated by SHOX; and 2 Aggrecan (ACAN, a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9 via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.

  7. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development.

    Science.gov (United States)

    Aza-Carmona, Miriam; Barca-Tierno, Veronica; Hisado-Oliva, Alfonso; Belinchón, Alberta; Gorbenko-del Blanco, Darya; Rodriguez, Jose Ignacio; Benito-Sanz, Sara; Campos-Barros, Angel; Heath, Karen E

    2014-01-01

    SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.

  8. Development and external validation of nomograms to predict the risk of skeletal metastasis at the time of diagnosis and skeletal metastasis-free survival in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yang, Lin; Xia, Liangping; Wang, Yan; He, Shasha; Chen, Haiyang; Liang, Shaobo; Peng, Peijian; Hong, Shaodong; Chen, Yong

    2017-09-06

    The skeletal system is the most common site of distant metastasis in nasopharyngeal carcinoma (NPC); various prognostic factors have been reported for skeletal metastasis, though most studies have focused on a single factor. We aimed to establish nomograms to effectively predict skeletal metastasis at initial diagnosis (SMAD) and skeletal metastasis-free survival (SMFS) in NPC. A total of 2685 patients with NPC who received bone scintigraphy (BS) and/or 18F-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and 2496 patients without skeletal metastasis were retrospectively assessed to develop individual nomograms for SMAD and SMFS. The models were validated externally using separate cohorts of 1329 and 1231 patients treated at two other institutions. Five independent prognostic factors were included in each nomogram. The SMAD nomogram had a significantly higher c-index than the TNM staging system (training cohort, P = 0.005; validation cohort, P system (P skeletal metastasis, which may improve counseling and facilitate individualized management of patients with NPC.

  9. Overexpression of PGC-1α Increases Fatty Acid Oxidative Capacity of Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Nataša Nikolić

    2012-01-01

    Full Text Available We investigated the effects of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α overexpression on the oxidative capacity of human skeletal muscle cells ex vivo. PGC-1α overexpression increased the oxidation rate of palmitic acid and mRNA expression of genes regulating lipid metabolism, mitochondrial biogenesis, and function in human myotubes. Basal and insulin-stimulated deoxyglucose uptake were decreased, possibly due to upregulation of PDK4 mRNA. Expression of fast fiber-type gene marker (MHCIIa was decreased. Compared to skeletal muscle in vivo, PGC-1α overexpression increased expression of several genes, which were downregulated during the process of cell isolation and culturing. In conclusion, PGC-1α overexpression increased oxidative capacity of cultured myotubes by improving lipid metabolism, increasing expression of genes involved in regulation of mitochondrial function and biogenesis, and decreasing expression of MHCIIa. These results suggest that therapies aimed at increasing PGC-1α expression may have utility in treatment of obesity and obesity-related diseases.

  10. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    Science.gov (United States)

    Petrie, Michael A; Kimball, Amy L; McHenry, Colleen L; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p muscle contraction. Vibration induced FOXK2 (p muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.

  11. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    Science.gov (United States)

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P insulin sensitivity (both P insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. Copyright © 2016 the American Physiological Society.

  12. Real-time contrast imaging: a new method to monitor capillary recruitment in human forearm skeletal muscle.

    NARCIS (Netherlands)

    Mulder, A.H.; Dijk, A.P.J. van; Smits, P.; Tack, C.J.J.

    2008-01-01

    OBJECTIVE: Muscle capillary perfusion can be measured by contrast-enhanced ultrasound. We examined whether a less time-consuming ultrasound technique, called "real-time imaging," could be used to measure capillary recruitment in human forearm skeletal muscle. METHODS: We measured microvascular blood

  13. Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle

    DEFF Research Database (Denmark)

    D'Hulst, Gommaar; Sylow, Lykke; Hespel, Peter

    2015-01-01

    PURPOSE: To investigate how acute environmental hypoxia regulates blood glucose and downstream intramuscular insulin signaling after a meal in healthy humans. METHODS: Fifteen subjects were exposed for 4 h to normoxia (NOR) or to normobaric hypoxia (HYP, FiO2 = 0.11) in a randomized order 40 min ...... insulin intolerance developed independently of defects in conventional insulin signaling in skeletal muscle....

  14. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements

    OpenAIRE

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-01-01

    The limb skeletal elements that have unique morphology and distinct locations are developed from limb progenitors, derived from the lateral plate mesoderm. These skeletal elements arise during limb development. In this study, we show genetic evidence that function of Sall4 is essential prior to limb outgrowth for development of the anterior-proximal skeletal elements. Furthermore, genetic interaction between Sall4 and Gli3 is upstream of establishing Shh (Sonic hedgehog) expression, and there...

  15. Phenotypic characterization of miR-92a-/- mice reveals an important function of miR-92a in skeletal development.

    Directory of Open Access Journals (Sweden)

    Daniela Penzkofer

    Full Text Available MicroRNAs (miRNAs, miRs emerged as key regulators of gene expression. Germline hemizygous deletion of the gene that encodes the miR-17∼92 miRNA cluster was associated with microcephaly, short stature and digital abnormalities in humans. Mice deficient for the miR-17∼92 cluster phenocopy several features such as growth and skeletal development defects and exhibit impaired B cell development. However, the individual contribution of miR-17∼92 cluster members to this phenotype is unknown. Here we show that germline deletion of miR-92a in mice is not affecting heart development and does not reduce circulating or bone marrow-derived hematopoietic cells, but induces skeletal defects. MiR-92a-/- mice are born at a reduced Mendelian ratio, but surviving mice are viable and fertile. However, body weight of miR-92a-/- mice was reduced during embryonic and postnatal development and adulthood. A significantly reduced body and skull length was observed in miR-92a-/- mice compared to wild type littermates. µCT analysis revealed that the length of the 5th mesophalanx to 5th metacarpal bone of the forelimbs was significantly reduced, but bones of the hindlimbs were not altered. Bone density was not affected. These findings demonstrate that deletion of miR-92a is sufficient to induce a developmental skeletal defect.

  16. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements.

    Science.gov (United States)

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-04-21

    Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.

  17. New Standardised Visual Forms for Recording the Presence of Human Skeletal Elements in Archaeological and Forensic Contexts

    Directory of Open Access Journals (Sweden)

    Mirjana Roksandic

    2003-02-01

    Full Text Available Even though visual recording forms are commonly used among human osteologists, very few of them are published. Those that are lack either detail or manipulability. Most anthropologists have to adapt these or develop their own forms when they start working on skeletal material, or have to accompany the visual forms with detailed, often time consuming, textual inventories. Three recording forms are proposed here: for adult, subadult and newborn skeletons. While no two-dimensional form will fit the requirements of every human osteologist, these forms are sufficiently detailed and easy to use. Printed or downloaded, they are published here in the belief that, with feedback from the anthropological community at large, they have the potential to become standard tools in data recording.

  18. Expression of perilipins in human skeletal muscle in vitro and in vivo in relation to diet, exercise and energy balance

    DEFF Research Database (Denmark)

    Gjelstad, I M F; Haugen, F; Gulseth, H L

    2011-01-01

    , enhanced the expression of perilipin 2 and 3. Perilipin 1 mRNA correlated positively with body fat mass, whereas none of the perilipins were associated with insulin sensitivity. In conclusion, all perilipins mRNAs were expressed in human skeletal muscle. Diet as well as endurance exercise modulated......The perilipin proteins enclose intracellular lipid droplets. We describe the mRNA expression of the five perilipins in human skeletal muscle in relation to fatty acid supply, exercise and energy balance. We observed that all perilipins were expressed in skeletal muscle biopsies with the highest m......RNA levels of perilipin 2, 4 and 5. Cultured myotubes predominantly expressed perilipin 2 and 3. In vitro, incubation of myotubes with fatty acids enhanced mRNA expression of perilipin 1, 2 and 4. In vivo, low fat diet increased mRNA levels of perilipin 3 and 4. Endurance training, but not strength training...

  19. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Halberg, Nils; Hillig, Thore

    2005-01-01

    Intracellular mechanisms regulating fat oxidation were investigated in human skeletal muscle during exercise. Eight young, healthy, moderately trained men performed bicycle exercise (60 min, 65% peak O2 consumption) on two occasions, where they ingested either 1) a high-carbohydrate diet (H-CHO) ...

  20. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.

    Science.gov (United States)

    Shi, Lei; Zhou, Bo; Li, Pinghua; Schinckel, Allan P; Liang, Tingting; Wang, Han; Li, Huizhi; Fu, Lingling; Chu, Qingpo; Huang, Ruihua

    2015-09-01

    MicroRNAs (miRNAs or miRs) play a critical role in skeletal muscle development. In a previous study we observed that miR-128 was highly expressed in skeletal muscle. However, its function in regulating skeletal muscle development is not clear. Our hypothesis was that miR-128 is involved in the regulation of the proliferation and differentiation of skeletal myoblasts. In this study, through bioinformatics analyses, we demonstrate that miR-128 specifically targeted mRNA of myostatin (MSTN), a critical inhibitor of skeletal myogenesis, at coding domain sequence (CDS) region, resulting in down-regulating of myostatin post-transcription. Overexpression of miR-128 inhibited proliferation of mouse C2C12 myoblast cells but promoted myotube formation; whereas knockdown of miR-128 had completely opposite effects. In addition, ectopic miR-128 regulated the expression of myogenic factor 5 (Myf5), myogenin (MyoG), paired box (Pax) 3 and 7. Furthermore, an inverse relationship was found between the expression of miR-128 and MSTN protein expression in vivo and in vitro. Taken together, these results reveal that there is a novel pathway in skeletal muscle development in which miR-128 regulates myostatin at CDS region to inhibit proliferation but promote differentiation of myoblast cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Reactive oxygen species are involved in lipopolysaccharide-induced intrauterine growth restriction and skeletal development retardation in mice.

    Science.gov (United States)

    Xu, De-Xiang; Chen, Yuan-Hua; Zhao, Lei; Wang, Hua; Wei, Wei

    2006-12-01

    Maternal infection is a cause of adverse developmental outcomes including embryonic resorption, intrauterine fetal death, and preterm labor. Lipopolysaccharide-induced developmental toxicity at early gestational stages has been well characterized. The purpose of the present study was to investigate the effects of maternal lipopolysaccharide exposure at late gestational stages on intrauterine fetal growth and skeletal development and to assess the potential role of reactive oxygen species in lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation. The timed pregnant CD-1 mice were intraperitoneally injected with lipopolysaccharide (25 to 75 microg/kg per day) on gestational day 15 to 17. To investigate the role of reactive oxygen species on lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation, the pregnant mice were injected with alpha-phenyl-N-t-butylnitrone (100 mg/kg, intraperitoneally) at 30 minutes before lipopolysaccharide (75 microg/kg per day, intraperitoneally), followed by an additional dose of alpha-phenyl-N-t-butylnitrone (50 mg/kg, intraperitoneally) at 3 hours after lipopolysaccharide. The number of live fetuses, dead fetuses, and resorption sites was counted on gestational day 18. Live fetuses in each litter were weighed. Crown-rump and tail lengths were examined and skeletal development was evaluated. Maternal lipopolysaccharide exposure significantly increased fetal mortality, reduced fetal weight and crown-rump and tail lengths of live fetuses, and retarded skeletal ossification in caudal vertebrae, anterior and posterior phalanges, and supraoccipital bone in a dose-dependent manner. Alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, almost completely blocked lipopolysaccharide-induced fetal death (63.2% in lipopolysaccharide group versus 6.5% in alpha-phenyl-N-t-butylnitrone + lipopolysaccharide group, P intrauterine growth restriction

  2. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim

    2014-01-01

    Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design. In t...... accumulation and attenuates peripheral insulin resistance in obese mice........ In this study, we investigated whether expression of a human apoB transgene affects triglyceride accumulation and insulin sensitivity in skeletal muscle in fat fed obese mice. Results. Expression of apoB and MTP mRNA and the human apoB transgene was seen in skeletal muscle of the transgene mice. Human apo......Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design...

  3. Localization and function of ATP-sensitive potassium channels in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva

    2003-01-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique...... or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements. With the microdialysis technique, it was demonstrated that local application of the KATP channel...... to in vitro conditions, the present study demonstrated that under in vivo conditions the KATP channels are active at rest and contribute to the accumulation of interstitial K+....

  4. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70. RESULTS: In ACT and RES, but not in END, a fibre type specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II>I) was found for HSP27 in subjects from ACT (6 of 12...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training...

  5. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise.

    Science.gov (United States)

    Camera, Donny M; Burniston, Jatin G; Pogson, Mark A; Smiles, William J; Hawley, John A

    2017-12-01

    It is generally accepted that muscle adaptation to resistance exercise (REX) training is underpinned by contraction-induced, increased rates of protein synthesis and dietary protein availability. By using dynamic proteome profiling (DPP), we investigated the contribution of both synthesis and breakdown to changes in abundance on a protein-by-protein basis in human skeletal muscle. Age-matched, overweight males consumed 9 d of a high-fat, low-carbohydrate diet during which time they either undertook 3 sessions of REX or performed no exercise. Precursor enrichment and the rate of incorporation of deuterium oxide into newly synthesized muscle proteins were determined by mass spectrometry. Ninety proteins were included in the DPP, with 28 proteins exhibiting significant responses to REX. The most common pattern of response was an increase in turnover, followed by an increase in abundance with no detectable increase in protein synthesis. Here, we provide novel evidence that demonstrates that the contribution of synthesis and breakdown to changes in protein abundance induced by REX differ on a protein-by-protein basis. We also highlight the importance of the degradation of individual muscle proteins after exercise in human skeletal muscle.-Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., Hawley, J. A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. © FASEB.

  6. [Effects of lycopene on the skeletal system].

    Science.gov (United States)

    Sołtysiak, Patrycja; Folwarczna, Joanna

    2015-02-21

    Antioxidant substances of plant origin, such as lycopene, may favorably affect the skeletal system. Lycopene is a carotenoid pigment, responsible for characteristic red color of tomatoes. It is believed that lycopene may play a role in the prevention of various diseases; despite theoretical premises and results of experimental studies, the effectiveness of lycopene has not yet been clearly demonstrated in studies carried out in humans. The aim of the study was to present the current state of knowledge on the effects of lycopene on the osseous tissue in in vitro and in vivo experimental models and on the skeletal system in humans. Results of the studies indicate that lycopene may inhibit bone resorption. Favorable effects of high doses of lycopene on the rat skeletal system in experimental conditions, including the model of osteoporosis induced by estrogen deficiency, have been demonstrated. The few epidemiological and clinical studies, although not fully conclusive, suggest a possible beneficial effect of lycopene present in the diet on the skeletal system.

  7. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Jensen, Charlotte H; Gutierrez, Gloria

    2004-01-01

    Dlk-1/Pref-1 was identified as a novel regulator of human skeletal stem cell differentiation. Dlk1/Pref-1 is expressed in bone and cultured osteoblasts, and its constitutive overexpression led to inhibition of osteoblast and adipocyte differentiation of human marrow stromal cells. INTRODUCTION......: Molecular control of human mesenchymal stem cell (hMSC) differentiation into osteoblasts and adipocytes is not known. In this study, we examined the role of delta-like 1/preadipocyte factor-1 (Dlk1/Pref-1) in regulating the differentiation of hMSCs. MATERIALS AND METHODS: As a model for hMSCs, we have...... was used to confirm the in vitro effect of Dlk/Pref-1 on bone formation. RESULTS: Dlk1/Pref-1 was found to be expressed in fetal and adult bone, hMSCs, and some osteoblastic cell lines. A retroviral vector containing the human Dlk1/Pref-1 cDNA was used to create a cell line (hMSC-dlk1) expressing high...

  8. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Paulsen, G; Schjerling, P

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed in relation to pain and injuries in skeletal muscle, but may adversely affect muscle adaptation probably via inhibition of prostaglandin synthesis. Induction of heat shock proteins (HSP) represents an important adaptive response...... in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal...

  9. In vivo Phosphoproteome of Human Skeletal Muscle Revealed by Phosphopeptide Enrichment and HPLC-ESI-MS/MS

    DEFF Research Database (Denmark)

    Højlund, Kurt; Bowen, Benjamin P; Hwang, Hyonson

    2009-01-01

    volunteers. Trypsin digestion of 3-5 mg human skeletal muscle protein was followed by phosphopeptide enrichment using SCX and TiO2. The resulting phosphopeptides were analyzed by HPLC-ESI-MS/MS. Using this unbiased approach, we identified 306 distinct in vivo phosphorylation sites in 127 proteins, including...

  10. Skeletal development in Acropora palmata (Lamarck 1816): a scanning electron microscope (SEM) comparison demonstrating similar mechanisms of skeletal extension in axial versus encrusting growth

    Science.gov (United States)

    Gladfelter, E. H.

    2007-12-01

    Many Acropora palmata colonies consist of an encrusting basal portion and erect branches. Linear growth of the skeleton results in extension along the substrate (encrusting growth), lengthening of branches (axial growth) and thickening of branches and crust (radial growth). Scanning Electron Microscopy is used to compare the mechanisms of skeletal extension between encrusting growth and axial growth. In encrusting growth, the distal margin of the skeleton lacks corallites (which develop about 1 mm from the edge); in contrast, in axial growth, axial corallites along the branch tip form the distal portion of the skeleton. In both locations, the distal margin of the skeleton consists of a lattice-like structure composed of rods that extend from the body of the skeleton and bars that connect these rods. An actively extending skeleton is characterized by sharply pointed rods and partially developed bars. Distal growth of rods (and formation of bars) is effected by the formation of new sclerodermites. Each sclerodermite begins with the deposition of fusiform crystals (that range in length from 1 to 5 μm). These provide a surface for nucleation and growth of spherulitic tufts, clusters of short (<1 μm long) aragonite needles. The needles that are oriented perpendicular to the axis of the skeletal element (rod or bar), and perpendicular to the overlying calicoblastic epithelium, continue extension to appear on the surface of the skeleton as 10-15 μm wide bundles (of needle tips) called fasciculi. However, some crusts that abut competitors for space have a different morphology of skeletal elements (rods and bars). The distal edge of these crusts terminates in blunt coalescing rods, and bars that are fully formed. Absence of fusiform crystals, lack of sharply pointed rods and bars, and full development of sclerodermites characterize a skeletal region that has ceased, perhaps only temporarily, skeletal extension.

  11. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    -specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose......Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type......) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P

  12. Omega-3 Fatty Acids and Skeletal Muscle Health

    Directory of Open Access Journals (Sweden)

    Stewart Jeromson

    2015-11-01

    Full Text Available Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle.

  13. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications.

    Science.gov (United States)

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu; Khademhosseini, Ali

    2014-10-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.

  14. In vivo measurements of T1 relaxation times of 31P-metabolites in human skeletal muscle

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Henriksen, O

    1989-01-01

    The T1 relaxation times were estimated for 31P-metabolites in human skeletal muscle. Five healthy volunteers were examined in a 1.5 Tesla wholebody imaging system using an inversion recovery pulse sequence. The calculated T1 relaxation times ranged from 5.517 sec for phosphocreatine to 3.603 sec...

  15. Skeletal 212Pb retention following 224Ra injection: extrapolation of animal data to adult humans

    International Nuclear Information System (INIS)

    Schlenker, R.A.

    1988-01-01

    Two methods of interspecies extrapolation, one based on a correlation of skeletal 212 Pb/ 224 Ra with body weight, the other based on the mechanistic relationship between skeletal 212 Pb/ 224 Ra and reciprocal bone surface-to-volume ratio, lead to the conclusion that the retention of 212 Pb in the adult human skeleton is approximately complete a few days after injection. The correlation-based method gives most probable values for 212 Pb/ 224 Ra of 1.0 and 1.1 at 2 d and 7 d after injection, compared with values of 1.05 and 1.27 expected at these same times if the retention of 212 Pb were complete from the time of injection and if no 212 Pb were in the injection solution. The range of values corresponding to one geometric standard error on either side of the most probable value is 0.87 to 1.21 at 2 d post-injection. With the method based on the reciprocal bone surface-to-volume ratio, the best estimate of 212 Pb/ 224 Ra at 2 d after injection is 0.88, equal to the value observed in young adult beagles. An alternative interpretation of the results of this latter method leads to the conclusion that retention is complete, with 212 Pb/ 224 Ra equal to 1.0 for a 212 Pb-free injection solution and 1.1 for a solution containing 212 Pb in secular equilibrium with 224 Ra. This work, which uses 224 Ra daughter product retention data from mice, rats and dogs following 224Ra injection, provides a scientific foundation for retention assumptions made in the calculation of mean skeletal dose for adult humans. There now appear to be few uncertainties in these latter dose values, stemming from inaccurate retention assumptions; but substantial uncertainties remain in the mean skeletal dose values for juveniles and in the endosteal tissue doses regardless of age

  16. Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males.

    Science.gov (United States)

    Owens, Daniel J; Webber, Daniel; Impey, Samuel G; Tang, Jonathan; Donovan, Timothy F; Fraser, William D; Morton, James P; Close, Graeme L

    2014-06-01

    Vitamin D may be a regulator of skeletal muscle function, although human trials investigating this hypothesis are limited to predominantly elderly populations. We aimed to assess the effect of oral vitamin D3 in healthy young males upon skeletal muscle function. Participants (n = 29) received an oral dose of 10,000 IU day(-1) vitamin D3 (VITD) or a visually identical placebo (PLB) for 3 months. Serum 25[OH]D and intact parathyroid hormone (iPTH) were measured at baseline and at week 4, 8 and 12. Muscle function was assessed in n = 22 participants by isokinetic dynamometry and percutaneous isometric electromyostimulation at baseline and at week 6 and 12. Baseline mean total serum 25[OH]D was 40 ± 17 and 41 ± 20 nmol L(-1) for PLB and VITD, respectively. VITD showed a significant improvement in total 25[OH]D at week 4 (150 ± 31 nmol L(-1)) that remained elevated throughout the trial (P L(-1)) compared with baseline. Despite marked increases in total serum 25[OH]D in VITD and a decrease in PLB, there were no significant changes in any of the muscle function outcome measures at week 6 or 12 for either group (P > 0.05). Elevating total serum 25[OH]D to concentrations > 120 nmol L(-1) has no effect on skeletal muscle function. We postulate that skeletal muscle function is only perturbed in conditions of severe deficiency (L(-1)).

  17. Beneath the surface of water. Hydraulic structures and human skeletal remains in Ancient Italy

    Directory of Open Access Journals (Sweden)

    Vera Zanoni

    2013-12-01

    Full Text Available Recent findings from the area of Modena, in Northern Italy, have revitalized the debate on the association between human skeletal remains and artificial hydraulic structures. In this paper, our intention is to assemble the relevant archaeological and anthropological data on the matter in order to establish whether these findings are exceptional and isolated or indicate instead a structured and specific cultural behaviour which persists through time.

  18. The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes.

    Science.gov (United States)

    Dos Santos, Julia Matzenbacher; de Oliveira, Denise Silva; Moreli, Marcos Lazaro; Benite-Ribeiro, Sandra Aparecida

    2018-04-20

    Reduced cellular response to insulin in skeletal muscle is one of the major components of the development of type 2 diabetes (T2D). Mitochondrial dysfunction involves in the accumulation of toxic reactive oxygen species (ROS) that leads to insulin resistance. The aim of this study was to verify the involvement of mitochondrial DNA damage at ROS generation in skeletal muscle during development of T2D. Wistar rats were fed a diet containing 60% fat over 8 weeks and at day 14 a single injection of STZ (25 mg/kg) was administered (T2D-induced). Control rats received standard food and an injection of citrate buffer. Blood and soleus muscle were collected. Abdominal fat was quantified as well as glucose, triglyceride, LDL, HDL, and total cholesterol in plasma and mtDNA copy number, cytochrome b (cytb) mRNA, 8-hydroxyguanosine, and 8-isoprostane (a marker of ROS) in soleus muscle. T2D-induced animal presented similar characteristics to humans that develop T2D such as changes in blood glucose, abdominal fat, LDL, HDL and cholesterol total. In soleus muscle 8-isoprostane, mtDNA copy number and 8-hydroxyguanosine were increased, while cytb mRNA was decreased in T2D. Our results suggest that in the development of T2D, when risks factors of T2D are present, intracellular oxidative stress increases in skeletal muscle and is associated with a decrease in cytb transcription. To overcome this process mtDNA increased but due to the proximity of ROS generation, mtDNA remains damaged by oxidation leading to an increase in ROS in a vicious cycle accounting to the development of insulin resistance and further T2D.

  19. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Directory of Open Access Journals (Sweden)

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  20. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    Science.gov (United States)

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases.

  1. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, Henning; Gemmer, Carsten

    2002-01-01

    The vascular endothelium is an important mediator of tissue vasodilatation, yet the role of the specific substances, nitric oxide (NO) and prostaglandins (PG), in mediating the large increases in muscle perfusion during exercise in humans is unclear. Quadriceps microvascular blood flow......, respectively (P exercise in humans. These findings demonstrate an important synergistic role of NO and PG for skeletal muscle vasodilatation and hyperaemia during muscular contraction....... was quantified by near infrared spectroscopy and indocyanine green in six healthy humans during dynamic knee extension exercise with and without combined pharmacological inhibition of NO synthase (NOS) and PG by L-NAME and indomethacin, respectively. Microdialysis was applied to determine interstitial release...

  2. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production.

    Science.gov (United States)

    Courtland, Hayden-William; Sun, Hui; Beth-On, Mordechay; Wu, Yingjie; Elis, Sebastien; Rosen, Clifford J; Yakar, Shoshana

    2011-04-01

    Deficiencies in either growth hormone (GH) or insulin-like growth factor 1 (IGF-1) are associated with reductions in bone size during growth in humans and animal models. Liver-specific IGF-1-deficient (LID) mice, which have 75% reductions in serum IGF-1, were created previously to separate the effects of endocrine (serum) IGF-1 from autocrine/paracrine IGF-1. However, LID mice also have two- to threefold increases in GH, and this may contribute to the observed pubertal skeletal phenotype. To clarify the role of GH in skeletal development under conditions of significantly reduced serum IGF-1 levels (but normal tissue IGF-1 levels), we studied the skeletal response of male LID and control mice to GH inhibition by pegvisomant from 4 to 8 weeks of age. Treatment of LID mice with pegvisomant resulted in significant reductions in body weight, femur length (Le), and femur total area (Tt.Ar), as well as further reductions in serum IGF-1 levels by 8 weeks of age, compared with the mean values of vehicle-treated LID mice. Reductions in both Tt.Ar and Le were proportional after treatment with pegvisomant. On the other hand, the relative amount of cortical tissue formed (RCA) in LID mice treated with pegvisomant was significantly less than that in both vehicle-treated LID and control mice, indicating that antagonizing GH action, either directly (through GH receptor signaling inhibition) or indirectly (through further reductions in serum/tissue IGF-1 levels), results in disproportionate reductions in the amount of cortical bone formed. This resulted in bones with significantly reduced mechanical properties (femoral whole-bone stiffness and work to failure were markedly decreased), suggesting that compensatory increases of GH in states of IGF-1 deficiency (LID mice) act to protect against a severe inhibition of bone modeling during growth, which otherwise would result in bones that are too weak for normal and/or extreme loading conditions. Copyright © 2011 American Society for

  3. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.

    Science.gov (United States)

    Pecorella, Shelly R H; Potter, Jennifer V F; Cherry, Anne D; Peacher, Dionne F; Welty-Wolf, Karen E; Moon, Richard E; Piantadosi, Claude A; Suliman, Hagir B

    2015-10-15

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. Copyright © 2015 the American Physiological Society.

  4. Pharmacological Inhibition of Protein Kinase G1 Enhances Bone Formation by Human Skeletal Stem Cells Through Activation of RhoA-Akt Signaling

    DEFF Research Database (Denmark)

    Kermani, Abbas Jafari; Siersbaek, Majken S; Chen, Li

    2015-01-01

    for several malignant and nonmalignant conditions. We screened a library of kinase inhibitors to identify small molecules that enhance bone formation by human skeletal (stromal or mesenchymal) stem cells (hMSC). We identified H-8 (known to inhibit protein kinases A, C, and G) as a potent enhancer of ex vivo......Development of novel approaches to enhance bone regeneration is needed for efficient treatment of bone defects. Protein kinases play a key role in regulation of intracellular signal transduction pathways, and pharmacological targeting of protein kinases has led to development of novel treatments...

  5. Suppression of skeletal muscle signal using a crusher coil: A human cardiac (31) p-MR spectroscopy study at 7 tesla.

    Science.gov (United States)

    Schaller, Benoit; Clarke, William T; Neubauer, Stefan; Robson, Matthew D; Rodgers, Christopher T

    2016-03-01

    The translation of sophisticated phosphorus MR spectroscopy ((31)P-MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac (31)P spectra at 7T. We introduce the first surface-spoiling crusher coil for human cardiac (31)P-MRS at 7T. A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac (31)P-MRS at 7T. In a phantom, residual signals were 50 ± 10% with BISTRO (B1 -insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). A crusher coil is an SAR-efficient alternative for selectively suppressing skeletal muscle during cardiac (31)P-MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR-prohibitive, without compromising skeletal muscle suppression. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.

  6. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Rasmussen, Lotte Klejs; Kadi, Fawzi

    2016-01-01

    muscles of one leg. Muscle biopsies were collected from the vastus lateralis muscles before and after stimulation (2.5 h and 2, 7, and 30 d) and were assessed for satellite cells and regeneration by immunohistochemistry and real-time RT-PCR, and we also measured telomere length. After injury, and compared...... activation of satellite cells and muscle remodeling during large-scale regeneration of injured human skeletal muscle.-Mackey, A. L., Rasmussen, L. K., Kadi, F., Schjerling, P., Helmark, I. C., Ponsot, E., Aagaard, P., Durigan, J. L. Q., Kjaer, M. Activation of satellite cells and the regeneration of human......With this study we investigated the role of nonsteroidal anti-inflammatory drugs (NSAIDs) in human skeletal muscle regeneration. Young men ingested NSAID [1200 mg/d ibuprofen (IBU)] or placebo (PLA) daily for 2 wk before and 4 wk after an electrical stimulation-induced injury to the leg extensor...

  7. Skeletal Dysplasias Associated with Mild Myopathy—A Clinical and Molecular Review

    Directory of Open Access Journals (Sweden)

    Katarzyna A. Piróg

    2010-01-01

    Full Text Available Musculoskeletal system is a complex assembly of tissues which acts as scaffold for the body and enables locomotion. It is often overlooked that different components of this system may biomechanically interact and affect each other. Skeletal dysplasias are diseases predominantly affecting the development of the osseous skeleton. However, in some cases skeletal dysplasia patients are referred to neuromuscular clinics prior to the correct skeletal diagnosis. The muscular complications seen in these cases are usually mild and may stem directly from the muscle defect and/or from the altered interactions between the individual components of the musculoskeletal system. A correct early diagnosis may enable better management of the patients and a better quality of life. This paper attempts to summarise the different components of the musculoskeletal system which are affected in skeletal dysplasias and lists several interesting examples of such diseases in order to enable better understanding of the complexity of human musculoskeletal system.

  8. [Molecular mechanisms of skeletal muscle hypertrophy].

    Science.gov (United States)

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  9. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise......Exercise induces free oxygen radicals that cause oxidative stress, and metallothioneins (MTs) are increased in states of oxidative stress and possess anti-apoptotic effects. We therefore studied expression of the antioxidant factors metallothionein I and II (MT-I + II) in muscle biopsies obtained...... in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...

  10. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  11. Skeletal muscle phosphatidylcholine fatty acids and insulin sensitivity in normal humans.

    Science.gov (United States)

    Clore, J N; Li, J; Gill, R; Gupta, S; Spencer, R; Azzam, A; Zuelzer, W; Rizzo, W B; Blackard, W G

    1998-10-01

    The fatty acid composition of skeletal muscle membrane phospholipids (PL) is known to influence insulin responsiveness in humans. However, the contribution of the major PL of the outer (phosphatidylcholine, PC) and inner (phosphatidylethanolamine, PE) layers of the sarcolemma to insulin sensitivity is not known. Fatty acid composition of PC and PE from biopsies of vastus lateralis from 27 normal men and women were correlated with insulin sensitivity determined by the hyperinsulinemic euglycemic clamp technique at insulin infusion rates of 0.4, 1.0, and 10.0 mU . kg-1 . min-1. Significant variation in the half-maximal insulin concentration (ED50) was observed in the normal volunteers (range 24.0-146.0 microU/ml), which correlated directly with fasting plasma insulin (r = 0.75, P insulin sensitivity was observed in PE (NS). These studies suggest that the fatty acid composition of PC may be of particular importance in the relationship between fatty acids and insulin sensitivity in normal humans.

  12. Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cells.

    Science.gov (United States)

    Hjorth, M; Pourteymour, S; Görgens, S W; Langleite, T M; Lee, S; Holen, T; Gulseth, H L; Birkeland, K I; Jensen, J; Drevon, C A; Norheim, F

    2016-05-01

    Some health benefits of exercise may be explained by an altered secretion of myokines. Because previous focus has been on upregulated myokines, we screened for downregulated myokines and identified myostatin. We studied the expression of myostatin in relation to exercise and dysglycaemia in skeletal muscle, adipose tissue and plasma. We further examined some effects of myostatin on energy metabolism in primary human muscle cells and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. Sedentary men with or without dysglycaemia underwent a 45-min acute bicycle test before and after 12 weeks of combined endurance and strength training. Blood samples and biopsies from m. vastus lateralis and adipose tissue were collected. Myostatin mRNA expression was reduced in skeletal muscle after acute as well as long-term exercise and was even further downregulated by acute exercise on top of 12-week training. Furthermore, the expression of myostatin at baseline correlated negatively with insulin sensitivity. Myostatin expression in the adipose tissue increased after 12 weeks of training and correlated positively with insulin sensitivity markers. In cultured muscle cells but not in SGBS cells, myostatin promoted an insulin-independent increase in glucose uptake. Furthermore, muscle cells incubated with myostatin had an enhanced rate of glucose oxidation and lactate production. Myostatin was differentially expressed in the muscle and adipose tissue in relation to physical activity and dysglycaemia. Recombinant myostatin increased the consumption of glucose in human skeletal muscle cells, suggesting a complex regulatory role of myostatin in skeletal muscle homeostasis. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Roles of sedentary aging and lifelong physical activity on exchange of glutathione across exercising human skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Cabo, Helena

    2014-01-01

    Reactive oxygen species (ROS) are important signaling molecules with regulatory functions, and in young and adult organisms, the formation of ROS is increased during skeletal muscle contractions. However, ROS can be deleterious to cells when not sufficiently counterbalanced by the antioxidant sys...... underlying skeletal muscle and vascular dysfunction with sedentary aging. Lifelong physical activity up-regulates antioxidant systems which may be one of the mechanisms underlying the lack of exercise-induced increase in GSSG....... system. Aging is associated with accumulation of oxidative damage to lipids, DNA and proteins. Given the pro-oxidant effect of skeletal muscle contractions, this effect of age could be a result of excessive ROS formation. We evaluated the effect of acute exercise on changes in blood redox state across...... the leg of young (23±1 years) and older (66±2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) form of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62±2 years) were included...

  14. Methods for the determination of skeletal muscle blood flow: development, strengths and limitations

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Mortensen, Stefan P.; Hellsten, Ylva

    2018-01-01

    Since the first measurements of limb blood flow at rest and during nerve stimulation were conducted in the late 1800s, a number of methods have been developed for the determination of limb and skeletal muscle blood flow in humans. The methods, which have been applied in the study of aspects...... such as blood flow regulation, oxygen uptake and metabolism, differ in terms of strengths and degree of limitations but most have advantages for specific settings. The purpose of this review is to describe the origin and the basic principles of the methods, important aspects and requirements of the procedures....... One of the earliest methods, venous occlusion plethysmography, is a noninvasive method which still is extensively used and which provides similar values as other more direct blood flow methods such as ultrasound Doppler. The constant infusion thermodilution method remains the most appropriate...

  15. Suppression of skeletal muscle signal using a crusher coil: A human cardiac 31p‐MR spectroscopy study at 7 tesla

    Science.gov (United States)

    Clarke, William T.; Neubauer, Stefan; Robson, Matthew D.; Rodgers, Christopher T.

    2015-01-01

    Purpose The translation of sophisticated phosphorus MR spectroscopy (31P‐MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac 31P spectra at 7T. We introduce the first surface‐spoiling crusher coil for human cardiac 31P‐MRS at 7T. Methods A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac 31P‐MRS at 7T. Results In a phantom, residual signals were 50 ± 10% with BISTRO (B1‐insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). Conclusion A crusher coil is an SAR‐efficient alternative for selectively suppressing skeletal muscle during cardiac 31P‐MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR‐prohibitive, without compromising skeletal muscle suppression. Magn Reson Med 75:962–972, 2016. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:25924813

  16. Applying Next Generation Sequencing to Skeletal Development and Disease

    OpenAIRE

    Bowen, Margot Elizabeth

    2013-01-01

    Next Generation Sequencing (NGS) technologies have dramatically increased the throughput and lowered the cost of DNA sequencing. In this thesis, I apply these technologies to unresolved questions in skeletal development and disease. Firstly, I use targeted re-sequencing of genomic DNA to identify the genetic cause of the cartilage tumor syndrome, metachondromatosis (MC). I show that the majority of MC patients carry heterozygous loss-of-function mutations in the PTPN11 gene, which encodes a p...

  17. Effects of acute exercise on gene expression in exercising and non-exercising human skeletal muscle

    NARCIS (Netherlands)

    Catoire, Milene; Mensink, Marco; Boekschoten, Mark; Hangelbroek, Roland; Muller, Michael; Schrauwen, Patricht; Kersten, Sander

    2012-01-01

    Background: Exercising is know to have an effect on exercising skeletal muscle, but unkown is the effect on non-exercising skeletal muscle. Gene expression changes in the non-exercising skeletal muscle would point to a signalling role of skeletal muscle

  18. A Study on Generic Representation of Skeletal Remains Replication of Prehistoric Burial

    Directory of Open Access Journals (Sweden)

    C.-W. Shao

    2015-08-01

    Full Text Available Generic representation of skeletal remains from burials consists of three dimensions which include physical anthropologists, replication technicians, and promotional educators. For the reason that archaeological excavation is irreversible and disruptive, detail documentation and replication technologies are surely needed for many purposes. Unearthed bones during the process of 3D digital scanning need to go through reverse procedure, 3D scanning, digital model superimposition, rapid prototyping, mould making, and the integrated errors generated from the presentation of colours and textures are important issues for the presentation of replicate skeleton remains among professional decisions conducted by physical anthropologists, subjective determination of makers, and the expectations of viewers. This study presents several cases and examines current issues on display and replication technologies for human skeletal remains of prehistoric burials. This study documented detail colour changes of human skeleton over time for the reference of reproduction. The tolerance errors of quantification and required technical qualification is acquired according to the precision of 3D scanning, the specification requirement of rapid prototyping machine, and the mould making process should following the professional requirement for physical anthropological study. Additionally, the colorimeter is adopted to record and analyse the “colour change” of the human skeletal remains from wet to dry condition. Then, the “colure change” is used to evaluate the “real” surface texture and colour presentation of human skeletal remains, and to limit the artistic presentation among the human skeletal remains reproduction. The“Lingdao man No.1”, is a well preserved burial of early Neolithic period (8300 B.P. excavated from Liangdao-Daowei site, Matsu, Taiwan , as the replicating object for this study. In this study, we examined the reproduction procedures step by

  19. Selection, processing and clinical application of muscle-skeletal tissue

    International Nuclear Information System (INIS)

    Luna Z, D.; Reyes F, M.L.; Lavalley E, C.; Castaneda J, G.

    2007-01-01

    Due to the increase in the average of the world population's life, people die each time to more age, this makes that the tissues of support of the human body, as those muscle-skeletal tissues, when increasing the individual's age go weakening, this in turn leads to the increment of the illnesses like the osteoporosis and the arthritis, that undoubtedly gives as a result more injure of the muscle-skeletal tissues joined a greater number of traffic accidents where particularly these tissues are affected, for that the demand of tissues muscle-skeletal for transplant every day will be bigger. The production of these tissues in the Bank of Radio sterilized Tissues, besides helping people to improve its quality of life saved foreign currencies because most of the muscle-skeletal tissues transplanted in Mexico are of import. The use of the irradiation to sterilize tissues for transplant has shown to be one of the best techniques with that purpose for what the International Atomic Energy Agency believes a Technical cooperation program to establish banks of tissues using the nuclear energy, helping mainly to countries in development. In this work the stages that follows the bank of radio sterilized tissues of the National Institute of Nuclear Research for the cadaverous donor's of muscle-skeletal tissue selection are described, as well as the processing and the clinical application of these tissues. (Author)

  20. The acute response of pericytes to muscle-damaging eccentric contraction and protein supplementation in human skeletal muscle.

    Science.gov (United States)

    De Lisio, Michael; Farup, Jean; Sukiennik, Richard A; Clevenger, Nicole; Nallabelli, Julian; Nelson, Brett; Ryan, Kelly; Rahbek, Stine K; de Paoli, Frank; Vissing, Kristian; Boppart, Marni D

    2015-10-15

    Skeletal muscle pericytes increase in quantity following eccentric exercise (ECC) and contribute to myofiber repair and adaptation in mice. The purpose of the present investigation was to examine pericyte quantity in response to muscle-damaging ECC and protein supplementation in human skeletal muscle. Male subjects were divided into protein supplement (WHY; n = 12) or isocaloric placebo (CHO; n = 12) groups and completed ECC using an isokinetic dynamometer. Supplements were consumed 3 times/day throughout the experimental time course. Biopsies were collected prior to (PRE) and 3, 24, 48, and 168 h following ECC. Reflective of the damaging protocol, integrin subunits, including α7, β1A, and β1D, increased (3.8-fold, 3.6-fold and 3.9-fold, respectively, P muscle-damaging ECC increases α7β1 integrin content in human muscle, yet pericyte quantity is largely unaltered. Future studies should focus on the capacity for ECC to influence pericyte function, specifically paracrine factor release as a mechanism toward pericyte contribution to repair and adaptation postexercise. Copyright © 2015 the American Physiological Society.

  1. Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Sacchetti, M; Rådegran, G

    2002-01-01

    glycerol uptake was observed, which was substantially higher during exercise. Total body skeletal muscle FA and glycerol uptake/release was estimated to account for 18-25 % of whole body R(d) or R(a). In conclusion: (1) skeletal muscle FA and glycerol metabolism, using the leg arterial-venous difference......This study was conducted to investigate skeletal muscle fatty acid (FA) and glycerol kinetics and to determine the contribution of skeletal muscle to whole body FA and glycerol turnover during rest, 2 h of one-leg knee-extensor exercise at 65 % of maximal leg power output, and 3 h of recovery....... To this aim, the leg femoral arterial-venous difference technique was used in combination with a continuous infusion of [U-(13)C]palmitate and [(2)H(5)]glycerol in five post-absorptive healthy volunteers (22 +/- 3 years). The influence of contamination from non-skeletal muscle tissues, skin and subcutaneous...

  2. Immunohistochemical detection of interleukin-6 in human skeletal muscle fibers following exercise

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Charlotte; Keller, Pernille

    2003-01-01

    individuals. The IL-6 immunostainings of skeletal muscle cells were homogeneous and without difference between muscle fiber types. The IL-6 mRNA peaked immediately after the exercise, and, in accordance, the IL-6 protein expression within muscle cells was most pronounced around 3 h post-exercise. However......, the finding that plasma IL-6 concentration peaked in the end of exercise indicates a high turnover of muscle-derived IL-6. In conclusion, the finding of marked IL-6 protein expression exclusively within skeletal muscle fibers following exercise demonstrates that skeletal muscle fibers of all types...

  3. Human skeletal muscle glycogen utilization in exhaustive exercise

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik Daa

    2011-01-01

    Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis...... to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. ....... that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, VO2 max = 68 ± 5 ml kg-1 min-1, mean ± SD...

  4. Purified Human Skeletal Muscle-Derived Stem Cells Enhance the Repair and Regeneration in the Damaged Urethra.

    Science.gov (United States)

    Nakajima, Nobuyuki; Tamaki, Tetsuro; Hirata, Maki; Soeda, Shuichi; Nitta, Masahiro; Hoshi, Akio; Terachi, Toshiro

    2017-10-01

    Postoperative damage of the urethral rhabdosphincter and nerve-vascular networks is a major complication of radical prostatectomy and generally causes incontinence and/or erectile dysfunction. The human skeletal muscle-derived stem cells, which have a synchronized reconstitution capacity of muscle-nerve-blood vessel units, were applied to this damage. Cells were enzymatically extracted from the human skeletal muscle, sorted using flow cytometry as CD34/45 (Sk-34) and CD29/34/45 (Sk-DN/29) fractions, and separately cultured/expanded in appropriate conditions within 2 weeks. Urethral damage was induced by manually removing one third of the wall of the muscle layer in nude rats. A mixture of expanded Sk-34 and Sk-DN/29 cells was applied on the damaged portion for the cell transplantation (CT) group. The same amount of media was used for the non-CT (NT) group. Urethral pressure profile was evaluated via electrical stimulation to assess functional recovery. Cell engraftments and differentiations were detected using immunohistochemistry and immunoelectron microscopy. Expression of angiogenic cytokines was also analyzed using reverse transcriptase-polymerase chain reaction and protein array. At 6 weeks after transplantation, the CT group showed a significantly higher functional recovery than the NT group (70.2% and 39.1%, respectively; P cells differentiated into skeletal muscle fibers, nerve-related Schwann cells, perineuriums, and vascular pericytes. Active paracrine angiogenic cytokines in the mixed cells were also detected with enhanced vascular formation in vivo. The transplantation of Sk-34 and Sk-DN/29 cells is potentially useful for the reconstitution of postoperative damage of the urethral rhabdosphincter and nerve-vascular networks.

  5. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    Science.gov (United States)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  6. Increase in relative skeletal muscle mass over time and its inverse association with metabolic syndrome development: a 7-year retrospective cohort study.

    Science.gov (United States)

    Kim, Gyuri; Lee, Seung-Eun; Jun, Ji Eun; Lee, You-Bin; Ahn, Jiyeon; Bae, Ji Cheol; Jin, Sang-Man; Hur, Kyu Yeon; Jee, Jae Hwan; Lee, Moon-Kyu; Kim, Jae Hyeon

    2018-02-05

    Skeletal muscle mass was negatively associated with metabolic syndrome prevalence in previous cross-sectional studies. The aim of this study was to investigate the impact of baseline skeletal muscle mass and changes in skeletal muscle mass over time on the development of metabolic syndrome in a large population-based 7-year cohort study. A total of 14,830 and 11,639 individuals who underwent health examinations at the Health Promotion Center at Samsung Medical Center, Seoul, Korea were included in the analyses of baseline skeletal muscle mass and those changes from baseline over 1 year, respectively. Skeletal muscle mass was estimated by bioelectrical impedance analysis and was presented as a skeletal muscle mass index (SMI), a body weight-adjusted appendicular skeletal muscle mass value. Using Cox regression models, hazard ratio for developing metabolic syndrome associated with SMI values at baseline or changes of SMI over a year was analyzed. During 7 years of follow-up, 20.1% of subjects developed metabolic syndrome. Compared to the lowest sex-specific SMI tertile at baseline, the highest sex-specific SMI tertile showed a significant inverse association with metabolic syndrome risk (adjusted hazard ratio [AHR] = 0.61, 95% confidence interval [CI] 0.54-0.68). Furthermore, compared with SMI changes metabolic syndrome development were 0.87 (95% CI 0.78-0.97) for 0-1% changes and 0.67 (0.56-0.79) for > 1% changes in SMI over 1 year after additionally adjusting for baseline SMI and glycometabolic parameters. An increase in relative skeletal muscle mass over time has a potential preventive effect on developing metabolic syndrome, independently of baseline skeletal muscle mass and glycometabolic parameters.

  7. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    Directory of Open Access Journals (Sweden)

    Michael A Petrie

    Full Text Available Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat and mechanical stress (vibration on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction.The purpose of this study is to examine whether active mechanical stress (muscle contraction, passive mechanical stress (vibration, or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair.Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus to analyze mRNA gene expression.We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold, PGC-1α (5.46 fold, and ABRA (5.98 fold; and repressed MSTN (0.56 fold. Heat stress repressed PGC-1α (0.74 fold change; p < 0.05; while vibration induced FOXK2 (2.36 fold change; p < 0.05. Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05, but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05 while heat stress repressed PGC-1α (0.74 fold and ANKRD1 genes (0.51 fold; p < 0.05.These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell

  8. MicroRNA transcriptome profiles during swine skeletal muscle development

    Directory of Open Access Journals (Sweden)

    Sonstegard Tad S

    2009-02-01

    Full Text Available Abstract Background MicroRNA (miR are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells, three stages of fetal growth, day-old neonate, and the adult. Results Twelve potential novel miR were detected that did not match previously reported sequences. In addition, a number of miR previously reported to be expressed in mammalian muscle were detected, having a variety of abundance patterns through muscle development. Muscle-specific miR-206 was nearly absent in proliferating satellite cells in culture, but was the highest abundant miR at other time points evaluated. In addition, miR-1 was moderately abundant throughout developmental stages with highest abundance in the adult. In contrast, miR-133 was moderately abundant in adult muscle and either not detectable or lowly abundant throughout fetal and neonate development. Changes in abundance of ubiquitously expressed miR were also observed. MiR-432 abundance was highest at the earliest stage of fetal development tested (60 day-old fetus and decreased throughout development to the adult. Conversely, miR-24 and miR-27 exhibited greatest abundance in proliferating satellite cells and the adult, while abundance of miR-368, miR-376, and miR-423-5p was greatest in the neonate. Conclusion These data present a complete set of transcriptome profiles to evaluate miR abundance at specific stages of skeletal muscle growth in swine. Identification of these miR provides an initial group of miR that may play a vital role in muscle development and growth.

  9. Pyruvate carboxylase is expressed in human skeletal muscle

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2010-01-01

    Pyruvate carboxylase (PC) is a mitochondrial enzyme that catalyses the carboxylation of pyruvate to oxaloacetate thereby allowing supplementation of citric acid cycle intermediates. The presence of PC in skeletal muscle is controversial. We report here, that PC protein is easily detectable...

  10. [Size of lower jaw as an early indicator of skeletal class III development].

    Science.gov (United States)

    Stojanović, Zdenka; Nikodijević, Angelina; Udovicić, Bozidar; Milić, Jasmina; Nikolić, Predrag

    2008-08-01

    Malocclusion of skeletal class III is a complex abnormality, with a characteristic sagital position of the lower jaw in front of the upper one. A higher level of prognatism of the lower jaw in relation to the upper one can be the consequence of its excessive length. The aim of this study was to find the differences in the length of the lower jaw in the children with skeletal class III and the children with normal sagital interjaw relation (skeletal class I) in the period of mixed dentition. After clinical and x-ray diagnostics, profile tele-x-rays of the head were analyzed in 60 examinees with mixed dentition, aged from 6 to 12 years. The examinees were divided into two groups: group 1--the children with skeletal class III and group 2--the children with skeletal class I. The length of the lower jaw, upper jaw and cranial base were measured. The proportional relations between the lengths measured within each group were established and the level of difference in the lengths measured and their proportions between the groups were estimated. No significant difference between the groups was found in the body length, ramus and the total length of the lower jaw. Proportional relation between the body length and the length of the lower jaw ramus and proportional relation between the forward cranial base and the lower jaw body were not significantly different. A significant difference was found in proportional relations of the total length of the lower jaw with the total lengths of cranial base and the upper jaw and proportional relation of the length of the lower and upper jaw body. Of all the analyzed parameters, the following were selected as the early indicators of the development of skeletal class III on the lower jaw: greater total length of the lower jaw, proportional to the total lengths of cranial base and theupper jaw, as well as greater length of the lower jaw body, proportional to the length of the upper jaw body.

  11. Skeletal muscle performance and ageing.

    Science.gov (United States)

    Tieland, Michael; Trouwborst, Inez; Clark, Brian C

    2018-02-01

    The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  12. Transcription factor ZNF25 is associated with osteoblast differentiation of human skeletal stem cells

    DEFF Research Database (Denmark)

    Twine, Natalie A.; Harkness, Linda; Kassem, Moustapha

    2016-01-01

    containing G protein-coupled receptor 5 and RAN-binding protein 3-like. We also observed enrichment in extracellular matrix organization, skeletal system development and regulation of ossification in the entire upregulated set of genes. Consistent with its function as a transcription factor during osteoblast...

  13. Barium-induced skeletal muscle paralysis in the rat, and its relationship to human familial periodic paralysis

    Science.gov (United States)

    Schott, G. D.; McArdle, B.

    1974-01-01

    An in vivo study of skeletal muscle paralysis induced by intravenous barium chloride has been made in curarized and non-curarized rats. The influence of potassium and calcium chlorides, propranolol, ouabain, and prior adrenalectomy on the paralysis has also been studied. Paralysis is found to be due to a direct effect on skeletal muscle, and to correlate well with the development of hypokalaemia. Possible mechanisms of action of barium are discussed, and attention is drawn to the similarity between barium poisoning and hypokalaemic familial periodic paralysis. PMID:4813426

  14. An examination of resveratrol's mechanisms of action in human tissue: impact of a single dose in vivo and dose responses in skeletal muscle ex vivo.

    Directory of Open Access Journals (Sweden)

    Cameron B Williams

    Full Text Available The current study tested the hypothesis that a single, moderate dose of RSV would activate the AMPK/SIRT1 axis in human skeletal muscle and adipose tissue. Additionally, the effects of RSV on mitochondrial respiration in PmFBs were examined. Eight sedentary men (23.8±2.4 yrs; BMI: 32.7±7.1 reported to the lab on two occasions where they were provided a meal supplemented with 300 mg of RSV or a placebo. Blood samples, and a muscle biopsy were obtained in the fasted state and again, with the addition of an adipose tissue biopsy, two hours post-prandial. The effect of RSV on mitochondrial respiration was examined in PmFBs taken from muscle biopsies from an additional eight men (23.4±5.4 yrs; BMI: 24.4±2.8. No effect of RSV was observed on nuclear SIRT1 activity, acetylation of p53, or phosphorylation of AMPK, ACC or PKA in either skeletal muscle or adipose tissue. A decrease in post absorptive insulin levels was accompanied by elevated skeletal muscle phosphorylation of p38 MAPK, but no change in either skeletal muscle or adipose tissue insulin signalling. Mitochondrial respiration in PmFBs was rapidly inhibited by RSV at 100-300 uM depending on the substrate examined. These results question the efficacy of a single dose of RSV at altering skeletal muscle and adipose tissue AMPK/SIRT1 activity in humans and suggest that RSV mechanisms of action in humans may be associated with altered cellular energetics resulting from impaired mitochondrial ATP production.

  15. Derivation of Stromal (Skeletal, Mesenchymal) Stem-like cells from Human Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem

    2012-01-01

    EBs using BMP2 (bone morphogenic protein 2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold......Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESC) is a pre-requisite for their use in clinical applications. However, there is no standard protocol for differentiating hESC into osteoblastic cells. The aim of this study was to identify the emergence of a human...... stromal (mesenchymal, skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESC in a feeder-free environment using serum replacement and as suspension aggregates (embryoid...

  16. Wnt Signaling in Skeletal Muscle Development and Regeneration.

    Science.gov (United States)

    Girardi, Francesco; Le Grand, Fabien

    2018-01-01

    Wnt is a family of signaling molecules involved in embryogenesis, adult tissue repair, and cancer. They activate canonical and noncanonical Wnt signaling cascades in target cells. Several studies, within the last decades, showed that several Wnt ligands are involved in myogenesis and both canonical and noncanonical Wnt pathways regulate muscle formation and the maintenance of adult tissue homeostasis. In this review, we provide a comprehensive overview of the roles of Wnt signaling during muscle development and an updated description of Wnt functions during muscle repair. Lastly, we discuss the crosstalk between Wnt and TGFβ signaling pathways in skeletal muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Passive stiffness of rat skeletal muscle undernourished during fetal development

    Directory of Open Access Journals (Sweden)

    Ana Elisa Toscano

    2010-01-01

    Full Text Available OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet and an isocaloric low-protein group (mothers fed a 7.8% protein diet. At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s enabling us to measure, for each extension stepwise, the dynamic stress (σd and the steady stress (σs. A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress-strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness.

  18. Development and validation of an n-dodecane skeletal mechanism for spray combustion applications

    KAUST Repository

    Luo, Zhaoyu

    2014-03-04

    n-Dodecane is a promising surrogate fuel for diesel engine study because its physicochemical properties are similar to those of the practical diesel fuels. In the present study, a skeletal mechanism for n-dodecane with 105 species and 420 reactions was developed for spray combustion simulations. The reduction starts from the most recent detailed mechanism for n-alkanes consisting of 2755 species and 11,173 reactions developed by the Lawrence Livermore National Laboratory. An algorithm combining direct relation graph with expert knowledge (DRGX) and sensitivity analysis was employed for the present skeletal reduction. The skeletal mechanism was first extensively validated in 0-D and 1-D combustion systems, including auto-ignition, jet stirred reactor (JSR), laminar premixed flame and counter flow diffusion flame. Then it was coupled with well-established spray models and further validated in 3-D turbulent spray combustion simulations under engine-like conditions. These simulations were compared with the recent experiments with n-dodecane as a surrogate for diesel fuels. It can be seen that combustion characteristics such as ignition delay and flame lift-off length were well captured by the skeletal mechanism, particularly under conditions with high ambient temperatures. Simulations also captured the transient flame development phenomenon fairly well. The results further show that ignition delay may not be the only factor controlling the stabilisation of the present flames since a good match in ignition delay does not necessarily result in improved flame lift-off length prediction. The work of Zhaoyu Luo, Sibendu Som, Max Plomer, William J. Pitz, Douglas E. Longman and Tianfeng Lu was authored as part of their official duties as Employees of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. S. Mani Sarathy hereby waives his right to

  19. Cell death induced by gamma irradiation of developing skeletal muscle

    International Nuclear Information System (INIS)

    Olive, M.; Blanco, R.; Rivera, R.; Cinos, C.; Ferrer, I.

    1995-01-01

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  20. Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development

    Directory of Open Access Journals (Sweden)

    Hongjia Ouyang

    2017-05-01

    Full Text Available Embryonic growth and development of skeletal muscle is a major determinant of muscle mass, and has a significant effect on meat production in chicken. To assess the protein expression profiles during embryonic skeletal muscle development, we performed a proteomics analysis using isobaric tags for relative and absolute quantification (iTRAQ in leg muscle tissues of female Xinghua chicken at embryonic age (E 11, E16, and 1-day post hatch (D1. We identified 3,240 proteins in chicken embryonic muscle and 491 of them were differentially expressed (fold change ≥ 1.5 or ≤ 0.666 and p < 0.05. There were 19 up- and 32 down-regulated proteins in E11 vs. E16 group, 238 up- and 227 down-regulated proteins in E11 vs. D1 group, and 13 up- and 5 down-regulated proteins in E16 vs. D1 group. Protein interaction network analyses indicated that these differentially expressed proteins were mainly involved in the pathway of protein synthesis, muscle contraction, and oxidative phosphorylation. Integrative analysis of proteome and our previous transcriptome data found 189 differentially expressed proteins that correlated with their mRNA level. The interactions between these proteins were also involved in muscle contraction and oxidative phosphorylation pathways. The lncRNA-protein interaction network found four proteins DMD, MYL3, TNNI2, and TNNT3 that are all involved in muscle contraction and may be lncRNA regulated. These results provide several candidate genes for further investigation into the molecular mechanisms of chicken embryonic muscle development, and enable us to better understanding their regulation networks and biochemical pathways.

  1. Gain-of-function R225W mutation in human AMPKgamma(3 causing increased glycogen and decreased triglyceride in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sheila R Costford

    Full Text Available BACKGROUND: AMP-activated protein kinase (AMPK is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory gamma(3 subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations. Here we report the first gain-of-function mutation in the muscle-specific regulatory gamma(3 subunit in humans. METHODS AND FINDINGS: We sequenced the exons and splice junctions of the AMPK gamma(3 gene (PRKAG3 in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The gamma(3 R225W mutation is homologous in location to the gamma(2R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the gamma(3R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN- pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a approximately 90% increase of skeletal muscle glycogen content and a approximately 30% decrease in intramuscular triglyceride (IMTG. CONCLUSIONS: We have identified for the first time a mutation in the skeletal muscle-specific regulatory gamma(3 subunit of AMPK in humans. The gamma(3R225W mutation has significant functional effects as demonstrated by increases in basal and AMP

  2. * Tissue-Specific Extracellular Matrix Enhances Skeletal Muscle Precursor Cell Expansion and Differentiation for Potential Application in Cell Therapy.

    Science.gov (United States)

    Zhang, Deying; Zhang, Yong; Zhang, Yuanyuan; Yi, Hualin; Wang, Zhan; Wu, Rongpei; He, Dawei; Wei, Guanghui; Wei, Shicheng; Hu, Yun; Deng, Junhong; Criswell, Tracy; Yoo, James; Zhou, Yu; Atala, Anthony

    2017-08-01

    Skeletal muscle precursor cells (MPCs) are considered a key candidate for cell therapy in the treatment of skeletal muscle dysfunction due to injury, disease, or age. However, expansion of a sufficient number of functional skeletal muscle cells in vitro from a small tissue biopsy has been challenging due to changes in phenotypic expression of these cells under traditional culture conditions. Thus, the aim of the study was to develop a better culture system for the expansion and myo-differentiation of MPCs that could further be used for therapy. For this purpose, we developed an ideal method of tissue decellularization and compared the ability of different matrices to support MPC growth and differentiation. Porcine-derived skeletal muscle and liver and kidney extracellular matrix (ECM) were generated by decellularization methods consisting of distilled water, 0.2 mg/mL DNase, or 5% fetal bovine serum. Acellular matrices were further homogenized, dissolved, and combined with a hyaluronic acid-based hydrogel decorated with heparin (ECM-HA-HP). The cell proliferation and myogenic differentiation capacity of human MPCs were assessed when grown on gel alone, ECM, or each ECM-HA-HP substrate. Human MPC proliferation was significantly enhanced when cultured on the ECM-HA-HP substrates compared to the other substrates tested, with the greatest proliferation on the muscle ECM-HA-HP (mECM-HA-HP) substrate. The number of differentiated myotubes was significantly increased on the mECM-HA-HP substrate compared to the other gel-ECM substrates, as well as the numbers of MPCs expressing specific myogenic cell markers (i.e., myosin, desmin, myoD, and myf5). In conclusion, skeletal mECM-HA-HP as a culture substrate provided an optimal culture microenvironment potentially due to its similarity to the in vivo environment. These data suggest a potential use of skeletal muscle-derived ECM gel for the expansion and differentiation of human MPCs for cell-based therapy for skeletal muscle

  3. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  4. A Novel Protocol for Directed Differentiation of C9orf72-Associated Human Induced Pluripotent Stem Cells Into Contractile Skeletal Myotubes.

    Science.gov (United States)

    Swartz, Elliot W; Baek, Jaeyun; Pribadi, Mochtar; Wojta, Kevin J; Almeida, Sandra; Karydas, Anna; Gao, Fen-Biao; Miller, Bruce L; Coppola, Giovanni

    2016-11-01

    : Induced pluripotent stem cells (iPSCs) offer an unlimited resource of cells to be used for the study of underlying molecular biology of disease, therapeutic drug screening, and transplant-based regenerative medicine. However, methods for the directed differentiation of skeletal muscle for these purposes remain scarce and incomplete. Here, we present a novel, small molecule-based protocol for the generation of multinucleated skeletal myotubes using eight independent iPSC lines. Through combinatorial inhibition of phosphoinositide 3-kinase (PI3K) and glycogen synthase kinase 3β (GSK3β) with addition of bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2), we report up to 64% conversion of iPSCs into the myogenic program by day 36 as indicated by MYOG + cell populations. These cells began to exhibit spontaneous contractions as early as 34 days in vitro in the presence of a serum-free medium formulation. We used this protocol to obtain iPSC-derived muscle cells from frontotemporal dementia (FTD) patients harboring C9orf72 hexanucleotide repeat expansions (rGGGGCC), sporadic FTD, and unaffected controls. iPSCs derived from rGGGGCC carriers contained RNA foci but did not vary in differentiation efficiency when compared to unaffected controls nor display mislocalized TDP-43 after as many as 120 days in vitro. This study presents a rapid, efficient, and transgene-free method for generating multinucleated skeletal myotubes from iPSCs and a resource for further modeling the role of skeletal muscle in amyotrophic lateral sclerosis and other motor neuron diseases. Protocols to produce skeletal myotubes for disease modeling or therapy are scarce and incomplete. The present study efficiently generates functional skeletal myotubes from human induced pluripotent stem cells using a small molecule-based approach. Using this strategy, terminal myogenic induction of up to 64% in 36 days and spontaneously contractile myotubes within 34 days were achieved

  5. Regulation of PDH, GS and insulin signalling in skeletal muscle

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup

    of inflammation on resting and exercise-induced PDH regulation in human skeletal muscle and 4) The effect of IL-6 on PDH regulation in mouse skeletal muscle. Study I demonstrated that bed rest–induced insulin resistance was associated with reduced insulinstimulated GS activity and Akt signaling as well...

  6. On the mechanism by which dietary nitrate improves human skeletal muscle function

    Directory of Open Access Journals (Sweden)

    Charles eAffourtit

    2015-07-01

    Full Text Available Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy vegetables such as spinach and lettuce. Though long believed inert, nitrate can be reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to nitric oxide. Dietary nitrate has thus been associated favourably with nitric-oxide-regulated processes including blood flow and energy metabolism. Indeed, the therapeutic potential of dietary nitrate in cardiovascular disease and metabolic syndrome – both ageing-related medical disorders – has attracted considerable recent research interest. We and others have shown that dietary nitrate supplementation lowers the oxygen cost of human exercise, as less respiratory activity appears to be required for a set rate of skeletal muscle work. This striking observation predicts that nitrate benefits the energy metabolism of human muscle, increasing the efficiency of either mitochondrial ATP synthesis and/or of cellular ATP-consuming processes. In this mini-review, we evaluate experimental support for the dietary nitrate effects on muscle bioenergetics and we critically discuss the likelihood of nitric oxide as the molecular mediator of such effects.

  7. Calculation of absorbed fractions to human skeletal tissues due to alpha particles using the Monte Carlo and 3-d chord-based transport techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J.G. [Institute of Radiation Protection and Dosimetry, Av. Salvador Allende s/n, Recreio, Rio de Janeiro, CEP 22780-160 (Brazil); Watchman, C.J. [Department of Radiation Oncology, University of Arizona, Tucson, AZ, 85721 (United States); Bolch, W.E. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL, 32611 (United States); Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2007-07-01

    Absorbed fraction (AF) calculations to the human skeletal tissues due to alpha particles are of interest to the internal dosimetry of occupationally exposed workers and members of the public. The transport of alpha particles through the skeletal tissue is complicated by the detailed and complex microscopic histology of the skeleton. In this study, both Monte Carlo and chord-based techniques were applied to the transport of alpha particles through 3-D micro-CT images of the skeletal microstructure of trabecular spongiosa. The Monte Carlo program used was 'Visual Monte Carlo-VMC'. VMC simulates the emission of the alpha particles and their subsequent energy deposition track. The second method applied to alpha transport is the chord-based technique, which randomly generates chord lengths across bone trabeculae and the marrow cavities via alternate and uniform sampling of their cumulative density functions. This paper compares the AF of energy to two radiosensitive skeletal tissues, active marrow and shallow active marrow, obtained with these two techniques. (authors)

  8. MicroRNA in Skeletal Muscle: Its Crucial Roles in Signal Proteins, Mus cle Fiber Type, and Muscle Protein Synthesis.

    Science.gov (United States)

    Zhang, Jing; Liu, Yu Lan

    2017-01-01

    Pork is one of the most economical sources of animal protein for human consumption. Meat quality is an important economic trait for the swine industry, which is primarily determined by prenatal muscle development and postnatal growth. Identification of the molecular mechanisms underlying skeletal muscle development is a key priority. MicroRNAs (miRNAs) are a class of small noncoding RNAs that have emerged as key regulators of skeletal muscle development. A number of muscle-related miRNAs have been identified by functional gain and loss experiments in mouse model. However, determining miRNA-mRNA interactions involved in pig skeletal muscle still remains a significant challenge. For a comprehensive understanding of miRNA-mediated mechanisms underlying muscle development, miRNAome analyses of pig skeletal muscle have been performed by deep sequencing. Additionally, porcine miRNA single nucleotide polymorphisms have been implicated in muscle fiber types and meat quality. The present review provides an overview of current knowledge on recently identified miRNAs involved in myogenesis, muscle fiber type and muscle protein metabolism. Undoubtedly, further systematic understanding of the functions of miRNAs in pig skeletal muscle development will be helpful to expand the knowledge of basic skeletal muscle biology and be beneficial for the genetic improvement of meat quality traits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Improved inflammatory balance of human skeletal muscle during exercise after supplementations of the ginseng-based steroid Rg1.

    Directory of Open Access Journals (Sweden)

    Chien-Wen Hou

    Full Text Available The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05. Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05.Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.

  10. Improved inflammatory balance of human skeletal muscle during exercise after supplementations of the ginseng-based steroid Rg1.

    Science.gov (United States)

    Hou, Chien-Wen; Lee, Shin-Da; Kao, Chung-Lan; Cheng, I-Shiung; Lin, Yu-Nan; Chuang, Sheng-Ju; Chen, Chung-Yu; Ivy, John L; Huang, Chih-Yang; Kuo, Chia-Hua

    2015-01-01

    The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05). Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS) and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max) was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05). Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.

  11. Generalized skeletal pathology: Results of radionuclide studies

    International Nuclear Information System (INIS)

    Fueger, G.F.; Aigner, R.

    1987-01-01

    Generalized pathological changes may involve the skeleton systematically (bone tissue, bone marrow) or at multiple sites involving destruction or infiltration. Appropriate radionuclide studies include total-body bone or bone marrow scintigraphy, absorptiometry (osteodensitometry) and the 24 h whole-body retention measurement. Established radioindicators are 99m-Tc-(hydroxy)methylendiphosphonate (HMDP or MDP) and 99m-Tc-human serumalbumin-nanocolloid. Absorptiometry of the forearm, extended by computer-assisted transaxial tomography, may be expected to prove as the most efficient method of bone density measurement. The 24 h whole-body retention measurement is useful for the diagnosis and follow-up of metabolic and endocrine osteopathies, if the very same osteotropic 99m-Tc-chelate is used. Whole-body bone scintigraphy today is one of the most important radionuclide studies for diagnosis and follow-up of skeletal metastases. Scintigraphy provides evidence of skeletal metastases several months earlier than radiological examinations. In about 40 percent of patients with cancer of the prostate, scintigraphy provided positive findings of skeletal metastases in the absence of both pain and increased levels of phosphatase. In patients with a history of malignancy, 60 percent of solitary findings on skeletal scintigraphy are metastases. The frequency of false negative findings obtained by whole-body skeletal scintigraphy are metastases. The frequency of false negative findings obtained by whole-body skeletal scintigraphy ranges from 2 to 4%. Compared to skeletal scintigraphy, bone marrow scintigraphy frequently yields significant additional findings in cases of plasmocytoma, histiocytoma, lymphoma and haemoblastoses. (orig.) [de

  12. PGC-1α-mediated adaptations in skeletal muscle

    DEFF Research Database (Denmark)

    Olesen, Jesper; Kiilerich, Kristian; Pilegaard, Henriette

    2010-01-01

    multiple pathways and functions underline the potential importance of PGC-1alpha in skeletal muscle adaptations in humans. The absence of exercise-induced PGC-1alpha-mediated gene regulation during a physical inactive lifestyle is suggested to lead to reduced oxidative capacity of skeletal muscle...... involved in angiogenesis and the anti-oxidant defence as well as to affect expression of inflammatory markers. Exercise increases PGC-1alpha transcription and potentially PGC-1alpha activity through post-translational modifications, and concomitant PGC-1alpha-mediated gene regulation is suggested...... to be an underlying mechanism for adaptations in skeletal muscle, when exercise is repeated. The current review presents some of the key findings in PGC-1alpha-mediated regulation of metabolically related, anti-oxidant and inflammatory proteins in skeletal muscle in the basal state and in response to exercise...

  13. The Recent Understanding of the Neurotrophin's Role in Skeletal Muscle Adaptation

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2011-01-01

    Full Text Available This paper summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of the maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors influence not only the survival and function of innervating motoneurons but also the development and differentiation of myoblasts and muscle fibers. Muscle contractions (e.g., exercise produce BDNF mRNA and protein in skeletal muscle, and the BDNF seems to play a role in enhancing glucose metabolism and may act for myokine to improve various brain disorders (e.g., Alzheimer's disease and major depression. In adults with neuromuscular disorders, variations in neurotrophin expression are found, and the role of neurotrophins under such conditions is beginning to be elucidated. This paper provides a basis for a better understanding of the role of these factors under such pathological conditions and for treatment of human neuromuscular disease.

  14. Skeletal manifestations of juvenile hypothyroidism and the impact of treatment on skeletal system.

    Science.gov (United States)

    Gutch, Manish; Philip, Rajeev; Philip, Renjit; Toms, Ajit; Saran, Sanjay; Gupta, K K

    2013-10-01

    Thyroid hormone mediates growth and development of the skeleton through its direct effects and through its permissive effects on growth hormone. The effect of hypothyroidism on bone is well described in congenital hypothyroidism, but the impact of thyroid hormone deficiency on a growing skeleton, as it happens with juvenile hypothyroidism, is less defined. In addition, the extent to which the skeletal defects of juvenile hypothyroidism revert on the replacement of thyroid hormone is not known. A study was undertaken in 29 juvenile autoimmune hypothyroid patients to study the skeletal manifestations of juvenile hypothyroidism and the impact of treatment of hypothyroidism on the skeletal system of juvenile patients. Hypothyroidism has a profound impact on the skeletal system and delayed bone age, dwarfism, and thickened bands at the metaphyseal ends being the most common findings. Post treatment, skeletal findings like delayed bone age and dwarfism improved significantly, but there were no significant changes in enlargement of sella, presence of wormian bones, epihyseal dysgenesis, vertebral changes and thickened band at the metaphyseal ends. With the treatment of hypothyroidism, there is an exuberant advancement of bone age, the catch up of bone age being approximately double of the chronological age advancement.

  15. Epinephrine mediates facultative carbohydrate-induced thermogenesis in human skeletal muscle

    DEFF Research Database (Denmark)

    Astrup, A; Simonsen, L; Bülow, J

    1989-01-01

    The thermic effect of carbohydrate has a component mediated by the sympathoadrenal system but of unknown anatomical localization. We have studied the contribution of skeletal muscle to the thermic effect of a carbohydrate-rich natural meal (115 g of carbohydrate, approximately 80% of energy...... postprandially and coinciding with the peak in arterial epinephrine. The present study provides evidence of a facultative thermogenic component in skeletal muscle, mediated by epinephrine via beta 2-adrenoreceptors. However, it also points to a nonmuscle component mediated through beta 1-adrenoceptors...... by norepinephrine released from the sympathetic nervous system. Consequently, the sympathoadrenal system seems to play a physiological role in the daily energy balance....

  16. Skeletal Stem Cells: Origins, Functions and Uncertainties.

    Science.gov (United States)

    Mohamed, Fatma F; Franceschi, Renny T

    2017-12-01

    The development and maintenance of the skeleton requires a steady source of skeletal progenitors to provide the osteoblasts and chondrocytes necessary for bone and cartilage growth and development. The current model for skeletal stem cells (SSCs) posits that SSC/progenitor cells are present in bone marrow (BM) and other osteogenic sites such as cranial sutures where they undergo self-renewal and differentiation to give rise to the main skeletal tissues. SSCs hold great promise for understanding skeletal biology and genetic diseases of bone as well as for the advancement of bone tissue engineering and regenerative medicine strategies. In the past few years, a considerable effort has been devoted to identifying and purifying skeletal stem cells and determining their contribution to bone formation and homeostasis. Here, we review recent progress in this area with particular emphasis on the discovery of specific SSC markers, their use in tracking the progression of cell populations along specific lineages and the regulation of SSCs in both the appendicular and cranial skeleton.

  17. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies...... from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1......alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented...

  18. Characterization of distinct mesenchymal-like cell populations from human skeletal muscle in situ and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lecourt, Severine, E-mail: severine.lecourt@sls.aphp.fr [UPMC/AIM UMR S 974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); INSERM U974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); CNRS UMR 7215, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Marolleau, Jean-Pierre, E-mail: Marolleau.Jean-Pierre@chu-amiens.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); CHU Amiens Hopital Sud, Service d' Hematologie Clinique, UPJV, Amiens (France); Fromigue, Olivia, E-mail: olivia.fromigue@larib.inserm.fr [INSERM U606, Universite Paris 07, Hopital Lariboisiere, Paris (France); Vauchez, Karine, E-mail: k.vauchez@institut-myologie.org [UPMC/AIM UMR S 974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); INSERM U974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); CNRS UMR 7215, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Genzyme S.A.S., Saint-Germain en Laye (France); Andriamanalijaona, Rina, E-mail: rinandria@yahoo.fr [Laboratoire de Biochimie des Tissus Conjonctifs, Faculte de Medecine, Caen (France); Ternaux, Brigitte, E-mail: brigitte.ternaux@orange.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Lacassagne, Marie-Noelle, E-mail: mnlacassagne@free.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Robert, Isabelle, E-mail: isa-robert@hotmail.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Boumediene, Karim, E-mail: karim.boumediene@unicaen.fr [Laboratoire de Biochimie des Tissus Conjonctifs, Faculte de Medecine, Caen (France); Chereau, Frederic, E-mail: fchereau@pervasistx.com [Myosix S.A., Saint-Germain en Laye (France); Marie, Pierre, E-mail: pierre.marie@larib.inserm.fr [INSERM U606, Universite Paris 07, Hopital Lariboisiere, Paris (France); and others

    2010-09-10

    Human skeletal muscle is an essential source of various cellular progenitors with potential therapeutic perspectives. We first used extracellular markers to identify in situ the main cell types located in a satellite position or in the endomysium of the skeletal muscle. Immunohistology revealed labeling of cells by markers of mesenchymal (CD13, CD29, CD44, CD47, CD49, CD62, CD73, CD90, CD105, CD146, and CD15 in this study), myogenic (CD56), angiogenic (CD31, CD34, CD106, CD146), hematopoietic (CD10, CD15, CD34) lineages. We then analysed cell phenotypes and fates in short- and long-term cultures of dissociated muscle biopsies in a proliferation medium favouring the expansion of myogenic cells. While CD56{sup +} cells grew rapidly, a population of CD15{sup +} cells emerged, partly from CD56{sup +} cells, and became individualized. Both populations expressed mesenchymal markers similar to that harboured by human bone marrow-derived mesenchymal stem cells. In differentiation media, both CD56{sup +} and CD15{sup +} cells shared osteogenic and chondrogenic abilities, while CD56{sup +} cells presented a myogenic capacity and CD15{sup +} cells presented an adipogenic capacity. An important proportion of cells expressed the CD34 antigen in situ and immediately after muscle dissociation. However, CD34 antigen did not persist in culture and this initial population gave rise to adipogenic cells. These results underline the diversity of human muscle cells, and the shared or restricted commitment abilities of the main lineages under defined conditions.

  19. Role of stable isotope analyses in reconstructing past life-histories and the provenancing human skeletal remains: a review

    Directory of Open Access Journals (Sweden)

    Sehrawat Jagmahender Singh

    2017-09-01

    Full Text Available This article reviews the present scenario of use of stable isotopes (mainly δ13C, δ15N, δ18O, 87Sr to trace past life behaviours like breast feeding and weaning practices, the geographic origin, migration history, paleodiet and subsistence patterns of past populations from the chemical signatures of isotopes imprinted in human skeletal remains. This approach is based on the state that food-web isotopic signatures are seen in the human bones and teeth and such signatures can change parallely with a variety of biogeochemical processes. By measuring δ13C and δ15N isotopic values of subadult tissues of different ages, the level of breast milk ingestion at particular ages and the components of the complementary foods can be assessed. Strontium and oxygen isotopic analyses have been used for determining the geographic origins and reconstructing the way of life of past populations as these isotopes can map the isotopic outline of the area from where the person acquired water and food during initial lifetime. The isotopic values of strontium and oxygen values are considered specific to geographical areas and serve as reliable chemical signatures of migration history of past human populations (local or non-local to the site. Previous isotopic studies show that the subsistence patterns of the past human populations underwent extensive changes from nomadic to complete agricultural dependence strategies. The carbon and nitrogen isotopic values of local fauna of any archaeological site can be used to elucidate the prominence of freshwater resources in the diet of the past human populations found near the site. More extensive research covering isotopic descriptions of various prehistoric, historic and modern populations is needed to explore the role of stable isotope analysis for provenancing human skeletal remains and assessing human migration patterns/routes, geographic origins, paleodiet and subsistence practices of past populations.

  20. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm; Biensø, Rasmus S; Kiilerich, Kristian

    2011-01-01

    Background: The aim was to test the hypothesis that one week of bed rest will reduce mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle, but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after......-legged knee extensor exercise performed before and after bed rest. Results: Maximal oxygen uptake decreased 5% and exercise endurance decreased non-significantly 25% by bed rest. Bed rest reduced skeletal muscle mitochondrial DNA/nuclear DNA content 15%, hexokinase II and sirtuin 1 protein content ~45%, 3...... bed rest. Research Design and Methods: Twelve young, healthy, male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies taken before and after bed rest. In addition, muscle biopsies were obtained from 6 of the subjects prior to, immediately after and 3h after 45 min one...

  1. Quantitative skeletal scintiscanning

    International Nuclear Information System (INIS)

    Haushofer, R.

    1982-01-01

    330 patients were examined by skeletal scintiscanning with sup(99m)Tc pyrophosphate and sup(99m)methylene diphosphonate in the years between 1977 and 1979. Course control examinations were carried out in 12 patients. The collective of patients presented with primary skeletal tumours, metastases, inflammatory and degenerative skeletal diseases. Bone scintiscanning combined with the ''region of interest'' technique was found to be an objective and reproducible technique for quantitative measurement of skeletal radioactivity concentrations. The validity of nuclear skeletal examinations can thus be enhanced as far as diagnosis, course control, and differential diagnosis are concerned. Quantitative skeletal scintiscanning by means of the ''region of interest'' technique has opened up a new era in skeletal diagnosis by nuclear methods. (orig./MG) [de

  2. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    Science.gov (United States)

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. © 2015 International Federation for Cell Biology.

  3. Acute exercise remodels promoter methylation in human skeletal muscle

    DEFF Research Database (Denmark)

    Barrès, Romain; Yan, Jie; Egan, Brendan

    2012-01-01

    DNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene ex...

  4. microRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells

    DEFF Research Database (Denmark)

    Hamam, D; Ali, D; Vishnubalaji, R

    2014-01-01

    The molecular mechanisms promoting lineage-specific commitment of human mesenchymal (skeletal or stromal) stem cells (hMSCs) into adipocytes (ADs) are not fully understood. Thus, we performed global microRNA (miRNA) and gene expression profiling during adipocytic differentiation of h...... differentiation and accelerated formation of mature ADs in ex vivo cultures. Integrated analysis of bioinformatics and global gene expression profiling in miR-320c overexpressing cells and during adipocytic differentiation of hMSC identified several biologically relevant gene targets for miR-320c including RUNX2...

  5. Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle

    Science.gov (United States)

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S.; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained

  6. Animal Cancer Models of Skeletal Metastasis

    Directory of Open Access Journals (Sweden)

    Catherine Hibberd

    2013-01-01

    Full Text Available The bony skeleton is one of the most common sites of metastatic spread of cancer and is a significant source of morbidity in cancer patients, causing pain and pathologic fracture, impaired ambulatory ability, and poorer quality of life. Animal cancer models of skeletal metastases are essential for better understanding of the molecular pathways behind metastatic spread and local growth and invasion of bone, to enable analysis of host-tumor cell interactions, identify barriers to the metastatic process, and to provide platforms to develop and test novel therapies prior to clinical application in human patients. Thus, the ideal model should be clinically relevant, reproducible and representative of the human condition. This review summarizes the current in vivo animal models used in the study of cancer metastases of the skeleton.

  7. Regulatory mechanisms of skeletal muscle protein turnover during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2009-01-01

    Skeletal muscle protein turnover is a relatively slow metabolic process that is altered by various physiological stimuli such as feeding/fasting and exercise. During exercise, catabolism of amino acids contributes very little to ATP turnover in working muscle. With regards to protein turnover......, there is now consistent data from tracer studies in rodents and humans showing that global protein synthesis is blunted in working skeletal muscle. Whether there is altered skeletal muscle protein breakdown during exercise remains unclear. The blunting of protein synthesis is believed to be mediated...... downstream of changes in intracellular Ca(2+) and energy turnover. In particular, a signaling cascade involving Ca(2+)-calmodulin-eEF2 kinase-eEF2 is implicated. The possible functional significance of altered protein turnover in working skeletal muscle during exercise is discussed. Further work...

  8. Bone-seeking radiopharmaceuticals in skeletal malignancy: evolution, not revolution

    International Nuclear Information System (INIS)

    MacFarlane, D.

    2003-01-01

    Many advanced malignancies are complicated by skeletal metastases, with attendant pain and disability. External beam radiotherapy is still the most effective treatment for isolated lesions. Bone-seeking radiopharmaceuticals were perceived as a means of delivering radiation to multiple lesions simultaneously. A wide variety of radioisotopes have been used in this endeavor, with myelosuppression being the most significant potential adverse effect. Benefits of treatment are modest, including a transient improvement in pain control and perhaps prolongation of the treatment-free period. This is best demonstrated in prostate cancer with lower responses by skeletal metastases from breast and lung cancers. However, the treatment is yet to produce any improvement in patient survival. Experimental approaches to improve treatment efficacy include combination with cytotoxic therapy, and administration earlier in the course of the disease. Bone seeking radiopharmaceuticals have been used in treatment of advanced osteosarcoma in humans and canines and achieved effective palliation. The myelosuppressive effects of these agents have been exploited in patients with multiple myeloma to assist in attaining myeloablation prior to stem cell transplantation. Development of more potent non-radiolabelled bisphosphonates and recognition of their antitumour effect against several tumours has sparked a recrudescence of interest in their use for bone metastases. Set against these developments, the role of bone-seeking radiopharmaceuticals in skeletal metastases may need to be redefined

  9. Skeletal manifestations of juvenile hypothyroidism and the impact of treatment on skeletal system

    Directory of Open Access Journals (Sweden)

    Manish Gutch

    2013-01-01

    Full Text Available Thyroid hormone mediates growth and development of the skeleton through its direct effects and through its permissive effects on growth hormone. The effect of hypothyroidism on bone is well described in congenital hypothyroidism, but the impact of thyroid hormone deficiency on a growing skeleton, as it happens with juvenile hypothyroidism, is less defined. In addition, the extent to which the skeletal defects of juvenile hypothyroidism revert on the replacement of thyroid hormone is not known. A study was undertaken in 29 juvenile autoimmune hypothyroid patients to study the skeletal manifestations of juvenile hypothyroidism and the impact of treatment of hypothyroidism on the skeletal system of juvenile patients. Hypothyroidism has a profound impact on the skeletal system and delayed bone age, dwarfism, and thickened bands at the metaphyseal ends being the most common findings. Post treatment, skeletal findings like delayed bone age and dwarfism improved significantly, but there were no significant changes in enlargement of sella, presence of wormian bones, epihyseal dysgenesis, vertebral changes and thickened band at the metaphyseal ends. With the treatment of hypothyroidism, there is an exuberant advancement of bone age, the catch up of bone age being approximately double of the chronological age advancement.

  10. Skeletal muscle and fetal alcohol spectrum disorder.

    Science.gov (United States)

    Myrie, Semone B; Pinder, Mark A

    2018-04-01

    Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.

  11. Spop promotes skeletal development and homeostasis by positively regulating Ihh signaling.

    Science.gov (United States)

    Cai, Hongchen; Liu, Aimin

    2016-12-20

    Indian Hedgehog (Ihh) regulates chondrocyte and osteoblast differentiation through the Glioma-associated oncogene homolog (Gli) transcription factors. Previous in vitro studies suggested that Speckle-type POZ protein (Spop), part of the Cullin-3 (Cul3) ubiquitin ligase complex, targets Gli2 and Gli3 for degradation and negatively regulates Hedgehog (Hh) signaling. In this study, we found defects in chondrocyte and osteoblast differentiation in Spop-null mutant mice. Strikingly, both the full-length and repressor forms of Gli3, but not Gli2, were up-regulated in Spop mutants, and Ihh target genes Patched 1 (Ptch1) and parathyroid hormone-like peptide (Pthlh) were down-regulated, indicating compromised Hh signaling. Consistent with this finding, reducing Gli3 dosage greatly rescued the Spop mutant skeletal defects. We further show that Spop directly targets the Gli3 repressor for ubiquitination and degradation. Finally, we demonstrate in a conditional mutant that loss of Spop results in brachydactyly and osteopenia, which can be rescued by reducing the dosage of Gli3. In summary, Spop is an important positive regulator of Ihh signaling and skeletal development.

  12. Direct effects of FGF21 on glucose uptake in human skeletal muscle

    DEFF Research Database (Denmark)

    Mashili, Fredirick L; Austin, Reginald L; Deshmukh, Atul S

    2011-01-01

    21 were determined in normal glucose tolerant (n = 40) and type 2 diabetic (T2D; n = 40) subjects. We determined whether FGF21 has direct effects on glucose metabolism in cultured myotubes (n = 8) and extensor digitorum longus skeletal muscle. RESULTS: Serum FGF21 levels increased 20% in T2D versus...... normal glucose tolerant subjects (p muscle mRNA expression was unaltered. Fasting insulin, homeostatic model assessment of insulin resistance (HOMA-IR), waist circumference, and body mass index (BMI) significantly correlated with serum FGF21 levels in T2D (p ... and insulin-stimulated glucose uptake in human myotubes, coincident with increased glucose transporter 1 mRNA, and enhanced glucose transporter 1 abundance at the plasma membrane. In isolated extensor digitorum longus muscle, FGF21 potentiated insulin-stimulated glucose transport, without altering...

  13. Enhanced fatty acid oxidation and FATP4 protein expression after endurance exercise training in human skeletal muscle

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Jordy, Andreas B; Sjøberg, Kim A

    2012-01-01

    ; however, it is not known whether this involves up-regulation of FATP1 and FATP4 protein. Therefore, the aim of this project was to investigate FATP1 and FATP4 protein expression in the vastus lateralis muscle from healthy human individuals and to what extent FATP1 and FATP4 protein expression were......FATP1 and FATP4 appear to be important for the cellular uptake and handling of long chain fatty acids (LCFA). These findings were obtained from loss- or gain of function models. However, reports on FATP1 and FATP4 in human skeletal muscle are limited. Aerobic training enhances lipid oxidation...

  14. Leucine incorporation into mixed skeletal muscle protein in humans

    International Nuclear Information System (INIS)

    Nair, K.S.; Halliday, D.; Griggs, R.C.

    1988-01-01

    Fractional mixed skeletal muscle protein synthesis (FMPS) was estimated in 10 postabsorptive healthy men by determining the increment in the abundance of [ 13 C]-leucine in quadriceps muscle protein during an intravenous infusion of L-[1- 13 C]leucine. Whole-body muscle protein synthesis (MPS) was calculated based on the estimation of muscle mass from creatinine excretion and compared with whole-body protein synthesis (WBPS) calculated from the nonoxidative portion of leucine flux. A significant correlation was found between MPS. The contribution of MPS to WBPS was 27 ± 1%, which is comparable to the reports in other species. Morphometric analyses of adjacent muscle samples in eight subjects demonstrated that the biopsy specimens consisted of 86.5 ± 2% muscular as opposed to other tissues. Because fiber type composition varies between biopsies, the authors examined the relationship between proportions of each fiber type and FMPS. Variation in the composition of biopsies and in fiber-type proportion did not affect the estimation of muscle protein synthesis rate. They conclude that stable isotope techniques using serial needle biopsies permit the direct measurement of FMPS in humans and that this estimation is correlated with an indirect estimation of WBPS

  15. Induced skeletal mutations

    International Nuclear Information System (INIS)

    Selby, P.B.

    1979-01-01

    This paper describes a large-scale experiment that, by means of breeding tests, confirmed that many dominant skeletal mutations are induced by large-dose radiation exposure. The author also discusses: (1) the major advantages and disadvantages of the skeletal method in improving estimates of genetic hazard to man; (2) future uses of the skeletal method; (3) direct estimation of risk beyond the first generation using the skeletal method; and (4) the possibility of using the skeletal method as a quick and easy screen for chemical mutagens

  16. PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY

    Directory of Open Access Journals (Sweden)

    Ida Eržen

    2011-05-01

    Full Text Available The present contribution provides an overview of stereological methods applied in the skeletal muscle research at the Institute of Anatomy of the Medical Faculty in Ljubljana. Interested in skeletal muscle plasticity we studied three different topics: (i expression of myosin heavy chain isoforms in slow and fast muscles under experimental conditions, (ii frequency of satellite cells in young and old human and rat muscles and (iii capillary supply of rat fast and slow muscles. We analysed the expression of myosin heavy chain isoforms within slow rat soleus and fast extensor digitorum longus muscles after (i homotopic and heterotopic transplantation of both muscles, (ii low frequency electrical stimulation of the fast muscle and (iii transposition of the fast nerve to the slow muscle. The models applied were able to turn the fast muscle into a completely slow muscle, but not vice versa. One of the indicators for the regenerative potential of skeletal muscles is its satellite cell pool. The estimated parameters, number of satellite cells per unit fibre length, corrected to the reference sarcomere length (Nsc/Lfib and number of satellite cells per number of nuclei (myonuclei and satellite cell nuclei (Nsc/Nnucl indicated that the frequency of M-cadherin stained satellite cells declines in healthy old human and rat muscles compared to young muscles. To access differences in capillary densities among slow and fast muscles and slow and fast muscle fibres, we have introduced Slicer and Fakir methods, and tested them on predominantly slow and fast rat muscles. Discussing three different topics that require different approach, the present paper reflects the three decades of the development of stereological methods: 2D analysis by simple point counting in the 70's, the disector in the 80's and virtual spatial probes in the 90's. In all methods the interactive computer assisted approach was utilised.

  17. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    Science.gov (United States)

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  18. Expanding the phenome and variome of skeletal dysplasia.

    Science.gov (United States)

    Maddirevula, Sateesh; Alsahli, Saud; Alhabeeb, Lamees; Patel, Nisha; Alzahrani, Fatema; Shamseldin, Hanan E; Anazi, Shams; Ewida, Nour; Alsaif, Hessa S; Mohamed, Jawahir Y; Alazami, Anas M; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Abouelhoda, Mohamed; Monies, Dorota; Al Tassan, Nada; Alshammari, Muneera; Alsagheir, Afaf; Seidahmed, Mohammed Zain; Sogati, Samira; Aglan, Mona S; Hamad, Muddathir H; Salih, Mustafa A; Hamed, Ahlam A; Alhashmi, Nadia; Nabil, Amira; Alfadli, Fatima; Abdel-Salam, Ghada M H; Alkuraya, Hisham; Peitee, Winnie Ong; Keng, W T; Qasem, Abdullah; Mushiba, Aziza M; Zaki, Maha S; Fassad, Mahmoud R; Alfadhel, Majid; Alexander, Saji; Sabr, Yasser; Temtamy, Samia; Ekbote, Alka V; Ismail, Samira; Hosny, Gamal Ahmed; Otaify, Ghada A; Amr, Khalda; Al Tala, Saeed; Khan, Arif O; Rizk, Tamer; Alaqeel, Aida; Alsiddiky, Abdulmonem; Singh, Ankur; Kapoor, Seema; Alhashem, Amal; Faqeih, Eissa; Shaheen, Ranad; Alkuraya, Fowzan S

    2018-04-05

    PurposeTo describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized.MethodsDetailed phenotyping and next-generation sequencing (panel and exome).ResultsOur analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average.ConclusionBy expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.GENETICS in MEDICINE advance online publication, 5 April 2018; doi:10.1038/gim.2018.50.

  19. Development of an Age- and Gender-specific Model for Strontium Metabolism in Humans

    International Nuclear Information System (INIS)

    Shagina, N. B.; Degteva, M. O.; Tolstykh, E. I.

    2004-01-01

    This paper presents a development of a new biokinetic model for strontium, which accounts for age and gender differences of metabolism in humans. This model was developed based on the long-term follow-up of the residents living on the banks of the Techa River (Southern Urals, Russia) contaminated with 89,90Sr in 1950-1956. The new model uses the structure of ICRP model for strontium but model parameters have been estimated to account for age, gender and population differences in strontium retention and elimination. Estimates of age- and gender-specific model parameters were derived from (a) the results of long-term measurements of 90Sr-body burden for the Techa River population; (b) experimental studies of calcium and strontium metabolism in humans and (c) non-radiological data regarding bone metabolism (mineral content of the body, bone turnover, etc). As a result, the new model satisfactorily describes data on long-term retention of 90Sr in residents of the Techa River settlements of all ages and both genders and also data from studies during the period of global fallout in the UK and the USA and experimental data on strontium retention in humans. The new model can be used to calculate dose from 89,90Sr for the Techa River residents and also for other populations with similar parameters of skeletal maturation and also for other populations with similar parameters of skeletal maturation and involution. (Author) 27 refs

  20. Derivation of Stromal (Skeletal and Mesenchymal) Stem-Like Cells from Human Embryonic Stem Cells

    Science.gov (United States)

    Harkness, Linda; Abdallah, Basem M.; Elsafadi, Mona; Al-Nbaheen, May S.; Aldahmash, Abdullah; Kassem, Moustapha

    2012-01-01

    Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESCs) is a prerequisite for their use in clinical applications. However, there is no standard protocol for differentiating hESCs into osteoblastic cells. The aim of this study was to identify the emergence of a human stromal (mesenchymal and skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESCs in a feeder-free environment using serum replacement and as suspension aggregates (embryoid bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106, and CD166 as revealed by immunohistochemical staining and flow cytometry (fluorescence-activated cell sorting) analysis. Ex vivo differentiation of hEBs using bone morphogenic protein 2 (BMP2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold, revealed bone and cartilage, and fibrous tissue elements after 8 weeks. These tissues were of human origin and there was no evidence of differentiation to nonmesodermal tissues. hEBs implanted in the absence of HA/TCP formed vacuolated tissue containing glandular, fibrous and muscle-like tissue elements. Conversely, implantation of undifferentiated hESCs resulted in the formation of a teratoma containing a mixture of endodermal, mesodermal, and ectodermal tissues. Our study demonstrates that hMSC-like cells can be obtained from hESCs and they can be induced to form skeletal tissues in vivo when combined with HA/TCP. These findings are relevant for tissue engineering and suggest that differentiated hEBs can provide an unlimited source for

  1. Evaluation of functional erythropoietin receptor status in skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Christensen, Britt; Lundby, Carsten; Jessen, Niels

    2012-01-01

    Background: Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle. Methodology/Principal Findings: The protocols...... involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1-10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well...... as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle...

  2. Evaluation of functional erythropoietin receptor status in skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Christensen, Britt; Lundby, Carsten; Jessen, Niels

    2012-01-01

    as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle......Background: Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle. Methodology/Principal Findings: The protocols...... involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1-10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well...

  3. Effects of 1,25-dihydroxyvitamin D3 and vitamin D3 on the expression of the vitamin D receptor in human skeletal muscle cells

    Science.gov (United States)

    Vitamin D receptor (VDR) expression and action in non-human skeletal muscle have recently been reported in several studies, yet data on the activity and expression of VDR in human muscle cells are scarce. We conducted a series of studies to examine the (1) effect of 1,25-dihydroxyvitamin D3 (1,25(OH...

  4. Assessment of mandibular growth by skeletal scintigraphy

    International Nuclear Information System (INIS)

    Kaban, L.B.; Cisneros, G.J.; Heyman, S.; Treves, S.

    1982-01-01

    Accurate assessment of facial skeletal growth remains a major problem in craniomaxillofacial surgery. Current methods include: (1) comparisons of chronologic age with growth histories of the patient and the family, (2) hand-wrist radiographs compared with a standard, and (3) serial cephalometric radiographs. Uptake of technetium-99m methylene diphosphonate into bone is a reflection of current metabolic activity and blood flow. Therefore, scintigraphy with this radiopharmaceutical might serve as a good method of assessing skeletal growth. Thirty-four patients, ranging in age from 15 months to 22 years, who were undergoing skeletal scintigrams for acute pathologic conditions of the extremities, were used to develop standards of uptake based on age and skeletal maturation. The results indicate that skeletal scintigraphy may be useful in evaluation of mandibular growth

  5. Determinants of relative skeletal maturity in South African children.

    Science.gov (United States)

    Hawley, Nicola L; Rousham, Emily K; Johnson, William; Norris, Shane A; Pettifor, John M; Cameron, Noël

    2012-01-01

    The variation of skeletal maturity about chronological age is a sensitive indicator of population health. Age appropriate or advanced skeletal maturity is a reflection of adequate environmental and social conditions, whereas delayed maturation suggests inadequate conditions for optimal development. There remains a paucity of data, however, to indicate which specific biological and environmental factors are associated with advancement or delay in skeletal maturity. The present study utilises longitudinal data from the South African Birth to Twenty (Bt20) study to indentify predictors of relative skeletal maturity (RSM) in early adolescence. A total of 244 black South African children (n=131 male) were included in this analysis. Skeletal maturity at age 9/10 years was assessed using the Tanner and Whitehouse III RUS technique. Longitudinal data on growth, socio-economic position and pubertal development were entered into sex-specific multivariable general linear regression models with relative skeletal maturity (skeletal age-chronological age) as the outcome. At 9/10 years of age males showed an average of 0.66 years delay in skeletal maturation relative to chronological age. Females showed an average of 1.00 year delay relative to chronological age. In males, being taller at 2 years (pdetermining the rate of skeletal maturation during childhood independently of current stature. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Ex Vivo Gene Therapy Using Human Mesenchymal Stem Cells to Deliver Growth Factors in the Skeletal Muscle of a Familial ALS Rat Model.

    Science.gov (United States)

    Suzuki, Masatoshi; Svendsen, Clive N

    2016-01-01

    Therapeutic protein and molecule delivery to target sites by transplanted human stem cells holds great promise for ex vivo gene therapy. Our group has demonstrated the therapeutic benefits of ex vivo gene therapy targeting the skeletal muscles in a transgenic rat model of familial amyotrophic lateral sclerosis (ALS). We used human mesenchymal stem cells (hMSCs) and genetically modified them to release neuroprotective growth factors such as glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF). Intramuscular growth factor delivery via hMSCs can enhance neuromuscular innervation and motor neuron survival in a rat model of ALS (SOD1(G93A) transgenic rats). Here, we describe the protocol of ex vivo delivery of growth factors via lentiviral vector-mediated genetic modification of hMSCs and hMSC transplantation into the skeletal muscle of a familial ALS rat model.

  7. Radiology of postnatal skeletal development. Pt. 7

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.A.; Phillips, S.B.

    1983-02-01

    Twenty-four pairs of scapulae from fetal specimens and 35 pairs of scapulae from postnatal cadavers ranging in age from full-term neonates to 14 years, were studied morphologically and roentgenographically. Air-cartilage interfacing was used to demonstrate both the osseous and cartilaginous contours. When the entire chondro-osseous dimensions, rather than just the osseous dimensions, were measured, the scapula had a height-width ratio ranging from 1.36 to 1.52 (average 1.44) during most of fetal development. The exceptions were three stillborns with camptomelic, thanatophoric, and achondrogenic dwarfism in which the ratio averaged 0.6. At no time during fetal development was the glenoid cavity convex; it always had a concave articular surface. However, the osseous subchrondral countour was often flat or slightly convex. In the postnatal period the height-width ratio averaged 1.49. The ratio remained virtually unchanged throughout skeletal growth and maturation. In a patient with unilateral Sprengel's deformity the ratio for the normal side was 1.5, while the abnormal was 1.0. The cartilaginous glenoid cavity was always concave during postnatal development, even in the specimens with major structural deformities, although the subchondral osseous contour was usually flat or convex during the first few years of postnatal development. Ossification of the coracoid process began with the development of a primary center at three to four months. A bipolar physis was present between the primary coracoid center and the primary scapular center until late adolescence.

  8. Radiology of postnatal skeletal development. Pt. 7

    International Nuclear Information System (INIS)

    Ogden, J.A.; Phillips, S.B.

    1983-01-01

    Twenty-four pairs of scapulae from fetal specimens and 35 pairs of scapulae from postnatal cadavers ranging in age from full-term neonates to 14 years, were studied morphologically and roentgenographically. Air-cartilage interfacing was used to demonstrate both the osseous and cartilaginous contours. When the entire chondro-osseous dimensions, rather than just the osseous dimensions, were measured, the scapula had a height-width ratio ranging from 1.36 to 1.52 (average 1.44) during most of fetal development. The exceptions were three stillborns with camptomelic, thanatophoric, and achondrogenic dwarfism in which the ratio averaged 0.6. At no time during fetal development was the glenoid cavity convex; it always had a concave articular surface. However, the osseous subchrondral countour was often flat or slightly convex. In the postnatal period the height-width ratio averaged 1.49. The ratio remained virtually unchanged throughout skeletal growth and maturation. In a patient with unilateral Sprengel's deformity the ratio for the normal side was 1.5, while the abnormal was 1.0. The cartilaginous glenoid cavity was always concave during postnatal development, even in the specimens with major structural deformities, although the subchondral osseous contour was usually flat or convex during the first few years of postnatal development. Ossification of the coracoid process began with the development of a primary center at three to four months. A bipolar physis was present between the primary coracoid center and the primary scapular center until late adolescence. (orig.)

  9. A unified anatomy ontology of the vertebrate skeletal system.

    Directory of Open Access Journals (Sweden)

    Wasila M Dahdul

    Full Text Available The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO, to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish and multispecies (teleost, amphibian vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages, and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO, Gene Ontology (GO, Uberon, and Cell Ontology (CL, and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  10. A unified anatomy ontology of the vertebrate skeletal system.

    Science.gov (United States)

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  11. A Unified Anatomy Ontology of the Vertebrate Skeletal System

    Science.gov (United States)

    Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424

  12. The influence of acute resistance exercise on cyclooxygenase-1 and -2 activity and protein levels in human skeletal muscle.

    Science.gov (United States)

    Carroll, Chad C; O'Connor, Devin T; Steinmeyer, Robert; Del Mundo, Jonathon D; McMullan, David R; Whitt, Jamie A; Ramos, Jahir E; Gonzales, Rayna J

    2013-07-01

    This study evaluated the activity and content of cyclooxygenase (COX)-1 and -2 in response to acute resistance exercise (RE) in human skeletal muscle. Previous work suggests that COX-1, but not COX-2, is the primary COX isoform elevated with resistance exercise in human skeletal muscle. COX activity, however, has not been assessed after resistance exercise in humans. It was hypothesized that RE would increase COX-1 but not COX-2 activity. Muscle biopsies were taken from the vastus lateralis of nine young men (25 ± 1 yr) at baseline (preexercise), 4, and 24 h after a single bout of knee extensor RE (three sets of 10 repetitions at 70% of maximum). Tissue lysate was assayed for COX-1 and COX-2 activity. COX-1 and COX-2 protein levels were measured via Western blot analysis. COX-1 activity increased at 4 h (P 0.05) with acute RE. In contrast, COX-2 protein levels were nearly 3-fold greater (P > 0.05) at 4 h and 5-fold greater (P = 0.06) at 24 h, compared with preexercise. In conclusion, COX-1 activity increases transiently with exercise independent of COX-1 protein levels. In contrast, both COX-2 activity and protein levels were elevated with exercise, and this elevation persisted to at least 24 h after RE.

  13. A primary reduced TCA flux governs substrate oxidation in T2D skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, Michael

    2012-01-01

    Our current knowledge on substrate oxidation in skeletal muscle in relation to insulin resistance and type 2 diabetes (T2D) originate mainly from in vivo studies. The oxidative capacity of skeletal muscle is highly influenced by physical activity, ageing, hormonal status, and fiber type composition...... further regulatory mechanism to our understanding of substrate oxidation in human skeletal muscle during normo- an pathophysiological conditions, focusing especially on the governing influence of a primary reduced TCA flux for the diabetic phenotype in skeletal muscle....

  14. Type 2 iodothyronine deiodinase in skeletal muscle: effects of hypothyroidism and fasting.

    Science.gov (United States)

    Heemstra, Karen A; Soeters, Maarten R; Fliers, Eric; Serlie, Mireille J; Burggraaf, Jacobus; van Doorn, Martijn B; van der Klaauw, Agatha A; Romijn, Johannes A; Smit, Johannes W; Corssmit, Eleonora P; Visser, Theo J

    2009-06-01

    The iodothyronine deiodinases D1, D2, and D3 enable tissue-specific adaptation of thyroid hormone levels in response to various conditions, such as hypothyroidism or fasting. The possible expression of D2 mRNA in skeletal muscle is intriguing because this enzyme could play a role in systemic as well as local T3 production. We determined D2 activity and D2 mRNA expression in human skeletal muscle biopsies under control conditions and during hypothyroidism, fasting, and hyperinsulinemia. This was a prospective study. The study was conducted at a university hospital. We studied 11 thyroidectomized patients with differentiated thyroid carcinoma (DTC) on and after 4 wk off T4( replacement and six healthy lean subjects in the fasting state and during hyperinsulinemia after both 14 and 62 h of fasting. D2 activity and D2 mRNA levels were measured in skeletal muscle samples. No differences were observed in muscle D2 mRNA levels in DTC patients on and off T4 replacement therapy. In healthy subjects, muscle D2 mRNA levels were lower after 62 h compared to 14 h of fasting. Insulin increased mRNA expression after 62 h, but not after 14 h of fasting. Skeletal muscle D2 activities were very low and not influenced by hypothyroidism and fasting. Human skeletal muscle D2 mRNA expression is modulated by fasting and insulin, but not by hypothyroidism. The lack of a clear effect of D2 mRNA modulation on the observed low D2 activities questions the physiological relevance of D2 activity in human skeletal muscle.

  15. Role of PKCδ in Insulin Sensitivity and Skeletal Muscle Metabolism

    DEFF Research Database (Denmark)

    Li, Mengyao; Vienberg, Sara G; Bezy, Olivier

    2015-01-01

    Protein kinase C (PKC)δ has been shown to be increased in liver in obesity and plays an important role in the development of hepatic insulin resistance in both mice and humans. In the current study, we explored the role of PKCδ in skeletal muscle in the control of insulin sensitivity and glucose......-body insulin sensitivity and muscle insulin resistance and by 15 months of age improved the age-related decline in whole-body glucose tolerance. At 15 months of age, M-PKCδKO mice also exhibited decreased metabolic rate and lower levels of some proteins of the OXPHOS complex suggesting a role for PKCδ...... in the regulation of mitochondrial mass at older age. These data indicate an important role of PKCδ in the regulation of insulin sensitivity and mitochondrial homeostasis in skeletal muscle with aging....

  16. Development and validation of an n-dodecane skeletal mechanism for spray combustion applications

    KAUST Repository

    Luo, Zhaoyu; Som, Sibendu K.; Sarathy, Mani; Plomer, Max; Pitz, William J.; Longman, Douglas E.; Lu, Tianfeng

    2014-01-01

    relation graph with expert knowledge (DRGX) and sensitivity analysis was employed for the present skeletal reduction. The skeletal mechanism was first extensively validated in 0-D and 1-D combustion systems, including auto-ignition, jet stirred reactor (JSR

  17. Mutations in EXTL3 Cause Neuro-immuno-skeletal Dysplasia Syndrome.

    Science.gov (United States)

    Oud, Machteld M; Tuijnenburg, Paul; Hempel, Maja; van Vlies, Naomi; Ren, Zemin; Ferdinandusse, Sacha; Jansen, Machiel H; Santer, René; Johannsen, Jessika; Bacchelli, Chiara; Alders, Marielle; Li, Rui; Davies, Rosalind; Dupuis, Lucie; Cale, Catherine M; Wanders, Ronald J A; Pals, Steven T; Ocaka, Louise; James, Chela; Müller, Ingo; Lehmberg, Kai; Strom, Tim; Engels, Hartmut; Williams, Hywel J; Beales, Phil; Roepman, Ronald; Dias, Patricia; Brunner, Han G; Cobben, Jan-Maarten; Hall, Christine; Hartley, Taila; Le Quesne Stabej, Polona; Mendoza-Londono, Roberto; Davies, E Graham; de Sousa, Sérgio B; Lessel, Davor; Arts, Heleen H; Kuijpers, Taco W

    2017-02-02

    EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Pathogenesis of Insulin Resistance in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Muhammad A. Abdul-Ghani

    2010-01-01

    Full Text Available Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

  19. Comparative study of MSX-2, DLX-5, and DLX-7 gene expression during early human tooth development.

    Science.gov (United States)

    Davideau, J L; Demri, P; Hotton, D; Gu, T T; MacDougall, M; Sharpe, P; Forest, N; Berdal, A

    1999-12-01

    Msx and Dlx family transcription factors are key elements of craniofacial development and act in specific combinations with growth factors to control the position and shape of various skeletal structures in mice. In humans, the mutations of MSX and DLX genes are associated with specific syndromes, such as tooth agenesis, craniosynostosis, and tricho-dento-osseous syndrome. To establish some relationships between those reported human syndromes, previous experimental data in mice, and the expression patterns of MSX and DLX homeogenes in the human dentition, we investigated MSX-2, DLX-5, and DLX-7 expression patterns and compared them in orofacial tissues of 7.5- to 9-wk-old human embryos by using in situ hybridization. Our data showed that MSX-2 was strongly expressed in the progenitor cells of human orofacial skeletal structures, including mandible and maxilla bones, Meckel's cartilage, and tooth germs, as shown for DLX-5. DLX-7 expression was restricted to the vestibular lamina and, later on, to the vestibular part of dental epithelium. The comparison of MSX-2, DLX-5, and DLX-7 expression patterns during the early stages of development of different human tooth types showed the existence of spatially ordered sequences of homeogene expression along the vestibular/lingual axis of dental epithelium. The expression of MSX-2 in enamel knot, as well as the coincident expression of MSX-2, DLX-5, and DLX-7 in a restricted vestibular area of dental epithelium, suggests the existence of various organizing centers involved in the control of human tooth morphogenesis.

  20. 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Birk, Jesper Bratz; Frøsig, Christian

    2005-01-01

    adaptations within the AMPK system itself. We investigated the effect of strength training and T2DM on the isoform expression and the heterotrimeric composition of the AMPK in human skeletal muscle. Ten patients with T2DM and seven healthy subjects strength trained (T) one leg for 6 weeks, while the other leg......Strength training enhances insulin sensitivity and represents an alternative to endurance training for patients with type 2 diabetes (T2DM). The 5'AMP-activated protein kinase (AMPK) may mediate adaptations in skeletal muscle in response to exercise training; however, little is known about...... remained untrained (UT). Muscle biopsies were obtained before and after the training period. Basal AMPK activity and protein/mRNA expression of both catalytic (alpha1 and alpha2) and regulatory (beta1, beta2, gamma1, gamma2a, gamma2b and gamma3) AMPK isoforms were independent of T2DM, whereas the protein...

  1. Reduced blood flow to contracting skeletal muscle in ageing humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    The ability to sustain a given absolute submaximal workload declines with advancing age likely due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological...... consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle...... the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity. This article is protected by copyright. All rights reserved....

  2. Translating golden retriever muscular dystrophy microarray findings to novel biomarkers for cardiac/skeletal muscle function in Duchenne muscular dystrophy.

    Science.gov (United States)

    Galindo, Cristi L; Soslow, Jonathan H; Brinkmeyer-Langford, Candice L; Gupte, Manisha; Smith, Holly M; Sengsayadeth, Seng; Sawyer, Douglas B; Benson, D Woodrow; Kornegay, Joe N; Markham, Larry W

    2016-04-01

    In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.

  3. Phosphorylation and function of DGAT1 in skeletal muscle cells

    OpenAIRE

    Yu, Jinhai; Li, Yiran; Zou, Fei; Xu, Shimeng; Liu, Pingsheng

    2015-01-01

    Aberrant intramuscular triacylglycerol (TAG) storage in human skeletal muscle is closely related to insulin insensitivity. Excessive lipid storage can induce insulin resistance of skeletal muscle, and under severe conditions, lead to type 2 diabetes. The balance of interconversion between diacylglycerol and TAG greatly influences lipid storage and utilization. Diacylglycerol O-acyltransferase 1 (DGAT1) plays a key role in this process, but its activation and phosphorylation requires further d...

  4. Woman skeletal muscle transcriptome with bed rest and countermeasures.

    Data.gov (United States)

    National Aeronautics and Space Administration — Microgravity has a dramatic impact on human physiology illustrated in particular with skeletal muscle impairment. A thorough understanding of the mechanisms leading...

  5. Training induced adaptation in horse skeletal muscle

    NARCIS (Netherlands)

    Dam, K.G. van

    2006-01-01

    It appears that the physiological and biochemical adaptation of skeletal muscle to training in equine species shows a lot of similarities with human and rodent physiological adaptation. On the other hand it is becoming increasingly clear that intra-cellular mechanisms of adaptation (substrate

  6. Cardiac troponin T and fast skeletal muscle denervation in ageing.

    Science.gov (United States)

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan

    2017-10-01

    Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii

  7. Effects of benzo(a)pyrene on the skeletal development of Sebastiscus marmoratus embryos and the molecular mechanism involved

    International Nuclear Information System (INIS)

    He Chengyong; Zuo Zhenghong; Shi Xiao; Li Ruixia; Chen Donglei; Huang Xin; Chen Yixin; Wang Chonggang

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, which have been known to be carcinogenic and teratogenic. However, the skeletal development toxicity of PAHs and the mechanism involved remain unclear. In fishes, the neurocranial and craniofacial skeleton develop as cartilage. The signaling molecules of hedgehog (Hh) family play crucial roles in regulating skeletal development. In the present study, rockfish (Sebastiscus marmoratus) embryos were exposed to benzo(a)pyrene (BaP) for 7 days at environmental levels (0.05, 0.5 and 5 nmol/L) which resulted in craniofacial skeleton deformities. BaP exposure reduced the cell proliferation activity in the craniofacial skeleton as detected by quantitative PCR and in situ hybridization. The expression of Sonic hedgehog (Shh), rather than Indian hedgehog (Ihh), was down-regulated in the craniofacial skeleton in the 0.5 and 5 nmol/L groups. Consistent with the Shh results, the expression of Ptch1 and Gli2 was decreased by BaP exposure and BMP4 was presented on changes in the 0.5 and 5 nmol/L groups. These results suggested that BaP could impair the expression and function of Shh signaling pathway, perturbing the proliferation of chondrocytes and so disturbing craniofacial skeletal development.

  8. Effects of benzo(a)pyrene on the skeletal development of Sebastiscus marmoratus embryos and the molecular mechanism involved

    Energy Technology Data Exchange (ETDEWEB)

    He Chengyong [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); Zuo Zhenghong [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen (China); Shi Xiao; Li Ruixia; Chen Donglei; Huang Xin; Chen Yixin [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); Wang Chonggang, E-mail: cgwang@xmu.edu.cn [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen (China)

    2011-01-25

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, which have been known to be carcinogenic and teratogenic. However, the skeletal development toxicity of PAHs and the mechanism involved remain unclear. In fishes, the neurocranial and craniofacial skeleton develop as cartilage. The signaling molecules of hedgehog (Hh) family play crucial roles in regulating skeletal development. In the present study, rockfish (Sebastiscus marmoratus) embryos were exposed to benzo(a)pyrene (BaP) for 7 days at environmental levels (0.05, 0.5 and 5 nmol/L) which resulted in craniofacial skeleton deformities. BaP exposure reduced the cell proliferation activity in the craniofacial skeleton as detected by quantitative PCR and in situ hybridization. The expression of Sonic hedgehog (Shh), rather than Indian hedgehog (Ihh), was down-regulated in the craniofacial skeleton in the 0.5 and 5 nmol/L groups. Consistent with the Shh results, the expression of Ptch1 and Gli2 was decreased by BaP exposure and BMP4 was presented on changes in the 0.5 and 5 nmol/L groups. These results suggested that BaP could impair the expression and function of Shh signaling pathway, perturbing the proliferation of chondrocytes and so disturbing craniofacial skeletal development.

  9. Simultaneous 31P NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: technical aspects

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1994-01-01

    The bioenergetics of human skeletal muscle can be studied by 31P NMR spectroscopy (31P-MRS) and by surface electromyography (SEMG). Simultaneous 31P-MRS and SEMG permit accurate and noninvasive studies of the correlation between metabolic and electrical changes in exercising and recovering human....... A nonmagnetic ergometer was used for ankle dorsiflexions that activated only the anterior tibial muscle as verified by post exercise imaging. The coil design and the adiabatic sech/tanh pulse improved sensitivity by 45% and 56% respectively, compared with standard techniques. Simultaneous electromyographic...... recordings did not deteriorate the NMR spectra. The VARPRO time domain fitting routine was very suitable for estimating 31P muscle spectra. With these methods it was possible to accurately estimate parameters describing metabolic and electrical changes during rest, exercise and the entire recovery period...

  10. Nitric oxide increases cyclic GMP levels, AMP-activated protein kinase (AMPK)alpha1-specific activity and glucose transport in human skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, A S; Long, Y C; de Castro Barbosa, T

    2010-01-01

    -nitrosohydrazino)-1,2-ethylenediamine (spermine NONOate) would increase intracellular cyclic GMP (cGMP) levels and promote glucose transport. METHODS: Skeletal muscle strips were prepared from vastus lateralis muscle biopsies obtained from seven healthy men. Muscle strips were incubated in the absence or presence...... of 5 mmol/l spermine NONOate or 120 nmol/l insulin. The L6 muscle cells were treated with spermine NONOate (20 micromol/l) and incubated in the absence or presence of insulin (120 nmol/l). The direct effect of spermine NONOate and insulin on glucose transport, cGMP levels and signal transduction...... was determined. RESULTS: In human skeletal muscle, spermine NONOate increased glucose transport 2.4-fold (p GMP levels (80-fold, p

  11. Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle.

    Science.gov (United States)

    Cobley, J N; Sakellariou, G K; Owens, D J; Murray, S; Waldron, S; Gregson, W; Fraser, W D; Burniston, J G; Iwanejko, L A; McArdle, A; Morton, J P; Jackson, M J; Close, G L

    2014-05-01

    Several redox-regulated responses to an acute exercise bout fail in aged animal skeletal muscle, including the ability to upregulate the expression of antioxidant defense enzymes and heat shock proteins (HSPs). These findings are generally derived from studies on sedentary rodent models and thus may be related to reduced physical activity and/or intraspecies differences as opposed to aging per se. This study, therefore, aimed to determine the influence of age and training status on the expression of HSPs, antioxidant enzymes, and NO synthase isoenzymes in quiescent and exercised human skeletal muscle. Muscle biopsy samples were obtained from the vastus lateralis before and 3 days after an acute high-intensity-interval exercise bout in young trained, young untrained, old trained, and old untrained subjects. Levels of HSP72, PRX5, and eNOS were significantly higher in quiescent muscle of older compared with younger subjects, irrespective of training status. 3-NT levels were elevated in muscles of the old untrained but not the old trained state, suggesting that lifelong training may reduce age-related macromolecule damage. SOD1, CAT, and HSP27 levels were not significantly different between groups. HSP27 content was upregulated in all groups studied postexercise. HSP72 content was upregulated to a greater extent in muscle of trained compared with untrained subjects postexercise, irrespective of age. In contrast to every other group, old untrained subjects failed to upregulate CAT postexercise. Aging was associated with a failure to upregulate SOD2 and a downregulation of PRX5 in muscle postexercise, irrespective of training status. In conclusion, lifelong training is unable to fully prevent the progression toward a more stressed muscular state as evidenced by increased HSP72, PRX5, and eNOS protein levels in quiescent muscle. Moreover, lifelong training preserves some (e.g., CAT) but not all (e.g., SOD2, HSP72, PRX5) of the adaptive redox-regulated responses after an

  12. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  13. Development of a skeletal multi-component fuel reaction mechanism based on decoupling methodology

    International Nuclear Information System (INIS)

    Mohan, Balaji; Tay, Kun Lin; Yang, Wenming; Chua, Kian Jon

    2015-01-01

    Highlights: • A compact multi-component skeletal reaction mechanism was developed. • Combined bio-diesel and PRF mechanism was proposed. • The mechanism consists of 68 species and 183 reactions. • Well validated against ignition delay times, flame speed and engine results. - Abstract: A new coupled bio-diesel surrogate and primary reference fuel (PRF) oxidation skeletal mechanism has been developed. The bio-diesel surrogate sub-mechanism consists of oxidation sub-mechanisms of Methyl decanoate (MD), Methyl 9-decenoate (MD9D) and n-Heptane fuel components. The MD and MD9D are chosen to represent the saturated and unsaturated methyl esters respectively in bio-diesel fuels. Then, a reduced iso-Octane oxidation sub-mechanism is added to the bio-diesel surrogate sub-mechanism. Then, all the sub-mechanisms are integrated to a reduced C_2–C_3 mechanism, detailed H_2/CO/C_1 mechanism and reduced NO_x mechanism based on decoupling methodology. The final mechanism consisted of 68 species and 183 reactions. The mechanism was well validated with shock-tube ignition delay times, laminar flame speed and 3D engine simulations.

  14. Human skeletal uptake of natural alpha radioactivity from 210Pb-supported 210Po

    International Nuclear Information System (INIS)

    Oyedepo, A.C.

    1998-06-01

    This thesis contributes to increasing knowledge on the dosimetry of natural alpha-particle radiation in skeletal tissues, particularly in utero, and associated risks of malignancy. Alpha-particle radiation is an established aetiological factor of cancer. In the human body, polonium-210 decayed from skeletal lead-210 ( 210 Pb/ 210 Po) is the predominant natural alpha-emitter. 210 Pb displaces calcium (Ca) in mineral hydroxyapatite, especially during periods of rapid bone growth and remodelling when Ca is laid down. It was therefore necessary to study alpha activity uptake and calcification concurrently within bone. Human studies were undertaken on: fetal vertebrae, 17 - 42 weeks of gestation, 74 samples; adult vertebrae, 40 - 95 years, 40 samples; and adult ribs, 20 - 95 years, 51 samples. Specimens were unconcentrated and weighed 210 Pb/ 210 Po. Alpha track data were resolved by specially written software named SPATS (Selection Program for Analysing Track Structures). Ca and phosphorus (P) were biochemically determined. Results were examined for trends in bone type, gender and chronological ageing in humans. The main research findings were: 1) The Ca content of fetal vertebrae increased linearly at a weekly rate of 0.2g Ca 100 g -1 wet bone (typical values of 2, 4, 6 g 100 g -1 at 16, 26 and 36 weeks). 2) The P concentration also increased with advancing fetal age. 3) The Ca:P bone weight ratio rose from 1.7 to 2.2 by 32 gestational weeks. 4) The overall range in bone 210 Pb/ 210 Po alpha activity was 0.25 - 1.1 Bq kg -1 with correlation between activity concentration and fetal age (0.47 ± 0.05 Bq kg -1 for 17 - 26 weeks, 0.67 ± 0.04 Bq kg -1 for 32 - 42 weeks). 5) The correlation between increased alpha radioactivity and increased Ca concentration approximating to 0.0046 Bq g -1 of Ca. 6) A decreasing Ca content of adult vertebrae with increasing age from 40 - 95 years, from ∼ 14 to 5 g 100 g-1, but no correlation with age for adult rib Ca content of 10 - 30 g

  15. An Antibody Blocking Activin Type II Receptors Induces Strong Skeletal Muscle Hypertrophy and Protects from Atrophy

    Science.gov (United States)

    Minetti, Giulia C.; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N.; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji

    2014-01-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings. PMID:24298022

  16. Development and refinement of computer-assisted planning and execution system for use in face-jaw-teeth transplantation to improve skeletal and dento-occlusal outcomes.

    Science.gov (United States)

    Hashemi, Sepehr; Armand, Mehran; Gordon, Chad R

    2016-10-01

    To describe the development and refinement of the computer-assisted planning and execution (CAPE) system for use in face-jaw-teeth transplants (FJTTs). Although successful, some maxillofacial transplants result in suboptimal hybrid occlusion and may require subsequent surgical orthognathic revisions. Unfortunately, the use of traditional dental casts and splints pose several compromising shortcomings in the context of FJTT and hybrid occlusion. Computer-assisted surgery may overcome these challenges. Therefore, the use of computer-assisted orthognathic techniques and functional planning may prevent the need for such revisions and improve facial-skeletal outcomes. A comprehensive CAPE system for use in FJTT was developed through a multicenter collaboration and refined using plastic models, live miniature swine surgery, and human cadaver models. The system marries preoperative surgical planning and intraoperative execution by allowing on-table navigation of the donor fragment relative to recipient cranium, and real-time reporting of patient's cephalometric measurements relative to a desired dental-skeletal outcome. FJTTs using live-animal and cadaveric models demonstrate the CAPE system to be accurate in navigation and beneficial in improving hybrid occlusion and other craniofacial outcomes. Future refinement of the CAPE system includes integration of more commonly performed orthognathic/maxillofacial procedures.

  17. A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation

    Directory of Open Access Journals (Sweden)

    EL Smith

    2013-09-01

    Full Text Available Scientific research and progress, particularly in the drug discovery and regenerative medicine fields, is typically dependent on suitable animal models to develop new and improved clinical therapies for injuries and diseases. In vivo model systems are frequently utilised, but these models are expensive, highly complex and pose a number of ethical considerations leading to the development and use of a number of alternative ex vivo model systems. The ex vivo embryonic chick long bone and limb bud models have been utilised in the scientific research field as a model to understand skeletal development for over eighty years. The rapid development of avian skeletal tissues, coupled with the ease of experimental manipulation, availability of genome sequence and the presence of multiple cell and tissue types has seen such model systems gain significant research interest in the last few years in the tissue engineering field. The models have been explored both as systems for understanding the developmental bone niche and as potential testing tools for tissue engineering strategies for bone repair and regeneration. This review details the evolution of the chick limb organ culture system and presents recent innovative developments and emerging techniques and technologies applied to these models that are aiding our understanding of skeletal developmental and regenerative medicine research and application.

  18. Primary sacrococcygeal chordoma with unusual skeletal muscle metastasis

    Directory of Open Access Journals (Sweden)

    Lisa Vu, MD

    2014-01-01

    Full Text Available Chordomas are rare neoplasms that do not often metastasize. Of the small percent that do metastasize, they very infrequently involve skeletal muscle. Only a few cases of skeletal muscle metastases have been reported in the literature. We report an unusual case of a patient with a primary sacrococcygeal chordoma who experienced a long period of remission but who subsequently developed recurrence and multiple metastatic lesions to skeletal muscles including the deltoid, triceps, and pectineus.

  19. Skeletal muscle stem cells from animals I. Basic cell biology

    Science.gov (United States)

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  20. Investigating human skeletal muscle physiology with unilateral exercise models: when one limb is more powerful than two.

    Science.gov (United States)

    MacInnis, Martin J; McGlory, Chris; Gibala, Martin J; Phillips, Stuart M

    2017-06-01

    Direct sampling of human skeletal muscle using the needle biopsy technique can facilitate insight into the biochemical and histological responses resulting from changes in exercise or feeding. However, the muscle biopsy procedure is invasive, and analyses are often expensive, which places pragmatic restraints on sample sizes. The unilateral exercise model can serve to increase statistical power and reduce the time and cost of a study. With this approach, 2 limbs of a participant are randomized to 1 of 2 treatments that can be applied almost concurrently or sequentially depending on the nature of the intervention. Similar to a typical repeated measures design, comparisons are made within participants, which increases statistical power by reducing the amount of between-person variability. A washout period is often unnecessary, reducing the time needed to complete the experiment and the influence of potential confounding variables such as habitual diet, activity, and sleep. Variations of the unilateral exercise model have been employed to investigate the influence of exercise, diet, and the interaction between the 2, on a wide range of variables including mitochondrial content, capillary density, and skeletal muscle hypertrophy. Like any model, unilateral exercise has some limitations: it cannot be used to study variables that potentially transfer across limbs, and it is generally limited to exercises that can be performed in pairs of treatments. Where appropriate, however, the unilateral exercise model can yield robust, well-controlled investigations of skeletal muscle responses to a wide range of interventions and conditions including exercise, dietary manipulation, and disuse or immobilization.

  1. Syntheses and evaluation of 68 Ga- and 153 Sm-labeled DOTA-conjugated bisphosphonate ligand for potential use in detection of skeletal metastases and management of pain arising from skeletal metastases.

    Science.gov (United States)

    Chakraborty, Sudipta; Goswami, Dibakar; Chakravarty, Rubel; Mohammed, Sahiralam Khan; Sarma, Haladhar Deb; Dash, Ashutosh

    2018-05-05

    This article reports the syntheses and evaluation of 68 Ga- and 153 Sm-complexes of a new DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-conjugated geminal bisphosphonate, DOTA-Bn-SCN-BP, for their potential uses in the early detection of skeletal metastases by imaging and palliation of pain arising from skeletal metastases, respectively. The conjugate was synthesized in high purity following an easily adaptable three-step reaction scheme. Gallium-68- and 153 Sm-complexes were prepared in high yield (>98%) and showed excellent in vitro stability in phosphate-buffered saline (PBS) and human serum. Both the complexes showed high affinity for hydroxyapatite particles in in vitro binding study. In biodistribution studies carried out in normal Wistar rats, both the complexes exhibited rapid skeletal accumulation with almost no retention in any other major organ. The newly synthesized molecule DOTA-Bn-SCN-BP would therefore be a promising targeting ligand for the development of radiopharmaceuticals for both imaging skeletal metastases and palliation of pain arising out of it in patients with cancer when radiolabeled with 68 Ga and 153 Sm, respectively. A systematic comparative evaluation, however, showed that there was no significant improvement of skeletal accumulation of the 153 Sm-DOTA-Bn-SCN-BP complex over 153 Sm-DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylenephosphonic acid) as the later itself demonstrated optimal properties required for an agent for bone pain palliation. © 2018 John Wiley & Sons A/S.

  2. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    Science.gov (United States)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  3. A new method to measure local oxygen consumption in human skeletal muscle during dynamic exercise using near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Binzoni, Tiziano; Cooper, Chris E; Wittekind, Anna L; Beneke, Ralph; Elwell, Clare E; Leung, Terence S; Van De Ville, Dimitri

    2010-01-01

    Near infrared spectroscopy (NIRS) can readily report on changes in blood volume and oxygenation. However, it has proved more problematic to measure real-time changes in blood flow and oxygen consumption. Here we report the development of a novel method using NIRS to measure local oxygen consumption in human muscle. The method utilizes the blood volume changes induced by the muscle pump during rhythmically contracting exercising skeletal muscle. We found that the saturation of the blood during the contraction phase was lower than that during the relaxation phase. The calculated oxygen drop was then divided by the contraction time to generate a value for the muscle oxygen consumption in the optical region of interest. As a test we measured the muscle oxygen consumption in the human vastus lateralis during exercise on a cycle ergometer by 11 trained male athletes (32 ± 11 years old) at 40% and 110% peak aerobic power. We saw an increase from 13.78 µmol 100 g −1 min −1 to 19.72 µmol 100 g −1 min −1 with the increase in power. The measurements are theoretically exempt from usual NIRS confounders such as myoglobin and adipose tissue and could provide a useful tool for studying human physiology

  4. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 in human skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Pehmøller, Christian; Kristensen, Jonas Møller

    2014-01-01

    We investigated the phosphorylation signatures of two Rab GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers e...

  5. Dentofacial transverse development in Koreans according to skeletal maturation: A cross-sectional study.

    Science.gov (United States)

    Hwang, Soonshin; Noh, Yoonjeong; Choi, Yoon Jeong; Chung, Chooryung; Lee, Hye Sun; Kim, Kyung-Ho

    2018-01-01

    The aim of this study was to establish the normative data of dentofacial transverse dimensions according to the skeletal maturation stage in Korean adolescents with good occlusion, assess gender differences and determine correlations between transverse variables. A total of 577 Korean subjects between ages 7 to 19 years and exhibiting skeletal Class I occlusion were categorized by skeletal maturation index (SMI) of Fishman using hand-wrist radiographs. Dentofacial transverse dimensions were assessed using posteroanterior cephalograms. Independent two-sample t -tests were used to analyze differences between genders. Pearson correlation coefficient was used to determine the correlation between transverse measurements. Dentofacial transverse norms relevant to skeletal maturation stages were established. The average maxillomandibular width difference and ratio at growth completion was 22.16 mm and 77.01% for males; 23.70 mm and 74.06% for females, respectively. Males had greater facial, maxillary and mandibular widths compared to females at every SMI stage. The maxillary and mandibular intermolar widths showed the strongest correlation for both sexes (r = 0.826 for males, r = 0.725 for females). Dentofacial transverse norms of Korean adolescents were established according to developmental stage. All dentofacial widths were greater in males at growth completion. Maxillary and mandibular intermolar widths were strongly correlated. This study may serve as a guideline for the assessment of dentofacial transverse growth according to skeletal maturation stage in Korean adolescents with good occlusion.

  6. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle

    DEFF Research Database (Denmark)

    Hütter, Eveline; Skovbro, Mette; Lener, Barbara

    2007-01-01

    According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain....... However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated...... from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional...

  7. Theobromine Upregulates Osteogenesis by Human Mesenchymal Stem Cells In Vitro and Accelerates Bone Development in Rats.

    Science.gov (United States)

    Clough, Bret H; Ylostalo, Joni; Browder, Elizabeth; McNeill, Eoin P; Bartosh, Thomas J; Rawls, H Ralph; Nakamoto, Tetsuo; Gregory, Carl A

    2017-03-01

    Theobromine (THB) is one of the major xanthine-like alkaloids found in cacao plant and a variety of other foodstuffs such as tea leaves, guarana and cola nuts. Historically, THB and its derivatives have been utilized to treat cardiac and circulatory disorders, drug-induced nephrotoxicity, proteinuria and as an immune-modulator. Our previous work demonstrated that THB has the capacity to improve the formation of hydroxyl-apatite during tooth development, suggesting that it may also enhance skeletal development. With its excellent safety profile and resistance to pharmacokinetic elimination, we reasoned that it might be an excellent natural osteoanabolic supplement during pregnancy, lactation and early postnatal growth. To determine whether THB had an effect on human osteoprogenitors, we subjected primary human bone marrow mesenchymal stem cells (hMSCs) to osteogenic assays after exposure to THB in vitro and observed that THB exposure increased the rate of osteogenesis and mineralization by hMSCs. Moreover, THB exposure resulted in a list of upregulated mRNA transcripts that best matched an osteogenic tissue expression signature as compared to other tissue expression signatures archived in several databases. To determine whether oral administration of THB resulted in improved skeletal growth, we provided pregnant rats with chow supplemented with THB during pregnancy and lactation. After weaning, offspring received THB continuously until postnatal day 50 (approximately 10 mg kg -1 day -1 ). Administration of THB resulted in neonates with larger bones, and 50-day-old offspring accumulated greater body mass, longer and thicker femora and superior tibial trabecular parameters. The accelerated growth did not adversely affect the strength and resilience of the bones. These results indicate that THB increases the osteogenic potential of bone marrow osteoprogenitors, and dietary supplementation of a safe dose of THB to expectant mothers and during the postnatal period

  8. "Nutraceuticals" in relation to human skeletal muscle and exercise.

    OpenAIRE

    Deane, Colleen Siobhan; Wilkinson, D.J.; Phillips, B.E.; Smith, K.; Etheridge, T.; Atherton, P.J.

    2017-01-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cach...

  9. A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development

    Directory of Open Access Journals (Sweden)

    Bidwell Christopher A

    2010-06-01

    Full Text Available Abstract Background The developmental transition between the late fetus and a newborn animal is associated with profound changes in skeletal muscle function as it adapts to the new physiological demands of locomotion and postural support against gravity. The mechanisms underpinning this adaption process are unclear but are likely to be initiated by changes in hormone levels. We tested the hypothesis that this developmental transition is associated with large coordinated changes in the transcription of skeletal muscle genes. Results Using an ovine model, transcriptional profiling was performed on Longissimus dorsi skeletal muscle taken at three fetal developmental time points (80, 100 and 120 d of fetal development and two postnatal time points, one approximately 3 days postpartum and a second at 3 months of age. The developmental time course was dominated by large changes in expression of 2,471 genes during the interval between late fetal development (120 d fetal development and 1-3 days postpartum. Analysis of the functions of genes that were uniquely up-regulated in this interval showed strong enrichment for oxidative metabolism and the tricarboxylic acid cycle indicating enhanced mitochondrial activity. Histological examination of tissues from these developmental time points directly confirmed a marked increase in mitochondrial activity between the late fetal and early postnatal samples. The promoters of genes that were up-regulated during this fetal to neonatal transition were enriched for estrogen receptor 1 and estrogen related receptor alpha cis-regulatory motifs. The genes down-regulated during this interval highlighted de-emphasis of an array of functions including Wnt signaling, cell adhesion and differentiation. There were also changes in gene expression prior to this late fetal - postnatal transition and between the two postnatal time points. The former genes were enriched for functions involving the extracellular matrix and immune

  10. The skeletal system

    NARCIS (Netherlands)

    Nikkels, PGJ

    2015-01-01

    Skeletal dysplasias are a group of disorders with a disturbance in development and/or growth of cartilage and/or bone. Epiphysis, metaphysis, and diaphysis of long bones are affected in a generalized manner with or without involvement of membranous bone of the skull. A dysostosis affects one or some

  11. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle.

    Science.gov (United States)

    Shamim, Baubak; Hawley, John A; Camera, Donny M

    2018-06-01

    Human skeletal muscle satellite cells are activated in response to both resistance and endurance exercise. It was initially proposed that satellite cell proliferation and differentiation were only required to support resistance exercise-induced hypertrophy. However, satellite cells may also play a role in muscle fibre remodelling after endurance-based exercise and extracellular matrix regulation. Given the importance of dietary protein, particularly branched chain amino acids, in supporting myofibrillar and mitochondrial adaptations to both resistance and endurance-based training, a greater understanding of how protein intake impacts satellite cell activity would provide further insight into the mechanisms governing skeletal muscle remodelling with exercise. While many studies have investigated the capacity for protein ingestion to increase post-exercise rates of muscle protein synthesis, few investigations have examined the role for protein ingestion to modulate satellite cell activity. Here we review the molecular mechanisms controlling the activation of satellite cells in response to mechanical stress and protein intake in both in vitro and in vivo models. We provide a mechanistic framework that describes how protein ingestion may enhance satellite activity and promote exercise adaptations in human skeletal muscle.

  12. Effects of Human Mesenchymal Stem Cells Isolated from Wharton's Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model.

    Science.gov (United States)

    Pereira, T; Armada-da Silva, P A S; Amorim, I; Rêma, A; Caseiro, A R; Gärtner, A; Rodrigues, M; Lopes, M A; Bártolo, P J; Santos, J D; Luís, A L; Maurício, A C

    2014-01-01

    Skeletal muscle has good regenerative capacity, but the extent of muscle injury and the developed fibrosis might prevent complete regeneration. The in vivo application of human mesenchymal stem cells (HMSCs) of the umbilical cord and the conditioned media (CM) where the HMSCs were cultured and expanded, associated with different vehicles to induce muscle regeneration, was evaluated in a rat myectomy model. Two commercially available vehicles and a spherical hydrogel developed by our research group were used. The treated groups obtained interesting results in terms of muscle regeneration, both in the histological and in the functional assessments. A less evident scar tissue, demonstrated by collagen type I quantification, was present in the muscles treated with HMSCs or their CM. In terms of the histological evaluation performed by ISO 10993-6 scoring, it was observed that HMSCs apparently have a long-term negative effect, since the groups treated with CM presented better scores. CM could be considered an alternative to the in vivo transplantation of these cells, as it can benefit from the local tissue response to secreted molecules with similar results in terms of muscular regeneration. Searching for an optimal vehicle might be the key point in the future of skeletal muscle tissue engineering.

  13. The diagnosis of skeletal dysplasias: a multidisciplinary approach

    International Nuclear Information System (INIS)

    Mortier, Geert R.

    2001-01-01

    Skeletal dysplasias are heritable connective tissue disorders affecting skeletal morphogenesis and development. They represent a heterogeneous group of genetic disorders with more than 200 different entities being delineated to date. Because of this diversity, the diagnosis of a skeletal dysplasia is usually based on a combination of clinical, radiographic, morphologic, and, in some instances, biochemical and molecular studies. Tremendous advances have been made in the elucidation of the genetic defect of several of these conditions over the past 10 years. This progress has provided us with more insights into the genes controlling normal skeletal development. It also has opened new diagnostic perspectives. For several disorders, identification of the causal gene allows us now to confirm with a molecular test the diagnosis postulated on the basis of clinical, radiographic and/or morphologic studies. It also enables us to establish the diagnosis early in pregnancy. An accurate diagnosis is not only important for proper management of the affected individual but also the cornerstone for adequate genetic counseling

  14. The diagnosis of skeletal dysplasias: a multidisciplinary approach

    Energy Technology Data Exchange (ETDEWEB)

    Mortier, Geert R. E-mail: geert.mortier@rug.ac.be

    2001-12-01

    Skeletal dysplasias are heritable connective tissue disorders affecting skeletal morphogenesis and development. They represent a heterogeneous group of genetic disorders with more than 200 different entities being delineated to date. Because of this diversity, the diagnosis of a skeletal dysplasia is usually based on a combination of clinical, radiographic, morphologic, and, in some instances, biochemical and molecular studies. Tremendous advances have been made in the elucidation of the genetic defect of several of these conditions over the past 10 years. This progress has provided us with more insights into the genes controlling normal skeletal development. It also has opened new diagnostic perspectives. For several disorders, identification of the causal gene allows us now to confirm with a molecular test the diagnosis postulated on the basis of clinical, radiographic and/or morphologic studies. It also enables us to establish the diagnosis early in pregnancy. An accurate diagnosis is not only important for proper management of the affected individual but also the cornerstone for adequate genetic counseling.

  15. Is skeletal anchorage changing the limit of orthodontics?

    DEFF Research Database (Denmark)

    Melsen, Birte

    2007-01-01

    The limits for orthodontic treatment are often set by the lack of suitable anchorage. The mini-implant is used where conventional anchorage cannot be applied; not as a replacement for conventional anchorage. In patients with lack of teeth and reduced periodontium, skeletal anchorage allows...... and can be loaded immediately. The course will be addressed the following topics: Are the mini-implants replacing conventional anchorage? Why are orthodontic mini-implants necessary? The development of the skeletal anchorage systems The biological basis for the skeletal anchorage systems...... The characteristics of the different skeletal anchorage systems The insertion procedure The indications for the use of orthodontic mini-implants Treatment planning in relation to the use of mini-implants Case presentations...

  16. Role of microRNAs in the age-related changes in skeletal muscle and diet or exercise interventions to promote healthy aging in humans.

    Science.gov (United States)

    McGregor, Robin A; Poppitt, Sally D; Cameron-Smith, David

    2014-09-01

    Progressive age-related changes in skeletal muscle mass and composition, underpin decreases in muscle function, which can inturn lead to impaired mobility and quality of life in older adults. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression in skeletal muscle and are associated with aging. Accumulating evidence suggests that miRNAs play an important role in the age-related changes in skeletal muscle mass, composition and function. At the cellular level, miRNAs have been demonstrated to regulate muscle cell proliferation and differentiation. Furthermore, miRNAs are involved in the transitioning of muscle stem cells from a quiescent, to either an activated or senescence state. Evidence from animal and human studies has shown miRNAs are modulated in muscle atrophy and hypertrophy. In addition, miRNAs have been implicated in changes in muscle fiber composition, fat infiltration and insulin resistance. Both exercise and dietary interventions can combat age-related changes in muscle mass, composition and function, which may be mediated by miRNA modulation in skeletal muscle. Circulating miRNA species derived from myogenic cell populations represent potential biomarkers of aging muscle and the molecular responses to exercise or diet interventions, but larger validation studies are required. In future therapeutic approaches targeting miRNAs, either through exercise, diet or drugs may be able to slow down or prevent the age-related changes in skeletal muscle mass, composition, function, hence help maintain mobility and quality of life in old age. Copyright © 2014 Elsevier B.V. All rights reserved.

  17.  Age-related changes of skeletal muscles: physiology, pathology and regeneration

    Directory of Open Access Journals (Sweden)

    Aleksandra Ławniczak

    2012-06-01

    Full Text Available  This review provides a short presentation of the aging-related changes of human skeletal muscles. The aging process is associated with the loss of skeletal muscle mass (sarcopenia and strength. This results from fibre atrophy and apoptosis, decreased regeneration capacity, mitochondrial dysfunction, gradual reduction of the number of spinal cord motor neurons, and local and systemic metabolic and hormonal alterations. The latter involve age-related decrease of the expression and activity of some mitochondrial and cytoplasmic enzymes, triacylglycerols and lipofuscin accumulation inside muscle fibres, increased proteolytic activity, insulin resistance and decreased serum growth hormone and IGF-1 concentrations. Aging of the skeletal muscles is also associated with a decreased number of satellite cells and their proliferative activity. The age-related reduction of skeletal muscle mass and function may be partially prevented by dietary restriction and systematic physical exercises.

  18. The SNARE protein SNAP23 and the SNARE-interacting protein Munc18c in human skeletal muscle are implicated in insulin resistance/type 2 diabetes

    DEFF Research Database (Denmark)

    Boström, Pontus; Andersson, Linda; Vind, Birgitte

    2010-01-01

    /cytosolic compartment in the patients with the type 2 diabetes. Expression of the SNARE-interacting protein Munc18c was higher in skeletal muscle from patients with type 2 diabetes. Studies in L6 cells showed that Munc18c promoted the expression of SNAP23. CONCLUSIONS: We have translated our previous in vitro results......OBJECTIVE: Our previous studies suggest that the SNARE protein synaptosomal-associated protein of 23 kDa (SNAP23) is involved in the link between increased lipid levels and insulin resistance in cardiomyocytes. The objective was to determine whether SNAP23 may also be involved in the known...... association between lipid accumulation in skeletal muscle and insulin resistance/type 2 diabetes in humans, as well as to identify a potential regulator of SNAP23. RESEARCH DESIGN AND METHODS: We analyzed skeletal muscle biopsies from patients with type 2 diabetes and healthy, insulin-sensitive control...

  19. Enhanced glucose metabolism in cultured human skeletal muscle after Roux-en-Y gastric bypass surgery.

    Science.gov (United States)

    Nascimento, Emmani B M; Riedl, Isabelle; Jiang, Lake Qunfeng; Kulkarni, Sameer S; Näslund, Erik; Krook, Anna

    2015-01-01

    Roux-en-Y gastric bypass (RYGB) surgery rapidly increases whole body insulin sensitivity, with changes in several organs including skeletal muscle. Objectives were to determine whether improvements in insulin action in skeletal muscle may occur directly at the level of the myocyte or secondarily from changes in systemic factors associated with weight loss. Myotubes were derived before and after RYGB surgery. The setting was Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden. Eight patients (body mass index (BMI) 41.8 kg/m(2); age 41 yr) underwent RYGB surgery. Before and 6 months after RYGB surgery, skeletal muscle biopsies were collected from vastus lateralis muscle. Satellite cells derived from skeletal muscle biopsies were propagated in vitro as myoblasts and differentiated into myotubes. Expression of myogenic markers is increased in myoblasts derived from biopsies taken 6 months after bypass surgery, compared with their respective presurgery condition. Furthermore, glycogen synthesis, tyrosine phosphorylation of insulin receptor (IRS)-1-Tyr612 and Interleukin (IL)-8 secretion were increased, while fatty acid oxidation and circulating IL8 levels remain unaltered. Myotubes derived from muscle biopsies obtained after RYGB surgery displayed increased insulin-stimulated phosphorylation of protein kinase B (PKB)-Thr308 and proline-rich Akt substrate of 40 kDa (PRAS40)-Thr246. RYGB surgery is accompanied by enhanced glucose metabolism and insulin signaling, altered IL8 secretion and changes in mRNA levels and myogenic markers in cultured skeletal muscle cells. Thus, RYGB surgery involves intrinsic reprogramming of skeletal muscle to increase peripheral insulin sensitivity and glucose metabolism. Copyright © 2015 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  20. Exercise induced capillary growth in human skeletal muscle and the dynamics of VEGF

    DEFF Research Database (Denmark)

    Høier, Birgitte; Hellsten, Ylva

    2014-01-01

    , such as shear stress and passive stretch, lead to cellular signalling, enhanced expression of angiogenic factors and initiation of capillary growth. The most central angiogenic factor in skeletal muscle capillary growth is vascular endothelial growth factor (VEGF). During muscle contraction, VEGF increases...... in the muscle interstitium, acts on VEGF receptors on the capillary endothelium and thereby stimulates angiogenic processes. A primary source of muscle interstitial VEGF during exercise is the skeletal muscle fibers which contain large stores of VEGF within vesicles. We propose that, during muscle activity...

  1. Oracle, a novel PDZ-LIM domain protein expressed in heart and skeletal muscle.

    Science.gov (United States)

    Passier, R; Richardson, J A; Olson, E N

    2000-04-01

    In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle.

  2. Aberrant and alternative splicing in skeletal system disease.

    Science.gov (United States)

    Fan, Xin; Tang, Liling

    2013-10-01

    The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy. © 2013 Elsevier B.V. All rights reserved.

  3. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.

    Science.gov (United States)

    Nisr, Raid B; Affourtit, Charles

    2014-02-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. © 2013.

  4. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation☆

    Science.gov (United States)

    Nisr, Raid B.; Affourtit, Charles

    2014-01-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054

  5. TRPV1 channels in human skeletal muscle feed arteries: implications for vascular function.

    Science.gov (United States)

    Ives, Stephen J; Park, Song Young; Kwon, Oh Sung; Gifford, Jayson R; Andtbacka, Robert H I; Hyngstrom, John R; Richardson, Russell S

    2017-09-01

    What is the central question of this study? We sought to determine whether human skeletal muscle feed arteries (SFMAs) express TRPV 1 channels and what role they play in modulating vascular function. What is the main finding and its importance? Human SMFAs do express functional TRPV 1 channels that modulate vascular function, specifically opposing α-adrenergic receptor-mediated vasocontraction and potentiating vasorelaxation, in an endothelium-dependent manner, as evidenced by the α 1 -receptor-mediated responses. Thus, the vasodilatory role of TRPV 1 channels, and their ligand capsaicin, could be a potential therapeutic target for improving vascular function. Additionally, given the 'sympatholytic' effect of TRPV 1 activation and known endogenous activators (anandamide, reactive oxygen species, H + , etc.), TRPV 1 channels might contribute to functional sympatholysis during exercise. To examine the role of the transient receptor potential vanilloid type 1 (TRPV 1 ) ion channel in the vascular function of human skeletal muscle feed arteries (SMFAs) and whether activation of this heat-sensitive receptor could be involved in modulating vascular function, SMFAs from 16 humans (63 ± 5 years old, range 41-89 years) were studied using wire myography with capsaicin (TRPV 1 agonist) and without (control). Specifically, phenylephrine (α 1 -adrenergic receptor agonist), dexmedetomidine (α 2 -adrenergic receptor agonist), ACh and sodium nitroprusside concentration-response curves were established to assess the role of TRPV 1 channels in α-receptor-mediated vasocontraction as well as endothelium-dependent and -independent vasorelaxation, respectively. Compared with control conditions, capsaicin significantly attenuated maximal vasocontraction in response to phenylephrine [control, 52 ± 8% length-tension max (LT max ) and capsaicin, 21 ± 5%LT max ] and dexmedetomidine (control, 29 ± 12%LT max and capsaicin, 2 ± 3%LT max ), while robustly enhancing maximal

  6. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.

    Science.gov (United States)

    Zampieri, Sandra; Mammucari, Cristina; Romanello, Vanina; Barberi, Laura; Pietrangelo, Laura; Fusella, Aurora; Mosole, Simone; Gherardi, Gaia; Höfer, Christian; Löfler, Stefan; Sarabon, Nejc; Cvecka, Jan; Krenn, Matthias; Carraro, Ugo; Kern, Helmut; Protasi, Feliciano; Musarò, Antonio; Sandri, Marco; Rizzuto, Rosario

    2016-12-01

    Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca 2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU-dependent mitochondrial Ca 2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70-year-old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES-trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES-dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial-related proteins involved in Ca 2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria-related proteins as potential pharmacological targets to counteract age-related muscle loss. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. Fasting Increases Human Skeletal Muscle Net Phenylalanine Release and This Is Associated with Decreased mTOR Signaling

    Science.gov (United States)

    Vendelbo, Mikkel Holm; Møller, Andreas Buch; Christensen, Britt; Nellemann, Birgitte; Clasen, Berthil Frederik Forrest; Nair, K. Sreekumaran; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2014-01-01

    Aim Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth. Methods Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days. Results Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation. Conclusions Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth. PMID:25020061

  8. Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling.

    Directory of Open Access Journals (Sweden)

    Mikkel Holm Vendelbo

    Full Text Available Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR, a key regulator of cell growth.Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days.Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation.Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth.

  9. Radiographically visualized skeletal changes associated with mucopolysaccharidosis VI in cats

    International Nuclear Information System (INIS)

    Konde, L.J.; Thrall, M.A.; Gasper, P.; Dial, S.M.; McBiles, K.; Colgan, S.; Haskins, M.

    1987-01-01

    The radiographic skeletal form and structure of all cats with mucopolysaccharidosis VI is described. Common manifestations included epiphyseal dysplasia, generalized osteoporosis, abnormal nasal turbinate development, his subluxation, impaired development of skeletal growth, pectus excavatum, hyoid hypoplasia, aplasia, hypoplasia and fragmentation or abnormal ossification of the dens, and aplasia or hypoplasia of frontal and sphenoid sinuses. The skeletal measurements of two affected cats were compared with those of normal, sex-matched littermates, and the measurements of two affected female cats were compared with those of a normal male littermate

  10. Effects of hypodynamic simulations on the skeletal system of monkeys

    Science.gov (United States)

    Young, D. R.; Tremor, J. W.

    1977-01-01

    A research and development program was undertaken to evaluate the skeletal losses of subhuman primates in hypodynamic environments. The goals of the program are: (1) to uncover the mechanisms by which weightlessness affects the skeletal system; (2) to determine the consequences and reversibility of bone mineral losses; and (3) to acquire a body of data needed to formulate an appropriate countermeasure program for the prevention of skeletal deconditioning. Space flight experiment simulation facilities are under development and will be tested for their capability in supporting certain of the requirements for these investigations.

  11. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin

    2010-01-01

    and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent.......The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...

  12. Lipid droplet size and location in human skeletal muscle fibers are associated with insulin sensitivity

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Christensen, Anders E; Nellemann, Birgitte

    2017-01-01

    In skeletal muscle, an accumulation of lipid droplets (LDs) in the subsarcolemmal space is associated with insulin resistance, but the underlying mechanism is not clear. We aimed to investigate how the size, number and location of LDs are associated with insulin sensitivity and muscle fiber types...... are associated with insulin resistance in skeletal muscle....

  13. Surface-seeking radionuclides in the skeleton: current approach and recent developments in biokinetic modelling for humans and beagles

    International Nuclear Information System (INIS)

    Luciani, A.; Polig, E.

    2007-01-01

    In the last decade, the biokinetics of surface-seeking radionuclides in the skeleton has been the object of several studies. Investigations were carried out to determine the kinetics of plutonium and americium in the skeleton of humans and beagles. As a result of these investigations, in recent years the models presented by ICRP in Publication 67 for humans were partially revised, particularly the skeletal part. The aim of the present work is to present recent developments in the biokinetic modelling of surface-seeking radionuclides (plutonium and americium) in beagles and humans. Various assumptions and physiological interpretations of the different approaches to the biokinetic modelling of the skeleton are discussed. Current ICRP concepts and skeleton modelling of plutonium and americium in humans are compared to the latest developments in biokinetic modelling in beagles. (authors)

  14. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Kiens, Bente; Richter, Erik

    2006-01-01

    Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed...

  15. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains

    Science.gov (United States)

    Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43−at 450 cm-1 and ν4PO43− from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with

  16. Assessing various Infrared (IR microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    Directory of Open Access Journals (Sweden)

    Claudia Woess

    Full Text Available Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio

  17. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    Science.gov (United States)

    Woess, Claudia; Unterberger, Seraphin Hubert; Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with time

  18. Unusual metabolic characteristics in skeletal muscles of transgenic rabbits for human lipoprotein lipase

    Directory of Open Access Journals (Sweden)

    Viglietta Céline

    2004-12-01

    Full Text Available Abstract Background The lipoprotein lipase (LPL hydrolyses circulating triacylglycerol-rich lipoproteins. Thereby, LPL acts as a metabolic gate-keeper for fatty acids partitioning between adipose tissue for storage and skeletal muscle primarily for energy use. Transgenic mice that markedly over-express LPL exclusively in muscle, show increases not only in LPL activity, but also in oxidative enzyme activities and in number of mitochondria, together with an impaired glucose tolerance. However, the role of LPL in intracellular nutrient pathways remains uncertain. To examine differences in muscle nutrient uptake and fatty acid oxidative pattern, transgenic rabbits harboring a DNA fragment of the human LPL gene (hLPL and their wild-type littermates were compared for two muscles of different metabolic type, and for perirenal fat. Results Analyses of skeletal muscles and adipose tissue showed the expression of the hLPL DNA fragment in tissues of the hLPL group only. Unexpectedly, the activity level of LPL in both tissues was similar in the two groups. Nevertheless, mitochondrial fatty acid oxidation rate, measured ex vivo using [1-14C]oleate as substrate, was lower in hLPL rabbits than in wild-type rabbits for the two muscles under study. Both insulin-sensitive glucose transporter GLUT4 and muscle fatty acid binding protein (H-FABP contents were higher in hLPL rabbits than in wild-type littermates for the pure oxidative semimembranosus proprius muscle, but differences between groups did not reach significance when considering the fast-twitch glycolytic longissimus muscle. Variations in both glucose uptake potential, intra-cytoplasmic binding of fatty acids, and lipid oxidation rate observed in hLPL rabbits compared with their wild-type littermates, were not followed by any modifications in tissue lipid content, body fat, and plasma levels in energy-yielding metabolites. Conclusions Expression of intracellular binding proteins for both fatty acids and

  19. Upon the triple phase skeletal scintigraphy in traumatology

    International Nuclear Information System (INIS)

    Spitz, W.

    1988-01-01

    A broadly established indication catalogue for skeletal scintigraphy in traumatology is resulting from about 1500 skeletal scans. Aside from the exclusion of any osseous lesion, from the differentiation of uncertain X-ray findings, from the determination of the extent of osseous lesions in polytraumatic conditions and from the assessment of the relative fracture age, the follow-up after trauma and therapeutical intervention, the demonstration of battered child syndromes and of soft tissue lesions are of special importance with regard to these topics. For all that, the high sensitivity of the 3-phase skeletal scintigraphy for every enhancement of osseous turnover represents the elementary prerequisite for the employment of this non-invasive technique as an ideal screening method in traumatological diagnostics. The experiences from the past years have resulted in an increased frequency of skeletal scintigraphic studies to a similarly high level, as it is already established in the majority of institutions with respect to oncological problems, In the development of efficient and cost favourable diagnostic strategies with only little burden to the patient, skeletal scintigraphy will in future play an important role within the palette of modern skeletal diagnostics in traumatology. (orig.) [de

  20. Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3.

    Science.gov (United States)

    Pérez-Schindler, Joaquín; Esparza, Mary C; McKendry, James; Breen, Leigh; Philp, Andrew; Schenk, Simon

    2017-09-01

    Although the signal pathways mediating muscle protein synthesis and degradation are well characterized, the transcriptional processes modulating skeletal muscle mass and adaptive growth are poorly understood. Recently, studies in mouse models of muscle wasting or acutely exercised human muscle have suggested a potential role for the transcription factor signal transducer and activator of transcription 3 (STAT3), in adaptive growth. Hence, in the present study we sought to define the contribution of STAT3 to skeletal muscle adaptive growth. In contrast to previous work, two different resistance exercise protocols did not change STAT3 phosphorylation in human skeletal muscle. To directly address the role of STAT3 in load-induced (i.e., adaptive) growth, we studied the anabolic effects of 14 days of synergist ablation (SA) in skeletal muscle-specific STAT3 knockout (mKO) mice and their floxed, wild-type (WT) littermates. Plantaris muscle weight and fiber area in the nonoperated leg (control; CON) was comparable between genotypes. As expected, SA significantly increased plantaris weight, muscle fiber cross-sectional area, and anabolic signaling in WT mice, although interestingly, this induction was not impaired in STAT3 mKO mice. Collectively, these data demonstrate that STAT3 is not required for overload-mediated hypertrophy in mouse skeletal muscle. Copyright © 2017 the American Physiological Society.

  1. The proteomic signature of insulin-resistant human skeletal muscle reveals increased glycolytic and decreased mitochondrial enzymes

    DEFF Research Database (Denmark)

    Giebelstein, J; Poschmann, G; Højlund, K

    2012-01-01

    The molecular mechanisms underlying insulin resistance in skeletal muscle are incompletely understood. Here, we aimed to obtain a global picture of changes in protein abundance in skeletal muscle in obesity and type 2 diabetes, and those associated with whole-body measures of insulin action....

  2. Post-exercise adipose tissue and skeletal muscle lipid metabolism in humans

    DEFF Research Database (Denmark)

    Mulla, N A; Simonsen, L; Bülow, J

    2000-01-01

    , a subcutaneous abdominal vein and a femoral vein. Adipose tissue metabolism and skeletal muscle (leg) metabolism were measured using Fick's principle. The results show that the lipolytic rate in adipose tissue during exercise was the same in each experiment. Post-exercise, there was a very fast decrease......One purpose of the present experiments was to examine whether the relative workload or the absolute work performed is the major determinant of the lipid mobilization from adipose tissue during exercise. A second purpose was to determine the co-ordination of skeletal muscle and adipose tissue lipid...... metabolism during a 3 h post-exercise period. Six subjects were studied twice. In one experiment, they exercised for 90 min at 40% of maximal O2 consumption (VO2,max) and in the other experiment they exercised at 60% VO2,max for 60 min. For both experiments, catheters were inserted in an artery...

  3. Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Joanna Folwarczna

    2017-10-01

    Full Text Available Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally. Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.

  4. Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes.

    Science.gov (United States)

    Folwarczna, Joanna; Janas, Aleksandra; Cegieła, Urszula; Pytlik, Maria; Śliwiński, Leszek; Matejczyk, Magdalena; Nowacka, Anna; Rudy, Karolina; Krivošíková, Zora; Štefíková, Kornélia; Gajdoš, Martin

    2017-10-30

    Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally) alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally). Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.

  5. Developmental expression of the alpha-skeletal actin gene

    Directory of Open Access Journals (Sweden)

    Vonk Freek J

    2008-06-01

    Full Text Available Abstract Background Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins. Results We present here a model for the evolution of the genomic organization of alpha-skeletal actin and by molecular modeling, illustrate the structural differences of actin proteins of different phyla. We further describe and compare alpha-skeletal actin expression in two developmental stages of five vertebrate species (mouse, chicken, snake, salamander and fish. Our findings confirm that alpha-skeletal actin is expressed in skeletal muscle and in the heart of all five species. In addition, we identify many novel non-muscular expression domains including several in the central nervous system. Conclusion Our results show that the high sequence homology of alpha-skeletal actins is reflected by similarities of their 3 dimensional protein structures, as well as by conserved gene expression patterns during vertebrate development. Nonetheless, we find here important differences in 3D structures, in gene architectures and identify novel expression domains for this structural and functional important gene.

  6. Mechanisms of internal emitter skeletal toxicity

    International Nuclear Information System (INIS)

    Jee, W.S.S.

    1985-01-01

    The purpose of this program is to determine the mechanisms for the induction of skeletal cancers in dogs and man by α-emitting bone-seeking radionuclides from the nuclear fuel cycle. The role of microdistribution of radium-226 and plutonium-239, bone metabolism, bone cell turnover, and localized bone cell dosimetry in bone can induction will be determined. The osteogenic cell dose will be measured in dogs to develop better quantitative dose response information. Skeletal carcinogenesis models will be developed by correlating the local dosimetry, tumor site and incidence, age-dependent skeletal biology (bone morphometry, bone cell at risk, bone cell turnover, residence time and fate, remodeling rate, growth pattern and rate, hormonal influences, manipulation of bone cell populations of the bone modeling and remodeling systems, etc.). The authors will test the hypothesis that the frequency of osteosarcomas is proportional to the average dose delivered to cells at risk. They will also attempt to explain experimentally found toxicity ratios between volume- and bone surface-seeking radionuclides on the basis of radiation dose ratios

  7. Exercise Promotes Healthy Aging of Skeletal Muscle

    DEFF Research Database (Denmark)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M

    2016-01-01

    caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial...... respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle....

  8. Skeletal scintigraphic changes in osteoporosis treated with sodium fluoride: concise communication

    International Nuclear Information System (INIS)

    Schulz, E.E.; Libanati, C.R.; Farley, S.M.; Kirk, G.A.; Baylink, D.J.

    1984-01-01

    An appendicular skeletal response to sodium fluoride (NaF) was detected by total skeletal scintigrams. Twelve postmenopausal osteoporotic women were treated with NaF (88 mg/day) and calcium (1500 mg/day). Total skeletal scintigrams were obtained before and during treatment. Within 4 to 21 mo (mean: 8.3), all 12 patients showed new areas of increased uptake corresponding to metaphyseal regions and short bones of the appendicular skeleton. Nine patients showed an increase in serum alkaline phosphatase activity, which was attributed to an increase in the skeletal isoenzyme. Seven of 12 patients developed bone pain in one or more of the regions of increased uptake. This study establishes that the skeletal scintigram is a sensitive index of the peripheral skeletal response to NaF

  9. Exercise Promotes Healthy Aging of Skeletal Muscle.

    Science.gov (United States)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Skeletal deformities of acardius anceps: the gross and imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chihping [Dept. of Medical Research, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Shih Shinlin [Dept. of Radiology, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Liu Fenfen [Dept. of Medical Research, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Jan Sheauwen [Dept. of Medical Research, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Lin Yunnan [Dept. of Pathology, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Lan Chungchi [Dept. of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei (Taiwan, Province of China)

    1997-03-01

    A morphology based imaging review is presented of the characteristic skeletal deformities associated with acardius anceps in three acardiac twins. These fetuses demonstrated poorly developed skulls, limb reduction defects, and phocomelia of the upper limbs, as well as narrow thoracic cages with or without the complete development of ribs, clavicles, scapulae, and cervical, thoracic, or lumbar vertebrae. However, their lower limbs and pelvic girdles were almost normal. The authors conclude that skeletal development is likely to be jeopardized in the area adjacent to the heart and in the cephalic portion of the body in fetuses with acardius anceps, and suggest vascular deficiency and hypoperfusion as pathogenetic mechanisms in this type of skeletal deformity. (orig.)

  11. Skeletal deformities of acardius anceps: the gross and imaging features

    International Nuclear Information System (INIS)

    Chen Chihping; Shih Shinlin; Liu Fenfen; Jan Sheauwen; Lin Yunnan; Lan Chungchi

    1997-01-01

    A morphology based imaging review is presented of the characteristic skeletal deformities associated with acardius anceps in three acardiac twins. These fetuses demonstrated poorly developed skulls, limb reduction defects, and phocomelia of the upper limbs, as well as narrow thoracic cages with or without the complete development of ribs, clavicles, scapulae, and cervical, thoracic, or lumbar vertebrae. However, their lower limbs and pelvic girdles were almost normal. The authors conclude that skeletal development is likely to be jeopardized in the area adjacent to the heart and in the cephalic portion of the body in fetuses with acardius anceps, and suggest vascular deficiency and hypoperfusion as pathogenetic mechanisms in this type of skeletal deformity. (orig.)

  12. Influence of nasoalveolar molding on skeletal development in patients with unilateral cleft lip and palate at 5 years of age.

    Science.gov (United States)

    Akarsu-Guven, Bengisu; Arisan, Arda; Ozgur, Figen; Aksu, Muge

    2018-04-01

    The aim of this retrospective study was to assess the influence of presurgical nasoalveolar molding (NAM) on skeletal development in patients with operated unilateral cleft lip and palate at 5 years of age. Lateral cephalometric radiographs of 26 unilateral cleft lip and palate patients who had undergone presurgical NAM (NAM group) and 20 unilateral cleft lip and palate patients who did not have any presurgical NAM (non-NAM group) were analyzed. The radiographs were digitally traced using Quick Ceph Studio software (version 3.5.1.r (1151); Quick Ceph Systems, San Diego, Calif). Independent samples t tests were performed for statistical analysis. No significant differences were observed in sagittal and vertical skeletal measurements between the NAM and non-NAM groups. NAM resulted in no significant difference in skeletal development in unilateral cleft lip and palate patients compared with those without NAM in early childhood. Copyright © 2018. Published by Elsevier Inc.

  13. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise.

    Science.gov (United States)

    Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A

    2016-08-01

    Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Isolation and Characterization of Human Myoblast Culture In Vitro for Technologies of Cell and Gene Therapy of Skeletal Muscle Pathologies.

    Science.gov (United States)

    Tabakov, V Yu; Zinov'eva, O E; Voskresenskaya, O N; Skoblov, M Yu

    2018-03-01

    We analyzed cultures of 5 independent myoblast lines from human skeletal muscles. It was shown that the content of desmin-positive cells in cultures at early passages exceeds 90%. Typical morphofunctional signs of myogenic differentiation disturbances were identified and their dynamics was studied. Signs of alternative adipogenic and chondrogenic differentiation of cells were revealed. Based on these data, limitations for the use of myoblast cultures of certain passages for biomedical research and cell therapy were evaluated.

  15. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  16. Skeletal adaptations to bipedalism

    Directory of Open Access Journals (Sweden)

    Vasiljević Perica

    2014-01-01

    Full Text Available Bipedalism is the main characteristic of humans. During evolutin bipedalism emerged probably as an adaptation to a changing environment. Major changes in skeletal system included femur, pelvis, skull and spine. The significance of bipedal locomotion: Bipedalism freed the forelimbs for carrying objects, creation and usage of tools. In the upright position animals have a broader view of the environment and the early detection of predators is crucial for survival. Bipedal locomotion makes larger distances easier to pass, which is very important in the migration of hominids.

  17. G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Claire Laurens

    2016-07-01

    Full Text Available Objective: Recent data suggest that adipose triglyceride lipase (ATGL plays a key role in providing energy substrate from triglyceride pools and that alterations of its expression/activity relate to metabolic disturbances in skeletal muscle. Yet little is known about its regulation. We here investigated the role of the protein G0/G1 Switch Gene 2 (G0S2, recently described as an inhibitor of ATGL in white adipose tissue, in the regulation of lipolysis and oxidative metabolism in skeletal muscle. Methods: We first examined G0S2 protein expression in relation to metabolic status and muscle characteristics in humans. We next overexpressed and knocked down G0S2 in human primary myotubes to assess its impact on ATGL activity, lipid turnover and oxidative metabolism, and further knocked down G0S2 in vivo in mouse skeletal muscle. Results: G0S2 protein is increased in skeletal muscle of endurance-trained individuals and correlates with markers of oxidative capacity and lipid content. Recombinant G0S2 protein inhibits ATGL activity by about 40% in lysates of mouse and human skeletal muscle. G0S2 overexpression augments (+49%, p < 0.05 while G0S2 knockdown strongly reduces (−68%, p < 0.001 triglyceride content in human primary myotubes and mouse skeletal muscle. We further show that G0S2 controls lipolysis and fatty acid oxidation in a strictly ATGL-dependent manner. These metabolic adaptations mediated by G0S2 are paralleled by concomitant changes in glucose metabolism through the modulation of Pyruvate Dehydrogenase Kinase 4 (PDK4 expression (5.4 fold, p < 0.001. Importantly, downregulation of G0S2 in vivo in mouse skeletal muscle recapitulates changes in lipid metabolism observed in vitro. Conclusion: Collectively, these data indicate that G0S2 plays a key role in the regulation of skeletal muscle ATGL activity, lipid content and oxidative metabolism. Keywords: Lipid metabolism, Skeletal muscle, Lipolysis, Adipose triglyceride lipase

  18. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen

    2010-01-01

    Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies.......02), and complex V (ATP5B; p=0.005). Our data demonstrate that genetically determined insulin resistance is associated with a co-ordinated down-regulation of OxPhos components both at the transcriptional and translational level. These findings suggest that an impaired biological response to insulin in skeletal...

  19. [Skeletal anchorage in the past, today and tomorrow].

    Science.gov (United States)

    Melsen, Birte; Dalstra, Michel

    2017-03-01

    Skeletal anchorage was not introduced as an alternative to conventional anchorage modalities. The first skeletal anchorage was a ligature through a hole in the infrazygomatic crest. This was replaced by surgical screws and finally the TADs, which were optimized with respect to the material and morphology, were developed. A bracket-like head allows for the use of the mini-implant as indirect anchorage, but should not be a tool for lost control resulting from badly planned biomechanics or failing compliance. Skeletal anchorage should serve as an adjunct to correct biomechanics, to enable treatments that could not be performed prior to the introduction of skeletal anchorage. The aim of this study was to test the hypothesis that temporary anchorage mini-screws help maintain bone density, height and width of alveolar processes in the extraction sites, and thus prevent the thinning of the alveolar ridge usually observed. In adult patients with degenerated dentitions the application of skeletal anchorage can allow for the displacement of teeth where no anchorage units are present, but also for the redevelopment and maintenance of atrophic alveolar bone. The basis for the optimal use of skeletal anchorage is that the correct line of action for the desired tooth displacement is defined and the necessary force system constructed either with the skeletal anchorage as direct or as indirect anchorage. After a period, during which osseointegrated implants were used as anchorage for tooth movement and bone maintenance, it was accepted that the mini-implants could serve also as anchorage for skeletal displacements avoiding loading of teeth. © EDP Sciences, SFODF, 2017.

  20. p38 MAPK activation and H3K4 trimethylation is decreased by lactate in vitro and high intensity resistance training in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Lena Willkomm

    Full Text Available Exercise induces adaptation of skeletal muscle by acutely modulating intracellular signaling, gene expression, protein turnover and myogenic activation of skeletal muscle stem cells (Satellite cells, SCs. Lactate (La-induced metabolic stimulation alone has been shown to modify SC proliferation and differentiation. Although the mechanistic basis remains elusive, it was demonstrated that La affects signaling via p38 mitogen activated protein kinase (p38 MAPK which might contribute to trimethylation of histone 3 lysine 4 (H3K4me3 known to regulate satellite cell proliferation and differentiation. We investigated the effects of La on p38 MAPK and H3K4me3 in a model of activated SCs. Differentiating C2C12 myoblasts were treated with La (20 mM and samples analysed using qRT-PCR, immunofluorescence, and western blotting. We determined a reduction of p38 MAPK phosphorylation, decreased H3K4me3 and reduced expression of Myf5, myogenin, and myosin heavy chain (MHC leading to decreased differentiation of La-treated C2C12 cells after 5 days of repeated La treatment. We further investigated whether this regulatory pathway would be affected in human skeletal muscle by the application of two different resistance exercise regimes (RE associated with distinct metabolic demands and blood La accumulation. Muscle biopsies were obtained 15, 30 min, 1, 4, and 24 h post exercise after moderate intensity RE (STD vs. high intensity RE (HIT. Consistent with in vitro results, reduced p38 phosphorylation and blunted H3K4me3 were also observed upon metabolically demanding HIT RE in human skeletal muscle. Our data provide evidence that La-accumulation acutely affects p38 MAPK signaling, gene expression and thereby cell differentiation and adaptation in vitro, and likely in vivo.

  1. p38 MAPK activation and H3K4 trimethylation is decreased by lactate in vitro and high intensity resistance training in human skeletal muscle.

    Science.gov (United States)

    Willkomm, Lena; Gehlert, Sebastian; Jacko, Daniel; Schiffer, Thorsten; Bloch, Wilhelm

    2017-01-01

    Exercise induces adaptation of skeletal muscle by acutely modulating intracellular signaling, gene expression, protein turnover and myogenic activation of skeletal muscle stem cells (Satellite cells, SCs). Lactate (La)-induced metabolic stimulation alone has been shown to modify SC proliferation and differentiation. Although the mechanistic basis remains elusive, it was demonstrated that La affects signaling via p38 mitogen activated protein kinase (p38 MAPK) which might contribute to trimethylation of histone 3 lysine 4 (H3K4me3) known to regulate satellite cell proliferation and differentiation. We investigated the effects of La on p38 MAPK and H3K4me3 in a model of activated SCs. Differentiating C2C12 myoblasts were treated with La (20 mM) and samples analysed using qRT-PCR, immunofluorescence, and western blotting. We determined a reduction of p38 MAPK phosphorylation, decreased H3K4me3 and reduced expression of Myf5, myogenin, and myosin heavy chain (MHC) leading to decreased differentiation of La-treated C2C12 cells after 5 days of repeated La treatment. We further investigated whether this regulatory pathway would be affected in human skeletal muscle by the application of two different resistance exercise regimes (RE) associated with distinct metabolic demands and blood La accumulation. Muscle biopsies were obtained 15, 30 min, 1, 4, and 24 h post exercise after moderate intensity RE (STD) vs. high intensity RE (HIT). Consistent with in vitro results, reduced p38 phosphorylation and blunted H3K4me3 were also observed upon metabolically demanding HIT RE in human skeletal muscle. Our data provide evidence that La-accumulation acutely affects p38 MAPK signaling, gene expression and thereby cell differentiation and adaptation in vitro, and likely in vivo.

  2. Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry

    International Nuclear Information System (INIS)

    Binzoni, Tiziano; Tchernin, David; Richiardi, Jonas; Van De Ville, Dimitri; Hyacinthe, Jean-Noël

    2012-01-01

    Using a small, but very instructive experiment, it is demonstrated that laser-Doppler flowmetry (LDF) at large interoptode spacing represents a unique tool for new investigations of thermoregulatory processes modulating the blood flow of small muscle masses in humans. It is shown on five healthy subjects that steady-state values of blood flow (perfusion) in the thenar eminence muscle group depend in a complex manner on both the local intramuscular temperature and local skin temperature, while the values of blood flow parameters measured during physiological transients, such as the post-ischaemic hyperhaemic response, depend only on the intramuscular temperature. In addition, it is shown that the so-called biological zero (i.e. remaining LDF signal during arterial occlusion) is influenced not only as expected by the intramuscular temperature, but also by the skin temperature. The proposed results reveal that the skeletal muscle has unique thermoregulatory characteristics compared, for example, to human skin. These and other observations represent new findings and we hope that they will serve as a stimulus for the creation of new experimental protocols leading to better understanding of blood flow regulation. (paper)

  3. Skeletal surveys in multiple myeloma

    International Nuclear Information System (INIS)

    Sebes, J.I.; Niell, H.B.; Palmieri, G.M.A.; Reidy, T.J.

    1986-01-01

    Thirty-three patients with multiple myeloma were studied with serial skeletal surveys, serum immunoglobulin levels, and postabsorptive urinary hydroxyproline (Spot-HYPRO) determinations. Twenty receiving chemotherapy were also followed with skeletal surveys in order to evaluate bone response to treatment. A close association was found between skeletal findings and changes in immunoglubulin levels with positive correlation in 71% of the patients. A similar association was found between skeletal disease and Spot-HYPRO level changes in 65%. Five of 12 patients (42%) with partial or complete clinical response to chemotherapy, demonstrated improvement in the appearance of skeletal lesions. Positive correlation between the roentgenographic changes and clinical markers of myeloma as well as therapeutic response, indicates that skeletal surveys are useful and effective in monitoring patients with multiple myeloma. (orig.)

  4. Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle

    Science.gov (United States)

    Koh, Ho-Jin; Toyoda, Taro; Didesch, Michelle M.; Lee, Min-Young; Sleeman, Mark W.; Kulkarni, Rohit N.; Musi, Nicolas; Hirshman, Michael F.; Goodyear, Laurie J.

    2013-01-01

    Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle. PMID:23695665

  5. Observation and quantitative analyses of the skeletal and central nervous systems of human embryos and fetuses using microimaging techniques

    International Nuclear Information System (INIS)

    Shiota, Kohei; Yamada, Shigehito; Tsuchiya, Maiko; Nakajima, Takashi; Takakuwa, Tetsuya; Morimoto, Naoki; Ogihara, Naomichi; Katayama, Kazumichi; Kose, Katsumi

    2011-01-01

    High resolution images have been available to trace the organogenesis of the central nervous system (CNS) and crania of human embryo and fetus with microimaging techniques of CT, novel MR microscopy and episcopic fluorescence image capture (EFIC). The helical CT was conducted for Kyoto University's stock specimens of 31 fetuses at gestational stages 8-24 weeks to observe the skeletal development of neuro- and viscero-cranium in 2D and 3D view. Sixty seven landmarks were defined on the images at outer surface and lumen of the skull to analyze the morphological development. Increase of cranial length was found significant relative to width and height in fetus, confirming the faster development of neurocranium than viscero-region. Next, 1.5/2.34 T MR microscopic imaging was conducted for fixed specimens of >1000 embryos at 4-8 weeks after fertilization. For this, a newly developed contrast optimization by mapping the specimen with the relaxation time had been performed to acquire the highest resolution in the world of 80-120 micrometer, which enabled to image primordia of the inner embryonic structures like brain, spinal cord, choroid plexus, skeletons of skull and spinal column. The finding was thought helpful for analysis and diagnosis of their early development. EFIC of embryos was conducted firstly in the world, where spontaneous fluorescence of their cross section was captured by the fluorescent microscope with the resolution as high as <10 micrometer to reconstruct 2D/3D images. EFIC was found to give images of embryonic CNS, ventricular system, layering structures of brain and spinal cord without staining, and to give sequential changes of their volumes quantitated during the development. The reported microimaging techniques were concluded useful for analysis of normal and abnormal early development of CNS and skull in humans. (T.T.)

  6. The Pleiotropic Effect of Physical Exercise on Mitochondrial Dynamics in Aging Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Elena Barbieri

    2015-01-01

    Full Text Available Decline in human muscle mass and strength (sarcopenia is one of the principal hallmarks of the aging process. Regular physical exercise and training programs are certain powerful stimuli to attenuate the physiological skeletal muscle alterations occurring during aging and contribute to promote health and well-being. Although the series of events that led to these muscle adaptations are poorly understood, the mechanisms that regulate these processes involve the “quality” of skeletal muscle mitochondria. Aerobic/endurance exercise helps to maintain and improve cardiovascular fitness and respiratory function, whereas strength/resistance-exercise programs increase muscle strength, power development, and function. Due to the different effect of both exercises in improving mitochondrial content and quality, in terms of biogenesis, dynamics, turnover, and genotype, combined physical activity programs should be individually prescribed to maximize the antiaging effects of exercise.

  7. Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Broholm, Christa; Mortensen, Ole Hartvig; Nielsen, Søren

    2008-01-01

    the exercise trial. Skeletal muscle LIF mRNA increased immediately after the exercise and declined gradually during recovery. However, LIF protein was unchanged at the investigated time points. Moreover, we tested the hypothesis that LIF mRNA and protein expressions are modulated by calcium (Ca(2+)) in primary...

  8. Whole-body MRI in comparison to skeletal scintigraphy for detection of skeletal metastases in patients with solid tumors

    International Nuclear Information System (INIS)

    Ghanem, N.; Altehoefer, C.; Winterer, J.; Schaefer, O.; Bley, T.A.; Langer, M.; Kelly, T.; Moser, E.

    2004-01-01

    The aim of this study was to compare the diagnostic efficacy of whole-body magnetic resonance imaging (WB-MRI) as a new and rapid examination technique with skeletal scintigraphy for detection of skeletal metastases from solid tumors. In 129 patients with solid malignant tumors, WB-MRI was performed for individual comparison with skeletal scintigraphy. Examinations were performed with the innovative AngioSURF trademark rolling table with integrated phased array surface coil and coronary TIRM sequences for different body regions. The results for WB-MRI and skeletal scintigraphy were concordant in 81% of the cases, whereby both procedures excluded skeletal metastases in 43%. WB-MRI and skeletal scintigraphy demonstrated skeletal metastases in 38% of the cases, whereby WB-MRI provided more comprehensive findings in 45%. In 12% of the cases, skeletal scintigraphy was superior to WB-MRI and in 19% the findings were discordant, whereby WB-MRI detected skeletal metastases in 15 cases which had not been found on skeletal scintigraphy. In nine cases, skeletal scintigraphy was positive when the WB-MRI was negative. In 60% of the cases, WB-MRI evidenced tumor-associated findings. WB-MRI represents a promising new staging technique for detection of skeletal metastases, which is more sensitive in many cases than skeletal scintigraphy in detecting and assessing the extent of skeletal metastases - and tumor-associated findings that are relevant for treatment strategy. (orig.) [de

  9. A skeletal mechanism for biodiesel blend surrogates combustion

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Maghbouli, A.; Li, J.; Chua, K.J.

    2014-01-01

    Highlights: • A skeletal biodiesel reaction mechanism with 112 species was constructed. • The developed mechanism contains the CO, NO x and soot formation kinetics. • It was well validated against detailed reaction mechanism and experimental results. • The mechanism is suitable to simulate biodiesel, diesel and their blend fuels. - Abstract: A tri-component skeletal reaction mechanism consisting of methyl decanoate, methyl-9-decenoate, and n-heptane was developed for biodiesel combustion in diesel engine. It comprises 112 species participating in 498 reactions with the CO, NO x and soot formation mechanisms embedded. In this study, a detailed tri-component biodiesel mechanism was used as the start of mechanism reduction and the reduced mechanism was combined with a previously developed skeletal reaction mechanism for n-heptane to integrate the soot formation kinetics. A combined mechanism reduction strategy including the directed relation graph with error propagation and sensitivity analysis (DRGEPSA), peak concentration analysis, isomer lumping, unimportant reactions elimination and reaction rate adjustment methods was employed. The reduction process for biodiesel was performed over a range of initial conditions covering the pressures from 1 to 100 atm, equivalence ratios from 0.5 to 2.0 and temperatures from 700 to 1800 K, whereas for n-heptane, ignition delay predictions were compared against 17 shock tube experimental conditions. Extensive validations were performed for the developed skeletal reaction mechanism with 0-D ignition delay testing and 3-D engine simulations. The results indicated that the developed mechanism was able to accurately predict the ignition delay timings of n-heptane and biodiesel, and it could be integrated into 3-D engine simulations to predict the combustion characteristics of biodiesel. As such, the developed 112-species skeletal mechanism can accurately mimic the significant reaction pathways of the detailed reaction

  10. Skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population: MRI features

    Energy Technology Data Exchange (ETDEWEB)

    Kothary, Shefali [Mount Sinai Beth Israel, Department of Radiology, New York, NY (United States); Radiology Department, NYU Langone Medical Center: Hospital for Joint Disease, New York, NY (United States); Rosenberg, Zehava Sadka; Poncinelli, Leonardo L. [NYU Hospital for Joint Disease, Radiology Department, New York, NY (United States); Radiology Department, NYU Langone Medical Center: Hospital for Joint Disease, New York, NY (United States); Kwong, Steven [School of Medicine, NYU Langone Medical Center, New York, NY (United States); Radiology Department, NYU Langone Medical Center: Hospital for Joint Disease, New York, NY (United States)

    2014-09-15

    To assess the MRI appearance of normal skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population. To the best of our knowledge, this has not yet been studied in detail in the literature. An IRB-approved, HIPAA-compliant retrospective review of 105 consecutive shoulder MRI studies in children, ages 2 months to 18 years was performed. The morphology, MR signal, and development of the following were assessed: (1) scapular-coracoid bipolar growth plate, (2) glenoid and glenoid-coracoid interface secondary ossification centers, (3) glenoid advancing osseous surface. The glenoid and glenoid-coracoid interface were identified in infancy as a contiguous, cartilaginous mass. A subcoracoid secondary ossification center in the superior glenoid was identified and fused in all by age 12 and 16, respectively. In ten studies, additional secondary ossification centers were identified in the inferior two-thirds of the glenoid. The initial concavity of the glenoid osseous surface gradually transformed to convexity, matching the convex glenoid articular surface. The glenoid growth plate fused by 16 years of age. Our study, based on MRI, demonstrated a similar pattern of development of the glenoid and glenoid coracoid interface to previously reported anatomic and radiographic studies, except for an earlier development and fusion of the secondary ossification centers of the inferior glenoid. The pattern of skeletal development of the glenoid and glenoid-coracoid interface follows a chronological order, which can serve as a guideline when interpreting MRI studies in children. (orig.)

  11. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle.

    Science.gov (United States)

    Henriksen, Erik J; Prasannarong, Mujalin

    2013-09-25

    The canonical renin-angiotensin system (RAS) involves the initial action of renin to cleave angiotensinogen to angiotensin I (ANG I), which is then converted to ANG II by the angiotensin converting enzyme (ACE). ANG II plays a critical role in numerous physiological functions, and RAS overactivity underlies many conditions of cardiovascular dysregulation. In addition, ANG II, by acting on both endothelial and myocellular AT1 receptors, can induce insulin resistance by increasing cellular oxidative stress, leading to impaired insulin signaling and insulin-stimulated glucose transport activity. This insulin resistance associated with RAS overactivity, when coupled with progressive ß-cell dysfunction, eventually leads to the development of type 2 diabetes. Interventions that target RAS overactivity, including ACE inhibitors, ANG II receptor blockers, and, most recently, renin inhibitors, are effective both in reducing hypertension and in improving whole-body and skeletal muscle insulin action, due at least in part to enhanced Akt-dependent insulin signaling and insulin-dependent glucose transport activity. ANG-(1-7), which is produced from ANG II by the action of ACE2 and acts via Mas receptors, can counterbalance the deleterious actions of the ACE/ANG II/AT1 receptor axis on the insulin-dependent glucose transport system in skeletal muscle. This beneficial effect of the ACE2/ANG-(1-7)/Mas receptor axis appears to depend on the activation of Akt. Collectively, these findings underscore the importance of RAS overactivity in the multifactorial etiology of insulin resistance in skeletal muscle, and provide support for interventions that target the RAS to ameliorate both cardiovascular dysfunctions and insulin resistance in skeletal muscle tissue. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2017-10-01

    Full Text Available Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrophy and muscle wastage. This review will highlight the fundamental role of mTOR in skeletal muscle growth by summarizing the phenotype of skeletal-specific mTOR deficiency. In addition, the evidence that mTOR is a dual regulator of anabolism and catabolism in skeletal muscle mass will be discussed. A full understanding of mTOR signaling in the maintenance of skeletal muscle mass could help to develop mTOR-targeted therapeutics to prevent muscle wasting.

  13. Human Milk and Donkey Milk, Compared to Cow Milk, Reduce Inflammatory Mediators and Modulate Glucose and Lipid Metabolism, Acting on Mitochondrial Function and Oleylethanolamide Levels in Rat Skeletal Muscle.

    Science.gov (United States)

    Trinchese, Giovanna; Cavaliere, Gina; De Filippo, Chiara; Aceto, Serena; Prisco, Marina; Chun, Jong Tai; Penna, Eduardo; Negri, Rossella; Muredda, Laura; Demurtas, Andrea; Banni, Sebastiano; Berni-Canani, Roberto; Mattace Raso, Giuseppina; Calignano, Antonio; Meli, Rosaria; Greco, Luigi; Crispino, Marianna; Mollica, Maria P

    2018-01-01

    Scope: Milk from various species differs in nutrient composition. In particular, human milk (HM) and donkey milk (DM) are characterized by a relative high level of triacylglycerol enriched in palmitic acid in sn-2 position. These dietary fats seem to exert beneficial nutritional properties through N-acylethanolamine tissue modulation. The aim of this study is to compare the effects of cow milk (CM), DM, and HM on inflammation and glucose and lipid metabolism, focusing on mitochondrial function, efficiency, and dynamics in skeletal muscle, which is the major determinant of resting metabolic rate. Moreover, we also evaluated the levels of endocannabinoids and N-acylethanolamines in liver and skeletal muscle, since tissue fatty acid profiles can be modulated by nutrient intervention. Procedures: To this aim, rats were fed with CM, DM, or HM for 4 weeks. Then, glucose tolerance and insulin resistance were analyzed. Pro-inflammatory and anti-inflammatory cytokines were evaluated in serum and skeletal muscle. Skeletal muscle was also processed to estimate mitochondrial function, efficiency, and dynamics, oxidative stress, and antioxidant/detoxifying enzyme activities. Fatty acid profiles, endocannabinoids, and N-acylethanolamine congeners were determined in liver and skeletal muscle tissue. Results: We demonstrated that DM or HM administration reducing inflammation status, improves glucose disposal and insulin resistance and reduces lipid accumulation in skeletal muscle. Moreover, HM or DM administration increases redox status, and mitochondrial uncoupling, affecting mitochondrial dynamics in the skeletal muscle. Interestingly, HM and DM supplementation increase liver and muscle levels of the N-oleoylethanolamine (OEA), a key regulator of lipid metabolism and inflammation. Conclusions: HM and DM have a healthy nutritional effect, acting on inflammatory factors and glucose and lipid metabolism. This beneficial effect is associated to a modulation of mitochondrial function

  14. Human Milk and Donkey Milk, Compared to Cow Milk, Reduce Inflammatory Mediators and Modulate Glucose and Lipid Metabolism, Acting on Mitochondrial Function and Oleylethanolamide Levels in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Giovanna Trinchese

    2018-01-01

    Full Text Available Scope: Milk from various species differs in nutrient composition. In particular, human milk (HM and donkey milk (DM are characterized by a relative high level of triacylglycerol enriched in palmitic acid in sn-2 position. These dietary fats seem to exert beneficial nutritional properties through N-acylethanolamine tissue modulation. The aim of this study is to compare the effects of cow milk (CM, DM, and HM on inflammation and glucose and lipid metabolism, focusing on mitochondrial function, efficiency, and dynamics in skeletal muscle, which is the major determinant of resting metabolic rate. Moreover, we also evaluated the levels of endocannabinoids and N-acylethanolamines in liver and skeletal muscle, since tissue fatty acid profiles can be modulated by nutrient intervention.Procedures: To this aim, rats were fed with CM, DM, or HM for 4 weeks. Then, glucose tolerance and insulin resistance were analyzed. Pro-inflammatory and anti-inflammatory cytokines were evaluated in serum and skeletal muscle. Skeletal muscle was also processed to estimate mitochondrial function, efficiency, and dynamics, oxidative stress, and antioxidant/detoxifying enzyme activities. Fatty acid profiles, endocannabinoids, and N-acylethanolamine congeners were determined in liver and skeletal muscle tissue.Results: We demonstrated that DM or HM administration reducing inflammation status, improves glucose disposal and insulin resistance and reduces lipid accumulation in skeletal muscle. Moreover, HM or DM administration increases redox status, and mitochondrial uncoupling, affecting mitochondrial dynamics in the skeletal muscle. Interestingly, HM and DM supplementation increase liver and muscle levels of the N-oleoylethanolamine (OEA, a key regulator of lipid metabolism and inflammation.Conclusions: HM and DM have a healthy nutritional effect, acting on inflammatory factors and glucose and lipid metabolism. This beneficial effect is associated to a modulation of

  15. Strategies for cell manipulation and skeletal tissue engineering using high-throughput polymer blend formulation and microarray techniques.

    Science.gov (United States)

    Khan, Ferdous; Tare, Rahul S; Kanczler, Janos M; Oreffo, Richard O C; Bradley, Mark

    2010-03-01

    A combination of high-throughput material formulation and microarray techniques were synergistically applied for the efficient analysis of the biological functionality of 135 binary polymer blends. This allowed the identification of cell-compatible biopolymers permissive for human skeletal stem cell growth in both in vitro and in vivo applications. The blended polymeric materials were developed from commercially available, inexpensive and well characterised biodegradable polymers, which on their own lacked both the structural requirements of a scaffold material and, critically, the ability to facilitate cell growth. Blends identified here proved excellent templates for cell attachment, and in addition, a number of blends displayed remarkable bone-like architecture and facilitated bone regeneration by providing 3D biomimetic scaffolds for skeletal cell growth and osteogenic differentiation. This study demonstrates a unique strategy to generate and identify innovative materials with widespread application in cell biology as well as offering a new reparative platform strategy applicable to skeletal tissues. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Lyophilized skeletal imaging composition

    International Nuclear Information System (INIS)

    Vanduzee, B.F.

    1983-01-01

    This invention encompasses a process for producing a dry-powder skeletal imaging kit. An aqueous solution of a diphosphonate, a stannous reductant, and, optionally, a stabilizer is prepared. The solution is adjusted to a pH within the range 4.2 to 4.8 and the pH-adjusted solution is then lyophilized. The adjustment of pH, within a particular range, during the process of manufacturing lyophilized diphosphonate containing skeletal imaging kits yields a kit which produces a technetium skeletal imaging agent with superior imaging properties. This improved performance is manifested through faster blood clearance and higher skeletal uptake of the technetium imaging agent

  17. Role of Active Contraction and Tropomodulins in Regulating Actin Filament Length and Sarcomere Structure in Developing Zebrafish Skeletal Muscle.

    Science.gov (United States)

    Mazelet, Lise; Parker, Matthew O; Li, Mei; Arner, Anders; Ashworth, Rachel

    2016-01-01

    Whilst it is recognized that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1 (ts25) ) which lacks functional voltage-gated calcium channels (dihydropyridine receptors) in the muscle and pharmacological immobilization of embryos with a reversible anesthetic (Tricaine), allowed the study of paralysis (in mutants and anesthetized fish) and recovery of movement (reversal of anesthetic treatment). The effect of paralysis in early embryos (aged between 17 and 24 hours post-fertilization, hpf) on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localization of the actin capping proteins Tropomodulin 1 & 4 (Tmod) in fish aged from 17 hpf until 42 hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post-fertilization (dpf). Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf) resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralyzed fish by 42 hpf. In conclusion, myofibril organization is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localization of Tmod1 to its sarcomeric

  18. The BoneXpert method for automated determination of skeletal maturity

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik; Kreiborg, Sven; Juul, Anders

    2009-01-01

    Bone age rating is associated with a considerable variability from the human interpretation, and this is the motivation for presenting a new method for automated determination of bone age (skeletal maturity). The method, called BoneXpert, reconstructs, from radiographs of the hand, the borders...... component analysis; 3) the consensus bone age concept that defines bone age of each bone as the best estimate of the bone age of the other bones in the hand; 4) a common bone age model for males and females; and 5) the unified modelling of TW and GP bone age. BoneXpert is developed on 1559 images...

  19. Tomographic elastography of contracting skeletal muscles from their natural vibrations

    Science.gov (United States)

    Sabra, Karim G.; Archer, Akibi

    2009-11-01

    Conventional elastography techniques require an external mechanical or radiation excitation to measure noninvasively the viscoelastic properties of skeletal muscles and thus monitor human motor functions. We developed instead a passive elastography technique using only an array of skin-mounted accelerometers to record the low-frequency vibrations of the biceps brachii muscle naturally generated during voluntary contractions and to determine their two-dimensional directionality. Cross-correlating these recordings provided travel-times measurements of these muscle vibrations between multiple sensor pairs. Travel-time tomographic inversions yielded spatial variations of their propagation velocity during isometric elbow flexions which indicated a nonuniform longitudinal stiffening of the biceps.

  20. Skeletal imaging composition

    International Nuclear Information System (INIS)

    Vanduzee, B.F.; Degenhardt, C.R.

    1983-01-01

    This invention is based on the discovery that the adjustment of pH, within a particular range, during the process of manufacturing lyophilized diphosphonate-containing skeletal imaging kits yields a kit which produces a technetium skeletal imaging agent with superior imaging properties. This increased performance is manifested through faster blood clearance and higher skeletal uptake of the technetium imaging agent. The process for producing a dry-powder imaging kit comprises the steps of: preparing a solution of a diphosphonate carrier, stannous reductant, and a stabilizer in water; adjusting the pH to between 5.5 and 6.5; and lyophilizing the solution

  1. DNA Methylation in Skeletal Muscle Stem Cell Specification, Proliferation, and Differentiation

    Directory of Open Access Journals (Sweden)

    Rhianna C. Laker

    2016-01-01

    Full Text Available An unresolved and critically important question in skeletal muscle biology is how muscle stem cells initiate and regulate the genetic program during muscle development. Epigenetic dynamics are essential for cellular development and organogenesis in early life and it is becoming increasingly clear that epigenetic remodeling may also be responsible for the cellular adaptations that occur in later life. DNA methylation of cytosine bases within CpG dinucleotide pairs is an important epigenetic modification that reduces gene expression when located within a promoter or enhancer region. Recent advances in the field suggest that epigenetic regulation is essential for skeletal muscle stem cell identity and subsequent cell development. This review summarizes what is currently known about how skeletal muscle stem cells regulate the myogenic program through DNA methylation, discusses a novel role for metabolism in this process, and addresses DNA methylation dynamics in adult skeletal muscle in response to physical activity.

  2. Skeletal metastases from hepatoma: frequency, distribution, and radiographic features

    International Nuclear Information System (INIS)

    Kuhlman, J.E.; Fishman, E.K.; Leichner, P.K.; Magid, D.; Order, S.E.; Siegelman, S.S.

    1986-01-01

    Over the past 6 years, the authors evaluated 300 patients with hepatoma as part of phase 1 and 2 treatment protocol trials. Analysis of the available clinical data and radiographic studies revealed 22 patients (7.3%) with skeletal metastases demonstrated by radiography, computed tomography (CT), and/or nuclear scintigraphy. The plain film appearance of skeletal metastases from hepatoma was osteolytic in all cases. CT scanning best demonstrated the expansile, destructive nature of these metastases, which were often associated with large, bulky soft-tissue masses. Skeletal metastases from hepatomas demonstrated increased radiotracer uptake on standard bone scans and were gallium avid, similar to the hepatoma itself. In addition, they could be targeted therapeutically with I-131 antiferritin immunoglobulin. The most frequent sites of skeletal metastases were the ribs, spine, femur, pelvis, and humerus. An initial symptom in ten patients was skeletal pain corresponding to the osseous metastases. In five patients, pathologic fractures of the proximal femur or humerus developed and required total hip replacement or open-reduction internal fixation. Patients with long-standing cirrhosis or known hepatocellular carcinoma who also have skeletal symptoms should be evaluated for possible osseous metastases

  3. Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle.

    Science.gov (United States)

    Ruby, Maxwell A; Riedl, Isabelle; Massart, Julie; Åhlin, Marcus; Zierath, Juleen R

    2017-10-01

    Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. Because skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. Although Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling while stimulating fatty acid oxidation and incorporation into triglycerides and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC-1α and SREBP-1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism. Copyright © 2017 the American Physiological Society.

  4. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Langberg, H; Helmark, I C

    2009-01-01

    Despite the widespread consumption of nonsteroidal anti-inflammatory drugs (NSAIDs), the influence of these drugs on muscle satellite cells is not fully understood. The aim of the present study was to investigate the effect of a local NSAID infusion on satellite cells after unaccustomed eccentric...... exercise in vivo in human skeletal muscle. Eight young healthy males performed 200 maximal eccentric contractions with each leg. An NSAID was infused via a microdialysis catheter into the vastus lateralis muscle of one leg (NSAID leg) before, during, and for 4.5 h after exercise, with the other leg working...... cells (CD68(+) or CD16(+) cells) was not significantly increased in either of the legs 8 days after exercise and was unaffected by the NSAID. The main finding in the present study was that the NSAID infusion for 7.5 h during the exercise day suppressed the exercise-induced increase in the number...

  5. Nutrition and the skeletal health of dogs and cats

    NARCIS (Netherlands)

    Corbee, R.J.

    2014-01-01

    In this thesis, the influence of nutrition on skeletal health was studied. Obesity is a common disease in companion animal practice. In dogs and cats obesity often exacerbates osteoarthritis (OA). Although in humans we consider obesity as a serious health issue, in companion animals we proved that

  6. Could a functional artificial skeletal muscle be useful in muscle wasting?

    Science.gov (United States)

    Fuoco, Claudia; Cannata, Stefano; Gargioli, Cesare

    2016-05-01

    Regardless of the underlying cause, skeletal muscle wasting is detrimental for a person's life quality, leading to impaired strength, locomotion, and physiological activity. Here, we propose a series of studies presenting tissue engineering-based approaches to reconstruct artificial muscle in vitro and in vivo. Skeletal muscle tissue engineering is attracting more and more attention from scientists, clinicians, patients, and media, thanks to the promising results obtained in the last decade with animal models of muscle wasting. The use of novel and refined biomimetic scaffolds mimicking three-dimensional muscle environment, thus supporting cell survival and differentiation, in combination with well characterized myogenic stem/progenitor cells, revealed the noteworthy potential of these technologies for creating artificial skeletal muscle tissue. In vitro, the production of three-dimensional muscle structures offer the possibility to generate a drug-screening platform for patient-specific pharmacological treatment, opening new frontiers in the development of new compounds with specific therapeutic actions. In vivo, three-dimensional artificial muscle biomimetic constructs offer the possibility to replace, in part or entirely, wasted muscle by means of straight reconstruction and/or by enhancing endogenous regeneration. Reports of tissue engineering approaches for artificial muscle building appeared in large numbers in the specialized press lately, advocating the suitability of this technology for human application upon scaling up and a near future applicability for medical care of muscle wasting. http://links.lww.com/COCN/A9

  7. Plasticity of human skeletal muscle: gene expression to in vivo function.

    Science.gov (United States)

    Harridge, Stephen D R

    2007-09-01

    Human skeletal muscle is a highly heterogeneous tissue, able to adapt to the different challenges that may be placed upon it. When overloaded, a muscle adapts by increasing its size and strength through satellite-cell-mediated mechanisms, whereby protein synthesis is increased and new nuclei are added to maintain the myonuclear domain. This process is regulated by an array of mechanical, hormonal and nutritional signals. Growth factors, such as insulin-like growth factor I (IGF-I) and testosterone, are potent anabolic agents, whilst myostatin acts as a negative regulator of muscle mass. Insulin-like growth factor I is unique in being able to stimulate both the proliferation and the differentiation of satellite cells and works as part of an important local repair and adaptive mechanism. Speed of movement, as characterized by maximal velocity of shortening (V(max)), is regulated primarily by the isoform of myosin heavy chain (MHC) contained within a muscle fibre. Human fibres can express three MHCs: MHC-I, -IIa and -IIx, in order of increasing V(max) and maximal power output. Training studies suggest that there is a subtle interplay between the MHC-IIa and -IIx isoforms, with the latter being downregulated by activity and upregulated by inactivity. However, switching between the two main isoforms appears to require significant challenges to a muscle. Upregulation of fast gene programs is caused by prolonged disuse, whilst upregulation of slow gene programs appears to require significant and prolonged activity. The potential mechanisms by which alterations in muscle composition are mediated are discussed. The implications in terms of contractile function of altering muscle phenotype are discussed from the single fibre to the whole muscle level.

  8. Skeletal muscle insulin resistance associated with cholesterol-induced activation of macrophages is prevented by high density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Andrew L Carey

    Full Text Available BACKGROUND: Emerging evidence suggests that high density lipoprotein (HDL may modulate glucose metabolism through multiple mechanisms including pancreatic insulin secretion as well as insulin-independent glucose uptake into muscle. We hypothesized that HDL may also increase skeletal muscle insulin sensitivity via cholesterol removal and anti-inflammatory actions in macrophages associated with excess adiposity and ectopic lipid deposition. METHODS: Human primary and THP-1 macrophages were treated with vehicle (PBS or acetylated low density lipoprotein (acLDL with or without HDL for 18 hours. Treatments were then removed, and macrophages were incubated with fresh media for 4 hours. This conditioned media was then applied to primary human skeletal myotubes derived from vastus lateralis biopsies taken from patients with type 2 diabetes to examine insulin-stimulated glucose uptake. RESULTS: Conditioned media from acLDL-treated primary and THP-1 macrophages reduced insulin-stimulated glucose uptake in primary human skeletal myotubes compared with vehicle (primary macrophages, 168±21% of basal uptake to 104±19%; THP-1 macrophages, 142±8% of basal uptake to 108±6%; P<0.05. This was restored by co-treatment of macrophages with HDL. While acLDL increased total intracellular cholesterol content, phosphorylation of c-jun N-terminal kinase and secretion of pro- and anti-inflammatory cytokines from macrophages, none were altered by co-incubation with HDL. Insulin-stimulated Akt phosphorylation in human skeletal myotubes exposed to conditioned media was unaltered by either treatment condition. CONCLUSION: Inhibition of insulin-stimulated glucose uptake in primary human skeletal myotubes by conditioned media from macrophages pre-incubated with acLDL was restored by co-treatment with HDL. However, these actions were not linked to modulation of common pro- or anti-inflammatory mediators or insulin signaling via Akt.

  9. Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice.

    Science.gov (United States)

    Cokorinos, Emily C; Delmore, Jake; Reyes, Allan R; Albuquerque, Bina; Kjøbsted, Rasmus; Jørgensen, Nicolas O; Tran, Jean-Luc; Jatkar, Aditi; Cialdea, Katherine; Esquejo, Ryan M; Meissen, John; Calabrese, Matthew F; Cordes, Jason; Moccia, Robert; Tess, David; Salatto, Christopher T; Coskran, Timothy M; Opsahl, Alan C; Flynn, Declan; Blatnik, Matthew; Li, Wenlin; Kindt, Erick; Foretz, Marc; Viollet, Benoit; Ward, Jessica; Kurumbail, Ravi G; Kalgutkar, Amit S; Wojtaszewski, Jørgen F P; Cameron, Kimberly O; Miller, Russell A

    2017-05-02

    The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK β1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt

    2011-01-01

    Glucose is stored as glycogen in skeletal muscle. The importance of glycogen as a fuel during exercise has been recognized since the 1960s; however, little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. We show that low muscle glycogen is associated...... with an impairment of muscle ability to release Ca(2+), which is an important signal in the muscle activation. Thus, depletion of glycogen during prolonged, exhausting exercise may contribute to muscle fatigue by causing decreased Ca(2+) release inside the muscle. These data provide indications of a signal...

  11. Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Graham P. Holloway

    2018-03-01

    Full Text Available Summary: It remains unknown if mitochondrial bioenergetics are altered with aging in humans. We established an in vitro method to simultaneously determine mitochondrial respiration and H2O2 emission in skeletal muscle tissue across a range of biologically relevant ADP concentrations. Using this approach, we provide evidence that, although the capacity for mitochondrial H2O2 emission is not increased with aging, mitochondrial ADP sensitivity is impaired. This resulted in an increase in mitochondrial H2O2 and the fraction of electron leak to H2O2, in the presence of virtually all ADP concentrations examined. Moreover, although prolonged resistance training in older individuals increased muscle mass, strength, and maximal mitochondrial respiration, exercise training did not alter H2O2 emission rates in the presence of ADP, the fraction of electron leak to H2O2, or the redox state of the muscle. These data establish that a reduction in mitochondrial ADP sensitivity increases mitochondrial H2O2 emission and contributes to age-associated redox stress. : Holloway et al. show that an inability of ADP to decrease mitochondrial reactive oxygen species emission contributes to redox stress in skeletal muscle tissue of older individuals and that this process is not recovered following prolonged resistance-type exercise training, despite the general benefits of resistance training for muscle health. Keywords: mitochondria, aging, muscle, ROS, H2O2, ADP, respiration, bioenergetics, exercise, resistance training

  12. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  13. Comparative Study of Skeletal Stability between Postoperative Skeletal Intermaxillary Fixation and No Skeletal Fixation after Bilateral Sagittal Split Ramus Osteotomy

    DEFF Research Database (Denmark)

    Hartlev, Jens; Godtfredsen, Erik; Andersen, Niels Trolle

    2014-01-01

    OBJECTIVES: The purpose of the present study was to evaluate skeletal stability after mandibular advancement with bilateral sagittal split osteotomy. MATERIAL AND METHODS: Twenty-six patients underwent single-jaw bilateral sagittal split osteotomy (BSSO) to correct skeletal Class II malocclusion....

  14. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    Science.gov (United States)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  15. "Nutraceuticals" in relation to human skeletal muscle and exercise.

    Science.gov (United States)

    Deane, Colleen S; Wilkinson, Daniel J; Phillips, Bethan E; Smith, Kenneth; Etheridge, Timothy; Atherton, Philip J

    2017-04-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1 ) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2 ) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine. Copyright © 2017 the American Physiological Society.

  16. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans.

    Science.gov (United States)

    Gray, Stuart R; De Vito, Giuseppe; Nimmo, Myra A; Farina, Dario; Ferguson, Richard A

    2006-02-01

    The effect of temperature on skeletal muscle ATP turnover and muscle fiber conduction velocity (MFCV) was studied during maximal power output development in humans. Eight male subjects performed a 6-s maximal sprint on a mechanically braked cycle ergometer under conditions of normal (N) and elevated muscle temperature (ET). Muscle temperature was passively elevated through the combination of hot water immersion and electric blankets. Anaerobic ATP turnover was calculated from analysis of muscle biopsies obtained before and immediately after exercise. MFCV was measured during exercise using surface electromyography. Preexercise muscle temperature was 34.2 degrees C (SD 0.6) in N and 37.5 degrees C (SD 0.6) in ET. During ET, the rate of ATP turnover for phosphocreatine utilization [temperature coefficient (Q10) = 3.8], glycolysis (Q10 = 1.7), and total anaerobic ATP turnover [Q10 = 2.7; 10.8 (SD 1.9) vs. 14.6 mmol x kg(-1) (dry mass) x s(-1) (SD 2.3)] were greater than during N (P < 0.05). MFCV was also greater in ET than in N [3.79 (SD 0.47) to 5.55 m/s (SD 0.72)]. Maximal power output (Q10 = 2.2) and pedal rate (Q10 = 1.6) were greater in ET compared with N (P < 0.05). The Q10 of maximal and mean power were correlated (P < 0.05; R = 0.82 and 0.85, respectively) with the percentage of myosin heavy chain type IIA. The greater power output obtained with passive heating was achieved through an elevated rate of anaerobic ATP turnover and MFCV, possibly due to a greater effect of temperature on power production of fibers, with a predominance of myosin heavy chain IIA at the contraction frequencies reached.

  17. The behaviour of satellite cells in response to exercise: what have we learned from human studies?

    DEFF Research Database (Denmark)

    Kadi, Fawzi; Olsen, Steen Schytte

    2005-01-01

    Understanding the complex role played by satellite cells in the adaptive response to exercise in human skeletal muscle has just begun. The development of reliable markers for the identification of satellite cell status (quiescence/activation/proliferation) is an important step towards the underst......Understanding the complex role played by satellite cells in the adaptive response to exercise in human skeletal muscle has just begun. The development of reliable markers for the identification of satellite cell status (quiescence/activation/proliferation) is an important step towards...

  18. Immunolabelling, histochemistry and in situ hybridisation in human skeletal muscle fibres to detect myosin heavy chain expression at the protein and mRNA level

    Science.gov (United States)

    SERRANO, A. L.; PÉREZ, MARGARITA; LUCÍA, A.; CHICHARRO, J. L.; QUIROZ-ROTHE, E.; RIVERO, J. L. L.

    2001-01-01

    The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in vastus lateralis muscle biopsies of 15 young men (with an average age of 22 y) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry and in situ hybridisation with probes specific for MHC β-slow, MHC-IIA and MHC-IIX. The characterisation of a large number of individual fibres was compared and correlated on a fibre-to-fibre basis. The panel of monoclonal antibodies used in the study allowed classification of human skeletal muscle fibres into 5 categories according to the MHC isoform they express at the protein level, types I, I+IIA, IIA, IIAX and IIX. Hybrid fibres coexpressing two isoforms represented a considerable proportion of the fibre composition (about 14%) and were clearly underestimated by mATPase histochemistry. For a very high percentage of fibres there was a precise correspondence between the MHC protein isoforms and mRNA transcripts. The integrated methods used demonstrate a high degree of precision of the immunohistochemical procedure used for the identification and quantification of human skeletal muscle fibre types. The monoclonal antibody S5-8H2 is particularly useful for identifying hybrid IIAX fibres. This protocol offers new prospects for muscle fibre classification in human experimental studies. PMID:11554510

  19. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    Science.gov (United States)

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  20. Skeletal Indicators of Shark Feeding on Human Remains: Evidence from Florida Forensic Anthropology Cases.

    Science.gov (United States)

    Stock, Michala K; Winburn, Allysha P; Burgess, George H

    2017-11-01

    This research examines a series of six Florida forensic anthropology cases that exhibit taphonomic evidence of marine deposition and shark-feeding activities. In each case, we analyzed patterns of trauma/damage on the skeletal remains (e.g., sharp-force bone gouges and punctures) and possible mechanisms by which they were inflicted during shark predation/scavenging. In some cases, shark teeth were embedded in the remains; in the absence of this evidence, we measured interdental distance from defects in the bone to estimate shark body length, as well as to draw inferences about the potential species responsible. We discuss similarities and differences among the cases and make comparisons to literature documenting diagnostic shark-inflicted damage to human remains from nearby regions. We find that the majority of cases potentially involve bull or tiger sharks scavenging the remains of previously deceased, adult male individuals. This scavenging results in a distinctive taphonomic signature including incised gouges in cortical bone. © 2017 American Academy of Forensic Sciences.

  1. Human skeletal muscle: transition between fast and slow fibre types.

    Science.gov (United States)

    Neunhäuserer, Daniel; Zebedin, Michaela; Obermoser, Magdalena; Moser, Gerhard; Tauber, Mark; Niebauer, Josef; Resch, Herbert; Galler, Stefan

    2011-05-01

    Human skeletal muscles consist of different fibre types: slow fibres (slow twitch or type I) containing the myosin heavy chain isoform (MHC)-I and fast fibres (fast twitch or type II) containing MHC-IIa (type IIA) or MHC-IId (type IID). The following order of decreasing kinetics is known: type IID > type IIA > type I. This order is especially based on the kinetics of stretch activation, which is the most discriminative property among fibre types. In this study we tested if hybrid fibres containing both MHC-IIa and MHC-I (type C fibres) provide a transition in kinetics between fast (type IIA) and slow fibres (type I). Our data of stretch activation kinetics suggest that type C fibres, with different ratios of MHC-IIa and MHC-I, do not provide a continuous transition. Instead, a specialized group of slow fibres, which we called "transition fibres", seems to provide a transition. Apart of their kinetics of stretch activation, which is most close to that of type IIA, the transition fibres are characterized by large cross-sectional areas and low maximal tensions. The molecular cause for the mechanical properties of the transition fibres is unknown. It is possible that the transition fibres contain an unknown slow MHC isoform, which cannot be separated by biochemical methods. Alternatively, or in addition, isoforms of myofibrillar proteins, other than MHC, and posttranslational modifications of myofibrillar proteins could play a role regarding the characteristics of the transition fibres.

  2. An atlas of normal skeletal scintigraphy

    International Nuclear Information System (INIS)

    Flanagan, J.J.; Maisey, M.N.

    1985-01-01

    This atlas was compiled to provide the neophyte as well as the experienced radiologist and the nuclear medicine physician with a reference on normal skeletal scintigraphy as an aid in distinguishing normal variations in skeletal uptake from abnormal findings. Each skeletal scintigraph is labeled, and utilizing an identical scale, a relevant skeletal photograph and radiograph are placed adjacent to the scintigraph

  3. The exercised skeletal muscle: a review

    Directory of Open Access Journals (Sweden)

    Marina Marini

    2010-09-01

    Full Text Available The skeletal muscle is the second more plastic tissue of the body - second to the nervous tissue only. In fact, both physical activity and inactivity contribute to modify the skeletal muscle, by continuous signaling through nerve impulses, mechanical stimuli and humoral clues. In turn, the skeletal muscle sends signals to the body, thus contributing to its homeostasis. We'll review here the contribute of physical exercise to the shaping of skeletal muscle, to the adaptation of its mass and function to the different needs imposed by different physical activities and to the attainment of the health benefits associated with active skeletal muscles. Focus will primarily be on the molecular pathways and on gene regulation that result in skeletal muscle adaptation to exercise.

  4. in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Espen E. Spangenburg

    2011-01-01

    Full Text Available Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs. Here, we describe the utilization of the BODIPY (493/503 dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503 dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle.

  5. Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles

    Directory of Open Access Journals (Sweden)

    Stear Michael

    2003-03-01

    Full Text Available Abstract Background Microarray profiling has the potential to illuminate the molecular processes that govern the phenotypic characteristics of porcine skeletal muscles, such as hypertrophy or atrophy, and the expression of specific fibre types. This information is not only important for understanding basic muscle biology but also provides underpinning knowledge for enhancing the efficiency of livestock production. Results We report on the de novo development of a composite skeletal muscle cDNA microarray, comprising 5500 clones from two developmentally distinct cDNA libraries (longissimus dorsi of a 50-day porcine foetus and the gastrocnemius of a 3-day-old pig. Clones selected for the microarray assembly were of low to moderate abundance, as indicated by colony hybridisation. We profiled the differential expression of genes between the psoas (red muscle and the longissimus dorsi (white muscle, by co-hybridisation of Cy3 and Cy5 labelled cDNA derived from these two muscles. Results from seven microarray slides (replicates correctly identified genes that were expected to be differentially expressed, as well as a number of novel candidate regulatory genes. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray. Conclusion We have developed a porcine skeletal muscle cDNA microarray and have identified a number of candidate genes that could be involved in muscle phenotype determination, including several members of the casein kinase 2 signalling pathway.

  6. Skeletal maturity assessment using mandibular canine calcification stages

    Directory of Open Access Journals (Sweden)

    Vildana Džemidžić

    2016-11-01

    Full Text Available Objective. The aims of this study were: to investigate the relationship between mandibular canine calcification stages and skeletal maturity; and to evaluate whether the mandibular canine calcification stages may be used as a reliable diagnostic tool for skeletal maturity assessment. Materials and methods. This study included 151 subjects: 81 females and 70 males, with ages ranging from 9 to 16 years (mean age: 12.29±1.86 years. The inclusion criteria for subjects were as follows: age between 9 and 16 years; good general health without any hormonal, nutritional, growth or dental development problems. Subjects who were undergoing or had previously received orthodontic treatment were not included in this study. The calcification stages of the left permanent mandibular canine were assessed according to the method of Demirjian, on panoramic radiographs. Assessment of skeletal maturity was carried out using the cervical vertebral maturation index (CVMI, as proposed by the Hassel-Farman method, on lateral cephalograms. The correlation between the calcification stages of mandibular canine and skeletal maturity was estimated separately for male and female subjects. Results. Correlation coefficients between calcification stages of mandibular canine and skeletal maturity were 0.895 for male and 0.701 for female subjects. Conclusions. A significant correlation was found between the calcification stages of the mandibular canine and skeletal maturity. The calcification stages of the mandibular canine show a satisfactory diagnostic performance only for assessment of pre-pubertal growth phase.

  7. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle.

    Science.gov (United States)

    Treebak, Jonas T; Pehmøller, Christian; Kristensen, Jonas M; Kjøbsted, Rasmus; Birk, Jesper B; Schjerling, Peter; Richter, Erik A; Goodyear, Laurie J; Wojtaszewski, Jørgen F P

    2014-01-15

    We investigated the phosphorylation signatures of two Rab-GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers exercised in the fasted or fed state and muscle biopsies were taken before and immediately after exercise. We identified TBC1D1/4 phospho-sites that (1) did not respond to exercise or postprandial increase in insulin (TBC1D4: S666), (2) responded to insulin only (TBC1D4: S318), (3) responded to exercise only (TBC1D1: S237, S660, S700; TBC1D4: S588, S751), and (4) responded to both insulin and exercise (TBC1D1: T596; TBC1D4: S341, T642, S704). In the insulin-stimulated leg, Akt phosphorylation of both T308 and S473 correlated significantly with multiple sites on both TBC1D1 (T596) and TBC1D4 (S318, S341, S704). Interestingly, in the exercised leg in the fasted state TBC1D1 phosphorylation (S237, T596) correlated significantly with the activity of the α2/β2/γ3 AMPK trimer, whereas TBC1D4 phosphorylation (S341, S704) correlated with the activity of the α2/β2/γ1 AMPK trimer. Our data show differential phosphorylation of TBC1D1 and TBC1D4 in response to physiological stimuli in human skeletal muscle and support the idea that Akt and AMPK are upstream kinases. TBC1D1 phosphorylation signatures were comparable between in vitro contracted mouse skeletal muscle and exercised human muscle, and we show that AMPK regulated phosphorylation of these sites in mouse muscle. Contraction and exercise elicited a different phosphorylation pattern of TBC1D4 in mouse compared with human muscle, and although different circumstances in our experimental setup may contribute to this difference, the observation exemplifies that transferring findings between species is problematic.

  8. Bone mineral density, chemical composition and biomechanical properties of the tibia of female rats exposed to cadmium since weaning up to skeletal maturity.

    Science.gov (United States)

    Brzóska, M M; Majewska, K; Moniuszko-Jakoniuk, J

    2005-10-01

    The influence of exposure to cadmium (Cd) during skeletal development on the risk of bone fractures at the stage of skeletal maturity was investigated on a female rat model of human exposure. The tibias of rats treated with 1, 5 or 50 mg Cd/l in drinking water for 3, 6, 9 and 12 months (since weaning) were used. The exposure to Cd dose- and time-dependently influenced the tibia bone mineral density (BMD) and chemical composition. In skeletally matured animals, at each level of the exposure to Cd, the BMD at the whole tibia and its diaphysis as well as the percentage of minerals content in the bone, including the content of zinc, copper and iron, were decreased compared to control. Moreover, in the 50 mg Cd/l group, the percentage of organic components content increased. The Cd-induced changes, at all levels of exposure, resulted in weakening in the yield strength and fracture strength of the tibia (a three-point bending test of the diaphysis and compression test with vertical loading) of the skeletally matured females. A very important and clinically useful finding of this study is that a decrease (even by several percent) in the tibia BMD results in weakness in the bone biomechanical properties and that the BMD may predict the risk of its fracture at the exposure to Cd. Moreover, the results together with our previous findings seem to suggest that tibia, due to higher vulnerability of its diaphysis, compared to the femoral diaphysis, to damage by Cd may be more useful than femur to investigate the effect of Cd on the cortical bone. The present study revealed that a low exposure to Cd (1 mg Cd/l), corresponding to low human environmental exposure, during the skeletal development affects the tibia mineral status leading to weakening in its mechanical properties at the skeletal maturity. The findings allow for the conclusion that environmental exposure to Cd during childhood and adolescence may enhance the risk of low BMD and fractures at adulthood.

  9. Human skeletal uptake of natural alpha radioactivity from {sup 210}Pb-supported {sup 210}Po

    Energy Technology Data Exchange (ETDEWEB)

    Oyedepo, A.C

    1998-06-01

    This thesis contributes to increasing knowledge on the dosimetry of natural alpha-particle radiation in skeletal tissues, particularly in utero, and associated risks of malignancy. Alpha-particle radiation is an established aetiological factor of cancer. In the human body, polonium-210 decayed from skeletal lead-210 ({sup 210}Pb/{sup 210}Po) is the predominant natural alpha-emitter. {sup 210}Pb displaces calcium (Ca) in mineral hydroxyapatite, especially during periods of rapid bone growth and remodelling when Ca is laid down. It was therefore necessary to study alpha activity uptake and calcification concurrently within bone. Human studies were undertaken on: fetal vertebrae, 17 - 42 weeks of gestation, 74 samples; adult vertebrae, 40 - 95 years, 40 samples; and adult ribs, 20 - 95 years, 51 samples. Specimens were unconcentrated and weighed <5 g each. TASTRAK alpha-particle autoradiography was used to assess the bone activity concentration and spatial microdistribution of {sup 210}Pb/{sup 210}Po. Alpha track data were resolved by specially written software named SPATS (Selection Program for Analysing Track Structures). Ca and phosphorus (P) were biochemically determined. Results were examined for trends in bone type, gender and chronological ageing in humans. The main research findings were: 1) The Ca content of fetal vertebrae increased linearly at a weekly rate of 0.2g Ca 100 g{sup -1} wet bone (typical values of 2, 4, 6 g 100 g{sup -1} at 16, 26 and 36 weeks). 2) The P concentration also increased with advancing fetal age. 3) The Ca:P bone weight ratio rose from 1.7 to 2.2 by 32 gestational weeks. 4) The overall range in bone {sup 210}Pb/{sup 210}Po alpha activity was 0.25 - 1.1 Bq kg{sup -1} with correlation between activity concentration and fetal age (0.47 {+-} 0.05 Bq kg{sup -1} for 17 - 26 weeks, 0.67 {+-} 0.04 Bq kg{sup -1} for 32 - 42 weeks). 5) The correlation between increased alpha radioactivity and increased Ca concentration approximating to 0

  10. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka

    2007-01-01

    receptor blockade. BF heterogeneity within muscles was calculated from 16-mm(3) voxels in BF images and heterogeneity among the muscles from the mean values of the four QF compartments. Mean BF in the whole QF and its four parts increased, and heterogeneity decreased with workload both without......Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF...... and with theophylline (P heterogeneity among the QF muscles, yet blockade increased within-muscle BF heterogeneity in all four QF muscles (P = 0.03). Taken together, these results show that BF becomes less heterogeneous with increasing...

  11. Role of active contraction and tropomodulins in regulating actin filament length and sarcomere structure in developing zebrafish skeletal muscle

    Directory of Open Access Journals (Sweden)

    Lise eMazelet

    2016-03-01

    Full Text Available Whilst it is recognised that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1ts25 which lacks functional voltage-gated calcium channels (dihydropyridine receptors in the muscle and pharmacological immobilisation of embryos with a reversible anaesthetic (Tricaine, allowed the study of paralysis (in mutants and anaesthetised fish and recovery of movement (reversal of anaesthetic treatment. The effect of paralysis in early embryos (aged between 17-24 hours post fertilisation, hpf on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localisation of the actin capping proteins Tropomodulin 1 &4 (Tmod in fish aged from 17hpf until 42hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post fertilisation (dpf. Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralysed fish by 42hpf. In conclusion, myofibril organisation is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localisation of Tmod1 to its sarcomeric

  12. Diabetic Myopathy: Impact of Diabetes Mellitus on Skeletal Muscle Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Donna M D'Souza

    2013-12-01

    Full Text Available Diabetes mellitus is defined as a group of metabolic diseases that are associated with the presence of a hyperglycemic state due to impairments in insulin function. While the development of each form of diabetes (Type 1 or Type 2 drastically differs, resultant pathologies often overlap. In each diabetic condition a failure to maintain healthy muscle is often observed, and is termed diabetic myopathy. This significant, but often overlooked, complication is believed to contribute to the progression of additional diabetic pathologies due to the vital importance of skeletal muscle for our physical and metabolic well-being. While studies have investigated the link between changes to skeletal muscle metabolic health following diabetes mellitus onset (particularly Type 2 diabetes mellitus, few have examined the negative impact of diabetes mellitus on the growth and reparative capacities of skeletal muscle that often coincides with disease development. Importantly, evidence is accumulating that the muscle progenitor cell population (particularly the muscle satellite cell population is also negatively affected by the diabetic environment, and as such, likely contributes to the declining skeletal muscle health observed in diabetes mellitus. In this review, we summarize the current knowledge surrounding the influence of diabetes mellitus on skeletal muscle growth and repair, with a particular emphasis on the impact of diabetes mellitus on the progenitor cell population of skeletal muscle.

  13. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways.

    Science.gov (United States)

    Rolfe, Rebecca A; Nowlan, Niamh C; Kenny, Elaine M; Cormican, Paul; Morris, Derek W; Prendergast, Patrick J; Kelly, Daniel; Murphy, Paula

    2014-01-20

    Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus

  14. Congenital anomalies and normal skeletal variants

    International Nuclear Information System (INIS)

    Guebert, G.M.; Yochum, T.R.; Rowe, L.J.

    1987-01-01

    Congenital anomalies and normal skeletal variants are a common occurrence in clinical practice. In this chapter a large number of skeletal anomalies of the spine and pelvis are reviewed. Some of the more common skeletal anomalies of the extremities are also presented. The second section of this chapter deals with normal skeletal variants. Some of these variants may simulate certain disease processes. In some instances there are no clear-cut distinctions between skeletal variants and anomalies; therefore, there may be some overlap of material. The congenital anomalies are presented initially with accompanying text, photos, and references, beginning with the skull and proceeding caudally through the spine to then include the pelvis and extremities. The normal skeletal variants section is presented in an anatomical atlas format without text or references

  15. Leptin administration affects growth and skeletal development in a rat intrauterine growth restriction model: preliminary study.

    Science.gov (United States)

    Bar-El Dadon, Shimrit; Shahar, Ron; Katalan, Vered; Monsonego-Ornan, Efrat; Reifen, Ram

    2011-09-01

    Skeletal abnormalities are one of the hallmarks of growth delay during gestation. The aim of this study was to determine changes induced by leptin in skeletal growth and development in a rat model of intrauterine growth retardation (IUGR) and to elucidate the possible underlying mechanisms. Intrauterine growth retardation was induced prepartum and the effects of leptin to mothers prenatally or to offspring postnatally were studied. Radii were harvested and tested mechanically and structurally. Tibias were evaluated for growth-plate morphometry. On day 40 postpartum, total bone length and mineral density and tibial growth-plate width and numbers of cells within its zones of offspring treated with leptin were significantly greater than in the control group. Postnatal leptin administration in an IUGR model improves the structural properties and elongation rate of bone. These findings could pave the way to preventing some phenotypic presentations of IUGR. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. The relationship between heat shock protein 72 expression in skeletal muscle and insulin sensitivity is dependent on adiposity

    DEFF Research Database (Denmark)

    Henstridge, Darren C; Forbes, Josephine M; Penfold, Sally A

    2010-01-01

    Decreased gene expression of heat shock protein 72 (HSP72) in skeletal muscle is associated with insulin resistance in humans. We aimed to determine whether HSP72 protein expression in insulin-sensitive tissues is related to criterion standard measures of adiposity and insulin resistance in a young...... healthy human population free of hyperglycemia. Healthy participants (N = 17; age, 30 ± 3 years) underwent measurement of body composition (dual-energy x-ray absorptiometry), a maximum aerobic capacity test (VO(2max)), an oral glucose tolerance test, and a hyperinsulinemic-euglycemic clamp (M) to access...... insulin sensitivity. Skeletal muscle and subcutaneous adipose tissue biopsies were obtained by percutaneous needle biopsy. HSP72 protein expression in skeletal muscle was inversely related to percentage body fat (r = -0.54, P

  17. Mitigating HZE Radiation-Induced Deficits in Marrow-Derived Mesenchymal Progenitor Cells and Skeletal Structure

    Science.gov (United States)

    Globus, Ruth K.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Terada, Masahiro; Alwood, Joshua; Halloran, Bernard; Tahimic, Candice

    2016-01-01

    Future long-duration space exploration beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure causes progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility.

  18. The breaking and making of healthy adult human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Kjaer, Michael

    2017-01-01

    and highlights the importance of the basement membrane in the process of regeneration. In addition, it provides insight into parallels between the regeneration of adult skeletal muscle in mouse and man, confirming that this model may be a useful tool in investigating myofibre and matrix formation, as well...

  19. Growth of limb muscle is dependent on skeletal-derived Indian hedgehog

    OpenAIRE

    Bren-Mattison, Yvette; Hausburg, Melissa; Olwin, Bradley B.

    2011-01-01

    During embryogenesis, muscle and bone develop in close temporal and spatial proximity. We show that Indian Hedgehog, a bone-derived signaling molecule, participates in growth of skeletal muscle. In Ihh−/− embryos, skeletal muscle development appears abnormal at embryonic day 14.5 and at later ages through embryonic day 20.5, dramatic losses of hindlimb muscle occur. To further examine the role of Ihh in myogenesis, we manipulated Ihh expression in the developing chick hindlimb. Reduction of I...

  20. Altered Fetal Skeletal Muscle Nutrient Metabolism Following an Adverse In Utero Environment and the Modulation of Later Life Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Kristyn Dunlop

    2015-02-01

    Full Text Available The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.

  1. Altered fetal skeletal muscle nutrient metabolism following an adverse in utero environment and the modulation of later life insulin sensitivity.

    Science.gov (United States)

    Dunlop, Kristyn; Cedrone, Megan; Staples, James F; Regnault, Timothy R H

    2015-02-12

    The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR) associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW) is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.

  2. The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise.

    Science.gov (United States)

    Martinez-Huenchullan, S; McLennan, S V; Verhoeven, A; Twigg, S M; Tam, C S

    2017-07-01

    Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. © 2017 World Obesity Federation.

  3. Radium-223 in treatment of castration-resistant prostate cancer with skeletal metastases

    Directory of Open Access Journals (Sweden)

    V. B. Matveev

    2017-01-01

    Full Text Available More than 90 % of patients with metastatic castration-resistant prostate cancer (CRPC have radiologically confirmed skeletal metastases. Traditional treatment methods such as administration of painkillers, external beam therapy, bisphosphonates or denosumab, as well as injections of strontium-89 or samarium-153 radionuclides, have only palliative effect and in some cases can postpone development of skeletal complications. Alpha-emitter radium-223 dichloride (Ra-223; alpharadin previously is currently one of the known drugs with proven effectiveness in relation to increasing overall survival of patients with CRPC. Ra-223 was developed specifically for patients with CRPC and symptomatic skeletal metastases. The drug targets the areas of skeletal tissue remodeling. Ra-223 is the therapy of choice in patients with CRPC and skeletal metastases and without confirmed visceral metastases before and after docetaxel chemotherapy. Chemotherapy after treatment with Ra-223 is a possible and satisfactory tolerable treatment option. Combination of Ra-223 with abiraterone, enzalutamide, or denosumab is, apparently, effective and safe, but further studies are necessary.

  4. Skeletal Stability after Large Mandibular Advancement (> 10 mm) with Bilateral Sagittal Split Osteotomy and Skeletal Elastic Intermaxillary Fixation

    DEFF Research Database (Denmark)

    Schwartz, Kristoffer; Rodrigo, Maria; Jensen, Thomas

    2016-01-01

    OBJECTIVES: The aim of the present study was to assess the skeletal stability after large mandibular advancement (> 10 mm) with bilateral sagittal split osteotomy and skeletal elastic intermaxillary fixation and to correlate the skeletal stability with the vertical facial type. MATERIAL AND METHODS......: A total of 33 consecutive patients underwent bimaxillary surgery to correct skeletal Class II malocclusion with a mandibular advancement (> 10 mm) measured at B-point and postoperative skeletal elastic intermaxillary fixation for 16 weeks. Skeletal stability was evaluated using lateral cephalometric...... radiographs obtained preoperative (T1), 8 weeks postoperatively (T2), and 18 month postoperatively (T3). B-point and pogonion (Pog) was used to measure the skeletal relapse and the mandibular plane angle (MP-angle) was used to determine the vertical facial type. RESULTS: The mean advancement from T1 to T2...

  5. Dexamethasone up-regulates skeletal muscle maximal Na+,K+ pump activity by muscle group specific mechanisms in humans

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Goodmann, Craig; McKenna, Michael J.

    2005-01-01

    Dexamethasone, a widely clinically used glucocorticoid, increases human skeletal muscle Na+,K+ pump content, but the effects on maximal Na+,K+ pump activity and subunit specific mRNA are unknown. Ten healthy male subjects ingested dexamethasone for 5 days and the effects on Na+,K+ pump content......, maximal activity and subunit specific mRNA level (a1, a2, ß1, ß2, ß3) in deltoid and vastus lateralis muscle were investigated. Before treatment, maximal Na+,K+ pump activity, as well as a1, a2, ß1 and ß2 mRNA levels were higher (P ... increased Na+,K+ pump maximal activity in vastus lateralis and deltoid by 14 ± 7% (P Na+,K+ pump content by 18 ± 9% (P

  6. Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures

    Science.gov (United States)

    Booth, F. W.; Criswell, D. S.

    1997-01-01

    Skeletal muscle adapts to loading; atrophying when exposed to unloading on Earth or in spaceflight. Significant atrophy (decreases in muscle fiber cross-section of 11-24%) in humans has been noted after only 5 days in space. Since muscle strength is determined both by muscle cross-section and synchronization of motor unit recruitment, a loss in muscle size weakens astronauts, which would increase risks to their safety if an emergency required maximal muscle force. Numerous countermeasures have been tested to prevent atrophy. Resistant exercise together with growth hormone and IGF-I are effective countermeasures to unloading as most atrophy is prevented in animal models. The loss of muscle protein is due to an early decrease in protein synthesis rate and a later increase in protein degradation. The initial decrease in protein synthesis is a result of decreased protein translation, caused by a prolongation in the elongation rate. A decrease in HSP70 by a sight increase in ATP may be the factors prolonging elongation rate. Increases in the activities of proteolytic enzymes and in ubiquitin contribute to the increased protein degradation rate in unloaded muscle. Numerous mRNA concentrations have been shown to be altered in unloaded muscles. Decreases in mRNAs for contractile proteins usually occur after the initial fall in protein synthesis rates. Much additional research is needed to determine the mechanism by which muscle senses the absence of gravity with an adaptive atrophy. The development of effective countermeasures to unloading atrophy will require more research.

  7. Overweight in elderly people induces impaired autophagy in skeletal muscle.

    Science.gov (United States)

    Potes, Yaiza; de Luxán-Delgado, Beatriz; Rodriguez-González, Susana; Guimarães, Marcela Rodrigues Moreira; Solano, Juan J; Fernández-Fernández, María; Bermúdez, Manuel; Boga, Jose A; Vega-Naredo, Ignacio; Coto-Montes, Ana

    2017-09-01

    Sarcopenia is the gradual loss of skeletal muscle mass, strength and quality associated with aging. Changes in body composition, especially in skeletal muscle and fat mass are crucial steps in the development of chronic diseases. We studied the effect of overweight on skeletal muscle tissue in elderly people without reaching obesity to prevent this extreme situation. Overweight induces a progressive protein breakdown reflected as a progressive withdrawal of anabolism against the promoted catabolic state leading to muscle wasting. Protein turnover is regulated by a network of signaling pathways. Muscle damage derived from overweight displayed by oxidative and endoplasmic reticulum (ER) stress induces inflammation and insulin resistance and forces the muscle to increase requirements from autophagy mechanisms. Our findings showed that failure of autophagy in the elderly deprives it to deal with the cell damage caused by overweight. This insufficiently efficient autophagy leads to an accumulation of p62 and NBR1, which are robust markers of protein aggregations. This impaired autophagy affects myogenesis activity. Depletion of myogenic regulatory factors (MRFs) without links to variations in myostatin levels in overweight patients suggest a possible reduction of satellite cells in muscle tissue, which contributes to declined muscle quality. This discovery has important implications that improve the understanding of aged-related atrophy caused by overweight and demonstrates how impaired autophagy is one of the main responsible mechanisms that aggravate muscle wasting. Therefore, autophagy could be an interesting target for therapeutic interventions in humans against muscle impairment diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Single Stem Cell Imaging and Analysis Reveals Telomere Length Differences in Diseased Human and Mouse Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Elisia D. Tichy

    2017-10-01

    Full Text Available Muscle stem cells (MuSCs contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells.

  9. Comprehensive Validation of Skeletal Mechanism for Turbulent Premixed Methane–Air Flame Simulations

    KAUST Repository

    Luca, Stefano; Al-Khateeb, Ashraf N.; Attili, Antonio; Bisetti, Fabrizio

    2017-01-01

    A new skeletal mechanism, consisting of 16 species and 72 reactions, has been developed for lean methane–air premixed combustion from the GRI-Mech 3.0. The skeletal mechanism is validated for elevated unburnt temperatures (800 K) and pressures up

  10. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size.

    Directory of Open Access Journals (Sweden)

    Nicole Soranzo

    2009-04-01

    Full Text Available Recent genome-wide (GW scans have identified several independent loci affecting human stature, but their contribution through the different skeletal components of height is still poorly understood. We carried out a genome-wide scan in 12,611 participants, followed by replication in an additional 7,187 individuals, and identified 17 genomic regions with GW-significant association with height. Of these, two are entirely novel (rs11809207 in CATSPER4, combined P-value = 6.1x10(-8 and rs910316 in TMED10, P-value = 1.4x10(-7 and two had previously been described with weak statistical support (rs10472828 in NPR3, P-value = 3x10(-7 and rs849141 in JAZF1, P-value = 3.2x10(-11. One locus (rs1182188 at GNA12 identifies the first height eQTL. We also assessed the contribution of height loci to the upper- (trunk and lower-body (hip axis and femur skeletal components of height. We find evidence for several loci associated with trunk length (including rs6570507 in GPR126, P-value = 4x10(-5 and rs6817306 in LCORL, P-value = 4x10(-4, hip axis length (including rs6830062 at LCORL, P-value = 4.8x10(-4 and rs4911494 at UQCC, P-value = 1.9x10(-4, and femur length (including rs710841 at PRKG2, P-value = 2.4x10(-5 and rs10946808 at HIST1H1D, P-value = 6.4x10(-6. Finally, we used conditional analyses to explore a possible differential contribution of the height loci to these different skeletal size measurements. In addition to validating four novel loci controlling adult stature, our study represents the first effort to assess the contribution of genetic loci to three skeletal components of height. Further statistical tests in larger numbers of individuals will be required to verify if the height loci affect height preferentially through these subcomponents of height.

  11. Insulin and GH signaling in human skeletal muscle in vivo following exogenous GH exposure: impact of an oral glucose load.

    Directory of Open Access Journals (Sweden)

    Thomas Krusenstjerna-Hafstrøm

    2011-05-01

    Full Text Available GH induces acute insulin resistance in skeletal muscle in vivo, which in rodent models has been attributed to crosstalk between GH and insulin signaling pathways. Our objective was to characterize time course changes in signaling pathways for GH and insulin in human skeletal muscle in vivo following GH exposure in the presence and absence of an oral glucose load.Eight young men were studied in a single-blinded randomized crossover design on 3 occasions: 1 after an intravenous GH bolus 2 after an intravenous GH bolus plus an oral glucose load (OGTT, and 3 after intravenous saline plus OGTT. Muscle biopsies were taken at t = 0, 30, 60, and 120. Blood was sampled at frequent intervals for assessment of GH, insulin, glucose, and free fatty acids (FFA.GH increased AUC(glucose after an OGTT (p<0.05 without significant changes in serum insulin levels. GH induced phosphorylation of STAT5 independently of the OGTT. Conversely, the OGTT induced acute phosphorylation of the insulin signaling proteins Akt (ser(473 and thr(308, and AS160.The combination of OGTT and GH suppressed Akt activation, whereas the downstream expression of AS160 was amplified by GH. WE CONCLUDED THE FOLLOWING: 1 A physiological GH bolus activates STAT5 signaling pathways in skeletal muscle irrespective of ambient glucose and insulin levels 2 Insulin resistance induced by GH occurs without a distinct suppression of insulin signaling proteins 3 The accentuation of the glucose-stimulated activation of AS 160 by GH does however indicate a potential crosstalk between insulin and GH.ClinicalTrials.gov NCT00477997.

  12. Insulin resistance and mitochondrial function in skeletal muscle

    DEFF Research Database (Denmark)

    Dela, Flemming; Helge, Jørn Wulff

    2013-01-01

    are used in the attempt to resolve the mechanisms of insulin resistance. In this context, a dysfunction of mitochondria in the skeletal muscle has been suggested to play a pivotal role. It has been postulated that a decrease in the content of mitochondria in the skeletal muscle can explain the insulin...... resistance. Complementary to this also specific defects of components in the respiratory chain in the mitochondria have been suggested to play a role in insulin resistance. A key element in these mechanistic suggestions is inability to handle substrate fluxes and subsequently an accumulation of ectopic...... intramyocellular lipids, interfering with insulin signaling. In this review we will present the prevailing view-points and argue for the unlikelihood of this scenario being instrumental in human insulin resistance. This article is part of a Directed Issue entitled: Bioenergetic dysfunction....

  13. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...

  14. Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle.

    Science.gov (United States)

    Carter, W J; Van Der Weijden Benjamin, W S; Faas, F H

    1980-10-01

    Since experimental hyperthyroidism reduces skeletal muscle mass while simultaneously increasing cardiac muscle mass, the effect of hyperthyroidism on muscle protein degradation was compared in skeletal and cardiac muscle. Pulse-labeling studies using (3H) leucine and (14C) carboxyl labeled aspartate and glutamate were carried out. Hyperthyroidism caused a 25%-29% increase in protein breakdown in both sarcoplasmic and myofibrillar fractions of skeletal muscle. Increased muscle protein degradation may be a major factor in the development of skeletal muscle wasting and weakness in hyperthyroidism. In contrast, protein breakdown appeared to be reduced 22% in the sarcoplasmic fraction of hyperthyroid heart muscle and was unchanged in the myofibrillar fraction. Possible reasons for the contrasting effects of hyperthyroidism on skeletal and cardiac muscle include increased sensitivity of the hyperthyroid heart to catecholamines, increased cardiac work caused by the hemodynamic effects of hyperthyroidism, and a different direct effect of thyroid hormone at the nuclear level in cardiac as opposed to skeletal muscle.

  15. Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice

    International Nuclear Information System (INIS)

    Bhagavati, Satyakam; Xu Weimin

    2005-01-01

    Embryonic stem (ES) cells have great therapeutic potential because of their capacity to proliferate extensively and to form any fully differentiated cell of the body, including skeletal muscle cells. Successful generation of skeletal muscle in vivo, however, requires selective induction of the skeletal muscle lineage in cultures of ES cells and following transplantation, integration of appropriately differentiated skeletal muscle cells with recipient muscle. Duchenne muscular dystrophy (DMD), a severe progressive muscle wasting disease due to a mutation in the dystrophin gene and the mdx mouse, an animal model for DMD, are characterized by the absence of the muscle membrane associated protein, dystrophin. Here, we show that co-culturing mouse ES cells with a preparation from mouse muscle enriched for myogenic stem and precursor cells, followed by injection into mdx mice, results occasionally in the formation of normal, vascularized skeletal muscle derived from the transplanted ES cells. Study of this phenomenon should provide valuable insights into skeletal muscle development in vivo from transplanted ES cells

  16. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2016-04-15

    Sterile inflammation and infection are key mediators of inflammation and peripheral insulin resistance associated with gestational diabetes mellitus (GDM). Studies have shown endoplasmic reticulum (ER) stress to induce inflammation and insulin resistance associated with obesity and type 2 diabetes, however is paucity of studies investigating the effects of ER stress in skeletal muscle on inflammation and insulin resistance associated with GDM. ER stress proteins IRE1α, GRP78 and XBP-1s were upregulated in skeletal muscle of obese pregnant women, whereas IRE1α was increased in GDM women. Suppression of ER stress, using ER stress inhibitor tauroursodeoxycholic acid (TUDCA) or siRNA knockdown of IRE1α and GRP78, significantly downregulated LPS-, poly(I:C)- or IL-1β-induced production of IL-6, IL-8, IL-1β and MCP-1. Furthermore, LPS-, poly(I:C)- or TNF-α-induced insulin resistance was improved following suppression of ER stress, by increasing insulin-stimulated phosphorylation of IR-β, IRS-1, GLUT-4 expression and glucose uptake. In summary, our inducible obesity and GDM-like models suggests that the development of GDM may be involved in activating ER stress-induced inflammation and insulin resistance in human skeletal muscle. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Engineered matrices for skeletal muscle satellite cell engraftment and function.

    Science.gov (United States)

    Han, Woojin M; Jang, Young C; García, Andrés J

    2017-07-01

    Regeneration of traumatically injured skeletal muscles is severely limited. Moreover, the regenerative capacity of skeletal muscle declines with aging, further exacerbating the problem. Recent evidence supports that delivery of muscle satellite cells to the injured muscles enhances muscle regeneration and reverses features of aging, including reduction in muscle mass and regenerative capacity. However, direct delivery of satellite cells presents a challenge at a translational level due to inflammation and donor cell death, motivating the need to develop engineered matrices for muscle satellite cell delivery. This review will highlight important aspects of satellite cell and their niche biology in the context of muscle regeneration, and examine recent progresses in the development of engineered cell delivery matrices designed for skeletal muscle regeneration. Understanding the interactions of muscle satellite cells and their niche in both native and engineered systems is crucial to developing muscle pathology-specific cell- and biomaterial-based therapies. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  18. Dentoskeletal Overjet Measurements of Iraqi Adult Sample with Different Skeletal Jaw Relationship

    Directory of Open Access Journals (Sweden)

    Shahbaa A Mohammed

    2017-11-01

    Full Text Available Background: Many attempts were done to develop a method that actually reflects the sagittal jaw discrepancies without depending on cranial landmarks or dental occlusion. This study aimed to use one of these methods (dentoskeletal overjet for assessing the sagittal jaw relationships of Iraqi adult sample with different skeletal jaw relationship. Materials and method: The sample consisted of 90 digital true lateral cephalometric radiographs of Iraqi individuals with no previous orthodontic treatment. Cephalometric analysis of skeletal sagittal jaw relationship -ANB angle, beta angle and Wits appraisal- will perform for everyone to divide the sample into three groups (skeletal class I, II, III for which the dentoskeletal overjet will be measured. All cephalometric measurements will be done using AutoCAD. Results: Descriptive statistics of all variables with different skeletal jaw relationship showed that mean values of dentoskeletal overjet were (1.15, 3.91 and –2.01 mm for skeletal class I, class II and class III jaw relationship respectively. Accurate reproducibility of dentoskeletal overjet in assessment of jaw skeletal relationship showed that the lowest value was for assessment of skeletal class III jaw relationship (73% and the value for assessment of both skeletal class I and class II was higher (93%. Conclusions: Dentoskeletal overjet could be utilized in accurate representation of skeletal jaw relationship.

  19. Palaeopathology and genes: investigating the genetics of infectious diseases in excavated human skeletal remains and mummies from past populations.

    Science.gov (United States)

    Anastasiou, Evilena; Mitchell, Piers D

    2013-10-01

    The aim of this paper is to review the use of genetics in palaeomicrobiology, and to highlight the importance of understanding past diseases. Palaeomicrobiology is the study of disease pathogens in skeletal and mummified remains from archaeological contexts. It has revolutionarised our understanding of health in the past by enabling a deeper knowledge of the origins and evolution of many diseases that have shaped us as a species. Bacterial diseases explored include tuberculosis, leprosy, bubonic plague, typhoid, syphilis, endemic and epidemic typhus, trench fever, and Helicobacter pylori. Viral diseases discussed include influenza, hepatitis B, human papilloma virus (HPV), human T-cell lymphotrophic virus (HTLV-1) and human immunodeficiency virus (HIV). Parasitic diseases investigated include malaria, leishmaniasis, Chagas' disease, roundworm, whipworm, pinworm, Chinese liver fluke, fleas and lice. Through a better understanding of disease origins and their evolution, we can place into context how many infectious diseases are changing over time, and so help us estimate how they may change in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Apoptosis may determine the release of skeletal alkaline phosphatase activity from human osteoblast-line cells.

    Science.gov (United States)

    Farley, J R; Stilt-Coffing, B

    2001-01-01

    Although quantitative measurement of skeletal alkaline phosphatase (sALP) activity in serum can provide an index of the rate of bone formation, the metabolic process that determines the release of sALP - from the surface of osteoblasts, into circulation-is unknown. The current studies were intended to examine the hypothesis that the release of sALP from human osteoblasts is a consequence of apoptotic cell death. We measured the release of sALP activity from human osteosarcoma (SaOS-2) cells and normal human bone cells, under basal conditions and in response to agents that increased apoptosis (TNF-a, okadiac acid) and agents that inhibit apoptosis (IGF-I, calpain, and caspase inhibitors). Apoptosis was determined by the presence of nucleosomes (histone-associated DNA) in the cytoplasm of the cells by using a commercial kit. The results of these studies showed that TNF-a and okadiac acid caused dose- and time-dependent increases in apoptosis in the SaOS-2 cells (r = 0.78 for doses of TNF-a and r = 0.93 for doses of okadiac acid, P sALP activity (e.g., r = 0.89 for TNF-a and r = 0.75 for okadiac acid, P sALP activity (P sALP activity (P sALP release. The associations between apoptosis and sALP release were not unique to osteosarcoma (i.e., SaOS-2) cells, but also seen with osteoblast-line cells derived from normal human bone. Together, these data demonstrate that the release of sALP activity from human osteoblast-line cells in vitro is associated with, and may be a consequence of, apoptotic cell death. These findings are consistent with the general hypothesis that the appearance of sALP activity in serum may reflect the turnover of osteoblast-line cells.

  1. Radiology of skeletal and soft tissue changes

    International Nuclear Information System (INIS)

    Walker, H.C. Jr.; Coleman, C.C.; Hunter, D.W.

    1986-01-01

    Skeletal complications are very common in renal transplant patients. Loss of bone mass in the posttransplant period places the skeletal system in jeopardy. Osteonecrosis, while not life threatening, often prevents rehabilitation. Spontaneous fractures are frequent but are usually not a major problem except in the diabetic transplant recipient. Septic arthritis and osteomyelitis are usually successfully managed by conservative measures, except when accompanied by severe occlusive vascular disease. Juvenile onset diabetic patients still may develop disabling neuropathic joint disease or occlusive vascular disease after renal transplantation. The authors hope that successful pancreas transplantation will avert these problems in the future

  2. Skeletal muscle wasting: new role of nonclassical renin-angiotensin system.

    Science.gov (United States)

    Cabello-Verrugio, Claudio; Rivera, Juan C; Garcia, Dominga

    2017-05-01

    Skeletal muscle can be affected by many physiological and pathological conditions that contribute to the development of muscle weakness, including skeletal muscle loss, inflammatory processes, or fibrosis. Therefore, research into therapeutic treatment alternatives or alleviation of these effects on skeletal muscle is of great importance. Recent studies have shown that angiotensin (1-7) [Ang-(1-7)] - a vasoactive peptide of the nonclassical axis in the renin-angiotensin system (RAS) - and its Mas receptor are expressed in skeletal muscle. Ang-(1-7), through its Mas receptor, prevents or diminishes deleterious effects induced by skeletal muscle disease or injury. Specifically, the Ang-(1-7)-Mas receptor axis modulates molecular mechanisms involved in muscle mass regulation, such as the ubiquitin proteasome pathway, the insulin-like growth factor type 1/Akt (protein kinase B) pathway, or myonuclear apoptosis, and also inflammation and fibrosis pathways. Although further research into this topic and the possible side effects of Ang-(1-7) is necessary, these findings are promising, and suggest that the Ang-(1-7)-Mas axis can be considered a possible therapeutic target for treating patients with muscular disorders.

  3. Selection, processing and clinical application of muscle-skeletal tissue; Seleccion, Procesamiento y Aplicacion Clinica de Tejido Musculo-Esqueletico

    Energy Technology Data Exchange (ETDEWEB)

    Luna Z, D.; Reyes F, M.L.; Lavalley E, C.; Castaneda J, G. [ININ, Carretera Mexico-Toluca s/n, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: dlz@nuclear.inin. mx

    2007-07-01

    Due to the increase in the average of the world population's life, people die each time to more age, this makes that the tissues of support of the human body, as those muscle-skeletal tissues, when increasing the individual's age go weakening, this in turn leads to the increment of the illnesses like the osteoporosis and the arthritis, that undoubtedly gives as a result more injure of the muscle-skeletal tissues joined a greater number of traffic accidents where particularly these tissues are affected, for that the demand of tissues muscle-skeletal for transplant every day will be bigger. The production of these tissues in the Bank of Radio sterilized Tissues, besides helping people to improve its quality of life saved foreign currencies because most of the muscle-skeletal tissues transplanted in Mexico are of import. The use of the irradiation to sterilize tissues for transplant has shown to be one of the best techniques with that purpose for what the International Atomic Energy Agency believes a Technical cooperation program to establish banks of tissues using the nuclear energy, helping mainly to countries in development. In this work the stages that follows the bank of radio sterilized tissues of the National Institute of Nuclear Research for the cadaverous donor's of muscle-skeletal tissue selection are described, as well as the processing and the clinical application of these tissues. (Author)

  4. Oncological outcomes of patients with Ewing's sarcoma: is there a difference between skeletal and extra-skeletal Ewing's sarcoma?

    Science.gov (United States)

    Pradhan, A; Grimer, R J; Spooner, D; Peake, D; Carter, S R; Tillman, R M; Abudu, A; Jeys, L

    2011-04-01

    The aim of this study was to identify whether there was any difference in patient, tumour, treatment or outcome characteristics between patients with skeletal or extra-skeletal Ewing's sarcoma. We identified 300 patients with new primary Ewing's sarcoma diagnosed between 1980 and 2005 from the centres' local database. There were 253 (84%) with skeletal and 47 (16%) with extra-skeletal Ewing's sarcomas. Although patients with skeletal Ewing's were younger (mean age 16.8 years) than those with extra-skeletal Ewing's sarcoma (mean age 27.5 years), there was little difference between the groups in terms of tumour stage or treatment. Nearly all the patients were treated with chemotherapy and most had surgery. There was no difference in the overall survival of patients with skeletal (64%) and extra-skeletal Ewing's sarcoma (61%) (p = 0.85), and this was also the case when both groups were split by whether they had metastases or not. This large series has shown that the oncological outcomes of Ewing's sarcoma are related to tumour characteristics and patient age, and not determined by whether they arise in bone or soft tissue.

  5. Precise isotope ratio and multielement determination in prehistoric and historic human skeletal remains by HR-ICPMS - a novel application to shed light onto anthropological and archaeological questions

    International Nuclear Information System (INIS)

    Watkins, M.

    2000-12-01

    The primary aim of the presented work was the analytical setup for fast (including high sample throughput for statistical evaluation), precise and accurate measurement of strontium isotope ratios using HR-ICPMS (high-resolution inductively coupled plasma mass spectrometry) and their application to ancient human skeletal remains from different localities for the reconstruction of migration processes. Soils and plants are in isotopic equilibrium with local source rock and show therefore the same isotopic ratios for strontium (87Sr/86Sr). Dietary strontium incorporation varies for different body materials (teeth, muscle, bone, etc.) and repository periods depend on the different strontium turnover rates. Accordingly, strontium isotope analysis can provide important data for studying human or animal migration and mobility. An important issue will be addressed: the problem of strontium isotope ratio measurement reliability and the problem of post-mortem alterations. Thus a basic part of this interdisciplinary project is dealing with the systematic evaluation of diagenetic changes of the microstructure in human bone samples - including sample uptake and preparation. Different invasive histological techniques will be applied for further clarification. Newly developed chemical methods give us the opportunity to obtain details on ancient population mobility also in skeletal series of extreme fragmentary character, which usually restricts the macro-morphological approach. Since it is evident that strontium in teeth is only incorporated during childhood whereas strontium uptake in bones is constant, an intra-individual comparison of bone and teeth samples will answer the question whether teeth are indeed 'archives of the childhood'. The introduction of an analytical system allowing online matrix separation by High Performance Ion Chromatography (HPIC) and subsequent measurement of strontium isotope ratios by means of HR-ICPMS is presented, optimized and established as method

  6. Precise Isotope ratio and multielement determination in prehistoric and historic human skeletal remains by HR-ICPMS - a novel application to shed light onto anthropological and archaeological questions

    International Nuclear Information System (INIS)

    Watkins, M.

    2000-12-01

    The primary aim of the presented work was the analytical setup for fast (including high sample throughput for statistical evaluation), precise and accurate measurement of strontium isotope ratios using HR-ICPMS (high-resolution inductively coupled plasma mass spectrometry) and their application to ancient human skeletal remains from different localities for the reconstruction of migration processes. Soils and plants are in isotopic equilibrium with local source rock and show therefore the same isotopic ratios for strontium (87Sr/86Sr). Dietary strontium incorporation varies for different body materials (teeth, muscle, bone, etc.) and repository periods depend on the different strontium turnover rates. Accordingly, strontium isotope analysis can provide important data for studying human or animal migration and mobility. An important issue will be addressed: the problem of strontium isotope ratio measurement reliability and the problem of post-mortem alterations. Thus a basic part of this interdisciplinary project is dealing with the systematic evaluation of diagenetic changes of the microstructure in human bone samples - including sample uptake and preparation. Different invasive histological techniques will be applied for further clarification. Newly developed chemical methods give us the opportunity to obtain details on ancient population mobility also in skeletal series of extreme fragmentary character, which usually restricts the macro-morphological approach. Since it is evident that strontium in teeth is only incorporated during childhood whereas strontium uptake in bones is constant, an intra-individual comparison of bone and teeth samples will answer the question whether teeth are indeed 'archives of the childhood'. The introduction of an analytical system allowing online matrix separation by High Performance Ion Chromatography (HPIC) and subsequent measurement of strontium isotope ratios by means of HR-ICPMS is presented, optimized and established as method

  7. Skeletal muscle metastases: primary tumours, prevalence, and radiological features

    International Nuclear Information System (INIS)

    Surov, Alexey; Spielmann, Rolf Peter; Behrmann, Curd; Hainz, Michael; Holzhausen, Hans-Juergen; Arnold, Dirk; Katzer, Michaela; Schmidt, Joerg

    2010-01-01

    Although skeletal muscles comprise nearly 50% of the total human body mass and are well vascularised, metastases in the musculature are rare. The reported prevalence of skeletal muscle metastases from post-mortem studies of patients with cancer is inconstant and ranges from 0.03 to 17.5%. Of 5,170 patients with metastasised cancer examined and treated at our institution during the period from January 2000 to December 2007, 61 patients with muscle metastases (80 lesions) were identified on computed tomography (CT). Genital tumours (24.6%) were the most frequent malignancies metastasising into the skeletal musculature, followed by gastrointestinal tumours (21.3%), urological tumours (16.4%), and malignant melanoma (13.1%). Other primary malignancies were rarer, including bronchial carcinoma (8.2%), thyroid gland carcinoma (4.9%), and breast carcinoma (3.3%). In 8.2%, carcinoma of unknown primary was diagnosed. Skeletal muscle metastases (SMM) were located in the iliopsoas muscle (27.5%), paravertebral muscles (25%), gluteal muscles (16.3%), lower extremity muscles (12.5%), abdominal wall muscles (10%), thoracic wall muscles (5%), and upper extremity muscles (3.8%). Most (76.3%) of the 80 SMM were diagnosed incidentally during routine staging CT examinations, while 23.7% were symptomatic. Radiologically, SMM presented with five different types of lesions: focal intramuscular masses (type I, 52.5% of SMM), abscess-like intramuscular lesions (type II, 32.5%), diffuse metastatic muscle infiltration (type III, 8.8%), multifocal intramuscular calcification (type IV, 3.7%) and intramuscular bleeding (type V, 2.5%). (orig.)

  8. Skeletal muscle metastases: primary tumours, prevalence, and radiological features

    Energy Technology Data Exchange (ETDEWEB)

    Surov, Alexey; Spielmann, Rolf Peter; Behrmann, Curd [Martin-Luther-University Halle-Wittenberg, Department of Radiology, Halle (Germany); Hainz, Michael; Holzhausen, Hans-Juergen [Martin-Luther-University Halle-Wittenberg, Department of Pathology, Halle (Germany); Arnold, Dirk [Martin-Luther-University Halle-Wittenberg, Department of Haematology/Oncology, Halle (Germany); Katzer, Michaela [Martin-Luther-University Halle-Wittenberg, Department of Urology, Halle (Germany); Schmidt, Joerg [Martin-Luther-University Halle-Wittenberg, Department of Medical Statistics and Controlling, Halle (Germany)

    2010-03-15

    Although skeletal muscles comprise nearly 50% of the total human body mass and are well vascularised, metastases in the musculature are rare. The reported prevalence of skeletal muscle metastases from post-mortem studies of patients with cancer is inconstant and ranges from 0.03 to 17.5%. Of 5,170 patients with metastasised cancer examined and treated at our institution during the period from January 2000 to December 2007, 61 patients with muscle metastases (80 lesions) were identified on computed tomography (CT). Genital tumours (24.6%) were the most frequent malignancies metastasising into the skeletal musculature, followed by gastrointestinal tumours (21.3%), urological tumours (16.4%), and malignant melanoma (13.1%). Other primary malignancies were rarer, including bronchial carcinoma (8.2%), thyroid gland carcinoma (4.9%), and breast carcinoma (3.3%). In 8.2%, carcinoma of unknown primary was diagnosed. Skeletal muscle metastases (SMM) were located in the iliopsoas muscle (27.5%), paravertebral muscles (25%), gluteal muscles (16.3%), lower extremity muscles (12.5%), abdominal wall muscles (10%), thoracic wall muscles (5%), and upper extremity muscles (3.8%). Most (76.3%) of the 80 SMM were diagnosed incidentally during routine staging CT examinations, while 23.7% were symptomatic. Radiologically, SMM presented with five different types of lesions: focal intramuscular masses (type I, 52.5% of SMM), abscess-like intramuscular lesions (type II, 32.5%), diffuse metastatic muscle infiltration (type III, 8.8%), multifocal intramuscular calcification (type IV, 3.7%) and intramuscular bleeding (type V, 2.5%). (orig.)

  9. The history of Latin terminology of human skeletal muscles (from Vesalius to the present).

    Science.gov (United States)

    Musil, Vladimir; Suchomel, Zdenek; Malinova, Petra; Stingl, Josef; Vlcek, Martin; Vacha, Marek

    2015-01-01

    The aim of this literary search was to chart the etymology of 32 selected human skeletal muscles, representative of all body regions. In researching this study, analysis of 15 influential Latin and German anatomical textbooks, dating from the sixteenth to the nineteenth century, was undertaken, as well as reference to four versions of the official Latin anatomical terminologies. Particular emphasis has been placed on the historical development of muscular nomenclature, and the subsequent division of these data into groups, defined by similarities in the evolution of their names into the modern form. The first group represents examples of muscles whose names have not changed since their introduction by Vesalius (1543). The second group comprises muscles which earned their definitive names during the seventeenth and eighteenth century. The third group is defined by acceptance into common anatomical vernacular by the late nineteenth century, including those outlined in the first official Latin terminology (B.N.A.) of 1895. The final group is reserved for six extra-ocular muscles with a particularly poetic history, favoured and popularised by the anatomical giants of late Renaissance and 1,700 s. As this study will demonstrate, it is evident that up until introduction of the B.N.A. there was an extremely liberal approach to naming muscles, deserving great respect in the retrospective terminological studies if complete and relevant results are to be achieved. Without this knowledge of the vernacular of the ages past, modern researchers can find themselves 'reinventing the wheel' in looking for their answers.

  10. Substrate kinetics in patients with disorders of skeletal muscle metabolism.

    Science.gov (United States)

    Ørngreen, Mette Cathrine

    2016-07-01

    The main purpose of the following studies was to investigate pathophysiological mechanisms in fat and carbohydrate metabolism and effect of nutritional interventions in patients with metabolic myopathies and in patients with severe muscle wasting. Yet there is no cure for patients with skeletal muscle disorders. The group of patients is heterozygous and this thesis is focused on patients with metabolic myopathies and low muscle mass due to severe muscle wasting. Disorders of fatty acid oxidation (FAO) are, along with myophosphorylase deficiency (McArdle disease), the most common inborn errors of metabolism leading to recurrent episodes of rhabdomyolysis in adults. Prolonged exercise, fasting, and fever are the main triggering factors for rhabdomyolysis in these conditions, and can be complicated by acute renal failure. Patients with low muscle mass are in risk of loosing their functional skills and depend on a wheel chair and respiratory support. We used nutritional interventions and metabolic studies with stable isotope technique and indirect calorimetry in patients with metabolic myopathies and patients with low muscle mass to get information of the metabolism of the investigated diseases, and to gain knowledge of the biochemical pathways of intermediary metabolism in human skeletal muscle. We have shown that patients with fat metabolism disorders in skeletal muscle affecting the transporting enzyme of fat into the mitochondria (carnitine palmitoyltransferase II deficiency) and affecting the enzyme responsible for breakdown of the long-chain fatty acids (very long chain acyl-CoA dehydrogenase deficiency) have a normal fatty acid oxidation at rest, but enzyme activity is too low to increase fatty acid oxidation during exercise. Furthermore, these patients benefit from a carbohydrate rich diet. Oppositely is exercise capacity worsened by a fat-rich diet in these patients. The patients also benefit from IV glucose, however, when glucose is given orally just before

  11. Supervised segmentation of phenotype descriptions for the human skeletal phenome using hybrid methods.

    Science.gov (United States)

    Groza, Tudor; Hunter, Jane; Zankl, Andreas

    2012-10-15

    Over the course of the last few years there has been a significant amount of research performed on ontology-based formalization of phenotype descriptions. In order to fully capture the intrinsic value and knowledge expressed within them, we need to take advantage of their inner structure, which implicitly combines qualities and anatomical entities. The first step in this process is the segmentation of the phenotype descriptions into their atomic elements. We present a two-phase hybrid segmentation method that combines a series individual classifiers using different aggregation schemes (set operations and simple majority voting). The approach is tested on a corpus comprised of skeletal phenotype descriptions emerged from the Human Phenotype Ontology. Experimental results show that the best hybrid method achieves an F-Score of 97.05% in the first phase and F-Scores of 97.16% / 94.50% in the second phase. The performance of the initial segmentation of anatomical entities and qualities (phase I) is not affected by the presence / absence of external resources, such as domain dictionaries. From a generic perspective, hybrid methods may not always improve the segmentation accuracy as they are heavily dependent on the goal and data characteristics.

  12. Skeletal muscle deiodinase type 2 regulation during illness in mice

    NARCIS (Netherlands)

    Kwakkel, J.; van Beeren, H. C.; Ackermans, M. T.; Platvoet-ter Schiphorst, M. C.; Fliers, E.; Wiersinga, W. M.; Boelen, A.

    2009-01-01

    We have previously shown that skeletal muscle deiodinase type 2 (D2) mRNA (listed as Dio2 in MGI Database) is up-regulated in an animal model of acute illness. However, human Studies on the expression Of muscle D2 during illness report conflicting data. Therefore, we evaluated the expression of

  13. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis

    DEFF Research Database (Denmark)

    Doessing, Simon; Heinemeier, Katja M; Holm, Lars

    2010-01-01

    young individuals. rhGH administration caused an increase in serum GH, serum IGF-I, and IGF-I mRNA expression in tendon and muscle. Tendon collagen I mRNA expression and tendon collagen protein synthesis increased by 3.9-fold and 1.3-fold, respectively (P ...RNA expression and muscle collagen protein synthesis increased by 2.3-fold and 5.8-fold, respectively (P protein synthesis was unaffected by elevation of GH and IGF-I. Moderate exercise did not enhance the effects of GH manipulation. Thus, increased GH availability stimulates...... matrix collagen synthesis in skeletal muscle and tendon, but without any effect upon myofibrillar protein synthesis. The results suggest that GH is more important in strengthening the matrix tissue than for muscle cell hypertrophy in adult human musculotendinous tissue....

  14. Prostaglandin synthesis can be inhibited locally by infusion of NSAIDS through microdialysis catheters in human skeletal muscle

    DEFF Research Database (Denmark)

    Mikkelsen, Ulla Ramer; Helmark, Ida Carøe; Kjaer, Michael

    2008-01-01

    of nonsteroidal anti-inflammatory drugs (NSAIDs). However, to study the local role of prostaglandins, the formation of prostaglandins within the tissue must be controlled. Microdialysis enables determination of local concentrations of water-soluble substances within the tissue. In the present study......, the microdialysis method was used to infuse NSAIDs locally into human skeletal muscles producing a local block of prostaglandin formation. In addition, the graded blockade at various distances from the infusion site within the muscle during rest, exercise and recovery was determined. Microdialysis was performed...... in thigh muscles (vastus lateralis muscle) in six healthy men. One of the microdialysis catheters was used to block prostaglandin synthesis by infusion of the NSAID indomethacin. Additional catheters were placed 1 and 4 cm away from the infusion and in the contralateral leg (working control). Following 2 h...

  15. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...... activation. We hypothesized that oral glucose ingestion during exercise would attenuate muscle AMPK activation. Nine male subjects performed two bouts of one-legged knee-extensor exercise at 60% of maximal workload. The subjects were randomly assigned to either consume a glucose containing drink or a placebo...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P

  16. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    Science.gov (United States)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological

  17. Suspected fetal skeletal malformations or bone diseases: how to explore

    International Nuclear Information System (INIS)

    Cassart, Marie

    2010-01-01

    Skeletal dysplasias are a heterogeneous and complex group of conditions that affect bone growth and development and result in various anomalies in shape and size of the skeleton. Although US has proved reliable for the prenatal detection of skeletal abnormalities, the precise diagnosis of a dysplasia is often difficult to make before birth (especially in the absence of a familial history) due to their various phenotypic presentations, the variability in the time at which they manifest and often, the lack of precise molecular diagnosis. In addition to the accuracy of the antenatal diagnosis, it is very important to establish a prognosis. This is a clinically relevant issue as skeletal dysplasias may be associated with severe disability and may even be lethal. We will therefore describe the respective role of two-dimensional (2-D) US, three-dimensional (3-D) US and CT in the antenatal assessment of skeletal malformations. (orig.)

  18. The skeletal consequences of thyrotoxicosis.

    Science.gov (United States)

    Nicholls, Jonathan J; Brassill, Mary Jane; Williams, Graham R; Bassett, J H Duncan

    2012-06-01

    Euthyroid status is essential for normal skeletal development and the maintenance of adult bone structure and strength. Established thyrotoxicosis has long been recognised as a cause of high bone turnover osteoporosis and fracture but more recent studies have suggested that subclinical hyperthyroidism and long-term suppressive doses of thyroxine (T4) may also result in decreased bone mineral density (BMD) and an increased risk of fragility fracture, particularly in postmenopausal women. Furthermore, large population studies of euthyroid individuals have demonstrated that a hypothalamic-pituitary-thyroid axis set point at the upper end of the normal reference range is associated with reduced BMD and increased fracture susceptibility. Despite these findings, the cellular and molecular mechanisms of thyroid hormone action in bone remain controversial and incompletely understood. In this review, we discuss the role of thyroid hormones in bone and the skeletal consequences of hyperthyroidism.

  19. Seasonal concentrations of cesium-137 in rumen content, skeletal muscles and feces of caribou from the porcupine herd: lichen ingestion rates and implications for human consumption

    International Nuclear Information System (INIS)

    Allaye-Chan, A.C.; White, R.G.; Holleman, D.F.; Russell, D.E.

    1990-01-01

    The Porcupine caribou herd was monitored for cesium-137 during 1987 to address human health concerns over potential meat contamination by radioactive fallout from the Chernobyl accident, and to determine lichen intake rates based on body burdens of radiocesium. A total of 36 caribou were collected from northwestern Alaska and the Yukon Territories in March, June, September, and November. Mean radiocesium concentrations in skeletal muscle peaked in March at 133 Bq/kg fresh weight. This value should not prove hazardous to human health. Radiocesium concentrations in skeletal muscle (wet weight) ranged from approximately 22 to 50% of radiocesium concentrations in rumen contents (dry weight), and from approximately 15 to 37% of radiocesium concentrations in feces (dry weight). Radioactivity in feces was significantly correlated with radioactivity in rumen contents. Computer simulations relating lichen intake rates to radiocesium body burdens are presented for 3 scenarios: (1) when seasonal intakes were adjusted to provide the optimum fit between simulated and observed radiocesium body burdens (2) when seasonal intakes were based on empirical data, and (3) when seasonal intakes were adjusted to yield a ''conventional'' radiocesium curve of a slow fall build-up prior to a late winter plateau

  20. Seasonal concentrations of cesium-137 in rumen content, skeletal muscles and feces of caribou from the Porcupine herd: lichen ingestion rates and implications for human consumption

    Directory of Open Access Journals (Sweden)

    A. C. Allaye-Chan

    1990-09-01

    Full Text Available The Porcupine caribou herd was monitored for cesium-137 during 1987 to address human health concerns over potential meat contamination by radioactive fallout from the Chernobyl accident, and to determine lichen intake rates based on body burdens of radiocesium. A total of 36 caribou were collected from northwestern Alaska and the Yukon Territories in March, June, September, and November. Mean radiocesium concentrations in skeletal muscle peaked in March at 133 Bq/kg fresh weight. This value should not prove hazardous to human health. Radiocesium concentrations in skeletal muscle (wet weight ranged from approximately 22 to 50% of radiocesium concentrations in rumen contents (dry weight, and from approximately 15 to 37% of radiocesium concentrations in feces (dry weight. Radioactivity in feces was significantly correlated with radioactivity in rumen contents. Computer simulations relating lichen intake rates to radiocesium body burdens are presented for 3 scenarios: (1 when seasonal intakes were adjusted to provide the optimum fit between simulated and observed radiocesium body burdens (2 when seasonal intakes were based on empirical data, and (3 when seasonal intakes were adjusted to yield a "conventional" radiocesium curve of a slow fall build-up prior to a late winter plateau.

  1. Meniscus transplantation in skeletally immature patients.

    Science.gov (United States)

    Kocher, Mininder S; Tepolt, Frances A; Vavken, Patrick

    2016-07-01

    Meniscal pathology in skeletally immature patients includes meniscal tears and discoid lateral meniscus. Total or subtotal meniscectomy may occur in patients with discoid lateral meniscus or severe meniscal tears. Meniscal transplantation may be an option in skeletally immature patients status after total or subtotal meniscectomy with knee symptoms or dysfunction. This study focuses on the surgical technique and short-term outcomes of meniscus transplantation in skeletally immature patients. We reviewed our clinical database for skeletally immature patients who had undergone meniscus transplantation with a minimum of 2 years of follow-up. Patients were contacted, invited for a physical exam, and asked to complete a Pedi-IKDC, Lysholm, and Tegner outcomes questionnaire. The study protocol was approved by the responsible institutional review board. Three patients (two females/one male) were eligible for the study, each of whom responded to our invitation indicating availability for physical exam and questionnaire. Two patients had undergone subtotal discoid meniscus resection, leading to early lateral compartment degeneration. One patient developed advanced degeneration after a delay in treatment for a medial bucket-handle tear associated with anterior cruciate ligament rupture. The mean age of the patients at the time of surgery was 12.6±2.3 years. At a mean follow-up of 31±20 months, the mean Pedi-IKDC score was 68.3±4, the mean Lysholm was 55.7±22.3, and the median Tegner was 7 points. There were no indications of growth deformity during the regular postoperative radiological assessments. One patient required subsequent lysis of adhesions along the lateral mini arthrotomy and mobilization under anesthesia. The other two patients were able to return to sports at the same level as before meniscus transplantation and were able to do so within 9 months postoperatively. Over-resection of discoid menisci as well as untreated meniscus injury, the latter typically in

  2. Vitamin D receptor protein is associated with interleukin-6 in human skeletal muscle

    Science.gov (United States)

    Vitamin D is associated with skeletal muscle physiology and function and may play a role in intramuscular inflammation, possibly via the vitamin D receptor (VDR). We conducted two studies to examine (1) whether serum 25-hydroxyvitamin D (25OHD) and/or intramuscular VDR protein concentrations are ass...

  3. Paraphyseal changes on bone-age studies predict risk of delayed radiation-associated skeletal complications following total body irradiation

    International Nuclear Information System (INIS)

    Kitazono Hammell, Mary T.; Edgar, J.C.; Jaramillo, Diego; Bunin, Nancy

    2013-01-01

    Children undergoing total body irradiation (TBI) often develop delayed skeletal complications. Bone-age studies in these children often reveal subtle paraphyseal changes including physeal widening, metaphyseal irregularity and paraphyseal exostoses. To investigate whether paraphyseal changes on a bone-age study following TBI indicate a predisposition toward developing other radiation-associated skeletal complications. We retrospectively reviewed medical records and bone-age studies of 77 children receiving TBI at our institution between 1995 and 2008 who had at least 2 years of clinical follow-up and one bone-age study after TBI. We graded bone-age studies according to the severity of paraphyseal changes. All documented skeletal complications following TBI were tabulated. Kendall's tau-b was used to examine associations between degree of paraphyseal change and development of a skeletal complication. Kendall's tau analyses showed that physeal widening and metaphyseal irregularity/sclerosis (tau = 0.87, P < 0.001) and paraphyseal exostoses (tau = 0.68, P < 0.001) seen on bone-age studies were significantly positively associated with the development of delayed skeletal complications following TBI. Thirty percent of children with no or mild paraphyseal changes developed a delayed skeletal complication, compared with 58% of children with moderate paraphyseal changes and 90% of children with severe paraphyseal changes. Paraphyseal changes identified on a bone-age study correlate positively with the development of delayed skeletal complications elsewhere in the skeleton following TBI. (orig.)

  4. “Nutraceuticals” in relation to human skeletal muscle and exercise

    Science.gov (United States)

    Deane, Colleen S.; Wilkinson, Daniel J.; Phillips, Bethan E.; Smith, Kenneth; Etheridge, Timothy

    2017-01-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and “nutraceutical” compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine. PMID:28143855

  5. Mapping human skeletal muscle perforator vessels using a quantum well infrared photodetector (QWIP) might explain the variability of NIRS and LDF measurements

    International Nuclear Information System (INIS)

    Binzoni, T; Leung, T; Delpy, D T; Fauci, M A; Ruefenacht, D

    2004-01-01

    Near-infrared spectroscopy (NIRS) and laser Doppler flowmetry (LDF) have become the techniques of choice allowing the non-invasive study of local human skeletal muscle metabolism and blood perfusion on a small tissue volume (a few cm 3 ). However, it has been shown that both NIRS and LDF measurements may show a large spatial variability depending on the position of the optodes over the investigated muscle. This variability may be due to local morphologic and/or metabolic characteristics of the muscle and makes the data interpretation and comparison difficult. In the present work, we use a third method to investigate this problem which permits fast, non-invasive mapping of the intramuscular vessel distribution in the human vastus lateralis muscle. This method uses an advanced, passive, infrared imaging sensor called a QWIP (quantum well infrared photodetector). We demonstrate, using a recovery-enhanced infrared imaging technique, that there is a significant presence of perforator vessels in the region of interest of ∼30 x 18 cm (the number of vessels being: 14, 9, 8, 33, 17 and 18 for each subject, respectively). The presence of these vessels makes the skeletal muscle highly inhomogeneous, and may explain the observed NIRS and LDF spatial variability. We conclude that accurate comparison of the metabolic activity of two different muscle regions is not possible without reliable maps of vascular 'singularities' such as the perforator vessels, and that the QWIP-based imaging system is one method to obtain this information. (note)

  6. Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle.

    Science.gov (United States)

    Ulbricht, Anna; Gehlert, Sebastian; Leciejewski, Barbara; Schiffer, Thorsten; Bloch, Wilhelm; Höhfeld, Jörg

    2015-01-01

    Chaperone-assisted selective autophagy (CASA) is a tension-induced degradation pathway essential for muscle maintenance. Impairment of CASA causes childhood muscle dystrophy and cardiomyopathy. However, the importance of CASA for muscle function in healthy individuals has remained elusive so far. Here we describe the impact of strength training on CASA in a group of healthy and moderately trained men. We show that strenuous resistance exercise causes an acute induction of CASA in affected muscles to degrade mechanically damaged cytoskeleton proteins. Moreover, repeated resistance exercise during 4 wk of training led to an increased expression of CASA components. In human skeletal muscle, CASA apparently acts as a central adaptation mechanism that responds to acute physical exercise and to repeated mechanical stimulation.

  7. Human Skeletal Muscle Stem Cells in Adaptations to Exercise; Effects of Resistance Exercise Contraction Mode and Protein Supplementation

    DEFF Research Database (Denmark)

    Farup, Jean

    2014-01-01

    the effect of contraction mode specific resistance training and protein supplementation on whole muscle and tendon hypertrophy. Quadriceps muscle and patellar tendon cross-sectional area (CSA) was quantified using magnetic resonance imaging pre and post 12 weeks of eccentric (Ecc) or concentric (Conc...... concentric resistance training and ingestion of protein influence myocellular adaptations, with special emphasis on muscle stem cell adaptations, during both acute and prolonged resistance exercise in human skeletal muscle. Paper I. Whey protein supplementation accelerates satellite cell proliferation during...... recovery from eccentric exercise In paper I, we evaluated the effect of a single bout of unaccustomed eccentric exercise on fiber type specific SC content by immunohistochemistry. Subjects received either hydrolysed whey protein (Whey) or iso-caloric carbohydrate (Placebo) in the days post eccentric...

  8. AMPK in skeletal muscle function and metabolism

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Hingst, Janne Rasmuss; Fentz, Joachim

    2018-01-01

    Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK's role as an energy sensor is particularly critical in tissues displaying...... highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation......, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives...

  9. Low expression of IL-18 and IL-18 receptor in human skeletal muscle is associated with systemic and intramuscular lipid metabolism-Role of HIV lipodystrophy

    DEFF Research Database (Denmark)

    Lindegaard, Birgitte; Hvid, Thine; Wolsk Mygind, Helene

    2018-01-01

    receptor (R) expression would be altered in patients with HIV-lipodystrophy. DESIGN AND METHODS: Twenty-three HIV-infected patients with LD and 15 age-matched healthy controls were included in a cross-sectional study. Biopsies from the vastus lateralis muscle were obtained and IL-18 and IL-18R m......-18 mRNA is expressed in human skeletal muscle but a role for IL-18 in muscle has not been identified. Patients with HIV-infection and lipodystrophy (LD) are characterized by lipid and glucose disturbances and increased levels of circulating IL-18. We hypothesized that skeletal muscle IL-18 and IL-18......RNA expression were measured by real-time PCR and sphingolipids (ceramides, sphingosine, sphingosine-1-Phosphate, sphinganine) were measured by HPLC. Insulin resistance was assessed by HOMA and the insulin response during an OGTT. RESULTS: Patients with HIV-LD had a 60% and 54% lower level of muscular IL-18...

  10. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  11. Accuracy of dental development for estimating the pubertal growth spurt in comparison to skeletal development: a systematic review and meta-analysis.

    Science.gov (United States)

    Bittencourt, MarcosAlan Vieira; Cericato, GrazielaOro; Franco, Ademir; Girão, RafaelaSilva; Lima, Anderson Paulo Barbosa; Paranhos, LuizRenato

    2018-05-01

    This study aimed to search for scientific evidence concerning the accuracy of dental development for estimating the pubertal growth spurt. It was conducted according to the statements of PRISMA. An electronic search was performed in six databases, including the grey literature. The PICOS strategy was used to define the eligibility criteria and only observational studies were selected. Out of 1,416 identified citations, 10 articles fulfilled the criteria and were included in this systematic review. The association between dental development and skeletal maturity was considered strong in seven studies, and moderate in two, although the association with the pubertal growth spurt had been verified in only four articles. According to half of the studies, the tooth that provided the greater association with the ossification centres was the lower canine. The meta-analysis performed also indicated a positive association, being stronger in females [0.725 (0.649-0.808)]. However, when the method used for dental evaluation was considered, it was possible to verify greater correlation coefficients for Nolla [0.736 (0.666-0.814)] than for Demirjian [0.631 (0.450-0.884)], at the boys sample. The heterogeneity test reached high values (Q = 51.00), suggesting a potential bias within the studies. Most of individual studies suggested a strong correlation between dental development and skeletal maturation, although the association with the peakof pubertal growth spurtwas clearly cited only in some of them. However, due to the high heterogeneity found among the studies included in this meta-analysis, a pragmatic recommendation about the use of dental stages is not possible.

  12. An image-based skeletal tissue model for the ICRP reference newborn

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Watchman, Christopher; Bourke, Vincent [Department of Radiation Oncology, University of Arizona, Tucson, AZ (United States); Aris, John [Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (United States); Shagina, Natalia [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Harrison, John; Fell, Tim [Radiation Protection Division, Health Protection Agency, Chilton (United Kingdom)], E-mail: wbolch@ufl.edu

    2009-07-21

    Hybrid phantoms represent a third generation of computational models of human anatomy needed for dose assessment in both external and internal radiation exposures. Recently, we presented the first whole-body hybrid phantom of the ICRP reference newborn with a skeleton constructed from both non-uniform rational B-spline and polygon-mesh surfaces (Lee et al 2007 Phys. Med. Biol. 52 3309-33). The skeleton in that model included regions of cartilage and fibrous connective tissue, with the remainder given as a homogenous mixture of cortical and trabecular bone, active marrow and miscellaneous skeletal tissues. In the present study, we present a comprehensive skeletal tissue model of the ICRP reference newborn to permit a heterogeneous representation of the skeleton in that hybrid phantom set-both male and female-that explicitly includes a delineation of cortical bone so that marrow shielding effects are correctly modeled for low-energy photons incident upon the newborn skeleton. Data sources for the tissue model were threefold. First, skeletal site-dependent volumes of homogeneous bone were obtained from whole-cadaver CT image analyses. Second, selected newborn bone specimens were acquired at autopsy and subjected to micro-CT image analysis to derive model parameters of the marrow cavity and bone trabecular 3D microarchitecture. Third, data given in ICRP Publications 70 and 89 were selected to match reference values on total skeletal tissue mass. Active marrow distributions were found to be in reasonable agreement with those given previously by the ICRP. However, significant differences were seen in total skeletal and site-specific masses of trabecular and cortical bone between the current and ICRP newborn skeletal tissue models. The latter utilizes an age-independent ratio of 80%/20% cortical and trabecular bone for the reference newborn. In the current study, a ratio closer to 40%/60% is used based upon newborn CT and micro-CT skeletal image analyses. These changes in

  13. In utero undernutrition programs skeletal and cardiac muscle metabolism

    Directory of Open Access Journals (Sweden)

    Brittany eBeauchamp

    2016-01-01

    Full Text Available In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease.

  14. The Tedeschi collection: A collection of documented and undocumented human skeletal remains at the Museum of Anthropology, Padua University (Italy).

    Science.gov (United States)

    Carrara, Nicola; Scaggion, Cinzia; Holland, Emily

    2018-04-01

    Documented and undocumented skeletal collections offer unique windows into life in the past and are integral for research in biological anthropology. The objective of this article is to describe the documented and undocumented collections curated by the Museum of Anthropology at Padua University (Italy) to demonstrate their potential for research and encourage researchers to consider them for future projects. The collection was established by Prof. Enrico Tedeschi at the beginning of 20th century, and dates to the late 19th and early 20th century. The collection consists primarily of individuals excavated from cemeteries, ossarios, or unclaimed individuals donated by hospitals or other institutions. Both documented and undocumented human skeletal remains are included in the collection, totalling 1,580 individuals. Associated documented information including age at death, date of death, sex, occupation, and cause of death is available in different combinations for 293 individuals of varying completeness (188 crania only, 93 crania and postcranial, 12 postcranial only). Origin and chronological period are known for the remaining 1,287 individuals. Overall, this little studied collection could be particularly useful for researchers interested in craniometrics, dentition, and 19th and 20th century health and demography in Italy. The documented skeletons will be especially useful for forensic anthropological research. © 2018 Wiley Periodicals, Inc.

  15. Non-surgical alternative in the treatment of skeletal Class III problems.

    Science.gov (United States)

    Jefferson, Y

    1995-01-01

    The dental profession is not static, but dynamic. New research findings, along with medical and technological advances, necessitate constant re-examination of treatment philosophies and techniques. What were acceptable treatment techniques in the past may not necessarily be the most effective and best techniques for our patients today. Currently, many practitioners feel that the only treatment for the correction of a skeletal Class III abnormality is via orthognathic surgery in older patients. In some cases it may be the only treatment option. But in most cases today, there are more conservative, non-surgical treatment alternatives in correcting Class III problems in younger aged children. In treating facial-skeletal problems, it must be emphasized that the human face is a biological masterpiece of form and function. Its importance has been documented in arts and sciences since the beginning of modern civilization. It is important enough so that individuals who are blessed with attractive features are afforded greater opportunities in our society. Attractive faces are associated with intelligence, honesty and good work ethics. With the advent of orthognathic surgery, functional appliance, functional regulator, and myofunctional therapy, the dental profession has the capability of leveling out the playing field for many individuals in our society. It does so by being able to correct problems closely associated with the human psyche--the human face. The ability to change facial features brings tremendous prestige to our profession. Along with this prestige comes greater responsibility. Our ability to change facial features entails greater understanding of facial balance and harmony. Ricketts states that the face must conform to stringent proportions known as the "divine proportion" in order for it to be esthetically pleasing. Also, our ability to move facial-skeletal structures entails greater understanding of the biomechanics of the human face. Without this

  16. Characteristics of Skeletal Musculature of Pheasants Hatched from Eggs of Different Eggshell Colour

    Directory of Open Access Journals (Sweden)

    Dragan Zikic

    2016-05-01

    Full Text Available The aim of this paper was to examine morphodinamics of development of skeletal musculature of pheasants hatched from eggs of different eggshell colour. Four groups of pheasant eggs (dark brown, light brown, brown/green and blue/green were incubated. Samples of skeletal musculature of leg and breast were taken during the embryonic and neonatal period of development. From taken samples histological preparations were made. In pheasants hatched from blue/green eggs the smaller diameter of leg and breast muscle cells and the higher volume density of connective tissue in leg and breast muscles were recorded. It was concluded that pheasants hatched from blue/green eggs had the weakest development of skeletal musculature, which can be related to structural differences of eggshell of various colour.

  17. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Osada, Takuya; Andersen, Lisbeth Tingsted

    2005-01-01

    before exercise and 2, 5, 8, and 24 hours after exercise. Muscle glycogen was restored to near resting levels within 5 hours in the HC trial, but remained depressed through 24 hours in the LC trial. During the 2- to 8-hour recovery period, leg glucose uptake was 5- to 15-fold higher with HC ingestion......In skeletal muscle of humans, transcription of several metabolic genes is transiently induced during recovery from exercise when no food is consumed. To determine the potential influence of substrate availability on the transcriptional regulation of metabolic genes during recovery from exercise, 9...... male subjects (aged 22-27) completed 75 minutes of cycling exercise at 75% V¿o2max on 2 occasions, consuming either a high-carbohydrate (HC) or low-carbohydrate (LC) diet during the subsequent 24 hours of recovery. Nuclei were isolated and tissue frozen from vastus lateralis muscle biopsies obtained...

  18. Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, Kurt; Wrzesinski, Krzysztof; Larsen, Peter Mose

    2003-01-01

    quantitate a large number of proteins and their post-translational modifications simultaneously and is a powerful tool to study polygenic diseases like type 2 diabetes. Using this approach on human skeletal muscle biopsies, we have identified eight potential protein markers for type 2 diabetes in the fasting...... synthase beta-subunit phosphoisoform in diabetic muscle correlated inversely with fasting plasma glucose levels. These data suggest a role for phosphorylation of ATP synthase beta-subunit in the regulation of ATP synthesis and that alterations in the regulation of ATP synthesis and cellular stress proteins...

  19. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    Directory of Open Access Journals (Sweden)

    João A Paredes

    Full Text Available Loss of thymidine kinase 2 (TK2 causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA depletion syndrome (MDS in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  20. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    Science.gov (United States)

    Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  1. Composition and biosynthesis of lipids in the healthy human skeletal muscle

    International Nuclear Information System (INIS)

    Schlenska, K.

    1979-01-01

    The skeletal muscle samples were ground in a Warburg Apparatus under oxygen, incubated for 20 to 120 min. at 37 0 C together with the three precursors of lipid biosynthesis, and oxygen uptake and 14 Co 2 -formation measured. Both parameters showed increasing values during the incubation time. The total lipid extract was isolated from the labelled skeletal muscle samples and was separated, following chromatographic purification on Sephatex-G 25 with the aid of thin-layer chromatography on silica gel, into the following fractions in order of decreasing concentration: phospholipids, triglycerides, cholesterol, mono- and diglyceride fraction, cholesterol ester fraction. Following in-vitro labelling with the three precursors, of the phospholipid fraction [ 3 H] palmilic and showed the highest, increasing incorporation rate, and [ 14 C] acetate the lowest level and slow rate of incorporation. For the central fat fraction labelling incorporation rate decreased in the order: monoglycerides > diglycerides > triglycerides. [ 14 C] acetate labelling occurred to a greater extent in cholestorol esters than in the cholestorol fraction. These findings indicate a de-novo biosynthesis of fatty acids from acetate and their incorporation in mono-, di-and triglycerides and in cholesterol ester. Moreover, incorporation of palmitic and in these fractions, de-novo synthesis of cholesterol, and incorporation of PO 4 3 - and labelled fatty acids in the phospholipid fraction are also suggested. (orig./MG) [de

  2. Structure–function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    International Nuclear Information System (INIS)

    Gao, Yingxin; Zhang, Chi

    2015-01-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure–function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure–function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure–function relationship of skeletal muscle into the design of artificial muscle. (topical review)

  3. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    Science.gov (United States)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  4. Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Malcolm Eaton

    2018-04-01

    Full Text Available Background: Exercise promotes numerous phenotypic adaptations in skeletal muscle that contribute to improved function and metabolic capacity. An emerging body of evidence suggests that skeletal muscle also releases a myriad of factors during exercise, termed “myokines”. The purpose of this study was to examine the effects of high-intensity interval training (HIIT on the acute regulation of the mRNA expression of several myokines, including the prototypical myokine interleukin-6 (IL-6, and recently identified myokines fibronectin type III domain-containing protein 5 (FNDC5 (irisin and meteorin-like protein (METRNL. Methods: Both before and after a 20-day period of twice-daily high-volume HIIT, 9 healthy males (20.5 ± 1.5 years performed a standardized bout of high-intensity interval exercise (HIIE; 5 × 4 min at ~80% pretraining peak power output with skeletal muscle biopsy samples (vastus lateralis obtained at rest, immediately following exercise, and at 3 h recovery. Results: Before training, a single bout of HIIE increased IL-6 (p < 0.05 and METRNL (p < 0.05 mRNA expression measured at 3 h recovery when compared to rest. Following 20 days of HIIT, IL-6 and FNDC5 mRNA were increased at 3 h recovery from the standardized HIIE bout when compared to rest (both p < 0.05. Resting METRNL and FNDC5 mRNA expression were higher following training (p < 0.05, and there was an overall increase in FNDC5 mRNA post-training (main effect of training, p < 0.05. Conclusion: In human skeletal muscle (1 an acute bout of HIIE can induce upregulation of skeletal muscle IL-6 mRNA both before and after a period of intensified HIIT; (2 Resting and overall FNDC5 mRNA expression is increased by 20 days of HIIT; and (3 METRNL mRNA expression is responsive to both acute HIIE and short-term intense HIIT. Future studies are needed to confirm these findings at the protein and secretion level in humans. Keywords: Brown adipose tissue

  5. Oxidative proteome alterations during skeletal muscle ageing

    Directory of Open Access Journals (Sweden)

    Sofia Lourenço dos Santos

    2015-08-01

    Full Text Available Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the ‘oxi-proteome’ or ‘carbonylome’, have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype.

  6. Improvement of maternal vitamin D status with 25-hydroxycholecalciferol positively impacts porcine fetal skeletal muscle development and myoblast activity.

    Science.gov (United States)

    Hines, E A; Coffey, J D; Starkey, C W; Chung, T K; Starkey, J D

    2013-09-01

    There is little information available regarding the influence of maternal vitamin D status on fetal skeletal muscle development. Therefore, we investigated the effect of improved vitamin D status resulting from 25-hydroxycholecalciferol (25OHD3) supplementation of dams on fetal skeletal muscle developmental characteristics and myoblast activity using Camborough 22 gilts (n = 40) randomly assigned to 1 of 2 corn-soybean meal-based diets. The control diet (CTL) contained 2,500 IU cholecalciferol (D3)/kg diet, whereas the experimental diet contained 500 IU D3/kg diet plus 50 µg 25OHD3/kg diet. Gilts were fed 2.7 kg of their assigned diet once daily beginning 43 d before breeding through d 90 of gestation. On gestational d 90 (± 1), fetal LM and semitendinosus muscle samples were collected for analysis of developmental characteristics and myoblast activity, respectively. No treatment difference was observed in fetal LM cross-sectional area (P = 0.25). Fetuses from 25OHD3-supplemented gilts had more LM fibers (P = 0.04) that tended to be smaller in cross-sectional area compared with CTL fetuses (P = 0.11). A numerical increase in the total number of Pax7+ myoblasts was also observed in fetuses from 25OHD3-supplemented gilts (P = 0.12). Myoblasts derived from the muscles of fetuses from 25OHD3-fed dams displayed an extended proliferative phase in culture compared with those from fetuses of dams fed only D3 (P importance of maternal vitamin D status on the development of fetal skeletal muscle.

  7. Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.

    Science.gov (United States)

    Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M

    2015-01-01

    Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years.

  8. Identification of Histone Deacetylase 2 as a Functional Gene for Skeletal Muscle Development in Chickens

    Directory of Open Access Journals (Sweden)

    Md. Shahjahan

    2016-04-01

    Full Text Available A previous genome-wide association study (GWAS exposed histone deacetylase 2 (HDAC2 as a possible candidate gene for breast muscle weight in chickens. The present research has examined the possible role of HDAC2 in skeletal muscle development in chickens. Gene expression was measured by quantitative polymerase chain reaction in breast and thigh muscles during both embryonic (four ages and post-hatch (five ages development and in cultures of primary myoblasts during both proliferation and differentiation. The expression of HDAC2 increased significantly across embryonic days (ED in breast (ED 14, 16, 18, and 21 and thigh (ED 14 and 18, and ED 14 and 21 muscles suggesting that it possibly plays a role in myoblast hyperplasia in both breast and thigh muscles. Transcript abundance of HDAC2 identified significantly higher in fast growing muscle than slow growing in chickens at d 90 of age. Expression of HDAC2 during myoblast proliferation in vitro declined between 24 h and 48 h when expression of the marker gene paired box 7 (PAX7 increased and cell numbers increased throughout 72 h of culture. During induced differentiation of myoblasts to myotubes, the abundance of HDAC2 and the marker gene myogenic differentiation 1 (MYOD1, both increased significantly. Taken together, it is suggested that HDAC2 is most likely involved in a suppressive fashion in myoblast proliferation and may play a positive role in myoblast differentiation. The present results confirm the suggestion that HDAC2 is a functional gene for pre-hatch and post-hatch (fast growing muscle development of chicken skeletal muscle.

  9. High-Yield Purification, Preservation, and Serial Transplantation of Human Satellite Cells

    Directory of Open Access Journals (Sweden)

    Steven M. Garcia

    2018-03-01

    Full Text Available Summary: Investigation of human muscle regeneration requires robust methods to purify and transplant muscle stem and progenitor cells that collectively constitute the human satellite cell (HuSC pool. Existing approaches have yet to make HuSCs widely accessible for researchers, and as a result human muscle stem cell research has advanced slowly. Here, we describe a robust and predictable HuSC purification process that is effective for each human skeletal muscle tested and the development of storage protocols and transplantation models in dystrophin-deficient and wild-type recipients. Enzymatic digestion, magnetic column depletion, and 6-marker flow-cytometric purification enable separation of 104 highly enriched HuSCs per gram of muscle. Cryostorage of HuSCs preserves viability, phenotype, and transplantation potential. Development of enhanced and species-specific transplantation protocols enabled serial HuSC xenotransplantation and recovery. These protocols and models provide an accessible system for basic and translational investigation and clinical development of HuSCs. : Garcia and colleagues report methods for efficient purification of satellite cells from human skeletal muscle. They use their approaches to demonstrate stem cell functions of endogenous satellite cells and to make human satellite cells accessible for sharing among researchers. Keywords: human satellite cell purification, serial transplantation, satellite cell cryopreservation

  10. From Head to Toe: Respiratory, Circulatory, and Skeletal Systems. Book 3.

    Science.gov (United States)

    Wiebe, Arthur, Ed.; And Others

    Designed to supplement curricular programs dealing with the human body, this booklet offers an activity-based, student-oriented approach for middle school teachers and students. Twelve activities focus on principles and skills related to the respiratory, circulatory, and skeletal systems. Each activity consists of student sheets and a teacher's…

  11. A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy.

    Science.gov (United States)

    Owens, Daniel J; Sharples, Adam P; Polydorou, Ioanna; Alwan, Nura; Donovan, Timothy; Tang, Jonathan; Fraser, William D; Cooper, Robert G; Morton, James P; Stewart, Claire; Close, Graeme L

    2015-12-15

    Skeletal muscle is a direct target for vitamin D. Observational studies suggest that low 25[OH]D correlates with functional recovery of skeletal muscle following eccentric contractions in humans and crush injury in rats. However, a definitive association is yet to be established. To address this gap in knowledge in relation to damage repair, a randomised, placebo-controlled trial was performed in 20 males with insufficient concentrations of serum 25(OH)D (45 ± 25 nmol/l). Prior to and following 6 wk of supplemental vitamin D3 (4,000 IU/day) or placebo (50 mg of cellulose), participants performed 20 × 10 damaging eccentric contractions of the knee extensors, with peak torque measured over the following 7 days of recovery. Parallel experimentation using isolated human skeletal muscle-derived myoblast cells from biopsies of 14 males with low serum 25(OH)D (37 ± 11 nmol/l) were subjected to mechanical wound injury, which enabled corresponding in vitro studies of muscle repair, regeneration, and hypertrophy in the presence and absence of 10 or 100 nmol 1α,25(OH)2D3. Supplemental vitamin D3 increased serum 25(OH)D and improved recovery of peak torque at 48 h and 7 days postexercise. In vitro, 10 nmol 1α,25(OH)2D3 improved muscle cell migration dynamics and resulted in improved myotube fusion/differentiation at the biochemical, morphological, and molecular level together with increased myotube hypertrophy at 7 and 10 days postdamage. Together, these preliminary data are the first to characterize a role for vitamin D in human skeletal muscle regeneration and suggest that maintaining serum 25(OH)D may be beneficial for enhancing reparative processes and potentially for facilitating subsequent hypertrophy. Copyright © 2015 the American Physiological Society.

  12. Effects of the belt electrode skeletal muscle electrical stimulation system on lower extremity skeletal muscle activity: Evaluation using positron emission tomography.

    Science.gov (United States)

    Numata, Hitoaki; Nakase, Junsuke; Inaki, Anri; Mochizuki, Takafumi; Oshima, Takeshi; Takata, Yasushi; Kinuya, Seigo; Tsuchiya, Hiroyuki

    2016-01-01

    Lower-extremity muscle weakness in athletes after lower limb trauma or surgery can hinder their return to sports, and the associated muscle atrophy may lead to deterioration in performance after returning to sports. Recently, belt electrode skeletal muscle electrical stimulation (B-SES) which can contract all the lower limb skeletal muscles simultaneously was developed. However, no study has evaluated skeletal muscle activity with B-SES. Since only superficial muscles as well as a limited number of muscles can be investigated using electromyography, we investigated whether positron emission tomography (PET) can evaluate the activity of all the skeletal muscles in the body simultaneously. The purpose of this study was to evaluate the effectiveness of the B-SES system using PET. Twelve healthy males (mean age, 24.3 years) were divided into two groups. The subjects in the control group remained in a sitting position for 10 min, and [(18)F] fluorodeoxyglucose (FDG) was intravenously injected. In the exercise group, subjects exercised using the B-SES system for 20 min daily for three consecutive days as a pre-test exercise. On the measurement day, they exercised for 10 min, received an injection of FDG, and exercised for another 10 min. PET-computed tomography images were obtained in each group 60 min after the FDG injection. Regions of interest were drawn in each lower-extremity muscle. We compared each skeletal muscle metabolism using the standardized uptake value. In the exercise group, FDG accumulation in the gluteus maximus, gluteus medius, gluteus minimus, quadriceps femoris, sartorius, and hamstrings was significantly higher than the muscles in the control (P skeletal muscle activity of the gluteal muscles as well as the most lower-extremity muscles simultaneously. Copyright © 2015 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  13. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte

    2006-01-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle....... Triceps brachii, vastus lateralis quadriceps, and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers, because these muscles are characterized by different fiber-type compositions. As expected, citrate synthase and 3-hydroxyacyl dehydrogenase activity...... of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly...

  14. Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jens Isak; Juhl, Morten; Nielsen, Thøger; Emmersen, Jeppe; Fink, Trine; Zachar, Vladimir; Pennisi, Cristian Pablo, E-mail: cpennisi@hst.aau.dk

    2014-07-25

    Highlights: • Uniaxial cyclic tensile strain (CTS) applied to ASCs alone or in coculture with myogenic precursors. • CTS promoted the formation of a highly ordered array of parallel ASCs. • Without biochemical supplements, CTS did not support advanced myogenic differentiation of ASCs. • Mechanical stimulation of cocultures boosted fusion of ASCs with skeletal myoblasts. - Abstract: Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.

  15. Calcium model for mammalian skeletal muscle

    NARCIS (Netherlands)

    Wallinga, W.; Boom, H.B.K.; Heijink, R.J.; van der Vliet, G.H.

    1981-01-01

    A model is presented describing quantitatively the events between excitation and force development in skeletal muscle. It consists of a calcium mediated activation model (c.m.a.m.) in series with a force generator model (f.g.m.). The c.m.a.m. was based on intracellular processes such as cisternal

  16. Sex-related differences in gene expression in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Stephen Welle

    2008-01-01

    Full Text Available There is sexual dimorphism of skeletal muscle, the most obvious feature being the larger muscle mass of men. The molecular basis for this difference has not been clearly defined. To identify genes that might contribute to the relatively greater muscularity of men, we compared skeletal muscle gene expression profiles of 15 normal men and 15 normal women by using comprehensive oligonucleotide microarrays. Although there were sex-related differences in expression of several hundred genes, very few of the differentially expressed genes have functions that are obvious candidates for explaining the larger muscle mass of men. The men tended to have higher expression of genes encoding mitochondrial proteins, ribosomal proteins, and a few translation initiation factors. The women had >2-fold greater expression than the men (P<0.0001 of two genes that encode proteins in growth factor pathways known to be important in regulating muscle mass: growth factor receptor-bound 10 (GRB10 and activin A receptor IIB (ACVR2B. GRB10 encodes a protein that inhibits insulin-like growth factor-1 (IGF-1 signaling. ACVR2B encodes a myostatin receptor. Quantitative RT-PCR confirmed higher expression of GRB10 and ACVR2B genes in these women. In an independent microarray study of 10 men and 9 women with facioscapulohumeral dystrophy, women had higher expression of GRB10 (2.7-fold, P<0.001 and ACVR2B (1.7-fold, P<0.03. If these sex-related differences in mRNA expression lead to reduced IGF-1 activity and increased myostatin activity, they could contribute to the sex difference in muscle size.

  17. An Automated System for Skeletal Maturity Assessment by Extreme Learning Machines.

    Science.gov (United States)

    Mansourvar, Marjan; Shamshirband, Shahaboddin; Raj, Ram Gopal; Gunalan, Roshan; Mazinani, Iman

    2015-01-01

    Assessing skeletal age is a subjective and tedious examination process. Hence, automated assessment methods have been developed to replace manual evaluation in medical applications. In this study, a new fully automated method based on content-based image retrieval and using extreme learning machines (ELM) is designed and adapted to assess skeletal maturity. The main novelty of this approach is it overcomes the segmentation problem as suffered by existing systems. The estimation results of ELM models are compared with those of genetic programming (GP) and artificial neural networks (ANNs) models. The experimental results signify improvement in assessment accuracy over GP and ANN, while generalization capability is possible with the ELM approach. Moreover, the results are indicated that the ELM model developed can be used confidently in further work on formulating novel models of skeletal age assessment strategies. According to the experimental results, the new presented method has the capacity to learn many hundreds of times faster than traditional learning methods and it has sufficient overall performance in many aspects. It has conclusively been found that applying ELM is particularly promising as an alternative method for evaluating skeletal age.

  18. An Automated System for Skeletal Maturity Assessment by Extreme Learning Machines

    Science.gov (United States)

    Mansourvar, Marjan; Shamshirband, Shahaboddin; Raj, Ram Gopal; Gunalan, Roshan; Mazinani, Iman

    2015-01-01

    Assessing skeletal age is a subjective and tedious examination process. Hence, automated assessment methods have been developed to replace manual evaluation in medical applications. In this study, a new fully automated method based on content-based image retrieval and using extreme learning machines (ELM) is designed and adapted to assess skeletal maturity. The main novelty of this approach is it overcomes the segmentation problem as suffered by existing systems. The estimation results of ELM models are compared with those of genetic programming (GP) and artificial neural networks (ANNs) models. The experimental results signify improvement in assessment accuracy over GP and ANN, while generalization capability is possible with the ELM approach. Moreover, the results are indicated that the ELM model developed can be used confidently in further work on formulating novel models of skeletal age assessment strategies. According to the experimental results, the new presented method has the capacity to learn many hundreds of times faster than traditional learning methods and it has sufficient overall performance in many aspects. It has conclusively been found that applying ELM is particularly promising as an alternative method for evaluating skeletal age. PMID:26402795

  19. Cerebellar medulloblastoma presenting with skeletal metastasis

    Directory of Open Access Journals (Sweden)

    Barai Sukanta

    2004-04-01

    Full Text Available Medulloblastomas are highly malignant brain tumours, but only rarely produce skeletal metastases. No case of medulloblastoma has been documented to have produced skeletal metastases prior to craniotomy or shunt surgery. A 21-year-old male presented with pain in the hip and lower back with difficulty in walking of 3 months′ duration. Signs of cerebellar dysfunction were present hence a diagnosis of cerebellar neoplasm or skeletal tuberculosis with cerebellar abscess formation was considered. MRI of brain revealed a lesion in the cerebellum suggestive of medulloblastoma. Bone scan revealed multiple sites of skeletal metastases excluding the lumbar vertebrae. MRI of lumbar spine and hip revealed metastases to all lumbar vertebrae and both hips. Computed tomography-guided biopsy was obtained from the L3 vertebra, which revealed metastatic deposits from medulloblastoma. Cerebrospinal fluid cytology showed the presence of medulloblastoma cells. A final diagnosis of cerebellar medulloblastoma with skeletal metastases was made. He underwent craniotomy and histopathology confirmed medulloblastoma.

  20. Signalling and the control of skeletal muscle size

    International Nuclear Information System (INIS)

    Otto, Anthony; Patel, Ketan

    2010-01-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.

  1. Signalling and the control of skeletal muscle size

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Anthony [School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB (United Kingdom); Patel, Ketan, E-mail: ketan.patel@reading.ac.uk [School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB (United Kingdom)

    2010-11-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.

  2. Oxidation of urate in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Tullson, P. C.; Richter, Erik

    1997-01-01

    the level was more than twofold higher and remained elevated throughout recovery (p exercise, probably due to generation of free radicals. Furthermore, the findings support the suggested importance of urate......The purpose of the present study was to investigate whether high metabolic stress to skeletal muscle, induced by intensive exercise, would lead to an oxidation of urate to allantoin in the exercised muscle. Seven healthy male subjects performed short term (4.39 +/- 0.04 [+/-SE] min) exhaustive...... cycling exercise. Muscle samples were obtained from m. v. lateralis before and during the first few minutes after the exercise. Venous blood samples were obtained before and up to 45 min after the exercise. The concentration of urate in muscle decreased from a resting level of 0.26 +/- 0.023 to 0...

  3. Deep bite malocclusion: exploration of the skeletal and dental factors

    International Nuclear Information System (INIS)

    Bhateja, N.K.; Fida, M.; Shaikh, A.

    2016-01-01

    Correction of deep bite is crucial for maintenance of dental hard and soft tissue structures and for prevention of temporomandibular joint disorders. Exploration of underlying skeletal and dental factors is essential for efficient and individualized treatment planning. To date etiological factors of dental and skeletal deep bite have not been explored in Pakistani orthodontic patients. The objectives of this study were to explore frequencies of dental and skeletal etiological factors in deep bite patients and to determine correlations amongst dental and skeletal etiological factors of deep bite. Methods: The study included a total of 113 subjects (males=35; females=78) with no craniofacial syndromes or prior orthodontic treatment. Pre-treatment orthodontic records were used to evaluate various dental and skeletal parameters. Descriptive statistics of each parameter were calculated. The various study parameters were correlated using Pearson's Correlation. Results: Deep curve of Spee was most frequently seen factor of dental deep bite (72.6%), followed by increased coronal length of upper incisors (28.3%), retroclined upper incisors (17.7%), retroclined lower incisors (8%) and increased coronal length of lower incisors (5.3%). Decreased gonial angle was most commonly found factor of skeletal deep bite (43.4%), followed by decreased mandibular plane angle (27.4%) and maxillary plane's clockwise rotation (26.5%). Frankfort mandibular plane angle and gonial angle showed a strong positive correlation (r=0.66, p=0.000). Conclusions: Reduced gonial angle is most frequently seen skeletal factor, signifying the importance of angulation and growth of ramus in development of deep bite. Deep curve of Spee is most frequently seen dental etiological component in deep bite subjects, hence signifying the importance of intruding the lower anterior teeth. (author)

  4. The effects of Capn1 gene inactivation on skeletal muscle growth, development, and atrophy, and the compensatory role of other proteolytic systems.

    Science.gov (United States)

    Kemp, C M; Oliver, W T; Wheeler, T L; Chishti, A H; Koohmaraie, M

    2013-07-01

    Myofibrillar protein turnover is a key component of muscle growth and degeneration, requiring proteolytic enzymes to degrade the skeletal muscle proteins. The objective of this study was to investigate the role of the calpain proteolytic system in muscle growth development using μ-calpain knockout (KO) mice in comparison with control wild-type (WT) mice, and evaluate the subsequent effects of silencing this gene on other proteolytic systems. No differences in muscle development between genotypes were observed during the early stages of growth due to the up regulation of other proteolytic systems. The KO mice showed significantly greater m-calpain protein abundance (P proteolytic systems to ensure muscle protein homeostasis in vivo. Furthermore, these data contribute to the existing evidence of the importance of the calpain system's involvement in muscle growth, development, and atrophy. Collectively, these data suggest that there are opportunities to target the calpain system to promote the growth and/or restoration of skeletal muscle mass.

  5. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content......, whereas impaired insulin activation of muscle glycogen synthase represents a consistent, molecular defect found in both type 2 diabetic and high-risk individuals. Despite several studies of the insulin signaling pathway believed to mediate dephosphorylation and hence activation of glycogen synthase......, the molecular mechanisms responsible for this defect remain unknown. Recently, the use of phospho-specific antibodies in human diabetic muscle has revealed hyperphosphorylation of glycogen synthase at sites not regulated by the classical insulin signaling pathway. In addition, novel approaches such as gene...

  6. Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone?

    Science.gov (United States)

    Havekes, Bas; Sauerwein, Hans P

    2010-11-01

    To review original research studies and reviews that present data on adipocyte-myocyte crosstalk in the development of skeletal muscle insulin resistance with a specific focus on thyroid hormone. Adipose tissue communicates with skeletal muscle not only through free fatty acids but also through secretion of various products called adipokines. Adipokines came out as governors of insulin sensitivity and are deregulated in obesity. In addition to well known leptin, adiponectin, interleukin-6 and tumor necrosis factor-alpha, newer adipokines like retinol-binding protein 4 have been associated with insulin resistance. There is mounting evidence that not only adipose tissue but also skeletal muscle produces and secretes biologically active proteins or 'myokines' that facilitate metabolic crosstalk between organ systems. In recent years, increased expression of myostatin, a secreted anabolic inhibitor of muscle growth and development, has been associated with obesity and insulin resistance. Both hypothyroidism and hyperthyroidism affect insulin sensitivity in multiple ways that might overlap adipocyte-myocyte crosstalk. Recent studies have provided new insights in effects of processing of the parent hormone T4 to the active T3 at the level of the skeletal muscle. Adipocyte-myocyte crosstalk is an important modulator in the development of skeletal muscle insulin resistance. Thyroid disorders are very common and may have detrimental effects on skeletal muscle insulin resistance, potentially by interacting with adipocyte-myocyte crosstalk.

  7. Interaction and cystogenesis of Toxoplasma gondii within skeletal muscle cells in vitro

    Directory of Open Access Journals (Sweden)

    Erick Vaz Guimarães

    2009-03-01

    Full Text Available Infection by the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. To prevent human infection, all meat should be well cooked before consumption, since the parasite is present in skeletal muscle. In this context, the use of skeletal muscle cells (SkMCs as a cellular model opens up new approaches to investigate T. gondii-host cell interactions. Immunofluorescent detection of proteins that are stage-specific for bradyzoites indicated that complete cystogenesis of T. gondii in in vitro cultures of SkMCs occurs after 96 h of infection. Ultrastructural analysis showed that, after 48 h of interaction, there were alterations on the parasitophorous vacuole membrane, including greater thickness and increased electron density at the inner face of the membrane. The present study demonstrates the potential use of primary cultures of SkMCs to evaluate different molecular aspects of T. gondii invasion and cystogenesis and presents a promising in vitro model for the screening of drug activities toward tissue cysts and bradyzoites.

  8. In situ microdialysis of intramuscular prostaglandin and thromboxane in contracting skeletal muscle in humans

    DEFF Research Database (Denmark)

    Karamouzis, M; Langberg, Henning; Skovgaard, D

    2001-01-01

    Arachidonic acid metabolites, especially prostacyclin I2, are regulators of vascular tone, and may be released from contracting muscle. In the present study, the influence of exercise on accumulation of prostaglandins and thromboxane in skeletal muscle was determined by the use of microdialysis...

  9. Potential Roles of n-3 PUFAs during Skeletal Muscle Growth and Regeneration

    Directory of Open Access Journals (Sweden)

    Bill Tachtsis

    2018-03-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs, which are commonly found in fish oil supplements, are known to possess anti-inflammatory properties and more recently alter skeletal muscle function. In this review, we discuss novel findings related to how n-3 PUFAs modulate molecular signaling responsible for growth and hypertrophy as well as the activity of muscle stem cells. Muscle stem cells commonly known as satellite cells, are primarily responsible for driving the skeletal muscle repair process to potentially damaging stimuli, such as mechanical stress elicited by exercise contraction. To date, there is a paucity of human investigations related to the effects of n-3 PUFAs on satellite cell content and activity. Based on current in vitro investigations, this review focuses on novel mechanisms linking n-3 PUFA’s to satellite cell activity and how they may improve muscle repair. Understanding the role of n-3 PUFAs during muscle growth and regeneration in association with exercise could lead to the development of novel supplementation strategies that increase muscle mass and strength, therefore possibly reducing the burden of muscle wasting with age.

  10. Narciclasine attenuates diet-induced obesity by promoting oxidative metabolism in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sofi G Julien

    2017-02-01

    Full Text Available Obesity develops when caloric intake exceeds metabolic needs. Promoting energy expenditure represents an attractive approach in the prevention of this fast-spreading epidemic. Here, we report a novel pharmacological strategy in which a natural compound, narciclasine (ncls, attenuates diet-induced obesity (DIO in mice by promoting energy expenditure. Moreover, ncls promotes fat clearance from peripheral metabolic tissues, improves blood metabolic parameters in DIO mice, and protects these mice from the loss of voluntary physical activity. Further investigation suggested that ncls achieves these beneficial effects by promoting a shift from glycolytic to oxidative muscle fibers in the DIO mice thereby enhancing mitochondrial respiration and fatty acid oxidation (FAO in the skeletal muscle. Moreover, ncls strongly activates AMPK signaling specifically in the skeletal muscle. The beneficial effects of ncls treatment in fat clearance and AMPK activation were faithfully reproduced in vitro in cultured murine and human primary myotubes. Mechanistically, ncls increases cellular cAMP concentration and ADP/ATP ratio, which further lead to the activation of AMPK signaling. Blocking AMPK signaling through a specific inhibitor significantly reduces FAO in myotubes. Finally, ncls also enhances mitochondrial membrane potential and reduces the formation of reactive oxygen species in cultured myotubes.

  11. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.

    Science.gov (United States)

    van Bremen, Tobias; Send, Thorsten; Sasse, Philipp; Bruegmann, Tobias

    2017-08-01

    Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.

  12. Supervised segmentation of phenotype descriptions for the human skeletal phenome using hybrid methods

    Directory of Open Access Journals (Sweden)

    Groza Tudor

    2012-10-01

    Full Text Available Abstract Background Over the course of the last few years there has been a significant amount of research performed on ontology-based formalization of phenotype descriptions. In order to fully capture the intrinsic value and knowledge expressed within them, we need to take advantage of their inner structure, which implicitly combines qualities and anatomical entities. The first step in this process is the segmentation of the phenotype descriptions into their atomic elements. Results We present a two-phase hybrid segmentation method that combines a series individual classifiers using different aggregation schemes (set operations and simple majority voting. The approach is tested on a corpus comprised of skeletal phenotype descriptions emerged from the Human Phenotype Ontology. Experimental results show that the best hybrid method achieves an F-Score of 97.05% in the first phase and F-Scores of 97.16% / 94.50% in the second phase. Conclusions The performance of the initial segmentation of anatomical entities and qualities (phase I is not affected by the presence / absence of external resources, such as domain dictionaries. From a generic perspective, hybrid methods may not always improve the segmentation accuracy as they are heavily dependent on the goal and data characteristics.

  13. Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity

    DEFF Research Database (Denmark)

    Skovbro, M; Baranowski, M; Skov-Jensen, C

    2008-01-01

    -hyperinsulinaemic clamp was performed for 120 and 90 min for step 1 and step 2, respectively. Muscle biopsies were obtained from vastus lateralis at baseline, and after steps 1 and 2. RESULTS: Glucose infusion rates increased in response to insulin infusion, and significant differences were present between groups (T2D......AIMS/HYPOTHESIS: In skeletal muscle, ceramides may be involved in the pathogenesis of insulin resistance through an attenuation of insulin signalling. This study investigated total skeletal muscle ceramide fatty acid content in participants exhibiting a wide range of insulin sensitivities. METHODS......: The middle-aged male participants (n=33) were matched for lean body mass and divided into four groups: type 2 diabetes (T2D, n=8), impaired glucose tolerance (IGT, n=9), healthy controls (CON, n=8) and endurance-trained (TR, n=8). A two step (28 and 80 mU m(-2) min(-1)) sequential euglycaemic...

  14. Traumatic skeletal changes

    International Nuclear Information System (INIS)

    Troeger, J.; Schofer, O.

    1985-01-01

    Skeleton scintiscanning is indicated in the following cases: (1) Suspected bone injury after clinical examination, the radiograph of the skeletal region in question contributing findings that either do not confirm suspision, or make not clear whether the changes observed are traumatic. (2) Polytrauma. (3) When the accident scenario reported by the persons taking care of the child does not sufficiently explain the skeletal changes observed, or when these persons expressly deny the possibility of a trauma being the cause of findings observed. (4) Suspected or proven battered-child syndrome. (orig./MG) [de

  15. Skeletal sequelae of radiation therapy for malignant childhood tumors

    International Nuclear Information System (INIS)

    Butler, M.S.; Robertson, W.W. Jr.; Rate, W.; D'Angio, G.J.; Drummond, D.S.

    1990-01-01

    One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) had scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy

  16. The diagnostic performance of chronologic age in the assessment of skeletal maturity.

    Science.gov (United States)

    Baccetti, Tiziano; Franchi, Lorenzo; De Toffol, Laura; Ghiozzi, Bruno; Cozza, Paola

    2006-01-01

    The aim of this study was to analyze the relationship between chronologic age the and individual skeletal maturity as assessed by means of the cervical vertebral maturation (CVM) method during the circumpubertal period. The evaluated sample of 600 subjects consisted of 100 subjects (50 males and 50 females) for each of 6 age groups, from 9 years through 14 years of age. Individual skeletal maturity for all subjects was determined by using the CVM method. The relationship between chronologic age and the most prevalent CVM stage at each age group was evaluated statistically by means of indicators of diagnostic test performance that specify the ability of a diagnostic test to identify a condition. The diagnostic performance of chronologic age for the detection of the onset of the adolescent peak in skeletal maturation was very low both in males and in females. In male subjects, the chronologic age of 9 years +/- 6 months presented with strong diagnostic power for the identification of a pre-pubertal stage in skeletal maturation. In female subjects, the chronologic age of 14 years +/- 6 months corresponded with a strong probability of a postpubertal stage in skeletal maturation. In males, chronologic age can identify a pre-pubertal stage of skeletal development, and in females a post-pubertal stage. In both males and females, chronologic age cannot recognize the onset of the adolescent peak in skeletal maturation.

  17. Comprehensive Validation of Skeletal Mechanism for Turbulent Premixed Methane–Air Flame Simulations

    KAUST Repository

    Luca, Stefano

    2017-08-01

    A new skeletal mechanism, consisting of 16 species and 72 reactions, has been developed for lean methane–air premixed combustion from the GRI-Mech 3.0. The skeletal mechanism is validated for elevated unburnt temperatures (800 K) and pressures up to 4 atm, thereby addressing realistic gas turbine conditions. The skeletal mechanism is obtained by applying the directed relation graph method and performing sensitivity analysis on the detailed mechanism. The mechanism has been validated for flame speed and flame structure in a wide range of conditions and configurations. A good agreement between the skeletal mechanism and GRI-3.0 was obtained. The configurations considered include one-dimension laminar premixed flames, laminar non-premixed counterflow burners, and two- and three-dimensional unsteady configurations with variations of temperature, pressure, and composition. The skeletal mechanism allows for the inclusion of accurate finite rate chemistry in large-scale direct numerical simulations of lean turbulent premixed flames. In a large-scale direct numerical simulation, the use of the skeletal mechanism reduces the memory requirements by more than a factor of 3 and accelerates the simulation by a factor of 7 compared with the detailed mechanism. The skeletal mechanism is suitable for unsteady three-dimensional simulations of methane turbulent premixed, non-premixed, and globally lean partially premixed flames and is available as supplementary material.

  18. Identification and profiling of microRNAs and their target genes from developing caprine skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    Full Text Available Goat is an important agricultural animal for meat production. Functional studies have demonstrated that microRNAs (miRNAs regulate gene expression at the post-transcriptional level and play an important role in various biological processes. Although studies on miRNAs expression profiles have been performed in various animals, relatively limited information about goat muscle miRNAs has been reported. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for expression profiles of caprine miRNAs during two developmental stages of skeletal muscles: fetal stage and six month-old stage. As a result, 15,627,457 and 15,593,721 clean reads were obtained from the fetal goat library (FC and the six month old goat library (SMC, respectively. 464 known miRNAs and 83 novel miRNA candidates were identified. Furthermore, by comparing the miRNA profile, 336 differentially expressed miRNAs were identified and then the potential targets of the differentially expressed miRNAs were predicted. To understand the regulatory network of miRNAs during muscle development, the mRNA expression profiles for the two development stages were characterized and 7322 differentially expressed genes (DEGs were identified. Then the potential targets of miRNAs were compared to the DEGs, the intersection of the two gene sets were screened out and called differentially expressed targets (DE-targets, which were involved in 231 pathways. Ten of the 231 pathways that have smallest P-value were shown as network figures. Based on the analysis of pathways and networks, we found that miR-424-5p and miR-29a might have important regulatory effect on muscle development, which needed to be further studied. This study provided the first global view of the miRNAs in caprine muscle tissues. Our results help elucidation of complex regulatory networks between miRNAs and mRNAs and for the study of muscle

  19. Skeletal sarcoidosis; Skelettsarkoidose

    Energy Technology Data Exchange (ETDEWEB)

    Freyschmidt, J. [Klinikum Bremen-Mitte, Beratungsstelle und Referenzzentrum fuer Osteoradiologie, Bremen (Germany); Freyschmidt, P. [Dermatologische Gemeinschaftspraxis, Schwalmstadt (Germany)

    2016-10-15

    Presentation of the etiology, pathology, clinical course, radiology and differential diagnostics of skeletal sarcoidosis. Noncaseating epithelioid cell granulomas can trigger solitary, multiple or disseminated osteolysis, reactive osteosclerosis and/or granulomatous synovitis. The incidence of sarcoidosis is 10-12 per 100,000 inhabitants per year. Skeletal involvement is approximately 14 %. Skeletal involvement occurs almost exclusively in the stage of lymph node and pulmonary manifestation. Most cases of skeletal involvement are clinically asymptomatic. In the case of synovial involvement, unspecific joint complaints (arthralgia) or less commonly arthritis can occur. Typical skin alterations can be diagnostically significant. Punch out lesions osteolysis, coarse destruction and osteosclerosis can occur, which are best visualized with projection radiography and/or computed tomography. Pure bone marrow foci without interaction with the bone can only be detected with magnetic resonance imaging (MRI) and more recently with positron emission tomography (PET), mostly as incidental findings. There is a predeliction for the hand and trunk skeleton. Skeletal tuberculosis, metastases, multiple myeloma, Langerhans cell histiocytosis and sarcoid-like reactions in solid tumors must be differentiated. The key factors for correct diagnosis are thorax radiography, thorax CT and dermatological manifestations. (orig.) [German] Darstellung von Aetiologie, Pathologie, Klinik, Radiologie und Differenzialdiagnose der Skelettsarkoidose. Nichtverkaesende Epitheloidzellgranulome koennen solitaere, multiple oder disseminierte Osteolysen, reaktive Osteosklerosen und/oder eine granulomatoese Synovialitis ausloesen. Inzidenz der Sarkoidose: 10-12/100.000 Einwohner/Jahr. Skelettbeteiligung ca. 14 %. Skelettbeteiligungen kommen fast ausschliesslich im Stadium einer Lymphknoten- und pulmonalen Manifestation vor. Die meisten Skelettbeteiligungen verlaufen klinisch stumm. Bei synovialer

  20. Chiral Orientation of Skeletal Muscle Cells Requires Rigid Substrate

    Directory of Open Access Journals (Sweden)

    Ninghao Zhu

    2017-06-01

    Full Text Available Reconstitution of tissue morphology with inherent left–right (LR asymmetry is essential for tissue/organ functions. For skeletal muscle, the largest tissue in mammalian organisms, successful myogenesis requires the regulation of the LR asymmetry to form the appropriate muscle alignment. However, the key factor for reproducing the LR asymmetry of skeletal tissues in a controllable, engineering context remains largely unknown. Recent reports indicate that cell chirality may underlie the LR development in tissue morphogenesis. Here, we report that a rigid substrate is required for the chirality of skeletal muscle cells. By using alternating micropatterned cell-adherent and cell-repellent stripes on a rigid substrate, we found that C2C12 skeletal muscle myoblasts exhibited a unidirectional tilted orientation with respect to the stripe boundary. Importantly, such chiral orientation was reduced when soft substrates were used instead. In addition, we demonstrated the key role of actin stress fibers in the formation of the chiral orientation. This study reveals that a rigid substrate is required for the chiral pattern of myoblasts, paving the way for reconstructing damaged muscle tissue with inherent LR asymmetry in the future.